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In This Issue 

This issue of Survey Methodology contains papers on a variety of topics touching on coverage 
issues, nonresponse, imputation, survey designs, survey weighting and analysis of data from 
complex surveys. 

In the first paper of this issue, Blenk and Stasny develop a weighting adjustment in order to 
reduce the coverage bias in telephone surveys while controlling the increase in variance due to 
weighting. The weighting adjustment is applied to transient households, which are households 
moving in and out of the telephone population during the year. It is assumed that the transient 
telephone population is representative of the non-telephone population. The weighting adjustment 
proposed is based on propensity scores for transience obtained using a logistic regression model. 
The proposed method and several alternatives are compared using data collected from a survey of 
distressed and non-distressed regions of Kentucky, Ohio, and West Virginia. 

Mariano and Kadane use the information on the number of calls in a telephone survey as an 
indicator of how difficult an intended respondent is to reach. This permits a probabilistic division 
of the nonrespondents into those who will always refuse to respond and those who were not 
available to respond in a model of the nonresponse. It also permits an evaluation of whether the 
nonresponse is ignorable for inference about the dependent variable by incorporating the information 
on the number of calls into the model. These ideas are implemented on data from a survey in 
Metropolitan Toronto of atiitudes toward smoking in the workplace. The results reveal that the 
nonresponse is not ignorable and those who do not respond are twice as likely to favor unrestricted 
smoking in the workplace as are those who do. 

In his paper, Hidiroglou unifies the nested and non-nested cases found in the double sampling 
theory. Tlie nested case, also known as two-phase sampling, corresponds to the traditional case in 
which a first-phase sample is initially taken so that additional information may be collected. This is 
followed by a second-phase sample taken within the first one, which contains the variables of 
interest. The non-nested case reflects a situation in which both samples are selected independently 
from the same frame or possibly from different frames. Using the generalized difference, an 
estimator is proposed for both cases, and an optimal estimator that minimizes variance is developed. 
Variance estimation is also discussed for both cases. Numerous examples of surveys conducted at 
Statistics Canada illustrate the unification of both cases. 

Lavallee and Caron investigate the problem of producing estimates when using record linkage 
methods to link two populations together. In particular, they consider the problem of producing 
estimates for one of the populations using a sample from the other one, assuming the two 
populations have been linked together. The Generalized Weight Share method is adapted to take 
into account the linkage weights in three different ways: (1) all links where the linkage weight is 
non-zero; (2) all links where the linkage weights are greater than a given threshold; and (3) the links 
are randomly chosen. These proposed estimators are compared with the classical approach through 
a simulation study. 

Merkouris considers the problem of producing cross-sectional estimates with data collected from 
multiple panel surveys. Coverage of the cross-sectional population maybe incomplete due to 
individuals leaving or entering the population after the selection of the panel. By recognizing that 
a repeating panel survey is a special type of multiple frame survey, Merkouris is able to propose 
weighting strategies suitable for various multiple panel surveys. These weighting procedures can 
be used to combine information from the multiple panels to produce cross-sectional estimates that 
take into account the dynamic character of the multiple panel design. 

Marker investigates survey design strategies to improve the quality of direct small area estimators, 
thus reducing the need for indirect, model-based estimators. Factors considered include stratification 
and oversampling, combining data from repeated surveys, harmonizing across different surveys, 
supplemental samples, and improved estimation procedures. 
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In their paper, Saigo, Shao and Sitter address the important problem of variance estimation under 
imputation for missing data. In their paper, they propose a bootstrap method that works for both 
smooth and non-smooth statistics, even for the case where the number of sampled clusters is small. 
This improves on their previously proposed bootstrap method which could suffer from serous 
overestimation when the number of sampled clusters is small. In addition to a bootstrap method, 
Saigo, Shao and Sitter also propose a repeated Balanced Repeated Replication method that captures 
the imputation variance in the presense of random imputrtion. These methods are illustrated through 
a simulation study. 

BelUiouse and Stafford consider nonparametric local polynomial regression as an exploratory data 
analysis tool for data from complex surveys. They consider a single continuous regressor variable 
X, which is binned into a finite number of possible values, which may correspond to the precision 
of measurement of x, but may also be chosen otherwise. Point estimates of the local regression 
function, and associated variance estimates, are developed. The method is illustrated with an 
analysis of body mass indices from the Ontario Health Survey, and the nonparametric estimates are 
compared to those obtained from a parametric model. 

In the final paper of this issue, Silva and Smith use a state space approach for modelling of 
compositional time series using data from a repeated complex survey. A compositional time series 
is a multivariate time series of proportions constrained to add to one at each time point. They first 
transform the data using an additive logistic transformation, and then model the transformed series. 
Estimation methods based on the Kalman filter are developed and then applied to data from the 
Brazilian Labour Force Survey. The Kalman filter also provides model-based estimates of variance 
and confidence limits for the transformed series. Estimates of trends and seasonal effects are 
compared to those obtained using X-11 ARIMA, and found to be generally smoother since they 
explicitly account for sampling errors in the raw estimates of the series. 

M.P. Singh 
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Using Propensity Scores to Control Coverage Bias in Telephone Surveys 
KRISTIN BLENK DUNCAN and ELIZABETH A. STASNY' 

ABSTRACT 

Telephone surveys are a convenient and efficient method of data collection. Bias may be introduced into population 
estimates, however, by the exclusion of nontelephone households from these surveys. Data from the U.S. Federal 
Communications Commission (FCC) indicates that five and a half to six percent of American households are without phone 
service at any given time. The bias introduced can be significant since nontelephone households may differ from telephone 
households in ways that are not adequately handled by poststratification. Many households, called "transients", move in 
and out of the telephone population during the year, sometimes due to economic reasons or relocation. The transient 
telephone population may be representative of the nontelephone population in general since its members have recently been 
in the nontelephone population. 
This paper develops a weighting adjustment for transients in an effort to reduce the bias due to noncoverage while 
controlling the increase in variance due to weighting. We use a logistic regression model to describe each household's 
propensity for transience, using data collected from a survey of distressed and non-distressed regions of Kentucky, Ohio, 
and West Virginia. Weight adjustments are based on the propensity scores. Estimates of the reduction in bias and the error 
of estimates are computed for a number of survey statistics of interest, using the propensity based weight adjustments and 
several alternative weight adjustments. The error in adjusted estimates is compared to the error of the standard estimate to 
assess the effectiveness of the adjustment. 

KEY WORDS: RDD survey; Weight adjustments; Non-sampling error. 

1. INTRODUCTION 

The telephone is a standard mode of communication in 
today's world, and hence it is extremely useful for 
conducting surveys. Telephone surveys have come into use 
more and more as a growing percentage of people have 
phone connections. Most people who belong to the 
population that a survey seeks to make inferences about, the 
survey's target population, can be reached by phone. 
Therefore, the sample is drawn from the set of all people in 
households reachable through residential phone numbers. 
However, this sampling frame excludes all the people 
without telephone service who may compose a significant 
portion of some populations. It is currently estimated that in 
the United States, five and a half to six percent of house­
holds are without telephone service at any given time 
(Belinfante 2(XX)). People without phone service tend to be 
different from people witii service, particularly with regards 
to economic factors (Smith 1990). Results of the survey will 
not tiiily reflect the entire population if these differences are 
significant on matters of importance to the survey. The 
coverage bias is particularly troublesome in surveys that 
examine subgroups of die population with lower telephone 
penetration rates. These groups include people in lower 
income households and people who have not obtained a 
high school degree. 

Poststratification on demographic variables associated 
with telephone coverage is helpful for reducing the cover­
age bias, but it does not completely solve the problem 
(Massey and Botman 1988). Another way to account for 

this coverage bias is to let people who are currendy without 
telephone service be represented by people in the survey 
who have not had continuous service recently. People 
whose phone status has changed within the last year are 
referred to as transients. Transients move in and out of the 
telephone population, possibly for economic reasons, or 
service interruptions during relocation. Transients who 
currently have phone service may be good representatives 
of the nontelephone population because they are included 
in the sampling frame, yet they have recentiy been part of 
the nontelephone population. 

A weighting adjustment suggested by Brick, Waksberg 
and Keeter (1996) uses transients in the sample to represent 
the nontelephone population. They use data from the U.S. 
Current Population Survey (CPS) to estimate unbiased 
weighting class adjustments for the transient respondents in 
their survey. Frankel, Ezzati-Rice, Wright and Srinath 
(1998) also employ this weighting class adjustment, and 
consider two similar adjustments. Brick, Flores Cervantes, 
Wang and Hankins (1999) and Frankel, Srinath, Battaglia, 
Hoaglin, Wright and Smith (1999) evaluate these adjust­
ments using surveys that ask questions about telephone 
service, but that are not subject to telephone coverage bias. 
These studies found that employing weight adjustments 
based on transient status generally led to improved 
estimates. 

This article stiidies an altemative method for computing 
a transient weight adjustment. Our method develops a 
model for predicting transience using demographic 
variables. The weight adjustment is then based on the 

Kristin Blenk Duncan and Elizabeth A. Stasny, Department of Statistics, Ohio State University, Columbus, OH 43210-1247. 
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respondent's propensity for transience. We also compare 
our propensity method to the method suggested by Brick 
et al. (1996), and to a response probability method where 
the weight adjustment is based on the length of intemiption 
in telephone service. 

We use data from the Appalachian Poll, an RDD tele­
phone survey conducted by the Ohio State University's 
Center for Survey Research during June and July of 1999. 
The survey was sponsored by The Columbus Dispatch, and 
compared distressed and non-distressed regions of 
Kentucky, Ohio, and West Virginia. The study gathered 
information on quality of life issues and perceptions about 
the Appalachian regions, and also posed a series of standard 
demographic questions. A stratified sample was used, and 
just over 400 surveys were completed from each of the six 
strata (Appalachian and non-Appalachian regions of Ohio, 
Kentucky, and West Virginia). The poll targeted English 
speaking adults, 18 years of age or older, residing in the 
three states. Coverage bias is of particular concern in this 
survey since telephone coverage rates are lower than usual 
in the distressed Appalachian regions. 

In section 2, we report on the literature describing tele­
phone and transient populations. In this section we also 
explore differences between these groups in our data, 
illustrating the concern about coverage bias. Section 2 ends 
with our proposed model for predicting transience. Section 
3 details the various weighting procedures. In section 4 we 
discuss the trade-off between bias reduction and increased 
variance from adjusted weights, and compare the weighting 
schemes. The final section summarizes the findings. 

2, NONTELEPHONE AND TRANSIENT 
TELEPHONE POPULATIONS 

The target population for a telephone survey can be 
categorized by telephone status into four groups: contin­
uous service households, transient households which are 
currendy with service, transient households which are 
currently without service, and chronic nontelephone house­
holds. We need to know something about the size of each 
of these groups in order to account for coverage bias in the 
survey. Data from the FCC is useful for examining long 
term trends in the size of the nontelephone population. Not 
as much is known, however, about the short-term changes 
in phone coverage. 

Keeter (1995) used panel surveys to study the dynamics 
of the transient phone population. In the March 1992 and 
1993 CPS, it was found that 94.1% of households in the 
sample at both times had a phone at both time points, 2.6% 
at neither point, and 3.4% had a phone at one interview, but 
not the other. Fifty-seven percent of respondents who 
reported having no phone at either interview were transient. 
If the measurements could be taken continuously, rather 
than at two points in time, even more households would be 
labeled transient. Keeter concludes that, "a sizable minority 

of nontelephone households, at the least, have recently been 
in the telephone population or are soon to join it. Such 
transient households constitute a measurable segment of 
telephone households and thus can provide data to charac­
terize the nontelephone population," (Keeter 1995, 
page 201). The same article asserts that, "Transient tele­
phone households are much more like nonphone house­
holds than those with continuous service," (Keeter 1995, 
page 209). This conclusion is based on formal tests using 
demographic variables from the CPS. Data from the 
National Survey of America's Families presented in Brick 
et al. (1999) supports Keeter's findings. Since transients 
make up a nontrivial proportion of the nontelephone popu­
lation and transients are more similar to the nontelephone 
households than they are to continuous service households, 
it is reasonable to use data from the ti-ansients in the sample 
to attempt to reduce coverage bias. 

In the Appalachian Poll, 140 of the 2,463 respondents, 
or 5.7%, replied positively to the question, "During the last 
twelve months has your houseliold ever been without 
telephone service for one week or more?" These respon­
dents are categorized as transients. In the Appalachian 
regions, the transience rate is 7.4% while the rate is only 
3.9% in non-Appalachian regions. 

Table 1 compares transient and nontransient households 
from the sample in regards to selected variables. The large 
differences between the two populations illustrate the need 
for bias reduction. People who live in transient households 
are much younger, have lower incomes, and they are less 
likely to be employed full time. They also have less access 
to health insurance and computers. 

Table 1 
Selected Characteristics of Nontransient and Transient 

Households 

Characteristics 

Median Age 

Household income Less than 
$20K 

Employed full-time or retired 

No health insurance 

Owns or is buying residence 

Computer in home 

Not enough money for food 

Nonstransient 

47.0 

27.8% 

55.0% 

12.7% 

79.4% 

47.4% 

12.3% 

Transient 

37.5 

60.0% 

34.5% 

30.0% 

61.4% 

26.4% 

42.9% 

Note: Statistics are based on unweighted frequencies in the sample 
which oversampled from the Appalachian regions, and thus are not 
representative of population quantities. 

A model for transience. Using the Appalachian Poll 
sample, we develop a logistic regression model to predict 
transience with demographic variables. The independent 
variables used to predict transience are age, employment 
status, race, income, and region. The model is described in 
the Appendix. Education and tenure are also good pre­
dictors of transience, but they are strongly correlated with 
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the other variables in our model, and thus, we chose not to 
include them. For a comparison of models that predict tele­
phone coverage, see Smith (1990). We will use our model 
in the propensity weighting adjustment described in the 
following section. 

3. WEIGHT ADJUSTMENTS 

We consider several weighting schemes that attempt to 
account for the coverage bias inherent in telephone surveys. 
Each of these schemes is compared to the actual weighting 
procedure used for the Appalachian Poll. In the standard 
procedure, a base weight was calculated for each respon­
dent. This adjustment is (# adults in household) / (# voice 
telephone lines), or the inverse of the respondent's probabi­
lity of being in the sample. Then weights were raked in each 
of the six strata to agree with 1990 Census proportions for 
age group, education level, and gender. Finally, the weights 
were scaled to the sample sizes within the six strata. 

3.1 Length of Disconnect 

Respondents to the Appalachian Poll who replied "yes" 
to the question about an interraption in phone service of one 
week or longer were then asked how many days they were 
without service in the last year. A simple approach to the 
coverage bias problem is to give transients a weight adjust­
ment inversely proportional to the fraction of the year that 
they were with service. For example, a person who has only 
had service for six months out of the last twelve receives a 
weight of two, thus representing himself and one other 
person in the population with a six-month disconnect who 
is currendy without service. 

This naive approach is included in the analysis for 
comparison with other schemes. It is referred to as the day 
scheme (DAY). Weight adjustments are calculated as 
365/(365 - # days without service). This weight adjustment 
is applied after the base weight described above, and before 
the weights are raked. 

While this approach is logical, it is not practical for 
controlling variance. It is usually considered undesirable to 
use weighting factors larger than three. In fact, for many 
large surveys conducted by the U.S. Census Bureau, if 
weighting factors are larger than two, respondents are 
merged into larger groups and a group weight is calculated 
in order to obtain lower weighting-adjustment factors; see, 
forexample, CPS (1978). 

This simple approach becomes more practical when 
respondents are grouped by the length of their interruption 
in service. In a scheme called day group (DAYG), tran­
sients are grouped into quartiles across the entire sample by 
length of interruption in phone service. These quartiles 
correspond to interruptions of one week, more than one 
week but less than three weeks, three weeks to two months, 
and more than two months. The weight adjustment for each 
group is 365/(365 - avg. # days without service), and it is 
also applied after the base weight, prior to raking. This 

grouping procedure is helpful for reducing the variance 
caused by extremely long interruptions. 

3.2 Weighting Class Adjustment Scheme 

Brick etal. (1996) also implement a response probability 
adjustment to reduce coverage bias. Under their procedure, 
they partition the target population into the four com­
ponents described in section 2: t^ is the number of persons 
living in continuous service households; r̂  is the number of 
persons Uving in transient households that currendy have 
service; t^ is the number of persons living in nontelephone 
households that have not had any service in the last year; 
and t^ is the number of persons living in transient house­
holds that are currendy without service. The response 
probability model the authors use assumes that t^ = 0. With 
this assumption, an unbiased weight adjustment is 
A = ('2 + U)^h ^ ' "̂  (U^h)' ^^^ inverse of the proportion of 
the transient population that currently has service. Unfortu­
nately, these population quantities are unknown and must 
be estimated. Following the lead of Brick et al., we use CPS 
data to estimate fj + r̂ . the number of persons who cur­
rently have service, and t^; caU these estimates f, + t̂  and t^, 
respectively. From the Appalachian Poll, separate estimates 
of f, and 2̂ are available; designate these estimates as r,* 
and fj, respectively. Since the estimates come from differ­
ent surveys, ratios are used in the weight adjustment, and A 
is estimated by 

A' = 1 -̂  
r.+f^ 

h^h 

(1) 

Some persons are more likely to live in nontelephone 
households than others, so Brick et al. classified transients 
into cells based on characteristics associated with not 
having a telephone, and computed the weight adjustment 
for each cell. Four classification schemes, which catego­
rized respondents by either education or tenure, length of 
interruption, and race/ethnicity were considered. 

Brick et al. found schemes that classified respondents as 
transients if they had an interruption of one week or more 
to be superior to schemes that used a cut-off of one month, 
so for the Appalachian Poll data we use the one-week cut­
off. Due to the small number of Hispanics in the 
Appalachian Poll sample, we do not categorize by ethnicity. 
Thus, for our analyses, the cell classifications for two 
schemes that use the method described by Brick et al. 
(1996) are defined as follows: 

BWKE - households that had a service interruption 
of one week or more within categories defined by 
education (less than high school, high school 
diploma, college diploma or above) and race (black, 
non-black); and 
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BWKT - households that had a service intemiption 
of one week or more within categories defined by 
tenure (own/other, rent) and race. 

The disadvantage of using these schemes in our study is 
that the estimates needed from the CPS are available by 
state, but not by region since the CPS does not sample from 
all counties. Persons in Appalachian regions are less likely 
to have telephones, but we cannot account for this with the 
available CPS data. Even when we consider statewide data, 
the sample size of the CPS is not large enough to get 
reliable values of t^ in all of the cells. For example, in 1999 
the CPS did not sample any blacks with a college degree or 
higher who live in Kentucky and do not have telephone 
service. Thus, the weighting ceU adjustments computed for 
use with the Appalachian Poll are based on CPS data from 
the three states combined. 

3.3 Raking Ratio Adjustment 

Lohr (1999) explains the use of raking ratio estimates to 
adjust for nonresponse in surveys. We propose a similar use 
of raking to account for coverage bias. We estimate the 
proportion of the population with continuous telephone 
service, and then use raking to allow transients in the 
sample to represent the portion of the population without 
continuous telephone service. 

The percent of households without continuous service is 
estimated by 

1 
r, + r2 

^ 1 + ^ 2 * ' 4 / h ^h 
(2) 

where f,, / = 1,2,4, is obtained from the FCC data. The 
first fraction estimates the proportion of households that 
currendy have service, and the second fraction estimates the 

proportion of nontransient households among households 
with service. Again, we assume that t^ = 0. The FCC gives 
telephone penetration rates by state, but not by region. Data 
from the 1990 Census does give penetration rates by 
county, but rates changed from 1990 to 1999. Therefore, to 
estimate the 1999 regional penetration rate, we maintained 
a constant ratio of percent of households without a phone in 
the non-Appalachian regions to percent of households 
without a phone in the Appalachian regions and adjusted 
the 1990 Census regional rates to match the 1999 state 
rates. Table 2 gives the data we used to compute the 1999 
state rates, and the resulting estimates. 

In a scheme referred to as transient raking, or TRAK, 
transient status is included as a control variable for raking 
along with age, gender, and education level. The totals we 
used for raking by transient status are given in Table 2. 

3.4 A New Propensity Weighting 

An estimated propensity score is sometimes used to 
create a weight adjustment to account for nonresponse in 
surveys where some variables are known for the non-
respondents. For example, in a face-to-face household inter­
view the interviewer knows the address of the non-
respondent and may have information about the person's 
race, gender, and age. A logistic regression model that 
describes propensity for response is developed, and 
respondents are assigned a weight of lip, where p is the 
estimated propensity to respond (LitUe and Rubin 1987). 
This procedure gives higher weights to sampled households 
that are more similar to the nonrespondents. Since there is 
typicaUy no data on the excluded nontelephone population 
in telephone surveys, a modified approach is taken to using 
a propensity score. We only adjust the weights for the 
transients since they will represent the missing part of the 
sample: weights for nontransients remain unadjusted. The 

Table 2 
Computation of Transient Status Raking Totals 

Appalachian Poll Data 

Sample Size 
# transients in sample 
Percent of sample without cont. service 

Census and FCC Data 

1990 State % no phone 
1990 Region % no phone 
1999 State % no phone 
Percent of state pop. living in region 

Estimates 

Ratio of Non-Ap to Ap noncoverage 
Estimated 1999 region % no phone 
Estimated % of pop. without cont. service 
Desired # of transients in sample 

Kentucky 

Ap 

412 
38 

9.2 

10.2 
19.1 
6.7 

18.6 

0.429 
12.5 
20.6 

85 

Non-Ap 

407 
19 

4.7 

10.2 
8.2 
6.7 

81.4 

0.429 
5.4 
9.8 
40 

Ohio 

Ap Non-Ap 

413 
18 

4.4 

4.7 
11.7 
5.2 
2.6 

0.385 
13.0 
16.7 

69 

405 
13 

3.2 

4.7 
4.5 
5.2 

97.4 

0.385 
5.0 
8.1 
33 

West Virginia 

Ap 

411 
36 
8.8 

10.3 
14.3 
7.3 

31.8 

0.587 
10.1 
18.0 

74 

Non-Ap 

415 
16 

3.9 

10.3 
8.4 
7.3 

68.2 

0.587 
6.0 
9.6 
40 
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weight adjustment for transients is 1/(1 -p), where p, the 
estimated propensity for transience, is described by the 
model in section 2.1. Households with a higher estimated 
propensity for transience may be more representative of the 
nontelephone population and they receive higher weight 
adjustments. This adjustment is applied to the base weight, 
and the scheme is called propensity (PROP). 

Transience is not that common, and most estimated 
propensity scores are fairly low. In the PROP scheme, the 
average weight adjustment for a transient household is 
1.167. This adjustment is not large enough for transients to 
represent themselves and the entire nontelephone popu­
lation. That is, when the weights are scaled to sum to the 
population size, the sum of the final weights for transients 
is less than the size of the transient population. To account 
for diis under-representation, the propensity weight adjust­
ment is applied, and then transient is used as a control 
variable for raking along with age, education, and gender. 
The estimated population sizes for transients are computed 
as in section 3.3. This weighting scheme is called 
augmented propensity, or AUGP. 

4. FINDINGS 

The analysis and comparison of the adjustment schemes 
presented here parallels the analysis performed by Brick 
et al. (1996). We first discuss the change in variance 
resulting from adjusting the weights to reduce coverage bias 
and present a statistic for measuring the relative variability. 
Then, the schemes are evaluated by comparing the variance 
of adjusted estimates to the mean squared error of the 
standard estimate. 

4.1 Changes in Variability 

The goal of the adjustment schemes is to decrease 
coverage bias while controlling variance. Adjustment of the 
weights to reduce the bias increases the variability of the 
weights, hence increasing the variance of the estimates. 
Kish (1992) gives a formula for measuring the increase in 

variance due to unequal weights. Brick et al (1996) refer to 
this expression as the variance inflation factor (VEF). The 
VIF can be written as 

VEF = 1 + [CV(weights)]2 (3) 

where CV(weights) is the coefficient of variation of the 
weights. A VEF ratio is computed to compare the VIF of a 
new weighting scheme to that of the standard weighting 
scheme. Table 3 gives VIF ratios for the six strata in the 
Appalachian Poll data under each scheme described in 
section 3. A VIF ratio of 1.12, for example, indicates an 
increase in variance of 12 percent over the variance using 
the standard weighting scheme. The VIF ratio values are 
reasonable for all schemes except the DAY scheme which 
sees an average variance increase of 300 percent. The VEF 
ratio values for our PROP scheme are all very close to one, 
suggesting that the PROP weight adjustments will not 
increase the variance of our estimates. 

4.2 Coverage Bias Reduction 

Estimates of seventeen population proportions using 
survey variables from the Appalachian Poll were calculated 
for the standard weighting procedure and for each of the 
seven adjustment schemes (see Table 4 for a list of the 
seventeen variables). WesVar software was used to 
calculate standard errors for these estimates by means of 
replication. We would like to assess the effectiveness of 
each scheme for reducing the coverage bias on these 
seventeen characteristics. Estimates from an independent 
source that are free of telephone coverage bias would be 
ideal for such an assessment. Unfortunately, such bench­
marks are unavailable and some model assumptions are 
necessary in order to perform an evaluation. We assume 
that the weight adjustment procedures reduce the coverage 
bias. Thus die difference between the standard estimate and 
the adjusted estimate is considered to be an unbiased 
estimate of the decrease in coverage bias resulting from the 
adjustment. The assumption favors the adjusted estimates, 
considering them to be unbiased. 

Table 3 
Ratios of Variance Inflation Factor Due to Weight Adjustment 

Region 

Non-Appalachian Ohio 

Appalachian Ohio 

Non-Appalachian Kentucky 

Appalachian Kentucky 

Non-Appalachian West Virginia 

Appalachian West Virginia 

Scheme Average 

DAY 

0.999 

1.480 

4.151 

2.433 

6.331 

2.935 

3.055 

Ratio of scheme' 

DAYG 

0.997 

1.016 

1.040 

1.069 

1.027 

1.085 

1.039 

BWKE 

1.004 

1.039 

1.018 

1.045 

1.010 

1.058 

1.029 

s VIF to standard weight's VIF 

BWKT 

1.023 

1.091 

1.054 

1.042 

1.029 

1.053 

1.049 

TRAK 

1.063 

1.331 

1.030 

1.129 

1.020 

1.116 

1.115 

PROP 

0.999 

0.999 

0.999 

1.003 

0.999 

1.005 

1.001 

AUGP 

1.061 

1.336 

1.029 

1.145 

1.024 

1.119 

1.119 
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Table 4 
Estimated Reduction in Bias and Bias Ratio for Selected Characteristics 

Characteristic 

Owns Home 

Non-Appalachian Ohio 

Appalachian Ohio 

Non-Appalachian 
Kentucky 

Appalachian Kentucky 

Non-Appalachian West 
Virginia 

Appalachian West 
Virginia 

No Health Insurance 

Non-Appalachian Ohio 

Appalachian Ohio 

Non-Appalachian 
Kentucky 

Appalachian Kentucky 

Non-Appalachian West 
Virginia 

Appalachian West 
Virginia 

Not enough Money for 
Food 

Non-Appalachian Ohio 

Appalachian Ohio 

Non-Appalachian 
Kentucky 

Appalachian Kentucky 

Non-Appalachian West 
Virginia 

Appalachian West 
Virginia 

Computer in Home 

Non-Appalachian Ohio 

Appalachian Ohio 

Non-Appalachian 
Kentucky 

Appalachian Kentucky 

Non-Appalachian West 
Virginia 

Appalachian West 
Virginia 

Summary of Seventeen 
Variables 

Mean absolute value 

Median absolute value 

Standard estimate 

Estimate 

72.2 

75.4 

68.6 

80.5 

80.0 

81.9 

7.3 

12.6 

8.8 

22.2 

14.2 

24.6 

10.8 

16.2 

11.4 

20.2 

14.0 

16.4 

60.1 
40.0 

44.5 

29.7 

46.2 

36.1 

St. 
error 

3.1 

2.8 

3.1 

2.2 

2.3 

2.2 

1.7 

2.1 

1.8 

2.4 

2.1 

2.5 

1.9 

2.5 

2.4 

2.4 

2.1 

2.0 

3.0 

3.0 

3.0 

2.3 

2.6 

2.7 

DAY 

0.6 

4.4 

7.2 

2.9 

14.2 

8.2 

0.0 

0.9 

1.8 

3.4 

-4.8 

2.5 

-0.7 

-4.7 

-3.3 

-7.4 

4.3 

1.5 

0.4 

1.2 

6.7 

1.9 

7.6 

4.3 

0.032 

0.022 

DAYG 

0.5 

0.6 

0.8 

0.8 

1.6 

0.7 

-0.1 

0.1 

0.4 

O.I 

-0.5 

-0.8 

-0.6 

-0.8 

-0.8 

-2.3 

-O.I 

-0.7 

0.3 
0.2 

0.9 

1.0 

0.6 

1.0 

0.005 

0.005 

Estimated reduction in bias 

BWKE 

0.5 

0.6 

0.9 

0.3 

0.9 

-0.4 

-0.6 

0.3 

0.2 

-0.1 

-0.7 

-1.7 

-0.9 

-0.6 

-1.3 

-2.1 

-1.0 

-1.0 

0.6 

0.3 

0.8 

0.9 

I.I 

0.3 

0.006 

0.006 

BWKT 

1.2 

2.1 

1.8 

1.3 

1.9 

0.5 

-1.4 

0.3 

0.3 

-0.2 

-1.0 

-1.3 

-1.6 

-1.3 

-1.7 

-2.1 

-1.4 

-0.9 

1.2 

0.8 

I.I 

I.l 

1.2 

0.4 

0.009 

0.011 

TRAK 

1.4 

3.2 

1.5 

0.3 

1.4 

-0.3 

-1.7 

0.5 

0.0 

-0.8 

-1.2 

-2.7 

-2.2 

-3.3 

-1.6 

-3.8 

-1.7 

-2.2 

1.3 
1.8 

0.9 

2.3 

1.5 

0.2 

0.013 

0.014 

PROP 

O.I 

0.3 

0.2 

0.0 

0.2 

0.0 

-O.I 

0.1 

0.1 

-0.4 

-0.3 

-0.6 

-O.I 

-0.2 

-0.4 

-0.4 

-0.3 

-0.5 

O.I 

0.1 

0.2 

0.0 

0.3 

0.3 

0.002 

0.001 

AUGP 

1.6 

3.5 

1.5 

0.3 

1.4 

-0.2 

-1.8 

0.6 

O.I 

-1.5 

-1.4 

-3.0 

-2.1 

-3.4 

-1.8 

-3.8 

-1.8 

-2.6 

1.4 

2.0 

1.0 

1.9 

1.6 

0.5 

0.014 

0.014 

DAY 

0.2 

1.6 

2.3 

1.3 

6.1 

3.7 

0.0 

0.4 

1.0 

1.4 

-2.3 

1.0 

-0.4 

-1.9 

-1.4 

-3.1 

2.1 

0.8 

0.1 
0.4 

2.3 

0.8 

2.9 

1.6 

1.396 

0.995 

DAYG 

0.2 

0.2 

0.3 

0.3 

0.7 

0.3 

-0.1 

0.1 

0.2 

0.0 

-0.2 

-0.3 

-0.3 

-0.3 

-0.3 

-I.O 

0.0 

-0.3 

0.1 

0.1 

0.3 

0.4 

0.2 

0.4 

0.235 

0.240 

BWKE 

0.2 

0.2 

0.3 

O.I 

0.4 

-0.2 

-0.4 

O.I 

O.I 

0.0 

-0.3 

-0.7 

-0.5 

-0.3 

-0.5 

-0.9 

-0.5 

-0.5 

0.2 

0.1 

0.3 

0.4 

0.4 

0.1 

0.620 

0.245 

Bias Ratio 

BWKT 

0.4 

0.8 

0.6 

0.6 

0.8 

0.2 

-0.8 

0.2 

0.2 

-0.1 

-0.5 

-0.5 

-0.9 

-0.5 

-0.7 

-0.9 

-0.7 

-0.4 

0.4 

0.3 

0.4 

0.5 

0.4 

0.2 

0.412 

0.420 

TRAK 

0.5 

1.1 

0.5 

0.1 

0.6 

-0.1 

-1.0 

0.3 

0.0 

-0.3 

-0.6 

-1.1 

-1.2 

-1.3 

-0.7 

-1.6 

-0.8 

-1.1 

0.5 
0.6 

0.3 

1.0 

0.6 

0.1 

0.885 

0.605 

PROP 

0.0 

0.1 

0.1 

0.0 

0.1 

0.0 

-0.1 

0.0 

0.0 

-0.2 

-0.1 

-0.2 

0.0 

-0.1 

-0.2 

-0.2 

-0.2 

-0.3 

0.0 

0.0 

0.1 

0.0 

0.1 

0.1 

0.075 

0.055 

AUGP 

0.5 

1.2 

0.5 

O.I 

0.6 

-O.I 

-l.I 

0.3 

0.0 

-0.6 

-0.7 

-1.2 

-1.2 

-1.4 

-0.8 

-1.6 

-0.9 

-1.3 

0.5 
0.7 

0.3 

0.8 

0.6 

0.2 

0.885 

0.665 

Note: In addition to the four proportions listed in the table, the summary of seventeen variables includes worry about income, better off 
economically in the 1990's, dissatisfied with own net worth, married, have children, unemployed, college graduate, in good or excellent health, 
serious illness in household, no family doctor, satisfied with own housing, very safe drinking water, and internet access in home. 

Using our assumption, we compare the estimate from 
each scheme to the standard estimate. The reduction in 
coverage bias is estimated by the difference between the 
standard estimate and the adjusted estimate. There are seven 
different estimates of the bias reduction, one for each 
scheme. The estimated reduction in bias is given by 

b: Ps-Pi' (4) 

where b. is the estimated bias reduction using scheme i,p^ 
is the standard estimate, and p. is the estimate from adjust­
ment scheme /. Estimated reductions in bias for four 

characteristics by the six strata are given in Table 4 for each 
scheme. For the characteristics owns home, not enough 
money for food, and computer in home, the direction of the 
bias is fairly consistent across schemes and regions. 
Reassuringly, the bias is in the expected direction for these 
characteristics, with fewer people owning homes, more 
people not having enough money for food, and fewer 
people having computers in their homes, than is indicated 
by the estimates using the standard weighting scheme. For 
health insurance, the direction of the bias is mostly 
consistent across regions. The standard estimate is biased 
upward for Appalachian Ohio and non-Appalachian 
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Kentucky, and generally biased downward in the other 
regions. 

The absolute size of the reduction in bias by itself is not 
fully meaningful, because it does not account for the 
amount of sampling error associated with the estimate. 
Therefore, we also calculate the bias ratio, as in Brick et al. 
(1996). The bias ratio for scheme i, r., is given by 

b: 

where se(p^) is the standard ertor of the standard estimate. 
Table 4 also gives the bias ratio for the selected estimates. 
DAY, TRAK, and AUGP give the largest bias ratios; for 
these adjustment schemes the bias is not negligible when 
we consider the standard error. DAYG and PROP have low 
bias ratios, indicating that the bias reduction is small 
compared to the error of the estimate. 

4.3 Mean Square Error 

Since the standard estimates are thought to be biased, 
error should be measured with mean square error rather 
than variance. The MSE of the standard estimate is 
approximated by 

msCj = var(p^) + fc, (6) 

for each adjustment scheme. Recall that we are assuming 
the adjusted estimates are unbiased, so that the mean square 
errors of these estimates are equal to their variances. The 
variance of the adjusted estimates can be approximated by 
two methods. The first approximation is obtained by 
multiplying the VIF ratio in Table 3 by the variance of the 
standard estimate. Alternatively, we can use the variance of 
the adjusted estimate obtained from replication methods. 

The error of the adjusted estimate is compared to the 
error of the standard estimate in the mean square ratio 
(MSR). Using the VIF variance, the estimated MSR is 
given by 

100X VIF Ratio.xvar(p^) 

"̂ -̂̂ ^ "̂- 1^;;;;!!) • ^'^^ 
For the replication variance, the estimated MSR is given by 

msr VARi (P) = 
100xvar,.(^) 

mse.{p) 
(7b) 

where var.(p) is the estimated variance of the adjusted 
estimate, obtained through replication. An MSR of 100 
indicates that the variance of the adjusted estimate is 
exactly equal to the mean squared error of the standard 
estimate. An MSR above 100 means the variance of the 
adjusted estimate is larger than the MSE of the standard 
estimate, and the bias/variance trade-off for the scheme is 
not favorable. An MSR below 100 means that the adjusted 
estimate is an improvement over the standard estimate in 
terms of overall ertor. 

Table 5 gives estimated MSR values for selected survey 
variables from the Appalachian Poll, and a summary of 
these values for seventeen variables from each adjustment 
scheme. The MSR estimates vary between regions and 
between schemes. The msr values computed using the two 
different variances also differ, but the summary values are 
similar for both variances. The DAY scheme has the 
highest msr values, indicating that this weight adjustment is 
not worthwhile because it increases the variance too much. 
TRAK and AUGP have the lowest mean and median msr 
values, though these schemes produced unfavorable esti­
mates for a few characteristics as indicated by the high 
maximum msr values. The weighting class adjustment 
schemes BWKE and BWKT performed well and their 
maximum estimated mean square ratio values are fairiy low. 
All of the msr values for the PROP scheme are near 100, 
suggesting that the overall error in estimates computed with 
this scheme is comparable to the error in the standard 
estimates. 

5. CONCLUSIONS 

While telephone use is commonplace, telephone surveys 
will always contain some bias since nontelephone house­
holds are excluded from the sampling frame, and the non-
telephone population has characteristics that differ from 
those of the telephone population. Coverage bias is 
alleviated by poststratification on variables such as income 
and education and may not be a problem in some instances. 
However, for surveys that target poor or rural areas where 
telephone penetration rates are lower, the coverage bias is 
a large concern. 

We have proposed a few new methods for reducing the 
coverage bias by adjusting the weights of respondents in the 
transient population. We compared the resulting estimates 
to those from other existing methods. In the analysis of 
these methods, it was assumed that the adjusted estimates 
are unbiased. In the absence of unbiased benchmark esti­
mates this assumption cannot be validated. The mean 
square ratios presented here are likely to be biased down­
ward since the bias of the adjusted estimate is not included. 
The estimated MSR is still useful for comparing methods, 
however, and gives a good measure of the effectiveness of 
the weight adjustments. 

As anticipated, the DAY method was found to have too 
much variability to be useful. The day group (DAYG) 
method appears to perform better, but most of the mean 
square ratios for this scheme are close to 100, meaning that 
we do not see a large improvement over the standard esti­
mate. The advantage of this scheme lies in its simplicity. 
The weight adjustment is easy to apply and does not require 
auxiliary data. 
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Table 5 
Mean Square Ratio for Selected Characteristics 

Characteristic 

Owns Home 

Non-Appalachian Ohio 

Appalachian Ohio 

Non-Appalachian Kentucky 

Appalachian Kentucky 

Non-Appalachian West Virginia 

Appalachian West Virginia 

No Health Insurance 

Non-Appalachian Ohio 

Appalachian Ohio 

Non-Appalachian Kentucky 

Appalachian Kentucky 

Non-Appalachian West Virginia 

Appalachian West Virginia 

Not enough Money for Food 

Non-Appalachian Ohio 

Appalachian Ohio 

Non-Appalachian Kentucky 

Appalachian Kentucky 

Non-Appalachian West Virginia 

Appalachian West Virginia 

Computer in Home 

Non-Appalachian Ohio 

Appalachian Ohio 

Non-Appalachian Kentucky 

Appalachian Kentucky 

Non-Appalachian West Virginia 

Appalachian West Virginia 

Summary of Seventeen Variables 

Mean 

Median 

Minimum 

Maximum 

Percent below 100 

DAY 

96.1 

42.3 

63.9 

89.3 

16.6 

20.2 

99.9 

126.8 

206.4 

82.7 

100.2 

149.6 

86.5 

31.9 

139.1 

22.3 

117.3 

181.6 

98.1 

127.2 

67.7 

147.1 

66.8 

82.7 

137.6 

107.5 

10.9 

607.7 

47.1 

DAYG 

97.2 

97.4 

97.6 

96.1 

71.2 

98.4 

99.0 

101.3 

99.9 

106.7 

97.1 

99.2 

90.5 

92.9 

94.1 

55.8 

102.6 

97.0 

98.5 
101.2 

94.9 

89.0 

96.9 

95.6 

97.5 

99.0 

55.8 

108.5 

60.8 

VIF Mean Square Ratio 

BWKE BWKT TRAK 

97.3 

98.7 

94.5 

102.3 

89.1 

103.2 

88.2 

102.1 

100.9 

104.4 

90.6 

74.1 

80.5 

97.4 

78.2 

57.6 

82.4 

84.1 

96.4 

103.1 

94.4 

91.7 

86.6 

104.4 

94.3 

99.1 

0.9 

104.8 

61.8 

88.1 

68.9 

77.7 

77.0 

62.3 

100.3 

61.4 

106.5 

102.8 

103.7 

84.0 

83.5 

57.9 

86.1 

69.5 

58.7 

71.0 

88.5 

88.2 

101.2 

92.7 

85.1 

85.8 

103.0 

92.2 

97.1 

57.9 

109.1 

58.8 

87.5 

57.9 

83.1 

110.6 

75.8 

109.3 

51.9 

125.1 

103.0 

102.1 

77.7 

52.8 

45.2 

48.6 

69.5 

31.0 

59.6 

50.4 

88.1 

96.2 

93.6 

55.7 

76.1 

111.2 

85.2 

89.8 

4.1 

133.1 

65.7 

PROP 

99.8 

99.1 

99.4 

100.3 

99.2 

100.5 

99.5 

99.9 

99.8 

97.9 

97.9 

95.7 

99.7 

99.4 

96.7 

97.2 

97.7 

94.1 

99.8 

99.7 

99.5 

100.3 

98.5 

99.6 

99.3 

99.8 

94.1 

100.5 

87.3 

AUGP 

84.5 

52.5 

83.5 

112.4 

75.5 

110.6 

48.5 

123.5 

102.7 

84.3 

71.3 

46.7 

45.6 

46.4 

64.3 

31.9 

57.2 

39.9 

86.1 

92.5 

92.8 

68.4 

73.5 

108.2 

83.8 

86.3 

5.7 

133.5 

67.6 

DAY 

98.6 

71.7 

21.9 

116.0 

28.6 

43.5 

98.8 

92.3 

39.0 

53.5 

136.6 

107.0 

105.2 

68.5 

320.7 

30.5 

105.7 

92.2 

99.5 

116.0 

27,1 

58.9 

59.6 

41.8 

125.2 

94.8 

7.0 

695.2 

63.7 

DAYG 

98.2 

96.5 

98.2 

100.7 

81.1 

106.0 

100.5 

98.8 

87.9 

109.9 

99.2 

96.5 

100.8 

98.2 

96.8 

68.4 

101.9 

98.8 

99.5 

99.6 

93.7 

81.1 

95.8 

88.1 

99.1 

98.9 

68.4 

140.8 

62.7 

Variance Mean Square Ratio 

BWKE BWKT TRAK PROP 

98.2 

89.6 

92.8 

104.1 

94.4 

lOI.I 

112.1 

95.6 

90.7 

104.9 

94.0 

75.1 

104.3 

96.8 

91.9 

68.5 

94.7 

89.6 

102.0 

101.2 

91.5 

85.5 

85.1 

I0I.6 

97.1 

98.7 

43.1 

144.5 

56.9 

88.4 

71.1 

75.7 

88.4 

71.4 

104.8 

I0I.7 

94.0 

86.2 

105.3 

89.7 

84.3 

94.5 

90.2 

85.7 

69.5 

88.3 

92.9 

102.1 

96.5 

89.7 

79.5 

85.3 

99.9 

96.8 

98.5 

62.1 

147.5 

58.8 

81.8 

51.6 

81.3 

119.2 

85.5 

108.8 

82.0 

105.8 

97.8 

114.1 

90.6 

51.5 

66.3 

69.4 

77.6 

36.8 

71.5 

59.0 

106.3 

94.1 

90.3 

46.8 

72.9 

113.3 

96.0 

98.0 

7.6 

593.8 

53.9 

99.9 

99.2 

98.8 

100.0 

100.1 

99.1 

101.9 

99.0 

96.6 

lOO.O 

100.8 

96.7 

102.0 

101.1 

100.1 

100.2 

I0I.6 

97.5 

100.6 

99.1 

98.2 

100.9 

98.6 

98.3 

100.2 

lOO.O 

94.6 

116.7 

58.8 

AUGP 

78.7 

46.6 

80.1 

118.3 

84.2 

108.9 

76.1 

100.4 

95.5 

100.5 

84.3 

45.4 

67.0 

66.4 

68.5 

38.5 

68.5 

48.3 

102.8 

86.5 

88.4 

66.6 

68.6 

107.0 

93.5 

92.4 

6.0 

545.4 

58.8 

Note: In addition to the four proportions listed in the table, the summary of seventeen variables includes worry about income, better off 
economically in the 1990's, dissatisfied with own net worth, married, have children, unemployed, college graduate, in good or excellent health, 
serious illness in household, no family doctor, satisfied with own housing, very safe drinking water, and internet access in home. 

The weighting class adjustment schemes have the benefit 
of giving more weight to respondents in cells where the 
likelihood of having a phone is lower. For these schemes, 
greater bias reduction was seen in variables correlated with 
the classification variables. For example, home ownership 
and computer ownership are positively correlated, and the 
BWKT scheme, which classified respondents by home 
ownership, produced estimates of the percent of households 
with a home computer that were consistently lower than the 
standard estimates. Table 5 shows that the BWKE and 
BWKT schemes produce an improved estimate most of the 
time. It should also be noted that when these schemes 
produce an estimate that it not an improvement, the increase 
in variance remains fairly small. The weighting class adjust­
ment method works well for samples of large populations, 
such as states or countries, since the outside data needed to 
compute the adjustments is readily available. The method 

is more difficult to use for very specific samples such as 
counties. 

The raking ratio adjustment, TRAK, produced a number 
of very favorable estimated MSR values. With this scheme 
we were able to account for the difference in telephone 
penetration rates by region, but not the differences across 
other demographic characteristics. Variability was intro­
duced when we estimated the regional rates from the state 
rates, thus, as with the weighting class adjustment, the 
scheme works better for samples of larger populations. 
While the mean and median estimated MSR values were 
low for this scheme, the scheme also produced some high 
mean square ratios. The higher ratios occurred in Ohio 
where the percent of transients in the sample was low 
compared to the estimated percent without continuous 
service. 
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The propensity adjustment alone, PROP, provided too 
littie reduction in bias to be worthwhile. The propensity 
adjustment is advantageous, however, because it allows us 
to account for differences in the likelihood of having tele­
phone service without using outside data. When used in 
conjunction with raking, the propensity based scheme 
AUGP produced good results. 

There are many issues to consider when determining 
which adjustment scheme is preferred. As mentioned 
previously, the weighting class adjustment schemes BWKE 
and BWKT are difficult to implement if you have a very 
specific target population. These schemes are fairly conser­
vative, however, in that they typically reduce the bias 
without increasing the variance. The schemes that 
employed raking usually performed better than the 
weighting class adjustment schemes, but the larger weight 
adjustments sometimes led to increased variances. It may be 
advisable to compute estimates using several schemes and 
then determine which scheme offers the best bias-variance 
trade-off. 

Brick et al. (1996) note that these weight adjustments for 
telephone coverage should be more beneficial in reducing 
mean squared error when the sample size of the survey is 
large. As the sample size increases, the bias ratio increases 
since the bias is unaffected but the standard error of the 
estimate, which is in the denominator, decreases. 

The findings suggested by this study and others indicate 
that the adjustments could be useful for many estimates 
from telephone surveys and should be seriously considered. 
The benefits of adjustment appear to outweigh the penalties 
in the weighting class adjustment schemes, the raking 
scheme, and the augmented propensity scheme. In light of 
the smaller sample size and special target population of the 
Appalachian Poll, generalizations of these findings should 
not be made until the methods receive further evaluation. 
These weight adjustments still need to be tested using a 
survey that is free of coverage bias, one that includes 
nontelephone households in the sampling frame and 
collects information on telephone status, in order to assess 
the validity of the assumptions. Data from the National 
Survey of America's Families, or the National Health 
Interview Survey may be appropriate for evaluating the 
adjustment methods and the assumptions. 
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APPENDIX 
Logistic Regression of Transient Status 

Below is our model for predicting transient status. Most 
of the variables in the model relate to socioeconomic status. 
The coefficients indicate that young people, those with low 
income, those who are not employed full-time, American 
Indians and African Americans, and residents of distressed 
counties have higher propensities for transience. The high 
significance level of the Hosmer and Lemeshow test indi­
cates a very good fit of the model. The large area under the 
ROC curve tells us that the model discriminates well. 

Variable Coding 
Age 

0 - "Refused" (Count = 9) 
1 - 18 to 29 years 
2 - 30 to 44 years 
3 - 45 to 59 years 
4 - over 60 

Low Income 
0 - Household income over $20,000 or refused 
1 - Household income under $20,000 

Employment Status 
0 - Employed full-time or retired 
1 - Other (refused, part-time, housekeeper, student, 

unemployed, other) 
Race 

0 - Caucasian, Alaskan Native, Hispanic, or Asian 
1- American Indian, African-American, Black, or 

other 
Appalachian 

0 - Does not live in a distressed county of KY, OH, 
orWV 

1 - Lives in a distressed county 
KentuckyAVest Virginia 

0 - Ohio 
1 - Kentucky or West Virginia 

Results 
Variables in the Equation 

Variable 
Age (Refused) 
Age (18-29) 
Age (30-44) 
Age (45-59) 
Low Income 
Employment Status 
Race 
Appalachian 
KYAVV 
Constant 

B 
-2.107 
2.006 
1.664 
1.064 
1.358 
0.397 
1.136 
0.531 
0.567 

-5.712 

S.E. 
12.160 
0.357 
0.347 
0.364 
0.189 
0.187 
0.292 
0.196 
0.216 
0.401 

Hosmer and Lemeshow Goodness of Fit Test 
Chi-Square 
Degrees of Freedom 
p-value 

Area under the Curve 
ROC Curve 

3.568 
8 
0.894 

0.782 
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The Effect of Intensity of Effort to Reach Survey Respondents: 
A Toronto Smoking Survey 

LOUIS T. MARIANO and JOSEPH B. KADANE' 

ABSTRACT 

The number of calls in a telephone survey is used as an indicator of how difficult an intended respondent is to reach. This 
permits a probabilistic division of the non-respondents into non-susceptibles (those who will always refiise to respond), and 
the susceptible non-respondents (those who were not available to respond) in a model of the non-response. Further, it 
permits stochastic estimation of the views of the latter group and an evaluation of whether the non-response is ignorable 
for inference about the dependent variable. These ideas are implemented on the data from a survey in Metropolian Toronto 
of attitudes toward smoking in the workplace. Using a Bayesian model, the posterior distribution of the model parameters 
is sampled by Markov Chain Monte Carlo methods. The results reveal that the non-response is not ignorable and those who 
do not respond are twice as likely to favor unrestricted smoking in the workplace as are those who do. 

KEY WORDS: Call-backs, number of; Bayesian analysis; Markov Chain Monte Carlo method; Informative non-response; 
Ignorable non-response. 

1. INTRODUCTION 

Given the reality of non-response in every survey, it is of 
interest to determine how to account for this non-response 
in the interpretation of the collected data. Rubin (1976) 
gives necessary and sufficient conditions for such an 
analysis to be identical from, respectively, a frequentist, 
likelihood, and Bayesian perspectives, to an analysis based 
on a model incorporating a missingness mechanism. 
Building on this. Little and Rubin (1987) led to an extensive 
literature modeling non-response in an informative, non-
ignorable way. 

Information about the interaction between the survey and 
the surveyed can sharpen the analysis of the import of 
missing data in a survey. The example in this paper 
concerns the attitudes of Toronto citizens about smoking in 
the workplace. Random telephone numbers were chosen; at 
least twelve calls were made to try to reach the intended 
respondents. Our data for the respondents includes only the 
number of calls until the survey was completed, not the 
timing of the unsuccessful calls. With even this attenuated 
data on how difficult the respondent was to reach, we find 
our view of the results of the survey to be importantly 
informed by the number of unsuccessful calls. 

The use of information on the number of calls to a 
subject chosen to participate in a survey is not unique. 
Potthoff, Manton and Woodbury (1993) present a method 
for correcting for survey bias due to non-availability by 
weighting based on the number of call-backs. While our 
analysis also focuses on the bias due to non-availability, 
there are major differences. Instead of assuming that 
refusals do not exist, we allow for and utilize their potential 
existence in modeling the mechanism which causes non-

response. In the analysis that follows, the relationship of 
non-response to the response variable of interest in the 
survey is evaluated along with other explanatory variables, 
after weighting for both household size and the appropriate 
population demographics. In doing so we address not only 
whether error exists due to non-availability, but also 
whether stratification of the respondents by household size 
and the then current age/sex distribution may eliminate the 
necessity for accounting for the error by the introduction of 
a mechanism which describes the non-response. Note that 
here we match the groupings of Pederson, Bull and Ashley 
(1996) used in the original published analyses of the 
dataset; more complex cell adjustment procedures are 
possible {e.g., Little 1996; Eltinge and Yansaneh 1997, and 
references cited therein). 

The remainder of this article is organized as follows: 
Section 2 gives more detail, on the survey; section 3 
introduces the methodology employed; Sections 4 and 5 
respectively explore missing-at-random and non-ignorably-
missing models; Section 6 discusses the priors distributions 
chosen for the main analysis, whose results are explained in 
section 7. Finally, section 8 gives our conclusions. 

2. THE SURVEY 

A bylaw regulating smoking in the workplace in the City 
of Toronto took effect on March 1, 1988. From January 
1988 to the present, a series of six surveys have been 
conducted to assess attitudes of the public toward smoking, 
awareness of health risks related to smoking, and the impact 
of the law on the residents of Metropolitan Toronto. The 
data being utilized in this analysis comprises the third phase 

Louis T. Mariano is a Ph.D. candidate. Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213; Joseph B. Kadane is Leonard J. Savage 
University Professor of Statistics and Social Sciences, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213. 
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of this series. Northmp (1993) provides the technical 
documentation for this survey. For clarity, when necessary, 
the data being analyzed here is referred to as the Phase III 
data, and information from the first two surveys is referred 
to as the Phase I & n data. 

Northmp (1993) indicates that the data of interest, which 
were made available by the Institute for Social Research 
(ISR) at York University, were collected from 1,429 
residents of the Metropolitan Toronto area in December 
1992 and March 1993. A two-stage probability selection 
process was utilized to select survey respondents. The first 
stage employed random digit dialing. The second stage 
used the most recent birthday method to select one adult 
individual once an eligible residence was reached. The 
responses were then weighted by the number of adults in 
the household. In the analysis that follows, post-stratifi­
cation weighting was also applied to the census age-sex 
distribution to adjust for the underrepresentation of some 
population subgroups. The number of distinct phone lines 
in the household was not taken into consideration during 
the data collection. 

The number of calls it took to reach each respondent is 
included as a variable in the dataset, and there are no 
missing values for this variable. Northmp (1993) explains 
that the 1,429 responses came from a sample of 5,702 
telephone numbers generated by the random digit dialing 
method. Of these numbers, 2,286 were verified to be 
eligible households, and 3,150 of the numbers in the sample 
were not eligible. The status of the remaining 266 numbers 
was not able to be determined. It has been assumed by ISR 
that the household eligibility rate of these 266 numbers was 
equal to the rate for the rest of the sample. This eligibility 
rate implies an estimated total of 2,398 households in the 
sample and a response rate of 60%. Thus, an estimated 969 
subjects chosen to participate in the survey did not respond. 
Each subject received a minimum of 12 calls, including 
day, night, and weekend calls, before being classified as 
non-respondent. 

The dependent variable, for the purpose of this analysis, 
is an individual's opinion on the regulation of smoking in 
the workplace, in one of three categories. Category "0" 
indicates smoking should be permitted in restricted areas 
only, category " 1 " indicates smoking should not be 
permitted at all, and category "2" indicates smoking should 
not be restricted at all. For each subject chosen to parti­
cipate in the survey, let K. € {0,1,2} represent the opinion 
of subject i. 

The data comprises of the answers to 50 survey 
questions as well as 18 other variables identifying charac­
teristics of the subject. Included in these are: 

- "K-risk" is an integer score from 0 to 12 which 
indicates knowledge of the risks and effects of 
second-hand smoke. 

- "Smoker" indicates the smoking status of the 
subject: "Current smoker" (S), "Former smoker" 
(SQ) or, "Never smoked" (NS). 

- "Bother" indicates if second-hand smoke bothers 
the subject: "Always bothers" (b.A), "Usually 
bothers" (b.USUL), or "Does not bother" (b.NO). 

- "Age": (Age in years - 50) /10. 

Pederson, Bull, Ashley and Lefcoe (1989) created a 
"Knowledge of health effects score" on passive smoking 
out of the answers to six survey questions, which measured 
a subject's knowledge of the effects of second-hand smoke. 
Pederson et al.'s questions were used in Phase in to create 
their score, here renamed "K-risk". A higher K-risk score 
indicates a greater knowledge of the risks of second-hand 
smoke. The variable "Age" was shifted and rescaled to 
match how age was treated by Bull (1994) in the Phase I & 
n analysis. 

3. OVERVIEW OF METHODOLOGY 

The fundamental question of interest is: "May we ignore 
the unit non-response and treat the observed data as a 
random subsample of the population?" Mapping to the 
terminology of Little and Rubin (1987) and Rubin (1976): 
If we may treat the observed data for the dependent variable 
of interest as a random subsample, we call the missing data 
"missing completely at random" (MCAR). If we may treat 
the observed data for the dependent variable of interest as 
a random subsample, after conditioning on the explanatory 
variables, we call the missing data "missing at random" 
(MAR). Let 9 represent the parameters of the data and let n 
represent the parameters describing the missing data 
process. Rubin (1976) calls the parameters n and 6 distinct 
"if there are no a priori ties, via parameter space restrictions 
or prior distributions, between n and 0." If either the 
MCAR or MAR cases apply and if n and 9 are distinct, the 
mechanism which causes the missing data is said to be 
"ignorable" for inference about the distribution of the 
variable of interest. If the missing data for the dependent 
variable of interest is dependent on the values of that data, 
then the mechanism which causes the missing data is said 
to be "non-ignorable" (NI). Groves and Couper (1998) note 
that when the likelihood of participation is a function of the 
desired response variable, the non-response bias can be 
relatively high, even with a good response rate. 

Let R. be an indicator of response. 
^, = Arespondel,i(subjectO and R = (/?,,..., RJ^. Little and 
Rubin (1987) suggest that one possible method for 
accounting for the non-response mechanism is to include 
this response indicator variable in the model. We may call 
the mechanism which causes the missing data ignorable if n 
and 9 are distinct and: 

/(/?l>'obs.>'n„s''t)=/(^l>'obs.'^) (1) 
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where Y^^^^ and Y^.^^ represent the observed and missing 
portions of the dependent variable of interest. 

The terms "MAR assumption" and "NI assumption" will 
be used throughout this analysis. For clarity, the term 
"MAR assumption" is defined as the assumption that the 
missing data mechanism is ignorable for inference with 
respect to the dependent variable identified in section 2. 
That is, the observed values of that variable are a random 
subsample of the population, possibly within poststrata, and 
it is not necessary to account for the missing data mecha­
nism. The term "NI assumption" is defined as the assump­
tion diat the missing data mechanism is non-ignorable and 
the data collected for the dependent variable of interest 
cannot be treated as a random subsample. Specifically, 
inference for the population must involve the missing data 
mechanism. 

The approach to assessing the MAR assumption is 
comprised of three steps. The first step is the examination 
of what one might do under the MAR assumption. Since 
the dependent variable of interest has three categories and 
some of the explanatory variables are quantitative, poly-
tomous logistic regression is employed. Both frequentist 
and Bayesian forms of the logistic regression model are 
examined. 

In the second step, and NI model is constructed. The 
non-response mechanism is modeled utilizing the infor­
mation available about the number of calls made to each 
subject. Here, the idea of a surviving fraction in the sample 
is examined to model whether it is actually possible to 
reach all the intended respondents. Then, the non-response 
mechanism is related to the dependent variable by including 
the number of calls in the logistic regression model. 

In the development of the NI model, we employ a 
Bayesian approach to allow for an examination of the 
values the missing data re likely to take, given the observed 
data and the model parameters. This is accomplished by 
utilizing a data augmentation approach, where the missing 
data are imputed in each iteration of a Markov Chain Monte 
Carlo (MCMC) simulation. A possible altemative would be 
to utilize the expectation-maximization (EM) algorithm 
(Dempster, Laird and Rubin 1977) to compute the maxi­
mum likelihood estimates (MLE's) of the missing values. 

In the third step, an evaluation of the MAR assumption 
is made. Non-zero coefficients for the number of calls in 
the logistic regression portion of the NI model will imply 
that the number of calls does make a difference; i.e., the 
opinions of those who did not respond in the first 12 calls 
are likely to differ from those who responded in just a small 
number of calls. In this case, the missing data mechanism 
is not independent of the values of the missing data and an 
MAR assumption would be inappropriate. Next, the log 
odds of response among the three models are examined. 
Differences here identify, the magnitude of the error that a 
faulty MAR assumption causes. So, in the evaluation of the 
MAR assumption, the questions "is there a difference?" and 
"how large is the difference?" are both addressed. 

4. MAR MODELS 

4.1 Logistic Regression 

Using the data collected from the (m = 1,429) subjects 
that did respond to the survey, weighted logistic regression 
was employed to model the public's opinion on smoking in 
the workplace. The collection of candidate predictors found 
in the survey questions and the background information was 
narrowed utilizing a series of Wald tests. Then likelihood 
ratio tests, AIC, and BIC were used to compare the possible 
models. The model with the best fit was found to be the one 
which included additive terms for the variables "K-risk", 
"Smoker", "Bother", and "Age", as defined in section 2. 

As each of the models examined in this analysis employs 
a logistic regression component, it is useful here to illustrate 
the notation being used. Category "0", "smoking allowed in 
restricted areas only" was chosen to be the reference 
category. Recall y. 6 {0, 1, 2). For the MAR model, we use 
only the observed values of the subject's opinion on 
workplace smoking, Y^^^ = (K,,..., YJ. Let Y.j = ly^{Y.) be 
an indicator of subject / responding in category;, and let W. 
represent the weight each subject received. As in the 
original published analyses of this dataset (Pederson et al. 
1996) both household (see Northmp 1993) and post­
stratification (see Appendix A) weighting were used in the 
consideration of all models here. 

The two categorical explanatory variables, "Smoker" and 
"Bother", were included in the model by utilizing indicator 
variables for two of the three categories, with the effect of 
the third category being absorbed in the intercept term. For 
"Smoker", "S" and "SQ." were included as indicators that 
subject i was either a current smoker or a smoker who had 
quit. For "Bodier", "b.USUL." and "b.NO."were included 
as indicators that second had smoke usually bothered or did 
not bother subject i. 

Let X. = represent the vector for explanatory variables 
for subject i. Then, 

X. = {K-risk.,S.,SQ.,b.USUL.,b.NO.,Age.). 

Here we use an unordered multinomial logit model to 
consider p.{x.)=P{Y.. = l\X. = x.),the probability that 
subject / responds in category ye {0,1,2), given the 
observed explanatory variables for subject i. This model, of 
course, utilizes linear equations T|.. describing the log odds 
of subject / responding in category y versus the reference 
category j = 0. So, forj = 1,2 we wish to examine: 

p.{x.) 
(2) 

with Tj.Q = 0. The two resultant linear equations, r|., and 
ri-̂ , each have seven coefficients, including an intercept 
term PQ. and those displayed below: 
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The MAR logistic regression model has 14 parameters. 
The vector of these 14 parameters, represented by 
P = (PQ,,PJ,PQ2,P2) has the likelihood (or, more appro­
priately, pseudo-likelihood, since the weights are incor­
porated through the variable W.): 

m 2 , 1 ' ; 

[ l+e' '"+e'^'^J 

yij«i 

(3) 

4.2 Bayesian Logistic Regression 
The likelihood in equation (3) and the data collected 

from the survey respondents are utilized in the Bayesian 
analysis. The same four explanatory variables selected in 
the frequentist analysis above are used as the explanatory 
variables here. Prior distributions, discussed in section 6, 
were assigned to the logistic regression parameters. An 
MCMC simulation is utilized in order to draw from the 
posterior distribution of the parameters. 

5. NI MODEL 

5.1 Modeling the Non-Response Mechanism 

Since the missing values are not necessarily missing at 
random, the mechanism which caused them to be missing 
must be addressed. Northmp (1993) indicates that non-
respondent subjects chosen to participate in the survey were 
called a minimum of 12 times, including a minimum of 
three day, four evening and four weekend calls. Unfortu­
nately, other useful information regarding the number of 
calls was not retained. We do not know which of the non-
respondents were called more than twelve times or whether 
an individual call was placed during the day, evening, or 
weekend. We also are unaware of the details of the non-
response, such as whether the subject was contacted but 

refused to participate, whether the calls were ever answered 
by a machine, or whether they were answered at all. Thus, 
stratification of the non-respondents was not possible, and 
they were all treated as exchangeable in this analysis. 

Each subject was called a number of times until the 
survey was successfully completed or they were classified 
as non-respondent. For the respondents, the number of calls 
variable {C.) describes the number of trials until the first 
success for subject /. Thus, one might expect the number of 
calls to follow a Geometric distribution with truncated 
observations for the non-respondents. Specifically, let 
71 = P(a call is successful); then, consider 
C. ~ Geometric(;t) and P{C.=c.) =n{l -Jt)"̂ ' . Note that 
if auxiliary information about the number of calls to the 
non-respondents were available {e.g., Groves and Couper 
1998), we could have also considered conditional response 
probabilities here. 

The histograms in Figure 1 compare the data (through 
the first twelve calls) to a Geometric distribution with 
parameter n = .225, which appears to match fairly well. The 
sample order statistics suggest n e (.2, .25). The histogram 
of the actual survey data reveals that the number of subjects 
reached on the first caU are fewer than the number reached 
on the second call. It is possible that more of the second 
calls were placed at a time which had a higher success rate. 

Suppose 71 = .225; by the memoryless property of the 
Geometric distribution, we would expect 218 of the 969 
non-respondents to reply on the O"" call. This would make 
the data through the first 13 calls appear as in Figure 2. 
Clearly, Figure 2 does not display the behavior of a 
Geometric random variable. Consider the following 
question: "If all subjects were called an unlimited amount 
of times, would they all have been reached?" Answering 
"yes" to that question for this dataset results in the problem 
illustrated in Figure 2. 

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 

Actual Data Expected Under Geometric (.225) 

Number of Call Attempts 
Figure 1. Comparison of the actual survey data for sucessful calls in the first 12 attempts to expected results based 

on a Geometric (.225) distribution for the number of calls needed to complete the survey. 
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Figure 2. Display of the actual number of successful calls on each attempts through the first 12 and the 

expected number of successful calls on the 13"" attempt. The expectation for the IS"" callis based 
on a Geometric (.225) distribution to model the number of calls until the survey is completed 

Given the information outlined above, the assertion that 
"not all subjects chosen for the survey are reachable" is a 
viable one. Mailer and Zhou (1996) discuss immune 
subjects - individuals who are not subject to the event of 
interest. Following their terminology, if it is not possible to 
procure a response from a subject chosen for the survey 
given an unlimited amount of calls, that subject is cate­
gorized as immune. Subjects who are not immune are 
categorized as "susceptible". The set of immune {i.e., non-
susceptible) subjects comprise the "surviving fraction" of 
the sample. Mapping to more familiar terminology, the 
immune subjects include those who were reached and 
refused, those who would have refused if they had been 
reached, and those cases of a physical or mental inability to 
ever participate. Northrup (1993) indicates that those who 
initially refused to participate were subsequently contacted 
by the most senior interviewers, so, we make the assump­
tion here that all remaining refusals would not ever parti­
cipate. The susceptible group includes the respondents, 
those who would have responded if successfully contacted, 
and those who were physically or mentally unable to parti­
cipate during the data collection period but were willing 
and able at some other time. 

Let the variable Z. = ̂ i susceptibleî '̂̂ '̂ĵ '̂ ' ' ) ^^ ^" indicator 
of the susceptibility of subject /, and 
p = P(subject I is susceptible), i.e., Z. ~ BemouUi (p). 
Now suppose that the number of calls to the susceptible 
subjects follows a Geometric distribution, i.e., 
C. \Z. = l~ Geometric (71). Does this eliminate the problem 
illustrated in Figure 2? 

Let R. he an indicator of response of subject i. The non-
response mechanism can be accounted for by including 
these response indicators in the model. However, the intro­
duction of the susceptibility variable implies two distinct 

classes of non-response. So, it is possible to be more 
detailed and use both the susceptibility Z = {Z^,..., Z^)^ and 
the response R indicators in a mixture model describing the 
non-response. Updating Equation (1), the missing data 
mechanism is ignorable if and only if (7t, p) is distinct from 9 
and 

mZ\Yo,s'Ymls'^'P) =f{R,Z\Y^,^,K,p). (4) 

Let C„,̂  = (C,,..., CJ and Z^,^ = (Z,,..., ZJ be the 
vectors of the number of calls and the observed suscepti­
bility for each respondent. Also, let R = {R^,..., R^) = be 
the vector of response for each intended respondent. Every 
subject, /, may be classified by response into three mutually 
exclusive groups, A^^^^ - observed, A^j^ - missing, and 
A. - immune, where: 

imm ' 

'̂ obs ^ {'• ' ^^^ Susceptible and Responded) 

'̂ mis " {'• ' ^^^ Susceptible but did 

not Respond in 12 calls} 

'̂ imm ^ {'• ' ^^^ "^t Susceptible}. 

The probability that a subject is in each of these categories 
may be calculated as follows: 

PiieA^J =P(Z. = l,/?.= l,C.=c.) =p7t(l-7i)^' 

P('^Kis) =P(Z, = 1,/?, = 0,C.>12) =p(l-7r) '2 

c,-l 

PiieA.^^J =P(Z, = 0) = l - p . 
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The data indicates m = 1,429 subjects in Â ^̂  and 
n - m = 969 non-responsive subjects in A . U A. ; 

^ •' mis imm' 

n=2,398 is the estimated total number of subjects chosen to 
participate in the survey. Thus, the joint density of Ẑ ^̂ , R 
and Cjĵ j given p and 7i is: 

/ ( Z o b s - ^ ' C . |p,7C) 

p'"7l"(l-7t) (ir.,'^,)-'" x[( l -p) + p(l-7C)'2]''- (5) 

The mixture model described by Equation 5 may be 
viewed as a special case of the non-response models 
discussed in Drew and FuUer (1981). 

It would be useful to confirm that the above joint 
distribution accurately represents the response pattern of the 
susceptibles in the dataset. The MLE estimate for p is 
simply the proportion of respondents in the sample, which 
clearly underestimates p. Setting f/(0, 1) prior distributions 
for both p and n and examining their joint posterior distri­
bution by MCMC simulation, the posterior medians are 
found to be p =.636 and 7t =.205, with equal-tailed posterior 
credible intervals of (.613, .659) and (.191, .219) for p and 
7t respectively. Figure 3 illustrates how the dataset might 
look after imputing the missing number of calls for our 
susceptible non-respondents based on these posterior 
medians. The problem previously displayed in Figure 2 has 
now been mostly eliminated. 

While the Geometric distribution appears sufficient 
(after accounting for susceptibility), a referee questions the 
use of the Geometric distribution as it does not make use of 
possibly useful covariates. As explained above, the cova-
riates we think would be most useful for this purpose were 

not collected. One altemative for modeling the response 
mechanism of the susceptibles is to use a discretized 
Gamma distribution. In cases where more complexity is 
necessary, the v-Poisson (a two parameter Poisson which 
generalizes some well known discrete distributions, 
including the Geometric) of Shmueli, Minka, Kadane, Borie 
and Boatwright (2001) may also be considered. 

5.2 Relating Non-Response to the Dependent 
Variable - The NI Model 

Since the non-response of the susceptibles is described 
by the conditional Geometric distribution of the number of 
calls, the effect of the non-response of the susceptibles on 
the dependent variable may be considered by including the 
number of calls as an additional explanatory variable in the 
logistic regression likelihood. This will create two addi­
tional parameters in the logistic regression portion of the 
model, which are the coefficients of the number of calls, 
Pj.jj„ in each of the linear equations T|.. described in 
equation (2). 

Non-zero coefficients for the number of calls, then, 
would indicate that the dependent variable is not indepen­
dent of the non-response mechanism, and, hence the non-
response mechanism is non-ignorable. If these coefficients 
are zero, the non-response of the susceptibles is ignorable. 
Conclusions made here rely upon the underlying modeling 
assumption that the relationship among the number of calls, 
the dependent variable and the other explanatory variables 
considered is the same for the respondents and susceptible 
non-respondents. Including the number of calls in the 
logistic regression portion of the model does not address the 
immune subjects, since there will never be the realization of 
a successful call to them. 

Actual Data 

I I Imputed Future Calls 

- I — h 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Number of Call Attempts 
Figure 3. Display of the actual number of successful calls on each attempt through the first 12 and the 

expected number of successful calls for call attempts 13 and higher. Imputed values are based 
on a probability of a successftil call of .205 and a probability of susceptibility of .636. 
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The full pseudo-likelihood for the NI model (or, more 
precisely, the susceptible NI model) is the product of the 
non-response and logistic regression pieces: 

Z-(p,ic,P)-

p'"7t" ( l -7t) (ll,c,)-m x[(l-p)+p(l-7l) '2] ' '-

m 2 

n n 
i=lj=0 

AJ 

il+e'^'Ugl'^J 

>,•)»',• 
(6) 

Note that the household and post-stratification weighting 
variable W. is included here in an effort to account for 
whether proper stratification of the respondents may 
eliminate the necessity for the inti-oduction of a mechanism 
to describe non-response. 

5.3 Data Augmentation 

Tanner and Wong (1987) suggest an iterative method for 
computation of posterior distributions when faced with 
missing data. This method applies whenever augmenting 
the dataset makes it easier to analyze and the augmented 
items are easily generated. Consider the following addi­
tional notation: Let S represent the total number of 
susceptible subjects in the sample. 
5 = X"=i Z;, 5 - Binomial(p). Let X be the matrix of explana­
tory variables (including the number of calls) for all the 
subjects selected to participate in the survey. Let 
Y = {Y^, ..., y ) be the vector of their responses. Partitions 
Xinto {X^,J^,,X,^J andyinto [Y^,^, y„,, K-^J. Also, 
by the memoryless property of the Geometric distribution, 
the distribution of the additional number of calls required to 
reach the subjects in A^.^^ is known, and may be expressed: 
V/eA^jj, let V. = C.- 12,which is also distributed as a 
Geometric random variable with parameter 7i. 

Now suppose that the tme values of 5, X^^^, and Y^^^ 
were known. The lUcelihood could then be considered in the 
form: 

L(p,7r,p|x„,̂ ,x„,,y„,3,y ,̂,s,/?) 

(P7l)^(l-7l)^^''«^"]x[(l-p)'-] 

s 2 

n n 
1 = 1 >=0 

/ 
,1.7 

l + g i . u ^ i . . 
(7) 

where X C^^^ = X Ĉ ŝ "̂  S (̂ ,- "̂  ^2) is the number of calls 
that would have been necessary to reach all susceptibles and 
the summands are taken over the appropriate range of 
subjects. 

Although the tme values of S, X^^^, and Y^^^ are 
unknown, one may utilize what is known about the 
behavior of these variables to impute stochastically possible 
values for them within the MCMC algorithm. Given p, a 
value for S may be drawn from a truncated Binomial (2,398, 
p), where 1,429 ^ S <. 2,398. Given S, the number of 
subjects in A ĵ̂  is known. For each of diese subjects in A^^^ 
a value V. ~ Geometric (7t) may be drawn, which results in 
an imputation for the number of calls needed to reach each 
susceptible but unreached subject. The relationships among 
the number of calls and the other explanatory variables may 
then be exploited to impute values for the rest of X ĵ̂ . 
Specifically, the missing values of Age and K-risk are 
imputed by regressing Calls on Age and K-risk respectively 
and predicting from the resultant linear equations. Simi­
larly, the missing values of Smoker and Bother are imputed 
via logistic regression on each, using Calls as the explana­
tory variable. Here the model assumptions are checked 
using the respondents data, and an assumption is being 
made that these same relationships hold for the susceptible 
non-respondents. Note that these regression and logistic 
regression equations are fit in the Bayesian context {e.g., 
Gelman, Carlin, Stem and Rubin 1998) and necessitate the 
inclusion of additional parameters, P,, in the MCMC 
process which describe these relationships (see Appendix 
B for more detail). We chose this imputation plan in the 
interest of the efficiency of the full MCMC algorithm. An 
altemative would be to impute the missing values for a 
particular explanatory variable conditional on all the 
remaining variables {e.g., Rubin 1996). Finally, Y^.^^ may 
be predicted by utilizing the imputed values of X^.^^ and the 
relationship described in the logistic regression model. In 
the interest of the exchangeability of the susceptible non-
respondents in the absence of subsequent stratification 
information, we apply a weight of 1.0 to all the imputed 
Y . values; an altemative here would be to impute the sex 

mis ' ^ 

and household size of the susceptible non-respondents, in 
addition to their age, and apply the weighting procedure 
described in Appendix A to the imputed Y^^^. 

5.4 Sampling from the Posterior Distribution 

The full MCMC simulation consists of a Metropolis 
algorithm supplemented in every iteration with the data 
augmentation described above. An oudine of the MCMC 
algorithm used may be found in Appendix B. Convergence 
was assessed utilizing the method of Hiedelberger and 
Welch (1983) as described in Cowles and Cariin (1996). 
MacEachem and Berliner (1994) assert that, under loose 
conditions, subsampling the MCMC simulated values to 
account for autocorrelation will result in poorer estimators. 
Following their suggestion, all simulated values, after an 
appropriate bum-in period, were used in the analysis that 
follows. 
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6. CHOICE OF PRIOR DISTRIBUTIONS 

In the evaluation of possible prior distributions for the 
parameters of both the NI and MAR models, the goal of the 
comparison of the various models was taken into consi­
deration. The choice of prior distributions for the para­
meters was made from the perspective of the MAR belief. 
Two possibilities were examined. 

The first option is built around the utilization of the 
Phase I & n surveys. Since these surveys were similar to 
and were completed prior to the Phase HI survey which 
comprises our data, information contained in these first two 
surveys may be utilized in the constmction of priors. The 
same dependent variable was contained in the Phase I & n 
dataset, along with the variables Smoker, Age, and K-risk. 
A logistic regression model was compiled from the Phase 
I & n data to describe the relationship between the opinion 
on workplace smoking and these three explanatory vari­
ables. Normal priors were constmcted for the coefficients 
of these three variables centered at their MLE's, but with 
increased standard error. The error terms were increased 
due to three factors: 

i) There was a three year span between the Phase n and 
Phase in surveys; opinions may have changed over that 
time, possibly as a result of the impact of the bylaw. 

ii) The MLE's were calculated under the same MAR 
assumption being evaluated. 

iii) Prior to the collection of the Phase III data, there existed 
the possibility that other explanatory variables would be 
included in the model; in the presence of other variables, 
the effect of these three could be altered. 

Although the variances were increased, the means were not 
changed, since it was unknown, a priori, in what direction 
any change might occur. Since the available Phase I & n 
data contained no information about the Calls or Bother 
variables, the coefficients of these were assigned a diffuse 
Normal (0,9) prior. For clarity, this option will be referred 
to as the "Phase 1 & II prior" in this analysis. 

In the second option Normal (0,9) priors are assigned to 
each of the logistic regression coefficients. One motivation 
for this choice is that, for the same three reasons the error 
terms were increased above, the variables common to the 
Phase I & n and Phase HI surveys are not exchangeable. 
Thus, constmction based on the Phase I & n results would 
be inappropriate. This option will be referred to as the 
"Central prior". 

The choice to use Normal (0,9) distributions here is for 
convenience. Centering the prior at zero gives equal weight 
to either direction of the relationship. We believe the choice 
of a variance of nine to be adequate without being overly 
diffuse. The use of improper priors could lead to a Markov 
Chain Monte Carlo simulation that never converges, and, as 
Natarajan and Kass (2000) show, an overly diffuse proper 
prior may behave like an improper one. In section (7.2), we 

offer a sensitivity analysis to evaluate how the results are 
effected by the choice of prior. 

The non-response parameters of the NI model, p and 7i, 
were ti-eated the same under both prior options. There was 
no additional information available about the probability of 
a successful call or the probability of susceptibility. Thus, 
p and 7t were each assigned a C (̂0,1) prior. 

The data augmentation parameters found in each of the 
logistic regression equations, P,, were independently given 
diffuse Normal (0,9) priors. For each linear regression 
equation found in the data augmentation process, the 
coefficients, B, and variance, o ,̂ were set to 
P(Pr' ^r) °^ l^°r' ^^^ Standard non-informative prior distri­
bution {e.g., Gelman et al. 1998). Note that the closed 
forms of the posterior distributions of the linear regression 
parameters are known and may be drawn from directly. 

7. RESULTS 

First, the validity of the MAR assumption is examined 
through the coefficients of the number of calls variable. 
Then, the NI model is evaluated with respect to sensitivity 
to the choice of prior. Finally, the magnitude of the impact 
of a faulty MAR assumption for this dataset is investigated 
by illustrating the change in the odds of response. 

7.1 Coefficients for the Number of Calls 

For both the Phase I & EI and Central priors. Figure 4 
displays the posterior density (solid line) and 95% credible 
interval estimates (dotted lines) of the coefficient of the 
calls variable in rî ., in the NI model, and compares them to 
the point Pj,jj„ =0 (dashed lines). The results clearly indicate 
this coefficient differs from zero. We also find a non-zero 
result in r\^^, where, using the Phase I & EI prior, the 95% 
HPD credible interval for p̂ „̂ is (-0.03613, 0.11595). 

The non-zero coefficient of C. demonstrates a depen­
dence between the number of calls and the subject's 
opinion on smoking in the workplace. Thus, the dependent 
variable and the non-response mechanism are not inde­
pendent under the conditions discussed in section 5.2. This 
results implies that an assumption that the missing obser­
vations are missing at random prior to accounting for the 
non-response mechanism is incorrect for this dataset. 

There is a hint in Figure 3 that the probability of a 
successful call decreases as the call number increases. To 
verify the assumption that the relationship between the 
number of calls and the log odds of response is linear, a 
second Bayesian NI model was constructed. This model 
split the calls variable into two, C,./,̂ ^ ,̂, and C.I.^^.^., 
based on whether the number of calls were fewer than 
seven. The posterior distributions of the coefficients of 
these two variables were then compared and evidence that 
they are essentially different was not found. In particular, 
forTij., the 95% credible interval for C.I.^^.j. contained the 
same interval for C-I^^.^.^., and for r\^ the 95% credible 
intervals strongly overlapped. 
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Figure 4. Display of P^g,,, the coefficient of the calls variable in T].y posterior density (solid line) and 95% 
equal tailed credible interval (dotted line), compared to P̂ ,̂ ,! = 0 (dashed line). 

7.2 Sensitivity to Priors 

Would different prior distributions, either on the calls 
coefficient or on the others, make a difference in the effect 
illustrated above? Table 1 displays 95% HPD credible 
intervals for the coefficient of the calls variable in the first 
logit equation of the NI model for six different priors. The 
priors include the Phase I & n and Central priors as well as 
four others - labeled options 3,4, 5, and 6. Options 3 and 
4 resemble the Central prior except that they change the 
prior distribution on the coefficient of the number of calls 
to Normal (1,9) and Normal (-1,9) respectively. Option 5 
places Normal (0,9) priors on p̂ „̂_, p^^ ,̂ and P̂  USUL,, a 
Normal (1,9) prior on PQ,, a Normal (.5,9) prior on P̂ -nsk > 
a Normal (-1,9) prior on p^ and Normal (-5.9) priors on 
P̂ g and P^No- Option 6* takes the Central Prior and 
reduces all the variances from nine to two. 

Under all six priors, Table 1 demonstrates that the coeffi­
cient of the calls variable in the first logit equation cleariy 
differs from zero. The finding that the missing data 
mechanism is non-ignorable for this dataset does not appear 
to be effected by the choice of prior among these options. 

Table 1 
95% HPD Credible Intervals for |3^^ Under six Different 

Prior Distributions 

Prior 

Phase I & II 

Central 

Option 3 

Option 4 

Option 5 

Option 6 

Coefficient of the number of 
Calls "C;" in r|., 

95% intervals 

Lower Bound 

0.00129 

0.00446 

0.00447 

0.00441 

0.00440 

0.00436 

Upper Bound 

0.07746 

0.07980 

0.07983 

0.07975 

0.07970 

0.07944 

7.3 Effect on Odds of Response 

Given the failure of the MAR assumption shown above, 
it is of interest to question the relevance of the error that 
using the MAR assumption would create. The magnitude of 
the error induced by a faulty MAR assumption may be 
illustrated by examination of its effect on the odds ratio 
Pi {Xj) IPQ{X.). First, we consider the effect on a typical 
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respondent profile. The modal respondent was a non-
smoker between the ages of 25-35 years old who was 
usually bothered by second-hand smoke, had a K-risk of 11 
and could be reached in 2 calls. We label this modal 
respondent as Subject 1. Table 2 demonstrates the change 
in posterior odds for Subject 1 when called 13 times. 

Table 2 
Comparison of the Odds of Response for 4 Typical Subjects. 

Posterior Medians Were Used As the Point Estimates for 
the Coefficients in the Bayesian Models; the Mle Was Used 

for the Frequentist Model 

Subject 1 
Smoker No 

Age 30 
Bother Usually 

K-risk 11 

Model 

MAR MLE 0.674 
MAR Phase I & U prior 0.703 

NI Phase I & H prior: 2 calls 0.640 
NI Central prior: 2 calls 0.593 

Option 3: 2 calls 0.594 

Option 4: 2 calls 0.592 
Option 5: 2 calls 0.590 

Option 6: 2 calls 0.590 

NI Phase I & n prior: 13 calls 0.974 
NI Central prior: 13 calls 0.936 

Option 3; 13 calls 0.937 
Option 4; 13 calls 0.934 

Option 5: 13 calls 0.930 
Option 6; 13 calls 0.931 

Subject 2 
No 
50 
Always 

12 

Subject 3 
Former 

27 
No 

7 

Odds Y=1A'=0 

2.105 
4.487 

4.024 

4.442 
4.449 

4.435 
4.423 

4.426 

6.128 
7.013 
7.026 
7.000 
6.975 
6.980 

0.457 
0.209 

0.202 
0.162 
0.162 

0.162 
0.161 

0.161 

0.308 
0.256 
0.256 
0.255 
0.254 
0.254 

Subject 4 
Yes 

40 
No 

3 

0.396 
0.116 

0.108 
0.102 
0.102 

0.101 
0.101 

0.101 

0.165 
0.160 
0.161 
0.160 
0.159 

0.160 

The Subject 1 column Table 2 indicates a dramatic 
difference in the posterior odds when the non-response 
mechanism is taken into consideration. For this typical 
respondent profile, when the number of calls is increased 
from two to thirteen the posterior odds of choosing 
"Smoking should not be permitted at all" over "Smoking 
should be permitted in restricted areas only" increases by 
52.18% under the Phase I & n prior and 57.84% when 
using the Central prior. This is dramatic evidence of the 
relationship between the dependent variable and the non-
response mechanism. 

Are the results for the modal subject above typical? 
Table 2 also displays the effects on the odds of response 
under the NI model for three additional test subject profiles 
for each of the six different priors considered above. 
Subject 2 is a fifty year old non-smoker who is always 
bothered by smoke and has a perfect "K-risk" score. 
Subject 3 is a 27 year old former smoker who is not 
bothered by smoke and has a "K-risk" score of seven. 
Subject 4 is a 40 year old smoker who is not bothered by 
smoke and has a "K-risk" score of three. On multiple 
subjects with multiple priors. Table 2 consistently shows 

the same result. Increasing the number of calls to greater 
than 12 will increase the posterior odds of choosing 
category " 1" over category "0". For each of the test subjects 
and priors found in Table 2, the increase was between 
52.18% and 58.41%. 

Similar results were found when examining the odds of 
choosing the "Smoking should not be restricted at all" 
category over the "Smoking should be permitted in 
restricted areas only" category. Using test subjects which 
were a current and a former smoker (Subjects 3 and 4 
above), the posterior odds increased 46.7% when the 
number of calls was increased from 2 to 13 under the Phase 
I & n prior. 

7.4 Effect on ProbabiUty of Response 

With the shift in posterior odds illustrated above comes 
a corresponding shift in the estimated probabilities that a 
subject will respond in a particular category. Among the 
respondents, 57.45% chose category "0", 40.64% chose 
category "1" , and 1.91% chose category "2". The number 
of non-respondent susceptibles have a posterior median of 
469, with a 95% credible interval of (25, 944). On average, 
55.88% of the simulated non-respondent susceptibles chose 
category "0", 40.03% chose category "1" , and 4.08% chose 
category "2". While, for categories "0" and "1", the average 
values for the non-respondent susceptibles do fall within the 
95% confidence intervals for the proportions of the 
respondents in these categories, the point estimates for each 
category shift when the non-response mechanism is 
included in the model. In comparing the category "2" 
results, we estimate that non-respondents are twice as likely 
to favor no restrictions on smoking (category "2") than are 
respondents. While the low number of subjects found in 
category "2" are unlike to provoke a change in workplace 
smoking law, the increasely noted in the non-respondents 
in this category serves as an example of how the lack of 
proper consideration of the non-respondents could lead to 
flawed conclusions about the data. 

8. CONCLUSION 

Section 7 demonstrates that, for the dependent variable 
of interest in this dataset, an assertion that the missing 
observations are missing at random, prior to accounting for 
the missing data mechanism, is incorrect, assuming the 
relationship among the relevant variables is the same for all 
susceptible subjects. Furthermore, the use of a faulty MAR 
assumption in the evaluation of this dependent variable 
risks serious error in the calculation of the posterior odds 
and in any conclusion drawn from them. In order to perform 
a proper evaluation of the opinion on smoking in the 
workplace in Toronto in early 1993 via the dependent 
variable of interest in this survey, it is necessary to account 
for the non-response mechanism in the model stmcture. 
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In this analysis, only one simple piece of information, the 
number of calls, was utilized. A more complete treatment 
could have been made, had more information been 
available. Knowledge of the exact number of calls to the 
non-respondents, instead of a minimum, and the time of day 
of the calls could have enabled this analysis to be more 
precise. In addition, knowledge of the type of non-response, 
refusal or non-availability, and the number of times the non-
respondents were actually contacted could have allowed for 
better classification of the non-respondents. Groves and 
Couper (1998) point out that statistical errors arising from 
non-availability and those arising from refusals are likely to 
differ. As they further comment, the evaluation of how 
efforts to seek cooperation effect measurement error is an 
important area of research. 

The results illustrated above apply only to this one 
dependent variable assessing smoking in the workplace in 
this one dataset. Given the perception that smoking has 
become less socially acceptable over recent years, it would 
be reasonable to think that non-response error due to 
questions about smoking may be more severe than other 
topics. A comparison of non-response bias including 
various smoking related questions and others which do not 
concern smoking may be found in Biemer (2001); this 
comparison lends no credence to the idea that non-response 
error is unique to questions relating to smoking. 

Although the above results make no implications about 
the missing data mechanisms in other surveys, there is a 
clear demonstration here that blindly assuming that the 
respondents of a survey constitute a random subsample of 
the population for the variables of interest can be an unwise 
choice. Information, available at the time of data collection, 
can enable the evaluation of whether or not the mechanism 
which causes the non-response is ignorable. In light of this 
observation, then, it should be of interest to those who work 
with such data to make use of the available information 
pertaining to the non-response in the evaluation of that data 
and to make such information available to others who 
utilize the dataset. As a general matter, we believe that the 
collection and analysis of data on where and how 
respondents were found, as well as how difficult they were 
to find, is an important future direction for survey 
methodology and practice. 

University. The data were collected by the Institute for 
Social Research for Dr. Linda Pederson of the University of 
Western Ontario, Dr. Shelley Bull of the University of 
Toronto and Dr. Mary Jane Ashley of the University of 
Toronto. The principal investigators, the Ontario Ministry 
of Health and the Institute for Social Research bear no 
responsibility for the analyses and interpretations presented 
here. 

A. Post-stratification Weighting 

HHW. is the household weight of subject / as described 
in Northrup (1993). 

- E t̂ w = the number of respondents. 

- Ext r = the cumulative number of adults in the 
responding households. 

- L t̂ h. = the number of adults in subject i's household. 

- HHW. = h. • mir. 

Proportions in the sample falling into the following age 
groups were calculated for both male and female 
respondents: 18-24 years, 25-44 years, 45-64 years, and 
over 65 years old. These proportions were then compared 
to the age/sex distribution in Metropolitan Toronto. 

- Ext p, |. = the proportion of adult Metropolitan Toronto 
residents falling into the same age/sex category as 
subject /, as per the 1991 Census. 

- Ext /?2,- = the proportion of survey respondents with the 
same age and sex categories as subject /. 

- W. = HHW.-p^.lp2i, where W. is the final post­
stratification weight used in the analysis. 

B. MCMC Implementation 

The full MCMC simulation for the NI model consists of 
a Metropolis algorithm supplemented with the data 
augmentation described in section 5.3. The following is an 
overview of the MCMC algorithm. Variables used below 
are defined in section 5. At each iteration t. 
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Data from the Attitudes Toward Smoking Ixgislation, 
which was funded by Health and Welfare Canada, were 
made available by the Institute for Social Research at York 

1. Draw p, for Befa(j,., + 1,2398 - s,., + 1). 

2. Impute jj from Binomial (p,) t 1,429. 

3. Impute C^j^: draw (5, -1,429) v,.'s from 
Geometric (TI,.,) and Vc. e c^^^, c. = v̂ . + 12. 

4. Draw rt, from Beta{s^ + 1, X'̂ sus ~ •̂r "̂  ')• 

5. Impute values for the rest of X^.^ by utilizing the 
relationships with the number of calls, as described in 
section 5.3 
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6. Update the additional parameters used in the data 
augmentation of X.. 

° mis 

Update linear regression parameters, p̂  and ô  by 
drawing directly from the closed form of their 
posteriors. 
Update logistic regression parameters, P, using a 
Metropolis step on each. 

7. Impute Y^^-My^ey^^ draw y. from a 
Multinomial (p^ {x), p, {x), /jj (jc,)). 

8. Update each P .̂ using a Metropolis step on the 
conditional likelihood and a Normal jump function. 
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Double Sampling 
M.A. HIDIROGLOU' 

ABSTRACT 

The theory of double sampling is usually presented under the assumption that one of the samples is nested within the other. 
This type of sampling is called two-phase sampling. The first-phase sample provides auxiliary information (x) that is 
relatively inexpensive to obtain, whereas the second-phase sample contains the variables of interest. The first-phase data 
are used in various ways: (a) to stratify the second-phase sample; (b) to improve the estimate using a difference, ratio or 
regression estimator; or (c) to draw a sub-sample of non-respondent units. However, it is not necessary for one of the 
samples to be nested in the other or selected from the same frame. The case of non-nested double sampling is dealt with in 
passing in the classical works on sampling (Des Raj 1968, Cochran 1977). This method is now used in several national 
statistical agencies. 
This paper consolidates double sampling by presenting it in a unified manner. Several examples of surveys used at Statistics 
Canada illustrate this unification. 

KEY WORDS : Double sampling ; Auxiliary data ; Regression ; Optimal. 

1. INTRODUCTION 

The theory of double-phase sampling is usually 
presented under the assumption that one of the samples is 
nested within the other. This type of sampling is called 
two-phase sampling. The first-phase sample provides 
auxiUary information (x) that is relatively inexpensive to 
obtain, whereas the second-phase sample contains the 
variables of interest. The first-phase data are used in various 
ways: (a) to stratify the second-phase sample; (b) to 
improve the estimation by using a difference, ratio or 
regression estimator; or (c) to draw a sub-sample of 
non-respondent units. Two-phase sampling is a powerful 
and cost-effective technique with a long history. Neyman 
(1938) was first to propose it. Rao (1973) studied double 
sampling in the context of stratification and analytic studies. 
Cochran (1977) presented the basic results of two-phase 
sampling, including the simplest regression estimators for 
this type of sampling design. More recent work on the 
subject includes that of Breidt and Fuller (1993), who 
developed efficient estimation methods for three-phase 
sampling computations using auxiliary data. Chaudhuri and 
Roy (1994) focused on die optimal properties of simpler but 
well-known regression estimators of two-phase sampling. 
Hidiroglou and Samdal (1998) proposed estimators based 
on calibration and regression for two-phase sampling to 
account for the availability of auxiliary data at both levels 
of the sampling design. 

Estimation for nested and non-nested double sampling 
has been treated separately in the survey literature. 
However, it is not necessary for one of the samples to be 
nested within the other, or even be selected from the same 
survey frame. This case will be termed non-nested double 
sampling. It has been briefly discussed in such classical 

books on sampling such as Des Raj (1968) and Cochran 
(1977). This method is used in several statistical agencies. 
For example, at Statistics Canada, the Canadian Survey of 
Employment, Payrolls and Hours (SEPH) is using this 
sampling procedure (Rancourt and Hidiroglou 1998). En 
this survey, two independent samples are drawn from two 
different frames, which nevertheless represent the same 
universe. The auxiUary data {x), which includes the number 
of employees and the total amount of payrolls are obtained 
from a sample selected from a Canada Customs and 
Revenue Agency administrative data file. These same 
variables, together with the variables of interest (y), the 
number of hours worked by employees and summarised 
earnings, are collected from a sample drawn from the 
Statistics Canada Business Register. Another example 
described by Deville (1999) is the case of a household 
survey conducted at INSEE. 

A single estimator can represent the overall estimation 
process, and the only difference is with respect to variance 
estimation. This paper is stmctured as follows. Pjirt 2 sets 
out die notation. Part 3 describes how the double sampling 
procedures can be obtained from a single estimator. In Part 
4, the estimated variance for the nested and non-nested 
calibration estimator is presented. Several practical 
examples are provided in Part 5. Finally, Part 6 contains a 
brief summary. 

2. NOTATION 

2.1 Nested Case 

The population is represented by U = {I,..., k,..., N ]. 
First, a probability sample 5, ( j , c (/) is selected from 
population U using a sampling design with inclusion 

M.A. Hidiroglou, Business Survey Methods Division, R.H. Coats Building, 11th Floor, Section A, Statistics Canada, Ottawa, Ontario, Canada KIA 0T6. 
E-mail: hidirog@statcan.ca. 

mailto:hidirog@statcan.ca


144 Hidiroglou: Double Sampling 

probabiUty of 71,̂ ^ = P (/: e 5j) for the ̂ -th sampled unit in Sy 
Given 5,, a second sample S2{s2cs^i^ U)is drawn from 5, 
using a sample design with conditional inclusion probability 
^2k\s = P{k£S2\ s^) for the ^-th sampled unit in .jj. Note 
that the probabiUties are conditional since it is assumed that J , 
is known. Figure 1 displays an example of nested sampling. 

We assume that 7t,^>0 for all values keU and that 
71̂ ^̂ , > 0 for all values kesy The weight of a sampled unit 
k will be denoted by w,^ = 1 /7[^ for the first-phase sample 
and Wĵ  = 1 /t2ik IJ f̂"" ^^^ second phase sample. The overall 
sampling weight of a selected second-phase unit, k e j ^ , 
will therefore be ŵ * = w,^ Wĵ . 

Figure 1. Nested Samples 

Ext jc denote the auxiliary data vector available with the 
first-phase sample, and jc^ the value for unit k. We proceed 
as in Hidiroglou and Samdal (1998), that is, we divide x^ 
into two parts jr,^ and x^ .̂ The values of the data vector x,j^ 
as assumed to be known for the entire population U, while 
the values of data vector Xĵ ^ are only known for the first-
phase sample 5,. 

2.2 Non-nested Case 

Et is possible for the two samples to be drawn 
independently from the same frame or even from different 
(but equivalent) frames. Figures 2 and 3 provide examples 
of these non-nested cases. 

Universe 2 

Figure 2. Two independent samples selected from 
different sample frames 

The non-nested case represented by Figure 3 is not 
considered in this paper. This case can be complicated for 
arbitrary sampling plans because it is necessary to compute 
joint inclusion probabilities between the two samples .y, 
and S2. This computation is simpler when the two samples 5, 
and S2 have been selected using a simple sampling design 
such as simple random sampling (with or without 
replacement). Et is then possible to use Tam's results (1984) 

to obtain the required joint selection probabilities for the 
computation of the estimated variance for a given estimator 
of the total y = Eyy j . 

Universe 

Figure 3. Two samples drawn independently from 
the same sample frame 

For the case tiiat we wiU study, we assume that samples 5, 
and 2̂ are drawn independentiy from two different frames 
U^ = {l,...,k,...,N^} and U2 = {l,...,k A^ )̂ (see 
Figure 2). The inclusion probabilities of a sampled unit k 
are respectively 71,̂  = P{kEs^) > 0 and %2k ~ 
P{k£S2)>0 for samples s^{s^cU^) and S2{s2^U2). 
The weight of unit ^ is iv,y = 1 /7i|,j) for the first sample 5, 

.<2) .(2) and Wĵ  = 1 /7I2/ for the second sample Sj. The super­
scripts (1) and (2) are used to differentiate between the 
selection probabilities of the samples drawn in the nested 
case. The sampling units may differ between the two 
frames, but these frames represent the same coverage. 
Examples of such sampling procedures were mentioned in 
the inti-oduction and more details are provided in the second 
example given in section 5.3. 

Ext x^ = {xli^,X2i^)', be an auxiliary data vector. We 

assume tiiat x\^^ is known for aU units belonging to frame U 
J i ) 

1' 
(2) (2) while x\ is only known for sample 5,. We coUect y^^ , x\ 

from sample S2. The x data collected for corresponding 
units in samples 5, and 2̂ rnay differ. The degree in 
difference between the data values will vary according to 
the complexity of the sampling unit, and how much these 
units differ in concept between the two sampling frames. 
For «simpler»units the data reported for«similar » units in 5, 
and 52 should be equal or almost equal. Departures in the 
data similarity for the same units in s^ and j j would most 
likely be due to the different questionnaire wording or due 
to different respondents filling in the questionnaires. 
Nevertheless, we assume that X. = E „ x,t = E„ xj since 
C/, and U2 have the same coverage. 

't/,-*u ' t / * i * 

3. OPTIMAL ESTIMATOR FOR NESTED AND 
NON-NESTED SAMPLES 

En both cases, nested and non-nested, the objective is to 
estimate the population total K = E ^ y^ where ŷ^ represents 
the value of unit ke U. An unbiased estimator of Y is 

where w/ ^^ik ^2k ^°^ '^e nested case 
and w/ = w. 

(2) 
2k 

hyk' 
for the non-nested case. 
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The sampling weight of a unit is modified by multiplying 
it by the calibration factor obtained using the various levels 
of the auxiliary data (universe, first-phase sample). The 
product is called a "calibration weight". Table 1 
summarises the available data for the nested and non-nested 
cases, corresponding to Figures 1 and 2. 

Table 1 
Data Available for the Population and Samples 

Set of Nested Case 
Elements 

Non-nested Case 

x\f. known for Jte C/, Population x^: known for ksU 

First 
sample jr^: observed for kes^ x^ : observed for kes^ 

Second 
sample y*. *»: observed for kes2 yl. x\ : observed for /: E ij 

The following regression estimator is used to estimate 
the population total Y for nested and non-nested samples: 

^REG = ĤT + ( ^ l - ^ l ) ' « I * ( ^ - ^ ) ' * - (3.1) 

The various totals corresponding to the auxiliary data x 
and y-variable of interest given in equation (3.1) are 
provided in Table 2. 

It is assumed that the variances, V { Y^^), and covari-
ances Cov( i - , i ' ) , Co\{XyX'), C o v ( i , , i ' ) , 
Cov ( Y^^, X') and Cov ( y .̂j., ^ ' ) , are known or 
estimable. 

To simplify the notation, we drop the superscripts for the 
remainder of this section. The estimation of the parameters, B 
and B, as well as of their associated variance, reflect that 
we have sampled differently for the nested and non-nested 
cases. The estimators of B and B, are obtained by 
minimising the variance of ?,^Q. This variance is: 

y{KEo) = y{Ym)^B[ V{X,)B, ^B' V{X-X)B 

-2Co\[Y^,X[)B^^2Cov{Y^„,{X-X)')B 

-2B[Cov(Xy{X-X)')B. (3.2) 

Deriving (3.2) with respect to B and By •we obtain the 
following two equations: 

V{X-X)B •^Co\[{X-X),Y^^.^) 

-Cov[{X-X),Xl)B^=0 (3.3) 

and 

-Cov(i,,(i-i)')B-Cov(i,,y„T.) + l/(;f,)B, =0. (3 4) 

Solving the system of equations (3.3) and (3.4), we 
obtain the required parameters B and B,. That is: 

B=T-^H (3.5) 

where 

T = V{X-X)-(Cov(Xy{X-X)'))' 

V-'{X,)(Cov{Xy{X-X)')), 

H = {Cov{{X-X),Y^„)) 

. ^{Cov{Xy{X-Xy))'V-'{X,)Cov{XyY^„) 

and 

where 

and 

B,=T\H^ (3.6) 

V[X,), 

H^ = Coy[Xy Y^„)-^ Cov[Xy{X-Xy)'B. 

Table 2 
Sums of the Auxiliary Datax and y for Nested and Non-nested Cases 

Set of Elements Nested Case Non-nested Case 

Population 

First sample 

•̂ 1 " Z^u *u 

^, = E , -„x„ ; X - E„ w„x, X, - y w,x<'> -.x-T w„x';> 

Second sample 

ĤT = E , - , ; y f 

(2) 
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Result 1: An optimal regression estimator for the nested 
and non-nested samples is: 

^OPT = ^HT"'(^I~-^I) ' '®I,OPT"'1^~^A^OPT (3-7) 

where 

and 

B OPT f 'H 

^i.oPT ^1 ^ r 

(3.8) 

(3.9) 

TyHyT and H are the estimated values of TyHyT 
and H, and they are obtained using a framework leading to 
the inference based on the sampling design. These values 
are dependent on the sample selection scheme. The popu­
lation variance of Y^y^ and its associated estimated 
variance depend on whether or not the samples are nested 
or non-nested. Since the regression vectors are optimal, it 
follows that the regression estimator Y^^^ is also optimal. 
The optimal form has been discussed by Montanari (1987, 
1998, and 2000) for the case of a single phase sampling 
design. 

3.1 The Case of Nested Double SampUng 

The theory for this case is developed using a conditional 
approach. Suppose that two parameters are given by 9, and 
Oj, and diat tiiey are estimated by §, and §2 from sample ^2. 
If we condition on the realised samples,, then the following 
well-known results hold: 

(i) 

(ii) 

The expectation of 9 is £ (9)_̂ = £, £2 (0 | •y;), where Ej 
denotes the expectation of 9 given Sy 

a 

The variance of 9 is 

V(9)=£ ,V2(9 | . , ) .V ,£2(ek . ) - (3.10) 
A a 

(iii) The covariance between 9, and 92 is: 

Cov(9,,9^)=£,Cov2((9,,9^)|s,) 

+ Cov,{£2{9,|s,),£2(e2h,)). 

The various components of T, H, T^ and of H^ will be 
estimated assuming an arbitrary sampling design with a 
non-fixed sample size. The case of a fixed size sampling 
design follows easily as it is a special case of the arbitrary 
sampling design. Using expressions (i) - (iii), we can re-
express the terms defining parameter B as: 

Co\[X,X') = Cov{X,X') = V[X); 

Co\(Y^^.^,X') = Cov(Y^„,X'); 

Co\[Xy{X-k)'\=Q; 

and 

Cov( iy^) = Cov(X,F,„).£,[i:E.,'^2«|.,^*^;];(3.11) 

where C2^i\sr{n2ki\s,-'"2k\s,''2,\s)'<^l ^nd Y^^ = 
E^ ŷ  / JTĵ . The inclusion probabilities in these expressions 

are «2«l., = Pr(*'« " 2 | 5,) and n^ = n„ Jr2,|̂ _. 
We can express B more simply as: 

^ = [̂ .(EE. i , ^2ki\Sy^k^i • • ) ] -

E E,, ^attu/t^tl (3-12) 

and the corresponding optimal estimator is given by: 

B, OPT EE S2^2ki\sy^k^t 

T.T.. . ^ 2 * { | J, •'^/t^'j (3.13) 

where ^ZH u, = ^2« u/"2*51V 
The optimal regression estimator B, Q^J., is given by 

(3.9) with 

i, = v[x,) 
and 

OPT 
H^ =Cov[XyY^) + C6v[XyX')B, 

-C^v[XyX')B^^. 

Each component defining T, and H, is estimated as fol­
lows. We first estimate V(.Y,) =EE^ C|̂ jX,̂ x,'j by 

^i^i)=T.T.s,^m^ik^'u (3.14) 

where c,,^ = (Jt„, - n̂ Tr,̂  )/(nu"o) ^nd c„j = c„ /n„ , . 

Next, since 
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Co\[XyY^^J)=E^ Cov 

+ Cov 

Xy /^.p I \s^ 

2\Xi I .y, j , £2 ( ''̂ HT I •^i) 

= Cov l^Xy Y^^..^j 

= E E u , c,^jX,^y,j (3 15) 

we estimate Cov {Xy Y^^j) by 

C 6 v ( i „ y „ . r ) = E E . , ^I'^^uy, (3-16) 

where 

^UJ ^^Ikt^'^kv'^ki ^ ^ U f "2*( i | j , ' 

7t,̂ j = Pr (*, C 8 J , ) , 

'̂ 2*f|., =Pr(* '^^^2l^i) 

and n\ = Tt^^n2k\s,-

Similarly, 

c6v(je„i') = EE.,-u.^u^; (3-i7) 

and 

C6v( i , ,X ' )=E E,, ^m^ikK- (3.18) 

Hence, in the case of nested double sampling the optimal 
estimator of B, is given by: 

«\on- = ( ^ W ) " ' [ c 6 v ( i , , y 

+(c6v(i,,i') -c6v(i,,i))io,^] (3.19) 

where the components of B, ^^ have been defined by 
expressions (3.14)-(3.18). ^ ^ 

The optimal form of estimators B, ^p^ and BQPT h^s its 
advantages and disadvantages. One of the biggest 
advantages of the optimal form, as reported by Cassady and 
Valliant (1993), Rao (1994), and Montanari (2000), is that 
it has good conditional inference properties (by condi­
tioning on the auxiliary variable x). As Montanari (2000) 
observed, the asymptotic optimality of PQ,^ is strictiy a 
property based on the sampling design and achieved 
conditionally on the finite population. The biggest 
disadvantage of the optimal estimator is that it requires the 
computation of joint inclusion probabilities. 

We can, however, use the optimal form, and express it 
more simply for several sampling designs. For sampling 
designs where the sample selection is with unequal 
probability and without replacement, we can bypass the 
computation of the joint probability by approximating the 
exact variance. Several authors, including Hartley and Rao 

(1962), Deville (1999), Berger (1998), Rosen (2000) and 
Brewer (2000) proposed such approximating procedures. 
Recentiy, Tille (2001) proposed the following 
approximation for the estimated variance of Yy^J = E^ y /̂Tt̂  
in the context of single-phase sampling, where 

71 

' ^ 2 

71, (3.20) 

Here, ĉ  is the variable used as the approximation, 

yk '^'^k^s^iyn'si'^s^v y=yki'^k' "̂̂^ \ '̂  'he 
probability of selection of a given unit k. Tille (2001) 
provided several examples of the c^ values for various 
sampling schemes. 

This formula is exact in the case of a stratified simple 
sampling design drawn without replacement in each stratum 
U^{h = l,..., L) of population U. Ext kbea sampled unit 
in sample 5̂  from stratum f/̂ , then c^ = 
nj{ni^ - 1)(1 - nJNf^) if kzU^ and 0 otherwise, and 
7tĵ  = nJNf^ if kzUf^ and 0 otherwise. This gives us the 
exact estimated variance, V' = (y',,.,.) = E^, , N^{l-nJNi) 
^ j ^k~y h> ^'^h^^h ~ ^ )• The formula is also exact in the case 
of a stratified sampling design where the sample is selected 
with replacement. Here c^ = 1 for all units belonging to 
stratum [/̂  and zero otherwise. IJsing this approximation, 
the double sums appearing in B^pj and B^ Q^^ can be 
expressed as simple sums. Hidiroglou and Samdal (1998) 
bypassed the problem of double sums in estimating B and B, 
by proposing the GREG estimator, PQJ^^Q, for a nested 
two-phase sampling design. Their estimator is given by: 

Y =y + 
' GREG ^ HT 

{XiO'B,,oi,sAx-x)'B, GREG 

where 

B GREG 
^ Ik^lk^k^k 

^Ik 

• \ -1 
'^ik'^2k^kyk 

^2k (3.21) 

B l.GREG • 
^Ik^lk^lk 

\ -1 

E, 2 2 
0 , i 

E ^ * ^ik^k 

B GREG 

2 2 
O 

B GREG 

U (3.22) 

2 2 

with { o^i^-.kzs^ } and { 02^:^85^2 } being predetermined 
positive factors. 
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Estimators ^GREG "̂"̂  ̂ i GREG can bejustified either by 
assuming different regression models for each phase or by 
using two successive calibrations. For the caUbration 
approach, caUbration weights iv,̂  associated witii the first-
phase are first obtained, and they satisfy die caUbration 
equation E^ ^ik^ik ~ ^u^ik- These caUbration weights 
can be expressed as die product of sample weights w,̂  and 
a caUbration factor g^|^ where: 

^ u = l ^ ( E y ^ i * - E . , ^ik^'ik)' 

.'s, Ik 
^Ik •"'U 

'U 

"I* 

'Ik 
(3.23) 

for kesy 
The first-phase caUbration weights vv,̂  are then used as 

initial weights to compute die overall calibration weights 
w'l^. These overall calibration weights satisfy the second-

phase caUbration equation E^ ^Ik^k ~ ^s "^ik^k- The 
estimator of the total, /QREG' ^^^ ^^ expressed as the sum 
of die product of die over^l caUbration weight w'l^ and the 
associated y-value, that is /GREG = E^ ^i) ' i - ThecaUbrated 
overall weights can be expressed as w^ = W;̂* ĝ *, where 
Sk =8ik82k- Here, g,̂  is given by (3.23), while §2* is 
equal to 

«2* = 1 + ( E . , 

E, 

^U^2*Jf* 

^lk^2k^k^k 

•'2k '2k 
(3.24) 

forfce^j. 
Comment: The estimators of B, GREG (3-21) and OGREG 

(3.22) correspond to Hidirogloii and Samdal's (1998) 
additive case and have the same form as the optimal 
regression estimators fi, Qp̂  (3.8) and 6^^^. (3.9). Indeed, 
the components of the estimator of B are obtained by 
respectively estimating r by (E^ >*'it̂ 2Jt-*'/t'*'t̂ *̂ 2*) ̂ ^ ^ 
by E^ ^\k^2k^kyk^^2k- The second terms of Hand Tare 
exacUy equal to zero. Similarly, to estimate B,, the 
component T, is estimated by E^ ^ik^ik^ik^^ik' while 
H. is estimated by 

w. X 1*^2* 

'Ik 

B GREG-

The estimated variaice of ^GREG ~ ^HT"^ 

{X^ - i , ) ' B, GREG + (^ - ^y -̂ GREG is presented in 
Hidiroglou and Samdal (1998). 
Comment: The efficiency of the GREG, as stated in 
Samdal, Swensson and Wretman (1992), requires that the 
proposed model be correct. Furthermore, if the sample size 
is large enough, optimal estimators are more efficient (Rao 
1994) than the GREG. However, if the sample size is 

relatively smaU, one disadvantage of the optimal form OI*T 
is that it is generally less stable and more complex to 
compute than the GREG. Furthermore, an additional 
consequence of a relatively small sample size, as reported 
by Samdal (1996), and iUustrated by simulation by 
Montanari (2000), is that if the sample size is relatively 
small, then the optimal form is not significandy more 
efficient than the GREG. It is even possible for the 
estimated variance to be greater than that associated with 
die GREG. 

3.2 The Case of Non-nested Double Sampling 

E)eviUe (1999) considered die non-nested case (Figure 2) 
by assuming that X2j^ is known for 5, and S2. The optimal 
regression estimator is: 

'OPT •'HT \ ^ 2 ' ^ 2 / "2,OPT (3.25) 

-(2) 

'2 , OPT 

where 9^^^ = E^̂ W2^y;, X2 = E w,^X2^,^2 = .̂,>V2**2*• 

The optimal estimator for B2 = (^y ^2t ̂ 2k) '^^u^2k >'* is 

4.0Fr = ( ^ ( 4 ) ^ ^ ( 4 ) ) ' ' C6v(^jn-'^2) if the two 
sampling frames U^ and C/j are independent. The form of 
the variance and of the covariance terms defining ^2 
depiends on the sampUng design of 5, and .̂ 2. 

The accuracy of die estimator of X2 can be improved by 
minimising the variance of .Yj ^•^2'^2 "̂  (^ ~'^2)'^2 
yielding, A2 = {V{X2) + V ( i 2 ) ) ' ' ^ ( 4 ) - Assuming diat 
V{X2) is approximately a multiple of V{J^2)' that is 
^(Zj) = Oj V{^2)' we obtain A2 = //(1 + 02) where / is 
the identity matrix has the same dimension as the 
covariance matrix ^(.^2)- The optimal value of Oj is 
obtained by minimising the variance of X2- A sub-optimal 
but adequate choice, suggested by DeviUe (1999), for Oj is 
ttj = nj{n^ + AI2). where n, and n2 are die respective sizes 
of samples J, and 52- Note that Kom and Graubart (1999) 
also made the same suggestion in the context of combining 
two totals estimated fropi two different sources. 
Substituting Jf 2 in place of X2 in expression (3.25), yields 

; e2 - i2 = ( ^ 2 - A ) / ( i * « 2 ) - (3.26) 

The estimator of the population total Y, is: 

^OPT "̂  ^HT "̂  ( - ^ 2 " -^2 ) ' ^ 2 , OPT 

where 

^2.0Fr=-[^(^2-A)]"' C6v(y^,(;e2-^2)')- (3-28) 

_ If (3.26) is substituted in (3.28), we can re-express 

^ 2 . OPT ^ • 

B 2, OPT \v[X2)y Cov{Y^,X2). (3.29) 
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Qomment: We see that Q̂p̂  (3.25) is exacUy equal to 
FQPP (3.27). This implies that there was no advantage in 
using a better estimator of X2 to estimate Y. However, the 
estimator fi^ ̂ ^ associated widi pQpj, looks more like a 
traditional^ regression estimator^ than the regression 
estimator B2 QFT associated with Y^^^. 

Note diat the GREG estimator for the case where X2 is 
used instead of X2 is: 

^GREG ^ ^ H T * (•*^2 ~ -^2 ) ' * 2, GREG (3.30) 

where 

2̂,GREG = ( E .,>*'2*4'^^rM)"'E ,,^2*4")'f 7 4 -

Furthermore, if we also know x\^^ for keU^ where 
X^ = Ey x,/, we can consider the regression estimator 

?on- = ^ H T * ( ^ i - * i ) ' ^ i . o P r ^ ( ^ - ^ ) ' 4 p r - (^-3^) 

We obtain X by minimising the Unear combination 
A i + ( / - A ) i _ a n d V{X) = aV{X). The difference 
between X and X can be re-expressed as 

X-X = {X-X)/{l^rt). (3.32) 

Given that s^ and j j are independent samples, it can be 
shown that: 

~Bovr-[nx)Y Cov ( i y ^ ) (̂ -̂ ^^ 

and that 

^ o P r = [^ (^ i ) ]" ' [C6v( i „y„ , ) ] . (3.34) 

The components of B^^^ are estimated by: 

nx)-Y.T.s,vf<'' (3-35) 

and 

,(2)„(2) Cov[X,Y^)-YTc2,,xfyl (3.36) 

Approximation (3.20) can also be used to estimate the 
terms (3.35) - (3.38). The corresponding GREG which 
bypasses die computation of joint selection probabilities is 
given by: 

^GREG = ^ H T ' ^ ( ^ I ~ ^ I ) ' * I . G R E G ' ^ ( ^ " ^ ) ' ^ G R E G (3.39) 
,(') V Jl ) Where X, =Y. x\>,X, = E^_w,,x\l,X = E^_w,,x^ and 

^ = ^ 2 * ^ * ' ' -

GREG-type regression estimators in equation (3.39) are 
estimated by 

B I.GREG" w, 
J2) '(2) V 
^Ik-^lk 

2k 

'Ik 

(2) (2) 

w^^fliZi- (3.40) 

and 

B GREG' . . , ^ 2 * -

j . (2)„-(2) 

'2k 

-1 (2) (2) 

Ayk 
. . , ^ 2 * -

(3.41) 

'2k 

4. ESTIMATOR OF THE VARIANCE FOR THE 
OPTIMAL REGRESSION ESTIMATOR 

4.1 Nested Double Sampling 

RecaU that the optimal regression estimator of Y is given 
by 

^opr = C - (^i - ^ . ) ' «\oFr - ( ^ - i ) ' 4 n - (^-D 

To obtain the estimated variance of (4.1), we re-express 
the terms associated with the y-variable within J^^^j. and 
^1 OPT ^ ^ simple sums instead of double sums. Montanari 
(1998) described this algebra for an arbitrary single-phase 
sampUng design. FoUowing Montanari (1998), and 
adapting the single-phase algebra to double sampling, we 
obtain: 

B. OPT 2 ^ 2^j ^2kl\sj^k^t [EE ^2kt\s,^kyt 

whereas the components of B^ Qp̂  are estimated by: 

V( i , ) = E E C2«4'<^^ (3-37) 
/ . 7 yj '^oi./i I . ^ 1.^' E,.^ >"* (4.2) 

and 

,(2)„(2) C6v(4y^) = EE,c2*.<^; 

where 

-2kll 
^2kll ^2k^2l 

("2Af)("2*"2c) 

(3.38) 

where 

_ i ""2^:1. , _ ^ ^ (^2kl\s,-'"2k\s,'"2(\s,) 
*2k 

^2kl\s, " t 

We approximate .6, Qp̂  given by (3.15) by 
[ V(i,) ]" ' [ Cov {Xy ĤT.) ], and hence. 
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B l.OPT v[x,)Y\cby[XyY^) 

TT s, '-Ikl^lk^lll E..^: 

^OPT " ^HT "̂  (^1 ^ l ) ' •^l.OPT • ^ ( ^ ^ ) ' ^ O P T 

= J^oPr-0^(«r'1 (4-8) 

(4.3) where 

where 

E 
f C5| u"ut 

y^pp = Y^ + (:^, -;?,) ' ^-.opr - (^ - ^ ) ' ^OPT- (4-9) 
Decomposing yQpp into more elementary components, 

we have that: 

By substituting (4.2) and (4.3) in (4.1), and by 
subti-acting the population total Y, we get: y =y + 

^OPT ^HT 
^ i -

X^+aX^^ 

1 +a ^ 
B I,OPT 

y - y= 
^OPT ^ 

l^s, ^ l t _ ^ C / ^t 

"u 

,{X-X)' 
1+a 

5, OPT 

>"* yk 
Z^s, S2k . Z^s, 

IT. ' t U 
(4.4) 

where 

^ u = l - ( ^ i - ^ i ) ' ( ^ ( ^ i ) ) " ' « u fo>- ^^^i (4-5) 

^m- T"~(<*-^I '^I .OPT"^^' '®I,OPT) 1 +a ^ ') 

+ 1 ' ^ I* I .OPT"Y7^( '^ I '* I ,OPT"^ '*OPT) • (4.10) 

and 

The variance of yQpp is: 

/ ^ 
g2,-lAx-x)'{mya2, for kes2. (4-6) ^ ( ^ o P r ) = y H , - ^ ( a ^ ; B , , o P r - ^ ' f i o P T ) 

Result 2: The estimated variance of Y^^j. defined by 
equation (4.1) is: 

^(^OFr) = E Es,^MglkSue^|,e^^ 

+ E E , C2lf?2*^2f«2*^2t (4.7) 

1 

( l+a)2 

^Bi^V{X)B^„ 

[«*i',OFr ^(^i)^i,OFr 

where 

,• _ ( " u g ' ^ u ^ i t ) . 

-2a(fi^pr^(^)fii'.OFr^Cov(i„i'))Bop,](4.11) 

Result 3: The estimated variance of pQpp, V( Y^yj.), 
defined by equation (4.8) is approximately equal to: 

•Ikl 

" « " u " i c 

. _{"2kl\s, "2*U,"2tU,), 
'-2*5 

YHT-lT^K*. .OFT-^ '«OPr) 

1 

"2i(!|i, " t ^ t 
"fii'.OPT yNB,,ovr-B^^ V{X)B^y, 

and 
^U yk ^lk"l,OPT 

^2k ~^jt "•"'t^OPT-

4.2 Non-nested Double Sampling 

We obtain the estimated variance of Y^^j. by using the 
following approximation. 

(1+a) ' 

+ 2 a ( i ^ ^ V ( i ) B , o p r - C 6 v ( i „ i ' ) 4 J ] . (4.12) 

Computation of the first term of (4.12) is based on the 

residuals ŷ  - (ax,'^Bi Qp̂  + x^ Bopr)/(i "̂  ")• The 
computation of the other terms of (4.12) is mainly based on 
die estimated variances of .^, and of ^, as well as on their 
estimated covariances. We can use the approximation of the 
variance, as described by Tille (2001), and suitably adapt it 
to estimate the required covariances. 
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5. SOME SPECIFIC EXAMPLES 

Three traditional examples for double sampling are 
presented for the two cases (nested and non-nested). 
Furthermore, we briefly describe how two major business 
surveys carried out by Statistics Canada use double 
sampling. 

5.1 Nested Sampling 

Example 1: Ext us assume that a simple random sample 5, 
of size «, is selected from a population U of size N. The 
sample is stratified into L sti-ata 5,̂  each of size n,^. 
Random samples 2̂̂  of size n^^ are then selected without 
replacement in each stratum 5,^. The estimator of the total 
is ÊXP = ^^ti/'iAy2A=^>^2,.r' where p„=n,^ / / i , . 
Using (4.7), we can show that the estimated variance of 

^EXP'̂ (^Exp)' consists of the sum of Vi(yEXp) ^ ' i 
Vj (fgjg.) corresponding to the first and second phases of 
the sampUng design. Thus: 

^(4xp) = ^.(^EXp)^^2(4xp) 

where 

'^1 /_ - V2 
+ — 7 \ y 2 i ^ - y 2 . s ^ 

V r# ^ = N^T (̂  ^^\^ s^ • 
'^2'-^EXP'' '^ Z^ Plh'^2yh' 

A = I «T 

and 

«2A ( « I - 1 ) 

; / , = 

'2yh 

'2A 

1 
Es^{yk-y2HY 

'2A 

y2h = — E,, yk 
'2A 

and ytsi EPIA3^2A-
h = l 

Example 2: Ext us assume that, for the sampling design 
described in Example 1, we also have auxiUary data, x^, 
available in the first phase Sy If we assume that the slopes 
(P^) vary among the strata, we can assume that the 
following model 

2x 2 
yk='''kf^h^h holds. where 

0 £ ( E P = 0, £(E^) = a^,ke s^^, h = l,..., L, and £(e^ e,) 
for k* H, for k,HEs^f^h = I,...,L. This model gives us a 
separate regression estimator, that is. 

N 1 
' SEP, REG , z ^ s, 62* yk 

/. = ! « i n. 2h 

where 

^ 2 * = 1 E.-;-E..^-; 
2* «, 2A 

" lA ^ t ^ * 

'2A O t 

^ -' 

if A; e ^2.. En each stratum h, the slopes P̂^ are estimated as 

Bv,= 
"ih ^k^k 

'2A 
E, ^ «1A ^ t ) - * 

2A O^ j 

The variance of ŷ Ep REG is estimated as being the sum 
of the variance components of each phase. These com­
ponents are V, ( ygxp) and V2(ysgp^G), where V, (/EXP) 

was defined in example 1. Variance V'2(y5EpREGi is 
obtained by replacing variable ŷ^ by ^̂  = ^^ (y/t - ;̂̂  ^^ ) 

in V2( ^Exp)- ^ ® estimated variance of ŷ gp REQ is 
therefore: 

v(y SEP, REG 

N\l-S,)^ 
) = l^Pih 

n, h = i 

(i-«.)4^. 

^-71(^2.-^2,.)^ 

. ^ A ^ ^ ( l - / 2 . ) „ 2 , 2 

+ 2^ PihKh 
A = I " i '2A 

where 

S^ = E 

and 

^9 

'^2yh -Y^sM-y^-
••ih 

5.2 Non-nested Sampling 

These two examples are taken from Des Raj (1968, 
pages 142-149). We are using them to illustrate the results 
of sections 3 and 4. We consider two different sampling 
designs. 

With the first sampling design, we assume diat: (i) the 
first sample 5, of size /i, is selected with a simple random 
sampling design without replacement from population U; 
and (ii) the second sample 2̂ of size MJ is selected either by 
using measurements of size x. found in the first sample J, 
(nested case) or by selecting it independently (non-nested 
case) from the first sample 5, in a manner proportional to 
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size X. (known for all units of die population). The resulting 
estimator is 

? = — 
N E.,/, 

'EPTAR 
^ X: 

For the second sampUng design, we assume that the two 
samples 5, and .̂ 2 have been selected using a simple 
random sampUng design without replacement. Here again, 
we examine the nested and non-nested cases. We assume 
that we find the auxiUary observation x. for any unit 
selected in the first sample 5,. The estimator is 1^7 = 
(A /̂wjEj x,)(E^ y/E^ X;) =X A Table 3 summarizes 
these two sampUng designs, as well as this corresponding 
estimators with dieir estimated variances for the nested and 
non-nested cases. 

The undefined terms in Table 3 are given by p^. = 
x.lZ^x.;p.=x.lE^x.;V{Y^) = \lnj:^jp.{y.lp.-Yf; 

5>-/j. = (^ - 1)"' ^t/()', - ^ / ; S2 = 12/N / , = n^lN, 
and R=YIX. 

Table 3 shows that there is Uttle difference in the 
v^ariances between the nested and non-nested cases. For 
îEPTAR' the variance will be smaller for the nested case if 
die coefficient of varia^on (CV) of variable y is smaUer that 
diat of variable x. For ?^.j., die variance will be smaUer for 
the nested case if pCV(y)<CV(jc) where p is the 
correlation between y and x. 

5.3 Two Statistics Canada Surveys 

Several Statistics Canada surveys use double sampUng. 
We will illustirate the ideas presented in this paper using 
two business surveys. These surveys are the Quarterly 
Retail Commodity Survey (QRCS) and the Survey of 
Employment, Payrolls and Hours (SEPH). The Quarterly 
Retail Commodity Survey uses nested double sampUng, 
whereas the Survey of Employment, PayroUs and Hours 
(SEPH) uses non-nested double sampUng. 

The Quarterly Retail Commodity Survey: The 
purpose of die (QRCS) is to obtain detailed information on 
retail commodity sales on a quarterly basis. The RCS is a 
sub-sample of the Monthly Survey of Retail Trade (MRTS), 
a monthly survey. The MRTS measures mainly sales by 
trade group (group of three or four-digit codes of the 1980 
Standard Industrial Classification (SIC)), by province and 
for certain census metropolitan areas (CMA). The target 
population is statistical companies with statistical locations 
identified on the Business Register and which are active in 
the retail trade. About 16,000 companies are interviewed 
each month. The population is stratified by province, 
territory, certain CMA and by tirade group. 

The MRTS is stratified in H strata, based on size (2-3 
groups), geography (10 provinces, 2 territories) and 
industry (16 main groups). This sample is restratified 
independently for die QRCS. The QRCS sti-atification 
differs from the MRTS geographically, by size and by 
industry. A sub-sample is selected using die "new" 
stratification of the MRTS sample. The QRCS estimate is 
based on a double-ratio estimator that uses auxiUary data 
(sales) from the MRTS. The second-phase sampUng unit 
(QRCS) remains the statistical company. The first-phase 
sample is restratified by trade group, by province and by 
size based on the most recent information from the MRTS. 
For stratification purposes, each company is assigned a 
province and a dominant trade group based on the one that 
generates the most sales. The two-phase estimator is used 
by the MRTS. Binder, Babyak, Brodeur, Hidiroglou, and 
Jocelyn (2000) derived a variance estimator that took into 
account the sampling design and the estimation method. 
They expressed variance estimators of the total as simple 
sums of appropriate residual terms for the case of the ratio 
estimator. 

The results of Binder et al. (2000) can be adapted to 
incorporate the optimal regression estimator in each phase. 
We assume that the auxiUary information (X[̂ ) is known at 

Tables 
Two Sampling Designs with Nested and Non-nested Samples 

Sampling design 1 Sampling design 2 

Sampling Design 

Estimator 

Variance 
Nested 

N-»/Ji(SRSWOR) 

n^-.n^{?PSWOR) 

N = - E . >/ 
"iPu 

^2^1iLlsK^^ 

Af-.«, (SRSWOR) 

n,-./j2(SRSW0R) 

''''-f^'(2RS^-R^S^yN^'l-f^'^^ 
n n. 

y-Rx 

Non-nested 

,^^lzIA,^s!.X^ i + - ( i - / , ) ^ 
^!!iiIA)..,^^,.ilI:^s;.. 
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the level of population U, either for each unit keU or for 
the total X,̂  = EyX,^. The QRCS sampling design can be 
formally stated as follows. The population is stratified in H 
strata f/̂ ; /i = 1,..., H, and simple random samples without 
replacement j , ^ , of size n,^, are selected in each stratum 
Uf^. The X ̂  variable is observed for each unit belonging to Sy 
The resulting first-phase sample, J, =Uf,^^s^^, is then 
stratified in strata s., g = I,..., G. The stratification of J, 
is independent of the stratification of the universe U. A 
simple random sample ^j of size n2̂  is then selected from 
each stratum s., g = I,..., G. We observe (ŷ ,̂ Jc^, where 
x^ = {x[i^,X2i^)' for each unit belonging to sample 
S2 = U ^S2 . We assume that models ŷ  =*uPi "̂  ^^ ^^'^ 
ŷ  = x^ p + Cjj hold for 5, and j j respectively. For each of 
these models ê ^ -{0,o] z^|) ande2^ ~ (0, Oj 2̂*) where z,̂  
and z,j are known positive factors. If z,̂  5* 1 or ẑ^ t̂ 1 for 
all units ksU, the data can be standardized by dividing 
them either by Jzj^ or J l ^ . The resulting optimal 
regression estimator for the total y is given by: 

'OPT ^ H T * 
(X,-X,)'B,^y,^(x-x)'§^ OPT 

where the components of Y^^j. were defined in section 3.1. 
The.simpUfied form (without double sums) of the variance 
of yQpj. is: 

5^ 
V(?oPr) = E < ( l - / i . ) - ^ 

h = l MA 

g = l "2x 

^ ^ N^{l-UH{'-f2s)^k 

where the variances are defined by 

n. 2h 

'Ih 

^2hg 

" 1 / . - 1 

C "2gh G "2e/i 

Eli^4-i- Ei^ 
« = I i = I « 2 g " U = 1 Jk = I 1 2« 

"2Kg 

" 2 A « - 1 * = 1 
E (^U ^l(hg)) 

and 

S2r-J^i{'2k-\.f-
'2« i(: = l 

The means in these estimated variances are 

1 
' l ( h g ) E û. 

' '2/ ,g * = ' 
' 1 (hg) 

1 ^g 

— E 
"2/ .« * = 1 

and 

•^211 Jl ^2k-
" 2 , * = 1 

Here, Wj;, 's the number of units selected in sample 2̂ 
belonging to the intersection of strata [/̂  and s.. Also, the 
required residuals are ê ĵ ^ = g,j(yj-x,'^ii, Qp̂ ) and 

^2t = 2̂*(>'it "^t ^opp)- The adjustment factors g^^ and 
2̂̂  are as defined in section 4.1. 

The Survey of Employment, Payrolls and Hours: The 
objective of this survey is to obtain estimates of the number 
of paid employees, the average weekly payroll and other 
related variables using various combinations of industry and 
province. This survey was recently redesigned to use admi­
nistrative data for all businesses included in the survey 
universe. The survey produces estimates based on both the 
administrative data (ADMIN sample) and data directly 
obtained by a survey known as the Business Payroll Survey 
(BPS). 

The ADMIN sample s^ consists of some 200,000 units 
selected from universe t/, of the pay deduction accounts to 
obtain the administi-ative data. The sampling design for this 
sample is stratified Bernoulli (by region), and the sampling 
rate varies between 10% to 100% amongst the different 
strata (region). The size of the sample represents approxi­
mately 20% of the total number of pay deduction accounts. 
Only two variables represented as (x,j) are available from 
the administrative source: these are the number of paid 
employees and the gross monthly payroll. 

The BPS sample 2̂ consists of approximately 10,000 
establishments drawn from the Business Register t/j- The 
BPS collects the same two variables as the administrative 
source, namely, the number of paid employees and the 
gross monthly payroll denoted as {xf^), several other 
variables {x[^) of interest defined by type of employee 
(employees paid by the hour, salaried, active owners, other 
employees), and variables of interests, such as the number 
of paid hours and weekly earnings, (y^ ). More infor­
mation on the BPS is provided in Rancourt and Hidiroglou 
(1998). 

The BPS is stratified by industry type, geographic region 
and size (varying from two to three groups based on the 
number of employees). These strata were designed to take 
into account the different regression models between ŷ  
and xf\ The resulting estimated regression coefficients are 
used to predict y ^^ for each sampled administrative record. 
There are two steps involved in the estimation of the total 
for a given variable of interest. First, tiie sampling weights ŵ^ 
associated with the administrative data are calibrated using 
known regional population counts, N., for regions 
[/,., i = 1,..., /. The adjusted weight of a sample unit k 
belonging to region {/,,. is vv̂  = ŵ  g.., where g^.= 
Â ,./ E^ ŵ "̂  and J,, = 5, n U^.. Second, ŷ* is regressed on 
x^l^ using subsets 2̂ yj = 1. —. •̂ . of the 2̂ sample. The j j .̂ 
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subsets, classified by industry, region and sometimes size, 
are formed in advance to obtain die best possible regression 
fijs. For each subset S2 , the estimated regression vectors 
B. are obtained as: 

B 
•>2.J 

wfxfxf>/6^)-'E, (2) (2) (2), ^2 

n ^kyl i^k^ 

; = i J 
,(2) where ŵ  is the sampUng weight for each sampled 

estabUshment, and 6̂  are known positive factors diat 
conti-ol the impact of outUers or define the required estima­
tor. For example, if 0̂  is proportional to one of the compo­
nents of X t , we obtain die ratio estimator. The estimator of 
total for a variable y is therefore Y = E-,, E^ vv~̂  Xĵ ''̂  B., 
where 5, is a partition of J, corresponding'to die subsets 
defining 2̂ . SEPH is an example of a non-nested double 
sampUng sampUng design. More details of the SEPH 
redesign are available in Efidiroglou (1995) and EUdiroglou, 
E^touche, Armstrong and Gossen (1995). 

6. CONCLUSION 

Nested and non-nested double sampUng are usually 
treated separately in die Uterature. Given that the population 
total yis of interest, and that there is auxiUary information 
available, this paper has unified the estimation procedures 
for diese two sampUng methods using an optimal regression 
approach. Also, for the nested case, the procedure has been 
Unked to the GREG procedure proposed by EEidiroglou and 
Samdal (1998). For the non-nested case, the method used 
by Deville (1999) has been extended when there are also 
auxiUary data at the population level. E âstiy, practical 
examples were provided to illusti-ate this theory. 
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Estimation Using the Generalised Weight Share Method: 
The Case of Record Linkage 
PIERRE LAVALLEE and PIERRE CARON' 

ABSTRACT 

More and more, databases are combined using record linkage methods to increase the amount of available information. 
When there is no unique identifier to perform the matching, a probabilistic linkage is used. A record on the first file is linked 
to a record on the second file with a certain probability, and then a decision is made on whether this link is a true link or 
not. This process usually requires a certain amount of manual resolution that is costly in terms of time and employees. Also, 
this process often leads to a complex linkage. That is, the linkage between the two databases is not necessarily one-to-one, 
but can rather be many-to-one, one-to-many, or many-to-many. 
Two databases combined using record linkage can be seen as two populations linked together. We consider in this paper 
the problem of producing estimates for one of the populations (the target population) using a sample selected from the other 
one. We assume that the two populations have been linked together using probabilistic record linkage. To solve the 
estimation problem issued from a complex linkage between the population where the sample is selected and the target 
population, Lavallee (1995) suggested the use of the Generalised Weight Share Method (GWSM). This method is an 
extension of the Weight Share Method presented by Ernst (1989) in the context of longitudinal household surveys. 
The paper will first provide a brief overview of record linkage. Secondly, the GWSM will be described. Thirdly, the GWSM 
will be adapted to provide three different approaches that take into account linkage weights issued from record linkage. 
These approaches will be: (1) use all non-zero links with their respective linkage weights; (2) use all non-zero links above 
a given threshold; and (3) choose the links randomly using Bernoulli trials. For each of the approaches, an unbiased 
estimator of a total will be presented together with a variance formula. Finally, some simulation results that compare the 
three proposed approaches to the Classical Approach (where the GWSM is used based on links established through a 
decision rule) will be presented. 

KEY WORDS: Generalised weight share method; Record linkage; Estimation; Clusters. 

1. INTRODUCTION 

To augment the amount of available information, data 
from different sources are increasingly being combined. 
These databases are often combined using record linkage 
methods. When the files involved have a unique identifier 
that can be used, the linkage is done directly using the iden­
tifier as a matching key. When there is no unique identifier, 
a probabilistic linkage is used. In that case, a record on the 
first file is linked to a record on the second file with a 
certain probability, and then a decision is made on whether 
this link is a tme link or not. Note that this process usually 
requires a certain amount of manual resolution that is costly 
in terms of time and employees. 

We consider the production of an estimate of a total (or 
a mean) of one target clustered population when using a 
sample selected from another population linked to the first 
population. We assume that the two populations have been 
linked together using probabilistic record linkage. Note that 
this type of linkage often leads to a complex linkage 
between the two populations. That is, the linkage between 
the units of each of the two populations is not necessarily 
one-to-one, but can rather be many-to-one, one-to-many, or 
many-to-many. 

To solve the estimation problem caused by a complex 
linkage between the population where the sample is 
selected and the target population, E^vallee (1995) 
suggested the use of the Generalised Weight Share Method 
(GWSM). This method is an extension of the Weight Share 
Method presented by Ernst (1989). Although this last 
method has been developed in the context of longitudinal 
household surveys, it was shown that the Weight Share 
Method can be generalised to situations where a target 
population of clusters is sampled through the use of a frame 
which refers to a different population, but somehow linked 
to the first one. 

The problem that is considered in this paper is to 
estimate the total of a characteristic of a target population 
that is naturally divided into clusters. Assuming that the 
sample is obtained by the selection of units within clusters, 
if at least one unit of a cluster is selected, then the whole 
cluster is interviewed. This usually leads to cost reductions 
as well as the possibility of producing estimates on the 
characteristics of both the clusters and the units. 

En the present paper, we will try to answer the following 
questions: 

a) Can we use the GWSM to handle the estimation 
problem related to populations linked together 
through record linkage? 

Pierre L.avall£e and Pierre Caron, Statistics Canada, Business Survey Methods Division, Ottawa, Ontario, KIA 0T6, e-mail: plavall@statcan.ca and 
caropie @ statcan.ca. 
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b) Can we adapt the GWSM to take into account the 
linkage weights issued from record linkage? 

c) Can GWSM help in reducing the manual 
resolution required by record linkage? 

d) If there is more than one approach to use the 
GWSM, is there a "better" approach? 

It will be seen that the answer is clearly yes to (a) and 
(b). However, for question (c), it will be shown that there is 
a price to pay in terms of an increase to the sample size, and 
therefore to the collection costs. For question (d), although 
there is no definite answer, some approaches seem to 
generally be more appropriate. 

The paper will first provide a brief overview of record 
linkage. Secondly, the GWSM will be described. Thirdly, 
the GWSM will be adapted to provide three different 
approaches that take into account linkage weights issued 
from record linkage. These approaches will be: (1) use all 
non-zero links with their respective linkage weights; (2) use 
all non-zero links above a given threshold; and (3) choose 
the links randomly using Bernoulli trials. For each of the 
approaches, an unbiased estimator of a total will be 
presented together with a variance formula. Finally, some 
simulation results that compare the three proposed 
approaches to the Classical Approach (where the GWSM is 
used based on links established tiirough a decision rule) will 
be presented. 

2. RECORD LINKAGE 

The concepts of record linkage were introduced by 
Newcome, Kennedy, Axford and James (1959) and for­
malised in the mathematical model of Fellegi and Sunter 
(1969). As described by Bartlett, Krewski, Wang and 
Zielinski (1993), record linkage is the process of bringing 
together two or more separately recorded pieces of infor­
mation pertaining to the same unit (individual or business). 
Record linkage is sometimes also called exact matching, in 
contrast to statistical matching. This last process attempts to 
link files that have few units in common (see Budd and 
Radner 1969, Budd 1971, Okner 1972, and Singh, Mantel, 
Kinack and Rowe 1993). Witii statistical matching, linkages 
are based on similar characteristics rather than unique 
identifying information. In the present paper, we will 
restrict ourselves to the context of record linkage. However, 
the developed theory could also be used for statistical 
matching. 

Suppose that we have two files A and B containing 
characteristics relating to two populations U^ and U^, 
respectively. The two populations are somehow related to 
each other. They can represent, for example, exactly the 
same population, where each of the files contains a different 
set of characteristics of the units of that population. They 
can also represent different populations, but with some 
natural links between them. For example, one population 

can be one of parents, and the other population one of 
children belonging to the parents. Note that the children 
usually live in households that can be viewed as clusters. 
Another example is one of an agricultural survey where the 
first population is a list of farms as determined by the 
Canadian Census of Agriculture and the second population 
is a list of taxation records from the Canadian Customs and 
Revenue Agency (CCRA). In the first population, each 
farm is identified by a unique identifier called the FarmED 
and some additional variables such as the name and address 
of the operators that are collected through the Census 
questionnaire. The second population consists of taxation 
records of individuals who have declared some form of 
agricultural income. These individuals live in households. 
The unique identifier on those records is either a social 
insurance number or a corporation number depending on 
whether or not the business is incorporated. However, each 
income tax report submitted to CCRA contains similar 
variables (name and address of respondent, etc.) as those 
collected by the Census. 

The purpose of record linkage is to link the records of 
the two files A and B. If the records contain unique iden­
tifiers, then the matching process is trivial. For example, in 
the agriculture example, if both files would contain the 
FarmID, the matching process could be done using a simple 
matching procedure. EJnfortunately, often a unique identi­
fier is not available and then the linkage process needs to 
use some probabilistic approach to decide whether two 
records of the two files are Unked together or not. With this 
linkage process, the likelihood of a correct match is 
computed and, based on the magnitude of this likelihood, it 
is decided whether we have a link or not. 

Formally, we consider the product space A xB from the 
two files A and B. Lety indicate a record (or unit) from file 
A (or population U^) and k a record (or unit) from file B 
(or population {/"). For each pair {j,k) of Axfi, we 
compute a linkage weight reflecting the degree to which tiie 
pair {j, k) is lUcely to be a tme link. The higher the linkage 
weight is, the more likely the pair {j, k) is a tme link. The 
linkage weight is commonly based on the ratios of the 
conditional probabilities of having a match p and an 
unmatch p given the result of the outcome of the compa­
rison Ĉ ŷ  of the characteristic q of the recordsy from A and 
k from B, q = l, ...,Q. That is. 

%k log. 
l^(M,jC,.,C2,,...Cg.,)| 

[P%k\CljkC2ik-CQjk)\ 

= ^lik-^2ik---^Qik-%k (2.1) 

where 0 
ktc^^jM;.)! 

'"^'"M^CiC^r"'" '""'' 
^.jk = 10g2 

[p^^lk) 
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The mathematical model proposed by Fellegi and Sunter 
(1969) takes into account the probabilities of an ertor in the 
linkage of units 7 from A and k from B. The linkage weight 
is then defined as 

e 
ef/ = E e" "Jk qjk 

where 

e.FS log2 if characteristic q of pair {jk) agrees 

log2 ((1 -Tl^t)/(1 -TTO.J) otherwise ^qjk' 

with FS q_ agrees | p . J and 
I .̂  . V-"""—"-"-1 " 6 ' — IM;^)- Note that the defini­

tion of Qj^ assumes that the Q comparisons are inde-

^qjk ~ ̂ (characteristic 
P (characteristic q agrees 

pendent. 
The linkage weights given by (2.1) are defined on R, the 

set of real numbers, i.e., 0.^ e ] -=», +«>[. When the ratio of 
the conditional probabilities of having a match p and an 
unmatch p is equal to 1, we get 0 .̂  = 0. When this ratio is 
close to 0, 6 .̂  tends to - °°. It might then be more conve­
nient to define the linkage weights on [ 0, + «> [. This can be 
achieved by taking the antilogarithm of 9 .^. We then obtain 
the following linkage weight 0 .̂ :̂ 

9..= 
P(\^jk\(^ljk(^2jk-CQjk) 

Pii^jk\c,jkC2jk-CQjk)' 
(2.2) 

Note that the linkage weight 6.̂  is equal to 0 when the 
conditional probabilities of having a match p is equal to 0. 
In other words, we have 9 ^ = 0 when the probability of 
having a tme link for {j, ik) is nul. 

Once a linkage weight 9.̂ ^ has been computed for each 
pair {j, k) of A xB, we need to decide whether the linkage 
weight is sufficiently large to consider the pair {j, k) a link. 
This is typically done using a decision rale. With the 
approach of Fellegi and Sunter, we use an upper threshold 
9^j. and a lower threshold 9^^^ to which each linkage 
weight 9.;̂  is compared. The decision is made as follows: 

D{j,k)=-

link 

can be a link 

nonlink 

ife,*^eHigh 
if 9, Low ^jk <QHigh (2.3) 

i f V ^ L o w 

The lower and upper thresholds 9^^^ and 9̂ .̂ ^ are 
determined by a priori error bounds based on false links 
and false nonlinks. When applying decision rale (2.3), some 
clerical decisions are needed for those linkage weights 
falling between the lower and upper thresholds. This is 
generally done by looking at the data, and also by using 
auxiliary information. In the agriculture example, variables 
such as date of birth, street address and postal code, which 
are available on both sources of data, can be used for this 
purpose. By being automated and also by working on a 
probabilistic basis, some errors can be introduced in the 
record linkage process. This has been discussed in several 

papers, namely Bartlett et al. (1993), Belin (1993) and 
Winkler (1995). 

The application of decision mle (2.3) leads to the 
definition of an indicator variable I.. = 1 if the pair {j, k) is 
considered to be a link, and 0 otherwise. As for the 
decisions that need to be taken for those linkage weights 
falling between the lower and upper thresholds, some 
manual intervention may be needed to decide on the validity 
of the links. In the case where the files A and B represent 
the same population (with a different set of characteristics), 
it is lUcely that for each unit; from file A, there will be only 
one unit linked in file B. That is, the units should be linked 
on a one-to-one basis. Note that decision mle (2.3) does not 
prevent the existence of many-to-one, one-to-many, or 
many-to-many links. As mentioned before, because of the 
probabilistic aspect of the record linkage process, which 
might introduce some errors, there could be more than one 
link per unit. In practice, this problem is usually solved by 
some manual intervention. In the agriculture example, it can 
occur that multiple operators of a farm each submit a tax 
report to CCRA for the same farm (one-to-many). Simi­
larly, an operator who rans more than one farm could sub­
mit only one income tax report for his operations (many-to-
one). Finally, one can imagine a scenario of many-to-many 
links when an operator rans more than one farm, where 
each farm has a number of different operators. These 
situations can be represented by Figure 1. In Figure 1, unit 
7=1 of U^ has a one-to-one link to unit k=l of U^; unity=2 
forms to a one-to-many link to units k=2 and k=4; and units 
j=2 and 7=3 together form a many-to-one link to unit k=4. 
For the agriculture example, it is clear that deciding on the 
validity of the links is more difficult than the case of the 
same population since the former allows the possibility of 
having trae many-to-one or one-to-many situations. 

U^ 

j Ijk 

® ' 
©^cr" 
( 3 } 

(^)~~~~~~~-~^. 

u' 
k 

rrj 
F2I 

3̂ 
TTj 

3̂ 
3̂ 

^3 
Figure 1. Example of links 
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3. THE GENERALISED WEIGHT SHARE 
METHOD 

The GWSM is described in Lavallee (1995). It is an 
extension of the Weight Share Method described by Ernst 
(1989) but in the context of longitudinal household surveys. 
Various implications of using the Weight Share Method for 
longitudinal household surveys have been described by 
Gailly and Lavallee (1993). The GWSM can be viewed as 
a generalisation of Network Sampling and also of Adaptive 
Cluster Sampling. These two sampling methods are 
described in Thompson (1992), and Thompson and Seber 
(1996). 

Suppose that a sample s'^ of m^ units is selected from 
the population U^ of M^ units using some sampling 
design. Ext Uj be the selection probability of unity. We 
assume Uj > 0 for all jeU^. 

Let the population [/* contain M* units. This popu­
lation is divided into N clusters where cluster / contains 

D 

Mj units. For example, in the context of social surveys, the 
clusters can be households and the units can be the persons 
within the households. For business surveys, the clusters 
can be enterprises and the units can be the establishments 
within the enterprises. For the agriculture example, the 
clusters can be households, and the units, persons within the 
household who file an income tax report to CCRA. 

We suppose that there exists a link between the unitsy of 
population U^ andtheunits^of clusters/of the population 
U^. This link is identified by an indicator variable /. .̂ , 
where Ij ,.̂  = 1 if there exists a link between unit je U^ and 
unit ikeU^, and 0 otherwise. Note that there might be 
some units y of population U^ for which there is no link 
with any unit^^ of a cluster / of population U^, i.e., 
^ / = Zr=i & Ij.ik = 0 for all ye U^. Also, there can be 
zero, one or more links for any unit ^ of a cluster / of popu­
lation U", i.e., L-i^ = y-'I Ij ik = 0. i^ik = 1 or L.̂  > 1 for any 
keU^. 

With the GWSM, we have the following constraint: 
Each cluster / of U^ must have at least one link 
with a unity of U\ i.e., L. = X^ ' £^i /.,., > 0. 

This constraint is essential for the GWSM to produce 
unbiased estimates. We will see in section 4 that in the 
context of record linkage, this constraint might not be 
satisfied. 

For each unity selected in s^, we identify the units ik of U^ 
that have a non-zero link with y, i.e., /. .̂̂̂  = 1. For each 
identified unit ik, we suppose that we can establish the list 
of the M^ units of cluster / containing this unit. Then, each 
cluster (• represents by itself a population Uf where 
U" = Uf,, Uf. Let Q.^ be the set of the n clusters identified 
by the units jes'^. 

From population j7*, we are interested in estimating the 
total l'^ = Ei=i Ejk='i )',* for some characteristic y. An 
important constraint that is imposed in the measurement (or 
interviewing) process of y is to consider all units within the 

same cluster. That is, if a unit is selected in the sample, then 
every unit of the cluster containing the selected unit is inter­
viewed. This constraint is one that often arises in surveys 
for two reasons: cost reductions and the need for producing 
estimates on clusters. As an example, for social surveys, 
there is normally a small marginal cost for interviewing all 
persons within the household. On the other hand, household 
estimates are often of interest with respect to poverty 
measures, for example. For the agriculture example, one 
value of interest is the total farm revenue per household. In 
that case, we need to interview all persons within the house­
hold. 

By using the GWSM, we want to assign an estimation 
weight w-i^ to each unit k of an interviewed cluster /. To 
estimate the total Y^ belonging to population U^, one can 
then use the estimator 

M; 

1=1 i=l 
^vk3',i (3.1) 

where n is the number of interviewed clusters and w.,^ is the 
weight attached to unit k of cluster i. With the GWSM, the 
estimation process uses the sample s'^ together with the 
links existing between U^ and U^ to estimate the total Y^. 
The Unks are in fact used as a bridge to go from population U^ 
to population U^, and vice versa. 

The GWSM allocates to each interviewed unit ik a final 
weight established from an average of weights calculated 
within each cluster i entering into Y. An initial weight that 
corresponds to the inverse of the selection probability is 
first obtained for all units k of cluster i of Y having a 
non-zero link with a unit jes'^. An initial weight of zero is 
assigned to units not having a link. The final weight is 
obtained by calculating the ratio of the sum of the initial 
weights for the cluster over the total number of links for 
that cluster. This final weight is finally assigned to all units 
within the cluster. Note that the fact of allocating the same 
estimation weight to all units has the considerable advan­
tage of ensuring consistency of estimates for units and 
clusters. 

Formally, each unit k of cluster i entering into Y is 
assigned an initial weight w.̂  as follows: 

w ik ~ 2 ^ '•j.ik 
7 = ' 

(3.2) 

where t. = 1 if y'e '̂̂  and 0 otherwise. Note that a unit ik 
having no link with any unity of U^ has automatically an 
initial weight of zero. The final weight w. is given by 

M; 

E-,.; 
w. 

t=l 

E^. 
k=l 

(3.3) 
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where ,̂-;t = Zi=i'• ,*• ^^^ quantity L.^^ represents the 
number of links between the units of U^ and the unit k of 
cluster/ of U^. The quantity L. = ^^J, L.̂  then corresponds 
to the total number of links present in cluster /. Finally, we 
assign w.̂  = w. for aU keU^ and use equation (3.1) to 
estimate the total Y^. 

Using this last expression, it was shown in Lavallee 
(1995) that the GWSM is design unbiased. Further, let 
Zii^ = Y.IL. for all k e /, where Y. = £^ J, y.^^. Then, Y can be 
expressed as 

^ = E^EE^,.^. = E^Z. (3.4) 
; = 1 Jtj , = 1 *=1 7 = ' 71. 

and the variance of Y is given by 

Var(y) YY 
7 = 1 / = 1 

, A A A^ 

A A 
Z.Z.. (3.5) 

where 7t •. is the joint probability of selecting units y and y'. 
See Samdal, Swensson and Wretman (1992) for the 
calculation of Ttjy under various sampling designs. The 
variance Var(y) may be unbiasedly estimated from the 
following equation: 

EE%4^' .Z ,r . ,Z , . (3.6) Var(y) 
. , ., , A A A 

Another unbiased estimator of the variance Var(y) may 
be developed in the form of Yates and Grandy (1953). 

In presenting the Weight Share Method in the context of 
longitudinal surveys, Ernst (1989) proposed the use of 
constants a in the definition of the estimation weights. In 
the general context of the GWSM, the use of the same type 
of constants can be proposed. Ext us define a. .̂  t 0 for all 
pairs (y, ik), with â . = Y!JL\ E^Ji a ,̂  = 1- We can then 
obtain new estimation weights as follows. For each unit k of 
cluster / entering into Y, assign the following initial weight 

(3.7) 

lie 

The final 

a 

w,. 

< 

weight 

< 

= E 
il: = l 

= E 

w ° is ] 

K -

given by 

E E \ik 
* = I ; = 1 

A ' 
71, 

(3.8) 

Finally, we assign w,." = w ° for all k e U- and use 
equation (3.1) to estimate the total Y^. 

En the context of longitudinal surveys, Ernst (1989) noted 
that the most common choice for the constants a is the one 
where each individual receives one of two values: 0, or a 
non-zero value that is equal for all the remaining units 
within the cluster. En the present context, this would mean 

QD O 

to let a. .̂  = 0 for all y and kin a subset i/, of L/,, say, 
and a. .̂  = constant for ally and k in the complement subset 
uf . Back to the context of longitudinal surveys, Kalton 
and Brick (1995) looked at the determination of optimal 
values for the a of Ernst (1989) where the optimality is 
measured in terms of minimal variance. They concluded 
that: "in the two-household case, the equal household 
weighting scheme minimises the variance of the household 
weights around the inverse selection probability weight 
when the initial sample is an equal epsem (equal probabi­
lity) one." They also added that "in the case of an approxi­
mately epsem sample, the equal household weighting 
scheme should be close to the optimal, at least for the case 
where the members of the household at time t come from 
one or two households at the initial wave." This suggests 
that, for the GWSM, the choice of letting the constants a 
being 0 for some units and a positive value that is equal for 
all the remaining units within the cluster should be close to 
the optimal. 

4. THE GWSM AND RECORD LINKAGE 

With record linkage, the links /. .̂  are established 
between files A and B, or population U^ and population 
U^, using a probabilistic process. As mentioned before, 
record linkage uses a decision mle D such as (2.3) to decide 
whether there is a link or not between unity from file A and 
unit ik from file B. Once the links are established, we then 
have the two populations U^ and U^ linked together, with 
the links identified by the indicator variable /. .j^. Note that 
the decision rale (2.3) does not prevent the existence of 
complex links (many-to-one, one-to-many, or many-to-
many). 

Although the links can be complex, the GWSM can be 
used to estimate the total Y^ from population U^ using a 
sample s'^ obtained from population U^. Therefore, the 
answer is yes to question (a) stated in the introduction. Note 
that the estimates produced by the application of the 
GWSM might however not be unbiased if the constraint 
mentioned in section 3 is not satisfied. In that case, the use 
of the estimation weight (3.3) underestimates the total Y^. 
To solve this problem, one practical solution is to collapse 
two clusters in order to get at least one non-zero link /. ^̂  
for cluster /. This solution usually requires some manual 
intervention. Another solution is to impute a link by 
choosing one link at random within the cluster, or to choose 
the link with the largest linkage weight 9. ,.̂ . Note that it 
might also happen that for a unity of f/'̂ , there is no non­
zero link /. .̂  with any unit ik of U^. This is however not a 
problem since the only coverage in which we are interested 
is the one of U^. 

It is now clear that the GWSM can be used in the context 
of record linkage. The GWSM with the populations U^ and 
U^ linked together using record linkage with the decision 
rale (2.3) will be referred to as the Classical Approach. 
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Now, with the Classical Approach, the use of the 
GWSM is based on links identified by the indicator variable 
/. .̂ . Is it necessary to establish whether there is positively 
a link for each pair (y, ik), or not? Would it be easier to 
simply use the linkage weights 9. .̂  (without using any 
decision rule) to estimate the total Y^ from U^ using a 
sample from f/'* ? These questions lead to question (b) on 
whether or not it is possible to adapt the GWSM to take into 
account the linkage weights 9 issued from record linkage. 

In the present section, we will see that the answer to 
question (b) is yes by providing three approaches where the 
GWSM uses the linkage weights 9. The first approach is to 
use all the non-zero links identified through the record 
linkage process, together with their respective linkage 
weights 9. The second approach is the one where we use all 
the non-zero links with linkage weights above a given 
threshold 9^,^.. The third approach is one where the links 
are randomly chosen with probabilities proportional to the 
linkage weights 9. 

4.1 Approach 1: Using all Non-Zero Links With 
Their Respective Linkage Weights 

When using all non-zero links with the GWSM, one 
might want to give more importance to links that have large 
linkage weights 9, compared to those that have small 
linkage weights. By definition, for each pair (y, ik) of 
AxB, the linkage weight 9. ,.̂  reflects the degree to which 
the pair (y, ik) is lUcely to be a trae link. We then no longer 
use the indicator variable /. .̂̂  identifying whether there is 
a link or not between unity from U^ and unit k of cluster / 
from (/*. Instead, we use the linkage weight 9. .̂  obtained 
in the first steps of the record linkage process. (This 
assumes that the file with the linkage weights is available. 
In practice, the only available file is often the linked file 
obtained at the end of the linkage process, once some 
manual resolution has been performed. In this case, the 
linkage weights are no longer available and the three 
proposed approaches to be used with the GWSM are im­
material to reduce the problem of manual resolution). Note 
that by doing so, we do not need any decision to be taken to 
establish whether there is a link or not between two units. 

For each unity selected in s^, we identify the units ik of (/* 
that have a non-zero linkage weight with unity, i.e., 9. •i^>0. 
Let Q"^* be the set of the n^^ clusters identified by the 
units jes^, where "RL" stands for "Record Linkage". Note 
that because we use all non-zero linkage weights, we have 
n^^i^n. We now obtain the initial weight w,̂  by directly 
replacing the indicator variable / in equations (3.2) and 
(3.3) by the linkage weight 9. 

w.. 
• RL 

M' 

^ h'^.-
y=i 

(4.1) 

RL 
The final weight w, is given by 

W; 

^ik 
RL t=l 

RL 

E©. 
k=l 

(4.2) 

.M' where 0,.̂  = ^ '̂̂ , 9. .j^. Finally, we assign w]^ = wf^ for 
all ke uf. Note that by being present both at the numerator 
and denominator of equation (4.2), the linkage weights 9. .^^ 
do not need to be between 0 and 1. They just need to 
represent the relative likelihood of having a link between 
two units from populations U^ and [/*. It is also inter­
esting to note that by letting a.,. = 9... / 0 . where 0. = 

»/A r^fvi' RI 

Zj=i Lk'=i ^j ik' ^^ obtain, for the estimation weight w,. , 
an equivalent formulation to the one given by (3.7) and 
(3.8). 

With the Classical Approach, we stated the constraint 
that each cluster iof U^ must have at least one link with a 
unity of U^, i.e., L. = Y!^\ Z/t='i'; ,* > 0- This constraint is 
translated here into die need of having for each cluster / of U^ 
at least one non-zero Unkage weight 9. .. with a unity of 

U^, i.e., 9,. = Xj^Xit='iQy,,t>0. In theory, the record 
linkage process does not insure that this constraint is 
satisfied. It might then turn out that for a cluster / of U^, 
there is no non-zero Unkage weight 9. ̂ .̂  witii any unity of U^. 
In that case, the use of the estimation weight (4.2) 
underestimates the total Y^. To solve this problem, the 
same solutions proposed in the context of the indicator 
variables /. .̂  can be used. That is, a solution is to collapse 
two clusters in order to get at least one non-zero linkage 
weight 9. -1^. Unfortunately, this solution might require 
some manual intervention, which has been avoided up to 
now by not using the decision rale (2.3). A better solution 
is to impute a link by choosing one link at random within 
the cluster, and then assign arbitrarily a small value for 9. .̂  
to the chosen link (for example, the smallest calculated 
non-zero linkage weight). 

To estimate the total K* belonging to population U^, 
one can use the estimator 

-RL M: 

v>RL V ^ V ^ RL 

Y =1^1^ ^ik yik-
(4.3) 

1=1 *=i 

Following the same steps used to obtain equation (3.4), 
one can write Y as 

)RL = E-iEE9;,.^,f 
;=i Tt. 1 = 1 i = l 

^ , A I 

RL 
(4.4) 

RL M: ztk-Y.I®. for aU keU", and ©, = 1^:,©,, where 

Xt='i 9. .̂ . Using tills last expression, it can be shown diat Y 
is design unbiased for Y^. The variance of Y is given by 



Survey Methodology, December 2001 161 

Vard̂ -̂ -O = E E 
; = 1 / = 1 

{njy 
A A. 

^j ^J') ^ R L y R L 

A A j j ' 
n. Kj. 

(4.5) 

4.2 Approach 2: Use all Non-Zero Links Above a 
given Threshold 

Using all non-zero links with the GWSM as in Approach 
1 might require the manipulation of large files of size 
M^ X M^. This is because it might turn out that most of the 
records between files A and B have non-zero linkage 
weights 9. In practice, even if this happens, we can expect 
that most of these linkage weights will be relatively small 
or negligible to the extent that, although non-zero, the links 
are very unlikely to be trae links. In that case, it might be 
useful to only consider the links with a linkage weight 9 
above a given threshold 9j^j.. 

For this second approach, we again no longer use the 
indicator variable I ^̂  identifying whether there is a link or 
not, but instead, we use the linkage weight 9. ,.ĵ  that are 
above the threshold 9^;,,. The linkage weights below the 
threshold are considered as zeros. We therefore define the 
linkage weight: 

9 j.ik 

9,.., if 9,,, ^ 9 'j.ik j.ik •'High 

0 Otherwise. 

For each unity selected in s'^, we identify tiie units ik of U^ 
that have 9j,^>0. Let Q.^^'^'^ be the set of the n^'^ 
clusters identified by the units jes^, where "RLT" stands 
for "Record Linkage with Threshold". Note that 
^ RLT ^ ^ RL Q „ ji^g Qji^gj. i^gjjjj ^ g j^^yg ^ RLT ^ ^ jf jj^g 

record linkage between U^ and U^ is done by using the 
decision rale (2.3) with 9High = 9LÔ ,̂. 

The initial weight w^ij^^ is given by 

M' 

^ik - 2^ ^i.ik~-

RLT 
The final weight w- is given by 

(4.6) 

M 

W: 
RL 

E 'l 
"^ik 

RLT 

k = l 

M° 
(4.7) 

E©f. 
*=i 

where 0,^ = 2.,j,i 9̂  ,̂ . Finally, we assign w,̂  = w, for 
all keUi . As for Approach 1, it is interesting to note that 
by letting a.,.̂  = 9j,.,/©f'^ where ©f'" = Y.% Z*='i ̂ lik' we 
obtain, for the estimation weight wf-^^, an equivalent 
formulation to the one given by (3.7) and (3.8). 

The number of zero linkage weights 9^ will be greater 
than or equal to the number of zero linkage weights 9 used 
by Approach 1. Therefore, the constraint that each cluster 
/ of (/* must have at least one non-zero linkage weight 9 ,̂  

with a unity of U^ might be more difficult to satisfy. In that 
case, the use of the estimation weight (4.7) underestimate 
the total Y^. To solve this problem, the same solutions 
proposed before can be used. 

To estimate the total K*, one can use the same estimator 
as (4.3), where we replace the number of identified clusters 
n^^by n^^^, and the estimation weight w^ by wj^. As 
for estimator (4.3), it can be shown that this estimator Y 
is design unbiased. 

4.3 Approach 3: Choose the Links by Random 
Selection 

In order to avoid making a decision on whether there is 
a link or not between unity from (y* and unit k of cluster / 
from {/*, one can decide to simply choose the links at 
random from the set of non-zero links. For this, it is reason­
able to choose the links with probabilities proportional to 
the linkage weights 9. This can be achieved by Bernoulli 
trials where, for each pair (y, ik), we decide on accepting a 
link or not by generating a random number M . ^̂  ~ f/(0,l) 
that is compared to a quantity proportional to the linkage 
weight 9.,.,. 

In the point of view of record linkage, this approach 
cannot be considered as optimal. When using the decision 
rule (2.3) of Fellegi and Sunter, the idea is to try to 
minimise the number false links and false nonlinks. The 
link /. -1^ is accepted only if the linkage weight 9. .̂  is large 
enough {i.e., 9. ̂ .̂  ^ 9̂ .̂ ̂ ), or if it is moderately large {i.e., 
®Loŵ ®;* ^^High) ^"" ^^^ ''®^" accepted after manual 
resolution. Selecting the links randomly using Bernoulli 
trials might lead to the selection of links that would have 
not been accepted through the decision rale (2.3), even 
though the selection probabilities are proportional to the 
linkage weights. Some of the resulting links between the 
two populations U'^ and U^ might then be false ones, and 
some units that are not linked might be false nonlinks. The 
linkage errors are therefore likely to be higher than if the 
decision rale (2.3) would be used. However, in the present 
context, the quality of the linkage is of secondary interest. 
The present problem is to try to estimate the total Y^ using 
the sample 5'* selected from U'^, and not to evaluate the 
quality of the links. The precision of the estimates of Y^ 
will in fact be measured only in terms of the sampling 
variability of the estimators, by conditioning on the linkage 
weights 9. .j^. Note that this sampling variability will take 
into account the random selection of the links, but not the 
linkage errors. 

The first step before performing the Bernoulli trials is to 
transform the linkage weights in order to restrict them to the 
[0,1] interval. By looking at (2.1), it can be seen that the 
linkage weights 9. .̂  correspond in fact to a logit transfor­
mation (in base 2) of the probability 
P{\ijl,\C^J|^C2J;^ -CQJI^). Similariy, the linkage weights 
given by (2.2) depend only on this probability. Hence, one 
way to transform the linkage weights is simply to use the 
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probability P(p̂ .̂  | Cĵ .̂ Cĵ .̂  ... Cg^.J. From (2.1), we obtain 
this result by using the function 9 = 2''/(l + 2®). From (2.2), 
we use 9 =9/(1 +9). When the linkage weights are not 
obtained through (2.1) nor (2.2), a possible transformation 
is to divide each linkage weight by the maximum possible 

1 /̂  M^.N.M? ,̂  XT , 

value 9^^ = max^,, ;,, j ^ , 9. _.j. Note that we assume that 
the linkages weights are all greater than or equal to zero, 
which is the case with definition (2.2), but not necessarily 
in general. 

Once the adjusted linkage weights S.̂ .̂  have been 
obtained, for each pair (y, ik), we generate a random 
number u. .̂  ~ U{0,1). Then, we set the indicator variable 
Ĥig '^ ^ 'f '*jik^^jik' ^^^ ^ otherwise. This process 

provides a set of links similar to the ones used in the 
Classical Approach, with the exception that now the links 
have been determined randomly instead of through a 
decision process comparable to (2.3). Note that since 
E {I. -1^) = 9. -1^, the sum of the adjusted linkage weights 9. .̂  
corresponds to the expected total number of links L from 
the Bernoulli process in, A xB, i.e.. 

7=1 1=1 *=I 

(4.8) 

For each unity selected in s^, we identify the units/fc of U^ 
that have /. ,jt = 1. Ext Q^ be the set of the h clusters 
identified by the units jes^. Note that n<.n^^. Unfortu­
nately, in contrast to n "^ and n ^^^, the random number of 
clusters n is hardly comparable to n. 

The initial weight w'.i^ is defined as follows: 

f-j:^Ej:h,.kZ,k-E^z,- (4.9) 
; = I nj ' = 1 *=i >=1 7C, 

The final weight ŵ.̂  is given by 

E ^1* 
W., 

k=l (4.10) 
M. 

E4 
it=i 

.M" where L,.̂  = Z7=i ';,*• The quantity L.,^ represents the 
realised number of links between the units of U^ and the 
unit k of cluster / of population U^. Finally, we assign 
w-i^ = w. for all keU- . 

To estimate the total Y^, we can use the estimator 

M" 

Y-ET ^ik y, 
=1 j t=i 

ik ^ik • 
(4.11) 

By conditioning on the accepted links /, it can be shown 
that estimator (4.11) is conditionally design unbiased and 
hence, unconditionally design unbiased. Note that by 
conditioning on /, the estimator (4.11) is then equivalent to 

(3.1). To get the variance of Y, again conditional argu­
ments need to be used. Exiting the subscript 1 indicate that 
the expectation is taken over all possible sets of links, we 
have 

Var( Y) = Ej Var2 ( Y) + Var, £2( >')• 

First, from conditional unbiasedness, we have 

E2{Y) = Y^. 

Therefore, 

Var, E2{h = 0. 

Second, from (3.5), we directly have 

Var2(P) = E E 
7 = 1 ;-=I 

{T^jy 
A A. 

A A 
n. 71., 

Z.Z.. 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

where Z. is defined as in (3.4) but with the links I replaced 
by /. Hence, the variance of Y can be expressed as 

V a r 2 ( y ) EE 
7 = 1 7'=1 

{•^jy 
A A. 

71̂ . T i p 

A A 
71. 7Ĉ .. 

Z.Z.. (4.16) 

where the expectation is taken over all possible sets of 
links. 

With the GWSM, we stated in section 3 a constraint that 
must be satisfied for unbiasedness of the GWSM. In the 
present approach, by randomly selecting the links, it is very 
likely that this constraint will not be satisfied. To solve this 
problem, we can impute a link by choosing the one with the 
highest non-zero linkage weight 9. ̂ .̂  within the cluster. If 
there is still no link because all 9. ̂ ^ = 0, it is possible to 
choose one link at random within the cluster. It should be 
noted that this solution preserves the design unbiasedness 
of the GWSM. 

4.4 Some Remarks 

The three proposed approaches do not use the decision 
rale (2.3). They also not make use of any manual resolution. 
Hence, the answer to the question (c) of the introduction is 
yes. That is, GWSM can help in reducing the manual 
resolution required by record linkage. Note that there is 
however a price to pay for avoiding manual resolution. 

First, with Approach 1, the number n"^ of clusters 
identified by the units jes^ is greater than or equal to the 
number n of clusters identified by the Classical Approach, 
i.e., when the decision rale (2.3) is used to identify the 
links. This is because we use all non-zero links, and not just 
the ones satisfying the decision rule (2.3). As a conse­
quence, the collection costs with Approach 1 will be greater 
than or equal to the ones related to the use of the Classical 
Approach. It needs then to be checked which ones are the 
most important: the collections costs or the costs of manual 
resolution. Note that if the precision resulting from the use 
of Approach 1 is much higher than one from the Classical 
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Approach, it might be more of interest to use the former 
than the latter. 

With Approach 2, we have n "^^ ^ «"^ and therefore the 
collection costs of this approach are less than or equal to the 
ones of Approach 1. If the precision of Approach 2 is 
comparable to the one of Approach 1, then the former will 
certainly be more advantageous than the latter. By 
comparing Approach 2 with the Classical Approach, it can 
be seen that the collection costs can be almost equivalent if 
the value of the threshold 9j^.,, is chosen to be close to the 
lower and upper thresholds or the decision rale (2.3). Note 
that Approach 2 is not using any manual resolution. If the 
precision of Approach 2 is at least comparable to the one of 
the Classical Approach, then Approach 2 will have a clear 
advantage. Note also that if Q^^^. = 9j^^, the two approach 
differs only in the definition of the estimation weights 
obtained by the GWSM. Approach 2 uses the linkage 
weights 9, while the Classical Approach uses the indicator 
variables /. After setting 9^,. = 9̂ ,̂,̂ ,, it is certainly of 
interest to verify which approacti has the highest precision. 

With Approach 3, the number of selected links will be 
less than or equal to the number of non-zero links used by 
Approach I, i.e., n ^ n^^. Hence, the collection costs of 
Approach 3 will be less than or equal to the ones of 
Approach 1. In terms of precision, it is not clear which 
variance is likely to be the smallest between to two 
approaches. As mentioned before, in opposite to n ^^ and 
n "^^ the random number of clusters n is hardly compa­
rable to n. The two depends on different parameters: The 
Classical Approach depends on the thresholds 9,^^ and 
^High' while Approach 3 depends on the adjusted linkage 
weights 9. .̂  that correspond to the selection probabilities 
of the links. 

5. SIMULATION STUDY 

A simulation study was performed to evaluate the 
proposed approaches against the Classical Approach where 
the decision rale (2.3) is used to determine the links. This 
study was made by comparing the precision obtained for the 
estimation of a total Y^ using five different approaches: 

Approach 1: use aU non-zero links with their 
respective linkage weights 

Approach 2: use all non-zero links above a threshold 

Approach 3: choose the links randomly using 
Bernoulli trials 

Approach 4: Classical Approach 

Approach 5: use all non-zero links, but with the 
indicator variable / 

Approach 5 is a mixture of Approach 1 and the Classical 
Approach. It is basically to first accept as links all pairs 
(y, ik) with a non-zero linkage weights, i.e., assign / ,̂  = 1 
for all pairs (y, ik) where 9. ̂ ^ > 0, and 0 otherwise. The 
GWSM described in section 3 is then used to produce the 

estimate of Y^. Approach 5 was added to the simulations to 
see the effect of using the indicator variable / instead of the 
linkage weight 9 when using all non-zero links. As for the 
other approaches. Approach 5 can be shown to be unbiased. 

Given that all five approaches yield design unbiased 
estimates of the total Y^, the quantity of interest for 
comparing the various approaches was the standard error of 
the estimate, or simply the coefficient of variation {i.e., the 
ratio of the square root of the variance to the expected 
value). 

The simulation study was performed based on the 
agriculture example mentioned throughout the paper. This 
example corresponds in fact to a real situation occurring at 
Statistics Canada related to the constmction of the Whole 
Farm Data Base (see Statistics Canada 2000). Note that 
altiiough tiie simulation sttidy was based on a real situation, 
some of the numbers used have been changed for 
confidentiality reasons. Also, the linkage process did not 
reflect the exact procedure used within Statistics Canada. 
For more information on the exact procedure, see Lim 
(2000). It was felt that these changes do not negate the 
results of the simulation study. The main purpose of the 
simulations was to evaluate the proposed approaches 
against the Classical Approach. It was not intended to solve 
the problems related to the constmction of the Whole Farm 
Data Base, which could be considered as a secondary goal. 

Recall that the agriculture example is one of an 
agricultural survey where the first population U^ is a list of 
farms as determined by the Canadian Census of 
Agriculture. This list is from the 1996 Farm Register, which 
is essentially a list of all records collected during the 1991 
Census of Agriculture with all the updates that have 
occurred since 1991. It contains a farm operator identifier 
together with some socio-demographic variables related to 
the farm operators. The second population (/* is a list of 
taxation records from the CCRA. This second list is the 
1996 Unincorporated CCRA Tax File that contains data on 
tax filers declaring at least one farming income. It contains 
a household identifier (only on a sample basis), a tax filer 
identifier, and also socio-demographic variables related to 
the tax filers. 

At Statistics Canada, Agriculture Division produces 
estimates on crops and livestocks using samples selected 
from the Farm Register (population {/'̂ ). To create the 
Whole Farm Data Base, it is of interest to collect tax data 
for the farms that have been selected in the samples from 
the Farm Register. This is done by first merging the Farm 
Register with the Unincorporated CCRA Tax File 
(population U^) and then obtaining the tax data from 
CCRA. As mentioned before, it turns out that the 
relationship between the farm operators of the Farm 
Register and the tax filers from the Unincorporated CCRA 
Tax File is not one-to-one. This is why the GWSM tiims out 
to be a useful approach for producing estimation weights 
for the tax filers selected through the sample of farm 
operators from the Farm Register. 
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Some might argue that there is no need to obtain a set of 
clusters identified by the units jes^, since the target 
population U^ is one of tax filers from the Unincorporated 
CCRA Tax File, which is usually available on a census 
basis. Note however that this is not totally trae. Not all 
variables of interest are available on this file and Statistics 
Canada needs to pay for the extra variables requested from 
CCRA. Also, tiie data from the Unincorporated CCRA Tax 
File are not free of errors due to keying, coding, etc., and 
therefore there are some costs related to cleaning up the 
data. For these reasons, it is found preferable to restrict the 
data from the target population f/* to a subset only. Since 
this needs to be done, one way of identifying the set of 
clusters to be used in the estimate of Y^ is simply to do it 
through the sample s^ selected from U^. 

Apart from the Classical Approach, all approaches 
consider the linkage itself between U^ and U^ as a 
secondary goal, the first one being to produce an estimate Y^ 
for the target population (/*. However, the application 
mentioned here is one related to the Whole Farm Data Base, 
which aims to be an integrated data base. Not having a 
linkage of good quality between the populations U^ and 
[/* would lead to erroneous microdata analyses between 
the crops and livestocks variables measured in the sample s^ 
and the tax data obtained from U^. On this aspect, the 
authors agree that the proposed approaches, with the 
exception of the Classical Approach, are not viable in the 
present context. This is trae however in a long term point of 
view. Because manual resolution is needed when using a 
decision mle such as (2.3), one could suggest to use the 
proposed approaches to produce some of the required esti­
mates from U^ in the short term, before the final linkage is 
available, after manual resolution. Recall that the main 
purpose of the simulations is to evaluate the proposed 
approaches against the Classical Approach. The agriculture 
example has not been chosen because it corresponds to a 
real situation, but more because of the availability of the 
data. It could have been any other example such as the other 
one mentioned in the introduction where U^ is a population 
of parents and U^ a population of children belonging to the 
parents. 

For the purpose of the simulations, two provinces of 
Canada were considered: New Branswick and Quebec. The 
former can be considered as a small province and the latter 
a large one. Table 1 provides the size of the different files. 
Because the household identifier is not available for the 
entire population U^, for the purpose of the simulations, it 
has been constracted based on a sample. This sample has 
the household identifier coded for each tax filer. For the 
non-sample tax filers, the household identifiers were 
randomly assigned such that the household sizes correspond 
to the same proportions of household sizes found in the 
sample. 

Table 1 
Agriculture Example 

Size of Farm Register (£/•*) 

Size of Tax File ( i /*) 

Total number of households of f/ * 

Total number of Non-zero Linkage 
Weights 

Qudbec 

43017 

52394 

22387 

105113 

New Brunswick 

4930 

5155 

2194 

13787 

The linkage process used for the simulations was a 
match using five variables. It was performed using the 
MERGE statement in SAS®. All records on both files were 
compared to one another in order to see if a potential match 
had occurred. The record linkage was performed using the 
following five key variables common to both sources: 

- first name (modified using NYSEIS) 
- last name (modified using NYSnS) 
- birth date 
- street address 
- postal code 

The first name and last name variables were modified 
using the NYSEIS system. This basically changes the name 
in phonetic expressions, which in turn increases the chance 
of finding matches by reducing the probability that a good 
match is rejected because of a spelling mistake. For more 
details about NYSnS, see Lynch and Arends (1977). 

Records that matched on all 5 variables received the 
highest linkage weight ( 9=60). Records that matched on 
only a subset of at least 2 of the 5 variables received a lower 
linkage weight (as low as 9=2). It should be noted that the 
levels of the linkage weights were chosen arbitrarily. As 
mentioned before, it is not really the levels themselves that 
are important, but rather the relative importance of the 
linkage weights between each other. 

Records that did not match on any combination of key 
variables were not considered as potential links, which is 
equivalent as having a linkage weight of zero. Two 
different thresholds were used for the simulations: 
Ĥigh = 9LOW = 15 and 9Hig, = Q^^^ = 30. The upper and 

lower thresholds, 9,^.,, and 9,^^, were set to be the same 
to avoid the grey area where some manual intervention is 
needed when applying the decision rale (2.3). 

Note that the constraint related to the use of the GWSM 
needed to be satisfied. When for a cluster / of U^ there was 
no non-zero linkage weight 9 ,.̂  between any units k of this 
cluster and the units from U^, we imputed a link by 
choosing the link with the largest linkage weight 9..^ 
within the cluster. Note that it also happened that for some 
units y of U^, there was no non-zero linkage weight 9. .̂̂  
with any unit ik of U^, this was not considered a problem 
since the only coverage in which we are interested is the 
one of U^. Table 1 provides the total number of non-zero 
links found in each of the two provinces. 
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For the simulations, we have selected the sample from 
U^ {i.e., the Farm Register) using Simple Random 
Sampling Without Replacement (SRSWOR), without any 
stratification. We also considered two sampling fractions: 
30% and 70%. The quantity of interest Y^ to be estimated 
was the Total Farming Income. 

Since we have the whole population of farms and 
taxation records, it was possible for us to calculate the 
theoretical variance for these estimates. It was also possible 
to estimate this variance by selecting a large number of 
samples {i.e., performing a Monte-Carlo study), estimating 
the parameter Y^ for each sample, and then calculating the 
variance of all the estimates. Both approaches were used. 
For the simulations, 500 simple random samples were 
selected for each approach for the two different sampling 
fractions (30% and 70%). The two thresholds (15 and 30) 
were also used to better understand the properties of the 
given estimators. 

Because we assumed SRSWOR, the theoretical formulas 
given in section 4 could be simplified. For example, under 
SRSWOR, the variance formula (4.5) reduced to the 
following: 

Var(y'^'') = M'' (1 -f)o2 
Z '^Z. RL (5.1) 

where / = m^lM^ is the sampling fraction, 5^ RL = 1/M''-1 
Z ^ {Zf^ - Z^f and Z -^ = IIM^ X>i ^j-

The Monte-Carlo study involved 500 replicates. For each 
of the two sampling fractions (30% and 70%), 500 simple 
random samples t were selected, and the expectation and 
variance for each of the five approaches were then esti­
mated using 

500 

E{Y) = — E 500 f̂  

and 

1 500 

nY) = T ^ E iYrE{Y)?. 

(5.2) 

(5.3) 

The estimated coefficients of variation (CVs) were 
obtained by using 

yjW) 
CV{Y) = lOOx 

E{Y) 
(5.4) 

The Monte-Carlo process was performed to verify 
empirically the exactness of the theoretical formulas 
provided in section 4. The results indicate that all the 
theoretical formulas provided were exact. 

The results of the study are presented in Figures 2.1 to 
2.4, Table 2, and Figure 3. Figures 2.1 to 2.4 provide bar 
charts of the CVs obtained for each of the five approaches. 
The bar charts are given for the eight cases obtained by 
crossing the two provinces Quebec and New Branswick, 
the two sampling fractions 30% and 70%, and the two 
thresholds 15 and 30. On each bar of the charts, one can 
find the number of non-zero links between U^ and U ̂  for 

each of the five approaches. Note that for Approach 3, it 
corresponds in fact to the expected number of non-zero 
links. The number of (expected) non-zero links does not 
change from one sampling fraction to another. Table 2 
shows the average number of clusters interviewed by 
approach, for each of the eight cases, where the average is 
taken over the 500 samples used for the simulations. The 
numbers in parenthesis are the standard deviations. They 
are relatively small compared to the averages and therefore 
the number of clusters identified through the sample s^ 
does not fluctuate greatly from one sample s^ to another. 
Figure 3 provides scattered plots of the obtained CVs by the 
average number of clusters identified through the sample 
s^, for each of the eight cases. 

By looking at the Figures 2.1 to 2.4, it can be seen that in 
all cases. Approach 1 and Approach 5 provided the smallest 
CVs for the estimation of the Total Farming Income. 
Therefore, using all non-zero links yield the greatest 
precision. Note however that by looking at Table 2, we can 
see that these approaches also lead to the highest number of 
clusters identified through the sample selected from U^. In 
fact, we can see that the greater the number of clusters used 
in the estimation is, the greater the precision of the resulting 
estimates is. This result is shown in Figure 3 where we can 
see that the CVs tend to decrease as the average number of 
clusters identified through s^ increases. Although this 
result is well known in the classical sampling theory, it was 
not guaranteed to hold in the context of the GWSM. As we 
can see from equation (3.5), it is not the sample size of s^ 
that increases, but rather the homogeneity of the derived 
variables Z.. 

Now, by comparing Approach 1 and Approach 5, it can 
be seen that the latter always provided the smallest 
variance. Therefore, this suggests to use the indicator 
variable / instead of the linkage weight 9 when using all 
non-zero links. Note that it seems this can be generalised 
since the same phenomenon occurred with Approach 2 and 
Approach 4 (Classical Approach). Recall that, because 
Ĥigh ~ L̂ow ^^^ ̂ wo approaches differ only in the definition 

of the estimation weights obtained by the GWSM. 
Approach 2 uses the linkage weights 9, while the Classical 
Approach uses the indicator variables /. Note that this 
results goes along the conclusions of Kalton and Brick 
(1995) since the optimal choice of letting the constants a 
being 0 for some units and a positive value that is equal for 
all the remaining units within the cluster corresponds to the 
use of the indicator variable /. 

We now concentrate on Approach 3. For seven out of the 
eight histograms of Figures 2.1 to 2.4, Approach 3 
produced the highest CVs. The only lower CV was 
obtained for Quebec, with the sampling fraction of 30% and 
the threshold 9,̂ ) . = 30. It should however be noted that 
this approach is the one that used the lowest number of 
non-zero links, and also the lowest average number of 
clusters identified through s'^. Therefore, this result is not 
totally surprising. Recall that the number of non-zero links 
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used by Approach 3 does not depend on the threshold 9̂ .̂ ^ 
and thus the CVs obtained for Quebec with j=0.3 were 
equal for Q^^•,^^ = l5 and Q^^,^^-30. For 9 =15, the CV 
obtained for Approach 3 for Quebec was higher than the 
ones for Approaches 2 and 4, and these two were using 
more non-zero links, and more clusters. For 9j^j, =30 the 
CV obtained for Approach 3 was lower than the ones from 
approaches 2 and 4, but these two were still using more 
non-zero links, and more clusters. Therefore, there are 
intermediate situations where with 15 < 9̂^̂  . < 30, we 
should get equal CVs for approaches 3 and 2, and 
approaches 3 and 4. As a consequence, to get equal CVs 
between Approach 3 and each of approaches 2 and 4, more 
non-zero links and more clusters must be used by the latter. 
This suggests that in some cases. Approach 3 might be 
more appropriate to use than approaches 2 and 4 because 
estimates with the same precision can be obtained with 
lower collection costs. 

In order to better compare Approach 3 to the approaches 
2 and 4, we forced the number of expected non-zero links 
to be the same as the number of non-zero links used by 
approaches 2 and 4. For this, we have transformed the 
linkage weights 9. ,.̂  to 9. ̂  in order to have 

J:TE h.k-k 
7 = 1 1 = 1 it = I 

(5.5) 

sampling fraction 

numbers in chart represent number of non zero links 

Figure 2.1 CVs for New Brunswick (with 0^ . =81^ =15.) liigh 

New Biunswick 
thi^stiold=30 

^..JLhJtt L__^H_ 

•approacfi 1 

• approacti 2 

• approach 3 

• approacti 4 

B approach 5 

cv (f=.3) sampling fraction CV (f=.7) 

numtwrs in chart represent number ol non zero lini(s 

Figure 2.2 CVs for New Brunswick (with 9, High "LOW = 30) 

where L^ is the desired number of non-zero links. The 
transformation used was 

^•k-< 
^j.ik'^. i f ^ ^ ^ l (5.6) 

1 otherwise 

where 9. was determined iteratively such that (5.5) is 
satisfied. The use of Approach 3 with the transformation 
(5.6) is referred to as Approach 6. The resuUs of the 
simulations are presented in Figures 4.1 to 4.4. As we can 
see. Approach 6 turned out to have the smallest CVs for 
half of the cases. For the other cases. Approach 4 yielded 
the best precision. Note that this situation did not occur for 
a particular province only, nor a particular sampling 
fraction, and also nor for a particular threshold. It would 
therefore be difficult in practice to determine in advance 
which of Approach 6 or Approach 4 would produce the 
smallest CVs. Because of this, and because of the fact that 
Approach 6 (and Approach 3) can produce large linkage 
errors. Approach 4 should be preferred. 
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Table 2 
Average Number of Identified Cluster 

Threshold Approach Average number of identified clusters (s.e.) 

15 

30 

Quebec 
f=.3 
15752(58) 
14281(49) 
10930(50) 
14281(49) 
15752(58) 
15752(58) 
11310(45) 
10930(50) 
11310(45) 
15752(58) 

f=.7 
21106(30) 
20593(34) 
18881(47) 
20593(34) 
21106(30) 
21106(30) 
19139(37) 
18881(47) 
19139(37) 
21106(30) 

New Brunswick 
f=.3 
1709(18) 
1310(17) 
1123(14) 
1310(17) 
1709(18) 
1709(18) 
1215(17) 
1123(14) 
1215(17) 
1709(18) 

f=.7 
2100(7) 
1966(13) 
1869(14) 
1966(13) 
2100(7) 
2100(7) 
1924(15) 
1869(14) 
1924(15) 
2100(7) 
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Figure 3. Graphs of CVs versus Average Number of Identified Clusters 
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6. CONCLUSION 

In the present paper, we have seen that the GWSM is 
adaptable to populations linked through Record Linkage. 
This is in fact simply a natural extension of the case where 
the links are either present or absent, which corresponds to 
the use of an indicator variable / ^̂  = 1 if the pair {j, ik) is 
considered to be a link, 0 otherwise. When two populations 
are linked through record linkage, there is always some 
uncertainty left because the decisions on the links are made 
using a probabilistic approach. Therefore, replacing the 
indicator variable /. .̂  by the linkage weight 0 ^̂  that has 
been computed for each pair {j, ik) simply makes the 
GWSM more generalised. 

Some simulations were performed using the 1996 Farm 
Register (population U^) and the 1996 Unincorporated 
CCRA Tax File (population [/*). We compared the 
variances obtained for each of the five approaches: (1) use 
all non-zero links; (2) use all non-zero links above a 
threshold; (3) choose links randomly using Bernoulli trials 
(4) Classical Approach; (5) use all non-zero links, but with 
the indicator variable /. All results showed that Approach 1 
and Approach 5 provide the smallest CVs for the estimation 
of the Total Farming Income. These two approaches use 
however the highest number of links, and also the highest 
number of clusters identified through s^, which implies the 
highest collection costs. Because of this, the approaches 2, 
3 and 4 might be viewed as good compromises. 

For a given threshold 9̂^̂  ., it is preferable to use the 
indicator variable / instead of the linkage weights 0 in the 
construction of the estimation weights with the GWSM. 
This result holds even for Quigh^^ ('•^•' "° threshold is 
used), as for approaches 1 and 5. The estimates produced 
with the indicator variable / always had the smallest CVs 
and this result goes along the conclusions of Kalton and 
Brick (1995). Hence, Approach 5 should be preferred to 
Approach 1, and Approach 4 should be preferred to 
Approach 2. 

The use of the threshold 0̂ .̂ . is useful to reduce the 
number of non-zero links to be manipulated. By reducing 
the number of non-zero links, we reduce as well the number 
of clusters identified through the sample s^, and hence we 
reduce the collection costs associated to the measurement 
of the variable of interest y within the clusters. Note that by 
reducing the number of links, we decrease the precision of 
the estimates produced. Therefore, a choice needs to be 
made between the desired precision and the collection 
costs. 

The reduction of the number of non-zero links can also 
be achieved by using the decision rule (2.3) with the two 
thresholds Q^^ and ©Hieh- ^^^ decreases the collection 
costs, but introduces the need of some manual resolution 
when the linkage weights 0 are between 0̂ ^̂ ^ and 0ĵ j .̂ 
The manual resolution leads however to better links, i.e., 
with less linkage errors. If manual resolution is used only to 
make the links one-to-one between population U^ and 
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population U^, then it might not be necessary since the 
GWSM is particularly appropriate to handle estimation in 
situations where the links between U^ and U^ are 
complex. 

When compared to approaches 2 and 4, Approach 3 
turned out to be preferable in some cases. Because it would 
be difficult in practice to determine in advance which of 
Approach 3 or Approach 4 would produce the smallest 
CVs, and because of the fact that Approach 3 can produce 
large linkage errors, Approach 4 should be preferred. 
Hence, the Classical Approach of using the GWSM with 
the indicator variable / with links determined using a 
decision rule such as (2.3) seems the most appropriate 
approach to estimate the total Y^ using a sample selected 
from U^. 
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Cross-sectional Estimation in Multiple-Panel Household Surveys 
TAKIS MERKOURIS' 

ABSTRACT 

This paper presents weighting procedures that combine information from multiple panels of a repeated panel household 
survey for cross-sectional estimation. The non static nature of a repeated panel survey is discussed in relation to estimation 
of population parameters at any wave of the survey. A repeated panel survey with overiapping panels is described as a 
special type of multiple frame survey, with the frames of the panels forming a time sequence. The paper proposes weighting 
strategies suitable for various multiple-panel survey situations. The proposed weighting schemes involve an adjustment of 
weights in domains of the combined panel sample that represent identical time periods covered by the individual panels. 
A weight adjustment procedure that deals with changes in the panels over time is discussed. The integration of the various 
weight adjustments required for cross-sectional estimation in a repeated panel household survey is also discussed. 

KEY WORDS: Repeated panel surveys; Multiple frames; Temporal domains; Combined panels; Cross-sectional 
weighting; Weight share method. 

1. INTRODUCTION 

A panel survey collects the survey data for the same 
sample elements at different time points (the survey waves). 
A repeated panel survey is made up of a series of panel 
surveys, each having fixed duration, with the panels 
selected at different time points. In a repeated panel house­
hold survey a sample of households is selected for each 
panel from the population of households existing at the start 
of the panel. Depending on the objectives of the panel 
survey, one or all individuals in the sampled households 
become panel members to be followed throughout the 
duration of the panel or until they leave the survey popu­
lation. At a subsequent survey wave the household sample 
consists of all the households in which panel members 
reside. A review of various types of panel surveys is given 
in Kalton and Citro (1993). A formalization of related 
concepts can be found in Deville (1998). 

The type of repeated panel household survey considered 
in this paper consists of two or more panels covering over­
lapping time periods. A typical example of such a survey is 
the Canadian Survey of Labour and Income Dynamics 
(SLID), which employs two overlapping panels of duration 
of six years each; for a description of the SLID see Lavigne 
and Michaud (1998). In the SLED, each new panel is intro­
duced three years after the introduction of the previous one. 
The sample for each panel is made up of two rotation 
groups from the Canadian Labour Force Survey, which uses 
a stratified multistage design with an area frame wherein 
dwellings containing households are the final sampling 
units. 

A panel survey, though primarily conducted for longi­
tudinal purposes, may also be used to produce cross-
sectional estimates of population parameters for any survey 
wave. For cross-sectional purposes, data are usually 
collected at each survey wave for all individuals living in 

households that contain at least one selected member. The 
process of obtaining cross-sectional estimates at any wave 
of a panel household survey after the first wave presents 
difficulties arising from the population and panel dynamics. 
Weighting schemes that deal with dynamic features of a 
single panel, such as movers and "cohabitants," have been 
discussed in the literature; see Kalton and Brick (1995), and 
Lavallee (1995) for details. Yet, there seems to be a paucity 
of work in the literature on cross-sectional estimation for 
repeated panel household surveys with overlapping panels; 
some initial work in the context of the SLID can be found 
in Lavallee (1994). The cross-sectional estimation problem 
in such multiple panel surveys is a proper combination of 
the panels that would account for the changes in the 
population and in the panels over time. 

This paper describes procedures for cross-sectional esti­
mation that combine information from overlapping panels 
of a repeated panel household survey. The coverage of the 
population by the individual panels at any given wave, and 
the use of the combined panels supplemented by a "top-up" 
sample to construct a representative cross-sectional sample 
are discussed in section 2. Also discussed in the same 
section are analogies with a multiple-frame survey scheme, 
as well as issues related to the sample dynamics. The 
weighting and estimation problem in repeated panel 
household surveys is described in section 3. Weighting 
strategies suitable for various panel survey situations are 
then proposed. Bias and efficiency issues related to the 
combination of panels are discussed. A weight adjustment 
procedure that deals effectively with changes in the 
combined panels over time is described in section 4. The 
integration of the various weight adjustments required for 
cross-sectional estimation in a repeated panel household 
survey is discussed in section 5. Finally, a summary and 
concluding remarks are provided in section 6. 

Takis Merkouris, Statistics Canada, Household Survey Methods Division, Tunney's Pasture, Ottawa, Ontario, KIA 0T6. 
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2. GENERAL CONSIDERATIONS 

2.1 Coverage of the Cross-sectional Population 

Important to cross-sectional estimation are changes in 
the population composition over time, occurring when indi­
viduals leave or enter the population. In a single-panel 
household survey, new entrants who have joined the survey 
population since the start of the panel are not represented in 
the sample at later waves if they live in households that do 
not contain any members of the original population. A 
multiple-panel household survey with overlapping panels 
provides a better coverage of the survey population than a 
single-panel survey, as it reduces the time period not 
covered by any of the panels. In the case of the SLED, this 
time period is reduced from a maximum of six years to a 
maximum of three years. Nevertheless, the problem of 
complete coverage remains unless a special supplementary 
sample of the non-covered population is taken at each 
survey wave. A survey scheme involving one panel and a 
supplementary sample drawn at each survey wave for cross-
sectional purposes is described in lavallee (1995). An 
altemative approach involves the selection, at each wave, of 
a new sample that covers the entire survey population but 
does not form a new panel. This sample (henceforth to be 
called top-up sample) is to be used only once, for cross-
sectional purposes, and its size would normally be smaller 
than a panel's size. In the context of constructing a cross-
sectional sample, a top-up sample is discussed as a non-
trivial case of supplementary sample, essentially treated as 
an additional small overlapping panel. 

The situation with regard to individuals who leave the 
population is as follows. For any panel, the sampling frame 
for the survey population at a time point t is essentially the 
sampling frame for the population at the start of the panel, 
with the leavers in the intervening period being treated as 
blanks on the frame. Panel members who leave the 
population before time t correspond to blanks on the frame, 
and thus their effect on cross-sectional estimates at time t is 
loss of efficiency but not bias; see also Kalton and Brick 
(1995) for relevant discussion. 

The foregoing observations lead to the following 
perspective regarding the coverage of the population by 
each of the panels at any wave of the survey. As regards 
cross-sectional representation, each panel covers at the time 
of its selection the entire survey population represented by 
the preceding panels. Accordingly, the frames of the panels 
form a time sequence, with the frame of each panel 
containing at the start of the panel the frames of the 
preceding panels. In such a sequence of frames, a common 
frame is formed sequentially as the intersection of the frame 
of a new panel with the remainder of the original common 
frame of the preceding active panels. At any wave the 
common frame is the common frame at the start of the most 
recent of these panels, but without the leavers. The non-
overlap frame domain at the start of a new panel consists of 

individuals who entered the population after the start of the 
preceding panel. Other frame domains (relatively very small 
in size) may be formed by returning units of older frames, 
in which case the time sequence of frames is not completely 
nested. Because of the latter type of frame domains, the 
complete frame at any wave after the selection of the most 
recent panel is the union of the frames of all panels at that 
time point, not just the remainder of the frame of the most 
recent panel. In panel surveys which employ a top-up 
sample at each wave the complete frame is that of the top-
up sample. 

2.2 A Multiple Frame Analogy 

With the above considerations, a multiple panel survey 
with overlapping panels can be thought of as a special type 
of multiple frame survey, in which the frame for the cross-
sectional population is the union of mutually exclusive 
temporal domains defined by the frames of the panels and 
their intersections. The sizes of the frames of the individual 
panels, as well as the characteristics of the population 
members in each panel's frame, change over time. This is 
in contrast with the static character of the usual type of 
multiple frame survey. Also, there is a high degree of 
nesting in the sequence of panel frames, so that the total 
number of mutually exclusive temporal frame domains is 
small. Among the various frame domains the one that is 
common to all panels is by far the largest. These special 
multiple frame features have implications in cross-sectional 
estimation, as will be discussed in the next section. 

The sample temporal domains may be even less static 
because of attrition, moves of selected individuals within 
and between panels and moves of non-selected individuals 
into households in which panel members reside. For 
instance, with the presence of new entrants {e.g., immi­
grants) in households that contain selected individuals, a 
panel crosses the boundary of its frame into the frame of the 
succeeding panel. 

The analogy with multiple-frame survey sampling places 
the problem of cross-sectional estimation for repeated 
surveys with overlapping panels into a familiar framework. 
However, the distinctive dynamic features of multiple panel 
surveys will have to be considered if conventional multiple 
frame approaches are contemplated for the formulation of 
a cross-sectional estimation methodology. 

For the purpose of introducing a cross-sectional estima­
tion procedure that combines information from the panels 
of a repeated panel household survey, it suffices to consider 
the simple situation involving two overlapping panels at the 
time point of the start of the second panel. Note that this 
would always be the situation in a survey with one panel 
and a top-up sample. Thus, adopting standard multiple 
frame notation, with B and A denoting the frames of the first 
and the second panel (fieA) at the start of the second 
panel, and with s^, s^ denoting the respective samples, the 
setting can be presented schematically as in Figure 1. 
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Figure l.Two overlapping panels at 
the start of the second 
panel. 

In Figure I, A is the complete frame, so that the second 
panel at its start represents the cross-sectional population at 
that time. The overlap domain B is the remainder of the 
original frame of the first panel. The domain a = B'̂ flA 
consists of all new entrants into the population since the 
start of the first panel. The samples Sg and s^ are the origi­
nally selected ones, with Sg reduced in size because of 
leavers and non respondents. It is assumed that the samples s^ 
and Sg are drawn independently from 4̂ and B according to 
specified probability designs p^{s^) and Pg{Sg), which 
determine the inclusion probabilities n^. and Ug. of the i-th 
unit (household or any individual within it) for the original 
samples s^ and Sg, respectively. The samples s^ and Sg 
may intersect, since members in the overlap frame B can be 
selected in both panels. The issue of panel (sample) overlap 
is akin to that of duplicate sample units in multiple frame 
surveys. In repeated panel household surveys an operational 
constraint motivated by respondent burden may be to 
exclude from s^ individuals already selected in Sg, thus 
inducing 5^(15^ = 0; for a discussion on this see Lavallee 
(1994). Here, as in any multiple frame situation, it is 
observed that if the probabilities n^. and Kg. are small the 
probability of duplicate units is negligible. It will be 
assumed in the following that the probabilities n^. and Ug. 
are small, and in effect s^r\Sg = e>. 

3. CROSS-SECTIONAL WEIGHTING AND 
ESTIMATION 

This section describes procedures that combine infor­
mation from multiple panels of a repeated panel household 
survey for cross-sectional estimation of population para­
meters. The discussion is confined to estimation of totals. 
A uniform approach to cross-sectional estimation for house­
holds and individuals is presented. This approach is based 
on the production of a set of weights for the combined panel 
sample that yield design-unbiased estimators of cross-
sectional totals. Essentially, it involves the construction of 
a combined cross-sectional sample by means of an adjust­
ment of the sampling weights of units from the temporal 
domains of the different panels that represent identical 
temporal domains of the cross-sectional population. While 
the delineation of the various temporal frame domains is 
necessary for determining the coverage of parts of the 
cross-sectional population by the different panels, the 
identification of some of the corresponding sample domains 

may not be possible under the operating procedures of a 
repeated panel household survey. For example, the 
information needed to determine whether or not a unit in 
the second panel belongs to the non-overlap frame domain 
a (see Figure 1) may not be available. In this section, both 
cases of identifiable and non-identifiable temporal sample 
domains are considered. The weight adjustment for the 
combination of the panels involves only sampled units, and 
takes no account of any changes (other than leavers) in 
household membership between waves. A "weight share" 
adjustment that handles such changes should follow the 
combination of the panels, as it can be applied readily only 
to the combined sample; see relevant discussion in section 
4. 

3.1 Identiflable Temporal Sample Domains 

Weighting options for the combination of the panels 

For the construction of a cross-sectionally representative 
combined sample, a panel survey scheme such as that 
depicted in Figure 1 is considered. In analogy with a 
standard multiple frame argument (Bankier 1986; Skinner 
and Rao 1996) the two samples s^ and Sg can be thought 
of as selected independently from the complete frame A 
according to the sampling designs p^{s^) and Pg{Sg), but 
with a fixed time lag between the two selections. Then the 
two sampling designs Pj^{s^) and Pg{Sg) induce a well-
defined design p{s) on the set of samples 5 =5^U5g in A. 
Thus conventional estimators, based on a single frame and 
a combined sample, may be constructed from p{s). The 
standard approach, leading to the Horvitz-Thompson esti­
mator, would be to assign sample units weights made in­
versely proportional to their inclusion probabilities. The 
probability of inclusion of the i-t\i population unit in the 
combined sample, 7t,. = P{ies),isequal to TT̂ , + tig. - TÎ ,. •Kg. 
if i 6 B, and equal to TÎ .̂ if J e a. The weight of the /-th unit 
of the sample is then w^ = lln.. This weighting scheme can 
be used provided that it is possible to identify the common 
units in the samples j ^ and Sg, so that the duplicate units 
can be eliminated. A simpler approach, especially for 
surveys with more than two panels, would be to assign any 
unit ieB a weight made inversely proportional to the 
expected number of selections of the unit, that is, inversely 
proportional to TT̂ ,. + 71̂ ,.. This weighting scheme, proposed 
by Kalton and Anderson (1986) for multiple frame surveys, 
does not require identification of duplicate sample units. 
Now, consider the sample domains 5̂ ^ = s^r\B and 
s = s.f]a of s.. Also, let a value y. be associated with 

a A A ' - 'I 

population unit i for some population characteristic, and 
define the population total Y^ = E^y. (= E^y. + E^y.). 
Then, employing the latter weighting scheme the unbiased 
estimator 

^A=E, %•>', = E,.K^%) 

• Ec,K,-̂ %)"'>-,• ̂ E, v'>'/ (1) 
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of the total Y^ can be constructed. On the assumption that 
the probabilities n^. and Ug. for iesOB are small, the 
estimator Y^ is approximately equal to the Horvitz-
Thompson estimator. 

The approach leading to the esfimator (1) is not in 
general feasible, since the determination of the weight 
% ~ ^^Ai •*" ^Bi)'^ ^^^ iesOB requires knowledge of n^. 
for units in Sg, and knowledge of Kg. for units in 5^ .̂ This 
is difficult or impossible to ascertain in household surveys 
because of stratified multistage sampling. In multiple-panel 
household surveys additional complications arise from the 
time element. For units that move {e.g., to another stratum) 
in the time between the selection of the panels it is impos­
sible to determine both n^. and itg.. 

An altemative strategy needs to be considered for devel­
oping weights for the sample overlap domain SHB. One 
approach that provides a general framework for handling 
this problem requires information on the probability of 
inclusion in only one of s^ or Sg, thus avoiding the diffi­
culty noted above. The essence of the altemative approach 
considered here is to associate with the i-th unit from the 
overlap frame B a number p. {0 ^p.<. 1) when the unit is 
selected in Sg, and the number I -p. when the unit is 
selected in s^, and then define the weight of the unit, as 

w;=p.-Li{iesg}^{l-p.)-Li{iesJ, ieB, (2) 
"^Bi "Ai 

where / is the usual sample membership indicator variable. 
Clearly, £(w*) = 1 under p{s), and thus the use of the 
weights w* will yield unbiased estimators Yg = T,gW^y. for 
the total Yg = E^ y_., for any choice of constants p. satis­
fying 0 ^ p. <. 1, and for any sampling designs p^{s^) 
and Pg{Sg). Equation (2) can be written alternatively as 
w* =PjWg. + (1 - Pj)w^., with the obvious definition of the 
weights Wg. and w^. associated with the samples Sg and 
s^. Thus, the class of weighting schemes defined by equa­
tion (2) consists essentially of different weighted com­
binations of the weights in the original samples Sg and s^. 
The limits on the values of p. ensure that the weight w* 
will be nonnegative. Note that the intractable weight 
^i ^ ('̂ /ti * ̂ Bi)'^' ^^^ iesClB, used in (1) is a special case 
of w; with p. = ng.{n^.* •Kg.)-'. 

Evidently, the weighting scheme defined by (2) does not 
eliminate duplicate units that fall in both samples. If the 
operational constraint to exclude from s^ individuals 
already selected in Sg is imposed, the second term in the 
right-hand side of (2) should be modified to (1 -/?,) 
[71 .̂(1 -ng.)]''l{ies^f^,i^Sg} to ensure that E{Wj) = 1. 
This, however, may be impossible to do since it requires 
that the inclusion probabilities of the sampled units be 
known over both frames. Note also that under the constraint 
of excluding duplicate units, the two samples will not be 
independent. Nevertheless, as it is assumed that both proba­
bilities n^. and Kg. are small, the probability of duplicate 
units will be negligibly small, and hence any bias resulting 

from using the tractable weighting scheme defined by (2) 
would also be negligible. On this assumption, the two 
indicator variables in (2) should be understood to satisfy 
I{iesg}I{ies^^} = 0. 

The question arises now as to an optimal choice of p., 
for any iesflB, according to some criterion of optimal 
weighting for the combined sample. One approach is to 
choose the p. to minimize the variance of the estimated 
total y^ =EgW,.*y,.+ E^w,.y,., where w. = {n^;)-'lUesJ 
for iea. However, minimization of the variance of Y. with 
respect to p. for all iesliB is not tractable. A simpler 
option is to restrict the class of weighting schemes defined 
by equation (2) to one in which the weight adjustment 
factors are specified not at the unit level but rather at a 
higher level, which may be a stratum or the entire overlap 
frame B. Further discussion on the level of adjustment is 
deferred to the last part of this subsection. It suffices for the 
development of the weighting procedure to consider next 
the case involving a uniform weight adjustment factor p for 
the entire frame B. 

Determination of the value of p. Issues of practicality and 
efficiency. 

The class of weighting schemes defined by equation (2) for 
the frame B, with uniform weight adjustment factor p, 
generates a class of unbiased estimators for the overall total Y^ 
of the form 

>-;=/'>'.„-(i-p)n.-n„ (3) 

where Y^ and Y^ are independent Horvitz-Thompson esti­
mators 0/ Yg based on Sg and 5^ ,̂ respectively, and Y^ is 
the Horvitz-Thompson estimator of Y^ based on s^. The 
limit values of p yield two special cases of the estimator 
Y^, in both of which the overlap domain total Yg is 
estimated from one panel only. When p is set equal to zero 
in (3), the resultant trivial estimator Y^ for the entire popu­
lation is based only on s^. More notable is the case with p 
set equal to one in (3). The implied simple unbiased estima­
tor Y^ = Y^ + Y^ would be the natural estimator in a panel 
survey with one panel and a supplementary cross-sectional 
sample, with the units in that sample being "screened" and 
only the units in the domain of new entrants being enume­
rated. In such a context this simple estimator would be a 
special case of a "screening" multiple frame estimator, the 
special feature being the temporal nature of the non-overlap 
frame domain a. In the present context the screening esti­
mator appears inefficient because information in the sample 
domain j ^ ^ is not utilized. Better use can be made of data 
from both panels by combining Sg and 5^ ,̂ using an 
optimal/? that is based on the minimization of the variance 
of Y^. The optimal value of p is given by 

var(y, ) + Cov(y, , y j 
Var(y^)+Var(y^ ) 

(4) 
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The variance and covariance terms in (4) are unknown, but 
could be estimated from the sample data, in which case the 
chosen p would actually minimize the estimated variance of 
Y^. There are many drawbacks associated with this choice 
of value for p. Generally, estimation of the optimal p is not 
easy; in surveys with more than two panels it would be very 
inconvenient to estimate the required set of such weight 
adjustments. Also, a sample estimate of the optimal p in (4) 
adds variability to the estimator Y^, and complicates the 
estimation of its variance. Moreover, the dependency of the 
estimated optimal/? on the sample data entails E{w^) * I 
for i e B, which disturbs the unbiasedness of the estimator 
(3). It is to be noted that the condition £(w,') = 1 is also 
necessary for the validity of the weight share method (see 
section 4) to hold when applied to the combined sample s at 
any wave after the selection of the second panel. 

An altemative choice for the value ofp is based on the 
minimization of the variance of the common-frame compo­
nent Y^ =pY + (I -p)Y^ of the estimator f/ in (3). 

B ab 

This restricted minimization, which ignores the typically 
small domain estimator Y^, gives the value 

Var(y ) 

estimators of totals of other characteristics should not be 
substantial. It is to be noted further that because of the time 
lag between the selecfion of the two panels, the design 
effects will be different, and thus present in (6), even when 
the sampling designs for the two panels are identical. By 
using estimates of the design effects from external sources 
the randomness of p' is due only to the random size of the 
sample domain 5̂ .̂ Since the size of the sample s^ is 
usually very large, and the size of the overlap frame B is 
typically only a little smaller than the size of the complete 
frame A, the size n^^ of the sample domain 5̂ ^ must be 
nearly constant, and thus the unbiasedness condition 
E{Wj) = 1 will hold approximately. 

Some loss of efficiency will be incurred by ignoring Y^ 
in deriving an optimal value for p, but this loss may be 
insignificant given the relatively very small size of the 
domain a in most household panel surveys, because of the 
typically small time lag between panels. To assess this loss 
of efficiency, let Y^ and Y^ denote the estimator Y^ in (3) 
with the value ofp given by (4) and (5), respectively. Then, 
a simple calculation gives 

Cov2(y ,,y ) 

Var(y )+Var(y ) 
(5) 

Var(yf ) -Var (y ; ) 
Var(y )+Var(y ) 

which is independent of the covariance term, and always 
lies between zero and one. Minimizing the variance of Yg 
conditional on the realized value of the random size n̂ ^ of 
the sample domain j ^ ^ , then using the well-known variance 
formula for the estimator of a total under simple random 
sampling, and disregarding finite population corrections, it 
can be shown that (5) may be approximated by 

ngldg 

'^BI'^B * nJ^ab 
(6) 

where ng is the size of the sample Sg, and dg, d̂ ^ are the 
design effects associated with Sg and 5̂ .̂ The calculation 
of the value of p' requires estimates of the two design 
effects, which need not be based on Sg and s^. Suitable 
approximate values of dg and d̂ ^ may be available from 
other surveys with the same sampling designs as the two 
panels. However, because of the dependency of p'on the 
characteristic y through dg and d^^^, a different set of 
weights needs to be calculated for each characteristic of 
interest. Besides making the estimation process opera­
tionally inconvenient, the different sets of weights may lead 
to inconsistencies among estimates. A compromise solution 
is to obtain approximate values of dg and d^y preferably for 
a count variable associated with a large population domain. 
A similar compromise solution is implicit in the approach 
of Skinner and Rao (1996) to estimation in dual frames. It 
is to be noted that since p' depends on the characteristic y 
only through the ratio dgld^^^, the loss of efficiency for 

Var(y^ )Var(y^ ) 

Var(y^ ) + Var(y ) 
'B 'all 

= p'WaT{Y^), 

so that an upper bound for the efficiency loss can be 
obtained as 

Var(y; ) Var(y;) 

Var(y/) 
^P' 

Var(y^ ) 
'a 

Var(y;) 

Given the usually very small size of Y^ relative to Y^ (the 
size of the domain a is approximately one fortieth of the 
size of the complete frame A in the case of the SLID) it 
appears that the loss of efficiency will be very small in most 
panel household surveys. 

An interesting question is whether or not Y^ is more 
efficient than the simple "screening" estimator Y^ = 
Ys '^Y^, whose variance is Var(y^ ) + 'Var{Y^ ). It can 
be readily shown that Var {Y^')< Var( ŷ  ) + Var( y j if 
2Co\{Y^ , y J <War{Y^ ). This condition certainly holds 
if the covariance of Y^ and Y^ is negative, which may be 
the case if the estimated chju-acteristic differs between 
immigrants versus non immigrants. In general, this covari­
ance may actually be positive because Y^ and Y^ are 
based on the same sampled area clusters. In that case" too, 
however, the condition will most likely hold, given the 
magnitude of Var(y^ ) relative to Var(y, ), and the 

/̂  *fl ^ 'ab 

magnitude of Var(y^ ) relative to 'Var{Y^ ). Indeed, the 
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sizes of the panel samples Sg and s^ are typically equal by 
design, although the effective panel sizes {i.e., realized sizes 
at any wave, adjusted for design effects) may be consi­
derably different due to different attrition rates and design 
effects for the two panels. Also, with the sizes of the sample 
domains 5̂ ^ and s^ roughly proportional to the corres­
ponding population domain sizes, 'Var{Y^ ) will be many 
times, say k, smaller than Var(y, ). Then" 

2Cov(y ,y ) ^ 2 Jvar(y )Var(y ) 
y 'ab 'a 

fk 
SO that a sufficient condition for the estimator yf to be 

A 

more efficient than the "screening" estimator is 

fk 
< Var(y ). 

The interpretation of this is that the sample domain s^ is 
not to be ignored when estimating Y^ if Var(y ) is not too 
small relative to Var(y^ ). The condition is ordinarily 
satisfied in panel household surveys. An additional argu­
ment in favour of including 5̂ ^ in estimation is its better 
quality relative to Sg, since the latter is more liable to the 
potential bias effect of sample attrition. 

The simple approximate weight adjustment factor p' 
given by expression (6) affords an efficient combination of 
panel samples, accounting for the precision of Y^ relative 
to that of Pj through the effective sample sizes ngldg and 
n^ld^. These effective sample sizes are time-dependent, 
though their ratio (and hence p') should be quite stable 
over the period of panel overlap. Regarding variance calcu­
lations, since n^^ is typically nearly non-random, the 
adjustment factor p' can be conveniently treated as 
constant in any variance estimation procedure. 

It is important to emphasize here that additional gains in 
efficiency will result from the incorporation of auxiliary 
information into the weights through a calibration weight 
adjustment to known population totals. 

Finally, it should be remarked that if the criterion in the 
choice of the value of p is the minimizafion of the mean 
square error of the common-frame component Yg = 
pY^ + (1 -p)Y^ of the estimator Y^, then it can be easily 
shown that when the biases of Y^ and Y^ are equal the 
optimal value ofp is the same as the one given by (5). The 
biases are not expected to be equal, though; for instance, the 
different sample attrition rates for the two panels may result 
in different levels of bias. It is clear that the bias of the 
linear combination Yg = pY^ +{l -p)Y^ , though not 
minimized if p is as in (5), is nevertheless sfnaller than the 
larger of the two component biases. Other complexities 
aside, the unavailability of good estimates for the two biases 
renders the criterion of minimum mean square error 
impracticable. 

Generalization to multiple panels and discussion of 
altemative approaches. 

The weighting procedure described above applies to the 
simple situation of a two-panel survey at the start of the 
second panel. At later survey waves an additional non-
overlap frame domain, denoted by b, may be formed by 
returning leavers of the frame B. Units from b originally 
selected in the first panel were not present when the second 
panel was selected. Clearly, the weights in the non-overlap 
sample domain 5̂  are not to be adjusted for the purpose of 
combining the two panels. Furthermore, the value for/? will 
not be affected, as it is based only on the overlap domain of 
the combined sample. As with ignoring the sample domain s^ 
in determining the value of p, ignoring the much smaller, 
possibly void, sample domain ŝ  will have negligible 
impact on the efficiency of derived estimators. 

The simplicity of the proposed weighting procedure for 
the combination of two panels makes its generalization to 
surveys with more than two overlapping panels straightfor­
ward. The most likely generalization in practice would 
involve three panels. The constmction of a combined cross-
sectional sample would then involve the adjustment of the 
sampling weights of units from temporal domains of the 
different panels that represent a common temporal domain 
of the cross-sectional population. For each common tempo­
ral population domain the weight adjustment factors will be 
based on the relative effective sample sizes of the corre­
sponding panel domains, in analogy with expression (6), 
and will add up to one. The number of common temporal 
frame domains, and hence the number of the corresponding 
independent sets of adjustment factors, will be quite small 
because of the high degree of nesting in the sequence of 
panel frames. For instance, for a three-panel survey there 
will be one set of three adjustment factors and one set of 
two. 

Returning now to an earlier point, varied weight adjust­
ment factors may be specified at a lower level of sample 
grouping, such as a certain stratification level. For reasons 
of feasibility (identical stratification for the two panels is 
required for that level) and operational convenience, a high 
level of stratification should be chosen. The natural choice 
is a superstratum level, at which all other weighting and 
estimation procedures are carried out independently for 
each superstratum. In the SLID, such superstrata are the 
Canadian provinces. The advantage of specifying weight 
adjustment factors at the superstratum level is improved 
efficiency, since an optimal or nearly optimal weight adjust­
ment factor p can be determined for each superstratum. 
This will be particularly advantageous if the ratios of the 
effecfive sample sizes of the panels are very different 
among the superstrata, as is the case in the SLID. 

Altemative estimation techniques from the general 
theory of multiple frame surveys with complex designs (for 
an account, see Skinner and Rao 1996, and Singh and Wu 
1996) would produce esfimators similar in form to the 
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estimator (3) if adapted to a multiple panel survey with 
overlapping panels. Such techniques, though, are not 
preferable in general for reasons similar to those stated in 
the discussion following equation (4); the "pseudo-
likelihood" method of Skinner and Rao (1996) is also not 
applicable in surveys with more than two panels. Further­
more, while the weight adjustment proposed in this section 
essentially combines the panels, on the basis of an efficient 
combination of Horvitz-Thompson estimators, the standard 
multiple frame methods ordinarily combine ratio-adjusted 
or, more generally, calibrated estimators derived separately 
using the sample from each frame. In the context of a 
household panel survey, the components from each panel 
would be calibrated estimators incorporating all the weight 
adjustments, including the "weight share" adjustment, 
carried out separately for each panel. This would be in 
conflict with the application of the "weight share" adjust­
ment to the combined sample, to be proposed in section 4. 
It is interesting to note that apart from this complication 
there are many possible limitations that could render a 
separate calibration of each panel problematic or unfeasible. 
It may be remarked first that a proper separate calibration of 
the panels is possible only when the various temporal 
sample domains are identifiable. Furthermore, a calibration 
involving the same auxiliary variables for each temporal 
domain of each panel would be required in order for the 
final weights to satisfy all calibration constraints. But since 
all temporal frame domains (except the one that is common 
to all panels) are typically very small, a calibration in­
volving a large number of auxiliary totals (as is customary 
in household surveys) would not be sensible for reasons of 
potential bias and loss of efficiency of derived estimators. 
Moreover, auxiliary totals for frames of old panels that 
account for the loss of population units may not be avail­
able. It should also be pointed out that accurate auxiliary 
totals most likely would be unavailable if the frame of each 
panel were augmented with new entrants who live with 
individuals of the original frame of the panel. Such would 
be the situation if the "weight share" procedure, which 
assigns a basic weight to new entrants living with selected 
individuals, were to precede the combination of the panels. 

Notwithstanding other difficulties, it is possible in prin­
ciple to use standard multiple frame methods to combine 
the panels, avoiding a separate calibrating weight adjust­
ment, with the exception of the dual-frame pseudo-
likelihood method of Skinner and Rao which in the setting 
of Figure 1 would require a simple ratio weight adjustment 
for 5n, s . and s . 

B' ab a 

Lastly, a known drawback of various multiple frame 
estimators is that their optimality depends on the estimated 
characteristic of interest. For the proposed method this 
dependency appears to be weaker, because the optimal p' 
in (6) depends on the particular characteristic only through 
a ratio of panel design effects, estimated from an extraneous 
source. 

3.2 Non-identifiable Temporal Sample Domains 

It has been assumed thus far that the units of the non-
overlap sample domain s^{<^s^) can be identified. How­
ever, the information needed to determine whether a unit in s^ 
belongs to the frame domain a, of new entrants into the 
population after the start of the previous panel, may not be 
available for all units of s^. In that situation the weighting 
process described above would combine the two samples 
Sg and s^ without distinguishing between the domains j ^ ^ 
and s^ of s^, so that the weights of units in s^ would also 
be multiplied by I - p. The estimator Y^ in (3) would 
collapse then to 

YJ: =PY,-{1-P)Y,. (7) 

The effect of this error is the underestimation of the total Y 
a 

for the population domain a by the factor p. Part of the 
domain a, though, consists of newborns, which can be 
identified in s^ with certainty. Their weights could very 
well be excluded from the adjustment by the factor 1 - p, 
but that would have no effect on cross-sectional estimation, 
unless newborns were part of the population of interest. 
Besides, adjusting the weights of newborns in s^ by the 
factor I -/> has the desirable effect of producing a common 
household weight. A calibration of the weights of the 
combined sample to known population totals of the 
complete frame A will lessen the under-representation of 
the rest of the domain a, which consists mainly of 
immigrants, but some bias may still result if the survey 
characteristics of the members of this part of the population 
are quite different from those of the members of the popu­
lation domain B. Unless the time lag between the selection 
of the two panels is quite large, the size of this part of the 
population is very small, relative to the total population, and 
the potential bias effect on overall estimates of totals should 
be negligible. 

The optimal {i.e., variance minimizing) value of p in (7) 
is given now by 

Var(y ) 

Var(y ) + Var(y ) 
(8) 

Disregarding finite population corrections it can be shown 
that (8) can be expressed as 

^B^A^A^A 

^BdA^l^l^n^dgNlsl 

''B'^A 

ngd^^cn^dg 
(9) 
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with c = {Ng Sg){N^ ^A)'^^ "̂"̂  where ng, n^ are the sizes 
of the samples Sg and s^; dg, d^ are the design effects 
associated with Sg and s^ and the characteristic y;N^, Ng 
are the sizes of the frames A and B;S^,Sg are the 
variances of the characteristic y in A and B. Noting that Â^ 
may be only a little smaller than A'̂  (depending on the time 
lag between the two panels), and assuming that the 

2 2 

unknown variances S^ and Sg are nearly equal, a good 
practical approximation of the optimal p can be obtained by 
simply setting c equal to one in (9). The assumption that the 
variances S^ and Sg are nearly equal is reasonable consi­
dering the magnitude of Ng relative to that of Â .̂ Approx­
imate values of dg and d^ available from other surveys 
with the same designs as the two panels could be used, 
preferably for a characteristic such as the size of a large 
population domain. Now, if Y^ and y, denote the estimator 
Y^ in (7) when the weight adjustment p^' in (9) is used 
with the true value of c and the approximate value c = 1, 
respectively, then ignoring finite population corrections the 
loss of efficiency of y, relative to Y^ can be readily shown 
to be 

Var(y^)-Var(y,) _ (^ - i)^ 

Var(y) 
^ i " ( l -Pi')-

With a value of c most likely in the neighbourhood of 1.0, 
the loss of efficiency will be negligible. 

It is interesting to examine the efficiency of the estimator 
given by (7), with p" as in (8), relafive to the optimal esfi­
mator given by (3), with/? as in (4), used when the domain s^ 
is idenfifiable. Let Y^' and Y^ denote these estimators, 
respectively. Then, using the inequality 
Cov ̂  (y , ŷ  ) 5 Var (y ) Var {Y^ ) it can be shown that 
Var(y^)''-Var(y;') i {p" -p')Var{Y^ ) , where /?' isas 
in (5). As already mentioned, in general Cov {Y^ ,Y^)>0, 
so that /?" >/?'and hence Var(y^) i Var (y^")."Therefore, 
notwithstanding the use of the exact values of /?" and /?' 
in the comparison, the approach taken in this subsection 
may in most cases result in reducfion of the variance of 
derived estimators. A lower bound for the gain in efficiency 
relative to Y^ would then be given by 

Var (y , ) -Var (y ; ' )^ (/?"-/?') 

Var (y j 1-/?' 

An extension of the weight adjustment procedure 
described above to surveys involving more than two panels 
with non-identifiable temporal sample domains is straight­
forward. There will be then as many weight adjustment 
factors, adding up to one, as there are panels. This very 
practical procedure will produce good cross-sectional esti­
mates in multiple panel surveys in which the time lag 
between the selection of the panels is not large. Otherwise, 
the potential for bias due to the domain identification error 
may be of concern, mainly for estimates related to 

subpopulations composed in substantial proportion of new 
entrants. 

4. THE WEIGHT SHARE METHOD FOR THE 
COMBINED PANELS 

This secfion describes the application of a weight adjust­
ment method, known as the weight share method, to the 
combined panel sample at any wave after the start of the 
most recent panel. This weight adjustment is necessary 
because of the changes in the household membership after 
the selection of the panels. 

The weight share method is a cross-sectional weighting 
procedure that assigns a basic weight to every individual in 
a panel household at any wave after the first. In particular, 
the weight share method, as applied to a single panel, 
assigns a positive weight to non-selected individuals who 
join households containing at least one individual selected 
for the original sample. Following Lavallee (1995), in this 
paper such households are termed longitudinal households, 
while the non-selected individuals living in longitudinal 
households are termed cohabitants. The cohabitants are 
distinguished into originally present cohabitants if they 
belong to the original (sampled) population, and originally 
absent cohabitants if they are new entrants to the pop­
ulation. Other problematic situations that can be handled by 
the weight share method involve non-selected households 
formed after the first wave by members of separate 
originally selected households, as well as originally selected 
individuals who have subsequently moved to other longi­
tudinal households. For a detailed discussion of the weight 
share method for a single panel, see Kalton and Brick 
(1995), and Lavallee (1995). For the purpose of applying 
the weight share method to a multiple panel survey the 
following need to be considered. In multiple panel surveys, 
the original population for the combined panels is the union 
of the populafions covered by the different panels at the 
time of their selection. Accordingly, the original sample 
consists of all selected units in the combined panel sample. 
Thus, an originally present cohabitant is an individual that 
was eligible for selection in any of the panels. In this 
approach then, at any wave after the selection of the most 
recent panel a cohabitant is distinguished into originally 
present or originally absent with respect to the original 
combined panel sample, not with respect to each original 
panel. Notably, at the first wave of a new panel, or when a 
top-up sample is used, all cohabitants are originally present. 
On the other hand, application of the weight share method 
separately to each panel (before combination) would 
require more precise information on the eligibility of the 
cohabitants for selection in each of the various panels, in 
order to distinguish the originally present cohabitants from 
the originally absent cohabitants and to identify the 
temporal domain that includes each of the cohabitants. 
Such information most likely would be unavailable. 
Moreover, combining the panels after, the weight share 
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procedure would require a very complicated set of specifi­
cations in order to ensure that a suitable weight adjustment 
factor would be applied to each sampled unit. For instance, 
with the inclusion of the originally absent cohabitants into 
the panels through the weight share procedure, the frames 
of the panels will be different at each survey wave, thereby 
complicating the determination of the various temporal 
domains. Lastly, it should also be pointed out that in 
multiple panel surveys sampled individuals may move from 
one panel to another panel between waves during the time 
period of panel overlap, and non-sampled households may 
be formed by members of originally selected households 
from different panels. Thus, the panels are truly distinct 
(and independent) only with respect to the time of their 
selection. 

It follows from the foregoing considerations that the 
weight share method for multiple panels is to be applied to 
the combined panel sample, and not to each panel sepa­
rately. Then, with the prescribed distinction of the two types 
of cohabitants, the case of the weight share method for a 
multiple panel survey reduces to the case of a single panel 
survey. As a desirable consequence, the application of the 
weight share method to the combined sample will yield 
always a common weight for all members of the same 
household. The following is an exemplification of the 
proposed weight share procedure for multiple panel 
surveys, involving the simple case of two panels. 

Starting with a survey setting as depicted in Figure 1, 
with two overlapping panels at the time point of the start of 
the second panel, let there be Â  individuals in the pop­
ulation at a later wave (time t), with N. individuals in 
household "K., say; i = l,...,H and EN.=N. Let M. 
denote the number of individuals in household "K. at time 
t that belong to the original population, with Mg. and M^. 
individuals from the original frame domain B and the non-
overlap frame domain a, respectively, so that M. = 
Mg. + M^.. Some, but not all, of the numbers Mg., M^. and 
Â; - M. may be zero for any particular household. Now, 
with the random weights of individuals in B and a as 
defined in secfion 3.1, and with the weights of the N.-M. 
originally absent cohabitants in "K. being identically equal 
to zero, the weight share method defines a common weight 
for every individual in "K. (including new members) as 

w. = 

M, 

k = l 
ik' (10) 

where ŵ.̂  is the weight of the ^-th household member that 
belongs to the original population. Clearly then E{w.) = I 
for each household for which M. * 0, whereas E{w.) = 0 
if A/. = 0, since w.*0 only if M.>0. For the survey 
characteristic y, the total for the population of individuals at 
time t can be expressed as y = E-^, E^!,, y.̂ , where y,.̂  is 
the value of y for individual k in household "K.. Then, an 
estimator of Y is given by 

Y- E -,E yik 
1=1 k=l 

H 

E w, 
1 = 1 

Mg. M„. N.-M, 

Ilyik^iyik^ E yik 
k=l *=1 *=1 

= Ys-Y^-Y,. (11) 

with w. as in (10), with A'^ denofing the set of individuals 
not in frame A, and with the obvious notation for the right 
hand side of (11). The esfimator y in (11) is given as the 
sum of three esfimators, Yg, Y^ and Y^c, for the totals 
related to the population domains B, a and A '^, respectively. 
The esfimators Yg and Y^ are unbiased, even though they 
are based on sets of units that may not be identical to the 
original samples SgUs^ and s^, respectively. Forexample, 
the estimator Yg is based on a set of units consisting of the 
remaining units of the original combined sample Sg U s^ 
from frame B, and possibly of cohabitants originally present 
in B. The estimator Y^ c is not unbiased for Y^ c, because 
individuals in A"̂  who live in households that contain no 
members of the original population are not represented in 
the panel survey. Nevertheless, the esfimator Y^c is 
unbiased for the total corresponding to the rest of A"^, 
which is represented in the combined panels by the origi­
nally absent cohabitants. In the special case when time t 
coincides with the start of the second panel (or with the 
time of selection of a supplementary sample), A'^ = z, 
N. = M., and the esfimator y = y^ + ŷ  is unbiased for Y. It 
should be noted here that if the weights of the responding 
individuals at time t are adjusted for nonresponse, the 
relationship E{w.) = I may hold only approximately, and 
in that sense the resulting estimators may be only approxi­
mately unbiased. 

It is important to note that the estimator y in (11) can be 
expressed as 

Y-t^iYr 
1=1 

where Y. = E^̂ l, y.̂  is the total for household "H.. Thus, Y 
is also an estimator of the household-level total at time t. 

As with the weight adjustment involved in the combi­
nation of panels, the weight share adjustment may also be 
carried out at a superstratum level, say province, for the 
combined sample of each province. In this approach, those 
individuals who at time t reside in a province other than the 
one in which they resided at the time of selection of any of 
the panels are treated as originally absent, since they were 
not members of the original population of their new 
province. In particular, interprovincial movers (selected or 
non selected in their original province) who are found in 
longitudinal households in their new province at time t are 
treated as originally absent cohabitants. When a top-up 
sample is used at time t, these interprovincial movers are 
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treated as originally present cohabitants. The application of 
the weight share procedure separately for each superstratum 
enjoys certain operational and statistical advantages over 
the standard weight share procedure. An account of the 
comparative merits of the two approaches is given in 
Merkouris (1999). 

5. INTEGRATION OF VARIOUS WEIGHT 
ADJUSTMENTS 

In addition to the weight adjustments described so far, 
other adjustments to the weights of a panel household 
survey may also be required. The integration of the various 
weight adjustments is briefly outlined below. 

The first adjustment, applied in relation to the original 
sample units, is for wave nonresponse, which arises when 
a sampled unit responds for some but not all of the waves 
for which it was eligible. For a discussion on weight adjust­
ment for wave nonresponse, see Kalton and Brick (1995). 
The adjustment is made separately to the different panels at 
each wave. 

The second adjustment is for the combination of the 
samples of the various panels into one sample for cross-
sectional estimation. It applies to the weights of the sampled 
units of the panels, adjusted for wave nonresponse, and 
employs the method described in section 3. 

The third adjustment involves the application of the 
weight share procedure to the combined panel sample at 
any wave after the start of the most recent panel, as 
described in section 4. 

Finally, in the weight calibration adjustment the weights 
of the combined panel units are adjusted so as to make the 
estimated totals for certain auxiliary characteristics equal to 
known population totals for these characteristics at the 
current wave, which in the simple case as in Figure 1 
correspond to totals of the complete frame A. In more 
general situations, after the selection of the most recent 
panel the calibration totals will include the new entrants 
into the population. Note that in the absence of a top-up 
sample the new entrants will be represented in the panels 
only by the originally absent cohabitants. Calibrating the 
weights of the combined sample to population totals of each 
of the different temporal domains (when the panel units 
from these domains can be identified) may not be feasible 
or sensible for reasons already noted in section 3.1. 

combination of the panel data, are beyond the scope of this 
paper. It has been shown that although a multiple panel 
survey can be viewed as a special type of multiple frame 
survey, its disfinctive dynamic character renders conven­
tional multiple frame estimation procedures problematic or 
even non applicable. The proposed weighting procedures, 
which account for the population and panel dynamics, 
involve a simple weight adjustment for each panel that is 
proportional to the effective panel size. These procedures 
are operationally convenient for any number of overlapping 
panels, and for different situations regarding the 
identifiability of various temporal panel domains. Theo­
retical and practical issues related to the application of a 
weight share adjustment, to the calibration weight adjust­
ment and to the integration of the various weighting 
procedures involved in a multiple panel survey have also 
been addressed. In particular, it has been argued that the 
weight adjustment for the combination of the panels should 
precede the weight share adjustment, with calibration being 
the final weight adjustment. A detailed empirical study of 
issues pertaining to the determination of weight adjustment 
factors for combining two panels of the SLED, based on the 
methodology of this paper, is described in Latouche et al. 
(20(X)). The variance of cross-sectional estimators has been 
discussed in this paper only in the context of efficient 
combination of panels. Variance estimation issues related 
to changes in the sample over time, particularly to moves 
from stratum to stratum, are discussed in Merkouris (1999). 
It is to be remarked, in conclusion, that the quality of a 
cross-sectional estimation procedure depends on the identi­
fiability of various overlap temporal sample domains; on 
design features of the survey, such as the duration of (and 
the lag between) the panels and the use of a supplementary 
sample at any survey wave; and on the adequacy of the 
information on cohabitants required for the application of 
the weight share method. 
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6. SUMMARY AND CONCLUDING REMARKS 

The weighting procedures described in this paper can be 
used to combine information from multiple panels of a 
repeated household survey for cross-sectional estimation in 
a fairly general setting involving panels with given designs; 
design issues regarding determination of optimal sampling 
fractions for the panels, in conjunction with efficient 
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Producing Small Area Estimates From National Surveys: 
Methods for Minimizing use of Indirect Estimators 

DAVID A. MARKER' 

ABSTRACT 

National surveys are usually designed to produce estimates for the country as a whole and for major geographical regions. 
There is, however, a growing demand for small area estimates on the same attributes measured in these surveys. For 
example, many countries in transition are moving away from centralized decision-making, and western countries like the 
United States are devolving programs such as welfare from Federal to state responsibilities. Direct estimates for small areas 
from national surveys are frequently too unstable to be useful, resulting in the desire to find ways to improve estimates for 
small areas. While it is always possible to produce indirect, model-dependent, estimates for small areas, it is desirable to 
produce direct estimators where possible. Through stratification and oversampling, it is possible to increase the number 
of small areas for which accurate direct estimation is possible. When estimates are required for other small areas, it is 
possible to use forms of dual-frame estimation to combine the national survey with supplements in specific areas to produce 
direct estimates. This article reviews the methods that may be used to produce direct estimates for small areas. 

KEY WORDS: Small area estimation; Direct estimation; Stratification; Oversampling; Dual-frame estimation. 

1. INTRODUCTION 

Throughout the world there is an increased demand for 
small area estimates. During the 1990s countries in transi­
tion moved away from centralized decision-making, re­
quiring accurate estimates of local economic and demo­
graphic conditions. In the United States the Federal govern­
ment has been moving responsibility for many social 
programs to the 50 states. Evaluating the success of such 
efforts requires accurate estimates for each state. Some 
programs such as the Small Area Income and Poverty 
Estimates (Citro and Kalton 2000) are required at much 
smaller levels of geography, for example for thousands of 
school districts. Regardless of the best plans of survey 
designers, "The client will always require more than is 
specified at the design stage" (Fuller 1999, page 344). 

Ideally such estimates would be produced from direct 
(design-based) estimators. Unfortunately, at small levels of 
aggregation, the direct estimates are too unstable to be 
published and/or used for policy purposes. As a result there 
has been a great deal of interest in developing a range of 
indirect estimation techniques (Marker 1999; Rao 1999; 
Ghosh and Rao 1994). 

This paper approaches this problem from a different 
perspective, how to minimize model-reliance through good 
survey design. It will never be possible to anticipate all 
survey uses, or to allocate sufficient sample sizes to all 
domains of interest, so indirect esfimators will always be 
needed. It is possible, however, to make design choices that 
will greatly improve the ability of national surveys to 
support direct estimation for many small areas. Such 
choices can also improve the ability of surveys to be used to 
produce indirect estimates where they are needed. This 

paper is an update of the excellent paper by Singh, 
Gambino and Mantel (1994) on the same topic. Design 
issues that will be considered include stratification and 
oversampling, combining multiple years of data, harmoni­
zation across surveys, dual-frame estimation, and measuring 
the accuracy of estimates. 

2. STRATIFICATION AND OVERSAMPLING 

Deciding on the optimal stratification and oversampling 
scheme for any nafional survey is a compromise across 
many variables of interest. Optimizing stratification and 
oversampling between national estimates and small area 
estimates should also be a compromise. By giving up some 
national accuracy it is often possible to greatly improve the 
accuracy for many small areas. Some of these small areas 
may then be able to support accurate design-based esti­
mates. Other small areas will still require model assistance, 
but the stratification may allow for unbiased (but variable) 
estimates that can be incorporated into the model-based 
estimates. As the following example demonstrates, strati­
fication alone is helpful, but limited, in its ability to improve 
small area estimates. 

The United States Current Population Survey (CPS), 
conducted by the U.S. Census Bureau, has stratified by state 
and unemployment rate since 1985. However, another large 
Census Bureau survey, the United States National Health 
Interview Survey (NHIS), stratified by region, metropolitan 
area status, labor force data, income, and racial composition 
until 1994. The resulting sample sizes for individual states 
varied from year to year and did not support unbiased 
state-level estimates. Due to random sampling, from 1985 
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to 1994 two states did not have any sample included in the 
NHIS. This would not have happened with state strati­
fication. 

Beginning in 1995 the NHIS stratification scheme was 
replaced by state and metropolitan status. Table 1 sum­
marizes the number of states that have sufficient sample 
size in the 1995 NHIS to achieve various levels of accuracy 
for four different key health measures. The NHIS completes 
interviews with approximately 44,000 households con­
taining 100,000 individuals. With a very strict constraint of 
a 10 percent coefficient of variation (CV) less than 10 states 
meet the standard for three of the four variables. Over half 
of the states meet the more lenient 30 percent CV for all 
four variables, but even this standard is not met for all 
states. 

Figure 1 presents the ability of the NHIS to meet these 
accuracy standards for generic questions with prevalence 
levels of 0.01,0.05,0.10, 0.15, and 0.20 and design effects 
ranging from 1.00 to 6.(X). (This variation in design effects 
is found on the NHIS, depending on the intra-household 
correlation and other clustering.) For prevalence rates above 
10 percent, almost all states can achieve the 30 percent 
criterion even for the largest design effects. However, there 
is a significant drop off in the number of states as the 
criterion is tightened, the design effect increases, or the 
prevalence rate drops. For rare events with even moderate 
design effects less than half the states can meet the weakest 
criterion and hardly any can make the tightest. 

Table 1 
Summary of the Number of States (out of 51, Including the District of Columbia) That Have the Required 1995 

NHIS Sample Size to Achieve a CV of 30-, 20-, and 10-Percent for Four Selected Variables 
(44,000 Households, 100,000 Individuals) 

Coefficient 
of 

Variation (CV) 

Percent uninsured: 
all ages 

(p=13.5%) 

Percent uninsured: 
under 19 

(p=12.2%) 

Percent uninsured: 
low income children 

(p = 20.4%) 

Percent smokers: 
18 and over 
(p = 25.2%) 

30-percent 
20-percent 
10-percent 

42 
31 
7 

31 
13 
2 

28 
10 
2 

45 
36 
14 

1.00 1.60 3.00 8.00 
p-0.01 

1.00 1.50 3.00 6.00 
p-O.OS 

1.00 1.50 3.00 6.00 1.00 1.60 3.00 6.00 
p-O.IO p>0.1B 

A Dvslgn Effscts for Each of ft Pr«val*nc* Lavals 

1.00 1.60 3.00 6.00 
p-0.20 

Figure 1. Number of States Meeting CV Criteria for 1995 NHIS (44,000 Households, 100,000 Individuals) 
i 
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Stratification by small area assures a fixed sample size 
will be assigned to each small area, and thereby fixes the 
accuracy associated with direct estimates. Without such 
stratification, it may even be impossible to produce unbi­
ased estimates for small areas that do contain some sample, 
because the probabilities of selection for sampled cases are 
a function of their entire stratum, both inside and outside 
the small area. For example, this can occur when part of a 
small area is in a stratum that crosses small area boundaries, 
and the sampled PSUs are in other small areas. To produce 
direct estimates requires either collapsing strata boundaries 
or small area boundaries. 

By oversampling small areas it is possible to signifi­
cantly improve the accuracy of direct estimates for these 
areas, while only incurring a minimal loss in accuracy for 
national estimates. As a simple example, consider a national 
survey with 5,000 respondents but where under a random 
sampling scheme 10 of the small areas would only receive 
100 cases each. Alternatively one could double the sample 
size to 200 in each of these small areas while retaining the 
national sample size of 5,000. The effective sample size for 
national estimates would be reduced by this oversampling, 
but would remain more than 4,000, so the CV of national 
estimates would increase less than 10 percent. The CV for 
estimates in each of the 10 small areas would decrease 30 
percent because the sample size was doubled. 

Beginning in 1999 the U.S. National Household Survey 
on Dmg Abuse has combined stratification and over-
sampling to produce direct estimates for every state 
(Chromy, Bowman and Penne 1999). 

Singh etal. (1994) provided an example of oversampling 
small areas in the Canadian Labour Force Survey. Seventy 
percent of the sample was allocated to provide optimal 
national and provincial estimates. The remaining 30 percent 
were used to supplement small areas to improve their esti­
mates. National CVs were increased between 10 and 20 
percent by this compromise design, but unemployment 
insurance regions' estimates had CV reductions as large as 
50 percent. 

A similar design was used for the 2000 Danish Health 
and Morbidity Survey. The survey included two national 
samples, each of 6,000 respondents. An additional 8,000 
respondents were distributed to assure that at least 1,000 
respondents would be in each county. 

The effect of oversampling on CVs can also be seen by 
comparing the 1996 CPS and 1995 NHIS with America's 
1996 Survey of Income and Program Participation (SIPP). 
The CPS not only stratified by state, it also oversampled 
smaller states. The NHIS stratified by state but didn't 
oversample based on geography (minority groups were 
oversampled, but they tend to be located in the more 
populous states). In contrast, the SIPP did not stratify by 
state nor did it oversample. The ratio of the largest to 
smallest state sample size was 11:1 for CPS, 60:1 for SIPP, 
and 110:1 for NHIS. The corresponding ratio of CVs was 

3.5:1, 7.5:1, and 10.5:1. Oversampling resulted in the CVs 
for the smallest states being reduced by almost a factor of 
two-thirds! 

It is important to remember that oversampling based on 
geography doesn't necessarily reduce the variability in 
other domains of interest, for example demographic sub­
groups. The ratios of largest to smallest state sample sizes 
in the CPS were 15:1 for children, 20:1 for the elderly, 
500:1 for Blacks, and 800:1 for Hispanics. 

The 1994 U.S. National Employer Health Insurance 
Survey (NEHIS) oversampled smaller states to balance the 
need for accurate state and national estimates. The overall 
sample of 40,000 establishments had to be spread across all 
51 states to provide direct estimates for all states. Three 
options were considered: 

Option A: Optimal national allocation (based on total 
employment in the state) yielded very small 
sizes in some states. 

Option B: Equal allocation to all states yielded inefficient 
national estimates. 

Option C: Minimum 400 completes per state (allocate 
based on number of employees to the 0.3 
power). 

The corresponding ratio of largest to smallest state CVs 
were 7.2:1 for Option A, 1:1 for Option B, and 1.8:1 for 
Option C. Compared to Option C, the national CV with 
Option A was 17 percent lower, but with Option B was 22 
percent higher. Option C was selected over Option A since 
it reduced the variation in state CVs by a factor of 4 while 
only moderately increasing the national CV. 

3. COMBINING MULTIPLE YEARS 

An inexpensive way to increase the sample sizes in small 
areas is to combine cycles of a repeated survey. Combining 
k years of an annual survey increases the effective sample 
size not quite k times. The reason for this is that usually 
consecutive years of the same survey are conducted in the 
same primary sampling units (PSUs) and even adjacent area 
segments. This results in some correlation between years, 
somewhat reducing the effective sample size. 

One drawback to combining multiple years is that such 
estimates are slow to detect changes across time. If time 
series are a prime interest, altemative methods must be used 
to increase the sample size. 

Table 2 shows for the 1995 NHIS how many states can 
achieve different levels of accuracy by aggregating across 
two or three years. Aggregation clearly helps achieve CVs 
of 30 and 20 percent. Even aggregating 3 years can't help 
many states achieve a CV of 10 percent. 
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Table 2 
Summary of the Number of States (out of 51) That Have the Required 1995 NHIS Sample Size to Achieve a 

CV of 30-, 20-, and 10-Percent; Aggregating Multiple Years for Four Selected Variables 
(44,000 Households, 100,000 Individuals). 

30-percent CV 

1 year 

2 years 

3 years 

20-percent CV 

1 year 

2 years 

3 years 

10-percent CV 

1 year 

2 years 

3 years 

Percent uninsured: 
all ages 

42 

46 

49 

31 

36 

42 

7 

14 

22 

Percent uninsured: 
under 19 

31 

35 

41 

13 

29 

31 

2 

3 

7 

Percent uninsured: 
low income children 

28 

36 

37 

10 

24 

31 

2 

3 

4 

Percent smokers: 
18 and over 

45 

50 

51 

36 

44 

46 

14 

25 

32 

4. HARMONIZATION ACROSS 
SURVEYS 

Harmonizing questions across surveys is another 
inexpensive way to improve estimation. Eurostat has been 
making a major effort to harmonize a number of surveys 
both between countries and within. The European 
Community Household Panel Survey (ECHP) is an attempt 
to collect consistent information across the member coun­
tries. Similar standardizafion is ongoing in each country's 
Labour Force Survey. This harmonizafion across countries 
improves international comparisons. 

Harmonizing across surveys of the same population 
increases sample sizes, improving small area estimates. 
Statistics Finland has been harmonizing the process for 
collecting income and other variables in its surveys. The 
Permanent Survey on Living Conditions (POLS) at Statis­
tics Netherlands uses a common procedure for collecting 
basic information in a series of social surveys. 

Even if the questionnaire wording is consistent across 
surveys, the data may not be completely comparable. 
Different modes of data collection can cause differences, as 
can the placement of questions (Groves 1989). 

5. DUAL-FRAME ESTIMATION 

In some situations it is possible to supplement an 
in-person survey with telephone data collection, thereby 
increasing the sample size in a small area at more limited 
expense. The Dutch Housing Demand Survey is a national 
in-person survey. To produce small area estimates tele­
phone supplementation is used in over 100 municipalities. 
Table 3 shows the size of the national in-person survey, 
telephone supplement, and total sample in ten selected 
municipalities. 

Table 3 
Dual-Frame Completes for Municipalities in the Dutch Housing Demand Survey 
Municipality In-Person National Survey Telephone Supplement Total 
Leek 

Marum 

Slochteren 

Zuidhom 

Emmen 

Avereest 

Bathmen 

Dalfsen 

Deventer 

Diepenveen 

56 

29 

44 

54 

770 

134 

24 

157 

316 

47 

569 

299 

456 

558 

224 

465 

506 

466 

335 

336 

625 

328 

500 

612 

994 

599 

530 

623 

651 

383 
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Sirken and Marker (1993) described dual-frame estima­
tion for the U.S. National Health Insurance Survey (NHIS) 
based on its 1985-94 design. Table 4 examines the same 
idea for the current design implemented beginning in 1995. 
The table compares the ability to produce state estimates 
with national in-person survey interviews and with unbiased 
dual-frame estimation using an unlimited number of supple­
mental telephone interviews. (Up to 100, 200, and 2,000 
telephone interviews per state are required to achieve CVs 
of 30-, 20-, and 10- percent, respectively.) When a small 
area has a large percentage of households without tele­
phones, no amount of telephone supplementation may be 
sufficient to achieve unbiased estimates with the desired 
accuracy. 

In such situations, it may only be possible to achieve a 
desired level of accuracy using a potentially biased esti­
mator that combines all data regardless of the mode of 
collection. The relative root mean square error (RRMSE) 
must then be used instead of the CV to measure accuracy. 
However, for some characteristics households with 

telephones have different expectations than households 
without telephones. In such situations the bias can again 
prevent achieving the desired accuracy. The bias for each of 
these variables was estimated by comparing NHIS 
responses from households with and without telephones. 
Table 5 shows how the number of states for which a 10 
percent RRMSE can be achieved varies by question, a 
funcfion of the bias in telephone households and the 
telephone penetration rate in each state. 

Small areas with high telephone penetration rates, for 
characteristics with different expectations for telephone and 
non-telephone households, are better able to produce 
accurate estimates using an unbiased dual-frame estimator. 
Small areas with lower penetration rates, for characteristics 
with similar telephone and non-telephone households, 
produce more accurate estimates with a potentially biased 
dual-frame estimator. Using the appropriate dual-frame 
estimator for a given small area and characteristic can allow 
accurate estimates to be produced for a large percentage of 
small areas. 

Table 4 
The Number of States Able to Achieve 30-, 20-, 10-Percent CV With the 1995 NHIS Area Sample Only, With Unbiased 

Dual-Frame Estimation Using a RDD Supplement, or not at All, for Four Specific Variables 

CV Data sources 

30% With area sample only 

With RDD supplement 

Unable to meet requirement 

20% With area sample only 

With RDD supplement 

Unable to meet requirement 

10% With area sample only 

With RDD supplement 

Unable to meet requirement 

Percent uninsured: 
all ages 

42 

9 

0 

32 

19 

0 

8 

40 

3 

Percent uninsured: 
under 19 

31 

20 

0 

15 

35 

1 

2 

41 

8 

Percent uninsured: 
low income children 

31 

19 

1 

10 

40 

1 

2 

39 

10 

Percent smokers: 
18 and over 

46 

5 

0 

37 

14 

0 

15 

36 

0 

Table 5 
The Number of States Able to Achieve 10-Percent RRMSE With the 1995 NHIS Area Sample Only, With a RDD Supplement, 

or not at all, for the Four Specific Variables 

Data source 

With area sample only 

With RDD supplement 
Unbiased Estimator 

Biased Estimator 

Unable to meet requirement 
Unbiased Estimator 

Biased Estimator 

Percent uninsured: 
all ages 

8 

40 

30 

3 

13 

Percent uninsured: 
under 19 

2 

41 

47 

8 

2 

Percent uninsured: 
low income children 

2 

39 

49 

10 

0 

Percent smokers: 
18 and over 

15 

36 

35 

0 

1 
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6. IMPROVING POINT AND VARIANCE 
ESTIMATION 

When sufficient sample size exists to produce small area 
estimates there are additional steps that can be taken to 
improve their accuracy. SIPP does not stratify by state, to 
improve state estimates it reweights the estimates to control 
totals at the state level. This is very important when the 
stratification doesn't match the analytic domains. The use 
of control totals also improves subpopulation {e.g., demo­
graphic) size estimates for the small areas. However, it is 
not possible to control as many subpopulations in a small 
area as can be done at the national level, due to the smaller 
sample sizes. 

There are also many techniques to improve variance 
estimation for small areas. Typically there will be very few 
sampled PSUs in a given small area. This provides few 
degrees of freedom for estimating between-PSU (or total) 
variance. One solution is to average estimates of variance 
across small areas, but this covers up the fact that estimates 
are generally much better for some areas than for others. 
Alternatively generalized variance functions (GVFs) can be 
used to smooth variance estimates. 

A preferable solution is to address small area variance 
estimation at the design stage. Increasing the number of 
PSUs, with a corresponding reduction in sample size in 
each PSU, can significantly improve both point and 
variance estimation, often at little extra cost. Singh et al. 
(1994) suggested increasing the number of PSUs to control 
sample sizes in unplanned small areas. Remembering 
Fuller's observation that "The client will always require 
more than is specified at the design stage," it is impossible 
to anticipate all small areas of interest. By having more 
PSUs the likelihood is increased that actual data will have 
been collected from unplanned analytic domains. 

Kalton (1994) suggested a second reason for increasing 
the number of PSUs. His concern was that more PSUs per 
small area would greatly increase the stability of variance 
estimates. This is true even in very large national surveys 
with many PSUs. The NHIS was redesigned in 1995 
increasing the number of PSUs from 196 to 359. Of these 
359 PSUs 264 were noncertainty PSUs. This still resulted 
in only 7 states having more than 8 noncertainty PSUs. 
While direct variance estimation for individual states is still 
problematic for most states, there is an increased opportu­
nity to develop average variance estimates for groups of 
states with common characteristics, rather than having to 
group all states together in a national average. 

7. SUMMARY 

There will always be a need for indirect small area 
estimation methods since the entire set of analytic domains 
is never known in advance. This need for small area 
estimates is growing around the world. There are, however, 
many actions that can be taken at the design stage to 
improve direct small area estimates, both point estimates 
and variance estimates. These steps include stratification 
consistent with known analytic domains, oversampling 
smaller areas, and increasing the number of PSUs. Given 
the data it is often possible to combine data from multiple 
years, from other surveys with whom questions have been 
harmonized, and through dual-frame estimation techniques. 
These steps will both reduce the need for indirect estimates 
and improve the accuracy of those estimates when they are 
required. 
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A Repeated Half-Sample Bootstrap and Balanced Repeated Replications 
for Randomly Imputed Data 

HIROSHI SAIGO, JUN SHAO and RANDY R. SITTER' 

ABSTRACT 

In this paper, we discuss the application of the bootstrap with a re-imputation step to capture the imputation variance (Shao 
and Sitter 1996) in stratified multistage sampling. We propose a modified bootstrap that does not require rescaling so that 
Shao and Sitter's procedure can be applied to the case where random imputation is applied and the first-stage stratum sample 
sizes are very small. This provides a unified method that works irrespective of the imputation method (random or 
nonrandom), the su âtum size (small or large), the type of estimator (smooth or nonsmooth), or the type of problem (variance 
estimation or sampling distribution estimation). In addition, we discuss the proper Monte Carlo approximation to the 
bootstrap variance, when using re-imputation together with resampling methods. In this setting, more care is needed than 
is typical. Similar results are obtained for the method of balanced repeated replications, which is often used in surveys and 
can be viewed as an analytic approximation to the bootstrap. Finally, some simulation results are presented to study finite 
sample properties and various variance estimators for imputed data. 

KEY WORDS: Hotdeck; Percentile method; Monte Carlo; Imputation; Bootstrap sample size. 

1. INTRODUCTION 

Item nonresponse is a common occurrence in surveys 
and is usually handled by imputing missing item values. 
The various imputation methods used in practice can be 
classified into two types: deterministic imputation, such as 
mean, ratio and regression imputation, typically using the 
respondents and some auxiliary data observed on all 
sampled elements; and random imputation. In both cases 
the imputation is often applied within imputation classes 
formed on the basis of auxiliary variables. This article 
focuses on random imputation. 

Typically, random imputation is done in such a way that 
applying the usual estimation formulas to the imputed data 
set produces asymptotically unbiased and consistent survey 
estimators {e.g., means, totals, quantiles). More details 
about random imputation are provided in section 2. It is 
common practice to also treat the imputed values as tme 
values when estimating variances of survey estimators. This 
leads to serious underestimation of variances if the pro­
portion of missing data is appreciable, and to poor confi­
dence intervals. 

There have been some proposals in the literature to 
circumvent this difficulty. For random imputation, Rubin 
(1978) and Rubin and Schenker (1986) proposed the 
multiple imputation method to account for the inflation in 
the variance, which can be justified from a Bayesian per­
spective (Rubin 1987). Adjusted jackknife methods for 
variance estimation have been proposed for both random 
and deterministic imputations (Rao and Shao 1992; Rao 
1993; Rao and Sitter 1995; Sitter 1997), under stratified 
multistage sampling. However, it is well known that the 

jackknife cannot be applied to non-smooth estimators, e.g., 
a sample quantile or an estimated low income proportion 
(Mantel and Singh 1991). 

There are two methods available for handling randomly 
imputed data for both smooth and non-smooth estimators: 
the adjusted balanced repeated replication (BRR) methods 
proposed by Shao, Chen and Chen (1998); and the boot­
strap method proposed by Shao and Sitter (1996) (see also 
Efron 1994) with a re-imputation step to capture the impu­
tation variance. The bootstrap method is more computer 
intensive but is easy to motivate and understand, and 
provides a unified method that works irrespective of the 
imputation method (random or nonrandom), the type of 0 
(smooth or nonsmooth), or the type of/problem (variance 
estimation or sampling distribution estimation). 

In this article we continue the work by Shao and Sitter 
(1996). First, we show in section 3 how Shao and Sitter's 
bootstrap procedure can be modified to handle very small 
stratum sizes {e.g., two psu's per stratum). Second, we 
discuss in section 4 the proper Monte Carlo approximation 
to the bootstrap estimators, a problem for which more care 
is needed when random re-imputation is applied than is 
typical. This has no detrimental effect on bootstrap confi­
dence intervals based on the percentile method, but if done 
incorrectly, will cause the bootstrap-f to perform poorly. 
Third, we consider a BRR variance estimation method with 
a re-imputation step, which can be viewed as an analytic 
and symmetric approximation to the bootstrap method. 
Finally, we present some simulation results to study 
properties of various bootstrap and BRR variance 
estimators. 

Hiroshi Saigo, School of Political Science and Economics, Waseda University, 1 -6-1 Nishiwaseda Shinjuku, Tokyo, 169-8050 Japan; Jun Shao, Professor, 
Department of Statistics, University of Wisconsin, Madison, Wl 53706, USA; Randy R. Sitter, Professor, Department of Statistics and Acturiai Science, Simon 
Fraser University, Bumaby, BC, Canada V5A 1S6. 
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2. STRATIFIED MULTISTAGE SAMPLING AND 
RANDOM IMPUTATION 

Though the methods discussed in this article can be more 
generally applied, we restrict attention to the commonly 
used stratified multistage sampling design. Suppose that the 
population contains H strata and in stratum h, n^ clusters 
are selected with probabilities p,^., i = l,..., n .̂ Samples are 
taken independently across strata. In the case of complete 
response on item y, let 

YH-ilY^if^rt.p^i) 
1 = 1 

be a linear unbiased estimator of the stratum total K̂ , where 
y .̂ is a linear unbiased estimator of the cluster total y .̂ for 
a selected cluster based on sampling at the second and 
subsequent stages. A linear unbiased estimator of the total, 
y = E y ,̂ is given by y = E y ,̂ which may be written as 

Y- E 
{hik)es 

'hik-'hik' (1) 

where s is the complete sample of elements, and ŵ .̂̂  and 
yhik respectively denote the sampling weight and the item 
value attached to the {hik) - th sampled element. 

Often a survey estimator, 0, can be expressed as a 
function of a vector of estimated totals as in (1). If one is 
interested in the population distribution function, it can be 
estimated by F^{t) = E^ Wi^.J{y^.i^ <. t) lu, where /(•) is 
the usual indicator function and t/ = E^ w .̂̂ . Some non-
smooth estimators that are of interest are the p-th sample 
quantile, F (p), where P is the quantile function of F, 
and the sample low income proportion F[{ll2F (112)]. 

Suppose that the value ŷ ^̂  is observed for {hik) es^^s, 
termed a respondent, while for others, {hik)es^, it is 
missing, termed a nonrespondent, with 5 = j ^ U s^. When 
there are missing data, it is common practice to use 
{y^ii^:{hik)es^] to obtain imputed values ŷ ,.̂  for 
{hik) e s^ and then treat these imputed values as if they 
were true observations and estimate Y with 

Y, = ^Whikyhik^T ^hiky hik-' hik- (2) 

In practice, the accuracy of the imputation is improved 
by first forming several imputation classes using control 
variables observed on the entire sample, and then imputing 
within imputation class. For simplicity we consider a single 
imputation class. 

Random imputation entails imputing the missing data by 
a random sample from the respondents, or, in the presence 
of auxiliary data, by using a random sample of residuals. If 
the imputation is suitably done, the estimator y, in (2) is 
asymptotically unbiased and consistent, although it is not as 
efficient as y in (1). Throughout this article, we assume 
that, either 

within each imputation cell, the response probability 
for a given variable is a constant, the response statuses 

or 

for different units are independent, and imputation is 
carried out within each imputation cell and inde­
pendently across the imputation cells, 

within each imputation cell, the response probability of 
a given variable does not depend on the variable itself 
(but may depend on the covariates used for imputa­
tion), imputation is carried out independentiy across the 
imputation cells, and within an imputation cell, impu­
tation is performed according to a model that relates the 
variable being imputed to the covariates used for 
imputation. 

We also assume the same asymptotic setting as that in 
Shao et al. (1998). Thus, consistency (or asymptotic 
unbiasedness) refers to convergence of estimators (or 
expectations of estimators) under the assumption in Shao, 
et al. (1998), as the first-stage sample size « = En^ 
increases to infinity. 

There are many methods of random imputation. We 
consider only two in this article: the weighted hotdeck 
considered in Rao and Shao (1992), which we refer to 
simply as random imputation, and the adjusted weighted 
hotdeck proposed in Chen, Rao and Sitter (2(X)0), which we 
refer to as adjusted random imputation. Our results can be 
easily extended to random imputation with residuals in the 
presence of auxiliary data {e.g., random regression impu­
tation). Generalizations to other types of random imputation 
may be possible, but will not be considered here. 

Random imputation randomly selects donors, ŷ .̂̂  from 
{yi^.^,:{hik)es^] with replacement with probabilities 
vv^^ /̂f, where f = E^ w |̂.̂ . In this case E,{Yi) = 
{Slf)U = y ,̂ a ratio estimator which is asymptotically 
unbiased and consistent for Y, where 5 = E^ Wf^-j^ ŷ .̂̂ . Here £, 
denotes expectation under the random'imputation. The 
variance of Y, is larger than the variance of Y^ because of 
the random imputation. However, the distribution of item 
values in the imputed data set is preserved. 

Adjusted random imputafion simply uses fĵ ,.j = 
yhik "̂  {^^^ - SIT) as the imputed values instead of y;,, '̂ 
where S =E w,.J^.^,f =E^w^.^ and y,,., are the 
imputed values from random imputation. Chen et al. (2000) 
show that this method completely eliminates the variability 
due to the random imputation for estimating the population 
total. That is > /̂= E^^vv,., y,., + E w„.,ti,., = ŷ . The 
method also retains the distribution or item values in the 
imputed data set. However, the resulting imputed values 
need not be actual realizations. 

An imputed estimator of the distribution function under 
random imputation is given by 

F,{t) = E ^hikf{yh,k ^ 0 ^ E "^hik'iy hik -^)]/ u. (3) 

An imputed estimator of the distribution function under 
adjusted random imputation, denoted F,(0> is simply 
obtained by replacing y ;„̂  in (3) by fĵ _.̂ . For estimating the 
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distribution function, adjusted random imputation does not 
eliminate the imputation variance as it does for estimating 
the total. However, Chen et al. (2000) show that it does 
significantly reduce the imputation variance when 
compared to random imputation. Both F,(0 and F,(f) are 
asymptotically unbiased and consistent. 

For studying variance estimation with resampling 
methods, we assume that nIN is negligible, where 
« = E n^, Â  = E Â^ and Â^ is the number of first-stage 
clusters in the population. 

3. A REPEATED HALF-SAMPLE BOOTSTRAP 

When there are imputed missing data, naive bootstrap 
variance estimators obtained by treating the imputed data 
set, Y,, as y = {ŷ .̂ :̂ {hik) e s), the data set of no missing 
values, do not capture the inflation in variance due to impu­
tation and/or missing data and lead to serious under­
estimation. As a result, they are inconsistent. This is so, 
because simply treating Yj as Y ignores the imputation 
process. This was noted by Shao and Sitter (1996) and they 
proposed re-imputing the bootstrap data set in the same way 
as the original data set was imputed. The bootstrap proce­
dure in Shao and Sitter (1996) can be described as follows. 

1. Draw a simple random sample {y^,:; = 1,..., n^- 1} 
with replacement from the sample {y^.:i = I, ...,n^}, 
h = I, ...,H, independentiy across the strata, where 

h i = {yhij • (^' '•' i ) e ^r) u {yhij • ih, i, j ) z s j . 
2. Let a^jj be the response indicator associated with 

yhij^C = {(h,i,j): a'^^j = 0} and 
{{h, i, j) -.a^jj = 1}. Apply the same imputation proce­
dure used in constmcting the imputed data set Yj to the 
"nonrespondents" in s^, using the "respondents" in 
s^. Denote the bootstrap analogue of Yj by F/ . 

3. Obtain the bootstrap analogue 0,' of 0, based on the 
imputed bootstrap data set Y',. For example, if 0 = y in 
(I) and 0, = Y, in (2), then 

9/ = î /' = E "^hikyhik ^ E ^Lylik' (4) 

where y ,̂vt is the imputed value using the bootstrap data 
and ŵ*-̂  is nj{nf^ - 1) times the survey weight associated 
with ŷ i'jj (to reflect the fact that the bootstrap sample size 
is n̂  - 1, not n^). The bootstrap estimator of Var (0,) is 

0)^(0/)= Var-(e;), (5) 

where Var * is the conditional variance with respect to y/ , 
given Yj. 

Shao and Sitter (1996) show that the bootstrap estimator 
defined in (5) is consistent for both smooth and nonsmooth 
estimators 0. When a random imputation method is consi­
dered, an implicit condition in their development is that 
rt^/(n^ - 1) goes to 1. This can be seen from the special 
case of 0 = y. From (2), 

Var(y/)=Var E,{Yj) +£ Var,(y/) 

'Y.^hikyhikY.^hik 

= Var 
w, hik 

+ £ S^E^A,*!' 
(6) 

where 

S'=Ew„,(y„,-y,)yE 

yr^H'^hikyhiklY.'^hik-

'hik' 

Similarly, by (4), 

E w'Art^/.rtE w'hik 
Var'(y/)=Var* 

E ;̂; hik 

+ E' 6-E "hik ' (7) 

where 

6*̂  = E ^hikiyhik - y'rf/Yl ^w 

K = YKkyhik/YKk-

From the theory of the bootstrap, the first terms on the right 
hand side of (6) and (7) converge to the same quantity, as 
do d̂  and d*̂ . Thus, Shao and Sitter's bootstrap is 
consistent if E^. w^^^ and E^ ŵ ,̂  converge to the same 
quantity, which is true if nj{nl - 1) converges to 1 for all 
h, because 

E' E^A/, = E' E ( i -%t)*^Al 

= E ( i - «A,*)*^i«/./(«/.-!)• 

The second term on the right hand side of (6) is the variance 
component corresponding to random imputation, which is 
typically a small portion of the overall variance. Thus, the 
overestimation due to nj{ni^ - 1) is serious only when the 
n^'s are very small. The case n̂ , = 2 is, however, an 
important special case. 

We now propose a bootstrap method which has no 
difficulty in the case of very small n^'s while remaining 
valid more generally. Note that the use of bootstrap sample 
size n̂  - 1 is to ensure that the first term on the right hand 
side of (7) has the same limit as the first term on the right 
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hand side of (6) (Rao and Wu 1988). When n^ is used as 
the bootstrap sample size in stratum h, Rao and Wu (1988) 
showed that in the case of no missing data, the bootstrap 
variance estimator underestimates. They proposed a 
rescaling to circumvent the problem, but rescaling does not 
produce correct bootstrap estimators in the presence of 
imputed data. 

What is ideally required for our problem is a bootstrap 
method with the bootstrap sample size equal to the original 
sample size AÎ  which produces an asymptotically unbiased 
variance estimator (in the case of no missing data) without 
rescaling. We now show that this can be accomplished as 
follows. Suppose that there is no missing data and that all 
of the n̂  = 2m^ 's are even. Take a simple random sample 
of size m^ without replacement independentiy from 
{3'fc,- ' = 1. —."/,} and repeat each obtained unit twice to 
get {y'̂ f. i = I,..., n^ }. We call this method the repeated 
half-sample bootstrap. The resulting Vg will then be 
approximately unbiased and consistent. In the linear case 

"^^^"^l^f = ^(hik) "^hik yhik = ^h ^"= 1 yhi '^h = ^hyh and 
yhi ~ ^k=i"h'^hikyhik' ^^^ Consistency of Vg follows from 

Var-(y•)=E Var • ( y ; ) = E Var- — Hyhi 

= E V a r -

= E V a r ' 
h 

2'". 1 ^ . 
L yhi 

1 v^ . 
— L yhi 
^Hi-l 

m,. 

2, 

ii) If we choose a simple random resample of size m^ + 1 
without replacement and repeat each unit twice, we end 
up with n. + 1 units. If we discard one of these at 
random, Var * (y *) = E, (n. 1 )5̂  In^. 

Thus, if we used method (i) with probability 1/4 and 
method (ii) with probability 3/4 at each bootstrap repli­
cation, we obtain the desired result. This repeated half-
sample bootstrap method yields approximately unbiased 
variance estimates without rescaling and has a bootstrap 
sample size equal to the original sample size. Thus, if we 
use this bootstrap for Step 1 of the method of Shao and 
Sitter (1996) as described above, the resulting bootstrap 
estimators are asymptotically unbiased and consistent for 
any n^, under the regularity conditions stated in Shao and 
Sitter (1996) and Shao et al. (1998). 

4. THE PROPER MONTE CARLO FOR THE 
BOOTSTRAP 

If Og in (5) has no explicit form, one may use the Monte 
Carlo approximation 

where 

I^B(9,) 

0; = B 

1 * 

^E (§; /(fc) e;)', (8) 

f̂c=l̂ /(ft)' ®/(fc) 0(y* ), and 
F,*(j,), b = 1, ...,B, are independent re-imputed bootstrap 
data sets. It is common practice in many applications of the 
bootstrap to replace the average of the bootstrap estimators 0 J 
in (8) by the original estimator 0, (see Rao and Wu 1985, 
page 232). The latter is simpler to use and is thus the most 
common. With no imputed data, this is usually correct. 
However, using the analogue with the re-imputed bootstrap 
is not correct. The reason is that 0̂  is the result of a single 
realization of the random imputation, while 0) = 
E'{Q'I)~ Ej{Q,) since we are averaging over repeated 
re-imputations, and 0, and £,(0^) are not close for random 
imputation. When 0, = Yj, forexample, Ei{Yj) = Y^ given 

the usual approximately unbiased and consistent estimator • ,^. \ A .1.'A-CC O o - ' l w- 1 
. ^^ , i , , ^ 1 v-"/. . _ o rr,, "1 section 2 and the difference Y,-Y is not a relatively of variance, where •ŝ "'~ ("A ~ ' ) ' ^ = i (>**, "5'/,)^- The 

consistency of Vg for a nonlinear 0̂  follows from the linear 
case and Taylor's expansion, when 0, is a function of 
weighted averages, or the arguments used in Shao and Rao 
(1994), Shao and Sitter (1996), and Shao et al. (1998) when 
0̂  is non-smooth such as a median. 

If n̂  = 2m^ + 1 is odd, it is not possible to take an exact 
half-sample. In this case, the following two results lead us 
to an adaptation of the above idea: 

i) If we choose a simple random resample of size 
m^ = (n^ - 1 )/2 without replacement and repeat each 
unit twice, we end up with n̂  - 1 units. If we obtain an 
additional unit by selecting one at random from the 

negligible term when random imputation is used. Thus, 

'B2 

1 " 

^E(S,; /(*) -e/)'=^E(0;(.)-0;)'-(e;-v' 
ofc = l 

units already 
3 ^ / " / , ; 

resampled, Var*(y ) 

and the first term goes to Var * (0̂  )as B -+ «> but the second 
term does not go to zero which implies that Mg^ badly over­
estimates the variance. This is not only tme for the 
proposed repeated half-sample bootstrap but also for those 
considered in Shao and Sitter (1996). 

One should also note that using the 0*̂ ^̂  ,b = l,...,B to 
obtain bootstrap confidence intervals via the percentile 
method avoids this concern since the histogram of these 
values will be correctly centered about E' (0,*). However, 
one must take more care with bootstrap-f confidence 
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intervals. It is important that one define 
h = (̂ /(ft) - ^'n..))l^b (not ffc = (§,*'' - 0,)/Ofc) and use 
{0,-rJo; ,0 ,-f ;o;}, where o;' = Ug(y;*),r; = CDF;'(a), 
fJCDF;'(l -a) and CbE^{x) = ti{t^ ^x;b=l,...,B}IB. 

5. A REPEATED BRR 

We first describe the most common application of the 
BRR, n^=2 clusters per stratum (McCarthy 1969) in the 
setting of no missing data. A set of B balanced half-samples 
or replicates is formed by deleting one first-stage cluster 
from the sample in each stratum, where this set is defined 
by a BxH matrix (5̂ ^ )g^fj with 5̂ ^ = +1 or -1 according 
to whether the first or the second first-stage cluster of 
stratum h is in the Ẑ -th half-sample and E^,, 5j,̂ 5^̂ , = 0 for 
all h * h'; that is, the columns of the matrix are orthogonal. 
A minimal set of B balanced half-samples can be 
constructed from a BxB Hadamard matrix by choosing 
any H columns excluding the column of all +rs, where 
H-^l<.B<.H + 4. Let 0,̂ . be the survey estimator 
computed from the 6-th half-sample. The estimator 0,̂ . can 
be obtained using the same formula as for 0 with ŵ .̂̂  
changed to vv̂ ,jt(j), which equals 2ŵ j.ĵ  or 0 according to 
whether or not the {hi)-tli cluster is selected in the b-t\i 
half-sample or not. The BRR variance estimator for 0 is 
then given by 

"BRR ^tK-\l 
B b = i 

(9) 

where 0̂ ^ = 'Li^Q^^^IB, and is often replaced by 0. The 
variance estimator Ug^ has been shown to be consistent 
for smooth functions of estimated totals by Krewski and 
Rao (1981) and for nonsmooth estimators by Shao, and Wu 
(1992) and Shao and Rao (1994). 

A naive BRR for problems with randomly imputed data 
would̂ be obtained as in (9) with 0,̂ ^ and 0,. replaced by 0,,̂ . 
and 0() = 5 "'Ej0,.^., where 0̂ ,̂ , is the estimator calcu­
lated from Yj using the BRR weights. But this produces 
inconsistent variance estimators because it fails to take into 
account the effect of missing data and the random 
imputation. 

To correctly apply the BRR in the presence of random 
imputation by using re-imputation, we must deal with the 
issue of n̂  being small. Recall that for the bootstrap such 
small « '̂s caused difficulty because the stratum resample 
size, n̂  - 1, was smaller than the original stratum sample 
size, n^. This is true for the BRR, as well. We propose an 
easy way to circumvent this difficulty. Rather than 
obtaining the b-th BRR replicate of the estimator, 0,̂ ., from 
the same formula as for 0 but with weights ŵ ,̂ ,̂) equal 
2̂ A/* or 0 according as to whether the {hi)-th cluster is 
selected in the b-th half-sample or not, instead use the 
original weights but include the {hi)-th cluster twice or not 
at all according as to whether the {hi)-th cluster is selected 

in the b-th half-sample or not. If we view the BRR in this 
way: i) the resulting Oĝ ^ in (9) remains the same; and ii) 
the resample size is the same as the original sample size. 
This repeated BRR can be viewed as a type of balanced 
bootstrap, however one should note that the balanced 
bootstrap described in Nigam and Rao (1996) for the case 
of no missing data does not work in this case because, 
though it uses a resample size «;, = 2 in each stratum, it 
does so in such a way as to still require rescaling and thus 
will not work in the presence of random imputation. 

The proposed repeated BRR has no difficulty in the 
presense of random imputation. The procedure becomes 

1. Form the set of half-samples, 1 unit per stratum, using 
a Hadamard matrix as described above. 

2. Obtain the b-th BRR replicate by repeating each unit in 
the obtained half-sample twice. Denote this 
{y;,.:i = I,...,n^ = 2}. 

3. Let Oi^jj be the response indicator associated with 
yhij'C = i(h'^'J)''^hij=^)' and s^' = {{h,i,j):a^ij = l}. 
Apply the same imputation procedure used in 
constructing Y, to the units in s^, using the 
"respondents" in s^. Denote the b-th BRR replicate of Y^ 

byYm-
4. Obtain the BRR analogue ©̂^̂^ of 0, based on the 

imputed BRR data set Y'^i^y 

4. Repeat 1-4 for each row of the BxH matrix to get 
0,*(̂ j for b = l,...,B and apply the standard BRR 
formula (9) to obtain BRR variance estimators for 0,, 
with' 0(j =5"'E^0,'(jj (For the same reason that is 
discussed in section 4, we should not replace 
0,„ by 0,). 

We can extend this idea to cases with «̂  > 2 by using the 
same strategy with half-samples obtained from balanced 
orthogonal multi-arrays (BOMA's) (Sitter 1993). For 
example, Table I gives a set of B = 24 balanced resamples 
for // = 7 strata with «;, = 4 psu's in each stratum. It is 
derived using the BOMA given in Table 1 of Sitter (1993) 
and repeating each resampled unit twice as in Step 2 above. 
Using a BOMA in Steps 1 and 2 of the procedure above 
also results in an approximately unbiased variance esti­
mator. BOMA's are fairly easily constmcted for even n̂  
using balanced incomplete block designs and Hadamard 
matrices, but are difficult to construct for odd n^. They can 
also handle unequal /i '̂s for different strata, though con­
stmction becomes a more serious problem (see Sitter 1993). 

6. A SIMULATION 

To study the properties of the proposed resampling 
variance estimators, we consider a finite population of H = 
32 strata with A'̂  clusters in stratum h and ten ultimate units 
in each cluster. The characteristic of interest ŷ .̂  are 
generated as follows: 
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Table 1 

b 
1 

2 
3 
4 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

22 
23 
24 

A Set of Balanced Resamples 

1 
(1.1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 

(1,1,3,3) 
(1,1,4,4) 

(1,1,2,2) 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 

(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 

2 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 

3 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(2,2,4,4) 

(2,2,3,3) 
(3,3,4,4) 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(2,2,4,4) 
(2.2,3,3) 
(3,3,4,4) 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 

; Constructed from a BOMA 

h 
4 

(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(1,1,3,3) 
(1,1.4,4) 
(1,1,2,2) 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(1,1,3,3) 
(1,1,4,4) 

(1,1,2,2) 
(2,2,4,4) 

(2,2,3,3) 
(3,3,4,4) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 
(2,2,4,4) 

(2,2,3,3) 
(3,3,4,4) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 

5 
(1,1,3,3) 
(1,1.4,4) 
(1,1.2,2) 
(2,2,4,4) 

(2,2,3,3) 
(3,3,4,4) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 
(1,1,3,3) 
(1.1.4.4) 
(1,1,2,2) 
(2,2,4,4) 

(2,2,3,3) 
(3,3,4,4) 
(1,1,3,3) 
(1,1,4,4) 
(1,1.2,2) 
(1,1.3,3) 
(1,1,4,4) 
(1.1.2.2) 
(2,2,4,4) 
(2.2,3,3) 
(3,3,4,4) 

6 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 
(2,2,4,4) 

(2,2,3,3) 
(3,3,4,4) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 

(1,1.3,3) 
(1,1,4,4) 
(1,1.2,2) 

7 
(1,1,3,3) 
(1,1.4,4) 
(1,1,2,2) 
(2,2,4,4) 

(2,2,3,3) 
(3,3,4.4) 
(1,1,3,3) 
(1,1,4,4) 
(1.1,2,2) 
(2,2,4,4) 
(2,2,3,3) 
(3,3,4,4) 
(2,2,4,4) 

(2,2,3,3) 
(3,3,4,4) 
(1,1,3,3) 
(1,1,4,4) 
(1,1,2,2) 
(2,2,4,4) 

(2,2,3,3) 
(3,3,4,4) 

(1.1,3,3) 
(1,1,4,4) 
(1,1,2,2) 

y^k y^ "*" ^hik' 

independent of >'A,~2^(MA'<^A) 

-p]0;,/p) and the parameter values are those 
^hik ~ where 

A^(0,[1 
given in Table 2. For a particular value of the intracluster 
correlation, p, a single finite population was thus generated 
and then fixed and repeatedly sampled from. Each simu­
lation consisted of selecting n̂  = 2 clusters with replace­
ment from stratum hforh = l,..., H and enumerating the 
entire cluster. Each ultimate unit in the obtained cluster was 
independentiy declared a respondent or nonrespondent with 
probability p and {I -p) respectively, i.e., uniform 
response. The nonrespondents were then imputed both 
using random imputation and adjusted random imputation 
and the population total and distribution function, for 
various values of F{t), were estimated. Two values of 
p,0.1 and 0.3, and two values of p, 0.6 and 0.8, were 
considered. Note that the first-stage sampling fraction is 
quite small (0.064), so that with-replacement and without-
replacement sampling are essentially equivalent. 

To compare the performance of the different variance 
estimators we calculated the percent relative bias and rela­
tive instability for each, defined as 

5 
100 %RB = - ^ E ii,(e/)/MSE(0/) 

i = l 

and 

RI = U E [i^A) - MSE(0/)]4 /MSE(0 , ) , 

respectively, where the number of simulation runs was 5 = 
5,000 and the tme MSE(0,) was obtained through an 
independent set of 50,000 simulation runs. The bootstrap 
variance estimators were each based onB = 2,000 bootstrap 
resamples. We obtain results for estimating the variance of 0̂  
equal to the imputed total and the imputed distribution 
function using: (i) the repeated half-sample bootstrap with 
proper Monte Carlo approximation, Vg, as in equation (8) 
and with improper Monte Carlo approximation replacing 
0,'() with 0,, denoted Vg^; and (ii) the proper repeated 

BRR, VBRR, as in equation (9) and the improper repeated 
BRR replacing 0,,. with 0,, denoted T̂ BRRJ-

Table 3 summarizes the results for percent relative bias 
using random imputation and adjusted random imputation. 
Note that adjusted random imputation is not presented for 
estimating the population total, Y, as adjusted random 
imputation removes the imputation variance from the esti­
mator and thus simpler methods of variance estimation are 
available (Chen et al. 2000). It is clear from the high %RB 
for Vg2 and Uĝ ĵ ^ that one must not replace 0,,, and 0/( ^ 
by 0, in the bootstrap or the BRR, respectively. It is also 
clear that both the repeated half- sample bootstrap and the 
repeated BRR variance estimators, Og and Uĝ ^ have 
negligible bias when properly applied. 
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Table 2 
Parameters of the Finite Population 

h 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

^ 
13 
16 
20 
25 
25 
25 
25 
28 
28 
28 
31 
31 
31 
31 
31 
31 

M* 
200 
175 
150 
190 
165 
190 
180 
170 
160 
180 
170 
160 
150 
180 
170 
160 

"b 

20.0 
17.5 
15.0 
19,0 
16.5 
19.0 
18.0 
17.0 
16.0 
18.0 
17.0 
16.0 
15.0 
18.0 
17.0 
16.0 

h 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Nb 

31 
31 
31 
34 
34 
34 
34 
37 
37 
37 
37 
39 
39 
42 
42 
42 

M* 
150 
140 
130 
120 
110 
100 
150 
125 
100 
150 
125 
100 
75 
75 
75 
75 

''h 

15.0 
14.0 
13.0 
12.0 
11.0 
10.0 
15.0 
12.5 
10.0 
15.0 
12.5 
10.0 
7.5 
7.5 
7.5 
7.5 

Given the results of Table 3, we consider relative 
instability, RI, only for x>g and Vĝ R. We also restrict our 
presentation to p = 0.3 and p = 0.6 as the RI results were 
qualitatively the same in the other three cases. These results 
are given in Table 4. As one can see, though the differences 
are small, Vg is slightiy more stable than VgRR. This was 
generally the case for all values of p and p. We also 
included the adjusted jackknife of Rao and Shao (1992) and 
the adjusted BRR of Shao et al. (1998) in simulations for 
0 = y and Vg again was uniformly more stable. For 
example, witii p = 0.3 and p = 0.6 as in Table 4, RI for the 
adjusted jackknife and the adjusted BRR were both 0.27. 
This may be because the reimputation approach has an 
advantage in estimating the component of the variance due 
to the imputation against the adjustment approach, provided 
the resample size is large enough to eliminate Monte Carlo 
error as is the case in our simulations. But, when the 
number of reimputations is moderate (like in the BRR with 
reimputation or the bootstrap with B = 1,000), this 
advantage is not entirely realized. 

Table 3 

Estimand 

Y 
F(t) = 0.0625 
F(t) = 0.2500 
F(0 = 0.5000 
F(0 = 0.7500 
F(t) = 0.9375 

Y 

F(0 = 0.0625 
F(0 = 0.2500 
F(0 = 0.5000 
F(0 = 0.7500 
F(t) = 0.9375 

Y 

F(t) = 0.0625 
F(0 = 0.2500 
F(t) = 0.5000 
F(0 = 0.7500 
F(0 = 0.9375 

Y 
F(t) = 0.0625 
F(0 = 0.2500 
F(0 = 0.5000 
F(0 = 0.7500 
F(0 = 0.9375 

"BRR 

0.00 
-1.09 
-0.13 
-0.36 
-0.84 
0.05 

-0.63 
-1.99 
-1.27 
-0.72 
-0.37 
-0.14 

0.25 
-1.39 

-0.41 
-0.10 
-1.40 
0.71 

0.01 
-1.09 
-0.44 
0.05 
0.13 
1.62 

Random 

"BRR2 

21.54 
15.92 
19.44 
21.68 
19.89 
21.92 

15.06 
10.30 
13.65 
15.26 
14.50 
16.16 

21.34 
11.45 

19.89 
20.25 
16.70 
17.78 

15.22 
7.54 

15.22 
14.92 
12.54 
13.13 

% RB for Vg, 

imputation 

" B 

0.79 
-0.52 
0.62 
0.52 
0.13 
0.57 

0.36 
-1.72 
-0.88 
0.02 
0.57 
0.75 

0.78 
-0.86 

0.14 
0.37 

-0.49 
1.03 

0.93 
-0.56 
-0.08 
0.71 
0.86 
2.06 

^B2' ^BRR a " d ^BRR2 

"B2 

p = 0.1 and p 

21.60 
15.88 
19.55 
21.55 
20.09 
21.66 

p = 0.1 and p = 

15.37 
10.16 
13.30 
15.26 
1476 
16.36 

p = 0.3 and p = 

21.09 
11.37 

19.73 
19.89 
16.89 
17.57 

p = 0.3 and p = 

15.51 
7.69 

14.99 
14.84 
12.70 
13.01 

" E R R 

= 0.6 

0.46 
0.85 
0.55 

-0.36 
0.81 

= 0.8 

-1.65 
-0.95 
-0.12 
0.36 
0.56 

= 0.6 

-0.35 

1.23 
0.29 

-0.75 
0.91 

= 0.8 

-1.24 
-0.23 
0.43 
0.81 
1.86 

Adjusted random imputation 

^BRR2 

19.64 
1486 
10.73 
10.98 
19.12 

10.97 
8.89 
6.58 
7.56 

13.04 

15.38 

13.79 
8.97 
9.24 

15.07 

8.64 
8.18 
6.21 
6.85 

11.04 

"B 

1.24 
1.80 
1.24 
0.54 
1.39 

-1.08 
-0.52 
0.25 
1.05 
1.22 

0.64 

1.71 
0.78 
0.07 
1.34 

-0.35 
0.29 
0.86 
1.26 
2.34 

"B2 

19.51 
15.08 
10.76 
11.31 
18.91 

11.13 
8.81 
6.53 
7.81 

13.08 

15.64 

13.62 
8.88 
9.49 

15.04 

9.07 
8.23 
6.20 
6.99 

11.02 
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Table 4 
RI for x)g and u^^^ with p = 0.3 and p = 0.6 

Estimand 

Y 
F(t) = 0.0625 
F(t) = 0.2500 
F(t) = 0.5000 
F(0 = 0.7500 
F(t) = 0.9375 

Random 

"BRR 

0.27 
0.60 
0.35 
0.27 
0.29 
0.48 

imputation 

"B 

0.23 
0.59 
0.32 
0.23 
0.26 
0.46 

Adjusted random 
imputation 

^BRR 

0.57 
0.37 
0.28 
0.30 
0.48 

^B 

0.56 
0.35 
0.26 
0.28 
0.46 

7. CONCLUSION 

We proposed repeated half-sample bootstrap and 
balanced repeated replication methods for variance estima­
tion in the presense of random imputation that capture the 
imputation variance by reimputing for each replication 
using the same random imputation method as in the original 
sample. These repeated half-sample methods are valid in 
stratified multi-stage sampling, even when the number of 
psu's sampled in each stratum is very small, e.g., 2. The key 
is that these methods use a stratum resample size that is 
equal to the original sample size without resorting to 
rescaling. These provide a unified method that works 
irrespective of the imputation method (random or non-
random), the stratum size (small or large), the type of 
estimator (smooth or nonsmooth), or the type of problem 
(variance estimation or sampling distiibution estimation). It 
is important to note that using reimputation to capture the 
imputation variance requires that one take greater care in 
the definition of the BRR and the Monte Carlo approxi­
mation to the bootstrap variance. In both cases it is 
important to use the mean of the replicates in the definition 
as opposed to replacing it with the estimator applied to the 
original sample. 
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Local Polynomial Regression in Complex Surveys 
D.R. BELLHOUSE and J.E. STAFFORD' 

ABSTRACT 

Local polynomial regression methods are put forward to aid in exploratory data analysis for large-scale surveys. The 
proposed method relies on binning the data on the x-variable and calculating the appropriate survey estimates for the mean 
of they-values at each bin. When binning on x has been carried out to the precision of the recorded data, the method is the 
same as applying the survey weights to the standard criterion for obtaining local polynomial regression estimates. The 
altemative of using classical polynomial regression is also considered and a criterion is proposed to decide whether the 
nonparametric approach to modeling should be preferred over the classical approach. Illustrative examples are given from 
the 1990 Ontario Health Survey. 

KEY WORDS: Covariates; Exploratory data analysis; Kernel smoothing; Regression. 

1. INTRODUCTION 

Following Fuller (1975), multiple linear regression tech­
niques have been studied and used extensively in sample 
surveys. At least three chapters of Skinner, Holt and Smith 
(1989) are devoted to this subject. Here we restrict attention 
to the case in which there is one covariate x for the variate 
of interest y so that we could consider polynomial regres­
sion as well as simple linear regression. In this context we 
could also consider the nonparametric approach of local 
polynomial regression, which, for the case of independent 
and identically distributed random variables, is described in 
Hardle (1990), Wand and Jones (1995), Fan and Gijbels 
(1996), Simonoff (1996) and Eubank (1999). Using the 
survey weights, Kom and Graubard (1998) introduced the 
use of local polynomial regression for graphical display of 
complex survey data. However, they did not provide any 
statistical properties for their procedures. Smith and Njenga 
(1992) used regression kernel smoothing techniques to 
obtain robust estimates of the mean and regression para­
meters for an assumed superpopulation model. Here we use 
local polynomial regression as an exploratory tool to dis­
cover relationships between y and its covariate x. 

We assume that the covariate x is measured on a 
continuous scale. Due to the precision at which the data are 
recorded for the survey file and the size of the sample, there 
will be multiple observations at many of the distinct values. 
This feature of large-scale survey data has been exploited 
by Hartley and Rao (1968, 1969) in their scale-load 
approach to the estimation of finite population parameters. 
Here we exploit this same feature of the data to examine the 
relationship between y and its covariate x. In recognizing 
that the data may be naturally binned to the precision of the 
data, we can consider taking a further step by constructing 
larger bin sizes. Under this approach we examine the effect 

of the sampling design on estimates and second order 
moments. 

Suppose that in the finite population of size Â , x has ik 
distinct values so that natural binning has taken place, or 
that X has been categorized into k bins that are wider than 
the precision of the data. Let x. be the value of x repre­
senting the I* bin, and assume that the values of x. are 
equally spaced. The spacing or bin size b =x. - x.^y The 
finite population mean for the y-values at x. is y.. We 
assume that a sample of size n taken from this population 
has the same stmcture as the population in that there are k 
bins. From the sample data we calculate the survey estimate 
of y. of y.. The finite populafion proportion of the 
observafions with value x. is denoted by p.. This pro­
portion is estimated by the survey estimate p.. We assume 
that y. and p^ are asymptotically unbiased, in the sense of 
Samdal, Swensson and Wretman (1992, pages 166-167), 
for ŷ . and p. respectively. The survey estimates y. for 
/ = 1,..., k have variance-covariance matrix V. On consi­
dering the distinct values x. as domains, the estimated 
variance-covariance matrix V may be obtained easily 
through survey packages such as SUDAAN and STATA. 

There are several advantages to binning the data on the 
covariate x for exploratory data analysis: 

- For large surveys, a plot of y. against x. may be more 
informative and less cluttered than a plot of the raw 
data. 

- By appealing to a finite population central limit 
theorem on y. and imposing a superpopulation 
assumption on y., a relatively simple model for y. may 
be assumed so that the analyst may easily focus on the 
central issue considered here, determination of the 
trend function in x. 

D.R. Bellhouse Department of Statistical and Actuarial Sciences, Western Science Centre, University of Western Ontario, London, Ontario N6A 5B7, 
e-mail: bellhouse@stats.uwo.ca; J.E. Stafford, Department of Public Health Sciences, Faculty of Medecine, McMurrich Building, University of Toronto, 
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- Once V has been obtained, then a wide variety of 
powerful exploratory data analyses can be easily 
carried out in languages such as S-Plus. Working with 
the raw data requires continued appeals to SUDAAN 
or STATA for the appropriate variance estimates. 

- By binning the data, an approach to regression analysis 
is obtained that provides a parallel to other nonpara­
metric approaches to survey data analysis. For 
example, in categorical data analysis obtained initially 
by Rao and Scott (1981), in the logistic regression 
approach of Roberts, Rao and Kumar (1987) or in the 
generalized linear model approach of Bellhouse and 
Rao (2000), the tests and associated distributions are 
obtained through survey estimates of domain means or 
proportions. 

For the superpopulation, we assume that we have a 
model such that E^{y.) =m{x.), where E^ is the super-
population expectation. We assume further that as we move 
to a continuum of values on x, then m{x) is a smooth 
function. The function m{x) is the ultimate function of 
interest for estimation. In section 2 we provide local poly­
nomial regression methods to estimate m{x). These 
methods are applied to data from the 1990 Ontario Health 
Survey in section 3. In section 4, the question is asked: 
would the classical polynomial regression techniques have 
served equally as well in modeling m{x)1 Some future 
directions for this work are given in section 5. Generally, 
we adopt the notation of Wand and Jones (1995) in 
discussing local polynomial regression here. 

2. BASIC METHODOLOGY 

For local polynomial regression, the nestimate of m{x) 
at any value of JC is obtained upon minimizing 

Ep,{y , -Po-Pi^-^)- -
1=1 

-^^{x.-x)"} K[{x.-x)lh)lh (1) 

with respect to p,,, p,, ..., p . The values that minimize (I) 
are denoted by PQ, P,, ..., p . Further, for the given value 
of X, ih{x) = PQ. In (1), the kernel K{t) is a symmetric 
function with jK{t)dt = I, ^tK{t)dt = 0, 
0<jt^K{t)dt<'=oand 

R{K) = j[K{t)fdt<oo. (2) 

Also in (1), /i is the window width of the kernel. In mini­
mizing (1) to obtain local polynomial regression estimates, 
there are two possibilities for binning on x. The first is to 
bin to the precision of the recorded data so that y. is 
calculated at each distinct outcome of J:. In other situations 
it may be practical to pursue a binning on jc that is rougher 
than the accuracy of the data. 

In moving from the sample to the population we 
maintain the same window width h. This is in contrast to 
Breidt and Opsomer (2000) and Buskirk (1999) who 
assume a smoothing parameter /i^ for smoothing in the full 
finite populafion. In the context here, this would yield a 
function m (̂jc), the finite population smoothed version of 
the y. with smoothing parameter /i^, as a finite population 
parameter of interest followed by m {x) the hypothetical 
smooth function under the asymptofic assumpfions. We 
have kept h constant in view of the way in which binning 
that has been done; the bin structure is the same in the 
sample as in the population. The choice of the smoothing 
parameter h depends on the spacing of the x's and the 
variation in the data (Green and Silverman 1994, pages 
43-44). The spacing of tiie covariate is usually dominant in 
the determination of h. Since the spacing has been kept 
constant from sample to finite population with the spacing 
changing only when the asymptotic assumptions are 
applied, we keep h^ = h. 

Kom and Graubard (1998) provide a slightly different 
objective funcfion to (1). They replace the sum over the 
bins in (1) by the sum over all sampled units and p. in (1) 
by the sample weights. Kom and Graubard's objecfive 
funcfion reduces to (1) plus a term that involves the 
weighted sum of squares of deviations of sample observa­
tions from the binned means where the weights are the 
sample weights scaled to sum to one. Consequently, the 
estimate of m {x) is the same in both cases. 

The estimate rh{x) and its first two moments can be 
expressed in matrix notation. The forms are exactly the 
same as those that appear, for example, in Wand and Jones 
(1995, chapter 5.3) whose notafion we have adopted. Let 
the vector of finite population means at the distinct values 
ofxbe y = (yp •••,3'*)̂  and let y be its vector of survey 
estimates. Further, let 

1 x^-x ••• (;c, -xy 

1 X2- X ••• {X2 - x)"! 

I x^-x {x,-xy 
and 

Ŵ  = ^diag{p,K{{x,-x)lh), 

P2K({x2-x)lh),-p,K({x,-x)lh)). 

The matrix Ŵ  is Ŵ  with p replaced by p. Then 

1 -v^ 
th{x) = e'(x;w xj-'x;w y. (3) 

where e is the ^ x 1 vector (1,0, 0,.., 0)^. The approxi­
mate design-based expectation of m {x) is 

E^{rh{x)) = eT"(X^W^X^)-'X^W^y, (4) 
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where E denotes expectation with respect to the sampling 
design. We can also consider (4) as a smoothed estimate of 
m {x) so that m {x) is also an estimate of m {x). In the deri­
vation of (4) we note that E (y) =y and £'„( W )̂ = Ŵ  for 
large sample size n. Further, in (3) we can write 
Wj = Ŵ  + A, where A = Ŵ  - W .̂ We use the first two 
terms in the expansion (I + B)"' = I - B + B^ - B^ + •• as 
an approximation to complete the derivation. Using the 
same techniques, the approximate design-based variance is 
given by 

V^{,h{x)) = eT(Xlw^X^)- 'X>^VW^X^ 

( X > X r ' e . (5) 

The results in (4) and (5) were obtained ignoring higher 
order terms in 1 In. An estimate of the variance V {in {x)) 
is obtained on substituting the survey estimate V for V and 
W for Ŵ  in (5). 

3. EXAMPLES FROM THE ONTARIO HEALTH 
SURVEY 

We illustrate local polynomial regression techniques 
with data from the Ontario Health Survey (Ontario Ministry 
of Health 1992). This survey was carried out in 1990 using 
a stratified two-stage cluster sample. The purpose was to 
measure the health status of the people of Ontario and to 
collect data relating to the risk factors of major causes of 
morbidity and mortality in Ontario. The survey was 
designed to be compatible with the Canada Health Survey 
carried out in 1978-79. A total sample size of 61,239 people 
was obtained from 43 public health units across Ontario. 
The public health unit was the basic stratum with an 
additional division of the health unit into mral and urban 
strata so that there were a total of 86 strata. The first stage 
units within a stratum were enumeration areas taken from 
the 1986 Census of Canada. An average of 46 enumeration 
areas was chosen within each stratum. Within an enume­
ration area, dwellings were selected, approximately 15 from 
an urban enumeration area and 20 from a raral enumeration 
area. Information was collected on members of the house­
hold within the dwelling. 

Several health characteristics were measured. We focus 
on one continuous variable from the survey. Body Mass 
Index (BMI). The BMI is a measure of weight status and is 
calculated from the weight in kilograms divided by the 
square of the height in meters. The index is not applicable 
to adolescents, adults over 65 years of age and pregnant or 
breastfeeding women. The measure varies between 7.0 and 
45.0. A value of the BMI less than 20.0 is often associated 
with health problems such as eating disorders. An index 
value above 27.0 is associated with health problems such as 
hypertension and coronary heart disease. Associated with 

the BMI is another measure, the Desired Body Mass Index 
(DBMI). The DBMI is the same measure as BMI with 
actual weight replaced by desired weight. A total of 44,457 
responses were obtained for the BMI and 41,939 for the 
DBML 

When there are only a few distinct outcomes of x, 
binning on x is done in a natural way. For example, in 
investigating the relationship between the body mass index 
(BMI) and age, the age of the respondent was reported only 
at integral values. The solid dots in Figure 1 are the survey 
domain estimates of the average BMI (y.) for women at 
each of the ages 18 through 65 {x.). The solid and dotted 
lines show the plot of th {x) against x using bandwidths h = 
7 and h = l4 respectively. It may be seen from Figure 1 that 
BMI increases approximately linearly with age until around 
age 50. The increase slows in the early 50s, peaks at age 55 
or so, and then begins to decrease. On plotting the trend 
lines only for BMI and the desired body mass index 
(DBMI) for females as shown in Figure 2, it may be seen 
that, on average, women desire to reduce their BMI at every 
age by approximately two units. 

Figure 1. Age trend in BMI for females 

Figure 2. Age trends for females 



200 Bellhouse and Stafford: Local Polynomial Regression in Complex Surveys 

In other situations it is practical to constmct bins on x 
wider than the precision of the data. To investigate the 
relationship between what women desire for their weight 
(DBMI = y.) and what women actually weigh (BMI =x.) 
the j:-values were grouped. Since the data were very sparse 
for values of BMI below 15 and above 42, these data were 
removed from consideration. The remaining groups were 
15.0 to 15.2, 15.3 to 15.4 and so on, with the value of x. 
chosen as the middle value in each group. The binning was 
done in this way for the purposes of illustration to obtain a 
wide range of equally spaced nonempty bins. For each 
group the survey estimate y. was calculated. The solid dots 
in Figure 3 show the survey estimates of women's DBMI 
for each grouped value of their respective BMI. The scatter 
at either end of the line reflects the sampling variability due 
to low sample sizes. The plot shows a slight desire to gain 
weight when the BMI is at 15. This desire is reversed by the 
time the BMI reaches 20 and the gap between the desire 
(DBMI) and reality (BMI) widens as BMI increases. 

15 20 25 30 35 
BMI groups 

Figure 3. BMI trend in DBMI for females 

4. PARAMETRIC VERSUS NONPARAMETRIC 
REGRESSION 

Local polynomial regression allows us to obtain non-
parametrically a functional relation between y and x. How­
ever, a parametric model may also be reasonable. For 
example, on examining Figure I showing the Body Mass 
Index against age, we might consider the parametric model 
that y has a quadratic relationship to x. We may also want 
to test in Figure 2 if the two lines are parallel, or equiv-
alently that the difference between the Body Mass Index 
and the Desired Body Mass Index for females is constant 
over all ages. This would involve modeling the trend lines 
as second degree polynomials and testing for equality in the 
trend lines of the parameters associated with the quadratic 
term as well as the parameters associated with the linear 
term. In all cases, the question arises as to whether or not 
the data can be adequately modeled by a polynomial 
relationship between y and x. One method that we propose 
as an answer to this question is to calculate the confidence 

bands based on local polynomial regression. These bands 
can be thought of as providing a region of acceptable model 
representations. If an appropriate parametric regression line 
falls within the bands, then it provides a reasonable model 
description of the data. The 100(1 -a)% local polynomial 
regression bands are obtained by ploting 

m (x)±z„/, yv,(/n(;c)) (6) 

over a range of values of jr, where ẑ ĵ is the 100(1 - a 12) 
percentile of the standard normal distribution, where m{x) 
is determined from (3) and where V {rh{x)) is (5) with V 
replaced by its sample estimate V. 

The parametric regression line to be tested may be 
obtained in one of two ways depending upon what sample 
information is available. If the complete sample file with 
sampling weights is available, then the standard regression 
approach in, for example, SUDAAN may be used. If only 
the binned data are available, in particular the survey 
estimates y. with estimated variance-covariance matrix V, 
then another approach is needed. 

For this second approach assume that m{x^ " ' ' L P ' 
where x, = (l,jc.,;c, ,..., .x,') and where p = 
(PQ, P,, ..., p ) is the vector of regression coefficients. For 
the finite population we assume that y. = x,- p + ê ., where 
the ertors are deviations of the actual finite' from the model. 
For simplicity, we assume that these errors have mean 0 and 
variance-covariance rnatrix o^I. Since the data are given by 
tiie survey estimates y. with variance-covariance matrix V, 
the operative model is 

^ , = x f p + 5,, (7) 

where the 6. have mean 0 and variance-covariance matrix Y, = 
ô  I + V. The usual weighted least squares estimate of p is 

p = (x^E"'x)-'x^i:''y,- (8) 

where the i* row of X is x,, i = I,..., k. In terms of data 
analysis it is necessary to replace Y in (8) by its estimate J^. 
Now the survey estimate of V is V so that it remains to find 
an estimate of o .̂ This may be obtained through rss = 
(y - Xp)^ (y - X P), the residual sum of squares, by one 
of two ways. 

The first method is to approximate the expected residual 
sum of squares under model (7) and solve directiy for o .̂ 
Upon using the expansion (I + B)"' = I - B + B^ - B^ + ... 
we find 

£'(rss)^(n-9-l)o^+tr(V)-tr(X^VX(X^X)-'). (9) 

The estimate of ô  is obtained on setting rss equal to the 
right hand side of (8) with V replaced by V and then 
solving for o^. This leads to an iterative approach to model 
fitting. An initial estimate of p is obtained from (8) with V 
replaced by the survey estimate V. Then q̂  is estimated 
through (9) and a new estimate of p using ^ = 6̂  I + V is 
obtained. The process is repeated until convergence is 
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obtained in the estimate of o .̂ If the estimate of ô  is 
negative, it is set to 0. The second method for estimating ô  
is obtaining by first treating the ertors in (7) as multivariate 
normal variables. Then a profile likelihood for ô  can be 
obtained on replacing p and V by their estimates. The most 
influenfial term in this profile likelihood is 

r''(oM + V)"'r, (10) 

where r = y -X{X'^{aH + \y^X)-^X'^{oH +\)-^f is 
the vector of residuals. An approximation to the profile 
likelihood estimate 6̂  is that value of o^ which minimizes 
(10). 

To provide examples of the question of the adequacy of 
parametric regression, we examined two different variables 
in the Ontario Health Survey and their relationship to the 
body mass index (BMI). These were age and fat consump­
tion as a percentage of total energy consumption. For age 
the binning was natural and at the precision of the recorded 
data. Age was restricted to the range of 18 to 65 years since 
the index is not applicable outside this range and age was 
recorded in years. The scatterplot of BMI against age with 
the accompanying local polynomial regression line is 
shown in Figure 1. The survey data on fat consumption in 
percentages were recorded to three decimal places. Due to 
the sparseness of the data at the extremes we looked at fat 
consumption in the range of 14 to 56% of total energy 
consumption. Further, we binned the data on the covariate 
(fat consumption) using bins 14.0 up to 14.2, 14.2 up to 
14.4 and so on; the midpoints of the bins (14.1, 14.3 and so 
on) were used as the x.. At each bin the survey estimate y. 
for BMI was calculated. It is the binned data that appear as 
a scatterplot of BMI against fat consumption in Figure 5. 
The solid line in Figure 5 is the local polynomial regression 
line with ^ = 1 for BMI on fat content. As in Figure 3, the 
larger variability at the extremes reflects greater sampling 
variability due to smaller sample sizes at the extremes. 
From Figure 5 it appears that BMI increases slightly as fat 
consumption increases. Since the complete data file for the 
survey was available, regression lines for all variables were 
obtained through SUDAAN. 

In Figure 4 the solid lines are tiie 95% confidence bands 
based on (6) and the dashed line is the parametric second 
degree polynomial regression line. Since the dashed line 
falls near the border for women in their thirties and outside 
the bands for women in their early sixties, a second degree 
polynomial barely adequately describes the relation 
between BMI and age. Another model might be preferable. 
Figure 6 shows the same 95% confidence bands but for the 
consumption of fat as a percentage of total energy 
consumption. In this case the dotted line is the simple linear 
regression line of BMI on fat consumption. For fat 
consumption the line falls completely within the confidence 
bands so that simple linear regression appears to be an 
adequate description of the model relationship. 
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Figure 4. Confidence Bands for the Age Trend in BMI for Females 

3 
a 

t 

10 IS 20 30 39 40 4a SO as flo 

Fat Consumption ( H ) 

Figure 5. BMI Trend in Fat Consumption 
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Figure 6. Confidence Bands for Fat Consumption Trend in BMI 

If the data have been binned to the precision of the data 
as in the case of age above, and if the exploratory analysis 
is complete, we can stop. The estimates and variance 
estimates obtained are equal to the estimates and variance 
estimates obtained from the raw data. This may be seen on 
examining (3). The term on the right hand side of (3) can be 
expressed as a sum over the sample of the sample weights 
times a new measurement obtained from the raw 
y-measurement times an appropriate value taken from 
e'^(X^W^X^)-'X^w; times the total of the sample 
weights, where W^ is W_̂  with the p.'s removed. These 
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adjusted y-measurements may be fed into SUDAAN or 
STATA to obtain the required approximate variance esti­
mate. It may be that the binning has been rougher than the 
precision of the data or that some bins have been dropped 
in the tails of the distribution of x due to sparseness of the 
data in those bins. Both of these situafions occurred in 
analyzing the relationship of BMI to fat consumption. Once 
the exploratory analysis has been completed we can return 
with a final model and smoothing parameter, if a nonpara­
metric approach is used in the final analysis, and apply to 
model to the raw data obtaining variance estimates through 
SUDAAN or STATA as necessary. Depending on the 
amount of roughness in the binning and the number of bins 
dropped due to sparseness in the data, the variance esti­
mates obtained from the raw will be approximately the 
same as those from the binned data. 

a time. Here smoothers S. S V^ 
I, ...,q would be used in 

a backfitting algorithm. 
It is our intention to study additive and generalized 

additive models in the above manner and to introduce these 
techniques to the analysis of complex survey data. 
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5. FUTURE DIRECTIONS 

Like Bellhouse and Stafford (1999), this paper adapts a 
modem method of smoothing for the analysis of complex 
survey data. It represents an example of a host of regression 
techniques that could be used. To describe these we embed 
the current context in a general framework hinting at future 
work. In doing so we mimic the developments of Hastie and 
Tibshirani (1990). 

Here a smoother is said to be linear if fitted values are 
obtained by applying a matrix S to a response vector y. As 
in the case of simple linear regression for independent and 
identically distributed data, we let H = 
(X'"X-'X)-'X'"X'' and further denote (X̂ AV X^)"' 
X^ Ŵ  as S . Both are examples of S. In addition, the 
response vector of binned means is a type of smooth 
y,. = S J y, where y is the vector of all sample responses and 
where S^ involves the sample weights. Also the usual 
regression context involves applying a matrix similar to H 
to tiie full response vector y. = H,y. So moving from usual 
regression to regressing means to local polynomial smooth­
ing reduces to applying different smoothing matrices to y: 

H^y^HS, y -S^S ,y . 

In general S can be replaced by any smoother S and the 
methods extended to multiple covariates. 

There are many advantages to binning the response from 
both a theoretical and practical standpoint. Standard 
smoothing tools, like those found in Splus, can be applied 
without modification of the smoother due to sampling 
issues. In addition, in the case of the additive model, finite 
population central limit theorems can be invoked and issues 
like degrees of freedom, choice of smoothing parameter, 
optimizing a criterion, can be handled in the usual manner. 
In the case of multiple covariates Xy ...,x the curse of 
dimensionality will result in sparse bins not allowing the 
use of the central limit theorem. This may be countered in 
the usual way by binning partial residuals one dimension at 
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Modelling Compositional Time Series from Repeated Surveys 
D.B.N. SILVA and T.M.F. SMITH' 

ABSTRACT 

A compositional time series is defined as a multivariate time series in which each of the series has values bounded between 
zero and one and the sum of the series equals one at each time point. Data with such characteristics are observed in repeated 
surveys when a survey variable has a multinomial response but interest lies in the proportion of units classified in each of 
its categories. In this case, the survey estimates are proportions of a whole subject to a unity-sum constraint. In this paper 
we employ a state space approach for modelling compositional time series from repeated surveys taking into account the 
sampling errors. The additive logistic transformation is used in order to guarantee predictions and signal estimates bounded 
between zero and one which satisfy the unity-sum constraint. The method is applied to compositional data from the 
Brazilian Labour Force Survey. Estimates of the vector of proportions and the unemployment rate are obtained. In addition, 
the structural components of the signal vector, such as the seasonals and the trends, are produced. 

KEY WORDS: Additive logistic transformation; Compositional time series; Kalman Filter; Labour force survey; Repeated 
surveys; State space models. 

1. INTRODUCTION 

All surveys are multivariate and multipurpose, and most 
are longitudinal, repeating the same questions over time. 
There are two broad classes of repeated surveys, those with 
overlapping first stage units and those with no overlap of 
first stage units. Both designs admit a longitudinal macro-
analysis of population aggregates but only the former 
allows a micro-analysis and the estimation of gross flows or 
some other similar unit level dynamic process. In this paper 
we explore the time series analysis of a multivariate vector 
of population aggregates, a macro-analysis, while taking 
into account the influence of the sampling errors of the 
survey using disaggregated data. 

. Denote by 9, = (G,,,.., Qj^^i ,)' a vector of population 
quantities of interest at time t, and assume that observations 
are made at equally spaced time intervals t = 1,2, ...,T. Let 
y, = (>"!, > •••'>'Af+i t)' represent a survey-based estimate of 9, 
based on data collected at time t. Repeated surveys produce 
time series {y,} comprising estimates of the unknown 
target series {9,}. Focussing on the unknown population 
vector 9,, it is natural to imagine that knowledge of 
9,, ..., 9,., conveys useful information about 9, but 
without implying that it is perfectly predictable from 
9,,..., 9j.,. One way of representing this situation is by 
considering 9, to be a random variable which evolves 
stochastically in time following a certain time series model, 
as first proposed for univariate survey analysis by Blight 
and Scott (1973), Scott and Smith (1974) and Scott, Smith 
and Jones (1977). The survey estimates y, of 9, can then 
be written as: 

y, 9 . + e. (1) 

where {0,},{y,} and (e,) are random processes and 
e, - (gj,,...,e^^j , ) ' are the sampling errors such that 
£(e , |9 , ) = 0 a n d y ( e , | 9 , ) = 1,-

The early work of Scott et al. (1977) was concerned with 
univariate {y,} and distinguished different forms for the 
data available on { e j . If the only data available to the 
analyst are the population aggregate estimates {y,} then 
this is termed a secondary analysis and the examples in 
Scott et al. (1977) are based on a secondary analysis of 
survey data. If the individual data records are available, 
then variances and covariances can be estimated directly 
from the data and this is called a primary analysis. In 
addition, in the case of a rotating panel survey, elementary 
estimates (based on data from a set of units that join and 
leave the survey at the same time) can be used to estimate 
the covariance stmcture of the sampling errors. Subsequent 
work by Jones (1980) used a primary analysis to measure 
the stmcture of the sampling noise whereas Binder and 
Hidiroglou (1988), Binder and Dick (1989), Pfeffemiann, 
Burck and Ben-Tuvia (1989), Pfeffermann and Burck 
(1990), Pfeffennann (1991), Binder, Bleuer and Dick 
(1993), Pfeffermann and Bleuer (1993), Pfeffemiann, Bell 
and Signorelli (1996), Pfeffermann, Feder and Signorelli 
(1998) and Harvey and Chung (2000) employed an 
elementary analysis. 

The time series analysis of survey data also requires that 
the signal process be modelled. In the early works it was 
assumed that {0,) was a stationary process and that (y,) 
was the superposition of two stationary processes therefore 
being itself stationary. Typically ARMA processes were 
assumed for {9,} and {e,}, and hence for {y,}. Binder 
and Hidiroglou (1988) wrote the processes in state space 
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form which led rapidly to the introduction of nonstationary 
processes for the signal (0,}, and structural models 
involving trends and seasonals have been used since then. 

The aim is to improve estimation of the unobservable 
signal and its components, but when the sampling errors are 
autocorrelated these autocorrelations can induce spurious 
trends which get confounded with the tme signal trend, as 
pointed out by Tiller (1992) and Pfeffermann, Bell and 
Signorelli (1996). When the variation in the sampling errors 
is not taken into account, their autocorrelation stmcture may 
be absorbed into either the seasonal or the trend compo­
nents, thus affecting the inference from the model. 

A special case of interest in repeated surveys is when the 
univariate target parameter {9,} is a proportion such as the 
unemployment rate. Unrestricted time series modelling of {9,} 
may lead to estimates outside the range 0 ^ 9, ^ 1. Wallis 
(1987) used a logistic transformation to ensure that the 
estimates were bounded, however he failed to take into 
account the survey error. Pfeffermann (1991), Tiller (1992), 
Pfeffermann and Bleuer (1993), Pfeffermann, Bell and 
Signorelli (1996) fitted state space models to unemploy­
ment rate series taking into account survey errors but with­
out using the logistic transformation to guarantee bounded 
estimates. 

Most surveys are multivariate and there has been little 
work in the multivariate time series analysis of survey data. 
Bmnsdon (1987) and Bmnsdon and Smith (1998) analyse 
multivariate data from opinion polls taking into account the 
fact that the proportions are bounded and comprise a com­
position, but not allowing for the stmcture of the survey 
errors. This work provides useful insight into the modelling 
of time series of proportions. Compositional data have also 
been modelled using a state space approach, by Quintana 
and West (1988), Shephard and Harvey (1989) and Singh 
and Roberts (1992), but these authors also did not address 
the issue of modelling the autocovariance stmcture of the 
sampling errors when the observed compositions are 
obtained from repeated surveys. 

The motivation for this work is that many variables 
investigated by statistical agencies have a multinomial 
response and interest lies in the estimation of the propor­
tion of units classified in each of the categories. If this is the 
case, the vector of proportions sums to one and forms what 
is known as a composifion. A compositional time series is 
therefore a multivariate time series comprising observations 
of compositions at each time point. We propose a class of 
multivariate state space models for compositional time 
series from repeated surveys, which takes into account the 
sampling errors and guarantees estimates satisfying the un­
derlying constraints imposed by compositions. The proce­
dure employs a signal-plus-noise structural model which 
yields seasonally adjusted series and estimates of the trend 
which satisfy the underlying sum constraint. The method is 
applied to compositional data from the Brazilian Labour 
Force Survey comprising estimates of the vector of propor­
tions of labour market status. Estimates of seasonally 

adjusted compositions, trends and unemployment rate series 
are produced. 

A FRAMEWORK FOR MODELLING 
COMPOSITIONAL DATA FROM 

OVERLAPPING SURVEYS 

We assume that {9,} is multivariate and the components 
9^, form a composition, i.e., O < 0 ^ , < 1 \/ m,t and 

Zm = i 9„, = I. In this case y, is a vector of sample esti­
mates, based on the cross-sectional data of time t and 
belongs to the Simplex: 

S ^ = {y,:0^y^,^l,m = 1,...,M+1; 

M*l 

E 3 ' „ , = i;f = U...,T}, 
m = l 

as in Bmnsdon and Smith (1998). In addition, it is assumed 
that y^ is obtained from a survey with complex design and 
overlapping units between occasions. Since each of its 
components is subject to sampling errors, y^, can be 
decomposed as: 

9. + e„ m = l,...,M + 1, (2) 

where 9^, is the unknown population proportion assumed 
to follow a time series model, and e^, is the sampling error. 
Considering the M + 1 series simultaneously, (2) can be 
written in vector form as in equation 1. In addition, it is 
assumed that 

M*l 

E 
m = l 

A/+1 

9. 1 Vf, (3) 

-.A/+1 
which implies that Y.m=i ^mt^^' ^ '• 

A compositional time series is a sequence of vectors 
y, = (yw^'yM*i,t)' ^^^^ belonging to S'^. Aitchison 
(1986) examined the difficulties of applying standard 
methods to modelling and analysing compositions and 
suggested the use of transformations to map compositions 
from the Simplex S" onto M'**. One such transformation is 
the additive logratio transformation {a^^), defined in 
Aitchison (1986, page 113), which was first adopted in a 
time series context by Brunsdon (1987, page 75). The 
transformation is given by v, = â^̂  (y , ) = (v„,..., v^,) ' , 
with 

^ 
1,...,M, V r , (4) = log 

yM* 1 , ' 
m 

where log denotes the natural logarithm. Note that 
>'A/+I r"" ' " Sm =i>'m/' somctimes called the fill-up value, 
is used as the reference variable or category. The inverse 
transformation, known as the additive logistic transforma­
tion, is given by y, = fl^'(v,) = (y„,...,y^j^,, , ) ' such that 
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y/nt 

exp(v^,) 
M 

I +Y,exp{vj,) 
y=i 

1 
M 

I +Eexp(^j,) 
J=l 

m = l,...,M, V t, 

m = M+1, V t. 

0, + e. (9) 

(5) 

The state space modelling procedure for compositional 
time series is invariant to the choice of the reference 
variable (Silva 1996), and so any element y^ ̂  * >'A/+I ,, ^^ >i 
can be taken as the reference variable when applying the 
additive logistic ti-ansformation to the vector of survey esti­
mates. When the logratios v̂  are normally distributed the 
M + 1 - part composition has an additive logistic normal 
distribution as defined in Aitchison and Shen (1980). For 
compositional time series, Bmnsdon (1987) recommended 
the use of Vector ARMA models (Tiao and Box 1981) for 
the transformed series. 

We propose a procedure that not only provides pre­
dictions and filtered estimates that are bounded between 
zero and one and satisfy the unity-sum constraint, but also 
improves the estimation of the unobservable signal and its 
components, taking into account the sampling error. 

Following Bell and Hillmer (1990), the model in (2) can 
be rewritten as: 

y = 0 
• 'm( ml 

1 + = 9„,M„,, 
mt mt^ 

(6) 
ml I 

with 

ml 
1 + (1 ^ " . t ) . (7) 

ml y 

where M^, = e^,/9^, represents the relative sampling error 
of the estimated proportion. 

Applying the additive logratio transformation defined in 
Aitchison (1986, page 113) to the vector y^, with 
components given in (2), produces a transformed vector 
*', = ««(>'/) = (^ir- "^M,)' contained in K^. If y;i^,i_,is 
used as the reference variable, the transformed vector has as 
its m"" component: 

log 

log 
9_.. 

9 M*l.i ) 

= log 

log 

ml mt 

"M* .1 ^M*l.t ) 

U M*l,t 

, m = l,...,M. (8) 

From (8), a vector model for the transformed series can 
be written as: 

with v,=(v„,. , v„ , ) ' ,9 ;=(9; , , . . . ,9 ; , ) ' and 
e] = (e,;,..., e^,) ' , where v^, = log (y , , / y^„ , , ) , 
9m, = log(9„,/9^., ,) and e„, = log (M„, /M^. , , , ) , for 
m = 1,..., M. Note that model (9) has the same form as 
model (1). 

To describe the survey data, model (9) must incorporate 
time series models for both {0^} and [e\). Hence a multi­
variate model for the transformed data will depend on the 
form of the time series models for {Oj} and [e',). 

The state space formulation for compositional data is 
examined in section 3, the model estimation is considered 
in section 4 and is illustrated using Brazilian Labour Force 
Survey data in section 5. 

3. MODELLING THE TRANSFORMED SERIES 

Our approach is based on assuming that the transformed 
series v, = a^(y,) has the signal plus noise stmcture in 
equation 9. We propose stmctural time series models for 
{9|}, as in Harvey (1989), and vector ARMA models 
(Tiao and Box 1981) for {e]}. 

The transformed signal process (9)} is assumed to 
follow the multivariate basic stmctural model, with each of 
the components {9^,} following a basic stmctural time 
series model (BSM) with possibly different parameters 
across the series. The cross-sectional relationship between 
the series is accounted for by the correlation stmcture of the 
system disturbances. The model for {9^,}, m = 1,2,..., M, 
is then given by: 

mt 

'-'mt 

K. 

s:, 

= 

= 

= 

= 

ml 

^m.t-l 

^m,t-l 

11 

-E 
7 = 1 

mt mt' 

•*• R ' , + T l „ , , m , / - l ' m f 

•^m.t-l Mmr' 

(10) 

where L^, is tiie trend/level component of the signal 9^,, R^, 
is the corresponding change in the level, 5̂ *, is the seasonal 
component and /^, is an irregular component. For each 
component, the disturbances TI|̂ ,, T)^,, T)^,, and the 
irregular /^,, are assumed to be mutually uncorrelated 
normal deviates with mean zero and variances 
0 ^ , 0 ^ , 0 ^ , 0 ^ , respectively. That is, the Mxl vector 

l o , ( ' • ) disturbances 11 \" , i]'," , ii, and /,*, are mutually uncorre­
lated in all time periods. In addition, the irregulars 
C P ^j'(,-hy^^^^"^*J' ^ = - , -2 , -1 ,0,1,2, •, areassumed 
to be correlated when h=0, but uncorrelated for /t ?̂  0 and /,' 
has covariance matrix Y.i - The same happens with the 
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system disturbances t]'̂ ,̂, r{"^,,f^y a=l,r,s, which are also 
correlated when h=0, but uncorrelated for h*0, with 
covariance matrices X;- Zr'I^j • ^^ ^^^h time t, the corre­
lation stmcture between the components of the composition 
is summarized by ^^ and a block diagonal matrix with the 
blocks being £, , £ ,̂ X ,• Note that the relation between the 
series arises via the non-zero off-diagonal elements of the 
disturbance covariance matrices. The multivariate model 
(10) for {0|} has the following state space formulation: 

9; = H(«)af^/;; 

,(9) ^ y,(e)„(e) + G(«>iif\ 
(11) 

where H^^^ = [1010000000000]<8)/„, 

a, - L^i, ••• ^Mt^it ^Mi^it ^Mt - ^i,t-io ••• ^M,t-ioy 

„(9) _ /„(0 JD Jr) (r) (s) ( j ) w 
n, = (Til, •••%,ni, •••%,Tll, -IIA/ , ) . 

G(6) 

J (6) 

"lOx3 

1 1 : 

0 1 i 

®/ . . A/' 

"2x11 

'11x2 

-1 -1 

1 0 

0 1 

0 0 

-1 -I 

0 0 

0 0 

1 0 

<8) / M-

The transformed survey error process {e*} is assumed 
to follow an Af-dimensional vector autoregressive moving 
average process (VARMA), defined by 0(B)e* = 0(fi)a,, 
with mean vector E{e])=0 and 

0(B) 0,B 

0(B) = / - df.B -

Q^B", 

ib^BP, 

where Oj,...,0 ,0 | , . . . ,0 are coefficient matrices and a, 
is an M-dimensional white noise random vector with zero 
mean and covariance structure: 

£(«,«',-.) = 
la h=0 , 

0 h * 0 

The cross-covariance matrix function for the VARMA 
process {e|}, (see Wei 1993, page 333), is given by: 

r^.{h) = C O V « . „ < ) = £ « . , e,*'), 

where {r,.(/i)} =Y.„^.(/I) = COV(e:, , . , , . / , ) . and the 
cross-correlation function for the vector process is defined 

as: 

where 

p^.(;i) =z); ." ' r^ . (^)D;." ' , 

D^. =diag(Y .,(0),...,y.^„(0)). 

The state space representation of VARMA models can 
be found in Reinsel (1993, section 7.2). The separate 
models for the transformed signal and sampling errors can 
be cast into a unique state space model, see Silva (1996, 
Chapter 8) for details. 

4. ESTIMATION FROM THE 
TRANSFORMED DATA 

As in previous sections, we distinguish between the 
estimation of the stmcture of the surveys errors, the noise, 
and the estimation of the covariances of the basic stmctural 
model. Once these are obtained, we employ the Kalman 
filter to get estimates of the trend and seasonals which 
determine the signal. Before carrying out the signal extrac­
tion, the VARMA model for the survey errors must be 
identified. 

The model specification for the error process {e*} 
depends on the sampling design, particularly on the level of 
sample overlap between occasions, and also on data availa­
bility. Many authors have considered the problem of 
modelling the sampling error process in a univariate frame­
work, see, for example, Scott and Smith (1974), 
Pfeffermann (1989, 1991), Bell and Hillmer (1990), Binder 
and Dick (1989), Tiller (1989, 1992), Pfeffermann and 
Bleuer (1993), Binder, Bleuer and Dick (1993), 
Pfeffermann, Bell and Signorelli (1996) and Pfeffermann, 
Feder and Signorelli (1998). However, in all of these cases 
the authors are working with the original data instead of the 
transformed data. After transformation, it is difficult to 
carry out a full primary analysis based on individual 
observations, see Silva (1996, Chapter 7). 

Many repeated surveys are based on a rotating panel 
design in which K panels of sampling units are investigated 
at each survey round (time point) and panels are replaced in 
a systematic manner, according to the rotating pattem of the 
survey design. In these surveys, elementary design unbiased 

(k) 
estimates y) ,k = l,-, K, for the population parameter 9,, 
can be obtained from each rotation group. A rotation group 
is a set of sampling units that joins and leaves the sample at 
the same time. 
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In a two-stage survey, in which the primary sampling 
units (enumeration areas) remain in the sample for all 
survey occasions, the replacement of panels of households 
(second-stage units) is ordinarily carried out within geo­
graphical regions defined by mutually exclusive groups of 
enumeration areas. Note that a survey with K panels 
produces K streams of estimates, where a stream is a time 
series of all sample estimates based on samples from the 
same enumeration area, that is, is a time series of 
elementary estimates. 

Pfeffermann, Bell and Signorelli (1996) and 
Pfeffermann, Feder and Signorelli (1998) show how to esti­
mate the autocorrelation of the sampling error process for 
univariate data, before transformation, using the so-called 
pseudo-errors, defined as: 

(12) rW 
= y, - yr 

where y^ = llK Xt = i3'r • ^ there is no rotation bias, it 
follows that: 

e, e, e, , (13) 

thus contrasts in y\ are contrasts in the panel sampling 
errors e 

(.k) 

For the compositional case we apply, for each elemen­
tary estimate, the transformation v**̂  = a (y^*') = 

(k) (k) I m ^•' I ' 

(V,, ,...,v^,)' which has as its m component, 
(m = 1,...,M): 

.w log ymi 

^ yM*i.i ^ 

= log 
f 9 1 

, ^M*l.t, 
+ log (14) 

From (14), a vector model for the /:'* series of 
transformed elementary estimates can be written as: 

..(*) 9! •w (15) 

withe:'*' = (e,?> . % , ) and e„y = log{u'Jlu'^iy,), 
for (w = 1,..., M). Hence, from (15), M-dimensional time 
series of transformed pseudo-errors can be constmcted from 
deviations of the transformed rotation group estimates about 
their overall mean. The transformed pseudo-errors for the k '* 
rotation group are defined as: 

-•(*) '(k) W N / _ , . W 

/ (k) 
= ( ^ 1 , ' 1 / ' 

i.k) 
^Ml 

addition. 

(16) 

that where v, = UK y,t_,v, . Note, in 
. - ; < ^ > = . : ' * ' - . ; . 

From (14) and (15), it becomes clear that the framework 
introduced by Pfeffermann, Bell and Signorelli (1996) can 
also be applied to the transformed model. 

The cross-correlation matrices of the transformed 
sampling errors can be obtained by averaging the cross-

covariances matrices of the transformed pseudo-errors as 
follows (for details see Silva 1996, Chapter 7): 

Pe-{h) 

where 

k = l 

-1/2 K 

E r}%) 
.*=' J 

K 

TDt^ 
.*=' 

-1/2 

(17) 

r^hh) - C O V ( < ^ e-:'') - E{e:l^ef-), 

with 

and 

« B'^'^U - . (« {r«(/z))„. = cov(.-:-„^.;-) = Y;«.(/t) 

D^-.=diag(T^*>,(0),...,Y;*i,^(0)). 

Once the cortelation matrices F,. (A), A = 1,2,... have been 
estimated, a VARMA model to represent the transformed 
survey error process can be selected and estimates of the 
respective parameter matrices can be computed, provided 
the series of transformed pseudo-errors are available. Then, 
as described in section 3, a state space model for 
representing the transformed signal and sampling errors can 
be defined and the Kalman filter equations can be used to 
get filtered and smoothed estimates for the unobservable 
components. The application of the Kalman Filter requires 
the estimation of the unknown hyperparameters (the 
covariance matrices Z / ' Z r ' L , ' Z / ' E a ) ^nd the 
estimation of the initial state vector and the respective 
covariance matrices. 

Having addressed the issue of how to model the survey 
estimates in a compositional framework and how to identify 
the time series model for the transformed sampling errors, 
the following section presents the results of an empirical 
study using compositional data from the Brazilian Labour 
Force Survey. 

5. MODELLING COMPOSITIONAL TIME 
SERIES IN THE BRAZILIAN LABOUR 

FORCE SURVEY 

The Brazilian Labour Force Survey (BLFS) collects 
monthly information about employment, hours of work, 
education and wages together with some demographic 
information. It classifies the survey respondents, aged 15 
and over, according to their employment status in the week 
prior to the interview into three main groups: employed, 
unemployed and not in the labour force, following the 
International Labour Organization (ILO) definitions. The 
survey targets the population living at the six major 
metropolitan areas in the country. The BLFS is a two-stage 
sample survey in which the primary sampling units (psu) 
are the census enumeration areas (EA) and the second-stage 
units (ssu) are the households. The primary sampling units 
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are selected with probabilities proportional to their sizes 
and then a fixed number of households is selected from 
each sampled EA by systematic sampling. All household 
members within the selected households are enumerated. 
The primary sampling units remain the same for a period of 
roughly 10 years (as in a master sample). New primary 
sampling units are selected when information from a new 
population census becomes available. 

In addition, the BLFS is a rotating panel survey. For any 
given month the sample is composed of four rotation groups 
of mutually exclusive sets of primary sampling units. The 
rotation pattem applies to panels of second-stage units 
(households). Within each rotation group a panel of house­
holds stays in the sample for four successive months, is 
rotated out for the following 8 months and then is sampled 
again for another spell of four successive months. Each 
month one panel is rotated out of the sample. The substi­
tuting panel can be a new panel or one that has akeady been 
observed for the first four montiis period. Note that the 4-8-
4 rotation pattem induces a complex correlation stmcture 
for the sampling errors over time and that there is a 75% 
overlap between two successive months. 

The empirical work was carried out using data from the 
Sao Paulo metropolitan area covering the period from 
January 1989 to September 1993 (57 observafions). The 
quantities of interest are the proportions of employed, 
unemployed and not in the labour force, and also the unem­
ployment rate. Using the monthly individual observations, 
the series of sample estimates and their respective estimated 
standard errors were computed using data of each specific 
survey round and standard estimators. For each month, two 
sets of estimates were obtained. The direct sample 

estimates, derived from the complete data collected at a 
given month and four elementary estimates, each based on 
data from a single rotation group. The panel estimates are 
used to estimate the sampling error autocorrelations and to 
help to identify the time series model for the sampling 
errors. 

In this study the observed composition has M + 1 = 3 
components and the time series is defined as the sequence 
of vectors y, = (yu.yjj.ys,)'. where: 

y,j is the estimated proportion of unemployed persons 
in month t; 

yj, is the estimated proportion of employed persons in 
month t; 

yj, is the estimated proportion of persons not in the 
labour force in month t. 

The model for the BLFS must incorporate the special 
features of the data. Firstiy, it is a compositional time series 
belonging to the Simplex Ŝ  at each time t. Secondly, the 
time series are subject to sampling errors. Following the 
approach in section 2, we first map the composition onto 
M̂  using the additive logratio transformation with ŷ ^ as 
the reference category. As y, is a vector of sample esti­
mates, it can be modelled as in equation 1 and the vector 
model for the transformed series is given by equation 9. 
Then, the transformed composition is modelled using a 
multivariate state space model that accounts for the auto-
cortelations between the sampling errors. Finally, the model 
based estimates are transformed back to the original space. 
Figure 1 displays the series of transformed compositions. 

JAN89 JAN90 JAN91 JAN92 
DATE 

JAN93 JAN94 

LOG (Employed/Inactive)-
— • — LOG (Unemployed/Inactive) 

Vertical lines = September 89 - September 93 

Figure 1. Brazilian Labour Force Series - SAO PAULO Transformed Compositions 
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The model for the transformed sample estimates v̂  is 
composed of a bivariate model for the transformed signal 
9|, describing how the transformed population quantities 
evolve in time, and a bivariate model representing the time 
series relationship between transformed sampling errors e]. 
The transformed signal process {Oj} is assumed to follow 
the bivariate basic stmctural model (equation 11) as 
described in section 3. As mentioned before, a VARMA 
model to represent the sampling error series was used. The 
correlation stmcture of the transformed sampling errors was 
estimated using the transformed pseudo-errors as in 
equation 16. In addition, estimates of the partial lag 
correlation matrices for {e,* } were computed using a 
recursive algorithm provided in Wei (1993, pages 359-362). 
A program in SAS-IML which gives the cortesponding 
schematic representations (Tiao and Box 1981) and a 
statistical test to help establish the order of the vector 
process was developed. The form of the correlation 
matrices and the results for the statistical test, available in 
Silva (1996), indicate that a VAR(l), a VAR(2) or a 
VARMA(1,1) model could be used to represent the 
transformed sampling error process. In the event, the 
VARMA(1,1) was chosen because it yields smaller 
standard errors for estimates of the unemployment rate. The 
parameter estimates for this model were obtained from the 
relationship between the cross-covariance function and the 
parameter matrices given in Wei (1993, pages 346-347). 
The VARMA(1,1) fitted for {e] } is given by: 

0.7347 0.2414 

-0.9224 -0.2072 

0.3162 0.2590 

-0.7666 -0.2749 

"i.t-i 

^2,1-1 

a 
1./-1 

a. 2,f-l "2/ 

with 

E„ 
0.0001723 0.0003476 

0.0003476 0.0051660 
(18) 

Having put the combined model for the transformed survey 
estimates into the state space form, the Kalman Filter 
equations can be used to get filtered and smoothed esti­
mates for the unobservable components. Note that the 
estimation of the model for the transformed sampling errors 
(equation 18) was implemented outside the Kalman Filter. 
The application of the Kalman Filter requires the estimation 
of the unknown hyperparameters (the covariances), the 
initial state vector and respective covariance matrix. 
Assuming that the disturbances x] ,*®̂  a, and / , are normally 
distributed, the log-likelihood function of the (transformed) 
observations can be expressed via the prediction error 

decomposition (for details see Harvey 1989). Estimates for 
the model covariances were obtained by maximum like­
lihood, applying a quasi-Newton optimization technique. A 
computer program to implement the maximization proce­
dure was developed using the optimization routine NLPQN 
from SAS-IML. 

The initialization of the Kalman filter was carried out 
using a combination of a diffuse and proper priors. 
Following this approach, the non-stationary components 
(a'®^)' of the state vector were initialized with very large 
error variances and the respective components of the initial 
state vector were taken as zero. The stationary components 
{e^^ 2̂* )' were initialized by the corresponding uncondi­
tional mean and variance. 

When fitting the model, the estimated covariance 
matrices obtained for the slope and seasonal components 
were very small and could be set to zero. This implies that 
the seasonals are assumed to be deterministic and that the 
slope is assumed to be fixed, giving rise to a local level 
model with a drift and non-stochastic seasonals for the 
signal. Indeed, as pointed out by Koopman, Harvey, 
Doomik and Shephard (1995, page 39), when the number 
of years considered in the analysis is small, it seems reason­
able to fix the seasonals since there is not enough data to 
allow the estimation of a changing pattem. The fact that a 
fixed seasonal pattem is validated by the estimation process 
is a satisfactory feature of the modelling procedure. In 
addition, the estimated covariance matrix of the irregular 
component was also found to be very small (and hence 
undetectable) in comparison to the sampling error and so, 
as expected, in the presence of relatively large sampling 
errors, there was no need to include irregular components 
in the model for the transformed signal. The parameter 
estimates and respective asymptotic errors (displayed in 
parenthesis) are presented in Table 1. 

Table 1 
Estimates for the Hyperparameters and Standard Errors 

Model £ ,^10-^ (2) £ , = £ , = £ , 

BSM + 
VARMA (1,1) 

(1) 

2.78 0.12 

(0.91) 

1.95 87.0 

(3.55) (27.10) 

0 -

0 0 

(1) Local level model with drift and fixed seasonals for the 
signal. 

(2) Upper-triangular contains correlation. 

To evaluate the model performance, empirical distri­
butions of the standardized residuals were compared with 
a standard normal distribution to verify the assumption that 
the innovations (v,-v,|,_,) are normal deviates. Exami­
nation of corresponding normal plots revealed no departure 
from normality. In addition, we also computed the auto-
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correlations of the innovations, which were close to zero, 
further validating the model. 

Predictions for y^, and estimates for 9^ ̂  are computed 
by applying the additive logistic transformation (equation 
5) to predictions v,,,,, and smoothed estimates 0*,̂  for the 
transformed series and signal, respectively. This transfor­
mation maps these estimates onto S^, guaranteeing that 
they satisfy the boundedness constraints. 

Unfortunately, although L'.j. and S*,^ can be obtained 
from 9*,^, it is not straightforward to obtain estimates for 
the stmctural unobservable components of the original 
signal 9j, such as L^.j and S^.j, However, if a multipli­
cative model with no irregular component is assumed for 
{ 9 , 1 , such that: 
^ mt'' 

K = KK'^2, = 1^2,^2. 'K = ^3,^3^ (19) 

where L^^ and 5^^, for m = 1,2,3 represent the trend 
and seasonal components of the unobservable signals, then 
applying an additive logratio transformation to 9, results in: 

which results in 

log(9„, /93,) = log 

= log 
-31 

log 
'31 ) 

,m = 1,2. (20) 

This can be rewritten as: 

e;, = C + Kr (21) 

with L ; , = log(L„, IL,,) and 5^, = log(5„, IS,,). 
Thus, the use of a basic stmctural model for {9,*} 
corresponds to the case in which the underlying model for {9,} 
decomposes the original signal into its trend and seasonal 
components in a multiplicative way. For deriving estimates, 
either filtered or smoothed, for L , note that: 

ml 

exp(L,;) = L„ / Lj,, exp(L2;) = L ,̂ / Lj,. (22) 

To recover L,,, Lj , , Lj,, in (22), it is necessary to 
assume an explicit relationship between these unobservable 
components based on model (19). By doing this, a third 
equation can be added to the system in (22) and an estimate 
of the original series components can be obtained. Note that 
the system has three unknowns for just two equations. In 
this case, it is quite natural to assume that the level compo­
nents sum to one across the series, being also bounded 
between zero and one. Hence, trend estimates for the 
original series can be obtained solving : 

exp(L,*,) = L„ / Lj,, 

exp(Ẑ 2*,) = ^ 1 ^3r 

K*^2,^^3, = 1-

(23a) 

exp(Z-j;,) 

1 + J2 exp(L;,) 
k'l 

m = l,2; 

h,= 
I 

(23b) 

1 + Y, exp(L;,) 
*=1 

As there is no irregular component in model (19) the 
seasonally adjusted figures are given by the trend estimates 
in (23). Therefore, the smoothed estimates for the trend of 
the original series of proportions are obtained by applying 
the additive logistic transformation to L,*,̂ . Consequently, 
estimates for the seasonal components of the original 
proportions can be computed as : 

^m,t\T ~ ^m.t\T^^m.t\T' m = I,2,3. 

For labour force surveys, an important issue is the 
estimation of the unemployment rate series (as opposed to 
unemployment proportions) and also the production of the 
corresponding seasonally adjusted figures. Recall that 9,, 
and 02, represent the unknown population proportions of 
unemployed and employed people, respectively. Using 
these proportions, the unknown unemployment rate at time 
is t defined as 

R. = 
9, I 

01, * 02, 
1 . ^ 

9, 

^ . 1 
(24) 

Based on model (11), trend estimates for the 
unemployment rate can be obtained by simply replacing 9^, 
by L^,, m = 1,2, in equation 24. In conclusion, the metho­
dology developed in this section provides signal (and trend) 
estimates that are bounded between zero and one and satisfy 
the unit-sum constraint. It also provides estimates for the 
seasonal and trend components of series comprising ratios 
of the original proportions which is a useful feature. 

Figure 2 presents the design-based estimates and the 
model-dependent estimates for the proportion of unem­
ployed persons, for the time period January 1989 to 
September 1993. The model-dependent estimates are the 
smoothed estimates which use all the data for the whole 
sample period. As can be seen from the graph, the signal 
estimates behave similarly to the design-based estimates 
although some of the sharp turning points in the series have 
been smoothed out. 

Model-dependent trend estimates were obtained by 
fitting the basic stmctural model defined for the signal 
process when sampling error variation was modelled as a 
VARMA(1,1). These estimates were compared with the 
estimates produced by the familiar X-11 procedure. Figure 
3 displays the trend produced for the unemployment rate 
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series by both methods together with the estimates obtained 
by fitting a standard basic stmctural model which does not 
account for sampling error variafion. 

The trend produced by our model is smoother, 
suggesting that the model-dependent procedure succeeds in 
removing the fluctuations induced by the sampling errors. 

In addition, model-dependent estimates for the seasonal 
effects of the original compositions were also obtained from 
the multivariate modelling procedure which accounts for 
two very important features of the data, namely the compo­
sitional constraints and the presence of sampling ertors. 
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Figure 2. Brazilian Labour Force Series - SAO PAULO Design Based and Model Dependent Estimates Proportion of 
Unemployed Persons 
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6. CONCLUSIONS 

This paper proposes a state space approach for modelling 
compositional time series from repeated surveys. The im­
portant feature of the proposed methodology is that it pro­
vides bounded predictions and signal estimates of the para­
meters in a composition, satisfying the unity-sum constraint, 
while taking into account the sampling errors. This is ac­
complished by mapping the compositions from the Simplex 
onto Real space using the additive logratio transformation, 
modelling the transformed data employing multivariate 
state space models, and then applying the additive logistic 
transformation to obtain estimates in the original scale. 

The empirical work using data from the Brazilian Labour 
Force Survey demonstrates the usefulness of this modelling 
procedure in a genuine survey situation, showing that it is 
possible to model the multivariate system and obtain esti­
mates for all the relevant components. The results of the 
empirical work also show that smoother trends and fixed 
seasonals are obtained from a model which explicitiy 
accounts for the sampling errors, when compared with 
estimates produced by X-11. In addifion, because the 
model-dependent estimators combine past and current 
survey data, the standard deviations of these estimates are 
in general lower that the standard deviations of the design-
based estimators, as shown in Silva (1996, Chapter 8). 

One drawback of the proposed procedure is that 
although confidence regions for the original compositional 
vector can be constmcted based on the model-dependent 
estimates by using the additive logistic normal distribution, 
confidence intervals for the individual proportions are not 
readily available. Such intervals could be obtained from 
marginal distributions of the additive logistic normal 
distribution, but these can only be evaluated by integrating 
out some of the elements of the compositional vector and, 
as pointed out by Bmnsdon (1987, page 135), this produces 
intractable expressions. 

Under a state space formulation a wide variety of models 
is available to represent the multivariate signal and noise 
processes, which is a great benefit of this modelling 
procedure. The application of the method to different data 
sets is recommended. Further empirical research should 
also consider situations where the composition lies on a 
Simplex with dimensions higher than two and/or with 
compositions evolving close to the boundaries of the 
interval [0.1]. In addition, a better insight into the 
performance of the modelling procedure may be gained by 
applying the method to simulated data, for which the "tme" 
underlying models are known. The models considered here 
can also be extended to incorporate rotation group bias 
effects and explanatory variables. 
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