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In This Issue

This issue of Survey Methodelogy contains the second in an annual invited paper series in honour
of Joseph Waksberg. A brief description of the series and a short biography of Joseph Waksberg
were given in the June 2001 issue of the journal. The author of the Waksberg Invited Paper for 2002
is Wayne Fuller. I would like to thank the members of the Committee, Graham Kalton (chair), Chris
Skinner, David Binder and Paul Biemer, for having chosen such a distinguished statistician, who
has made profound contributions to many areas of statistical theory and practice, as the author of the
second paper in the Waksberg Invited Paper Series.

In his paper entitled “Regression Estimation for Survey Samples” Wayne Fuller presents a broad
overview of historical and recent developments in the use of regression models in surveys for
estimation, weight calibration and non-response adjustment. After a brief introduction and historical
background, he discusses the use of regression models for estimation in complex surveys from a
design based perspective. He follows this with an exploration of the model based perspective, Cther
topics discussed are the use of regression models for multinomial data, techniques available when
auxiliary variables are available for every unit of the population, and regression to account for the
effects of non-response in surveys. Finally, consideration of a few practical aspects of applications
rounds out this insightful overview of an important area of inference from survey data to which
Wayne Fuller himself has made many important contributions.

This issue also contains a special section “Remembering Leslie Kish™ which includes four papers,
one by Leslie Kish himself containing some of his last thoughts on the topics of combining samples
and surveys. Two of the other papers discuss implementations of Leslie Kish’s idea of rolling
censuses. These two papers were also presented at the Statistics Canada Symposium 2001 in a
special session entitled “Remembering Leslie Kish”.

The first paper in the special section, by Graham Kalton, presents an inspiring overview of Kish’s
contributions to many areas of statistics. Many of the problems that Kish worked on are put into
historical perspective and their practical importance is emphasized.

The paper by Kish presents ideas that he was still working on at the time of his death in October
2000. I am grateful to Graham Kalton and Jack Gambino for making editorial corrections to the
paper, but it is presented largely as it was at the time of Kish’s death. In this paper he argues that,
Jjust as statistics represented a new paradigm in the scientific method, and survey sampling required
a new paradigm in statistics, so rolling samples and multi-population surveys require new paradigms
in survey methods. 'We can only speculate as to what the final paper would have been like had Kish
lived.

Alexander describes the American Community Survey, planned to be introduced by the U.S.
Census Bureau in coming years as a replacement for the decennial census long form. This is a very
large survey based very much on the idea of rolling samples and censuses that Kish introduced more
than twenty years ago. This paper discusses the concepts, frame, sampling design, and cumulation
of samples and weighting.

The final paper in the special section, by Durr and Dumais, describes the new rolling census being
introduced in France to replace their more traditional census. In this rolling census, every small
commune will be surveyed once within a five year period; larger communes will be divided into five
rotation groups, each rotation group being surveyed in one of the five years. This paper describes
objectives, design and estimation procedures for the rolling census.

In their article, Cahill and Chen develop an approach to exploit data from multiple surveys and
epochs by benchmarking the parameter estimates of logit models of binary cheice and semi-
parametric survival models. Estimates obtained from a survey rich in explanatory variables are
benchmarked to information from a survey with significant historical depth. Cahill and Chen
demonstrate how the method can be applied, using the maternity leave module of the LifePaths
dynamic microsimulation project at Statistics Canada.
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Garren and Chang consider the.problem of the non-telephone population in telephone surveys
using random digit dialing. Using Public Use Microdata Samples, the propensity that a household
owns a phone is estimated using generalized linear regression and is used during estimation.
Asymptotic biases and variances are presented for both the non-poststratified and poststratified
estimators incorporating and not incorporating the estimated propensity. These four estimators are
further compared through a simulation study.

The article by Tillé develops an estimator that can be used to avoid the problem of empty
post-strata that can occurs with the usual post-stratified estimator. The idea involves using a
conditionally weighted estimator and conditioning on ranks in the population of an auxiliary variable
known for all units of this population. In this way, the sizes of the post-strata are set in the sample
and random in the population. The next step is to calculate the mean of the conditionally weighted
estimators to obtain greater stability. The estimator obtained is calibrated on distribution, linear and
exactly unbiased. A simulation study is used to show that the proposed estimator is more robust than
the generalized regression estimator when the relation of the variable of interest and the auxiliary
variable is not linear. Lastly, the article proposes an approximate estimator of the variance verified
using simulations.

Shao and Butani consider the problem of estimating variances for imputed survey estimators.
They show that the resulting variances can be estimated in two parts, the first of which can be
estimated using a grouped half-sample method that incorporates adjustments to take imputation into
account. As the estimation of the second part may entail many derivations, Shao and Butani propose
an adjustment to the grouped half-sample method that leads to approximately unbiased variance
estimates.

In his paper Cohen describes a methoed to implement Rao and Shao’s jackknife method of
estimating variances to account for imputation using replicate weights. Rao and Shao’s method
involves calculation, for each jackknife replicate, adjusted values of imputed data points. The
method can be used with either mean imputation or hot deck imputation. Cohen’s method involves
adding extra rows to the replicate weight file. For each imputed value, one extra row is added for
each respondent in the same imputation class.

In the last paper of this issue, Valliant studies several variance estimators for the General
Regression {(GREG) estimator. The interest is in finding variance estimators that, under certain
conditions, are approximately unbiased for both the design-variance and the model-variance even

" if the model that motivates the GREG has an incorrect variance parameter. A key feature of these

robust estimators is the adjustment of squared residuals by factors analogous to the leverages used
in standard regression analysis. It is shown that the delete-one jackknife implicitly includes the
leverage adjustments and is a good choice from either the design-based or model-based perspective.
A simulation study shows that these variance estimators have small bias and produce confidence
intervals with near-nominal coverage rates.

M.P. Singh
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Waksberg Invited Paper Series

Survey Methodology has established an annual invited paper series in honor of Joseph Waksberg, who has
made many important contributions to survey methodology. Each year, a prominent survey researcher will
be chosen to author a paper that will review the development and current state of a significant topic in the
field of survey methodology. The author receives a cash award, made possible through a grant from Westat
in recognition of Joe Waksberg’s contributions during his many years of association with Westat. The
grant is administered financially and managed by the American Statistical Association. The author of the
paper is selected by a four-person committee appointed by Survey Methodology and the American
Statistical Association.

JOSEPH WASKBERG

2002 WAKSBERG INVITED PAPER
Author : Wayne A. Fuller

Wayne A. Fuller is Emeritus Distinguished Professor in Statistics and Economics at owa State University.
He has published approximately 100 articles in more than twenty journals and is author of the texts
Introduction to Statistical Time Series and Measurement Error Models. As a member of the Survey Group
at lowa State University, he had primary responsibility for developing estimation procedures for a large
longitudinal national survey called the U.S. National Resources Inventory. His research interests in survey
sampling include regression estimation, small area estimation, imputation, and multiple phase sampling.
He currently chairs the Advisory Committee on Statistical Methods of Statistics Canada.
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Regression Estimation for Survey Samples

WAYNE A.FULLER!

ABSTRACT

Regression and regression related procedures have become common in survey estimation. We review the basic properties
of regression estimators, discuss implementation of regression estimation, and investigate variance estimation for regression
estimators, The role of models in constructing regression estimators and the use of regression in nonresponse adjustment

are explored.

KEY WORDS: Auxiliary information; Calibration; Least squares; Design consistency; Linear prediction.

1. INTRODUCTION

Design and estimation in survey sampling involve the
use of information about the study population to construct
efficient procedures. While design and estimation are
intimately related, with estimators depending on the design,
the two topics are often treated somewhat separately in the
survey sampling literature. We follow tradition first
studying estimation treating the design as given. The
estimation task is to combine the available information
about the population, with the sample data to produce good
representations of characteristics of interest.

Regression estimation is one of the important procedures
that use population information or information from a larger
sample, to construct estimators with good efficiency. The
information, sometimes called auxiliary information, may
have been used in the design or may not have been
available at the design stage. In surveys of the human
population, the information often comes from official
sources such as the national census. Similar sources may
provide information for other types of surveys. For
example, in a survey of land use the total surface area, the
area owned by the national government, and the area in
permanent water bodies may be available from national data
archives.

Three distinct situations can be identified with respect to
the nature of the auxiliary information that is available. In
the first, the values of the auxiliary vector x are known for
each element in the population at the time of sample
selection. In this case the auxiliary variable can be used in
designing the sample selection procedure.

In the second situation all values of the vector x are
known, but a particular value cannot be associated with a
particular element until the sample is observed. In this case,
the auxiliary information cannot be used in design, but a
wide range of estimation options are available once the
observations are available. For example, the population
census may give the age-sex distribution of the population,
but a list of individvals and their characteristics is not

available to non governmental institutions selecting
samples.

In the third situation, only the population mean of x is
known, or known for a large sample. In this case, the
auxiliary information cannot be used in design and the
estimation options are limited. For example the U.S.
Department of Agriculture might release an estimate of the
total number of animals of a particular type on farms on a
particular date. Qur discussion concentrates on this
situation.

Two estimation situations can zlso be identified. In one,
a single variable and a parameter, or a very smali number of
parameters, is under consideration. The analyst is willing to
invest a great deal of effort in the analysis, has a well
formulated population model, and is prepared to support the
estimation procedure on the basis of the reasonableness of
the model. In the second situation, a large number of
analyses of a large number of variables is anticipated. No
single model is judged adequate for all variables. The
prototypical example of the second situation is the case in
which a data set is prepared by the survey sampler to be
analyzed by others. Because the person preparing the data
set does not have knowledge of the analysis variables,
emphasis is placed on the use of estimators that can be
defended with minimal recourse to models.

Regression estimators fall in the class of linear esti-
mators. Linear estimators have a particular advantage in
survey sampling because once the weights are calculated
they are appropriate for any analysis variable. Several
properties of estimators will be examined in our discussion.
Given a model, we accept the classical goal of minimizing
the mean square error in a class of estimators. That class
may be the class of linear estimators that are unbiased under
the mode!, but the class may be further restricted.

Estimators that are scale and location invariant can be
used in general settings. Mickey (1959) suggested that the
term regression estimator be restricted to linear estimators
that are location and scale invariant. While we may not

‘adhere strictly to this definition, we support the distinction

! Wayne Fuller, Emeritus Distinguished Professor, lowa State University, 221 Snedecor Hall, Ames, 1A 50011-1210, US.A.



between estimators that are location and scale invariant and
those that are not. We consider location invariance to be
important for sampling designs where the unit of interest for
analysis is also the sampling unit. For cluster and two stage
designs in which weights are constructed for primary
sampling unit totals, location invariance is less important.

Models play an important role in the construction of
regression estimators. It is desirable that the estimators
retain good properties if the model specification is not
exact. Therefore properties conditional on the realized
finite population, as well as properties under the model, are
important.

Linear estimators that reproduce the known means of the
auxiliary variables are said to be calibrated. This is a desir-
able property in that, for example, the marginals of tables
with an auxiliary variable as an analysis variable agree with
known totals. If the auxiliary variable is of no analytic
interest, then calibration is less important.

2. BACKGROUND

The earliest references to the use of regression in survey
sampling include Jessen (1942) and Cochran (1942).
Regression in similar contexts would certainly have been
used earlier and Cochran (1977, page 189) mentions a
regression on leaf area by Watson (1937). It is interesting
that Jessen’s use of regression was essentially composite
estimation where regression was used to improve estimates
for two time points given samples at each point with some
common elements in the two samples. Cochran (1942)
gave the basic theory for regression in survey sampling
relying heavily on linear medel theory. He showed that the
linear model did not need to hold in order for the regression
estimator to perform well. He derived an expression for the
O(n ') bias and an O(n ) approximation for the variance.
He also showed that for the model with regression passing
through the origin and error variances proportional to x, the
ratio estimator is the generalized least squares estimator.

Regression estimation attracted theoretical interest in the
1950s, often in the form of studies of the bias. See Mickey
(1959). Brewer (1963) is an early reference that considers
linear estimation using a superpopulation model to
determine an optimal procedure. He was concerned with
finding the optimal design for the ratio estimator and
discussed the possible conflict between an optimal design
under the model and a design that is less model dependent.
See also Brewer (1979). Royall (1970) argued for the use of
models, that the conditional properties that are important
are those conditional on the auxiliary information in the
sample, and that the design should be chasen 1o optimize
those properties. Royall and his coworkers, ¢.g., Royall and
Cumberland (1981), studied the conditional properties of
regression estimators, conditional on the realized sample of
auxiliary variables.

Fuller: Regression Estimation for Survey Samples

A great deal of research was conducted in the 1970’s and
1980’s on the general nature of the regression estimator in
survey samples and on the degree to which the model
prediction approach can be reconciled with the design
perspective. Fuller (1973, 1975) gave the large sample
properties of a vector of regression coefficients computed
from a survey sample. Isaki (1970) studied regression
estimators and the results were published in expanded
versions in Isaki and Fuller (1982) and Fuller and Isaki
(1981). It was shown that a regression estimator constructed
under a model is design consistent for the population mean
if the model contains certain variables. Cassel, Sdrndal and
Wretman (1976) considered both model and design
principles in estimator construction and suggested the term
“generalized regression estimator” for design consistent
estimators of the totat of the form
Tooree = T * Ty~ Toi) B,
where f’ and f’x, gr are the Horvitz-Thompson
estimators of the totals of y andhx, respectively, TI‘ y isthe
know population total of x and P is an estimated regression
coefficient. Sdmdal (1980), Wright (1983}, and Sirndal
and Wright (1984) discussed classes of regression
estimators. The text by Sidrndal, Swensson and Wretman
(1992} contains an extensive discussion of regression
estimation and Mukhopadhyay (1993) is a review.

It was the 1970’s before the use of regression for general
purpose, multiple characteristic, surveys appeared and it
was the 1990’s before the use of regression weighting could
be called widespread. An early use of regression weights

-was at Doane Agricultural Services Inc., now Doane

Marketing Research, During 1971-1972 a readership study
of farmers was conducted under the direction of Mr, John
Wilkin in which 6,920 farmers responded. Weights for the -
respondents were constructed using regression procedures,
where the controls came from the U.S. Agricultural Census
and from Department of Agriculture sources. Doane
provided financial support to Towa State University to
develop a regression weight generation program. To
guarantee positive weights in the Doane study, observations
with small weights were grouped and assigned a common
weight. Grouping continued until the common weight was
positive. Later computer programs used modifications of
the Huang and Fuller (1978) procedure to guarantee
positive weights. Doane has used regression weights for
their syndicated market research studies since 1972.
Regression estirnation was first used at Statistics Canada
in 1988 for the Canadian Labour Force Survey. In 1992
regression estimation was used by the 1991 Canadian
Census of Population to ensure that the weighted sum of
variables collected via the long form (a one in five
systematic sample of all households in Canada) was equal
to known household and population totals as collected in
the 1991 Census. See Bankier, Rathwell and Majkowski
(1992) and Bankier, Houle and Luc (1997). The regression
estimator is also the key component of the Generalized
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Estimation System (GES) developed at Statistics Canada
and used in numerous business and social surveys since its
release in 1992, The methodology is described in Estevao,
Hidiroglow and Siérndal (1995). See also Hidiroglou,
Sirndal and Binder (1995). Regression estimation is now
used to construct composite estimators for the Canadian
Labour Force Survey. See Singh, Kennedy and Wu (2001},
Gambino, Kennedy and Singh (2001) and Fuller and Rao
(2001).

Bethlehem and Keller (1987) report on the use of
regression estimation at the Netherlands Central Bureau of
Statistics (now Statistics Netherlands) in a program called
LIN WEIGHT. Nieuwenbrock, Renssen and Hofman
(2000) describe the software package Bascula, that has
replaced LIN WEIGHT. Deville, Sirndal and Sautory
(1993) describe a computer program CALMAR developed
at Institut National de la Statistique et des Etudes
Economiques (L. N. S. E. E.) that computes weights of the
regression type with options for different objective
functions. A program developed at Statistics Sweden and
called CLAN97 is documented in Anderson and Nordberg
(1998). Folsom and Singh (2000) discuss a procedure
developed at the Research Triangle Institute.

3.- THE CLASSICAL LINEAR MODEL

The classical linear model is the foundation for survey
regression estimation, but the survey situation requires
certain adaptations. To introduce regression estimation for
survey samples, we review the classical linear model.
Assume

y, =xBre,i=12 ,n

e, ~ NI(0,02), (3.1)

where ¢, is independent of the k-dimensional row vectors x;
for all i and j, and B is the unknown parameter column
vector. We will also use matrix representations for the
sample quantities Thus, for a sample of n elements,

= ()’]»)’2, "'vy")-

Given a sample of size n and treating the x, as fixed, the
best (minimum mean squared error) estimator of B is

b= (T xx)" T mn - xexyixey,

icA €A

X' =(x}, x5, %) and ¥’

1’ 2-'

(3.2}

where A is the set of indexes of the sample elements and we
assume, as we will throughout, that the matrix to be
inverted is nonsingular. If the e, are not normally distri-
buted, P is the estimator with smallest variance in the class
of linear unbiased estimators. The estimator of a linear
combination of the coefficients, say 0, = zf:t a; Bj, can be
written as
=2 Wy %

icA

where the weights, w_,, minimize the Lagrangean

Ew +El(‘z:wm - ]

iEA

and the lj are Lagrange multipliers. The vaniance of 8, is
V{ﬁa} = V{E wuiei} =) Wfﬂi
- |iea i€A
because the weights are functions of the x; and not of y,.
The covariance matrix of B is

v{f) [ ¥ x'.’xl.) B V{E b;}(z x;x,.) !

ieA i€A I€A

r2

i€A

(3.3)

where b =xe, and ¢, =(X'X)"'x/ e,
independent of x, for all i and j,

V{gb;} =§1 vib'} = ¥ xx,0?

icA

Because ¢, is

and we obtain the familiar expression,
~ . -1
Vip) = ( ) x,.x,.) o.
icA

The usual unbiased estimator of the covariance matrix of B
is obtained by replacing of with the unbiased estimator of g,
obtained as the mean square of the residuals, €, =y, - x, B.
An estimator of the covariance matrix that estimates
V(Y b} directly is

( E x;x:)-l ZB;‘Bf( Z ":"‘f)-l
icA icA icA
2 A:Ar’

€A

where b =x/ ¢, and &, = (X'X)"!

V,{B}

(3.4)

x; é,. In the same way

= E wnzi éfz

i€ 3.3)

is a linear combination of the elements of (3.4) and is a
consistent esttmator of V{B }. The estimator (3.4) is a
consistent estimator of V{B} when the covariance matrix
of the e, is a diagonal matrix with bounded elements. Thus
it is a more robust estimator. However, the estimator (3.4)
is biased downward because the variance of é; is usually
less than the variance of ¢, Two methods are available for
reducing the bias. The first is tomake a degrees -of-freedom
adjustment by multiplying V {B} by (n - k)"'n, where k
is the dimension of x,. An altematwe adjustment is to
replace €, with

=(1- w,',')vo.s é,-;



where v, is the i-th diagonal element of X (X’ X)™' X'. See
Horn, Horn and Duncan (1975), Royall and Cumberland
(1978) and Cook and Weisberg (1982, section 2.2).

If we observe the value x, for an element, but do not
observe Yo then the best predictor of y; for that element is
¥ = X; b Likewise, if we know the sum of x; for a set of
X’s, thf.n the best predictor for the sum of the y, is the sum
of x,p. Thus, given a set of N elements that satisfy model
(3.1), a set of observations (y;, X;) on a subset denoted by
A, and the known values of x;, for the remaining N-n
elements,

Ey. Y X,

icA

where A is the set of elements for which y is not observed,
is the best predictor of the sum of the unobserved y’s. See
Goldberger (1962), Brewer (1963), Royall (1970), Harville
(1976} and Graybill (1976, section 12.2). Hence

g = 2 Vit

is the best predictor for the total of N observations.

If the first element in the x-vector is always one, we can
partition the x-vector as x,=(1,x;,) and write the
regression estimator of the mean as

)_’reg'N Tyreg XyP =5, + (X =% ,)B

where B of (3.2) is partitioned as (B, B;)’ and (3, X,) is
the vector of simple sample means. We call x,p the
regression estimator of the mean.
Given the model (3.1), the expected value of the mean of
y for the finite population of N elements generated by the
model is X,,p and X NB is an unbiased estimator of the
finite population mean. This, we believe, is the point at
which regression estimation for the finite population mean
under more complex designs begins.

Nnreg

(3.6)

N -n,reg

(3.7)

4. DESIGN BASED ESTIMATION

The development of this section treats the finite
population as a sample realization from an infinite popu-
lation. The use of such models has a long history in survey
sampling. Some references through 1970 are Cochran
(1939, 1942, 1946), Deming and Stephan (1941), Madow
and Madow (1944), Yates (1949), Godambe (1955), Hijek
(1959), Rao, Hartley, and Cochran (1962), Konijn (1962),
Brewer (1963), Godambe and Joshi (1965), Hanurav
(1966), Ericson (1969), Isaki (1970), and Royall (1970).

To discuss the large sample properties of regression
estimators we consider sequences of finite populations and
associated probability samples. The set of indices of the
elements in the Nth finite population is U, = {1, N},
where N = 1, 2, - . Associated with the ith element of the
Nth population is a row vector of characteristics

Ziy = (Yipr X)Lt
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FN = [( le! x”v)v ()’w, XZN)’ ] ()’NN, xNN )]

be the set of vectors for the N-th finite population. The
subscript N on the vectors will often be omitted. The finite
population mean is '

: N
Zy = (7 %) =N"X; (¥, X,). (4.1)
i=
We denote the set of indices appearing in the sample

selected from the Mh finite population by A,,.

When the finite population is a sample from an infinite
superpopulation, the probability properties of a sample are
determined by the properties of the superpopulation and the
properties of the probability mechanism used to select the
sample. One can consider the unconditional properties, the
properties conditional on the particular finite population, or
the properties conditional on some part of the realized
sample.

Properties conditional on the finite population depend
primarily on the survey design and are often called design
properties. Thus an estimator 9 is said to be design consistent
for the finite population parameter 8, if, forall € >0,

lim prob{]§—9N|>e|FN} = 0,
N on—re
where the notation means that we condition on the realized
finite population F, and, hence, the probability is with
respect to the design.

Assume the finite population is generated as independent
selections from a superpopulation for which E(z;z,} is
positive definite, where z, = (y,, x,;). We define a super-
population vector of least squares regression coefficients by

= [E{x{x}]" E{x] y,}. (4.2)

Given a sample of n observations on z; we define the
nx (k+1) matrix Z = (y, X) of observations, where the ith
row of Z is (y, x,). If we assume the model

= X +u, @3)
E{u,uv’} = (0, D),
the generalized least squares estimator of P is
p=XaoX) X 0y (4.4)

The model (4.3) serves as motivation for estimators of the

form (4.4) but we shall consider estimators where @ is a

general symmetric positive definite weight matrix, not
necessarily the covariance matrix of the errors.

We give the large sample properties of -the vector of
estimated regression coefficients (4.4) following Fuller
(1975). See also Hidiroglou (1974), Scott and Wu (1981),
and Robinson and Sdmdal (1983).

Assume the superpopulation has eighth moments and
that the sample design is such that the error in the Horvitz-
Thompson estimator of the mean is O (n ~'2), where the
Horvitz-Thompson estimator of the mean is
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N'Y 'z,

€A

N
€I

r = Our Xur) = 4.5)

and m; is the selection probability for element i. Then the
error in the vector of regression coefficients is

B-BylFy=Quvbig+0,(n™), (4.6)
where
By = Quen Qe @.7)
(QxxN’ QxyN) = E{(Qxx’éx_\')lFN}’ 4.3
Q,.Q) =n (X o'X, X @'y,
=N} E %'b, (4.9)

b/=n"'Nn e, e =y, -xB,, and { is column i of

X’ ®!. By (4.9) the error in the estimator of P N 18
approximately the error in a Horvitz-Thompson estimator
of the mean. In result (4.6), the B, is defined as a function
of the expected values of the sample quantities (Q , Q .
Thus B, is not necessarily the ordinary least squares finite
population regression coefficient. The vector b, of (4.9} is
the generalization of the vector b, of (3.3). If the limiting
distribution of the properly standardized Horvitz-Thompson
estimator is normal, and if there is a design consistent esti-
mator of the variance of the Horvitz-Thompson estimator,
then it is possible to construct tests and confidence intervals
for the coefficients. Assume the design is such that

V@ -20) | Fy 5 NOD), 4.10)
as N,n-—e, where V_ is the covariance matrix of
Zyr—Zy If V is O(n -1y and the estimator V.. is
consistent for V‘. then

(V{8 (B -8,)I 7y = NOD, @D

where

ViB)=Q, V5 QL. = Vg, .12)
V = V{b' } is the estimated des1gn variance of bHT
calculated " with b/=n"'Nnté &=y -xp. and
V{ cm} is the estlmated design variance of cHT calculated
with €] = Q b The limiting properties hold for stratified
samples and for stratified two stage samples under mild
restrictions on the sequence of populations.

By analogy 10 (3.7), a regression estimator of the finite
population mean is obtained by evaluating the estimated
regression function at the population mean of x to obtain

yreg = iNﬁ’ (4.13)
where ﬁ is of the form {(4.4) with a general @ matrix. The
estimator can be written as w'y, where the vector of
weights can be constructed by minimizing the Lagrangean

wow+(w X-X,)A

and A is the vector of Lagrange multipliers.
If there is a column vectors y such that
Xy = ®D;'J (4.14)

for all possible samples, where D, = diag (x|, =, -+, ) and
J is an n-dimensional column vector of ones, then the
regression estimator X, B of (4.13) with B defined in (4.4)

is a design consistent estimator of y,. It follows from
(4.11) that

(%7 {B) x5 [ (%48 -5 3 N@. 1.

The requirement of (4.14) that @ D;l J be in the column
space of X is crucial for design consistency. Simple ways to
satisfy this requirement are to let one column of X be the
column of ones and to use a rnultlple of D_as ®, ortolet
one column of X be the elements ! and set D= Iior to let
one column of X be the elements n; and set @ =D;. If X is
composecl of the single column vector with elements 7, and
if @ = D then the estimator (4.13) reduces to the Homtz-
Thompson estimator of (4.5) for fixed size designs. If

4.15)

X =J and @ = D, the estimator (4.13) reduces to the ratio
estimator,
- «1Y -1 -1
By - (E T ) PEAEN .16)
icA ieA

which is location and scale invariant.

To see the nature of the estimator when (4.14) is
satisfied, let with no loss of generality, X = (x,, X,), where
X, =PD, 'Jand x, i = (%X, ;). Then

. 1o
Veeg = xO.HxO.nyn+(xl.N Xo.n%o.n |a:)p|’ (4.17)

where
By = (X, -x, 0, @ (X, - xﬂﬁxl)]-l

x(X] - X, ﬁx])' @ Y.
i, ‘fo_u X, oo and (y,,X,) is defined in (4.16). The
ratios, such as X, . ¥.. can also be written as ratios of
Horvitz-Thompson estimators. If J is in the column space
of X, estimator (4.17) is location invariant. If @ =D_,then
Xo.x %oy = 1;2nd

y reg = iNﬂ =y
where

o -f,_n)fz], (4.18)
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ﬁl =X (xl.i_il.n)‘ni-l(xl,i_il,u) B

(EA
i€A

Also, when @ =D_, the B, of (4.7) is the population
regression coefficient

- xx|'Y xy. '

BN IGEU (B} JEZU lyl (420)

Because the regression estimator of the mean is a linear
combination of regression coefficients, it is a regression
coefficient for a linear combination of the original x-
variables. To see this, let x, = (x, ;, %, ;) =(1,x, ;), and
define a new vector with one in the first position and a
second vector with population mean equal to zero obtained
by subtracting the original population mean X, , from the
original x, ; vector. Let q, = (I,x,, - X, ,) be the trans-
formed vector. Then the transformed regression model is

Yk =4q;7*eE 4.21)

where the finite population coefficient vector is

Tnw = Gn By )'=( > qr"qr'] _IE 9y (422)
et 147}

The expression for the regression estimator of the mean
becomes

Vg = An? = 9o (4.23)

where § is obtained from (4.4) with q, replacing x,.
Because the estimator is a linear estimator of the form
w'y, we can write

< -1
Yeeg = ) Wil = > £ 4.24)
i€ A i€A
where w, =m; : g;. Furthermore, the estimated variance
from (4.12) is
5y 5 5 S PR
VGl = V{to) = V{E , (g,-e,-)}, (4.25)

i€A

where it is understood that the estimated design variance of
(4.25) is computed for the variable g, ¢, €, =y, - x,; B, and B
is defined in (4.4) The variance estimator (4.25) is a direct
generalization of expression (3.5). By transforming the
variables so that the population mean of the auxiliary vector
is zero, the first element of the regression vector is the
regression estimator of the mean and the first element of
(4.12) is an estimator of the variance of the regression
estimator that contains a component due to estimating f.
This was pointed out in Hidiroglou, Fuller, and Hickman
(197R). Also, see Sirndal (1982). Sidrndal, Swensson and
Wretman (1989) suggested the g-factor terminology for the
calculation of the estimated variance of a regression
estirnated total.

xY (%, - %, )%, - 5, (4.19)
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From (4.17}, we can write
I L - o
Yeeg = *on *on [yu "X By O Xy ﬂm)]
. qp(n -1 }1
=& +0,(n N,

where e, = y, - x,p. Hence, the variance of the regression
estimator can be estimated with

V{e} = v{( 3ot ) Y g é,.}, (4.26)
ieA IEA

where &, =y, -x ‘.ﬁ. Because (4.25) is as easy to compute

as (4.26), and is applicable when X, -X, , is not

O‘D (n"'), the estimator (4.25) is recommended.

The variance of the regression estimator can also be
computed using the jackknife or other replication methods,
and the use of replication methods is becoming more
common. See Frankel (1971), Kish and Frankel (1974),
Woodruff and Causey (1976), Royall and Cumberland
(1978), and Duchesne (2000). Yung and Rao (1996)
showed that (4.25) is identical to a jackknife linearization
estimator for stratified multistage designs. '

The approach to regression estimation associated with
(4.18) and (4.19) falls completely within a design formu-
lation. No models of the population, beyond the existence
of moments, are used, through one might argue that one
would only consider regression when one feels there is
some linear correlation between x, ; and y,.

The estimator (4.19} is a very natural estimator because
the estimated regression coefficient is a design consistent
estimator of the population regression coefficient. It is
mildly annoying that (4.18) does not always yield the
smallest large sample design variance for the estimated
mean. Treating §, of (4.18) as a fixed vector, the value that
minimizes the variance of the linear combination of means
is

Braop = [V{%i | Fy)] ' C%, o5, |Fy).  (427)

See Cochran (1977, page 201), Fuller and Isaki (1981),
Montanari (1987, 1999) and Rao (1994). If there is a design
consistent estimator of the variance of im, then the [j]‘ d
that minirmizes the estimated variance

V%, - %, B4} (4.28)

denoted by B, . is a consistent estimator of B, 4. It
follows that the estimator

-)_’d.reg = 5’1: M (il.N B il,n)ﬂl.dopt (4‘29)

has the minimum limit variance for design consistent
estimators of the form y_ + (X, , - X, )B, 4. Also

Y, - L
[V{ Eu}] %(J_’d,reg- ¥u) = N(O, 1), (4.30)
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where V{E } is the estimator of (4.26) constructed with
éi =yi—yn (xh xl n)Bl dopt

In a large sample sense, (4p 29) answers the question of
how to construct a regression estimator with optirmum
design properties. In practice a number of questions remain.
The estimator is obtained under the assumption of a large
sample and a vector x of fixed dimension. In practice there
may be a number of potential auxiliary variables and if a
large number are included in the regression, terms excluded
in the large sample approximation become important. This
is particularty true for cluster samples where the number of
primary sampling units in the sample is small. In such cases,
the number of degrees-of-freedom in V{x .} is small and
the inverse can be unstable. These issues are discussed
further in section 9.

The estimator B, , . of (4.29) is linear in y for most
designs. See Rao (1994). For example, for a stratified
design with simple random sampling within strata,

C{%, .7}

H fy
=h : th (x],hj-il.h)‘(yhj_yh)’ 4.31)
- i

where
K, =W;(1-£)(n,-1)"n,"
=N2m (1 -f,)(n, - 1),
NN, =W, N, is the size of stratum h, f, =7, =N, 'n,,
and n, is the sample size in stratum . It follows that the

weights associated with estimator (4.29) are

= -1 L z 3
=N"m, +(x1,~“"1,x)

H 1y
X 21: E X~ X ) (X~ X))
:: =
x K (x“".—xlh) ; 4.32)

See also Sdrndal (1996). The welghts of (4.32) can be
constructed by minimizing ¥, . w,; 2K, subject to the
constraints

Y w,=NIN, h=12-H,

icA,

and

Y Wei Xpm = X no

hicA

where A, is the set of sample elements in stratum 4.

The estimator of (4.19) with @ =D_ is a function of
Horvitz-Thompson estimators of population moments. The
estimator (4.17) with ®! = diag {K,}, the diagonal matrix
with K, on the diagonal for elements in stratum ¢, and
dummy variables for stratum effects, gives the estimator of
the mean in the class

11

3’reg = 5’:1 * (il.N "il,n) ﬁl

with the smallest estimated design variance. If the true
slopes in the strata are the same and if the selection proba-
bilities are proportional to the square roots of the within-
stratum variances, then the use of ® = D2 gives a smaller
small sample MSE than_the use of " - diag (K}
because the sum of w,” 0,I is smaller. Fuller and Isakl
(1981} noted that the design-optimum estimator is often
well agpro;umated by the estimator constructed with
@ =D;.

We have introduced regression estimation for the mean,
but it s often the totals that are estimated and totals that are
used as controls. Consider the regression estimator of the
total of y defined by

Trreg = Tyt (Ton - T, 0B, (4.33)

where T, is the known total of x and (T oL )isa
vector of des:gn consistent estimators of (T L N) By
analogy to (4.28), the estimator of the optlmum B is

B - [ViE i )

where f’{i‘x .1 18 a design consistent estimator of the
A - ~ n . R .
variance of T__ and C{ T,:.n T . )isa de51gn consistent

estimator of the covariance of Tx and T

The estimator of the total is N ¥ Ve for snmple random
sampling, but the exact equivalence may not hold in more
complicated samples, because in such situations the esti-
mated mean may be a ratio estimator. However, if the
regression estimator of the two totals is constructed using
(4.34), the ratio of the two estimated totals has large sample
variance equal to that of the regression estimator of the
mean. To see this write the error in the regression estimated
totals of y and u as

{4.34)

f.r. reg T) N = fy.x - T)-.N
+(TI-N_Tx.n)ﬁy-x,N+ OP(N" )
and
Au.reg “Tow= Tu.n “Tow
* (Tx v T, )ﬂ N+ O, (NnTh), (435)

where we are assuming T . N,|3 B”  and the
corresponding quantities for u, 10 be O ,(Nn"'?) and
0,(n" 1y, respectwe]y Then theerrorin 7. T is

0 w.reg © y.reg
Tu.regrv.reg T T W Tu N[ ¥ N)
-RN(TM.H_TH.N)

* (Tx, NT T-r.ﬂ)(ﬂ.\"x.fv - RNB:-x,N)]

+ Op(Nn -,

(4.36)
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where R, Tu v T,y Ifwe construct the regression esti-

mator for R, startmg with R = T T , we have
R = R+[T,,- x.n)BR-x’ 4.37)
where |
Beo = [VE.f] " € {1, &)
and

xn! xu? fu N

¢{t, R} = ¢l TMF - R, T, )
It follows that the Iarge—sample—demgn—opumum coefficient

for the ratio is T, N(B‘ v~ RyBos N) and the ratio of
design-optimum regression estlmators is the large sample
destgn-optimum regression estimator of the ratio.

5. MODELS AND REGRESSION ESTIMATION

In this section we assume that the analyst postulates a
detailed superpopulation model. Assume also that the
sample is an unequal probability sample or (and) the
specified etror covariance structure is not a multiple of the
identity matrix. Then, only in special cases will the design
optimal estimator of (4.29) agree with the best estimator
constructed under the model, conditioning on the sample
x-values. To investigate this possible conflict, write the
model for the population in matrix notation as

v=XyBrey,
ey = (0.2, .40) (5.1

where YU ()’p)’z, ",}’N) * (e], 32, ) N)' and

X, =(x/, x5, x,) . Itis assumed that £, is known or
known up to a multiple. The model for a sample of n
observations is

A = XA p + EA’
- (0’ zeeM)"
where (yl,yz, ¥ e, =(e, e ¢, ),

=(x/, xz, -, X, )", and we index the sample elements by
1 2 , n, for convemence We have used the subscript U
to identify population quantities, and the subscript A to
identify sample quantities, but we will often omit the
subscript A to simplify the notation. For example, we may
sometimes write the nxn covariance matrix as £ . The
unknown finite population mean is

¥y = Xy B + &, (5.2)
Under model (5.1), the best linear, conditionally
unbiased predictor of 8, = ¥ ., conditional on X is

MY 5+ (N-n)Ry_, B

i€A

X Taalva-X,8)), 63
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-1
where T';,=Z - X .44

Zeeﬁ.ﬂ =E{eﬁe:ﬁ}’

Xy = (N-ny'(NX,-nk),

a -1 -1 -1
B = (X' }:teM X) X' EeeAAy’
=(€,.1)€gup €y Iy_, I8 an N -n dimensional
co!umn vector of ones, X is the simple sample mean, and

A is the set of elements i m U that are not in A. See Royall
(1976). Under the model,

8-5y=Ci(B-B)+N"'J, (Fpe,-¢€z)

and
v{p-5 X, )= C VB,

+N-2J.:v-n( ecAA rAAEeeAA) Jv-ns 5.4)
where
CJ:E =N [(N - n) iN-n - J."\’-n rﬁA XA]

Design consistency of estimator (5.3) and the situations
in which the model estimator reduces to the Horvitz-
Thompson estimator have been considered by, among
others, Isaki (1970), Royall (1970, 1976), Scott and Smith
(1974), Cassel, Sdrndal, and Wretman (1976, 1979, 1983),
Zyskind (1976), Tallis (1978), Isaki and Fuller (1982),
Wright (1983), Pfefferman (1984), Tam (1986), Brewer,
Hanif and Tam (1988), Montanari (1999), and Gerow and
McCulloch (2000).

The estimator (5.3) reduces to X, ]3 if there is an 1 such
that

XATI = zeeAA Jn * Eemﬁ JN-n' (5.5)

for all samples with positive probability. If there is also vy
such that

X,vy==%,,D;'J, (5.6)

for all samples with positive probability, then 8 of (5.3) is
design consistent, where D_ was defined for (4.14). Given
a k such that

Xuk =X 44 (D:;l J, - Jn) “Z i Inonr 6.7

then & of (5.3) is expressible as
6 =y, +(Xy-%,)B (5.8)
and if the design is such that 3, is design consistent for
Vur 6 of (5.8} is design consistent for y
We call a regression model of the form (5.1) for which
(5.5) and (5.6), or (5.7, holds a full model. If (5.6) or (5.7)
does not hold, we call the model a reduced model or a
restricted model. We cannot expect the conditions for a full
model to hold for every analysis variable in a general
purpose survey because L will be different for different
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¥'s. Therefore, given a reduced model, one might search for
a good model estimator in the class of design consistent
estimators.

To construct a design consistent estimator of the form
X ,B when model (5.1} is a reduced model, we can add a
vector satisfying (5.7) to the X-matrix to create a full model.
There are two possible situations associated with this
approach. In the first, the population mean (or total) of the
added variable is known. With known mean, one can
construct the usual regression estimator and the usual
design variance estimation formulas are appropriate.

To describe an estimation procedure for the situation in
which the population mean of the added variable is not
known, let q =(4q,,q,,~,q,)" denote the added vector,
where q is the vector on the right side of the equality in
(5.7). Let H = (X, q ), where X is the matrix of auxiliary
variables with known population mean vector, X,. We
write the full model for the sample as

y =HB,, +e, (5.9)
where e~ (0, E,,). The best linear conditionally unbiased
estimator of l.’uy, y 18

B, = (Hz H)'HE]y. (5.10)

If the coefficient for q in (5.9) is not zero, it is not

possible to construct a conditionally unbiased estimator of
h N [3)_, » because the g, component of h is unknown.
However, because B, is unbiased for B_,, it is possible to
construct a conditionally unbiased estimator of any linear
function of ... Thus, it is natural to replace the unknown g ,
with the “best available” estimator of 7 ,,, and a reasonable
choice is the regression estimator,

~

qreg = q_n * (’_‘N - in)Bq-x’ (5'] 1)

2 RS TP T, | .
where B, = (X'E,,X) X'E,,q. Then the estimator (5.3)
becomes
0 = 5, +[(Rar Trg) = (%o 5)] By
The estimator (5.12) can be expressed in the familiar
regression estimator form,

(5.12)

yreg =y .+ (X, - iﬂ)p)__x. (5.13)
“That is, the regression estimator of the finite population
mean of y based on the full model, but with the mean of g4,
unknown and estimated with the regression estimator, is the
regression estimator with B estimated by the generalized
least squares regression of y on X using the covariance
matrix X, . See Park (2002). The estimator is conditionally
mode] unbiased under the reduced model containing only x
if the rechiced model is true, If the population coefficient for
g; is not zero, the reduced model is not true. Then the
estimator is conditionally model biased, but the estimator is
unbiased for the finite population mean under the full model
and an unbiased design, because

13

E{ Sy =~ I} = E{E[Jeg - 5 |H]}

=E{(0,9,, -4,)8,,}=0, .(5.14)

where ., is defined in (5.12) and the approximation is due
to the approximate design expectation of the regression
estimator ¢,

The estimator (5.13) is a linear estimator, where the
vector of weights, w, minimizes the Lagrangean

w’I‘.uw +[w‘ H —()‘(N,qreg)]l.

The estimator is location invariant if the column of ones is
in the column space of X.

Because the variable g is the variable whose omission
from the full model can produce a bias, it seems prudent to
test the coefficient of g before using the reduced model to
construct an estimator for the mean of y. This can be done
using a model estimator of the variance,

(5.15)

VB, 1} = (02 m)”

or using the design estimator of variance of (4.12). See
Du Mouchel and Duncan (1983) and Fuller (1984).

A working specification for £ _ may be particularly
appropriate for two-stage samples, see Royall (1976, 1986)
and Montanari (1987). A reasonable model is that in which
there is common correlation among items in the same
primary sampling unit and zero correlation between units in
different primary sampling units. Because the associated
Z__ is block diagonal of a particular form, it is relatively
easy to invert and hence the estimator based on such a
working @ is relatively easy to construct. The regression
estimator using 2 @ with a non zero correlation for units in
the same primary sampling unit is a combination of the
estimator based on primary sampling unit totals and that
based on elements. See Fuller and Battese (1973), Thus, the
use of such a @ can avoid vartance problems associated
with the use of primary sampling unit totals.

6. MAXIMUM LIKELIHOOD AND RAKING
RATIO

The theoretical foundation for the regression estimators
discussed in section 3 and section 4 is maximum likelihood
estimation for the linear mode! with normal errors. We now
consider the likelihood for multingmial variables. Given a
simple random sample from a multinomial defined by the
entries in a two way table, the logarithm of the likelihood,
except for a constant, is

r [

> ) aylog py,

izl j=1
where a is the estimated fraction in cell j, P is the
population fraction in cell ij, r is the number of rows, and
¢ is the nuthber of columns. If (6.1) is maximized subject to
the restriction ¥¥ p,. =1, one obtains the maximum

(6.1)
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likelihood estimators p,. = a,; . If the marginal row fractions
Pi-n and the marginal column fractions P,y are known, it
is natural to maximize the likelihood subject to these
constraints by using the Lagrangean

55 o080, 5450000

i=] j=1

r+c

+Zl[zpq ij]‘ (62)

jar+l

where l i 1,2, ., F, are for the row restrictions and
A J= , ¢, are for the column restrictions. There is no
expllcu expressmn for the solution to (6.2) and there may
be no solution if there are to0 many empty cells. A
procedure that produces estimates close to the maximum
likelihood solution is that called raking ratio or iterative
proportional fitting. The procedure iterates, first making
ratio adjustments for the row restrictions, then making ratio
adjustments for the column restrictions, then making a ratio
adjustments for the row restrictions, efc. The method is
generally credited to Deming and Stephan (1940). See, for
example, Bishop, Fienberg and Holland (1975, Chapter 3).

Deville and Simdal (1992) considered a class of
objective functions of the form Y, , G(w,«,), where
G (w, a) is a measure of distance between an initial weight
@, and a final weight w,. The objective function is mini-
mized subject to the constraints

E WX, = X,.
icA
Deville and S#rndal (1992) used the term calibrated to
describe welghts satisfying (6.3). If the initial weight is
o, = (Zn ) 4 ! and if one is the first element of X,, the
solutlon to the mlmmlzatlon problem is approxlmated bya
regression estimator of the mean of the form

(6.3}

Feg = Fut (Xy - %) B, 64)

where
_ A , -1
= E X; ¢; X, Exi Pi Vi

i€A ] ieA

and ¢, is the second derivative of G(w, o) with respect to
w evaluated at (w,a) ={(a,2;). Using this approach,
Deville and Sémndal (1992) showed that the maximum
likelihood and raking ratio estimators have the same
limiting distribution as the regression estimator (4.18) with
® =D _. To obtain the raking ratio weights they used the
objective function i
[wloga w,+a - W] 6.5)
tEA )
and to obtain the maximum likelihood weights they vsed
the objective function
2 [w - o, -ao log a; w]

feA

(6.6)
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Deville, Sirndal and Sautory (1993) investigated four
estimators in the class. Although weights constructed using
different functions could differ considerably, the authors
concluded that estimates were quite similar, a result
consistent with the theory. Singh and Mohl (1996) and
Théberge (1999, 2000) discuss estimators with the
calibration property.

7. POPULATION OF AUXILIARY VECTORS
KNOWN AT ESTIMATION STEP

-If the x-vector is known for all of the population
elements, the number of possible regression-type estimators
is greatly expanded. Most procedures involve the fitting of
an approximating function for the relationship between y
and the auxiliary variables. The most used procedure is to
assign the population elements to categories on the basis of
the auxiliary data and to use these categories as post strata.
This procedure is equivalent to approximating the expected
value of y given x by a step function. The estimator is
formally equivalent to the regression estimator (4.19) where
the x-vector is a vector of indicator variables for post-
stratam membership.

The application of the procedure often requires the
development of criteria to use in forming the post strata.
Typically the post strata are formed so that each post
stratum contains 2 minimum number of sample elements
and so that the weights for any post stratum are not overly
large. Estimation with post strata and the formation of post
strata have been studied by Fuller (1966), Holt and Smith
(1979), Tremblay (1986} Kalton and Maligalig (1991),
Little (1993), Eltinge and Yansaneh (1997), and Lazzeroni
and Little (1998), among others. Holt and Smith (1979)
argued for the use of a conditional variance estimator for
post stratification.

.Given the population of X-vectors, one can use the
sample to estimate a functional relationship between y and
x and then predict the unobserved y. If the procedure is to
be design consistent, then a condition similar to (4.14) must
hold. One way to ensure design consistency is to require the
fitted model to satisfy

[)’ f(x,,ﬁ)]= (7.1)

:EA
where f(x, f) is the model estimated value for the i-th
observation.
Firth and Bennett (1998) pointed out that some nonlinear
models satisfy (7.1). If the initial model does not satisfy

(7.1), an estimated intercept term can be added to create an
expanded full model,

filx:B) = £{xisB) |
+ (z n[])—lz “’i_][}’f 'f(xi"ﬁ)]'

f€A €A
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This is a direct extension of the ideas of difference
estimation to the nonlinear case. See Isaki (1970), Cassel,
Sérndal and Wretman (1976) and Wright (1983). A closely
related approach was suggested by Wu and Sitter (2001} in
which the fitted function f(x, B) is used as the auxiliary
variable in a linear regression estimator.

A number of “local” procedures, other than step
functions, can be used to approximate the functional
relationship between x and y. Spline functions and
polynomials are linear models that fall within the class of
section 4. Estimators that use some kind of local smoothing
to estimate population quantities have been considered for
finite populations from a model viewpoint by Kuo (1988),
Dorfman (1993}, Dorfman and Hall (1993), Chambers
(1996), and Chambers, Dorfman and Wehrly (1993). Breidt
and Opsomer (2000) showed that estimators based on local
polynomial regression are design consistent. Firth and
Bennett (1998) also considered local fit models.

8. REGRESSION ESTIMATION AND
NONRESPONSE

Regression estimation is frequently a part of procedures
used to adjust data for unit nonresponse. Regression can be
Justified on the basis of a model such as (3.1) or on the basis
that regression can adjust for unequal response probabi-
lities. See Cassel, Sdrndal and Wretman (1979, 1983),
Little (1982, 1986), Bethlehem (1988), Kott (1994), Fuller,
Loughin and Baker (1994) and Fuller and An (1998).

Consider an estimator of the population regression vector
of the form (4.4) with ® =D_ constructed with the
responding units. Denote the estimator by f and let p, be
the conditional probability of observing unit i given that the
unit is selected for the sample. Then under regularity
conditions, the estimator f is a consistent estimator of

' -] ’
Tw = (E xipix.') )y X, piY; (8.1}
i€t €U
The population mean of y can be expressed as
Yv = XytYytdy 8.2)

where a; = y, - Xy, and a,, is the population mean of the a,
The regression estimatory =X, B will be consistent for Yy
if the probability limit of a,, is zero. The probability limit
of a, will be zero if the sequence of finite populations is a
sequence of random samples from an infinite population in
which
Y =XB+e, (8.3)

and the e, of the sample are independent of x; with
Ele;|x;} =0.

Alternatively, a sufficient condition for a,, to be zero is
the existence of a column vector & such that

x;& = p,;’ (8.4)
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for i =1,2, -, N. Thus, if the reciprocal of the response
probability is a linear function of the control variables, the
regression estimator is a consistent estimator of the mean of
y. One way in which (8.4) can be satisfied is for the
elements of x, to be dummy variables that define subgroups
and for the response probabilities to be constant in each
subgroup.

If (8.4) holds and if the probability of responding is
independent from unit to unit, then the estimated varjance
based on (4.12) is an appropriate estimator for the variance
of the regression estimator of the mean. It is particularly
important that a variance estimator of the form (4.12) or
(4.25), and not of the form (4.26) be used, because X, - X
is, in general, not O_(n ™) in the presence of nonresponse.
Singh and Folsom (2000) make a similar argument for the
variance estimator (4.25) when using regression to adjust
for coverage error. _

Often a preliminary adjustment to the selection proba-
bilities is made for nonresponse and this is followed by
regression estimation. The most frequently used response
adjustment is to form adjustment cells (post strata) and to
ratio adjust the weights of respondents in the cell so that the
sum of the weights is equal to the estimated (or known)
total for the cell. See, for example, Little and Rubin (1987,
page 250). Procedures using an estimated response proba-
bility function are discussed by Cassel, Sirndal and
Wretman (1983), Rosenbaum and Rubin (1983), Folsom
and Witt (1994). Fuller and An (1998), and Folsom and
Singh (2000). Brick, Waksberg and Keeter (1996) use an
estimated contact probability to adjust for frame coverage.

To consider procedures based on estimated response
probabilities, assume that the inverse of the response
probability for individual { is given by

p;' = g(z;;0%, (8.5)
where z, is a vector of variables that can be observed for
both respondents and nonrespondents, 8° is the true value of 9,
and g(z;; 0) is continuous in ® with continuous first and
second derivatives in an open set containing 6° for all z i
The vector (y, X, Z,) is observed, and we assume that p,is
bounded below by a positive number. _

Let , be the indicator variable with 8, = 1 if a response is
obtained and 8, = 0 if a response is not obtained. Using the
vector (3,,z;), the parameter 6° of the response probability
function isestimated. Assume that @ - 8* = O n %), where
0 is the estimator of 8. Let B, denote the finite population
regression vector for the regression of y on x. Let

B = (E X; xr.ati-'p",-'l 6;) ! Y x/ya ! 5.,

ieA €A

(8.6)

where m, are the selection probabilities and 5, = g(z o ).
Under conditions of the type used in section 4,

B-By =M X; 8, 7':.'-]1"’f_l"‘.f ar’[l +pigl.i(6 - eo)]
i€

+0,(n™),
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where g is the row vector of first derivatiyles c_)lf g(z;;0)
evaluatedat 8 =6"and M_ =¥, x/x,7 p; 8.1f g,
is uncorrelated with a,, then the term involving g, .a, is
O (n"') and the variance estimator constructed as if
gfz; 0% is known is appropriate. The conditions are
satisfied if z, is a subvector of X, and z, defines imputation
cells (adjustment cells) with equal response rates within a
cell.

9. PRACTICAL CONSIDERATIONS

If the regression weights are to be used in a general
purpose survey, no individual weight used in estimating a
total should be less than one. Also, it seems reasonable, on
robusiness grounds, to avoid very large weights. We discuss
some procedures that have been developed to accomplish
these objectives.

A number of algorithms produce positive weights with
a high probability. Raking ratio procedures produces
positive weights for most data configurations. Deville,
Sirndal and Sautory (1993) discuss the extension of raking
ratio to general x-variables and extensions to inciude
bounds on the weights.

Tillé (1998) suggested the use of approximate
conditional probabilities, conditional on X_, to compute an
estimator. His approximation can be extended to produce
regression weights that are positive with high probability.
Let ) be an estimator obtained by deleting element i, or
primary sampling unit i, and modifying the remaining
weights so that fn(') is unbiased, or consistent to the same
order as X, for the population mean of all elements
excluding /. The estimator i,f’) can be the estimator used to
construct jackknife deviates. Let fIJT be an estimator of the
covariance matrix of X, and let X, be an estimator of
the conditional covariance matrix ot) X, conditional on
i € A, Then, in large samples X, and fn(') are approximately
normally distributed and an estimator of the probability that
i is in the sample given the estimated mean X, is

ﬁ”fﬁ{ieA | Fy %}
= | B [#| By | Mexp {05(G4 —G#(i))} 9.1}

where

w1

D ot =) (),
Gﬁ(i) '(xn XN)Eﬁ“U)(xﬂ xN) ’

and Xy =(N-1)"(NX,-x,). For simple random
sampling, Till€ (1998) showed that the estimator

- - 8
3 pa =N IE A Yir
i€A

8.2)

where w; , is the conditional probability calculated under
the normality assumptions, is approximately equal to the
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regression estimator. Because the estimator is not
calibrated, we suggest a calibrated version obtained by
computing the regression estimator with #, , as initial
weights. The difference between (9.2) and the regression
estimator constructed with initial weights #, , is Op(n by,
Hence, there is a good chance that the regression weights so
constructed will be positive. The vartance estimator X _ @
is relatively simple to compute for stratified samples but
may require considerable computation for other cases. Thus
one may choose to approximate E_ ...

Given that the regression weights are being constructed
by minimizing an objective function, one can add
restrictions to the problem to place bounds on the weights.
Huang and Fuller (1978) gave an interative procedure
equivalent to constructing a @ matrix at each step that
reduces the weight on observations whose current weight
deviates from the average by a large absolute amount.

To discuss additional procedures associated with
quadratic objective functions, assume we have a working
covariance matrix, denoted by ®, , for the model (5.1} that
is to be used to construct a regression estimator. Let a be
the column vector of initial weights and assume @, @ is in
the column space of X. Then the weights that minimize the
conditional model variance are the weights that minimize
w'® wor, equivalently, that minimize

(w-a) @, (w-a (9.3)
subject to the constraint
w'X =X, 9.4)

Given an objective function, we can add restrictions on the w,
such as

L <w <L, (€A, 9.5)

where L, and L, are nonnegative constants. Minimizing
(9.3), subject to the constraints (9.4) and (9.5) is a quadratic
programming problem. The use of quadratic programming
was suggested by Husain (1969) and was used by Isaki,
Tsay and Fuller (2000).

If a large number of control variables are used, it may not
be possible to construct weights satisfying the calibration
constraints and also falling within reasonable bounds. The
practitioner is faced with making compromises. The most
common practice is to drop variables from the model. See
Bankier, Rathweli and Maijkowski (1992) and Silva and
Skinner (1997). To discuss an alternative procedure,
consider the situation in which some of the constraints are
required but others can be relaxed. Let the matrix of
observations on the auxiliary variables be partitioned as
(X, X,), where X, is the set of variables for which exact
constraints are required and X, is the set for which the
constraints can be relaxed. Assume @, a is in the column
space of X . Then a generalization of (9.3) and (9.4) is the
function

w-a)®, (w-a)+(w'X, —)‘:.h,'N)‘I‘(w’X2 -X, v)'(9.6)
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and the constraint

wX,-%, =0, 9.7
where ®,, and ¥ are positive definite symmetric matrices
and X, = (io, v Xg ) The w that minimizes (9.6) subject
to (9.7) minimizes the mean squared error of the unbiased
linear predictor of X, p under the mixed model

=X, B, + X, B, +e,

where B, ~ (0 ‘I’) e ~(0,®,), the random vector B, is
independent of ¢, and B, is a  fixed vector. See Lazzeroni
and Little (1998) for the use of random models for post
stratification,

The vector w’ that minimizes (2.6) subject to restriction
9. Nis

W" = a’ + (fN - iu ) H;‘;xXJ Q;el, (9,8)
where
‘ X, o, X X, D, X
H -
Xyx , -1 _ s a1
X2 (D" Xo L' 1 + X2 (D“ X2 (9‘9)
The estimator can be written
Freg = W'Y =T+ (Xy-%)8, 9.10)

where 8 = H;,;y X’ (I): y. See Henderson (1963), Robinson
(1991), and Rao (2002, Chapter 6).

Husain (1969) considered (9.6) for a simple random
sample from a normal distribution with X, =J, ®, =1,
and ¥! -7'IEI 490 Where Zx.u is the esnma[ed cova-
riance matrix of xz x» and y is a constant to be determined.
For this case, Husain showed that the optimal v is

You = K1 -RH| -k, -2)R2,  9.11)
where k, is the dimension of x, and R? is the squared
multiple correlation coefficient. Bardsley and Chambers
(1984} considered the function (9.6), the division of x_ into
two components, and studied the behavior of the estimator
from a model perspective. The procedure associated with
(9.5), (9.6) and (9.7) was used by Isaki, Tsay and Fuller
(2000). In that application, the vector "o y contained
marginal totals of a multiway table and x, , contained
totals for interior cells. Rao and Singh (1997) studied a
closely related estimator in which tolerances are given for
the difference between the final estimates for elements of
X, y and the corresponding elements of x, .

Park (2002) extended Husain’s optimality results to a
. more general '¥. The x, vector can be transformed so that
1% {x,,} for the transformed vector is a diagonal matrix and
so that X D, X is a diagonal matrix, where X2 is the
partof X, that is orthogonal 1o X, in the metric @,,. That
is,

v r -1 -1 ] -1
X,=X,- xo(xo .. xo) X, ®. X,.
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Then the diagonal ¥ that minimizes the approximate
variance has elements

(mu |3|3u) B:’ (912)

where g is the tth element of the diagonal matrix
X L X2 and is the variance of B in the
transformed scale. 'lpo implement the procedure one must
estimate the population parameters or choose realistic
values for a general purpose ¥. If one postulates a super-
population random model for B, then the |3 of (9.12) is
replaced with E{B }. where the expectation is the model

expectatlon

10. COMMENTS

Regression estimation is a flexible and powerful tool for
the incorporation of auxiliary information into the esti-
mation process. Closely related procedures, such as raking
ratio, have large sample properties equivalent to those of
regression estimators. The linearity of such estimators is of
paramount importance because it permits the construction
of a general purpose data set that provides very good
estimators for a wide range of parameters.

‘Given a concentrated interest in a single y-variable,
efficiency gains may be possible by postulating a particular
set of auxiliary variables and a particular error covariance
matrix. Because of the simple nature of the design
consistency requirement, it is easy to test such models for
design consistency.
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APPENDIX

This appendix contains theorems supporting the limiting
properties of the regression estimators discussed in section 4.

TheoremA.l.Let { Uy, F, Ay, ny: N=k+3,k+4,..}
be a sequence of finite populations and samples, where F
is a sample from an infinite population with eighth
moments, A, is the sample of size n,, selected from the Nth
population. Let ﬁ be defined by (4.4) of the text, and let
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Q. =n'Ze'zZ
where @ is a positive definite symmetric n X n matrix that
may be a function of X but not of y, Z is defined following
(4.2), and we omit the subscript N on sample quantities.
Assume Q is positive definite wnh probability one. I @
is random, assume the rows of ® ! Z have bounded fourth
moments. Assume the selection probabilities satisfy

0<K,<Nn'm<K,,

where , are the selection probabilities. Assume the sample
design is such that for any z with bounded fourth moments

(Zyr -2, (Q,, - Q)| | Fyy = 0,(n7), (A

where

Ny n;'zi,

icA

Zyr = (Fup Xyp) = (A.2)

Q. =E{Q_ | F, )7,

is the finite population mean of

z, Q,,,, is a positive definite matrix for the Nth population,
and the limit of Q_,, is positive definite. Then
B-BylFy = Qubir+0,(n7), A3
Wh‘l?,re l5-'\" i QxxN xyN? I_:'H'I‘ = N-lzaeA Tt, b b'
Nzl e,
Q)’J'N nyN
N [ ) (Ad)
QxyN QxxN
e,=y,-x,By, and {; is column i of X'®".
Assume the design is such that
- L
V2 (3 -2,|F,} 5 NO.D), (A3)

as n,~ o for any z with finite fourth mornents, where V.z.z.
is the covariance matrix of Z,;. - Z,. Assume that V_ is
O(n ') and that the design admits an estimator V_ such
that

V-V ) Fy=0,(1) (A.6)
for any z with bounded fourth moments. Then .
V(B B -B,)|F, 5 NO.D,  (AD
where
Vip) = *,,,, Q. (A8)

V ;= V{b' } is the estlmated design variance of b'
calculated with b!=n"'Nuté and & =y, - x,p.

Proof. The errorin B is
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B-By=(X0'X)' X0 'y-X"®'XB, ]

=Ql(n X' @ le)

Now ﬁ is a generalized least squares estimator. Therefore
EP'X = (y-Xpy@'X = 0

and QxyN - pl\:' QxxN = QexN
Q. =n'X®'e=0,(n™).

Thus

B-B, = “( "Ec,e.]+ 0,{n"")
Yy n.-'b;) +0,(n").

= 0. By assumption (A.1)

i€A

=Q;N(N

The b, have bounded fourth moments by the assumptions.
Thus, by assumption {(A.5}
wila L
Vi (B8, 5 VO,
where

-1 -1
_ Vg = Qe ¥ 55 Quaw
and V;; = V {b,,}. Now
nIX' @12 = X @ e rn X ' X(B,,-B)

=N 2 b +NTY x 'y,

icA icA
where

hi=n"'Nulx, 8,
and §; = B, - B. For any fixed &, by (A.6), the estimated

vanance of N1X _ = AT (b’ +h}) is consistent for the
variance of the estimator of the mean of be+h. By
assumption, the elements of £/ X; have fourth moments. For
afixed & the variance of hHT isO(n"). For & = By,

Vihg} = o,(n™h,

and

S s - L -1

Vibic} = V{big} v o,(n ™)
because ﬁﬁ = Op(" ). Result (A.7) then follows from the
asymptotic normality of B - B .
Theorem A.2. Let y' =(y,¥»y,) and
X' =(x,,x/,,x,). Let @ be a nonsingular symmetric

nxn matrix and let &, be a nonsingular symmetric NxN
matrix. Let

VX, n X' ®'X) and n X @'y
be design consistent estimators for finite population
characteristics y,, X, Q,, and va, respectively, where
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[Quv> Q] = [V X0 X, N X, 07 Yol (A9)

Let B, = Q;N - Let there be a sequence of column

vectors {¥,} such that
Xy, = ®D;'J, (A.10)

for all possible samples, where D, = diag (=, &, -, %) and
J, is an n-dimensional column vector of ones. Then, the
regression estimator X, B with

B=-(Xo'X)'X'®ly,
is a design consistent estimator of ¥, .

Proof, If ﬁ is defined by (A.11), then by the properties of
generalized least squares estimators,

(y-xB) ®'X = 0.
If (A.10) holds, then
(v - XDy = (Z;n;')(y,,—inﬁ) - 0.
i€
It follows that ¥ reg 15 design consistent because

o5 im_r-sb)
=P ETw {n%BA) I F )}
=P l:Tm {()T'N_fNBN)IFN}'

Theorem A.3. Let a sequence of populations and samples
be as defined in Theorem A.1. Let z, be a vector of the
form z, = (¥ 1., X, ) aqd letz , = (y,.,xl.‘.).'Assume zZ, .,
is a design consistent estimator of the population mean z
with nonsingular covariance matrix

Viz, |F,} = O(n™)

LN

(A.12)

and

- _ L
n* (3, , -7, )| Fy = N0,E), (A.13)
where L is the limit of n V{2,  {F,}. Assume there is an
estimator of the variance of Z, ., denoted by V {z, .}
such that

plim n'3(V(z, ) - Viz, ,IF,)=0
N-roe

(A.14)

for some 8> 0. Let ﬁ]'dopl be the vector that minimizes
V{yn_il.nﬂl,d} (A.15)

and let $, . be the vector that minimizes
V{5, -%, B, . Let 3, be defined by (4.29). Then
¥ e has the minimum limit variance for design consistent
estimators of the form ¥, + (X, ,, - %, DB, ,. Also

-~ _ L
[V(?n}] A(i‘,_,egﬁ,v) = N(O, 1), (A.16)

| (A.11)
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where V{&_} is the estimator of (A.14) constructed with
€=Y " X i ~ X )Py gopr
Proof. The estimator

ﬂl,dopl = [V{iln}] l C{il.n’ju}
minimizes the estimated variance of (A.15), and, by
assumption (A.14), the estimated variance is consistent for
the true variance. Hence, B, dopt is design consistent for
B;, sop and By 4o, minimizes V{'y, - X,  B}. Therefore, no
estimator of the form (4.29) has a limit distribution with
smaller variance.
Now

jd,reg -yN =j’n -yN - (il,N - ’_‘l.n)pl.dopl
=z, +op(n"”),

where e, =y, -¥,- (x;-X )P, 4, Therefore the
variance of the limiting distribution of n™ (3, - ¥,) is
the variancg of n¥( g -2&,). Byassumption (,i.14), the
estimator V{Z_vy} is a consistent variance estimator of
V{z, vy} forany fixed y. Because 51.@: - bl.dopl =0, (1),
the estimated variance based on ¢, converges to the
estimated variance based on e, and (A.16) holds.
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Leslie Kish’s Impact on Survey Statistics

GRAHAM KALTON!

ABSTRACT

Leslie Kish, one of the pioneers of survey sampling, died on October 7, 2000, at the age of 90. This paper reviews his impact
on survey statistics, mainly in terms of his research but also in terms of his promotion of sound probability sampling
methods around the world, Kish's research was broad-ranging, covering sampling methods, variance estimation and design
effects, nonsampling errors, small area estimation, survey designs across time and space, and observational studies. He
promoted probability sampling designs through consultancies in many countries, his writings, and in particular through the
highly effective intensive summer Sampling Program for Foreign Statisticians that he established at the Survey Research

Center of the University of Michigan.

KEY WORDS: Sample design; Variance estimation; Nonsampling errors; Rolling samples.

1. INTRODUCTION

Leslie Kish, one of the pioneers of survey sampling, died
on October 7, 2000, at the age of 90. During his long and
productive career, he had a major impact on the field,
achieved both through his impressive research contributions
and through his extremely successful promotion of the use

of scientific probability sampling methods throughout the

world, and especially in developing countries. His wide-
ranging research always focused on issues of practical
importance, and his innovations facilitated the use of effec-
tive probability sampling in diverse areas. He promoted the
practice of probability sampling through his expository
writings (particularly for sociologists and demographers),
through his numerous consultancies and advisory services,
and through his training of survey statisticians, particularly
those from developing countries.

This paper reviews Kish’s impact on survey statistics,
primarily with respect to his contributions to the advance-
ment of survey sampling and survey research more gene-
rally. It is useful to start with a brief account of his career in
order to place these contributions in a temporal context. The
interview of Kish in 1994 by Frankel and King (1996) is
recommended for those interested in more details of Kish’s
fascinating life. Some of the material in this paper is drawn
from that interview.

Kish was born in 1910 in Poprad, which was then part of
the Austro-Hungarian Empire and is now in Slovakia. In
1926, he emigrated to the United States with his family.
When his father died the following year, he became a
laboratory assistant at the Rockefeller Institute for Medical
Research, while attending Bay Ridge Evening High School.
He graduated from high school in 1930 and enrolled in the
College of the City of New York night school, while
continuing to work for 54 hours a week at the Rockefeller
Institute. His interest in statistics arose out of his work at
the Institute, and he studied on his own books by Fisher,
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Yule, Wallace and Snedecor, Tippett, Pearl, and others. In
1937, he interrupted his education to join the International
Brigade to fight for the Loyalist cause in the Spanish Civil
War, He returned to the United States in 1939 and earned
a B.S. in Mathematics, cum laude, in that year. He was then
hired by the U.S. Census Bureau as a Section Head, and
subsequently moved to be a Statistician at the United States
Department of Agriculture (USDA} Division of Program
Surveys. In 1942, he left the Division of Program Surveys
for war service, returning there in 1945 after the war. In
1947, he moved with a group of USDA colleagues headed
by Rensis Likert to set up the Survey Research Center at the
University of Michigan. He remained at the Survey
Research Center until his retirement in 1981, when he
became a Professor Emeritus. He remained fully active
professionally until his death in 2000.

2. RESEARCH

At the start of Kish’s career, survey sampling was in its
infancy. Much survey research was based on nonprobability
samples. Methods for probability sampling were under
development and many problems remained to be resolved.
While at the USDA, Kish identified three important
problems that he pursued at the Survey Research Center
(SRC) in developing sampling methods there.

One of these problems was how to have an interviewer
randomly select an individual within a sampled household.
At the time, probability sampling methods for sampling
households had been developed and were being applied in
the Current Population Survey, but the CPS collected data
on all members of sampled households, so that no selection
of persons within households was needed. Kish invented a
method for objective respondent selection and wrote it up
in a memorandum. He was urged by his colleague Angus
Campbell to submit the work for publication, and it resulted
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in the famous paper that was his first published research
(Kish 1949). The widely used method is now known as the
Kish selection table.

The second problem that Kish identified was counting
nonresponse. He had to argue for counting and reporting
nonresponse with probability samples against the concerns
of colleagues who felt that to do so would put the SRC at a
competitive disadvantage, particularly with organizations
using nonprobability methods. He won his case and SRC
adopted his approach, which is now fully accepted as
standard good practice.

The third problem was that of deep stratification.
Standard stratification assumes independence of selections
between strata, with the maximum number of strata possible
being the number of selections. Particularly when the
number of selections is small, as is often the case with the
primary sampling units (PSUs) in a multistage design, it can
be desirable to obtain greater balance in the sample than
standard stratification permits. With Roe Goodman, Kish
developed the technique of controlled selection that
provides that greater balance by dropping the requirement
of independence of selections between strata, while still
retaining probability sampling (Goodman and Kish 1950).
Kish, who was always concerned to coin good names,
preferred to call the technique ‘multiple stratification’, and
he uses that term in his sampling text (Kish 1965a).

Kish’s subsequent research in survey statistics was
wide-ranging, covering many aspects of survey sampling,
nonsampling errors, small area estimation, survey designs
across time and space, and observational studies. His many
contributions have had a major impact on the development
of the practice of survey sampling and of survey research
more generally. The following paragraphs outline some of
his contributions organized by topic.

Variance estimation. Before the 1970s, the analysis of
survey data was severely limited by the analytic tools
available, then mosily punch card equipment, such as
counter-sorters and tabulators, and hand calculators. Thus,
for example, weights — and particularly non-integer weights

.= were difficult to handle. For this reason Kish examined

the use of uniform weights with the Kish selection table,
even though unbiased estimation calls for weights propor-
tional to the number of eligible household members.

As a result of the computational difficulties, prior to the
1970s sampling errors were rarely computed in a manner
that reflected the complex sample designs typically
employed in survey research, A widespread practice was to
compute variances as if a simple random sample (SRS} had
been drawn. Kish sought to promote the use of appropriate
variance estimation methods by social researchers, which
he did by illustrating the sizable underestimation that often
arises when SRS formulas are applied to clustered samples
{Kish 1957). Initially he developed and applied simple
computational procedures, emphasizing the simplicity that
can be obtained with a paired selection design in which two
PSUs are sampled in each stratum (Kish and Hess 1959a;
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Kish 1968). He coined the term “‘design effect’” for the ratio
of the variance of a survey estimate for a given design to the
variance of the same estimate obtained from a simple
random sample of the same size. He made much use of this
concept in his famous Survey Sampling book (Kish 1965a),
which provides an encyclopedic treatment of practical
survey sampling and is still widely read as a Wiley classic.
He retained his interest in design effects throughout his
career as an important tool in the design and analysis of
survey samples (see, for example, Kish 1982, 1995a; Kish,
Frankel, Verma and Kaciroti 1995, Kish, Groves and Krotki
1976). An important term in the design effect for a clustered
sample is the intra-class correlation, which is featured in
Kish's Ph.D. dissertation (Kish 1952) and in a number of
his other papers {e.g., Kish 1954, 1961a).

With the development of computers, Kish was quick to
see their importance for variance estimation, and with SRC
colleagues he developed an early Sampling Error Program
Package (Kish, Frankel and Van Eck 1972). With his
doctoral student Martin Frankel, he also extended the range
of statistics for which sampling errors from complex sample
designs could be computed (Kish and Frankel 1970, 1974).
This highly influential research developed, applied, and
evaluated balanced repeated replication (BRR) and jack-
knife repeated replication (JRR) methods of variance esti-
mation. It also provided a definition of the population
parameters estimated by analytical survey statistics in the
finite population context.

Multipurpose surveys. The survey sampling literature
deals mostly with an efficient sample design for estimating
a single population parameter. Kish recognized the limita-
tion of this approach since virtually all surveys are multi-
purpose in nature. He wrote several important papers
dealing with multipurpose surveys, producing effective
compromise designs that provide estimates not only for the
population as a whoele but also for various domains (Kish
1961b, 1969, 1976; Anderson, Kish and Cornell 1976; Kish
and Anderson 1978; Kish 1980; Kish 1988). In recent years,
he extended his interests to multipopulation surveys (e.g.,
Kish 1999, 2002).

Small area estimation. In considering the production of
estimates for domains, Kish (1980, 1987a, 1987b) classified
domains into major, minor, and mini domains and rare
items. Estimates for major domains can be produced from
a survey using standard sample-based estimators, particu-
larly if the sample is designed to give sufficient domain
sample sizes for this purpose. The sample sizes of most
surveys preclude the production of estimates of adequate
precision for minor or mini domains that comprise less than,
say, one-tenth of the population. Yet, as Kish recognized
early on, the demand for up-to-date estimates for small
demains, particularly small geographical areas, would
expand. This recognition led to his research in two related
areas.

When a survey’s sample size is toe small to produce
small area sample-based estimates of adequate precision,
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reliance may be placed on statistical models to produce
indirect estimates. Much research on small area estimation
techniques using this model-dependent approach has been
conducted in recent years. In the 1970’s, Kish contributed
to the development of the field through his direction of
three doctoral dissertations at the University of Michigan
(Ericksen 1973; Kalsbeek 1973; Purcell and Kish 1979,
1980).

Direct, or sample-based, estimates for small domains are
sometimes possible. One obvious source of estimates for
domains of any size is a population census, and indeed
censuses are a major source of small domain estimates.
However, data from a decennial census become out-of-date
as the decade progresses. To address this problem, Kish
proposed replacing the census by a rotating or rolling
sample so that, by spreading the data collection over time,
more up-to-date estimates can be produced. He first
proposed such a procedure in 1979 (Kish 1979a,b), and
wrote many papers on this topic after that (Kish 1981, 1983,
1986, 1990, 1997, 1998, 2002; Kish and Verma 1986),
including the issue of how to cumulate sample data over
time (Kish 1999). In another paper in this volume, Charles
Alexander (2002) provides a detailed review of Kish’s work
on this topic and its influence on the large-scale continuous
survey, the American Community Survey, that the U.S.
Census Bureau plans to introduce to replace the long form
in the 2010 Census.

Special sample design problems. During the course of
his work, Kish encountered a number of specialized
sampling problems that often occur and he offered some
efficient solutions. The areas to which he contributed
include the following:

—  Sampling rare and elusive populations. One of the
most challenging design tasks faced by sampling
statisticians is constructing an efficient sample
design for a rare or elusive population (such as
persons with a rare illness or the homeless). Kish
(1965b, 1991) provides insightful reviews of
methods for tackling this type of problem.

~  Maximizing overlap. When a population is
sampled repeatedly over time, the issue arises of
how to control the sample overlap between one
round and the next. A particular example occurs
when a master sample of PSUs is used and needs
to be updated when new census data become
available. Frequently it is desirable to maximize
the overlap in the sample of PSUs, while updating
measures of size and changing the stratification to
reflect current data. Kish and Scott (1971) provide
a relatively simple and effective method of
satisfying these requirements.

~  Sampling organizations of unequal size. Some
surveys are designed to produce estimates for units
at different levels, for instance, for hospitals and
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for patients. When hospitals vary considerably in
their numbers of patients, a design conflict arises
between the production of efficient hospital- and
patient-level estimates. Kish (1965c) examines this
problem and clarifies the issues involved.

Nonsampling errors. Kish clearly recognized the harmful
effects that nonsampling errors can have on the quality of
survey estimates. Early in his career he collaborated with
Jack Lansing to investigate the response errors in
respondents’ reports of the values of their homes by
comparing these reports with estimates made by
professional appraisers (Kish and Lansing 1954). In his
studies of interviewer variance, he took advantage of the
theory on cluster sampling, measuring interviewer variance
with the intra-class correlation coefficient, and determining
the optimum number of interviews per interviewer based on
a simple cluster sample cost model (Kish 1962). With Irene
Hess, he conducted a study of noncoverage in area samples
of dwelling units. The study was stimulated by a 10 percent
noncoverage rate in SRC surveys at that time, and led to
improvements that reduced this rate to about 3 percent
(Kish and Hess 1958). Also with Irene Hess, he introduced
an imaginative replacement procedure for noncontacts in
one survey by substituting noncontacts from a previous,
stmilar, survey (Kish and Hess 1959b), For stochastic
imputation schemes, Kish was an early proponent of
replicating the imputations to reduce imputation variance,
in what he termed a repeated replication imputation
procedure (RRIP) and what is now known as fractional
imputation (Kalton and Kish 1984).

Observational studies. Early in his career, Kish (1959)
wrote a widely cited paper on the design of studies to
investigate causal relationships, particularly nonrandomized
studies. In his writing about this topic he made use of his
survey sampling expertise as, for instance, in the relation-
ship between stratification and matching (Anderson, Kish
and Cornell 1980). His work developed into his book
Statistical Design for Research (Kish 1987a) in which he
compared surveys, experiments, and observational studies
for investigating causal effects in terms of the three R’s:
realism, randomization and representativeness (see also
Kish 1975). He also made clear the importance of assessing
both bias and variance in assessing the ability of different
study designs to measure causal effects, rather than concen-
trating on bias as had been common in the literature on this
topic.

3. OTHER CONTRIBUTIONS

Kish’s seminal and wide-ranging contributions to the
methodology of survey statistics are of great importance.
Yet of possibly even greater importance are his contri-
butions to the promotion of the use of sound probability
sampling methods around the world.
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Kish’s writings, of course, contributed to the current
widespread use of probability sampling methods by
emphasizing good practical methods. His three books
Survey Sampling (Kish 1965a), Statistical Design for
Research (Kish 1987a), and Sampling Methods for
Agricultural Surveys (Kish 1989) are all extremely valuable
in this respect, as are his expository writings for social
scientists.

Kish had a long-standing dedication to assisting deve-
loping and transition countries, and that can be seen in
many of his activities. He was a sampling consultant to the
World Fertility Survey from 1973 to 1983 and he consulted
in many countries, he ran a training program for foreign
statisticians, and he wrote specifically for statisticians in

developing countries. Sampling Methods for Agricultural’

Surveys was, for instance, written for the FAQ, partich]arly
for use in developing countries. He contributed a
Questions/Answers column for the Survey Statistician, the
newsletter of the International Association of Survey
Statisticians, from 1978 to 1994. In that column he provided
sound advice on many practical sampling problems that
frequently arise but that are not well addressed in the
literature. The column was considered so useful that the
IASS published the full set of questions and answers in a
special volume (Kish 1995b).

Kish was rightly particularly proud of the intensive
two-month summer Sampling Program for Foreign
Statisticians that he established at the Survey Research
Center in 1961. The SPFS has now trained more than 500
survey statisticians from [05 countries. It is significant that
Kish chose “Developing samplers for developing countries™
as the topic for his 1994 Morris Hansen Memorial Lecture
{Kish 1996). To help maintain this important program, the
Leslie Kish International Fellows Fund was established at
the University of Michigan at a celebration of Kish’s 90th
birthday. Of all his accomplishments, the SPFS was the one
that gave him greatest pleasure.

4. CONCLUDING REMARKS

Leslie Kish is a giant in the field of survey sampling. His
contributions were enormous and recognized by many
honors. These honors included, among others, President of
the International Association of Survey Statisticians in
1983-85, President of the American Statistical Association
in 1978 (see Kish 1978, for his Presidential address on
“Chance, Statistics and Statisticians”), Honorary Fellow of
the Intemnational Statistical Institute, Honorary Fellow of
the Royal Statistical Society, Honorary Member of the
Hungarian Academy of Sciences, Fellow of the American
Association for the Advancement of Science, Fellow of the
American Academy of Ants and Sciences, recipient of the
American Statistical Association’s Samuel L. Wilks Award
in 1997, recipient of the Mindel Shep Award from the
Population Association of America in 1998, recipient of the
Methodology Award from the American Sociological
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Association in 1989, and honorary degrees from the
University of Bologna, the Athens University of Economics
and Business, and the Eotvos Lorand University in
Budapest.

Yet Kish remained down-to-earth, approachable by all.
He had a great enthusiasm for many subjects including
sport, art, literature, politics, philosophy, and science. He
was always concerned with improving the conditions of the
world’s population. He was particularly interested in young
people and one of his favorite sayings was “Keep young by
being curious, and have young friends”. Undoubtedly his
endearing personality played an important part in his great
success in promoting sound sampling methods around the
world. Ivan Fellegi’s excellent obituary in Survey
Methodology was aptly titled “Leslie Kish — A Life of
Giving” (Fellegi 2000). Kish gave so much personally to so
many people and so much professionally to the develop-
ment of survey statistics.
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New Paradigms (Models) for Probability Sampling

LESLIE KISH'

1. STATISTICS AS A NEW PARADIGM

In several sections I discuss new concepts in diverse
aspects of sampling, but I feel uncertain whether to call
them new paradigms or new models or just new methods.
Because of my uncertainty and lack of self-confidence, I
ask the readers to choose that term with which they are most
comfortable. I prefer to remove the choice of that term
from becoming an obstacle to our mutual understanding.

Sampling is a branch of and a tool for statistics, and the
field of statistics was founded as a new paradigm in 1810
by Quetelet (Porter 1987; Stigler 1986). This was later than
the arrival of some sciences: of astronomy, of chemistry, of
physics. “At the end of the seventeenth century the
philosophical studies of cause and chance...began to move
close together... During the eighteenth and nineteenth
centuries the realization grew continually stronger that
aggregates of events may obey laws even when individuals
donot.” (Kendall 1968). The predictable, meaningful, and
useful regularities in the behavior of population aggregates
of unpredictable individuals were named “statistics” and
were a great discovery. ’

Thus Quetelet and others computed national {and other)
birth rates, death rates, suicide rates, homicide rates,
insurance rates, efc. from individual events that are unpre-
dictable. These statistics are basic to fields like demography
and sociology. Furthermore, the ideas of statistics were
taken later during the nineteenth century also into biology
by Frances Galton and Karl Pearson, and into physics by
Maxwell, and were developed greatly both in theory and
applications.

Statistics and statisticians deal with the effects of chance
events on empirical data. The mathematics of chance had
been developed centuries earlier for gambling games and
for errors of observation in astronomy. Also data have been
compiled for commerce, banking, and government. But
combining chance with real data needs a new theoretical
view, a new paradigm. Thus statistical science and its
various branches arrived late in history and in academia,
and they are products of the maturity of human
development (Kish 1985).

The populations of random individuals comprise the
most basic concept of statistics. It provides the foundation
for distribution theories, inferences, sampling theory,
experimental design, efc. And the statistics paradigm differs
fundamentally from the deterministic outlook of cause and
effect, and of precise relations in the other sciences and
mathematics.

2. THE PARADIGM OF SAMPLING

The Representative Method is the title of an important
monograph, almost a century after the birth of statistics and
over a century ago now, which is generally accepted as the
birth of modern sampling (Kiaer 1895). That term has been
used in several landmark papers since then (Jensen 1926,
Neyman 1934; Kruskal and Mosteller 1979a, 1979b, 1979c¢,
1980). The last authors agree that the term “representative”
has been used for so many specific methods and with so
many meanings that it does not denote any single method. |
However, as Kiaer used it, and as it is still used generally,
it refers to the aims of selecting a sample to represent a
population specified in space, in time, and by other
definitions, in order to make statistical inferences from the
sample to that specified population. Thus a national
representative sample demands careful operations for
selecting the sample from all elements of the national
population, not only from some arbitrary domain such as a
“typical” city or province, or from some subset, either
defined or undefined.

The scientifically accepted method for survey sampling
is probability sampling, which assures known positive
probabilities of selection for every element in the frame
population. The frame provides the equivalent of listings of

" sampling units for each stage of selection. The sampling

frame for the entire population is needed for mechanical
operations of random selection. This is the basis for
statistical inferences from the sample statistics to the
corresponding population statistics (parameters) (Hansen,
Hurwitz and Madow 19534, 1953b). This insistence on
inferences based on selections from frame populations is a
different paradigm from the unspecified or model based
approaches of most statistical analyses.

It took a half century from Kiaer’s paper to the wide
acceptance of survey sampling. In addition to neglect and
passive resistance, there was a great deal of active
opposition by national statistical offices which distrusted
sampling methods to replace the complete counts of
censuses. Some even preferred the “monograph method,”
which offered complete counts of a “typical” or
“representative” province or district instead of randomly
selected national sample (O’Muircheartaigh and Wong
1981). In addition to political opposition, there were also
many opponents among academic disciplines, and among
academic statisticians. The tide in favor of probability
sampling turned with the report of the UN Statistical
Commission led by Mahanalobis and Yates (United Nations

! Printing of this paper has been kindly authorized by Rhea Kish, 1050 Wall St. #9A, Ann Arbor, MI 48105, ¢-mail: cheakk @umich.edu.
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Statistical Office 1950). Five influential textbooks between
1949 and 1954 started a flood of articles with both theory
and wide applications.

The strength, the breadth, and the duration of resistance
to the concepts and use of probability sampling of frame
populations implies that this was a new paradigm that
needed a new outlook both by the public and the
professionals.

3. COMPLEX POPULATIONS

The need for strict probability selection from a
population frame for inferences from the sample to a finite
population is but one distinction of survey sampling. But
even more important and difficult problems are caused by
the complex distributions of the elements in all the popu-
lations. These complexities present a great contrast with the
simple model of independence that is assumed, explicitly or
implicitly, by almost zll statistical theory, all mathematicat
statistics.

The assumption of independent or uncorrelated obser-
vations of variables or elements underlies mathematical
statistics and distribution theory. We need not distinguish
here between independently and identically distributed
(IID} random variables and “exchangeability,” and
“superpopulations.” The simplicity underlying each of
those models is necessary for the complexities of the
mathematical developrnents,

Simple models are needed and used for early stages and
introductions in all the sciences: for example, perfect
circular paths for the planets or d =gt2/2 for freely
dropping objects in frictionless situations. But those models
fail to meet the complexities of the actual physical world.
Similarly, independence of elements does not exist in any
population whether human, animal, plant, physical,
chemical, biological. The simple independent models may
serve well enough for small samples; and the Poisson
distribution of deaths by horsekicks in the Prussian Army in
43 years has often served as an example (precious because
rare) (Fisher 1926).

There have also been attempts to construct theoretical
populations of IID elements; perhaps the most famous was
the classic “collective” of Von Mises (1931); but they do
not correspond to actual populations. However, with great
effort tables of random numbers have been constructed that
have passed all tests. These have been widely used in
modern designs of experiments and sample surveys.
Replication and randomization are two of the most basic
concepts of modern statistics following the concept of
populations. _

The simple concept of a population of independent
elements does not describe adequately the complex distri-
butions (in .space, in time, in classes} of elements.
Clustering and stratification are common names for
ubiquitous complexities. Furthermore, it appears impossible
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to forrn models that would better describe actual popu-
lations. The distributions are much too complex and they
are also different for every survey variable. These
complexities and differences have been investigated and
presented now in thousands of computations of “design
effects.”

Survey sampling needed a new paradigm to deal with the
complexities of all kinds of populations for many survey
variables and a growing list of survey statistics. This tock
the form of robust designs of selections and variance
formulas that could use a multitude of sample designs, and
gave rise to the new discipline of survey sampling. The
computation of “design effects” demonstrated the existence,
the magnitude, and the variability of effects due to the
complexities of distributions not only for means but also for
multivariate relations, such as regression coefficients. The
long period of disagreements between survey samplers and
econometricians testifies to the need for a new paradigm.

4. COMBINING POPULATION SAMPLES

Samples of national populations always represent
subpopulations (dormains) which differ in their survey
characteristics; sometimes they differ slightly, but at other
times greatly. These subclasses can be distinguished in the
sample with more or less effort. First, samples of provinces
are easily separated when their selections are made sepa-
rately. Second, subclasses by age, sex, occupation, and
education can also be distinguished, and sometimes used
for poststratified estimates. Third, however, are those
subclasses by social, psychological, and attitudinal charac-
teristics, which may be difficult to distinguish; yet they may
be most related to the survey vartables. Thus, we recognize
that national samples are not simple aggregations of indi-
viduals from an IID population, but combinations of sub-
classes from subpopulations with diverse characteristics.
The composition of national populations from diverse
domains deserves attention, and it also serves as an example
for the twa types of combinations that follow. Furthermore,
these remarks are pertinent to combinations not only of
national samples but also of cities, institutions, establish-
ments, efc.

In recent years two kinds of sample designs have
emerged that demand efforts beyond those of simple
national samples: a) periodic samples and b} multipopu-
lation designs. Each of these has emerged only recently,
because they had to await the emergence of three kinds of
resources: 1. effective demand supported by financial and
political resources; 2. adequate institutional technical
resources in national statistical offices; 3. new methods. In
both types of designs we should distinguish the needs of the
survey methods (definitions, variables, measurements),
which must be harmonized, standardized, from sample
designs, which can be designed freely to fit national (even
provincial) situations, provided they are probability designs
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(Kish 1994). Both types have been designed first and
chiefly for comparisons: periodic comparisons and multi-
national comparisons, respectively. But new uses have also
emerged: “rolling samples” and multinational cumulations,
respectively. Each type of cumulation has encountered
considerable opposition, and needs a new outlock, a new
paradigm.

“Rolling samples” have been used a few times for local
situations (Mooney 1956; Kish, Lovejoy and Rackow
1961). Then they have been proposed several times for
national annual samples and as a possible replacement for
decennial censuses (Kish 1981, 1990). They are now being

“introduced for national sample censuses first and foremost

by the US Census Bureau {(Alexander 1999; Kish 1990).
Recommending this new method, [ have usually expe-
rienced opposition to the concept of averaging periodic
samples: “How can you average samples when these vary
between periods?” In my contrary view, the greater the
variability the less you should rely on a single period,
whether the variation is monotonic, or cyclical, or
haphazard. Hence I note two contrasting outlooks, or
paradigms. Quite often, the opposition disappears after two
days of discussion and cogitation.

“For example, annual income is a readily
accepted aggregation, and not only for steady
incomes but also for occupations with high
variations (seasonal or irregular). Averaging
weekly samples for annual statistics will prove
more easily acceptable than decennial
averaging. Nevertheless, many investors in
mutual stock funds prefer to rely more on their
ten-year or five-year average eamnings (despite
their obsolescence) than on their up-to-date
prior year’s eamings (with their risky
“random” variations). Most people planning a
picnic would also prefer a 50 year average
“normal” temperature to last year's exact
temperature. There are many similar examples
of sophisticated averaging over long periods
by the “naive” public. That public, and policy
makers, would also learn fast about rolling
samples, given a chance.”
{Kish 1998)

Like rolling samples, combining multipopulation
samples also encountered opposition: national boundaries
denote different historical stages of development, different
laws, languages, cultures, customs, religions, behaviors.
How then can you combine them? However, we often find
uses and meanings for continental averages; such as
European birth and death rates, or South American, or
sub-Saharan, or West African rates. Sometimes even world
birth, death, and growth rates. Because they have not been
discussed, they all usually combined very poorly. But with
more adequate theory, they can be combined better (Kish
1999). But first the need must be recognized with a new
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paradigm for multinational combinations, followed by
developing new and more appropriate methods.

5. EXPECTATION SAMPLING

Probability sampling assures for each element in the
population (i =1, 2,...,N)} a known positive probability
(P;>0) of selection. The assurance requires some mecha-
nical procedure of chance selection, rather than only
assumptions, beliefs, or models about probability distri-
butions. The randomizing procedure requires a practical
physical operation that is closely (or exactly) congruent
with the probability model (Kish 1965). Something like this
statement appears in most textbooks on survey sampling,
and I still believe it all. However, there are two questionable
and bothersome objections to this definition and its
requirements.

The more important of the two objections concerns the
frequent practical situations when we face a choice between
probability sampling and expectation sampling. These
occur often when the easy, practical selection rate for listing
units of 1/F yields not only the unique probability 1/F for
elements, but also some with variable k/F for the ith
element (i=1,2,..,N) and with k,>0. Examples of
k> 1, usually a small integer, occur with duplicate or
replicate lists, dual or multiple frames of selection, second
homes for households, mobile populations and nomads,
farm operators with multiple lots. Examples of k. <1 are
selecting a single adult from households, selecting single
dwellings from buildings. In these examples often the k,
can be easily ascertained, and it is cheaper, more convenient
and economical to use weighting than attempting to obtain
1/F for all the elements. These problems are described in
books and articles.

In most cases, we find it more convenient and less
expensive to accept the variable probabilities and to counter
them with weighting the expected values 1/k; or k; than to
operate another stage of selection. Thus, to paraphrase
probability sampling: expectation sampling assures for each
element in the population (i = 1, 2, ..., N) a known positive
expected number of selections (k,/F>0). These procedures
are used in practice for descriptive (first order) statistics
where the k; or 1/k; are neither large nor frequent. The
treatments for inferential — second order or higher —
statistics are more difficult and diverse, and are treated
separately in the literature. Note that probability sampling
is the special (and often desired) situation when all £, are 1.

The other objection to the term probability sampling is
more theoretical and philosophical and concerns the word
“known” in its definition. That word seems to imply belief.
Authors from classics like John Venn and M.G. Kendall to
modern Bayesians like Dennis Lindley — and beyond at
both ends — have clearly assigned “probability” to states of
belief and “chance” to frequencies generated by objective
phenomena and mechanical operations. Thus, our insistence
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on operations, like random number generators, should
imply the term “chance sampling.” However, I have not
observed its use and it also could lead to a philosophical
problem; the proper use of good tables of random numbers
implies beliefs in their “known” probabilities. I have spent
only a modest amount of time on these problems and
agreeable discussions with only a few colleagues, who did
agree. I would be grateful for further discussions,
suggestions and corrections.

6. SOME RELATED TOPICS

We called for recognition of new paradigms in six
aspects of survey sampling, beginning with statistics itself.
Finally, we note here the contrast of sampling to other
related methods. Survey methods include the choice and
definition of vaniables, methods of measurements or obser-
vations, control of quality (Kish 1994; Groves 1989).

Survey sampling has been viewed as a method that
competes with censuses (annual or decennial), hence also
with registers (Kish 1990). In some other context, survey
sampling competes with or supplements experiments and
controlled observations, and clinical trials. These contrasts
also need broader comprehensive views (Kish 1987, section
A.1). However, those discussions would take us well
beyond our present limits,
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Still Rolling: Leslie Kish’s “Rolling Samples”
and the American Community Survey

CHARLES H. ALEXANDER'

ABSTRACT

Leslie Kish long advocated a “rolling sample” design, with non-overlapping monthly panels which can be cumulated over
different lengths of time for domains of different sizes. This enables a single survey to serve multiple purposes. The Census
Bureau's new American Community Survey (ACS) uses such a rolling sample design, with annual averages to measure
change at the state level, and three-year or five-year moving averages to describe progressively smaller domains. This paper
traces Kish's influence on the development of the American Community Survey, and discusses some practical
methodological issues that had to be addressed in implementing the design.

KEY WORDS: Rolling sample; Multi-year averages; Asymmeirical cumulations.

1. INTRODUCTION

A “rolling sample design”, defined below, gives a single
survey the flexibility to serve multiple purposes. The
concept was developed by Leslie Kish in a series of papers
(including Kish 1979a, 1979b, 1981, 1983, 1986, 1990,
1997, 1998 and Kish and Verma 1983, 1986) in which he
elaborated the principles of cumulating information over
space and time from a rolling sample. Kish advocated its
use for a variety of purposes (Kish 1998), especially in
developing countries (Kish 1979b), but also in the context
of the U.S. census (Kish 1981). His personal use of rolling
samples goes back at least to 1958, under the name
“continuous sampling” (Kish, Lovejoy and Rackow 1961);
a still earlier project (Mooney 1956) is cited in Kish (1998).

The American Community Survey (ACS), which is
being developed as a replacement for the traditional “long
form” survey conducied as part of the census, will use a
form of the rolling sample design. This paper describes how
the rolling sample concept is being implemented for the
ACS, influenced by its specific objectives and operational
considerations. The design decisions made for the ACS
illustrate some issues that may arise for rolling samples in
general. They also illustrate how Leslie Kish influenced
survey development on multiple levels: philosophical,
personal, and practical.

2. ROLLING SAMPLES

A “rolling sample” design jointly selects k non-
overlapping probability samples (panels), each of which
constitutes 1/F of the entire population. One panel is
interviewed each time period until all the sample has been
interviewed after k periods. Depending on the precision
requirements, a single panel of 1/F may be sufficient to
provide good estimates for the population as a whole, and

possibly for some large domains. For smaller domains or
for greater precision for large domains, cumnulations of
different numbers of consecutive panels can be used, up to
k/F of the population. A rolling sample design with k=F is
called a “rolling census”. For a monthly rolling sarnple, it is
natural to have F be a multiple of twelve, and natural
cumulations are quarterly, semi-annual, annuval, and
multiple years. :

“Domains” include both geographic areas and demo-
graphic subgroups. Kish {1987, section 2.3) presents a
framework for the tradeoff between geographic and
demographic detail, for a given required level of precision.
Even more central to the idea of rolling samples was the
idea of “asymmetrical cumulation” of data, over different
lengths of time for different sizes of domain (Kish 1990,
1998), which was later broadened into a view of the basic
similarities of averaging over space and averaging over time
(Kish 1998), as well as averaging over different demo-
graphic domains. The flexibility of the rolling sample
design comes from the opportunities it provides to make
different tradeoffs between spatial, temporal, and demo-
graphic detail.

Leslie Kish left his colleagues with a challenge to extend
these ideas into a “theory of combining populations” (Kish
1999, 2001). He organized a contributed paper session on
“combining surveys” at the 1999 meetings of the Inter-
national Statistical Institute, explaining to the presenters
that we were all working on different aspects of the same
problem, whether we knew it or not. The scope of this
problem includes various forms of cumulation of data from
rolling samples, as well as the question of how to combine
data from different countries into statistics for larger entities
such as the European Union. Kish (2001) suggests that
these problems have fundamental features in common with
the problem of combining information from different
experiments (Cochran 1937, 1954).

Charles H. Alexander, U.S. Bureau of the Census, Suitland, Maryland, U.S.A, 20233.
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3. THE CENSUS LONG FORM AND
INTERCENSAL ALTERNATIVES

The decennial census “long form” survey is the main
source of subnational data about the characteristics of the
U.S. population and housing. Estimates of the number of
people and housing units come from the “short form™ part
of census administered to all households. With an overall
sampling rate of one-in-six, the long form survey provides
precise, detailed (“‘Precise” refers to the sampling error, and
“detailed” means that estimates are given for many demo-
graphic domains within the geographic domain.) estimates
of a variety of demographic and economic characteristics
for individual states, large cities, and large counties or
groups of counties. It provides useful, though less precise
and less detailed, estimates for even very small areas such
as small towns and Indian Reservations, as well as census
tracts, which average about 4,000 population. For the
smallest governmental units, higher sampling rates are used,
as high as one-in-two for the smallest places, so that there
are usable estimates for these areas. To compensate for the
higher sampling rates in these areas, the rate is one-in-eight
in the largest tracts.

Between the censuses, the federal government’s statis-
tical programs provide relatively little information about the
characteristics of the population below the national level.
The basic census counts are updated by an intercensal
demographic estimates program, but other demographic and
economic characteristics are available mainly from nationat
surveys. The Current Population Survey (CPS), the U.S.
monthly labor force survey, has about a one-in-1000
sampling rate with substantial overlap in the sample units
from one month to the next so that the sample cannot be
profitably cumulated over time as a rolling sample can. A
March Supplement to the CPS collects additional infor-

mation once a year, providing estimates for income and

poverty at the state level, but with limited precision and
demographic detail. There are programs which use
modeling methods based on administrative records to make
small-area estimates for unemployment, and for income and
poverty, but not for a variety of characteristics.

The need for more frequent information for smaller
domains (or “communities™) has long been recognized
(Hauser 1942; Eckler 1972, page 212; Bounpane 1986).
Leslie gave credit to his friend, Philip Hauser, for proposing
an *annual sample census™ in 1941. Kish (1981) proposed
a rolling sample as a way to meet this need, presenting
several options including a rolling sample for the CPS.
Instead a mid-decade census was authorized for 1985, but
it was never funded. Nor was a proposal tc double the size
of the CPS (Tupek, Waite and Cahoon 1990).

Interest at the Census Bureau in intercensal information
about population characteristics was revived by a proposal
for a “Decade Census Program” advanced by Herriot,
Bateman and McCarthy (1989). This program would have
collected data in different states in different years;

ultimately this proposal did not gain acceptance. However,
Roger Herriot's energetic and eloguent advocacy of the
importance and potential value of intercensal subnational
data created awareness in federal statistical agencies of the
possibility of a “new paradigm” for the decennial cycle of
data collection. Awareness of Kish’s rolling sample
proposal was definitely a factor during this period, as the
Bureau considered new approaches for the 2000 census (see
Bounpane 1986).

There was renewed Congressional interest in intercensal
characteristics data (Melnick 1991; Sawyer 1993), and a
“contineous measurement” alternative to the census long
form was considered as part of the research for Census
2000, starting in 1992. Kish’s rolling sample design was
eventually proposed for this purpose because it provided
flexibility in making estimates, as well as the potential for
efficient data collection (Alexander 1993, 1997; National
Academy of Sciences 1994, 1995). My recollection is that
the most influenttal articles were Kish (1981, 1990), and
that Kish and Verma (1983, 1986) were also consulted.
“Continuous Measurement” was later renamed the
“American Community Survey (ACS)”.

The proposed ACS was not adopted for Census 2000,
but after limited testing during 1996-1998, the ACS metho-
dology was implemented in 36 counties for the years 1999-
2001, so that ACS results could be compared to the 2000
census long form data. There was also a large-scale test in
2000, for a state-representative annual sample of about
700,000 addresses called the Census 2000 Supplementary
Survey, of collecting long-form data separately from the
census, using the ACS questionnaire. In 2001 and 2002, the
Supplementary Survey is being continued, as part of the

- transition to the ACS.

4. THE PLANNED AMERICAN COMMUNITY
SURVEY

The ACS will start in 2003, if funded by Congress, with
a monthly sample of about 250,000 addresses, a new panel
of addresses starting each month. This corresponds to a
monthly rolling sample with an average rate of approxi-
mately F = 480 or an annual sample with F = 40. The
survey will use k = 60, with the shortest published cumu-
lation being calendar year estimates. The ACS will be
conducted by mail, with nonresponse followup by tele-
phone. A random sample of one-third of the remaining
nonrespondents will be selected for followup in person.

For domains with average response rates, with a monthly
F = 480, the standard errors for a 5-year average estimate
from the ACS will be somewhat larger than for a corres-
ponding estimate from the census long form, typically on
the order of 1.33 times as large. This was judged to be
“sufficiently close” for most purposes, given the advantage
of timeliness and the expected lower missing data rates due
to having a permanent staff of interviewers. In areas with
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lower-than-average mail response rates, the subsampling for
nonresponse follow-up will reduce the effective sample
size. This happens not only because the number of inter-
views is reduced, but also because the unequal weights
typically lead to a higher design effect (Kish 1965, pages
429-431). To compensate for this, the ACS will probably
use a higher nonresponse subsampling rate in low-response
areas, balanced by a lower sampling rate in areas with
higher-than-average mail response. The details of this are
still being determined. There also will be an oversample of
addresses in small governmental units, as with the census
long form sample.

An important development in the last decade, that made
the ACS possible, (Kish (1981) suggests an alternative
approach of “cumulative rolling listings”, but this would be
quite expensive for making regular estimates for all of the
smallest domains, such as census tracts.} is the Census
Bureau’s program to maintain an ongoing Master Address
File (MAF), linked to our TIGER geographic database. The
main source of address updates throughout the decade is the
Postal Service’s Delivery Sequence File (DSF). The Burgau
is implementing a MAF/TIGER modernization program
that will augment the DSF updates with new addresses from
data files provided by local governments, and from other
administrative sources. This will be supplemented by new
addresses encountered by interviewers from the ACS and
other surveys in'more rural areas. The monthly samples are
actually generated by selecting an annual sample from the
MAF in the previous September, and dividing it into 12
monthly panels. In February, there is a supplemental sample
of new units from the DSF, spread across the remaining
months of the year.

Replacing the 2010 census long form, by the ACS, is one
component of a program to re-engineer the 2010 census.

This also includes the modemization of MAF/TIGER, as -

well as a program of early research and testing to automate,
streamline, and improve the census operations for 2010.
This combination of improvements is expected to have a
budgetary cost for the full 10-year cycle that is less than the
cost of repeating the Census 2000 methods in 2010. This is
a quite different plan than the vision of ACS described in
National Academy of Sciences (1994, Chapter 6; 1995,
Chapter 6), where I expressed hopes that eliminating the
long form by itself, without other fundamental improve-
ments, might save enough to pay for the ACS.

5. SOME VARIATIONS ON THE BASIC DESIGN,
AND SOME ISSUES

5.1 Multi-stage Cluster Samples

The ACS uses an unclustered one-stage systematic
sample, because the goals include providing data for all
small geographic domains, such as tracts or block groups,
each year. From discussions in Kish (1981, 1998}, it is clear
that rolling samples can also use cluster samples and
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multiple stages of selection, as well as varying probabilities
of selection. However, to qualify as a “rolling sample”, the
primary sampling units themselves must be a rolling
sample. A design with a fixed set of primary sampling units
(PSUs), with a rolling sample within each PSU, is a
“cumulated representative sample” (Kish 1998).

Leslie was emphatic that the proposal by Herriot ez al.
(1989), was not what he meant by “rolling sample”.
However, it would seem to fit the definition as stated in
Section 2, if the states are considered as PSUs. I think this
demonstrates that there is an implicit requirement that a
rolling sample must yield a useful representative probability
sample in each time period, for each geographic domain of
interest; this additional requirement does not hold if the
PSUs are states. This requirement means that the clusters or
PSUs need to be substantially smaller than the smallest
domain of interest. (See Kish 1998, page 38.)

5.2 Differential Sampling Rates

Kish (1998, section 4) notes that a rolling sample can use
different sampling fractions in different strata. This can get
complicated, especially if the sampling fractions change
over time, because the conditional probability of selecting
a unit (without replacement) for the /" panel in the A"
stratum depends on the sampling rates used in the previous
panels in that stratum. This is even more complicated if the
strata change over time, for example as the boundaries of
governmental units change.

To simplify this for the ACS, we select the sample in two
stages. The first stage selects a rolling “super sample” using
a constant sampling rate for each panel and each year, equal
to the largest sampling rate required in any stratum. The
second stage subsamples the initial sample, to give the
desired sampling rate for each stratum for that year. The
selection of subsequent samples, which avoids overlap with
the entire previous supersamples, needs only to keep track
of the sampling rate for the first stage.

5.3 Updates to the Frame

In practice, the population is a little different for each
panel. New addresses are added to the frame. Some old
addresses cease to exist; they may be removed from the
address list, or they may stay on the list and be deleted only
after attempts to contact them. This presents no funda-
mental conceptual problem. It does mean that a “rolling
census” would not necessarily contact every population unit
that ever exists, since some units may go in and out of
existence too quickly to fall into sample.

To avoid record-keeping of different conditional
sampling rates for different “cohorts™ of addresses which
were added during Master Address File updates at different
times, we have found it convenient to assign artificial “back
samples” by selecting addresses from each set of new
addresses not only for the current panel, but for past panels.
These units are not interviewed, since the times for their
assigned panels are past, but they are avoided during the
without-replacement selection of future panels.
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5.4 What Happens After Panel k?

One question Leslie did not address explicitly, as far as
I know, is how to draw the sample for panel k+1. I think he
assumed that panel ¥ + 1 would be the same as panel I,
panel k + 2 repeats panel 2, and so forth. This works fine
for a simple random sample, but not so well for a systematic
sample intended to spread the sample over a geographically
sorted list, because as the frame changes over time, panel 1
doesn’t keep its even spacing.

Qur plan is to select panel k + 1, and future panels, asa
fresh systematic sample. Each one will avoid overlap with
the previous k - 1 panels, so there will always be k conse-
cutive non-overlapping panels, but we won't worry about
overlapping with panels before that.

5.5 Questionnaire Reference Date, Given.an
Extended Interview Period

The interviews from each monthly ACS panel take place
over a three-month period, allowing two months for mail
returns and telephone followup before starting the more
expensive personal visits in the third month. Thus, the data
actually collected in June consist of early mail retumns from
the June panel, late mail retitrns and telephone interviews
from the May panel, and personal-visit followup cases from
the April panel. This raises the issue of whether to ask the
survey questions as of the time the survey was mailed out -
the best choice as far as sampling bias — or as of the time
the questions are asked — the best choice as far as response
error and other nonsampling errors, especially for people
who have moved from the address.

Taking these quality tradeoffs into account, we chose to
use a “current” reference date, collecting the characteristics
of the household members at the time of interview. One
reason for this decision is that we think the nonsampling
errors will be harder to evaluate than the sampling bias.
Also the sampling biases in the monthly estimates will tend
to cancel over the course of the year, This is one reason for
limiting the ACS to annual and multiple-year estimates.

5.6 Use of Intercensal Population Estimates as
Survey Weighting Controls

The Census Burean has a program of “intercensal”
(Leslie would call these “post-censal™ estimates, reserving
“intercensal” for estimates between two censuses that have
been completed.) demographic estimates, based on demo-
graphic models. These models update the previous census,
vsing vital records and other administrative records
information. These estimates are used as independent
weighting controls, or “post-stratification factors”, for most
national household surveys (see Kish 1965, pages 90-92).
Adjusting the survey weights to agree with controls can
reduce the variances of survey estimates, adjust for
differences in coverage by age, sex, race, or Hispanic
origin, and improve consistency across surveys. The census
long form similarly uses the census counts as controls in its
weighting.

The weighting controls have traditionally not been
available for the smallest geographic domains, at least not
with the demographic detail available for larger areas.
Plans to produce more detailed controls for use in ACS
weighting are described in Alexander and Wetrogan (2000).
Some improvements will come from improved sources of
administrative data, but in addition the ACS itself will
provide information on changes in the population, which
can be incorporated into the demographic models. The
problem is complicated by the differences between the
“current resident rule” used in the ACS and the *‘usual
resident rule” used in the census; the ACS includes a
question about part-year residents to help in adjusting for
this difference. To facilitate this integration of survey data
and demographic models, and especially to develop error
measures for the resulting estimates, the Census Bureau is
trying to develop “statistical” versions of the demographic
models used in producing the intercensal population
estimates. The inspiration for this effort to blend the
statistical and demographic approaches is Purcell and Kish
(1979).

6. DIFFERENT CUMULATIONS FOR
DIFFERENT PURPOSES

For the main ACS objective, to replace the census long
form as a source of detailed descriptive statistics, we plan
to use 5-year ACS cumulations, for a data product similar
to traditional long form “summary files”. This is the
shortest time period for which the ACS sampling error is
judged to be reasonably close to that of the census long
form. All sizes and types of geographic areas would be
included on these S5-year data files. For allocating
government funds based on an assessment of current need
for the funds, simulations suggest that 3-year cumulations
may be preferable to the S-year, sacrificing precision for
greater recency (Alexander 1998).

For individual areas, the most prominently published
data will be one-year averages for areas greater than 65,000
population, and 3-year averages for areas greater than
20,000, in addition to the 5-year averages for all areas.
Annual average estimates for areas below these thresholds
will be available for more “sophisticated” uses to use in
time series models, and to indicate large variations within
the multi-year averages, but will not be as prominently
displayed in our publications or on our websites.

These planned published ACS data products are
designed to encourage analysts to use the same length of
cumulation when comparing areas of different sizes, on the
grounds that to do otherwise may be perceived as unfair to
smaller jurisdictions. In doing this, we have accepted the
notion of “asymmetrical cumulations™ as far as levels of
geography, but not necessarily within the same level of
geography. For example, we would use one year for
comparing states, but would recommend 5-years for all the
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counties in a table comparing large and small counties. In
this latter recommendation, we differ somewhat from Kish
(1998, pages 42-43) which would let us use tables of
counties with one-year estimates for large counties, 3-year
averages for medium-sized ones, and 5-year averages for
small ones. It will be interesting to see what practices data
users will adopt in this regard.

7. WEIGHTING THE YEARS IN MULTI-YEAR
CUMULATIONS

Kish (1998) points out that there are a number of choices
for weighting multi-year camulations. If there are ten yearly
means §,, then there are many choicesof § =}, w, ¥, with
¥ w; = 1, to use as the ten-year cumnulations.

For the ACS 5-year and other multi-year cumulations,
discussed in section 6, our plans are to give the years equal
weights in the standard published data products, e.g.,
w,;=0.2 for the 5-year average. This was an area of
disagreement with Kish (1998), which gently urges us to
consider of alternatives, in particular weights of the form
w,,, = Cw, with C>1.

An underlying issue in thinking about unequal weights
is what statistical problem we are trying to solve. Using the
2003 — 2007 cumulation as an example, is the goal:

— to provide a “direct design based” estimate for the
2003 — 2007 historical average;

~ to provide a “model-based” estimate for the 2007
value; or

— to provide a “direct, design-based” estimate for a
weighted 2003 — 2007 historical average, with more
weight on recent years?

To interpret the 2003 — 2007 estimate as an estimate for
2007 requires a model or assumptions about the time series
for the area. The problem may be viewed as combining a
direct estimate for 2007 with a forecast for 2007 based on
the years 2003, ..., 2006, with the requirement that the same
formula be used for all areas and all characteristics to
preserve additivity in the tables and comparability across
tables.

I have previously interpreted the decision as a choice
between the first two goals, and have shied away from the
second approach for the ACS, vltimately because of the
concerns expressed in Hansen, Madow and Tepping (1983,
sections 3 and 5.5) about using model-based estimates for
general-purpose “official statistics”. With the variety of
statistics and geographic areas covered by the ACS, there
inevitably will be some where the compromise model fails
badly; a data user may be unaware of this failure, or may be
very aware. In what sense can the compromise average be
viewed as a valid estimate for 2007 when the compromise
model clearly fails, and what measure of error would be
associated with it? With this view of the issue, we have
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recommended using the unweighted multi-year averages as
the standard general-purpose data product, with the time
series of annual estimates being available for use in time
series models for specific applications, and for interpreting
the multi-year averages when there is variation within the 5-
year period.

However, upon rereading Kish (1998), I now interpret
his view of the weighted average 1o be the third formu-
lation, a design-based estimator of a more up-to-date popu-
lation parameter. This avoids the concerns about model fit
for general-purpose uses, although there is still the question
of how to justify and achieve a consensus solution. Also,
the unequal weights tend to increase the standard errors of
the multi-year averages. But Kish (1998, page 40) will get
the last word on the subject:

“Important  questions remain for further
discussions and research. Perhaps forever, and
this can become a ‘growth industry.’”

8. NOT COMBINING THE CPS AND THE ACS

Leslie often said he was pleased to see his idea being
implemented in the ACS, but I think he was disappointed
that we did not try to replace both the census long form and
the CPS with one survey. By contrast with some other
issues where we had lively discussions, Leslie took a
“hands off” stance on this issue. I think he viewed this as a
decision about quality tradeoffs, which the government
agencies had to work out for ourselves. There were two
main reasons for our decision:

We carnot adequately measure the monthly unemployment
rate with a mail survey. Correct measurement of the
unemployment rate requires complex questions that would
not be feasible to ask by mail, for example, to probe to be
sure that someone who is “looking for work” did conduct
an active job search. (See Butani, Alexander and Esposito
1999). The Census 2000 Supplementary Survey, using the
ACS procedures, dramatically overestimated the 2000
national unemployment rate’(5.3 percent versus 4.0 percent
in the CPS). A similar difference was seen in the 1990
census.

A mail survey would lag substantially in producing
monthly rates, compared to the CPS. In addition, the
impossibility of completing all the mail interviews for a
panel in the designated month introduces biases in monthly
estimates (see section 5.5 above). These problems would be
reduced somewhat for quarterly moving averages instead of
monthly estimates, which Leslie frequently suggested (for
example Kish 1999), but the monthly unemployment report
is an indispensable economic indicator in the U.S.

It is too expensive to replace the long form without using
mail. A rolling sample survey, conducted in person with a
large enough sample to replace the long form, would have
to be 3 or 4 times as large as the CPS. This is a function of
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the size of the U.S. population, and the number of tract-
sized domains for which estimates are required from the
long form. Such a survey would be much more expensive
per case than the CPS, because it could not use a cluster
sample or telephone interviews for repeated interviews of
the same households, as does the CPS. The total cost of
such a survey would be several times as great as the
combined cost of the proposed ACS and the CPS.

Because it is designed so narrowly as a long form
replacement, the ACS does not illustrate the full range of
flexibility that Leslie envisioned from a rolling sample.
Under different circomstances, for a smaller population,
with less need for very small domains from the “long form
survey”, or less strict requirements for timing and questions
for the labor force survey, it might be possible for a labor
force survey with a rolling sample to meet the demands for
small domain data. With the further addition of a split panel
or other components (Kish 1998, pages 40-41) an even
wider range of objectives could be met.

-

9. CONTRIBUTIONS: PHILOSOPHICAL,
PERSONAL, AND PRACTICAL

The long list of articles by Leslie Kish on the subject of
rolling samples clearly demonstrates the intensity and
tenacity of his campaign for what he understood as an

" important idea. The evolution of the idea over the course of
these papers also illustrates the depth of his attention to
“philosophical” questions about the fundamental quality
objectives for a survey: What are we trying to do? How
does the choice of survey design relate to what we are
trying to do, and why? This kind of guidance is crucial at
the start of a survey program, when the “big questions” are
being addressed, and makes the difference between ideas
that quickly fall by the wayside and those that are “still
rolling”.

Leslie’s personal support of other statisticians went far
beyond his papers. Though I was by no means one of his
closest colleagues, he regularly provided personal advice or
encouragement when he sensed it was needed. The “still
rolling” in this paper’s title was the title I used in e-mail
messages to him when I had news about the ACS’s perilous
passage through the annual budget cycle, which was most
of the time. He would respond briefly by e-mail, but
important messages always came in the form of handwritten
letters.

Finally, based on these papers, it is clear that Leslie was
always a practical person, even at his most philosophical,
and that his papers cannot be fully appreciated without
knowing what was going on in the survey world when he
wrote them. Looking back over his rolling sample papers,
[ can see many comments, about both details and general
principles, that were aimed at enlightening specific
decisions that the Census Burean needed to make at the
time. 1 would guess that throughout his work, there are

specific messages to help out someone somewhere in the
world who faced a practical design decision at the time.
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Redesign of the French Census of Population

JEAN-MICHEL DURR and JEAN DUMAIS'

ABSTRACT

Census-taking by traditional methods is becoming more difficult. The possibility of cross-linking administrative files
provides an attractive alternative to conducting periodic censuses (Laihonen 2000; Borchsenius 2000). This was proposed
in a recent article by Nathan (2001). INSEE’s redesign is based on the idea of a “‘continuous census,” originally suggested
by Kish {1981, 1990) and Horvitz (1986). A first approach that would be feasible in France can be found in Deville and
Jacod (1996). This article reviews methodological developments since INSEE started its population census redesign

program.

KEY WORDS: Balanced sampling; Census; Continuous census; Calibration.

1. INTRODUCTION

1.1 Reasons for the Redesign

France has been conducting censuses for many years to
measure the de jure population of its administrative districts
and to describe the socio-demographic characteristics of its
territory at all levels of geography, from districts of
communes to the country as a whole. The 1999 census was
conducted in the usual manner: delivering and retrieving
questionnaires by census interviewers, organisation, tech-
nical assistance and control by INSEE, execution by the
Mayor as the state representative. For various reasons, how-
ever, we decided to re-examine the census.

First, the interval between censuses has a tendency to
increase in length. Indeed, the periodicity of censuses is not
covered by laws, and each census date is determined by a
statutory order. Before the war, censuses were taken every
five years; then the gap grew to seven years, then eight, the
last census, originally planned for 1997, was postponed
until 1999 for budgetary reasons, that is, 9 years after the
previous census. Moreover, the public does not always
understand the need for such a massive operation at a time
when the number of administrative files is increasing, even
though that same public has expressed serious concerns
about the cross-referencing of such files. In addition, the
decentralization that has been going on in France for over
20 years has generated numerous requirements for statistics
in support of local policy-making, As the supreme source of
local information, the census had to adapt to these changes
and provide fresher yet still highly detailed data.

As a result, a population census redesign program was
established at INSEE in the late 1990s. Since France has no
population register and, in view of the circumstances, is
unlikely to institute one, the decision was made to consider
a compromise solution that would combine annual sample
surveys with the use of non-nominative administrative files
that INSEE is authorized to use solely for statistical

purposes. Communes whose population is below a certain
threshold (10,000 for the moment) will be covered by
annual take-all surveys with a rotation period of five years.
For the other communes, a sample survey will be conducted
each year, with the entirety of the commune being covered
within the same five-year rotation period, To carry out this
redesign, a new legal framework was needed. The project
was submitted to the Conseil d'Etat, which recommended
on July 2, 1998, that the government table draft legislation
in Parliament.

Aside from the need to strenghten the census legal basis,
the Conseil was of the view that since population counts
were referred to in over 200 statutes or regulations, making
a major change in the way they were produced would
require legislative approval. Within this framework, the
purpose of the legislation was essentially to set out the
principles and rules governing the organization of the
census.

The operation was placed under State responsibility and
control: INSEE was to establish the collection framework
(concepts, protocols), select the samples, ensure the quality
of the information collected, and process and disseminate
the data. The communes as local organisations, were to
prepare and conduct the census surveys. The State would
provide financial assistance to cover the costs. These
arrangements clarity the role and responsabilities of each of
the partners.

1.2 Quality Goals
The program has the following quality goals:

1.2.1 Data Quality

Timeliness: The goal is to be able to disseminate by the
end of year A the de jure population of all administrative
districts as at January 1 of year A-2; a statistical description
of all geographic urits (communes and comrmune groups,
districts of major cities, lands, etc.) as of January 1 of year

! Jean-Michet Durr, Programme de rénovatien du recensement de la population, INSEE, Direction générale, 18 boul. Adolphe Pinard, 75675 Paris CEDEX 14,
France; Jean Dumais Social Survey Methods Division, Statistics Canada, Ottawa, KIA 0T6, Canada. This paper was prepared while the author was on
secondment al the Programme de rénovation du recensement de la population, INSEE.
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A-2; and a statistical description of France and its major
geographic units (regions, etc.) as of January 1 of year A. In
comparison with the general census, the redesigned census
will produce similar population and housing data an
average of three to four years earlier.

Relevance: The data produced must be relevant to local
needs. In particular, data that are worth studying only at
levels of geography far above the commune will be set
aside in favour of data that are more useful for local
purposes. What data will be collected will be determined by
the Conseil national de 1’information statistique {(CNIS),
whose membership includes representatives of various
categories of producers and users of public statistics. A
CNIS working group has proposed changes while at the
same time preserving the necessary continuity with previous
censuses and limiting the response burdet.

Precision: The census must provide data that are
meaningful for all levels of geography in France. The data
produced must be sufficiently precise, even at the sub-
communal levels, for the most useful cross-tabulations at
those levels, This means, in particular, distributions by sex
and age, by type of activity and socio-professional category,
and by type of housing. It must be possible to estimate the
precision of the data, and users must be informed of that
precision. .

User-friendliness: To avoid annoying users, the data
produced must be easy to understand and comparable in use
to data produced by a general census.

1.2.2 Process Quality

Response burden: To limit the response burden for the
public, the amount of information collected must be kept to
a bare minimum. In particular, information available for the
same level of geography from other sources will not be
collected in the census unless it can be used to produce
useful cross-tabulations with other variables. As in previous
censuses, the personal questionnaire will be confined to one
double-sided sheet of paper.

Questionnaire: Since collection is by the drop-off/
pick-up method, the questionnaires must be universally
accessible. To ensure that the questions will be understood,
qualitative testing was conducted using focus groups. In
addition, a collection test was carried out on 4,000
dwellings in the first half of 2001.

Confidentiality: Data gathered in the census are -

protected by law. Personal information collected in the
census can be accessed only by authorized persons. The
data are for INSEE and can be used only for statistical
purposes. Only data essential to the preparation and conduct
of census surveys are shared with communes or commune
groups, on a need-to-know basis.

Quality of coverage: The coverage of general censuses
was not systematically evaluated. Following the 1950
census, a postcensal survey indicated that the rate of under-
coverage was about 1.8% and the rate of overcoverage was
about 0.9%, for an overall precision of roughly 0.9%. The

largest undercounts were in large agglomerations. By
conducting an annual sample survey in communes with a
population of more than 10,000 and thereby reducing the
number of people to be covered in the census, we will be
able to focus our efforts on obtaining answers from
respondents. The coverage of the redesigned census will be
evaluated on a regular basis through comparison with
administrative data and through special surveys.

Technical and organizational robustness: Because of
the volume of data processed and the importance of the
census, the program must be based on tried and true
technical innovations. Furthermore, the robustness of the
census apparatus must be evident in the launch of the opera-
tion. Technical or functional innovations can be introduced
at any time in the census cycle as part of evolving mainte-
nance or specific projects. The annual surveys can be used
to test the effectiveness of such projects before they are
applied to the entire process. However, major changes such
as questionnaire updates will generally be made only for the
beginning of a five-year cycle. The organization of the
census will depend on a balanced partnership between
INSEE and the communes. INSEE must be capable of
building the proposed structure within its budget and its
work program by reorganizing its operations. Similarly, the
communes and intercommunal cooperation bodies must be
able to support the census organization. The yearly cycle of
surveying large communes and the option that small and
medium communes will have of delegating collection to an
intercommunal body are likely to promote the professional-
ization of collection workers.

With the integration of census operations into the annual
work program of the regional offices, and the fact that the
operation is one-seventh the size of the general census,
INSEE will have tighter control of the census. Instead of
having 110,000 census agents collecting data from 60
million people in 36,700 communes in a particular year, it
will have only 18,000 agents visiting roughly 9 million
residents in about 8,000 communes.

The division of responsibilities between INSEE and the
communes, the resources that the communes will require,
and the validation processes for the various stages will be
set out in a decree.

Cost control: With the five-year collection cycle, the
financial burden of conducting the census can be spread
over a longer period. For communes with a population of
more than 10,000, the cost of the redesigned census will be
lower than the cost of the current census of population. On
the other hand, for communes with fewer than 10,000
residents, the cost should be equal to that of a general
census, but it would be every five years instead of the
roughly eight-year cycle of the general census. The cost of
the redesigned continuous census will be equivalent to one
seventh of that of a general census. This will contribute to
archive the reform without budget increase. However, a
slightly larger budget in the first few years would help to
iron the kinks out of the collection process.
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2. SAMPLING STRATEGY

The commune is the linchpin of the redesign effort. The
set of “small and medium-sized communes” (those with a
population of less than 10,000) will be sampled at an
average rate of 20% a year, and all their dwellings will be
visited; all “large communes” will be visited annually, but
only a fraction of their dwellings will be surveyed.

2.1 Small and Medium-sized Communes

Let’s start with “small and medium-sized communes”. In
each region, five rotation groups of communes will be
formed using data from the 1999 population census, They
will consist of balanced samples (Deville and Tillé 1999,
2000) of the age-sex distribution of the communes’ popu-
lation. This approach shouid help minimize year-to-year
variation due to sampling.
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Figures ! and 2 show how balancéd the five rotation
groups will be. They contain box-and-whisker diagrams of
two variables measured in the 2,811 small and medium
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communes in Rhone-Alpes in the 1990 population census.
For each rotation group, both the quartiles and the range of
the distribution are shown. It is interesting 10 note how
similar the charts are. The “number of women aged 20 to
39" variable was used to form the groups. Neither the
number of principal residences nor any of the household or
dwelling variables plays a part in the balancing.

Each year, the population and housing in all the
communes in one rotation group will be fully enumerated.
Hence, each “small and medium commune” will be
completely enumerated once every five years, and a fifth of
all the “small communes” will be covered each year.

2.2 Large Communes

The “large commune” sample will be based on the
“répertoire d’immeubles localisés” (RIL) (inventory of
located buildings). The RIL is a list of buildings
(residential, institutional or commercial) identified indivi-
dually so as to generate a digitized map. Initially, the RIL
will be populated with data from the 1999 census, which
will provide a statistical portrait of each residential
building. (In the 1999 census, a building is defined as the
set of dwellings served by the same staircase; thus, a single
physical building can consist of more than one “census
building™.)

The RIL will be continually updated using building
permits, demolition permits, utility records (water, gas,
hydro, etc.), information supplied by local governments,
and field observations. Thus, the RIL may be used to create
a building sample frame for “large communes”.

In each IRIS2000 (an IRIS2000 is a set of “flots
regroupés selon des indicateurs statistiques™ (blocks
grouped by statistical indicators), a homogeneous area with
a population of about 2,000) of each “large commune”,
five rotation groups of addresses will be formed using the
same sampling model as in “small and medivm communes”.
Three additional strata will be created in each IRIS2000:
one for industrial buildings (plants, warchouses, efc.),
another for collective dwellings (institutions, group homes,
communal groups, boarding schools, etc.) and a third for
new addresses.

One fifth of the industrial buildings will be visited each
year to verify that they contain no dwellings (custodian’s
quarters or space converted for habitation}; any dwellings
found in such buildings will be considered self-representing
because of their special nature. All collective dwellings will
be covered each year; 20% of them will be visited, and the
population counts of the remaining 80% may be updated by
telephone. Finally, all new residential buildings will be
inserted in the rotation groups.

As noted above, each address rotation group will be
visited once in each five-year period. A sub-sample of
addresses, which corresponds to 40% of the dwellings of
the group, will be selected. In each selected address, the
complete dwelling content will be surveyed.
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In summary, the annual sample will consist of some 8
million individual forms, 6 million from *small and medium
communes” and 2 million from "large communes”.

3. OVERALL AND DETAILED ESTIMATES

In the continuous census system, three sets of estimates
will be produced and published each year: a set of de jure
population estimates, a set of detailed estimates (from
which the de jure population estimates will be derived) and
a set of overall estimates that will be used to calibrate the
detailed and de jure population estimates.

3.1 Overall Estimates

According to current dissemination plans, the national
and regional results of the survey conducted at the
beginning of year A will be published on December 31 of
year A. These estimates will be the overall estimates for
year A. In addition, the results for each “small and medium
commune” visited during the year A collection campaign
will be published on the same date.

3.2. Detailed Estimates

Administrative files will supply additional information
at a sufficient level of detail. It will then be possible to
measure the systematic error between what has been ob-
served and what is in the files for similar objects (buildings,
blocks, etc.). This systematic error in carefully chosen
aggregates can be used to produce an adjustment factor
which will then be applied to the administrative data to
ensure that their adjusted totals match the census estimates.

Current plans are to use administrative files at a level of
geographic aggregation (building, block, census agent
district, ezc.) that will provide information about individuals
(age and sex according to health insurance files) or their
dwellings (property tax files).

Detailed results for year A-2 will be released on
December 31 of year A. (Aquisition and processing of
administrative files are expected to take about two years.)
These detailed results will be a blend of survey data (large

communes) or census data (small and medium communes)
with synthetic data.

The synthetic data will be obtained from the relationship
between observed data and administrative data for the same
point in time and space. For example, for commune C of
Group II enumerated in year A-3 (census count denoted
Ré 1 )» the imputed census count for target year A-2 will be
given by

Ad A-2 ZAdmj-z
~A-2 A-3 1Ty A3 celf
Repy=Royx———=Reyx————
. . Adm® Adm?
m,, E mm,

cell

where Adm{ is the value derived from administrative
sources for commmune ¢ and year a.

In the continuous census, for a “small and medium
commune” surveyed in years A-5 and A (see the table
below), person variables (age, sex, labour force activity,
occupation, etc.) and dwelling variables (household size,
number of rooms, tenure, conveniences, efc.} will be
measured at two points in time.

In addition, for Groups IV and V, the synthetic estimates
for year A-2 could benefit from the information collected in
the campaigns for years A-1 and A respectively. Adjust-
ment factors could be computed in relation to the most
recent census and used to produce backward projections for
the intercensal period. For example, for commune D in
Group IV, we can compute the following:

Y Adm?? Y Admi?
A-6  celV A-1 , cefV
CH =RD’”’X——A-6 et (92=R‘D",V><—A_1 .
Y Adm’ Y Adm’
celV cEfV

It is virtually certain that these two series, extrapolations
and backward projections, will not match. Nevertheless, it
is best to publish just one set of estimates for any area and
any point in time. It makes sense to produce a “composite”
series whose end points are tied to census data. The
following linear combination may accomplish just that
while giving more weight to the more recent survey data:

A6 A-S A4 A-3 A2 Al A

Grl Adm Adm R Adm Adm 7 Adm Adm Adm
Gril Adm Adm Adm  Ry7 Adm . Adm Adm . Adm

RC.H

Grin Adm Adm Adm Adm R}’ Adm Adm ~ Adm
GrIlV R Adm Adm Adm Adm 7 Adm R Adm Adm
Grv Adm R Adm Adm Adm T Adm Adm R

Total 5R EAdm 5R LAdm SR TLAdm SR EAdm SR LAdm SR TAdm SR ZAdm
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R)7,=02x@ +08x0,

Similarly, for commune E in Group V, with Q1 and Q2
appropriately defined, we would have:

Ry 1=04x0 +06x0,

Adjustment factors @ will have to be calculated for
relatively detailed population strata, such as age-sex classes,
$0 as to keep as much demographic and geographic flexibi-
lity as possible in the census adjustment. The quality of the
administrative files and local disparities will dictate the
level at which the adjustment can be made most conve-
niently {for départements, metropolitan areas, ...). The same
process can be applied to large communes if we replace
“small commune” with “address”.

Finally, when every commune in every group has been

imputed, the estimated total for a variable of interest from -

the imputed file (detailed estimates) is unlikely to match the
total estimated from observations alone {overall estimates
published two years earlier). It has therefore been decided
that the detailed estimates will be calibrated on the overall
estimates. Once again, the level of calibration will depend
on local trends and the quality of the overall estimates.

3.3. De Jure Population Estimates

The de jure population estimates are the third set of
estimates derived from the census. They are the population
figures that are used, by law, to determine commune
funding, electoral boundaries, the composition of municipal
councils, etc.

The “total de jure population” of a commune includes
persons
~  whose principal residence is within the commune,
— who live in an institution or a collective dwelling

located within the commune,

— who have a residence in the commune and live in an
institution or a collective dwelling located in another
commune but have kept a dwelling in their commune
of origin,

- who live in a collective dwelling in another commune
for work or live in another commune for education,

—  who are attached to the commune for administrative
purposes (itinerant workers, sailors and so on).

Clearly, these populations cannot be estimated until the
entire territory of the commune has been covered, that is,
until the detailed estimates have been produced.

34. Estimation of Sampling Variance

The global and detailed estimates will be accompanied
by a measure of their statistical quality. Work on this
project began in the fall of 2001. The preferred option at
this time is to use reference tables, as is done in the
Canadian Labour Force Survey, for example. The sampling
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variances will probably be obtained by resampling the
frame.

3.5. Imprecision Due to Synthesis

In the section 3.2, we showed how collected data will be
used to produce synthetic estimates: first, an extrapolation
for an “old” census, for two rotation groups (I and II, say);
then directly using the census results for a third rotation
group (111, say); and finally, combining extrapolations and
backward projections to calibrate the last two groups (IV
and V, say).

This synthesis can be formalized using a non-response
model (Sirndal 1990). The annual campaign is similar to a
take-all survey that has an 80% non-response rate, which is
dealt with using ratio imputation. If we let s represent the
whole sample, r the respondents and s-r the non-
respondents, we have

y, |ifker 7
Y=Yy, . with p=—.
Px, ifkes-r x,
Thus, the imputation model is
ye=Bx +g
£:{E() =0
Vig) = o’ X,

where the errors g, are not correlated. With such a model,
under simple random sampling,

%E)’-;ﬁ%{; yt+§ th}z'"

x.l’

Y

1
=z
BT E_:"ﬂl

r

The uncertainty around estimation with imputation depends
on the sampling errors and the quality of imputation model

&:

(Y-v) = (-v) - (£-D
Total = sampling + incertainty
uncertainty uncertainty of model

If we assume that the imputation is unbiased:
EEE(Y -Y)=0

we have, -

Vew = EEE,(F - 1) =..
=E,EE(Y-YV+EEE(P-¥)
=E,V,+EE,V,

Vo=V

= + . .
tolal sample vlmpumuon
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assuming that the design and response mechanism are
independent from imputation. Using imputed data as if they
were observed data to compute the estimate of V_results in

an underestimate of V,,,,.. In terms of expectation,

Ec(V, -V, = Vd,.f.
For the estimators of these variances, Sidrmdal shows that
we get

Vsampling

=N2(% %){S.2 + G, 8%}

X e

with C, close to( 1 -E] % and 87 close to —— and
n pIEA
r
. 1 1), . .
Vimputation =N2[ :n' - ;] Axsé ’

with A=x_ /x , which we can take as a respondent
selection effect. We note that if x, = 1, then we obtain a
two-phase sample of size m in n and n in M. In addition, if
§=r, Vlotal = Vsamp]in g

In Sirndal’s mocfel, the x (administrative data) and y
(census data) are contemporaneous; at the very least, we
will have observed some of the y. Using the structure
developed in the previous section, we would have:

Year A-2
Yy X, m respondents (Group IH)
Y X, n-m imputations (other groups)

In the continuous census system, not everything is
synchronous:

.. A4 A-3 A-2 A-1 A
Y;A-4 X;1-4 X;ﬂ-:‘l X;-t—2
XAt yA xp st X
b o Xp o N¥i P
XA XA x22.
X3 X x5

Thatis, Y/ >, X, >, Y42, and X;;  are not all measured
or ohserved in the same year. In fact, if we look at Group III
on its own, for example, we have a sample of size n in year
A-2 and an identical but totally non-respondent sample in
year A-3. Consequently, some parameters in the estimate of
Vo cannot be calculated.

On the other hand, if we take the problem over a specific
period, we have a sample of size n and 4n non-respondents.

We could approximate the uncertainty of the asynchronous

imputation process (the process we have in the redesigned
census) with the uncertainty of the synchronous imputation
process (similar to Simdal’s model).

This approach was tested on the small and medium
communes of Rhéne-Alpes, for which the rotation groups,
1990 property tax data and 1990 population census data are
available (Kauffmann 2000}. The method gives good results
for variables that are highly correlated with property tax; the
results also indicate that a source of administrative data that
are similar to variables describing people will be necessary
to maintain the model errors at an acceptable level.

4, WORK IN PROGRESS

The methodological work involved in redesigning the
census is far from complete. The following projects are still
under way:

- establishment of rules for crossing the size threshold,
problems of oscillation around the 10,000 population
threshold, and calculation of the de jure population;

— the sensitivity of stratum boundaries in large
communes and their robustness over time;

— the updating and maintenance of sampling frames and
samples, especially adjustments that may be required
when a commune crosses the size threshold and the
incorporation of new objects into rotation groups;

- massive imputation and synthesis, both models and
their precision;

- estimation of the precision of estimators; and

collecting data from mobile population groups.
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Benchmarking Parameter Estimates in Logit Models of Binary Choice

and Semiparametric Survival Models

IAN CAHILL and EDWARD J. CHEN!

ABSTRACT

An approach to exploiting the data from multiple surveys and epochs by benchmarking the parameter estimates of logit
models of binary choice and serniparametnic survival models is developed. The goal is to exploit the relatively rich source
of socio-economic covariates offered by Statistics Canada’s Survey of Labour and Income Dynamics (SLID), and also the
historical time-span of the Labour Force Survey (LFS), enhanced by following individuals through cach interview in their
six-month rotation. A demonstration of how the method can be applied is given, using the maternity leave module of the
LifePaths dynamic microsimulation project at Statistics Canada. The choice of matemnity leave over job separation is
specified as a binary logit model, while the duration of leave is specified as a semiparametric proportional hazards survival
model with covariates together with a baseline hazard permitted to change each month. Both models are initially estimated
by maximum likelihcod from pooled SLID data on maternity leaves beginning in the period 1993-1996, then benchmarked
to annual estimates from the LFS 1976-1992. In the case of the logit model, the linear predictor is adjusted by a log-odds
estimate from the LFS. For the survival model, a Kaplan-Meier estimator of the hazard function from the LFS is used to

adjust the predicted hazard in the semiparametric model.

KEY WORDS: Microsimulation; Benchmarking; Semiparametric survival models; Binary logit.

1. INTRODUCTION

Researchers often base econometric models on a survey
conducted over a short period of time. In this case it may be
desirable to incorporate information from a supplementary
data source covering a longer period, even if measurements
are only available for the dependent variable. For a broad
class of non-linear models, we develop a simple method of
benchmarking the parameter estimates obtained from a
survey rich in explanatory variables to information from a
survey with significant historical depth. A primary objective
is that model predictions accord with information from the
secondary data source. We demonstrate application of the
method first to a simple logit model of binary choice, and
secondly to a semiparametric survival model. Since the
survival model can be viewed as a sequence of binary
choices, while retaining an interpretation as an incompletely
observed continuous time model, it provides a natural
generalization of the first application.

The illustration we provide is a study of maternity leave.
The Statistics Canada Survey of Labour and Income
Dynamics (SLID) provides data on both the incidence of
choosing a maternity leave over withdrawing from the
labour force, and on the duration of maternity leave, as well
as a nich set of explanatory variables. Because of this we
use SLID to estimate base parameters, including those
determining the effects of the explanatory variables on the
incidence (the logit model) and hazard of returning to work
(the survival model). The Canadian Labour Force Survey
(LFS) conducted by Statistics Canada provides reasonable
proxies for both the incidence and duration extending back

to 1976. The SLID parameter estimates are therefore
benchmarked to LFS estimates of incidence and the hazard
of retuming to work during the period 1976-1992, which is
prior to the availability of SLID data.

The work was carried out while developing the maternity
leave module of the LifePaths microsimulation model at
Statistics Canada. The goal of the LifePaths project is to
construct a dynamic microsimulation model encapsulating
as much detail as possible on socio-economic processes in
Canada, as well as the historical patterns of change in those
processes. LifePaths has been employed in a broad range of
policy analysis and research activities. Examples include
Canada Student Loan policy (under contract to Human
Resources Development Canada and the Government of
Ontario), returns to education (Appleby, Boothby, Rouleau
and Rowe 1999), time use (Wolfson and Rowe 1996;
Wolfson 1997, Wolfson and Rowe 1998a), tax-transfer and
pensions (Wolfson, Rowe, Gribble and Lin 1998; Wolfson
and Rowe 1998b), and labour force careers (Rowe and Lin
1999). In addition, the task of assembling data for LifePaths
has required new research into, for example, educational
careers {Chen and Oderkirk 1997; Rowe and Chen 1998;
Plager and Chen 1999) and earnings correlation (Chen and
Rowe 1999).

LifePaths is intended to incorporate socic-economic
information from all relevant sources available to Statistics
Canada. Consequently the construction of the model has
motivated research into application of methodologies for
exploiting multiple data sources. Embedding an estimated
model in LifePaths is a powerful tool for deriving impli-
cations of the model that can be compared to information

lan Cahill, Partnership and Continucus Evaluations, HRDC, 140 Promenade du Portage, Phase IV 3rd floor, Room 3D475, Gatineau, Québec K1A 0J9, and
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from other sources. For example, Rowe and Lin (1999)
derived job tenures by simulation from a model estimated
using short-period longitudinal data, then compared the
results with data from a cross-sectional survey. We report
on one aspect of the continuing effort to build a tool
providing the maximum information that can be extracted
from Statistics Canada’s data sources.

The paper is organized to illustrate the way in which
technical problems are often encountered in the course of
building LifePaths, and how their solution is integrated with
the model development process. To do this, a fair amount
of background detail on associated issues is provided.
Section 2 outlines the context of the benchmarking
problem, and section 3 presents the theory behind our
solution, with some possible extensions for further work.
Section 4 describes the models to which it will be applied,
including some details concerning the estimation of their
parameters in the base period, then section 5 describes the
application of the benchmarking method to these models.
We display and discuss our empirical results in section 6,
then close with some overall conclusions in section 7.

2. CONTEXT OF THE PROBLEM

We provide context in this section by presenting an
overview of the LifePaths model structure, a brief descrip-
tion of data sources involved, and a discussion of how the
benchmarking problem arose.

2.1 Structure of the LifePaths Model

The LifePaths model simulates individual lifetimes as a
series of events which modify the set of “state variables”
describing the demographic, social, and economic circurmn-
stances of the individual. Waiting ttmes to every possible
event are associated with an individual, although they may
be infinite. The waiting times may be conditioned on the
values of state variables. The event type with the shortest
waiting time occurs (its associated functions are called).
Modification of any state variable at the occurrence of an
event may lead to the generation of new waiting times for
other events.

LifePaths initialises a case by randomly generating a
“dominant” individual’s sex, province of residence, age at
immigration and year of birth. The year of birth can range
from 1892 to 2051. Mortality and immigration assumptions
are designed to reproduce provincial age-sex structures.
When a dominant individual marries, enters a common-law

union, or has a child, a non-dominant individual of suitable’

characteristics is created and is linked to the dominant
individual, forming part of the case. Once created, non-
dominant individuals undergo the same possible events as
dominant individuals. However, since their purpose is to
complete the profile of the dominant actor, they are usually
filtered from all tabular reports.

LifePaths presently includes models of fertility,
mortality, marriage (including common-law unions), educa-
tional careers, labour force careers, maternity leave, hours
of work, eamings, taxes, and transfers. The model of the
labour force careers describes transitions between the states
“paid employee,” “self-employed,” and “not employed.” It
also includes a model of retirement and student work. The
model of secondary and post-secondary educational careers

at the provincial level is mature and highly developed.
2.2 The Data Sources

The estimation of base parameters for the model of
maternity leave was carried out using data from SLID
covering matemnity leaves beginning in the period
1993-1996. Using data from 1997 allowed us to follow
most maternity leaves to completion rather than using
extensively censored data. This is a household survey
designed to permit both longitudinal and cross-sectional
analysis of people’s financial and work situations. Starting
in 1993, SLID follows the same respondents for six years,
with new rotation groups introduced every three years. Each
rotation groups includes about 15,000 households with
30,000 adults. From this survey we obtain the month of
child birth, monthly data on labour force status, and a rich
set of explanatory variables including job tenure, an
indicator of self-employment, birth order of the child,
presence of an employed spouse, province of residence,
education level, and age. We can also determine if a mother
who left a job within 4 months of birth has returned to the
same job within 16 months. This is used as a practical
definition of matemnity leave and becomes our unit of
anatysis, with a slight expansion to include the 1% of cases
where a mother returned to a different job from a labour
market state of absence in the previous month. Using this
unit of analysis we get a sample size of 835 births. As we
show in section 6, this sample size is adequate to reveal
some key explanatory factors. More precisely, several
factors are found to be significant at the 95% confidence
level. This sample contains about 730 unique mothers,
representing over 87% of the sample of births. This means
that there will be some correlation between observations as
a result of those mothers who have two or more maternity
leaves within the observation period, but we did not feel
that it is of sufficient magnitude to warrant any special
statistical tools.

The LFS is a monthly household survey focussing on
labour force status, and also reporting a number of
demographic characteristics. The survey is normally used
exclusively for cross-sectional analysis. For the LifePaths
project, however, a file covering the period from 1976 to
1995 was constructed that follows individuals as they rotate
through the six monthly rotation groups of the survey,
providing a six-month window on each individual’s Jabour
market activity. Since the number and ages of children are
recorded each month, it is possible to observe the



Survey Methodology, June 2002

appearance of a new child. Since all surveys throughout the
period are used, the sample size is very large, and about
26,000 births are observed.

In the LFS window we note the labour force status of a
new mother when the child is first reported. This is the key
to estimating the probability of choosing a maternity leave,
rather than leaving the labour force. We begin by consi-
dering P(E), the proportion of such mothers who are
employed. If the mother is “employed, at work,” we
suppose that they took a brief absence from their job — less
than a month. If they are “employed, absent from work,” it

may be that they have chosen to take a maternity leave -

absence from their job and then return to it. However this
may not always be the case. A new mother who we observe
as employed and absent (EA) may later make a transition
out of employment (to NE). To correct for this, considering
mothers with a child of age less than a year observed in a
window, we calculate the proportion P(EA-NE) of
transitions out of the “employed, absent from work” state
that are to a not-employed state. We also estimate the
proportion P(NE~OJ) of mothers who return to an old job
(OJ) after having left employment. The estimate is obtained
by using observations on mothers with a young child who
make transitions from a not-employed state to a job with a
start date earlier than the previous month. Our estimate of
the probability of choosing a maternity leave is now P(E) -
P(EA -~ NE)}+ P(NE - OJ). ‘

It is also possible to observe mothers with a child of age
less than a year making a transition from the status
“employed, absent from work for personal or family
responsibilities” to the status “employed, at work.” We use
this transition as a proxy for the return to work after a
maternity leave. Since the duration of absence is reported in
the previous month, this is the key to benchmarking the
survival model.

The preceding discussion tllustrates the weakness of the
LFS data for a study of maternity leave, relative to SLID
data. In addition to having fewer explanatory variables
available than in SLID, we must accept proxies for the
dependent variables. Nevertheless, we require the historical
depth of the LFS. This relationship between the data sets is
the context of the benchmarking problem described in the
next section.

Both the SLID and the LFS have complex sample
designs involving detailed stratification, and complex
methods for calculating observation weights. We always
make use of observation weights, both in estimation and in
the calculation of frequencies. The methods used are fairly
simple, and are discussed in sections 4 and 5.

2.3 The Benchmarking Problem

The context of our benchmarking problem is a model of
women choosing between leaving the labour force or taking
a matemnity leave, and if they choose a leave, deciding how
long that leave should be. The first decision is represented
by a binary logit medel, and the second by a2 semiparametric
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survival model, both including a vector of explanatory
variables and associated parameters. In LifePaths, the
decisions are made as part of the matemity leave choices
event, which always occurs in the middle of a pregnancy.
SLID is quite adequate for estimation of the base para-
meters of both these models. However, since a major goal
of the LifePaths project is to incorporate historical patterns
of change in socio-economic processes, it was necessary to
benchmark the SLID parameter estimates to annual esti-
mates of dependent variable means obtained from the LFS.

In this problem, we assume stable observed charac-
teristics of the population. There are two reasons for this.
First, LifePaths is a work in progress, and the benchmarking
exercise we report on was carried out at a stage when other
parts of the model that predict these characteristics were
being extensively revised. In section 3.3, we touch on the
consequences of evolving population characteristics.
Second, we suppose that the primary reason for systematic
change in observed outcomes between time periods is
change in some factors not included in the measured
characteristics of individuals. In the case of our application
we observed a trend towards choice of maternity leave over
leaving the labour force which seems to be due to social
change rather than changes in the composition the
population. We also observed a change in the distribution
of maternity leave durations that appears to be due to
changes in the Unemployment Insurance (UI) program
implemented in Bill C-21 in 1990. At that time Parental
Benefits were introduced, which extended the period during
which many mothers could receive benefits from 15 to 23
weeks. Many mothers return to work at a time close to
when they have exhausted UI benefits.

3. BENCHMARKING METHODOLOGY

In this section we present the method in an abstract form
in order to clarify the assumptions, develop notation, and to
reveal the similarity between the application to binary
choice and to survival analysis.

3.1 Application to Binary Choice

The basic model for the benchmarking methodology
relates to binary choice. Since we are not primarily
interested in changes in the population, we simplify the
analysis by assuming that the explanatory variables or indi-
vidual characteristics in period T are represented by a series
of independent identically distributed random vectors X*.
We recognise that this is quite a strong assumption. Never-
theless, for the reasons discussed in section 2.3, we use it
our empirical work. Section 3.3 shows that it ts a fairly
simple matter to extend the theory to incorporate trends in
the independent variables.

Consider a linear predictor given by

nN(x) =Rx+y" (3.1
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where P is a vector of coefficients constant over time, x is
a possible outcome of X', and y* represents a parameter
specific to period 1. Notice that x contains no “constant
term.”” Let ¥* be a random variable, jointly distributed with X,
that takes the values 1 if an event occurs and O if it does not.
Suppose that the probability of the event, conditional on
characteristics x, is given by

E(Y*| X" =x) = 2(x) = F(x)) 3.2)

where we require F to be a continuous distribution function.
The values of the function will then be bounded by zero and
one, and it will have an inverse g, so that

n'(x) = g (@ (x)). (3.3)

In the context of generalised linear models, g is called a link
function. We begin by finding max:mum likelihood esti-
mates of the base parameters  and 9™ using data for the
time period T (in our case this is the period when SLID
data are available). Of course these data must include
variables corresponding to outcomes of both X and Y.
It remains to estimate y* for each period 1. Equations (3.1)
and (3.3) imply that

EM(X7)-n°(X ™)} =y* -y = E{g(n" (X"))}
-E{g(z®(X")}. (3.4

Since we have observations only on the outcomes of Y°
from the LFS for every period, we estimate the terms y* by

T =97+ g () -g (") (3.5

where f° is an estimate of E(Y™). Using the LFS, this
estimate is the weighted frequency of the event in the time
period T (taking each weight from the month where a child
is first observed). To justify this procedure we use equation
(3.4) and assume an approximation

E{g(n* (X))} - E{g(m™(X )} = g (E{n"(X*)})
-g(E{n°(X™)}). (3.6)

Inaccuracy will arise due to Jensen’s inequality in regions
where g is convex or concave. Nevertheless, if g can be
locally approxlmated by a linear function in the regions
where 7%(X*) and n°(X ™) are concentrated, then (3.6)
may be quite accurate. The fact that g has an inflection
point at 0.5 may aid the approximation when probabilities
are dispersed around this value.

Fortunately we are able to test the adequacy of the esti-

mator by simulating the estimated model in LifePaths and
comparing the predicted frequencies of the event with
corresponding weighted frequencies observed in the data.
The results indicate that it is quite adequate for our appli-
cation.

3.2 Application to Survival Analysis

We will show in section 5.2 that the approach outlined
above can also be extended for use with a semiparametric
survival model by adding an index ¢ representing the
duration in the current state, so that {3.5) becomes

T =% + g(RY(1)) - g (R™(2)) 3.7
where f"(#) represents the empirical hazard function.

3.3 Trends in the Independent Variables

The benchmarking method may be improved by taking
the changes in observed characteristics into account. As we
noted in section 2.3, this would be considered when other
parts of LifePaths are in a more mature form. To do this we
relax the assumption that the random vectors X' are
identically distributed. Equation (3.4) then becomes

E{n'(X") -nt“(kt")} =" -y°+B{E(XT) - E(X )

=E{g(n* (X))}
-E{g(n" (X))} (3.8)
Based on this, we might estimate ¥ by
¥ =70 g () - g (&) - B (& - 2*) (39

where %" is the vector of mean values of the characteristics
in period . Of course it may not be possible to obtain all of
the mean values from the same data source. The method
would extend to the survival model case in the same manner
as (3.7) to give

?T(‘) S'?Tn ([) + g(&‘(;)) - g(ﬁ"o“))
BT - @ @)). (3.10)

4. MODELS AND THE ESTIMATION OF BASE
PARAMETERS

As explained in section 3.1, the base parameters |§ and 9%
are estimated by maximum likelihood using data from the
period 1, We use data from SLID on all maternity leaves
beginning in the period 1993-1996 (our base period t,).
We do not attempt to estimate annual changes in the
constant term ¥ throughout this period.

4.1 The Binary Logit Model

We adopt the logit model to represent a mother’s choice
between taking a maternity leave and withdrawing from the
labour force. From now on we adopt a more conventional
econometrics notation and use a subscript { to index a
random variable or outcome associated with an individual
i. We suppose that a random variable ¥, takes values 0 or
1, with Y = | indicating that new mother i with vector of
charactenstlcs x; in period © chooses to take a maternity
leave, conditional on her having been employed, and that
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. : o __ exp(m)
m =P =)= FO) = —e g
1 +exp(n;)

where ] = B’ X, +¥' is the linear predictor of equation (3.1)
and F is the logistic distribution function. We estimate the
base parameters  and 9% using N observations from SLID
by maximising the log-likelihood In L(B,f°) where

LB.¥Y = P(Y, =y Yy =¥y Yy = yy)

[I01-F@a)I1 [IFm)
¥ =0 =1

FmHY 11 -Fm' ™ @.2)

and
InL@,y)=3 {y,InF()

+(1-y)In[1-FmH]. @3

Longitudinal SLID weights in the year of the child’s birth
are scaled to sum to the sample size, and are then used to
weight the terms of the log-likelihood and its derivatives.
The weighted score equations are

%[;Yt) =X Wiy, - X W Fn) =0

ULBY) -y y - w Fy=0. - (4.4)
a,Yr i i .

The solution, which maximises the log-likelihood, was
found by Newton-Raphson iteration. The logit model has
been used often by statisticians and econometricians, and
there is an extensive literature. For example, see Chambless
and Boyle (1985), Roberts, Rao, and Kumar {1987), and
Morel (1989).

4.2 The Semiparametric Survival Model:
Basic Form

For mothers who have chosen to take a maternity leave
from their job, we use a survival model to describe the dura-
tion of their leave. The probability density function (pdf) of
the distribution has a complex shape, as can be seen from
the graphs in section 6.4. There is spike at durations of less
than a month and a mode which appears to represent the
maximum Unemployment Insurance special benefits
entitlement available to mothers after 1990 (15 weeks of
Maternity Benefits, plus 10 weeks of Parental Benefits, plus
a two-week waiting period). We began the study by
estimating various fully parametric models, including a
log-logistic survival modeél combined with a logit model to
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predict durations of less than a month, but were unable to
obtain an adequate fit. To solve this problem, we follow
Prentice and Gloeckler (1978), Han and Hausman (1986)
and Meyer (1990}, by nonparametrically estimating the
effect of time on the hazard of returning to work. The
hazard of returning to work is specified in a proportional
hazards form:

M) = 25 (@ exp (B x,(0) (4.5)

where ?«1’](:) is the unknown baseline hazard at leave
duration ¢ and time period T, x,(r) is a vector of explanatory
variables for mother #, and B is a vector of coefficients.
The data tell us which of the intervals [0,1), [1,2), [2,3), ...
containg the spell duration (in our case the units are
meonths), and the model can be interpreted as an incomple-
tely observed continuous time hazard model with no restric-
tion on the form of the baseline hazard. If 77 is the duration
of leave for mother i during period 1, thenfor¢ =1, 2, 3,
..., the probability that the spell lasts until time ¢, given that

it has lasted until £ - 1, can be written as
P(T>t|T] 2t - l)=exp[—_[:_l7uf(u)du]

=exp[—exp{ B'x‘.(;)}j’,'_ Vglu) du] 4.6)

if we assume that x,(z) is constant on the interval between
t-1 and t. In order to apply the theory of section 3, we can
rewrite equation (4.6) as

1-m( =P 2t|T/2t-1)
=exp[-exp{B'x (1) +v'(1))]

= exp[-exp{n;(n}] 4.7
where

Y@y = 1 J7, 2§ () du]. (4.8)

One may censor any ongoing observations at some large
duration T. Again we can estimate the base parameters fj
and 9% using N observations from SLID by maxirising the
log-likelihood 1n L(y®,B). Since we will always be
referring to data from the base period for the remainder of
section 4, we drop superscripts T,.

The likelihood function is given by

y L(y,p)=
TTC0 -exp -expM, k1

ki
1_-11 exp { -exp(M(N)}] - (49)

where y =[y(1),y(2), ..., ()], C, is a censoring time,
6, = 1if T, < C, and O otherwise, k, = min (int(7,), C,). The
log-likelihood is therefore
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N
InL(y,B) =Y [, In[1 ~exp{-exp(m,k, )}
i=1

ki
- 2 exp () 4.10)
-

Weights from the months that a child is first observed are
scaled to sum to the sample size, and then used to weight
the terms of the log-likelihood function and its derivatives.
The weighted log-likelihood function is maximised by the
quasi-Newton algorithm of Broyden, Fletcher, Goldfarb,
and Shanno (BFGS), using an implementation based on
Dennis and Schnabel (1983).

4.3 The Semiparametric Survival Model:
with Work-to-Birth Gap Decision

The situation in our application is complicated somewhat
by our desire to model the duration from leaving the job
until the birth (the work-to-birth gap), as well as the hazard
of returning to work from a matemnity leave. The model of
work-to-birth gap is estimated separately, based on SLID
data. Examination of the mean gap duration for each year
in the LFS data indicates that this duration has been fairly
stable over time, so the model is not benchmarked. Never-
theless, a modification of the semiparametric survival
model is necessary to incorporate the separate model of
work-to-birth gap. This can be accomplished by assuming
that the work-to-birth gap decision, possibly involving
health considerations, acts to constrain the desired total
duration. This means that the above model would apply to
the desired total duration, which is unobservable, and might
be labelled 7.

In cases where the desired duration was shorter than the
work-to-birth gap, the mother might return to work as soon
as possible after the birth. This means that in cases where
we observe a significant work-to-birth gap (greater than a
month), and the mother returns soon after birth (within a
month), all that is known about desired duration is that

T"zT
where T is the total duration of leave. This is equivalent to
a situation labelled *left censoring” by Cox and Qaks
(1984, page 178}, where observation does not start imme-
diately and some individuals have already failed before it
does.

From such an observation we get a contribution to the
likelihood function and its logarithm given by

ki
L=1-T[P(T 2¢t|T" z1-1)=1
. @.11)
- leP [-exp(m; ()]
pab

and

j‘l'
In(L) = In{1 -exp(-3; exp ()]} (412)

Unfortunately the log-likelihood expression does not
simplify like the corresponding expression for “right-
censored” observations. In spite of this, Monte Carlo
experiments indicate that estimation is not a problem even
in heavily censored data sets.

Longitudinal SLID weights in year of the child’s birth
are used in same manner as for the basic form of the
survival model.

5. BENCHMARKING THE MODELS

To begin the benchmarking procedure we must invert the
distribution function F given in equation (3.2) to find the
link function g. We then apply equation (3.5) in the case of
the logit model, and equation (3.7} in the case of the
survival model.

5.1 Application to the Binary Logit Model

To benchmark the logit model we first invert the logistic
distribution function in equation (4.1) to obtain

L

n; =g(m) = In .1

L
1 -

where g is the well-known logit function. We can then
apply equation (3.5} and (5.1) to obtain

7‘=?‘°+g(ﬁf>—g(ﬁ‘°)=?‘°+1n[M (5.2)
RY(1 -2")

where for 1<1, each fi¥ is the frequency of choosing
maternity leave calculated from LFS data for maternity
leaves beginning in year 1, and &° is the frequency from
SLID data.

5.2 Extension to the Survival Model
From equation (4.7) we get

® (1) = 1 - exp[-exp {n;(}}}] = F (n; (1)}

where

(5.3)

n; () =B x, (0 +y' ().

In this case F is an extreme value distribution that is easily
inverted to obtain

(0 = In[- In(1 - ()] = g (m; ().

For benchmarking we can use equation (3.7) with the
observed frequencies in period t represented by the
empirical hazard or occurrence/exposure ratio given by

(5.4)

(5.5)
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£ =dw/ri@ (5.6)

where, for spells beginning in period T, d" () is the number
of mothers who fail in the interval (z -1, r]and r* (¢} is the
number of mothers in view at duration ¢, including those
censored at time f (Censoring can only occur at the end of
intervals). Numbers of mothers were calculated from
sample counts by applying the LFS weight from the month
that a new mother returns to work. The empirical hazard
and the corresponding estimator for the survivor function
implied by the product law of probabilities were studied by
Kaplan and Meier (1958). The use of the empirical hazard
in equation (3.7) together with equation (5.5} yields

719 = 7°() + 1n| 2LZEOL ) 5.7)
In[1 - &°()]

6. EMPIRICAL RESULTS

The results of estimation in the base period, and the
results of simulation with benchmarked parameter estimates
are presented for both models. The simulation results are
compared with annual survey sample frequencies of
choosing a maternity leave in the case of the logit model,
and with annual survey frequency distributions of matemnity
leave duration in the case of the survival model.

6.1 Estimation Results for the Binary Logit Model

The estimation results obtained from estimating the logit
model from SLID data are presented in Table 1. Omitted
dummy variable categories, which form the reference cate-
gories for the variables used in the model, were province of
residence Ontario and highest education level “some post
secondary.” Individual and family income variables were
tested, but were found not to be significant, and so were not
included in the regression.

There may be some bias in the estimates, particularly
those of the standard errors, due to the fact that the complex
SLID sample design was accounted for only through the
weights applied to the log-likelihood.

The significant positive effect of job tenure seems
reasonable for a number of reasons. A lengthy tenure might
indicate that the woman has acquired firm-specific human
capital and has achieved some seniority. It would also be an
indicator of strong attachment to the labour force generally.
On the firm side, the longer the woman’s job tenure, the
longer the leave that the firm is likely to grant with a
guarantee that she can return to her job. Also, provincial
government guarantees of job security also depend on job
tenure. Finally, a lengthy job tenure means that the woman
will likely meet the Unemployment Insurance eligibility
requirements (20 weeks of insured employment). A dummy
variable indicating that Ul entrance requirements were met
was tested and found to be just significant at the 5% level.
However, because we are not able at this stage to model
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changes in the UI program through the influence of
covariates, because of uncertainty in interpretation, and
because of high correlation with job tenure, it was not
included. In the LFS, self-employed workers are reported
as having a transition out of employment cnly when they
terminate their business. Since taking a leave simply means
not terminating the business, a significant positive effect for
the indicator of self-employment is to be expected. Having
been self-employed before the birth increases the odds of

. taking a maternity leave by 333%, the strongest effect that

we see for an indicator variable.

Table 1
Binary Logit Parameter Estimation Results

Parameter Estimate of Contribution  Std Errorof  Prob-
Coefficient to Odds Ratio* Coefficient  Value

Constant -6.432 0.002 2.995 0.0318
NFLD -0.829 0.436 0741 0.2636
PEI 0.931 2537 L.612 0.5633
NS -0.456 0.634 0541 03992
NB 0.207 1.230 0.675 0.7596
QUE -0.361 0.697 0247 0.1437
MAN -0.490 - 0.613 0.503 03306
SASK -0.163 0.850 0458 07218
ALTA -0.200 0819 0325 053719
BC -0.120 0.887 0300 0.6899
Job Tenure (mths)/10 0.094 1.099 0.026 0.0003
Self-employed? 1.203 3.330 0418 0.0040
Age (Years) 0479 1.614 0.199 0.0160
{Age*2)/10 -0.071 0.931 0.033 0.0296
< High School Grad -0.702 0.496 0.357 0.0490
High School Grad -0.148 0.862 0.276 0.5913
University Grad -0.292 0.747 6.229 0.2027
First Child? -0.525 0.592 0.192 0.0063

log-likelihood = -381.553

Number of Observations = 835

Observations are given the SLID longitudinal weight from the year of
birth, scaled to sum to the sample size

* This is the exponential of the coefficient. 1t may be interpreted as
the proportional change in the odds ratio due to a unit change in the
comresponding independent variable.

The effect of the first child indicator also seems reason-
able. The odds for maternity leave for a first-time mother
is only 9% of the odds for maternity leave for a mother of
more than one child, given that all other characteristics are
the same — /.¢. first-time mothers are more inclined to job
separation than the mothers who already have children.
This may be partly a consequence of the fact that our
sample consists of mothers who have been employed within
4 months of the birth. Mothers who have more than one
child tend to space them within a few years at most. If they
are employed just before a second or subsequent births,
they will have already demonstrated that they returned to
work after an absence that must have been less than the gap
between births. This at least rules out some common
patterns of withdraw from the labour force — for example
staying at home until all children are in school.
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The effect of age is more difficult to interpret since the
effect on the log-odds ratio is non-linear. By drawing a
graph of the term - 479* age - .0071* age® one can see that,
as age increases, the log-odds of taking a maternity leave
first increases, but that the rate of increase declines until a
level point at the maximum log-odds is reached by the age
of 34. Since the number of mothers declines considerably
after this age, the subsequent decline may not be
meaningful. One might hazard a conjecture that, among

young mothers, being relatively older indicates more -

attachment to the labour force and thus a stronger tendency
to take a maternity leave, while among older mothers, who
are past the stage of first entering the labour force, this
effect is reduced. However, the results are probably not
precise enough to draw any firm conclusion about this.

6.2 Simulation Results for the Benchmarked Binary
Logit Model

The benchmarking exercise consists of adjusting the
constant term of the model in the manner described by (5.2)
for each year in the period 1975-1992. The constant term is
not adjusted after 1992, partly because the LFS data do not
indicate a strong trend after 1992. The model is then
incorporated in LifePaths and a simulation is run. For each
year from 1976 to 1995, Figure 1 shows both the frequency

of choosing a leave in the LifePaths simulation, and the"

frequency estimated from the LFS. For the period
1993-1995, estimates from SLID are also presented.
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Figure 1. Frequency of Choosing a Maternity Leave 1976-1996

The simulation captures the change over time revealed
by the LFS data during the period 1976-1992. There is no
benchmark adjustment implemented in the LifePaths simu-
lation after 1992, so that the base parameters estimated from
pooled SLID data 1993-1996 are effective. The simulated
frequency is slightly lower than the observed SLID
frequency during this period. Two possible sources of error
are an insufficiently flexible specification of the binary
choice model, and differences between the SLID estimates
of explanatory variables and those provided by LifePaths.

d

6.3 Estimation Results for the Survival Model

The results obtained from estimating the semiparametric
survival model from SLID data are presented in Table 2.
As in the binary logit model estimation, omitted dummy
variable categories were province of residence Ontario and
highest education level “some post secondary.” Since the
dependent variable is the hazard of returning to work, a
positive coefficient for a covariate indicates an influence
that tends to shorten the duration of maternity leave.

The estimates of the constant terms in the duration-
dependent linear predictor given by (4.7) are denoted in
Table 2 by GAMMA, i=1, 2, ..., 15. This represents the
influence of the baseline hazard incorporating the influence
of duration.

Table 2
Survival Model Parameter Estimation Results
Parameter Estimate  Std Error  Prob-Value
Job Tenure (mths) /10 -0.030 0.010 0.0024
NFLD 0.195 0.426 0.6470
PEI 0.307 0.490 0.5313
NS 0.173 0.253 0.4940
NB 0.109 0.293 0.7091
QUE o.L11 0.117 0.3411
MAN -0.402 0.253 0.1116
SASK -0.303 0.213 01539
ALTA 0.270 0.154 0.0798
BC -0.440 0.148 0.0030
Self-Employed? 1.665 0.157 0.0000
Age -0.253 0.041 0.0000
Age**2/10 0.043 0.007 0.0000
First Child? -0.301 0.090 0.0009
< High School Grad 0.508 0.206 0.0135
High School Grad -0.124 0.125 0.3212
University Grad -0.374 0.108 0.0006
Employed Spouse? 0.109 - 0.51 0.4703
Gammal 2.570 0.609 0.0000
Gamma?2 -[.136 0.816 0.1636
Gamma3 -0.466 0719 0.5176
Gammad 0.780 0.640 0.2232
Gamme5 1.425 0.627 _0,0231
Gammab 2.755 0.613 0.0000
Gamma? 3.640 0612 0.0000
Gamma§ 3413 0.620 0.0000
Gamma9 3.465 0.630 0.0000
GammalQ 3.387 0.649 0.0000
Gammall 4.579. 0.655 0.0000
Gammal?2 4.285 0.785 0.0000
Gammal3 3.645 L.110 0.0010
Gamma {4 3.746 1.281 0.0034
Gammal$ 6215 2.415 0.0101

log-likelihood = -1165.06
Number of Observations 3411

Observations are given the SLID longitudinal weight from the year of
birth, scale to sum to the sample size
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Again, individual and family income variables were
tested and found not to be significant. Both this finding and
the importance of a self-employment indicator as a pre-
dictor of early return to work accord with the findings of
Marshall {1999). Marshall found that education variables
were not significant in determining whether a mother would
return to work within a month. We find however, that
university graduation has a significant negative effect on
the hazard (positive effect on duration). Job tenure has a
significant negative effect on the hazard, possibly reflecting
its relationship with Unemployment Insurance entitlement
and job security.

6.4 Simulation Results for the Benchmarked
Survival Model

In the case of the semiparametric survival model, bench-
marking consists of adjusting all of the terms GAMMA/,
i=1,2,..., 15 of the previous section accerding to (5.8) for
each of the years in the period 1975-1992. The model is
then simulated as part of LifePaths.

The frequency distribution of simulated maternity leave
durations is presented and compared to the corresponding
observed frequency distribution from LFS data. In order to
present the results, the frequencies in 3-year periods were
averaged. A key feature of the frequency distribution is an
abrupt change apparently due to the introduction of parental
benefits with Bill C-21 at the end of 1990. Since mothers
with maternity claims in progress at the time of implemen-
tation were entitled to parental benefits, the claims
beginning in 1990 represent a mixture of regimes. For this
reason the year 1990 is not included in any of the 3-year
averages. In Figures 2 and 3 we use disjoint 3-year periods
covering 1976-1984. To balance periods before and after
1990 using available data, in Figures 4 and 5 we use the
overlapping periods 1985-1987, 1987 1989, 1991-1993,
and 1993-1995.
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The distribution of durations derived from SLID data
1993-1996 is presented in Figure 6. This may be compared
with the simulated data shown in Figure 4 for the period
1993-1995, since no benchmarking is applied after 1992.
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Figure 6. 5L.ID Data: Distribution of Leave Durations for
1993-1996 -

In Figure 7 we present the average duration of matemnity
leaves beginning in each year of the observed period. The
average of simulated durations are compared with those
from the surveys.
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Figure 7. Average Duration of Maternity Leave 1976-1996

6.5 - Evaluation of Benchmarking Performance

The benchmarking method appears to be very effective
in the case of the binary logit model. The trend of the LFS
data is well reflected in the LifePaths simulation. In the case
of the survival model, the key feature of the LFS data is the
abrupt shift of the mode of the frequency distribution after
1990, apparently due to the introduction of parental
benefits. This shift has been captured by the simulated data.
Also the average duration of maternity leave in the
simulation fits the LFS data very closely.

A noticeable divergence between the simulation and the
LFS data is the height of the mode at the interval (3, 4]
months in the frequency distribution of the duratiens from

LifePaths from 1982-1989. This may be due to the effect of
trends in the values of explanatory variables, which we have
assumed to be stable, Further work is necessary to establish
this. A possible extension to the model was discussed in
section 3.3.

7. CONCLUSIONS

The technique that we have developed appears to be
quite successful in benchmarking of the logit and survival
model parameters so that the essential features of the LFS
data are captured in LifePaths predictions. The key to
benchmarking the logit model is the adjustment of the
parameter corresponding to the “constant term™ in the linear
predictor that is imbedded it the logistic distribution
function in order to predict the conditional expectation of
the dependent variable. Section 3.1 develops the technique
in a general framework that includes other models of binary
choice. Particularly, it would extend to the popular probit
model where a linear predictor is embedded in the standard
normal distribution function. Benchmarking of the semi-
parametric survival model hinges on the adjostment of all
the parameters representing the baseline hazard. Our results
illustrate how the entire shape of the distribution of dura-
tions predicted by the model can be made to evolve through
time according to a pattern revealed by supplementary data.
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Improved Ratio Estimation in Telephone Surveys Adjusting
for Noncoverage

STEVEN T. GARREN and TED C. CHANG!

ABSTRACT

Since some individuals in a population may lack phones, telephone surveys using random digit dialing within strata may
result in asymptotically biased estimators of ratios. The iipact from not being able to sample the nonphone population is
examined. We take into account the propensity that a household owns a phone, when proposing a post-stratified phone-
weighted estimator, which seems to perform better than the typical post-stratified estimator in terms of mean squared error,
Such coverage propensities are estimated using the Public Use Microdata Samples, as provided by the United States Census.
Non-post-stratified estimators are considered when sample sizes are small. The asymptotic mean squared error, along with
its estimate based on a sample, of each of the estimators is derived. Real examples are analyzed using the Public Use
Microdata Samples. Other forms of nonresponse are not examined herein,

KEY WORDS: Asymptotics; Census Public Use Microdata Samples; Post-stratification; Telephone survey.

1. INTRODUCTION

Consider surveys where the telephone population is
sampled. Major problems in telephone surveys include
nonresponse (.., refusal to participate in the survey) and
noncoverage (i.e., lacking telephone service). Nonresponse
may cause larger bias than noncoverage, since nonresponse
propensities are usually much higher than noncoverage

propensities. However, nonresponse is reviewed rather

briefly, because the focus of this article is noncoverage.
1.1 Literature Review

Khurshid and Sahai (1995) provided an extensive
bibliography of papers on telephone surveys. Examples of
nonresponse rates may be found in Steeh, Groves, Com-
ment and Hansmire (1983, pages 189-197). Corrections for
nonresponse, using weights and imputation, were discussed
by Little (1986) and Rubin (1987). Rao (1997) provided an
overview of sample surveys, including discussions on
resampling methods, especially the jackknife, for variance
estimation. His discussion includes techniques to estimate
the variance in the presence of imputation.

Regarding noncoverage, Brick, Waksberg and Keeter
(1994} found the 94% of the households in the United
States have phones at any given time. They also found that
the households with interrupted telephone service usually
are indigent. Keeter (1995) discussed that in a survey
conducted from 1992 to 1993 more than half of all house-
holds without continuous telephone service during that year
were transient, i.e., these transient households were both
with and without telephone service at different times during
that year. He also found that most socioeconomic factors

(excluding home ownership) for transient telephone house-
holds are similar to those factors for households which are
continuously without phones. These similarities between’
the transient and the nonphone populations suggest that

" valid inferences may be made on the entire (phone, non-

phone, and transient) population, based on telephone
surveys. Thomberry and Massey (1988) examined non-
coverage for various socio-demographic groups from 1963
to 1986, and found income to be the most important factor
in-determining the likelihood that a household has a phone.

1.2 OQOur Approach

Given several various characteristics, such as home
ownership and household language, the propensity of a
household to have phone service is estimated in this article
using the Virginia portion of the 1990 Census Public Use
Microdata Samples (PUMS), which represent 5% of the
population. Whether or not households have phones is
included in the PUMS. The estimation of these propen-
sities, or probabilities of phone service, is based on genera-
lized linear regression with a log — log link, since the logit
link provides a poor fit. We advocate using our fitted
regression model, with the estimated parameters, for esti-
mating these likelihoods in general whenever a random
sample is taken from the Virginian phone population.

Because it is such a huge data set, the PUMS have
another useful purpose in this article. The PUMS are used
to compare and contrast estimators in terms of bias and
variance, by examining the entire phone population and by
taking repeated samples of the phone population. Cate-
gorical data consisting of 75 household and 75 personal
variables are listed for all individuals in the households
selected to be in the PUMS.

! Steven T. Garren, Department of Mathematics and Statistics, MSC 7803, James Madison University, Harrisonburg, Virginia, 22807, U.S.A. Research partially
supported by NIMH grant MH53259-01 A2; Ted C. Chang, Division of Statistics, 108 Halsey Hall, University of Virginia, Charlottesville, Virginia, 22903,

U.5.A. Research partially supported by ONR grant N-00014-92-1-1009.
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In the examples in section 6 high school graduation rate,
mean number of cars per household, and mean household
income are estimated using both post-stratified and non-
post-stratified estimators for samples of size 500 from the
PUMS. The post-stratification variables for high school
graduation rate are gender, age, and race of the head of
household. The post-stratification variable for mean number
of cars per household is household income only. Estimators
of the mean household income are analysed twice. For one
analysis, post-stratification is on only the race of the head
of household. For the other analysis, post-stratification is on
gender, age, and race of the head of household. Each of
these post-stratification variables is divided into two cate-
gories, except income, which is divided among three
categories.

A serious drawback to estimators not taking into account
the propensities of phone service is that these estimators are
not asymptotically unbiased as the sample size gets large.
A major focus of this article is to show that bias is reduced
substantially when the estimators take into account the pro-
pensities of phone service, as estimated by the PUMS.
Since both post-stratified and non-post-stratified estimators
as well as both using and not using the propensities of
phone service are considered, then four estimators are exa-
- mined herein. In particular, these four estimators of a popu-
lation mean are the sample mean, the usual post-stratified
estimator, a phone-weighted estimator, and a proposed post-
stratified phone-weighted estimator. The mean squared
errors (MSE) of the phone-weighted estimator and the post-
stratified phone-weighted estimator go to zero as the sample
size gets large, unlike the other two estimators.

We adopt a two-phase model for our four estimators,
The first phase involves selection from the entire population
into the phone population. We treat the propensity of a
household to have phone service as the probability that the
household will be selected into the phone population, and
we assume that this probability is positive (although

possibly small} for each household. The second phase is a -

stratified (perhaps geographically stratified) simple random
sample from the phone population. In the examples in
section 6, we constder post-stratification by characteristics
such as race and age of the head of household. Since our
sample sizes are small, we do not geographically stratify the
population of Virginia, although our formulas allow for
both stratification and post-stratification.

Ideally, one would post-stratify using the same covariates
used for estimating the propensities of phone service in the
first phase of our model. In this case, the three estimators

which use the propensities of phone service and/or post- .

stratification witl be almost identical. However, the sample
size for each post-stratified category should not be too

small, so practical limitations restrict the number of cate-

gories which should be used for post-stratification. Never-
theless, many categories may be used for constructing the
propensities of phone service from the PUMS, because the
entire population is used.

Even if post-stratification by many covariates is feasible,
the usual variance formulas for post-stratification require
that a stratified random sample be taken from the entire
population. In our situation, however, a stratified random
sample is taken from the phone population, so the usual
variance formulas are not applicable to our situation. The
techniques by Politz and Simmons (¢f. Cochran 1977, pages
374-377) require the sampling frame to be the entire
population, not just the phone population, and hence are not
applicable to our scenario, which allows noncoverage.

We derive the asymptotic variances of the four estima-
tors of a population ratio, and we determine reasonable esti-
mates of these variances. Since a population mean is a
special case of a ratio, and a population total is a multiple of
a ratio, then the results regarding estimators of means or
totals follow from the results regarding estimators of ratios.

2. NOTATION

. Consider N households in a population, U. For each
household in U, let two variables of interest be denoted by y,,
and y,,, for k€ U. At any given time, the event that the Ath
household does or does not have a phone is treated as
random, while y,, is treated as fixed.

Letting

- N
o =N 3y,
kev

for i =1, 2, the goal is to estimate a,, o,, and the ratio
Ho=o/a,.

Without loss of generality we concentrate on estimating «,

and p.

An important special case of estimating a ratio p arises
when one desires to estimate the mean of a variable z, for ke D
for some subpopulation Dc{/ but one cannot sample
directly from D. Examples include subpopulations defined
by race. Let x, be | if k€ D and O otherwise. Let y,, =z, x,
and y,, =x,. Then p is the population mean of z, over the
subpopulation D.

Assume there are H strata, and k is used to index the
strata. Assume there are & groups, and g is used to index
the groups, which are used to construct the post-strata. The
strata are known prior to sampling, but the groups are not
observed until after the final sample is taken. Therefore,
U, denotes all households in group g and stratum i, N,
denotes the size of U ,, and N, denotes the size of (f;
Other variables are defined similarly in terms of g and 4.

Let U, denote the population of households in U which
currently have telephones, and let N, denote the size of
U, The probability, or propensity, that the kth household
in Uis also in U is denoted by p,, and we assume that
p, >0 forall k. A simple random sample of size n, is taken

-from Uy, for h =1,...  H. Let 5, denote this final sample

in stratum k. The size of the final sample, s, is denoted by
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n. For asymptotics herein, we assume that #/N-0 as n~
in the same spirit as Sdrmdal, Swensson and Wretman
(1992, pages 166-169).

3. THE ESTIMATORS

The sampling design is treated as a two-phase design
with Poisson sampling at the first phase and stratified
simple random sampling at the second phase. Each indi-
vidual enters the telephone population with probability p,,
for ke U, and then enters the final sample according to a
simple random sample of size n,,h =1, ..., H. The p, are
assumed known or can be estimated accurately, as shown in
section 5. The estimators of p discussed in this section will
be validated in the appendix.

31 | The Post-stratified and Ratio Estimators

Post-stratified estimates of o, and 0, are

é\':ps(i) Z Z gh gh Z Yiks

for i=1,2, and the post—stratlfled estlmate of pis
fps = dps(l) / aps @ A valid estimate of the variance, condi-
tional on U, is known to be (¢f. Simndal er al. 1992, pages
270-271)

Var (.| U;)

1 ={n,/Np}

ngh(ngh—l)

A 2'
= WNang)? Y 3 Ny,

)

kes,),

-1 n 2
Yie ™ Ppg Yo Py Z 0; '”psyz;')] .
JE€3y, 3.1)

Although the bias cannot be estimated from the final
sample, the theoretical bias of fips is well-known to be

ii N, Epl Epkylk

bias,] h;l g;l Y
Z Z N, E Pj]-] 3 P Yo
k=1 g= €Uy, keU,,

Eylk
ket
E Y2y

kel/

+0n™ (3.2)

as n - =, Noting (3.2), the MSE of 1.‘1 does not go to zero
in general as the sample size n gets large
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To determine the variance and bias of &ps (ty S€t ¥y, =1
for all &, so that i__ ps and p become & _ |, and ¢, respec-
tively. One may then apply (3.1} and F3 2) so that

—~ H G I-(n /N
0= NPY 3N, 1o N)
ps(l) = (n,-1)
&= gh sh
-1 2
) Yie ™ Pgn > Yl (33}
kes,, j€sy,
and
bias &

ps(l)

h=1 g=1

3. PyYy -2 +0(n™")
%el

jet on

(A7)
= 0(1)

as n-«, Cochran (1977, pages 134-135) provided a
correction factor, which is of order n 2, to (3.3). This
correction factor, however, is irrelevant to (3.1), since the
error term due to estimation from the ratio is O (n ™).

As usual, the ratio estimator, denoted by ¥,/¥,, is
defined to be the ratio of the sample mean of y, to the
sample mean of y,. That is,

=y ylk/z: Yaj-
kEs JES

The post-stratified and ratio estimators are identical when
G = H = 1. Since we will be using only one stratum (i.e.,
H =1) in section 6, we need not reference separate theory
for the ratio estimator.

3.2 The Phone-weighted Estimator

Since the post-stratified estimator, Ay is biased, two
alternative estimators are suggested. One is the phone-
weighted estimator, which takes into account the proba-
bility that an individual has a phone. In this section we
assume that the p, are known for all k€s or can be esti-
mated accurately. Estimation of p, using the PUMS is
discussed in section 5.

For a crude estimate of o, for i = 1,2, use

Yy

1
&, =N E Nomi' 3 5 vie (3.4)
Erh
Then, estimate p by
A, = 0,5/, (3.5)
which is asymptotically unbiased for p, since iiwm is

unbiased for «
variance of i

wiiys for i=1,2. A valid estimate of the
is shown to be
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NZ [1-(n,/N))

nn, - 1)

i
var (1

H
w o [N&w(Z)]_ZhZ:t

2

E y]k—ﬁw}’u _n-[ E y]j_ﬁwyzi (3 6)
_-n, —_—. .

kes, P JEs, Pj

Since the estimator, [i_, is asymptotically unbiased, then a
valid estimate of the MSE of [i , is identical to the estimate
of the variance.

Setting Y2 = 1 in (3.4) and (3.5) allows a valid estimate

of a4, 0 be

ENTk"hlz Pk

Es,‘

E Npny, Z Pr ylk

kEs,

U =

The variance of &

may be estimated by setting y,. = 1
in (3.6).

w(l)

3.3 The Post-stratified Phone-weighted Estimator

Another proposed estimator combines post-stratification
with the phone-weighted estimator, and is perhaps the best
among the four, when sample sizes are large enough to
justify post-stratification. This new estimator requires, how-

-ever, thatall N, be large enough so that with high probabi-
lity the n_, are not too small. To estimate ¢, we use

H G -1
psw(:) =N~ IE El gh Z p} 1] E pk :Ic’
1g=

h= JESyy kes,,

for i =1,2. We then estimate p by {i /6.

psw = psw(]) pswi(2)”
The estimate of the variance of i, is
—~ H G
' Va'rnpsw= psw(Z)] 22 ga(ZP; )
h=] g=} JES
-2
1- p
OIRRD> 2
y w P; P i~ P Vo) -
1k~ ps % }E‘ J ] ety I P 2 (37)
If any of the n , terms are small, then one might instead

prefer the estlmator

P

.,
var Ppsw = psw(2)] 22 N [E p; )

jes,

2
" -1y ! -1 "
yu-u,,swyu-[ Y »p ] > P (m-u.,wyzm)] :
j€syy mesy, 3.8)

Notice that if N:r , were known, which is however
unlikely, then a more farniliar and intuitive estimator of var 1]
would be

H
var ’:lpsw = psw[Z)] 22 E

h=1 g=l ",.,(ng;, 1)

psw

2
N Tek

n .
_ gh -2
s | o,
Teh ke‘:x B

2
. -1y 1 -1 .
{ylk_upswyz.&_[ Epj ) E Pn (ylm—ppswyZm) -
Jesy, mes,y (39)

Since N » typically is unknown, then (3.9) usually is not
a practlcal estitnator. However, (3.9) helps motivate (3.7)
and (3.8), which are quite practical.

Since the estimator, (i, is asymptotically unbiased,
then a valid estimate of the MSE is identical to the estimate
of the variance. Further, setting ¥y = 1 in (3.7) and (3.8)
allows one to estimate the variance of 6 sw(l)"

When G = 1, the estimator 1 does not reduceto {1,
as one might naively anticipate. The preferred estimator
when G =1 is i, since [, is based on only one ratio,
whereas 13 is based on a ratio of ratios. The estimator
ppsw requlres large sample sizes in each stratum-group
category, but (i, requires only a large overall sample size.
When H =G = 1 however, the estimators i, and [1
identical; the variance estimators based on [] are
preferable to those based on i because the estimates of

SW

the variance of ﬂpsw are based on a ratio of ratios.

4. ASYMPTOTIC MEAN SQUARED ERRORS

The asymptotic mean squared errors of the estimators
defined in section 3 now are stated. The proofs follow from
Taylor linearization and are given in the appendix, along
with the minor regularity conditions needed.
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4.1 The Post-stratified Estimator

To find the asymptotic theoretical variance of the post-
stratified estimator of u, we first define

. H G
a =plim__ & . =N"1 Ny,
k=1 g=1
[ E Pj) ! Pr¥i
jely, kely, (4_1)
for i = 1, 2, and also define
peo=oj/a; 4.2)

Note that a; » o, and p* # p in general. The asymptotic
theoretical variance of A is

H
varfl,, = (Vay) ),

1<l (4.3)

as n - «. The asymptotic bias of i  was shown in (3.2} to
be O(1} as n + =. Therefore, the asymptotic MSE of i
isalso O(1) as n -~ =,

4.2 The Phone-weighted Estimator

The asymptotic theoretical variance of the phone-
weighted estimator of p is

o [57) (%)

var fi, =(Na,)? Y

S POR

i€y,

(ry;~uy [
Y 3’1k‘i‘)’u__j;% HiTHy
k EP;'

kel P &
v, 4.4)

+0{n2+N").

Since i, is asymptotically unbiased, then its MSE is the
same as the right hand side of (4.4).
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43 The Post-stratified Phone-weighted Estimator

The asymptotic theoretical variance of the post-stratified
phone-weighted estimator of  is

H G
var p'psw = (NQZ)—ZE E

EAEA 0
AT ="

. - 2
[ylt_“yR_Nghl E (yu'l')’zj)]
jeU‘

+0n2+N). (4.5)

Since fi psw is asymptotically unbiased, then its MSE is the
same as the right hand side of (4.5).

5. ESTIMATING THE p, USING PUBLIC
USE MICRODATA SAMPLES

The United States Bureau of the Census produced the
Public Use Microdata Samples (PUMS), which include 1%
and 5% samples of the population in each of the 50 states
and Washington, D.C., for year 1990. For each person
selected in the sample, 75 household variables and 75
personal variables are listed, where each househeld has a
clearly defined head of household. We utilize the PUMS for
two reasons. We estimate the p, using the PUMS in this
section, whereas in section 6 we run simulations on the
PUMS to construct examples for comparing and contrasting
the estimators.

In this article, we use the 5% sample from Virginia.
Since 5% represents a huge number of households, we treat
this sample as if it were the entire population of Virginia.
Since we are interested in telephone surveys, then from this
5% sample we will sample households. Inferences may be
made on personal variables, such as high school graduation
rate, and household variables, such as the number of cars in
a household or household income. Information pertaining
to whether or not each household has a phone is included in
the PUMS. We removed from our study all households
whose telephone status is listed as “not applicable.” Such
households were either vacant or were group quarters
(institutions and non-institutions). The number of house-
holds remaining in 1990 is 110,744, of which 104,606 have
phones; hence, the proportion of these households which
have phones is 94.5%

Using generalized linear regression with a log — log link
on the 5% sample from Virginia along with the household
weights assigned in the PUMS, we estimate p,, which is
the probability, or propensity, that the kth household has a
phone. McCullagh and Nelder (1991, pages 107-110)
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recomumended the use of a log — log link when the
probabilities are close to one, and we found that this link
provided a good fit. We also found that the logit link
function provided a poor fit.

The PUMS household weights are used when estimating
the p, but are not used elsewhere herein. In particular, in
section 6 when constructing Monte Carlo samples of the
PUMS population, the samples are simple random samples
from the telephone population. :

Examples of estimating the p,

Six covariates, the number of persons in the houschold,
tenure (home owner or renter), the date the head of house-
hold moved into the dwelling, household income, house-
hold language, and race of the head of household, are used
to estimate the p,. These six covariates were chosen, along
with the categories for each covariate, based on a thorough
analysis of the 1990 PUMS using generalized linear
regression techniques in SAS. All of these covariates were
found to be highly statistically significant. Estimates of the p,
are made by summing the appropriate estimates of the
covariates in Table 1. The covariate for the number of
persons should be multiplied by the number of persons in
the household; however, if the number of persons exceed

five, then, for computations, convert this number of persons
to five. For example, if the household consists of three
English-speaking Asian Americans with two cars in a house
purchased in 1987, where the household income is $75,000,
then Table 1 indicates that the estimate of p,_ is the solution
to

log (-log p,) = 3x0.2747 -0.5552 +0.5920
+0.1896 +1.0004 + 0.6156 + 0.0000.

Notice that in Table 1 within each of the covariates date
moved in, number of cars, and income, the values corres-
ponding to the categories are monotonically decreasing, as
anticipated, except when income is negative,

An adjustment which should be made when using
random digit dialing is to ask each respondent the number
of phone lines in the household, and multiply that number
by the estimate of p, from Table 1 to obtain a new estimate
of p, Consequently, p, now is a weight, rather than a
probability. For the simulations discussed in section 6 this
adjustrment is not necessary, since households are equally
likely to be selected using simple random sampling from the
PUMS, regardless of the number of phone lines.

Table 1
Values of covariates for estimating p, using the Virginia 5% PUMS. Standard errors are in parentheses. If the number of persons
exceeds five, then convert this number to five. The covariate “tenure” did not appear in the 1980 PUMS. The 1980 category “$40,000
to $49,999” actually includes “$40,000 or greater”. The “other” category for the 1980 covariate “language” includes Spanish.

Covariate Category 1990 Value 1980 Value
Number of persons 0.2747 (0.0022) 0.1929 (0.0020)
tenure . home owner -0.5552 (0.0079) -0.7845 (0.0057)

renter 0.0000 (0.0000) 0.0000 {0.0000)
date moved in 1989 or 1990 0.9742 (0.0121) NA
198510 1988 0.5920 (0.0119) NA
1980 to 1984 0.3489 (0.0138) NA
1970 to0 1979 0.2185 (0.0136) NA
1969 or earlier 0.0000 (0.0000) NA
number of cars 0 1.2927 (0.0152) 0.8633 {0.0118)
1 0.6842 (0.0143) 0.3981 {0.0109)
2 0.1896 (0.0145) 0.0399 {0.0112)
3 or more 0.0000 (0.0000) 0.0000 (0.0000)
income less than $0 3.5325 (0.1294) 2.3639 (0.0830)
$0to $9,999 3.7929 (0.0539) 2.5238 (0.0260)
$10,000 to $19,999 3.4878 (0.0538) 1.9763 (0.0258)
$20,000 to $29,999 3.0299 (0.0539) 1.0220 (0.0269)
$30,000 to $39,999 2.4297 (0.0543) 0.3889 (0.0317)
$40,000 to 549,999 1.8899 (0.0556) 0.0000 (0.0000)
$50,000 to $59,999 1.5992 (0.0578) NA
$60,000 to $69,999 1.2144 (0.0631) NA
$70,000 to $79.999 1.0004 (0.0704) NA
$80,000 or greater 0.0000 (0.0000) NA
language English 0.6156 (0.0164) 0.4232 (0.0153)
Spanish 0.4889 (0.0216) NA
other 0.0000 (0.0000) 0.000 (0.0000)
race black -0.4233 (0.0064) -0.3837 (0.0058)
other 0.0000 (0.0000) 0.0000 (0.0000)
intercept -1.6707 (0.0588) -4,9024 (0.0322)
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Table | thus can be used for estimating p, when con-
ducting telephone surveys. When a generalized linear
regression model calculated from a PUMS of an earlier date
is used to analyse a later survey, rescaling should be
performed to take into account changes in the distribution
of household income across time. Table 1 also gives the
coefficients of a model calculated from the 1980 PUMS.
We discuss in section 6 an example when the 1980 PUMS
model is used to calculate p, for a sample from the 1990
PUMS population. We note that the 1980 PUMS did not
include “date moved in” and that a better fitting model
arose when the language categories “Spanish™ and “other”
were combined. In addition, median household income
almost doubled between 1980 and 1990, so fewer income
categories were used in 1980.

Although Table 1 is convenient when sampling from the
PUMS and performing simulations, the covariates listed in
Table 1 might not be available in actual surveys involving
random digit dialing. One may reproduce Table 1 using
different covariates, or one may estimate the p, according
to the following alternative method.

An alternative method for estimating the p,

The participants in a telephone survey based on random
digit dialing may be asked the following two questions: (1)
How many telephone lines have been in your household
during the past twelve months? (2) During the past twelve
months, how many months was each telephone line in
service?” Now, let p, be the sum of the answers to question
(2). For example, in a household with two phone lines,
where one of the lines was in service all twelve months and
the other was in service only five months, the estimate of p,
would be 12+5=17. Again, p, represents a weight rather
than a probability here. Asking the respondent this second
question is similar to an approach advocated by Brick et al.
(1994), who also suggested weighting the data to take into
account the probability that a household has phone service.

6. INFERENCES ON HOUSEHOLD AND
PERSONAL VARIABLES

We will compare the four proposed estimators of p as we
make inferences on the hkigh school graduation rate among
people at least 21-years-old, the mean number of cars per
household, and the mean household income, in the state of
Virginia. We performed 100,000 simulations of simple
random samples of 500 households with telephones from
the 1990 Virginia 5% PUMS using one stratum (i.e., H=1).

In section 6.1, two sets of p, are used. One is based upon
a GLIM regression fit to the 1990 PUMS, and the other is
based upon a GLIM fit to the 1980 PUMS with the income
categories inflated by the ratio of the 1990 median
household income ($32,800) to the 1980 median household
income ($17,510). Using the 1980 p, to estimate a 1990
parameter demonstrates how well our method works when

69

GLIM coefficients are used for future data sets, provided
than an adjustment for inflation is made. Only the 1990 p,
are used in section 6.2 and section 6.3.

Post-stratification should be used when the sample sizes
are sufficiently large. Non-post-stratified estimators may be
compared to each other, and post-stratified estimators may
be compared to each other. Comparing il fy, to fi,
appropriate, and comparing i, to fi ., is approprlate
These comparisons show the i 1mpr0vements when using the p,
in the estimators.

6.1 Estimating the High School Graduation Rate

Using the entire 1990 Virginia 5% PUMS, the mean
high school graduation rate among all Virginians at least
21-years-old is u=0.75118. When estimating the graduation
rate using a simple random sample and (i or i ., we
post-stratify by gender (male, female), age (less than 45
years old, at least 45 years old), and race (black, other) of
the head of household. The p, are estimated using Table 1.
The values of the biases and standard deviations discussed
below are shown in Table 2, when 1990 p, are used.

Table 2
Biases and Standard Deviations of Estimates of High School
Graduation Rate

Estimator

not post-stratified  post-stratified

- -

Wy B, Fpo  Hpow
0.01471 0.00722 0.01461 (.00874
0.01472 0.00720 0.01463 0.00850
0.00000 0.00002 -0.00002 €.00024
0.00777 0 0.00663 0

aggregate bias
telephone bias
second phase bias

theoretical bias
simulated standard  0.01683 0.01737 0.01605 0.01643
deviation

estimated standard ~ 0.01680 0.01734 0.01601 0.01635

deviation

theoretical standard  0.01700 0.01752 0.01617 0.01658

deviation
root mean squared  0.02236 0.01881 0.02171 0.01861
error

The true high school graduation rate is 0.75118. Post-stratification is
based on gender, age, and race. Samples of size 500 were taken and
100,000 simulations were performed.

This value is based on (3.7), whereas the value based on (3.8) is

0.01610.

The aggregate biases of the four estimators of p are
estimated by the average over 100,000 simulations of the
difference between the estimate from a sample of size 500
and p. These aggregate biases produced by y,/y,, A,
and [i__ are estimated to be 0.01471, O. 00722 00146,
and 0. 60874 respectively, when 1990 p, are used. Hence
using the p, reduces the bias of the non-post-stratified
estimator by 51%, and reduces the bias of the post-stratified
estimator by 40%.
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When the 1980 p, are used, similar results arise. These
aggregate biases produced by (i and fi__ are estimated to
be 0.00578, and 0.00856, respectively, when the 1980 p,
are used. These results, however, are not summarized in the
tables.

The telephone bias, listed in Table 2, is the bias obtained
when the entire telephone population, U, is sampled when

calculating y,/¥,, i, i, and ﬁpsw. This bias is caused by

* the fact that U, 1s sampf;d rather than U. Throughout this

example, we use the convention of listing the estimates
based on the 1980 p, in parentheses, when these estimates
differ from those based on the 1990 p,. The telephone
biases are 0.01472, 0.00720 (0.00577), 0.01463, and
(0.00850 (0.00838), and are relatively close to the aggregate
biases. .

The second phase bias is the difference between the
aggregate bias and the telephone bias, and is caused by the
fact that the estimator approximates a ratio. This second
phase bias, modulus rounding error, for y, /y,, (i, , and
ft ., are estimated to be 0.00000, 0.00002 (0.00001),

-0.00002, and 0.00024 (0.00018), respectively. Hence, the
second phase bias is trivial compared to the telephone bias
for this example.

The theoretical biases, based on (3.2), of 3,/¥,, and fi os
are 0.00777 (0.00905) and 0.00663 (0.00678), respectively.
These biases differ from the aggregate biases, since (3.2)
is based on all possible phone populations, whereas the
aggregate biases are conditional on the one realization of
the phone population. The theoretical bias is based upon the
model that each household has a phone with probability p,
and hence is dependent upon the model used to fit p,.
Since i, and A, are aymptotically unbiased, then their
theoretical biases are defined to be zero.

The simulated standard deviations of the 100,000 simu-
lated estimates of p for ¥/y,. A, A, and fi__ are
0.01683, 0.01737 (0.01734), 0.01605, and 0.01643
{0.01634}. These four numbers are fairly close to the esti-
mated standard deviations, which are the squareroot of the
average estimated variance of the estimator of p, based on
(3.1}, (3.6), and (3.7). Specifically, these estimated
standard deviations are 0.01680, 0.01734 (0.01732),
0.01601, and 0.01635 (0.01628), respectively. The esti-
mated alternative standard deviation, based on (3.8), of
A 18 0.01610 (0.01606), which again is fairly close to the
value 0.01635 (0.01628). The theoretical standard devia-
tions are 0.01700 (0.01697), 0.01752 (0.01749), 0.01617
(0.01621), and 0.01658 (0.01653), based on the entire 1990
Virginia 5% PUMS and (4.3), 4.4), and (4.5). These
theoretical standard deviations also are close to the other
standard deviations calculated.

Using the p, reduces the aggregate bias in the non-post-
stratified estimator by 51% (61%), and in the post-stratified
estimator by 40% (41%). The standard deviation, however,
increases slightly. Using the aggregate biases and the
simulated standard deviations, the root mean squared errors
of the estimators y /y,, A, [ pe? and ﬁpsw are 0.02236

(0.02236) 0.01881 (0.01828), 0.02171 (©.02171), and
0.01861 (0.01844), respectively. Hence, using the p,
reduces the MSE in the non-post-stratified estimator by
29% (33%), and reduces the MSE in the post-stratified
estimator by 27% (28%). Notice that there is little differ-
ence between y,/y, and [i . and between {1, and ﬂpsw, in
terms of MSE. Therefore, post-stratification offers little
improvement.

6.2 Estimating the Mean Number of Cars per
Household

The mean number of cars per household is 1.80397, as

‘determined by the entire 1990 Virginia 5% PUMS. Post-

stratification was based upon household income, using
categories {less than $20,000, at least $20,000 but less than
$35,000, and at least $35,000}. The p, are again estimated,
but this time the covariate “numbers of cars” was excluded
from the GLIM fit to the 1990 PUMS, since mean number
of cars per household is what is being estimated.

As shown in Table 3, the estimates of the aggregate
biases using 100,000 simulations of 500 simple random
samples are 0.04872, 0.01629, 0.02226, and 0.01471, and
the relephone biases are 0,.04872, 0.01623, 0.02220, and
0.01458, for estimators y,/y,, 1, nPS’ and npsw’ respecti-
vely. Therefore, the second phase biases are rather small.
Using the p, reduces the bias from the non-post-stratified
estimator by 67%, and reduces the bias from the post-
stratified estimator by 34%. Perhaps the reason why this
latter amount of bias that can be removed is smaller than the
former is that income is a strong predictor of whether or not
a household has a phone (¢f. Groves 1989, pages 116-119;
Thomberry and Massey 1988), and the post-stratification
groups for determining fi _ and i are based on income.

Table 3

Biases and Standard Deviations of Estimates of Mean
Number of Cars per Household

Estimator

not post-stratified ~ post-stratified

5’1/)_’2 ﬂw l:i[;us l‘]p.v.w
aggregate bias 0.04872 0.01629 0.02226 0.01471]
telephone bias 0.04872 001623 0.02220 0.01458
second phase bias 0.00000 0.00006 0.00006 0.00013

theoretical bias 0.03388 0 0.00859 0

simulated standard 0.04694 0.04764 0.04162 0.04172
deviation

estimated standard 0.04682 0.04753 0.04148 0.04158"
deviation

theoretical standard 0.04715 (.04791 0.04152 0.04161
deviation

root mean squared error 0.06765 0.05035 0.04720 0.04424
The true mean number of cars per household is 1.80397. Post-
stratification is based on income. Samples of size 500 were taken and
100,000 simulations were performed.

This value is based on (3.7), whereas the value based on (3.8) is
0.04142.
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The standard deviations of the simulations are 0.04694,
0.04764, 0.04162, and 0.04172, respectively. The root
mean squared errors for the four estimators are approxi-

" mately 0.06765, 0.05035, 0.04720, and 0.04424, respecti-
vely, so using the p, reduces the MSE by 45% and 12% for
non-post-stratification and post-stratification, respectively.

We also performed simulations, not summarized in the
tables, where “number of cars” was retained for the GLIM
fit to the 1990 PUMS. These aggregate biases for the
estimators (i, and fi_. are 0.00116 and 0.00006, respecti-
vely, which are much smaller than 0.01629 and 0.01471,
the respective aggregate biases when “number of cars” was
removed from the GLIM fit. Furthermore, we feel that
appropriate analysis requires removing the variable being
studied (i.e., number of cars) from the GLIM fit to the
PUMS.

6.3 Estimating the Mean Household Income

The mean household income is $40,187, as determined
by the entire 1990 Virginia 5% PUMS. The p, are again
estimated, but this time the covariate “income” was
excluded from the GLIM fit to the 1990 PUMS, since mean
household income is what is being estimated.

In Table 4, when estimating household income using a
simple random sample of size 500 and i or i sw,
post-stratified only by the race (black, other of the ead of
household. The estimates of the aggregare biases using
100,000 simulations are $1,412, $640, $1,192, and $633,
and the telephone biases are $1,414, $640, $1,193, and

. $630, for estimators y,/y,, A, f, and i, respectively.
Thus, the second phase biases Fare smalpl relative to the
telephone biases. Overall, using the p, reduces the bias
from the non-post-stratified estimator by 55%, and reduces
the bias from the post-stratified estimator by 47%,

The standard deviations of the simulations are $1,534,
$1,518, $1,502, and $1,488, respectively. Hence the root
mean squared errors for the four estimators are approxi-
mately $2,085, $1,647, $1,918, and $1,617, respectively, so
using the p, reduces the MSE by 38% and 29% for non-
post-stratification and post-stratification, respectively. The
improvements from using post-stratification are more
minor, according to the MSE criterion.

In Table 5, we again are estimating household income,
but this time we post-stratify by gender (male, female}, age
(less than 45 years old, at least 45 years old), and race
(black, other) of the head of household. Note that the non-
post-stratified estimators are not affected by this new post-
stratification. The estimates of the aggregate biases using
100,000 simulations are $1,173 and $757, and the
telephone biases are $1,177 and $747 for the post-stratified
estimators, i and fi psw? respectively. Again, the second
phases bmses are small relative to the telephone biases.

Using the p, reduces the bias from merely post-stratifi- -

cation by 35%.
The theoretical bias for the post-stratified estimator is
$463. The standard deviations of the simulations are $1,445
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and $1,4335, for estimators 1 _and 1 _, respectively. The
root mean squared errors are $1,861 and $1,622, for esti-
mators 1 and fi pw! respectively. Hence, using the p,
reduces the MSE of the post-stratified estimator by 24%,

The MSE of i, is approximately the same in Table 4
and Table 5. However the MSE of {i ps decreases somewhat
from Table 4 to Table 5.

Table 4
Biases and Standard Deviations of Estimates of Household
Income, Post-stratified by Race

Estimator

not post-stratified  post-stratified

?115'2 nw lFjps ppsw

aggregate bias $1,412  $640 §$1,192  $633
telephone bias $1.414 3640 51,193 3630
second phase bias S 7} $0 -$2 $3
theoretical bias $789 $0  $586 $0
simulated standard $1,534 $1,518 31,502 31,488
‘deviation

estimated standard $1,537 $1,521 $1,506 $1.491°
deviation

theoretical standard $1,535 $1,518 $1,503 $1,488
deviation

root mean squared error $2,085 $1,647 $1918 $1,617

The true mean household income is $40,187, Note that ¥,/¥, and {i,
are independent of post-stratification, so their results are identical to
those in Table 5. Samples of size 500 were taken and 100,000
simulations were performed.

* This value is based on (3.7), whereas the value based on (3.8) is
$1,490,

Table 5
Biases and standard deviations of estimates of houschold
income, post-stratified by gender, age, and race

Estimator

not post-stratified  post-stratified

ny, A, Fpe P
aggregate bias $1,412 $640 $1,173  $757
telephone bias $1.414  $640 51,177 $747

second phase bias -$2 $0 54 510

theoretical bias $789 $0 $463 50
simulated standard $1,534 $1,518 81,445 $1,435
deviation

estimated standard $1,537 $1,521 §$1,448 §1,438°
deviation .

theoretical standard $1,535 $1,518 $1,440 $1.430
deviation

$2,085 $1,647 $1,861 $1,622

The true mean household income is $40,187. Note that y, /¥, and i,
are independent of post-stratification, so their results are identical 1o
those .in Table 4. Samples of size 500 were taken and 100,000
simulations were performed.
This value is based on (3.7}, whereas the value based on (3.8) is
$1,421.

root mean squared error
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7. DISCUSSION

We have proposed here to use publicly available large
data bases (e.g.. the PUMS) to develop a model for the
propensity p, of a household to have a telephone. We have
used, for Virginia in 1990, a GLIM model with a log — log
link and predictor variables number of persons, tenure, date
moved in, number of cars, household income, language, and
race.

We have proposed to use the telephone weights p, to
reduce the bias of estimators due to noncoverage in tele-
phone surveys. This bias can be expected to occur when the
variable of interest is related to telephone ownership. The
examples we have chosen are all variables of this type and
hence the improvements using telephone weights are better
than one would expect for variables with little relationship
to telephone ownership.

The weights can be combined with post-stratification.
We have found that the use of such telephone weights
greatly reduces the bias of both non-post-stratified and post-
stratified estimators.

Post-stratification requires a large enough sample size so
that each post stratum has a negligible probability of being
empty. Our experiments dealt with samples of size 500,
and hence the number of post strata was relatively limited.
Certainly, if one had a large enough sample so that one
could post-stratify on the same predictor variables as used
to develop the p,, the use of telephone weights should offer
negligible improvement over post-stratification. However,
many nationwide telephone opinion polls use approximate
sample sizes of 1,000, and we believe for these sample
sizes, the use of telephone weighs would offer a genuine
improvement.

We have also reported results from using telephone
weights developed from the 1980 PUMS on 1990 data, with
categories related to household income adjusted for
inflation. The results are comparable to those for telephone
weights developed from the 1990 PUMS. Therefore,
although PUMS data are produced only every ten years and
might be as much as twelve years out of date, substantial
reductions in the biases of telephone sampling can be made
using propensity models derived from older PUMS data
sets, provided that the categories are suitably adjusted for
inflation.

Finally, the PUMS are divided by state and major metro-
politan areas.. This allows separate telephone-weighted
models to be developed for major geographical units, and
this would seem appropriate for large surveys.
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* slight abuse) of notation, the sequence {£, &, ..

APPENDIX: DERIVATIONS OF EQUATIONS

Before deriving the equations in section 3 and section 4,
some regularity conditions must be assumed for sequences
(o) a o -1, for i = 1,2, Further, some lemmas must be
proved Then the equations involving the estimators

oA, and 2 psw will be derived in the subsections below.
W?henever the error variable £, is introduced below, then
ﬁk (8 (l) and E(ék)2 O(1)as k ~ «. For simplicity (but
.} will be
allowed to be different across different equations.

Condition A: Each a, represents a sample mean of
observations such that Ea, -a,= 0k ™), E£|a,-qa,|’=
O(k‘m),and a, -, =0, (k 12y g5 k—-mfor:-l 2. Let

=0, /0, for k= 1 2

LEMMA A.1 Condition A implies that Ep, -p =
O™ as k — co.

PROOF: Define the function f(y,,y,}=v,/v,- By a
Taylor series linear expansion,

B~ K= o foy, - o)/,

3f(e,,a,) (- 3f(e,.0,)

+k!
da, da, 5

= (o, -a)

= ((l”: - a])(uz)‘l - (uu -0.2)” (%)-2 +k-l &k

The result follows from Condition A,

Condition B: The sequence {a;,
satisfies /

a,,,...) fori=1,2

-12 &'Ik
-12 §2k

LEMMA A.2 Under Conditions A and B,

. k
N ( 0] % POS L,
0 pc,o, O k
for some constants 0?, og, and p.

MSEy, =

and

(@,) % var (o, -pay,)+ Ok ™),

varp, = (az) var{o,, -pa, )+ Ok -2y,

as k = o,
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PROOF: By a Taylor series linear expansion,

M -Ho=afoy, -0/,

af(a ,b. ) of(a,,o.)
= {0, - ul)i-'—z— + (0, - a,) g
; | da,
L1 2 3 f(e,0)) . PR
2 (@, -a) W (@, - o)
2 2
—a J6,0) 2 (o, - a){(a,, - ) “—"—a /%)
6(&2)2 da, da,
+ k px!7 ék

= (om0 {0y) ™" = (o, -y ()™
+ (‘121 -az)zp (uz)_z_ (a]k - a]) (azg —(12) (0-2)_2

+k -3n ék

= “il(“uc T H “21:)[1 - "'2_| (0, - ‘12)] +k2E
Therefore,
(pk -P)z = u;! (alk “Pazk)z[l "20'2-] ((12k '0.2)]4"( -zék,

which implies that
MSEp, = a;’ var(a,, -ua,,) - 2a;’

cov {(a,, - p &) (ay, - 0)} +k 2E,. A.D

Now we will show that the covariance term in (A.1) is
asymptoticaily negligible. Since
k‘2(a, - pay) d N (0, o) + k28,

for some constant o§, then
2 2.2 -1n
ko, - poy) d oy +4778,

where %, denotes a chi squared random variable with one
degree of freedom. Furthermore,

k"2 (a,, -0,) d N ©, o) +k2E,

If the signs on o, are negated for i=1,2, then
k(w, - pa,,)* does not change but k'*(a,, -0,) is

negated. Therefore, by symmetry,
COV{ k(ﬂ.“‘ ~H az&)zs k n (uu - 0’2)} = O(k '”2)

as k - «, Hence,

cov{ (0, - 1 ay,)% (8, - o)) = O(k?) (A.2)
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as k- «=, Combining (A.1) and (A.2) the first part of the
lemma follows. Since Lemma A.1 implies that

bias u, = O(k™)
as & ~ o, then the second part of this lemma follows.
Condition C: Defining o, =plim,__4, given U, the

-—o Y

estimator, &, of o, satisfies the following, for i = 1, 2:

CE(&|Up) -ay = O,

Given U, &, -a, = Op(n'm);
and

E({|ﬁ,.—an.13} |U,) = O(n™7)
as k- o,

Condition D: Given U,
nlfl ﬁ]] _ un] d
&, @rp) | T

-1/2
N[0 g™ &,
] n =12 &n
for some positive definite matrix Z, where o, = plim___ @,

givenU,. Also, -
E((

ﬁf-qu|3} |U1~) = O("-m)
asn-e fori=1,2.

THEOREM A.1 Under conditions C and D, we have that
varfi = (1;2 E var (&, - us6,|U) +O(n2+N™
as n - =, where Hr= aTl_/uTZ‘

PROOF: First we determine E var({i|U;).Under
Condition D we apply Lemma A.2 to obtain

var (| Up) = op var (& —p,, 8, |Up) +n 28, (A3)
Since

o < ()7 + N2,

and
var (8, -~ p,8,|Up) = n7'E,

then (A.3} implies that
Evar(fi |U}) =

@, Evar(®, -8, |Up)+O(n 2 +n ' N7?)  (A4)

as n -~ . Now we determine var E({i|U,). Condition C
and Lemma A.1 imply that

E(ﬂIUT) = ’,1T+n—’€n =H +(n'|+N'IfZ)§n‘
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Hence, L a2 _

var E(§|U;) = O(n e N (A5) var g = (0 ) Evar (8., ~ My o 8 | Ur.ntgy)
as n - . Combining (A.4) with (A.S) the result follows. +0(n 2+ N (A.10)
A.1 The post-stratified estimator as n -~ «, then (A.9) implies (4.3).

Here we derive the equations related to the post-stratified ~ Derivation of (3.1), the estimated variance of i :

estimator, (i ., where dpsm and &ps(Z) satisfy Conditions C  In light of (A.6) we have the estimator
and D. Note that

-1 LIRS -1 ;a\;[ng-hl E {ylk:pT,ps kaHUT’ngh]
E(ﬁps(i)iUT) =N E ENghNTgh b Yik kes

2
h=1 g=1 ke Ur,,
1- N
for i=1,2, and we define Hy s = _ L7 e Ny
E(dpsg)_lUT)/E(&ps(Z)lUT). Recall the definitions of «; Ry (g = 1) kes,,
and u” in (4.1) and (4.2).
Derivation of (4.3), the asymptotic variance of ji ps- [ Ver~Rrps Yok~ Mg l E T )’zj)] 2‘
Since ' P50 ,
var Oy ~ Mo, Bos) | Up 1) Using (A.10) the result follows.
L G Ngzh [1-n, IN;,,] Derivation of (3.2), the estimated bias of ﬁps:
=N E Z Z Lemma A.1 implies that

h=1g=1 ngh(NTgh - ke Uy, g -p’ = o™
: ps

-t 2
Yig "Hrps Yo Nion Z 0’1,- - Hr,psyz,-)] as n - =, Since
j€Uny, (AG) E & —nt -1
Gpey = & ¥ OWN™)
then as N~ e for i = 1,2, the result follows.
Evar (8,1 = Py ps G| Up 1)

A.2 The phone-weighted estimator

Here we derive the equations related to the phone-weighted

H G N.:h K > Pj] )

C N2 ‘ €t estimator, fi_, under Conditions C and D, where a,,, and
Aol 5o "h( Y p,) [ Y p.) - 1} d,,, satisfy Conditions C and D. Note that
7 4
jeUg €Uy, ) ]
E(@,,|Up) = N : E Yl Py
E T 2 keUy
E . Uy, Py ™0 %, for i=12, and we define My, =
P YW Yo E@  |UDMEW@. ,)|U.). '
ke gy E Pj W(i)l T wi(2) | T

iU
e Derivation of (4.4), the asymptotic variance of {_:

+O(n T+ tNTIDY (A7)  Since

as n - », Also, since var (aw(l) “Hrw aw(zllur)

E(aps(l)_uT,psups(Z)—l Uriiigy ) HO(N N
Ny, - 1,) Ny,

-N7Y >

H G ‘
- -1 h=1 1 (N'n,'l) kel
=N ]E zNghNTgh E O ~Hrps¥ud  (AB) ’ o
h=1g=I k€T,

: 2

then ‘ Yie "My Y _N‘J:h] Z Yoy THrw ey ’
E{varE (@,,,, - Wy &2 | UT,nR,')IUT] =0. (A9 Py j€Un, p;

Since Theorem A.1 and (A.7) imply that then
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Evar(&,, - My, &,0)|Uy)

=N'22 [[Jsz”:h P)

[%)

jel,

A.ll
h=1 E p;| -1 ( )
Jjel,
E (yl 11}’2)
Z Yie "Wy jeU, d !
Py
jet, Py E P
jelUy
+0 (n7! N7y (A.12)

as n-~«, Applying Theorem A.l to {(A.11)} the result
follows.

Derivation of (3.6), the estimated variance of [i s

In light of Theorem A.1 a valid estimate of varfi, also
estimates

(a)E var (&wm “Hr, 8.0 Ur)’

which is equivalent to

12 Tkz: Y~ F‘rwynly

(o) 2E var
n}l kEJh pk

The result follows.

A.3 The post-stratified phone-weighted estimator

Here we derive the equations related to the post-stratified
estimator, ﬁpsw, under Conditions C and D, where &

and s 2y
that

8y
satisfy Conditions C and D. Lemma A.| 1mf)‘i’|es

-1
gh -1 *n ém
R S
k€ Uppp
for i=1,2, and we define Hr pow =

E(&PSW(I) | UT)/E(&psw(Z)I UT)‘
Derivation of (4.5), the asymptotic variance of i

Using Lemma A.2 it follows that

): plc e ~ By psw Yae)
kE‘gh

pSw

var - |Us, o
Z Py
ke 5p,
1-n, IN . N -2
_ ah ' Vran (NTg]h Z ’; |)
ngh (NTgh - l) jEUTgIl
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'2 -] | -1
E Py ylk-ppsw.Urka—[NTgh E p; )
kEU—rgﬁ jEUTg’I
2
T n| | BURES
jEUTgh PJ
Therefore,
k; Pk {ylk prswy2k}
E|var| = - |Up m| | Uy
E Py
kE.:xk
(Np, - n,)
= N -1 [ Tgh Z P; )
Py Ny (Npg, - 1) J€ Uy
-2 -1 -1
> o Y1e "Brpsw Yo [NTgh > p; ]
kEUn,, Jeu. Teh
Y, K y :
g el
je Uy P (A.13)
Since
ENg, > 7 = X p) "N,y 0N
JEU, Tek kEUx'.,

as NV - =, then (A.13) implies the unconditional expectation
E Pe {y,k Hr, pswy2k}

kE\'
: Z Pk_l

kEsgh

)57
%)

-1 -1 z
E Py [ylk-“ka_Ngh E (ylj_ pij)]
keUy, j€

Up

E var

iUr,ngk

+0Ont+N™Y
as n - o, By Theorem A.1,

(A.14)

varfl
_ .2
=0y Evar (dpsw(l) prsw psw(2) I U gh’Vg’h)

+0;" Evar[E@ a

psw(l) ~H Tpsw  psw(2)} |

Up 1y Vg ng, Vg, h| + O (n 2+ N71) (4 5y
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as n— o« Lemma A.1 implies that

&

var [ E(@ psw{2) f

pswi(l) - l"l]",psw

Ur: Ry V8. hY | my, Veh] = n 28, (4 16)

Since (4.1) implies that

var (& a

pswil} H T.psw

u 2
=N'2§ N,

psw(2) | Uz, Ry )

-1 .
( G kz Py {ylk-l‘li".pswyz.k]
var| N,'Y Ny Zor |U
g=1

E Pk—l

ks,

T’”gh ’

then (A.14), (A.15), and (A.16) imply the result.

Derivation of (3.7), the estimated variance of [i psw -
Observe that

Nrgw 2. Pj 2
8n J N_. N N
jgUy - rehTh gh
-l -
Reptty Rentty Z Pi
’ kEsg,,

Noting (4.5) the result follows.

Derivation of (3.8), another estimated variance of

ppsw:
Since
Ngh - NTgh A N,
-1 -1
n n
E Py gh A E Py
kESgh kes,

the result follows from (3.7).
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Unbiased Estimation by Calibration on Distribution in Simple Sampling
Designs Without Replacement

YVES TILLE!

ABSTRACT

The post-stratified estimator sometimes has empty strata. To address this problem, we construct a post-stratified estimator
with post-strata sizes set in the sample. The post-strata sizes are then random in the population. The next step is to construct
a smoothed estimator by calculating a moving average of the post-stratified estimators. Using this technique it is possible
to construct an exact theory of calibration on distribution. The estimator obtained is not only calibrated on distribution, it
is linear and completely unbiased. We then compare the calibrated estimator with the regression estimator. Lastly, we
propose an approximate variance estimator that we validate using simulations.

KEY WORDS: Unbiased estimation; Calibration on a distribution function; Conditional inclusion probabilities;

Weighting.

1. INTRODUCTION

It is possible during a survey by sampling to identify the
values of an auxiliary character for all population units.
This information may be available when the units are
selected in a database containing other variables of interest.
The temptation is then to calibrate the results of a survey on
this auxiliary information. The decision is made either to
retain from this auxiliary variable only certain functions
(moments, sizes) for the purpose of using a calibration
method (see for example Deville and Simdal 1992 or
Estevao, Hidiroglou and Sirndal 1995), or this variable can
be divided into classes with the view to using a
post-stratified estimator.

If the decision is to opt for the post-stratified estimator,
deciding on the strata divisions can be delicate. Theoreti-
cally, the strata must be defined prior o the selection of the
sample. Where should the post-strata boundaries be placed?
‘What size should the post-strata be? This latter question is
the most embarrassing because the main problem with
post-stratification is the possibility of obtaining empty
post-strata. This means that the post-strata have to be large
enough so that the probability of obtaining an empty post-
stratum is negligible. These problems are not limited to
post-stratified estimators. Indeed, it is also possible to have
no regression or calibrated estimators for some samples.

Our objective is to define a new method of using auxi-
liary information in the population. This method is based on
the definition of post-strata for which the number of units
is set in the sample and not in the population. In this way, it
is possible to import into the estimator complex auxiliary
information resulting from knowledge of all of the values
taken by the auxiliary variable, while avoiding both the
problem of defining post-strata borders and the problem of
empty post-strata.

This article is organized as follows. In section 2, the
notation is defined and in section 3, we describe the
principle of rank conditioning, which is used to define the
unbiased estimators in section 4. In section 5, the smoothed
estimator is defined, and a specific case is examined in
detail in section 6. Section 7 contains an application of the
estimation of a distribution function. In section 8, this new
estimator is compared with the regression estimator and the
estimator for a simple design without replacement. Compu-
tation of variance is discussed in section 9. As a result of
the impossibility of providing an exact solution, an approxi-
mation is provided in section 10, which is tested by
simulations in section 11. Lastly, general conclusions are
presented in section 12.

2. NOTATION

We assume a population composed of N observation
units, with the labelling being denoted as {1, ..., %, ..., N'].
In this population, we are interested in a character of
interest ¥,, ke U. The objective is to estimate the total
Y =Y..v Y, We select a random sample S of fixed size n

* by means of a simple random design without replacement.

We denote /, the random indicator variable, which takes
the value 1 if the unit k is in the sample and 0 if not. The
inclusion probabilities first order are therefore defined by
Pr(keS)=m = n/N kelU, and the second order
inclusion probabilities by Pr(k,leS$)=mn,=n(n-1)/
(N(IN-D)), k#le U.

We will be interested in the class of linear estimators of
Y, which is written as
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where the weights w, may depend on the sample S and
therefore be random.

One of the possibilities is to take w, = 1/x, = n/N, which
gives the Horvitz-Thompson estimator,

- Y N
Ym=2—"=— Eyk’
keS nk N kes

which is unbiased.

We will be focussing instead on the more general class
of conditionally weighted estimators (Tillé 1998, 1999a)
where the units are weighted by inverses of conditional
inclusion probabilities. If Z is some statistic, then the
conditionally weighted estimator

" Y
Y, = k
2" & EQ2) )

is strictly unbiased if and only if E(/, | Z)> 0, forall ke U.
In effect,

, E(,|2)Y,
EQFlzy= Y -ty
5D = 2 Faio

Since the estimator is conditionally unbiased, it is also
unconditionally unbiased. Depending on which statistic Z
is used, estimator (1) generalizes the stratified estimator as
well as (a close approximation) the regression estimator
(see Tillé 1968).

3. CONDITIONING ON RANKS

Let us now assume that the N values X,..., X,, ..., X,, of
an auxiliary character x are known for N units of the
population. First, we assume that all of the X, take separate
values (this hypothesis will be removed in section 5). The
rank R, of unitkis

R, = #{I€U|X,< X,}.

Moreover, we denote r, j = 1, ..., n, the ordered population
ranks of the n selected units in the sample, thus
ry<r,<..<r, _,<rThe r, are random variables with a
negative hypergeometric distribution (see Tillé 1999b).
The statistic used to define the conditional probabilities

of inclusion is a subset of {ry, ..., Fp e r,}. First, we define

— an integer g such that 2 < g <n, defining the
period,

— an integer b such that 2 < b, defining the border,

— aninteger!suchthat b s < b +¢g-1, defining the
. interval.

The quantities g, b, and { serve to define a subset of indices:

E = {r. Fiag Teags = Tiopgr +or thq} ,

fori=0b,..,6+g-1.

For exémple, itn=18,g=4,b=3, then

Ey = {r,rmnns)
.E4 = {7 T 12 6l
Es = {rsre 15},
E; = {71 sl

The conditional inclusion probability is computed in
relation to one of the E,.

The value of H is defined in such a way that
!+Hgs<n-b+1 and thus H is the largest integer such
that H < (n-b -1 +1)/q. 1t is clear that H depends on {.

The next step is to compute the inclusion probabilities:

1 if ke E,

g-1 .
" if Trtho1yg < k

r., —F -1
I+hg  “lvih-l)g -
<Fpp b=l H

EULE) =
-1 if k<r,
r,-1
|n-U+Hg) it > 1y,

N

R +Hg

These inclusion probabilities are thus relatively uneven.
However, they are all positive, including the borders. It is
important to use a border & 2 2 so that the first and the last
post-stratum are not empty.

4. CILASS OF UNBIASED ESTIMATORS

Since E(/,|E,) > 0, we can construct an estimator that is
unbiased and even conditionally unbiased with respect to
E,.. Bly denoting y,, ..., e Vo thp n values taken by the
units in the sample ordered according to the R,, we obtain
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. Y
Y:"'E .

keS E([,dEg)

_][l

= Eyj yf

z-1,,

< Tivig ™ Trotn-1yg ~ 1 E‘
* E < Yistr-vyg+j + Vrsng
~ 1=

k=1 q-1

N-r
+ I+Hg

— y
n - (l+Hg) j=lrHg+1

ouJ’ou +E( ;,“)’M +yl+hq) Nyt s
where
Nou r-1,
Nut™ Trong ™ Tiohiyg ™ .1,h =1,..H,
Ny = N-=Tip,
5 - ] L ,
orT 77 2 Y
- 1 -1
Tt = Ty Vet = 1o He
and
A 1 n
Yaap =

—_— y
n-{I+Hgq) j=\Hgn1

This estimator is in reality a post-stratified estimator
where the sizes of the post-strata are set in the sample.
Since E(I,|E;)>0, Y is strictly unbiased unconditionally
and conditionally to El, which is clearly not the case for the
traditional post-stratified estimator, because the latter has a
non-zero probability of having an empty post-stratum. By
setting the size of the post-strata in the sample, creating
empty post-strata becomes impossible. The corresponding
size of the post-stratum in the population is a random
variable N, ;

The esumator Y has another interesting property. By
using the deﬁnmon of the E(/, |E ), we can quite easily
show that

E 1

S EUE)
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The estimator is thus calibrated on the size of the
population. This property, which is also held by the
Horvitz-Thompson estimator in simple designs, is therefore
not lost. Units where the ranks are in E| are called pivot
units, and are assigned a weight equal to 1, which makes the
weights very unequal. A downside to }7, is the use of widely
dispersed weights. This problem can be resolved by
smoothing the estimators.

5. SMOOTHING ESTIMATORS

To resolve the problem of the dispersion of the weights,
we compute a moving average for the estimators as follows:

=
I
|
h<

g i=b

Y, retains all of the properties of the ¥, This means that it
is unbiased, calibrated on N and linear and can therefore be
written as

YC = 2 W; ¥
i=1
where w, =
bql -1
1 L, j<b,
q = I-1

beg-1
Tiott ™ Fmjol-bogy ~

i
gl i=p jl-b-m~(j+I-b-q)-1

+1], bsjebrg-1,

beg-|
Fiet-6~T

-1
i —"'"’—""—*rl], b+g-lsjsn-b+2-gq,
b q-1

£ |-

beg-1
I P -1

m (b jelbrg g n-b+2-g<jsn-b+1,
b Mty jet-bg-l

& |-

N+l-r

nel-i”

-1
g & arl-(ael-D-1

g-1
1t

beg-1 M.
1 Ntpry r’"l"’, n-b+l<j,
q b i-1
. if x<b
m (x)= ?
X if not

{n+l if xan-b+1
m’(x)=
X if not )

rp,=0,and r,,,=N+1



80 Tillé: Unbiased Estimation by Calibration on Distribution in Simple Sampling Designs Without Replacement

Under the apparent complexity arising from the specific
treatment of the borders, the weighting system is relatively
simple. In the case where we are not toc close to the
borders, it takes the value

b+g-1
r.,,=r -1
1 [ jHi-b " jel-b-g +1

) 1=k g-1

q
L _$.-

q(q 1) a0

J

J'"u'q

If all of the values of the auxiliary variable are not
distinct, we can assign the unit ranks with common values
randomly. For example, if X, =2,X,=5,X,=5,X,=5,
X, =7, X, =8, we select with a probability Y2, between,
ranks R, =1,R,=2,R,=3,R,=4,R;=5,0or R|=1,R,=3,
R,=2,R, =4, R, =5. We then compute the smoothed
estimator for each permutation, and we calculate their
mean. The advantage of this method is that it preserves an
unbiased estimator. In effect, for each possible permutation,
the estimator is unbiased. In practice, it is not necessary to
compute estimators for all of the permutations. We can
calculate the estimator for one permutation and then simply
equalize the weights of the units having the same values for
the variable x. :

6. CASEWHEREg¢=2,b=2

When g=2, and k=2, we obtain after a few
calculations

n-2
5 1
Y, E{JX; Yr, = 1)

2r, -3 1
ryteh ¥+ £ ¥,
2 2
N rog~Taatl 3r -2, 1,3
9 yn-l yn
_1]y
2{}):, ¥y~ 1
r.-3 2r,+1-r
+ y] 32 +y2 2 3
+ rn+l+rn—2+l_2rn+ rn;-l—rn—z_3
-1 2 y 2 ?
where r,=0 and r,,,=N+1. This brings us to an

estimator proposed by Ren (2000, page 140) and obtained
using a calibration argument. The way in which the borders
are managed is the only slight difference.

Example 1: With a population of size N=20. Let us
assume that the values of the variable of interest are found
in Table 1. We also assume that the sample of size n =7 is
composed of the units with ranks {3, 7, 8, 11, 12, 15, 17}.
If wetake ¢ =2,1=2,b =2 weobtain E, = {r,,7,, 7.} =

{7,11,15}. Wecanthencalculate E(/, | E, = {7, 11, 15}).
The conditional inclusion probabilities are as follows:

E(L|E, = {7,11,15)) = 1/6,
E(L|E, = (1,11,15)) =1,
EUE, = {7,11,15}) =173,
E(, |E, = {7,11,15}) =1,
E(,|E, = {7.11,15)) =173,
E(l|E, = {7,11,15}) =1,
Ed,|E, = {7,11,15)) =1/5.

Table 1
Example of a Population of Size N=20

k 123 456789 1011121314151617 1819 20

x, 9 71723591 143 3664 38 8] 52 78 62 86 16 20 59 84 55

R,214156 203 1 7 148 179 1612194 5 111810

The estimator

?o=2 L

E(,|E,=1{7, 11,15}

is therefore unbiased and conditionally unbiased. Further,
it is linear and

Z |

& EUE,={1,11,15)

However if we take g=2,1=3,b=2, we obtain
E, ={r,r) ={8,12}. Usmg the same example, we then
compute E(I,|E, = {8, 12}), and we obtain

E(l,{E, = {8,12}) = 2/7
E(L|E, = {8,12}) =277
E(I|E, = {8,12}) =1,
E(,|E, = {8,12}) =1/3,
E(,|E, = {8,12]) =1,
E(l;|E, = {8,12}) =2/8 = 1/4,
E(,|E, = {812]) =2/8 =1/4.
The estimator

?1 =2 L

E(,|E, = (8, 12))

is also unbiased and linear.
Lastly, we compute the mean of the two estimators:
A

¢ 2
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The weights are obtained 51mply by calculating the mean of
the weights of estimators Y and Yl, and have the values

w, = (6 +7/2)/2 = 19/4,
= (1 +7/2)/2 = 9/4,
we = (3+1)/2=2,

wy, = (1 +3)2 =2,

w, = (3+1)2=2,

= (1 +4)2 =572,

= (5 +4)/2 =9/2.
Estimator l}c is linear and strictly unbiased.

7. APPLICATION TO THE ESTIMATION
OF THE DISTRIBUTION

There are several ways to appropriately use auxiliary
information to estimate a distribution function. A descrip-
tion of these techniques can be found in Ren (2000) and in
Wu and Sitter (2001). The method that we suggest also
makes it possible to estimate the distribution. The distri-
bution in the population is defined by

F0) =~ X Iy, <),
N ieu
and can be estimated by

Y w iy <y
Fly =¥ :

Z“’t

keS

where I{y <y,} is the indicator function, and the w, are
the weights allocated to the units £k which have the value
1/, =N/n for the Horvitz-Thompson estimator, and
which are given in (2) for the calibrated estimator,

Note that the two functions are discrete, but that there are
far fewer jumps in § than in U. To offset the differences in
the distributions between the sample and the population, we
have smoothed the distribution functions by using, as
Deville (1995) did, a linear interpolation of the centres of
the risers, which involves defining F,(y) by linking the
points

|

- {Fl()’k) - F] ()’;, _5)},
for ke U, where ¢ is a strictly positive, arbitrarily small real
number. We then define F (y) by linking the points

{00 - A0,

for the sample.

81

Example 2: A population of size N = 1 000 was generated
using independent log-normal variables that are equally
distributed. A sample of size n = 16 was then selected and
we set h =3. Figure | gives F,(x) in the population.

2 i 3 8
Figure 1. Population distribution function
Figure 2 shows F,(x} and the distribution estimated by the

Horvitz-Thompson estimator. Lastly, Figure 3 shows F, (x)
and the distribution estimated by the calibrated estimator.

2 1 3 8
Figure 2, Population distribution function and Horvitz-Thomson
distribution estimator

0.8
0.6}
0.4
0.2
2 . 6 8
Figure 3. Population distribution function and calibrated distribution
estimator
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8. COMPARISON WITH THE REGRESSION and on the quantiles. This means that our proposed

ESTIMATOR estimator is robust when there is a non-linear relationship
between the auxiliary variable and the variable of interest.
In order to compare the qualities of the proposed :

estimator, a series of simulations was conducted to compare Table 2
- the estimator calibrated on distribution with the Horvitz- Model A: Estimator Variance
Thompson estimator and the regression estimator. Three (Reference: Horvitz-Thompson=1}
populations of size 1,000 were generated by means of the Parameter Distribution Regression estim,
following models. catibration
Mean 0.674422 0.632608
— Model A Linear dependence: The population is 1st decile 0.905273 0.893876
generated using the model X,~N(0,1) and M gocile 0.815403 0.802082
¥, =X, + 133333 x¢, where £, ~ N(0, 1). The 3 decile 0.842681 0.815071
Coeffileent ) of correlation obtained in the 4" decile 0.806749 0.768283
population is p = 0.616154. ' 5" decite 0.783731 0.740765
- Model B Non-linear dependence 1. The population 6™ decile 0.818051 0.782549
is generated using the model X,~N(@,1) and 7™ decile 0.794411 0.773794
Y = (02 + X,)? + 1.33333 x ¢, where 8" decile 0.857114 0.844874
'N (0, .l) The cqeff f:lent of correlation 9% decile 0.884424 0.884032
obtalnecl in the population is p = 0.28975.
—  Model C Non-linear dependence 2; The population Table 3

|s generated using the model X, ~N(0, 1) and
-(O4+X)2+133333><£k where
~N(,1). The coefficient of correlation

Model B: Estimator Variance
{Reference: Horvitz-Thompson=1)

obtained in the population is p = 0.476158. Parameter Dc'asi:gral::::]n Regression estim.
Mean 0.429689 0.953025
In each population, 100,000 samples of size 100 were 1st decile 0.913598 0.958656
selected. Three weighting systems were computed for each 2™ decile 0.919394 1.009270
~ sample. 39 decile 0.829860 0.987950
. ) _ ) _ 4™ decile 0.792094 0.989114
1. the weights associated with the simple design 5™ decile 0.703908 0.992023
=N/n, 6" decile 0.622705 1009830
2. the weights of the distribution calibrated estimator 7" decile 0.550028 0.981249
given in (2) using the window ¢ = 10 and border 8 decile 0.443828 1.010340
b =6, 9™ decile 0.549615 1.029120
3. the weights of the regression estimator given by
N 5 X, - )_() , Table 4
W =—t (X - XHT) EYve Madel C: Estimator Variance
n E (X - X) . (Reference: Horvitz-Thompson=1)
es Parameter Distribution Regression estim.
where X is the total of the X, in the population, calibration
X |s the Horvntz-Thompson estimator of X, and Mean 0.30768 0.808114
HT iIN. 1st decile 0.95560 0.983582
2" decile - 0.85920 0.970913
Using these weights, the estimator of the mean and of the 3" decile 0.73854 0.930401
nine deciles were calculated for each sample. We then 4* decile 0.65728 0.950651
estimate the variance of these estimators by means of the 5" decile 0.60500 0.956807
simulations, 6" decile 0.52139 0.930514
The results are given in Tables 2, 3 and 4. The variances 7% decile 0.45709 0.907537
were brought to 1 for the simple design. For the linear 82 decile 0.40752 0.903593
model, the regression estimator is slightly preferable. g% decile 0.39820 0.860050

However, in the non-linear case, the distribution calibrated
estimator significantly increases the precision on the mean
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9. VARIANCE AND ESTIMATION OF
VARIANCE

To compute the variance of Y we begin by computing
the variance of Y Since Y is unblased conditionally to E,
we have

V(¥) = EV(Y,| E).

As with each of the post-strata, conditionally to E, the
design is a fixed-size simple sampling without replacement,
we have

H+l

V(F; IEf) = EO N}ﬁfv(i;h“)
k=

2

il N .-n. S8
2 D™ By Onp
=) Ny, L 3)
k=0 Noo  ny
where
oy = I-1,

Py =4 - 1LLh=1,..H,

nH-i-]” =n “(I+Hq):

_ 1 M-1

Y, = — )

o! Nou & )

Tiehg-1
V== % YuhelooA,
Nhll k=rpmeng*!
_ 1 N
YH+1|£ = E Y
NH” k=N_rlqu+l‘
3 -1 - )
S0|I=N,| l“(Yk)'You)'
o4 =
1 rp+h -1

52 = (Y. -¥, V. h=1,. H,

! Nh“‘“l er g1 "~ Fut
and

2 | u v 2
SH+1|! = N -1 E (Y(k) - YH+]|0) »
HAi LA

where the Y, represent the values of Y, sorted by

increasing order of the X,.

Note that it is very difficult to calculate the unconditional
variance of Y that is, the expectation of V(Y,lE ). In
effect, ¥, and S,, , are random. However, we can estimate
V(Y |E, ) 51mply and obtain an unbiased estimator of the

a3

conditional variance (and thus of the variance) by simply
estimating (3), by

H+ -
o, N, n

5P h)l
VIE) = X Nj— s @)
h=0 IR,
where
2
S = ,
o)t o - lg;(y yo“)
!
2 .
sh“ = t (yh(h 1)q+_1 yh“) h sery H:
nh“ lj:ll
and

n

1 .
S;nu = E

nh“ -1 jel+Hg+1

(yj —i’y*]”)z-

The estimator V(Y |E,) is not only unbiased for V( |Ep
but also for V(Y ).

10. APPROXIMATIONS FOR COMPUTING THE
VARIANCE

- Unfortunately, computing the variance of }7c becomes
more complex because of covariances. In effect, we have

brg-1 beg-1
. 1 L.
vty - = i Y Cov(¥, 7).
g* b b

When [ =i, the problem is to estimate V(¥,), which is
done easily. When { # i, it is necessary to compute

Cov (Y, ) = ECov (¥, ¥ |E)

+ Cov (E(Y,|E)), E(Y||E)).
Since E(f’l|E,) =Y, we obtain

Cov (Y, ¥) = ECov(Y,, V|E)

=EE(Y,Y|E) - Y2

Unfortunately, it does not appear possible to extricate the
computation of £ (}7:’ }’flE,) and therefore we must find an
approximation.

One way is to find a value that is greater than the
variance. Since

COV(?I, }l;') s ‘/ V(}?;) V(?,)'
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we have a greater value given by

V(P < —f‘:l bij YY) v(T)

i=b i=h

big-1 2
-~ [ \/V(f,)] :

I=b

~ which can be estimated by

bg-1 2
" A 1 P
V](c)=_2[ i: V(Y;IE;)],

which comes back to estimating the standard deviation of
the means by the mean of the standard deviations.

Lastly, a second possibility involves using a residuals
technique. Generally, when an estimator is corrected using
a calibration technique, the variance is estimated by means
of aresiduals technique (see Deville and Sérmdal 1992 and

Deville 1999 on this topic). When computing the variance

of Y it is possible to use a residuals technique to obtain
the exact variance. Consider the variable

(NZ(N—n)] Ny (Nyyy =y ) ( v -7 )
Nn(n-1)) | Nymy Ny, =D ) 5
v ()= . .
k= r g Mg
0 £ k=r g1y, OF k=1,

which can appear as a residual associated with the estimator
¥ « The variable v, (!} inserted in the traditional expression
of the fixed-size simple sampling design without replace-
ment is exactly equal to the conditional variance }7, given
in (3). In effect,

nN_n Y |v

= V(Y |E,).
nN N‘lkeu (I] i)

This variable, however, depends on the Yh\ ; Which are
unknown. We can estimate v, (/) by

(N%N—rz)]' Ny Ny~ ) V;y--i )
Nn(n-1) Ny (= 1) i Tal

if j=l+(h-1)g+1, ..

FOR
J+hg-1

0 if j=l+(h-1)q or j=l+hg

If we insert ¥,(I) in the estimator of the variance for the
simple design without replacement, we obtain an unbiased
estimator of the conditional variance, and therefore of the
variance.

>,

N-n 1 <N I
N2 _ = R e
2|05

= V(Y |E).
aN n-1 ;5 ([lf

Deville (1999) shows that the variance of a sum of
estimators can be determined by adding the residuals
associated with these estimators, the residuals having bef,n
computed by linearization. To estimate the variance of ¥,
we could therefore simply take the mean of the residuals
v, ({), which is written

1Y 0.

1
q i=b

<

In this way, it would be possible to estimate the variance by

v 2

NYN-n) 1 R k);S .

—_— — z Ve ™ .
nN n-1 ke$ n

These two variance estimators need to be tested by
simulations.

Va(¥o) =

11. SIMULATIONS FOR VARIANCE
ESTIMATORS

The simulations shown in Table (5) are based on
populations of size N = 100, that are generated by means of
normal independent random variables. For each case
studied, we give the value of g and the coefficient of
correlation between the variable of interest ¥, and the rank R,
of the auxiliary variable X,. The border b is defined by
taking the integer of g/2+1. Smce our purpose is to validate
the variance estimator, we use 3,000 samples of size
n = 20 for each simulation and we compare the variance
estimated by the simulations of the calibrated estimator
v, (Y ) with the expectations under the simulations of the
two variance estimators denoted E, (VCI (Y )),a=1,2. The
last two columns of the tables show the relative bias defined
by

RB,V (¥,) =22 Lt a =12
Vﬂ-(l’c)

The simulations show that the two proposed estimators
overestimate the variance. The overestimation appears to
diminish as g increases. The estimator VZ(Y ) defi nitely has
the smallest bias. We will therefore prefer to use V (Y Y,
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Table §
Simulation Results

Correlation; 0.802
q V.ﬂ' (Pc) Esl’ ‘?l(fc) Esi ‘72(Yc) RB.n‘ Vl(yc) RBsr' ‘}Z(Fc)
4 0.045 0.065 0.054 0.444 0.200
5 0.045 0.066 0.057 0.467 0.267
6 0.056 0.076 0.070 0.357 0.250
7 0.058 0.079 0.059 0.362 0.017
8 0.063 0.088 0.087 0.357 0.381

Correlation: 0.481
q V,(r)  EV) EV,(Y) RBYV,(Y)RBV,(Y)
4 0.048 0.066 0.059 0.375 0.229
5 0.045 0.060 0.054 0.333 0.200
6 0.044 0.056 0.051 0.273 0.159
7 0.044 0.,054 0.051 0.227 0.159
8 0.045 0.052 0.048 0.156 0.067

Correlation: 0.111
q V; (Y’c) EV\(Y) Eﬂ“;Z(};c) RBSEQ](}‘;C) RB,V,(Y)
4 0.281 0.471 0.363 0.676 0.292
5 0.297 0.420 0.356 0414 0.199
6 0.279 0.363 0.316 0.301 0.133
7 0.267 0.342 0.324 0.28] 0.213
8 0.282 0.327 0.281 0.160 -0.004

12. CONCLUSIONS

" Qur proposed estimator is one of the rare estimators that
is both unbiased and linear, that uses auxiliary information
and that is calibrated on the size of the population. It can be
parameterized using the width of window ¢. This new
estimator is robust compared with the regression estimator.
It can take into account auxiliary information with a
non-linear relationship with the variable of interest. Most
simulations appear to show that the width of the window
does not significantly impact the preciseness of the mean
estimator. However, it also appears that a small window
width is not penalizing, even if there is no dependence
between the auxiliary variable and the variable of interest.
The smaller g is, the tighter the calibration, and the variance
estimator will then be significantly penalized because the
degree of freedom is lost in each post-stratum. The choice
of g must therefore reflect this problem.

There are many other methods that allow for the use of
the information given by a distribution function {sec Ren
2000) to improve an estimator. The results that we have
presented are limited to simple sampling designs, but we
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think they are important just as post-stratification is
important as a specific case of calibration technigues.
Post-stratification is one of the few examples where it is
possible to show with accuracy that calibration corresponds
to a conditional approach. Further, our approach can be
seen as a calibration on a distribution function providing an
unbiased estimator. A good general distribution calibration
technique should therefore include in simple sampling
designs the method we have presented.
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Variance Estimation for the Current Employment Survey

JUN SHAO and SHAIL BUTANI'

ABSTRACT

Like most other surveys, nonresponse often occurs in the Current Employment Survey conducted monthly by the U.S.
Bureau of Labor Statistics (BLS). In a given month, imputation using reporied data from previcus months generally provides
more efficient survey estimators than ignoring nonrespondents and adjusting survey weights. However, imputation also has
an effect on variance estimation; treating imputed values as reported data and applying a standard variance estimation
method leads to negatively biased variance estimators. In this article we propose some variance estimators using the grouped
balanced half sample method and re-imputation to take imputation into account. Some simulation results for the finite
sample performance of the imputed survey estimators and their variance estimators are presented,

KEY WORDS: Balanced half samples; Non-negligible sampling fractions; Ratio imputation; Stratified sampling.

1. INTRODUCTION

The Current Employment Survey (CES), commeonly
known as the payroll survey, is conducted monthly by the
U.S. Bureau of Labor Statistics (BLS). The data are
obtained from establishments on a monthly basis by various
automated methods including computer assisted telephone
interviews, touchtone data entry, FAX, electronic data
interchange, mail, ezc. The main variables are the employ-
ment, production or non-supervisory workers and their
working hours and earnings on nonagricultural establish-
ment payrolls. Population employment counts are obtained
once a year from Unemployment Insurance administrative
records.

Nonresponse often occurs in the CES. In any particular
month, imputation using reported data from previous
months generally provides more efficient survey estimators
than using reported data in the current month only and
adjusting survey weights. This is particularly true in the
CES because the nonresponse rate is about 60-80% and
about 60% of the nonrespondents in a given month may
become available one or several months later so that these
data can be used as “reported data from previous months”
(historical data) in a future month.

However, it is well known that treating imputed values
as reported data and applying a standard variance esti-
mation method leads to biased (often negatively biased)
variance estimators. Valid variance estimaiors can be
derived under some assumptions on sampling designs,
imputation methods, and response mechanisms (and,
sometimes, models that generate data).

The purposes of this article is to study variance
estimation for the CES. After describing the sampling
design and the imputation procedure currently used for the
CES in section 2, we derive valid (asymptotically unbiased
and consistent) variance estimators for imputed survey

1
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estimators in section 3. To simplify the computation of
variation estimators, we propose some approximations in
section 4 and study their properties by simulation in section
5. Some conclusions are made in section 6. Although our
study is motivated by the CES, we believe that our results
are general and applicable to any survey that adopts a
similar sampling design and a similar imputation method.

2. SAMPLING DESIGN AND IMPUTATION

The CES adopts the following stratified probability
sampling design. Let P be a finite population containing a
set of establishments {1, ..., N}, which is stratified by the
type of industry and by the size of the establishment. Within
the Ath stratum, a sample of size n, > 2 is taken without
replacement from N, population units, using probability
sampling independently across strata. The sampling
fractions n, /N, are not necessarily negligible; for some
strata with large establishment sizes, n, = N,. Let § denote
the sample. For i€ 5, at month t=0,1,...,T, values on the
number of employees (y, ,) the number of non- supervnsmy
workers (y, ; ), the number of hours worked (y, ; ), and the
weekly pay (y, ,) are cobserved “glf there is no nonresponse)
Let y,; denote any of y,f, Yoi ,y,, , OF y“ In CES, the
main parameters of interest are population totals
Y, =Y., ¥, t=1,.,T. Since population totals can be
obtamccf ohce a year from administrative records, we
assume without loss of generality that Y, is known. If there
is no nonresponse, Y, is estimated by a ratio estimator

= YO ; wfyr'j/iezs W‘- )’0‘,-. t = ],...., T, (1)

where w, is the survey weight for the ith unit in the sample
and the hth stratum.
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In our research, starting from month 1, nonrespondents
are imputed using the imputation method proposed in
Butani, Harter and Wolter (1997), as described below.
Imputation is carried out within an imputation cell, which
is the same as stratum or a union of strata. Imputed values
in months 1,...,¢t -1 are carried over to impute non-
respondents in month ¢, unless nonrespondents in months
1,...,t -1 become respondents prior to month ¢,

1. The number of employees. If y, ; isa nonrespondent
it is imputed by

~E - E
Vi = & Y0

where 33,'_?1". = y,‘_EL,- (reported value) if yf“ is available
at month ¢ and otherwise ¥,_, , is an imputed value,

3wy

JER,

Zwyrl;

JeR,

a:

]

and R, is the set of all reporting units for months ¢ and
t-1.

2. The number of non-supervisory workers. If y,.:-v isa
nonrespondent, it is imputed by
~W _ ~W ~E,~E
Yoi = Yeori Yoi ! Vicvio
where 5,:‘;’ ; is defined similarly to 5):",' i
3. The number of hours worked. If y,f is a non-

respondent, it is imputed by
~H ~H =W~ W
Vi = Ve Yo di ! Vi

where }fl ; is defined similarly to },El ; and

> wyf,/Z W, vy

JER,

t
WJ’:];/Z wyl'].j

JER

4. The weekly pay. If y“- is a nonrespondent, it is imputed
by

A =P =H -H
i = B Ve Yo MY
where 5’:1,; is defined similarly to j;f]". and

wy,,/E W, Yo
A JER,
, W)’:u/zw)’u,

JjeR

Once nonrespondents are imputed, estimated monthly
totals are calculated according to (1) by treating imputed
values as reported data.

Assume that the population P is divided into X disjoint
imputation cells P, ..., P, and for cach &,

VY1060

E,(e,)=0, ieP,r=1,2,..,

Yoo T Q% Ve *
EO,)=1,

V, 0,0 =V, V,(e,)=0p @

where y, ; denotes any of y“, y, i y” , or y,,. E and V
are the model (marginal) expectation and vanance respec-
tively, @, , and o, are unknown parameters, e, .’s are iid
and the two processes {y,.} and {e, ]} are mdependent
Within each P, it is assumed that the response indicator
a,;{=1ify,, is a respondent and = 0 otherwise) and y,
are independent, given Vyes.it g o $= 1, 2, ...,2. Underthis
response mechanism, which is called unconfounded
response mechanism (Lee, Rancourt and Sammdal 1994), a,;
and ym. are dependent, but through y,_ ..a,_
s=1,2,..,¢t It is more general than the assumption that
()5, ns y, ;) and (a; . ;) are independent. Finally,
response indicators from dlfferent units are assumed to be
independent. Under these assumptions, the estimators Y
based on imputed data as described in the previous section
are asymptotically unbiased with respect to the joint
expectation under model (2) and sampling from the finite
population.

In the CES, the imputation cells are unions of strata so

that
Z w, =M,
ieSnP,

where M, is the number of population units in the kth

imputation cell P,. Consequently, the }’ are conditionally
unbiased with respect to the model expectatlon {given 8},
ie.,

3. VARIANCE ESTIMATION

Let E, and V| be the sampling expectation and variance,
respectively, and V be the overall variance. Then

V(Y -Y)=EIV (Y -Y)+VIE (¥ -Y)
= E, [V, (Y,-Y)], 3)

since E, (¥, - ¥,) = 0. Furthermore, it is shown in the
Appendix that

V.(Y,-Y) =V (F)-V,(¥). @)
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Note that (4) is obvious in the case of no nonresponse.

Because of (3) the estimation of V(Y Y,} is the same
as the estimation of V (Y Y). Also, because of (4), we
can first derive estlmators v,, and v, of V (Y ) and
V_(Y,), respectively, and then take the dlfference Vi = Vs
as our variance estimator for Y Since V_( 14 )isa condl-
tional variance, given §, we do not need to consndcr the
sampling fractions n, /N, in the estimation of VM(Y ).

We first consmler the estimation of V (Y)). If an
approximate formula of VM(Y) can be denved then we
can dlrectly estimate V_(Y,) by substitution. The explicit
formof Y however, is very complex when ¢ is not small so
that the denvatlon of V_(Y,) is very difficult. Thus, in the
CES we adopt a grouped half sample method that incor-
porates Rao and Shao’s (1992) adjustment (or re-impu-
tation) to take imputation into account. Specifically,
sampled units in each stratum are randomly grouped into
two groups. R half samples are created using a Hadamard
matrix, where H+1 <R < H+4 and H is the number of
strata. For the rth half sample and the ith sampled unit,
define

{1 +0.5)w, if the unit is in the rth

o half sample

(1-0.5) w; if the unit is not in the rth
half sample,

where w, is the original survey weight. Let Y, 7" be the same
as Y except that the weights w, are replaced by the w”
mcludmg the weights used in 1mputat10n (e, b9, and B
are re-computed for every r, which is equwalent to Rao and
Shao’s adjustment). A grouped half sample variance
estimator of V_(Y,) is

)

Note that the use of 0.5, instead of 1, in the construction
of w(') is based on Fay’s method (Dippo, Fay and
Morganstem 1984; Judkins 1990; Rao and Shao 1999)
Asymptotically, v, is unbiased and consistent for V, (Y )
(Shao, Chen, and Chen 1998; Rao and Shao 1999; Shao
and Chen 1999).

We now consider the estimation of V,_(Y,). Under
model (2),

Vm (Y:) = E Mkvr.k’
k

which is of the order O(N ), where N is the size of the
population P. Usually V_ (¥,) is of the order O(N?*/n),

where n =}, n, is the sample size. Hence V_(Y }/V_ (Y)
is of the order O (n/N) and the estimation of V (Y ) is not
necessary if /N is negligible (although some sampling
fractions n, /N, are not negligible).
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In the CES, however, n/N is around 15% and is not
negligible. Hence, the estimation of V,_ (Y,} is necessary.
An asymptotically unbiased and consistent estimator of
V.(Y,)is

v, = Msz,
2 Zk: kke (6)

where sz, is the usual sample variance based on the
respondents y, ; in the &th imputation cell.

4. APPROXIMATE VARIANCE ESTIMATORS

From section 3, a correct variance estimator for Y is
Vv, — Vv, where v, and v, are given by (5) and (6)
respectively. Although v, can be easily extended to the
case where Y is replaced by some nonlinear estimator such
as Y F Y (the ratioc of weekly pay over hour), the
extension of v,, involves the derivation of Taylor
expansion for each separate nonlinear estimator. Thus, for
the CES, it is desired to derive an approximate variance
estimator that is not exactly correct but does not require the
computation of v,,.

Note that if n /N is negligible, then we can simply use
v, asan estimator of V(Y Y,). In the CES, however,
using v, leads to overestimation, since n/N is not
negligible (see also the simulation results in section 5).
Since this overestimation is caused by the sampling
fraction, a possible way to fix the problem is to incorporate
sampling fractions in the half sample method. When there
is no nonresponse, sampling fractions can be mcorporated
into the half sample method by using formula (2) with w; @
replaced by

(1+0.5 [T=n,IN, )w, if the unit is in

the rth half sample

(1 —0.5‘/1 -n, /N, Jw, if the unit is not @
in the rth half sample,

~{r_
w; =

when { is in stratum A.

Let v . be the variance estimator obtained using (5) but
with w("} replaced by w( 7 If weuse V .| s an estimator
of V(Y Y,), however, it has a negative blas although it is
better Lhan the naive estimator that treats imputed values as
observed data (see the simulation results in section 5).

While v, overestimates and v,, underestimates the true
variance V(Y Y) a comprormse is to replace the
sampling fractlon n, /N, in (7) by the “estimated sampling
fraction” r, IN,, where ry,, 18 the number of respondents
in stratem  at month t. Let v, be the variance estimator
obtained wsing (5) and (7) but wnth n, /N, in (7) replaced
by r,, /N,. Then

v

”SV”SV

11
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All three variance estimators are asymptotically unbiased
and are approximately equal when n/N is negligible. When
n/N is not negligible, however, they are asymptotically
biased.

To see the magnitude of the biases of v Vo ¥y and v,
we consider the simplest case of no strata and ¢ = 1. Let

E E
Yi = Y100 % = Yo and
=3 a,y; +3. (1-a)Rx,

where a; =1 if y, is a respondent and a, =0 otherwise,
R Ya, y /1Y a,x,,and all summations are over icS. Let
U= (Zx In) l():a x;fr), where r is the number of
y-respondents. Then the correct variance estimator for ¥
is v, -v, with
N2O?sE . IN20Rs, +N*R’s]
v, =

r n

and
= NUs; + 2NURs, +NR*s?,
where sd = (r-1)y Ea (y,- Rx)?, sy = (r-17!

Ea Ay - -Rx, ;), and s is the sample variance based on
x;'s. Also

ot

N*Os; 2N2l7ﬁsdx+N2R2sf]
r n

an?’zsj o a ~2 2
=v, - ——-2NURs, -NR" s,
r
and
oy N20253+2N20ﬁs&+N2R*2sf

! N r n
- 2rNURs, +rNR*s?
=y, -NO%] - o x

n

Since v, -v, is asymptotically unbiased, the bias of v, =v,
is of the same order as v, and is always non-negative; the
bias of v = v, is of the same order as

" 23 (1-a)x

nO
= -NUs
K Z a;x;

-2~

r

N(']s:

and is always non-positive; and the bias of ¥,; = ¥ is of the

same order as
NUQ -0)s3+[1—1] (2N01?sd, + Nf?zaf) (®)
n )

The bias in (8) is non-negative if 5, > 0 and U =1 (which
is true if , is independent of x; ).

5. SOME SIMULATION RESULTS

To further study the biases of the variance estimators
v,;»¥,, and ¥,,, we conducted a simulation study using a
CES dataset (from 1980’s) of 149,044 units as the popu-
lation P. Each unit icP has a vector y. =

E W H P _ S
Vois Yois Yois Yo 1=0,1,..., 7} and avector r, consisting
of response indicators of the components of y,, although all
values of y, are available (from administrative records).
The sample S in the simulation was obtained by generating
a stratified simple random sample {y } of size 23,092 from
P according to the sample allocations listed in Table 1. The
response indicators of {y,)} in the simulation were
generated by drawing another (independent) stratified
simple random sample {r;} from P. Thus, nonrespondents
in the simulation were random and distributed according to
the values of the r,’s in the dataset P, but independent of
the y,’s.

After the sample data and nonrespondents were
generated, nonrespondents were imputed as described in
section 2. Estimated monthly totals Y and monthly changes
Y Y , were calculated based on 1mputed data and their
vanance estimators, v, v”, v, and v, -v, were
computed as described in sections 3 and 4. For comparison,
the naive variance estimator v,, computed by treating
imputed values as observed data, was also computed.

Based on 1,000 simulations, the relative biases (RB) and
vanances (Var) of the estimated totals Y and changes
Y Yl _1» the RB and coefficient of vanat:ons {CV) of the
vanance estimators for Y and Y Y, ,» the coverage proba-
bility (CP) of the approxlmate 95% confidence intervals of
the form

the estimate £ 1.96 y/the estimated variance,

and the width (MW) of the confidence interval are given in
Tables 2 through 5 respectively for 4 different variables.
Estimated simulation standard errors are 2% for RB, CV,
and MW, and 0.5% for CP.
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Table 1
Sample Size by Stratum
Stratum Sample Sampling Stratum Sample Sampling
SIC SIZE Size Size Fraction SIC SIZE Size Size Fraction
10,12-14 1 567 14 0.02439 50-51 1 3631 66 0.01812
2 433 303 0.70000 2 3678 183 0.04987
3 526 526 1.00000 3 4300 403 0.09375
4 210 210 1.00000 4 1831 289 0.15789
5 165 165 1.00000 5 833 320 0.38461
15-17 1 5055 129 0.02549 52-59 1 7084 149 0.02103
2 4476 570 0.12731 ' 2 570 440 0.07724
3 5281 1154 0.21854 3 8363 1037 0.12403
4 2111 836 0.39583 4 4511 763 0.16915
5 1005 1005 1.00000 5 4087 1002 0.24528
24-25, 32-29 1 3103 73 0.02349 60-62, 67 1 1384 17 0.01230
2 3905 3 0.08475 2 971 38 0.03906
3 6381 891 0.13966 3 1529 115 0.07500
4 4273 1036 0.24242 4 081 67 0.06818
5 4143 2127 0.51351 5 728 73 0.10000
20-23, 26-31 1 1754 40 - 0.02276 63-64 1 1364 15 0.01119
2 1953 128 0.06564 2 652 20 0.03125
3 3591 524 0.14599 3 754 87 0.11538
4 3108 596 0.19167 4 435 48 0.11110
5 3448 1041 0.30189 5 344 57 0.16667-
40-49 1 1648 31 0.01902 7, 70-99 1 9641 230 0.02385
2 1463 101 0.06918 2 6701 643 0.09602
3 1988 221 011111 3 7833 1275 0.16275
4 1171 211 0.18033 4 4839 1317 0.27215
5 759 108 0.14286 5 4352 2067 0.47500
Table 2
Simulation Results for Employment
Estimation Variance estimation for estimated total
of total er ;rl . ﬁ:l . v:l Vrl - "xz
Month Total* RB Var* RB CV CP MW RB CV CP MW RB CV CP MW RB CV CP MW RB CV CP MW
1 6.7E6 0.0 S5E7 -37.0 476 853 77 -41 675923 92 49 698 931 96 195 76,1 951 103 74 674 928 97
2 6.8E6 0.0 S88E7 -343 288 869 96 -73 404 926 11.4 09 429 936 124 153 476 947 12.7 44 491 923 121
3 69E6 0.0 1.4E8 -26.1 304 832 129 -41 423 918 147 14 442 929 151 188 499 948 163 36 50.5 90.8 152
4 69E6 0.0 2.1E8 -22.5 329 893 161 -24 440 921 18.1 3.8 463 927 187 223 531 947 203 27 51.3 914 186
5 69E6 00 2.7E8 -219 35.0 88.3 184 -7.7 452 909 200 -1.1 479 920 207 16.2 556 944 224 -47 542 909 203
[ 69E6 0.0 20E8§ -8.8 40.5 91.7 17.1 -52 41.7 919 174 0.0 436 93.1 179 197 51.8 955 19.6 -3.1 52.5 90.5 176
7 69E6 0.0 15E8 -12.4 348 91.8 145 -86 36.1 925 148 -20 383 936 153 168 450 96.2 16.7 -66 424 927 150
Estimation Variance estimation for estimated change
of change Y v,y A Yi YT Y
Month Change* RB*  Var RB CV CP MW RB CV CP MW RB CV CP MW RB CV CP MW RB CV CP MW
2 8.0E4 -0.1 6.1E7 -43.0 254 849 75 -113 414 923 93 .45 439 937 97 94 487 956 103 8.6 51.7 935 103
3 9.7E4 -1.8 74E7 -350 31.7 850 8.7 -85 46.0 905 104 -32 477 91.0 10.7 11.7 53.1 934 11.5 -3.1 488 909 10.7 -
4 1.8E4 29 1.1E8 -31.8 423 B74 110 -09 606 93.1 132 49 632 936 136 250 735 959 148 -25 477 899 13.1
5 44E4 34 1.1E8 -41.9 345 83.1 10.1 -10.8 57.3 91.4-125 -49 604 923 129 13.2 69.4 946 141 0.8 94.1 93.1 133
6 -1.IE4 93 1.1E8 -41.0 299 84.1 10.2 -12.6 420 91.1 124 64 442 93,0 128 94 502 946 139 -4.1 539 93.0 13.0
7 16E3 32 12E8 -438 384 10.4 -159 575 89.6 127 -11.3 60.1 90.5 13.1 56 69.9 926 142 -0.2 755 900 13.8

Total: population total,
Change: population difference between the current month and the previous month.
Var: variance of the estimated total or change.
RB: relative bias = 100(bias/true value}%.
CV: coefficient of variation = 100 (standard error/true value)%.

CP: coverage probability of asymptotic confidence interval using estimated variance (in %).
MW:; (mean width of asymptotic confidence interval)/10’,

*: Scientific notation (for example, 6,700,000 is 6.7E6).
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Table 3
Simulation Results for Non-supervisory Workers
Estimation Variance estimation
f Total v 0 -
ot o Yio Vi Y, Vi Y~ Ve

1
Month Total* RB Var* RBE CV CP MW RB CV CP MW RB CV CP MW RB CV CP MW RB CV CP MW
| 54E6 -0.1 4.6E7 -33.3 497 80.9 7.0 -44 66.1 88.1 84 4.6 68.6 829 B8 198 755 923 94 34 653 899 8.7

2 55E6 -0.0 7.6E7 -30.6 314 840 92 -74 41.1 854 106 09 437 91.0 11.1 158 487 93.8 119 4.2 508 883 11.3
3 56E6 -0.1 12E8 -236 312 856 12.1 -4.8 41.0 895 135 0.7 429 900 139 184 487 93.1 15.1 3.9 509 S0.8 14.1
4 S6E6 0.1 19E8 -19.0 345 884 157 -24 438 91.7 172 3.8 463 919 17.8 225 532 94.1 193 1.8 71.7 905 176
5 57E6 -0.1 24E8 -18.9 368 87.8 17.6 -7.1 453 £57 189 -04 482 90.7 196 17.2 56.0 93.0 21.2 -4.1 54.7 904 19.2
6 57E6 0.0 18E8 -7.6 41.7 91.8 163 -47 428 924 166 (.6 448 927 17.0 206 53.1 954 186 -33 531 905 167
7 S57E6 0.0 1.4E3 -109 36.1 91.9 14.1 -7.7 37.2 92.2 144 1.0 394 936 150 183 463 959 163 -85 425 926 143

Estimation Variance estimation

of Change Yo Y ¥, Y Yn~ ¥

Month Change* RB Var* RB CV CP MW RB CV ICl” MW RB CV' CP MW RB CV CP MW RB CV CP MW

2 77E4 -0.8 5.1E7 -40.8 270 845 7.0 -129 412 91.5 84 -60 437 924 88 82 488 944 94 99 548 93.0 95
3 9.1E4 -1.4 6.2E7 -31.2 321 864 83 -87 428 91.2 95 -32 445 91.7 98 123 499 941 106 -3.1 47.7 913 98
4 1.6E4 19.6 9.1E7 -27.2 440 87.1 103 -1.1 594 928 120 47 62.1 541 123 249 730 958 135 -53 91.8 914 1.7
5 44E4 -0.4 95E7 -37.5 384 834 9.7 -100 586 90.8 117 -39 61.8 913 12.1 145 714 934 132 -21 794 923 122
6 -L.OE4 -19.3 9.0E7 -37.0 324 834 9.5 -11.1 43.1 896 11.3 -47 455 904 1t.7 11.7 51.8 924 127 -3.3 54.7 909 1138
7 79E2 4387 10E8 -39.3 426 83.7 99 -145 59.7 89.2 11.7 -9.8 624 902 120 7.6 726 926 13.1 -1.3 76.8 90.6 126

Total: population total. ‘

Change: population difference between the current month and the previous month,

Var: variance of the estimated total or change.

RE: relative bias = 100(bias/true value}%. !

CV: coefficient of variation = 100 (standard error/true value)%.

CP: coverage probability of asymptotic confidence interval using estimated variance (in %).

MW: (mean width of asymptotic confidence interval) /107

*: Scientific notation (for example, 6,700,000 is 6.7E6).

Table 4
Simulation Results for Hours
Estimation Variance estimation
of Total v v Vv v Vv v

10 Yol il 1 T Yz
Month Total* RB Var* RE CV CP MW RB CV CP MW RB CV CP MW RB CV CP MW RB CV CP MW

1 1.9E8 -0.1 S.8EID -31.5 280 79.0 80 23 444 883 9.7 123 465 90.5 102 334 534 936 11.1 80 487 909 100

2 20E8 -0.] 1.2El1 -30.2 32.8 84.7 11.6 -7.7 404 906 133 0.1 428 91.7 139 19.7 494 943 152 38 49.1 90.1 i4.1
3 2.0E8 -0.1 1.8EI1 -23.3 30.0 86.3 149 -6.3 36.7 903 164 -1.0 381 91.2 169 196 438 946 186 14 452 907 171
4 2.0E8 0.0 3.2E11 -20.2 35.6 90.2 202 05 47.1 934 226 56 497 933 233 279 59.8 953 256 -04 79.7 912 226
5 2.1E8 0.0 44El]1 -21.2 40.5 88.9 236 -7.9 523 90.7 255 -1.6 551 920 263 180 644 942 288 -5.1 642 909 258
6 2.1E8 0.0 3.4El1]1 -10.4 46.3 92.1 22,1 -59 489 922 226 -1.0 50.7 93.0 232 208 559 947 256 -3.3 657 903 229
7 2.1E8 0.0 23El11 7.0 40.8 93.0 185 .22 428 932 19.0 42 447 94.1 196 272 532 958 216 -7.7 49.0 209 184

Estimation Variance estimation

of Change k¢ v V Yi Y1~ Va2

10
Month Change* RB Var* RB CV CP MW RB CV lCP MW RB CV CP MW RB CV CP MW RB CV CP MW
2 50E6 0.1 8.8E10 -38.8 259 89.0 93 97 351 924 113 -22 37.2 937 11.7 163 430 961 128 6.7 43.8 936 123
3.8E6 -1.0 1.1E11 -365 252 88.4 106 -12.6 345 919 124 -67 36.0 924 128 104 41.2 939 139 04 413 932 133
1.0E6 11.0 2.1EL1 -31.2 456 873 152 .50 3593 909 179 0.6 624 916 184 21.6 752 939 202 -34 988 915 18.0
21E6 -0.5 2.2E11 -41.6 399 85.6 143 -143 639 91.1 174 -84 666 90.t 180 105 760 949 197 1.5 951 932 189
-7.7ES -7.8 19ElLl -40.1 35.1 825 13.5 -12.7 475 895 163 -65 503 907 169 127 60.1 94.1 185 -95 551 91.1 16.6
7 2.5E5 -7.2 2.1EL]1 -39.0 484 829 143 -15.1 603 895 169 -106 624 903 173 80 723 94.0 190 -39 820 91.8 iB.O
Total: population total. ‘
Change: population difference between the current month and the previous month.
Var: variance of the estimated total or change.
RB: relative bias = 100{bias/true value)%.
CV: coefficient of variation = 100 (standard error/true value)%.
CP: coverage probability of asymptotic confidence interval using estimated variance (in %).
MW: (mean width of asymptotic confidence interval ) /10'°,
*: Scientific notation (for example, 6,700,000 is 6.7E6).

[= BT T V]
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Table 5

Simulation Results for Weekly Pay

93

Month Total*

Estimation

of Total

v

"0
RB Var* RB CV (P

MW

RB

CvV

Yn
CcpP

Variance estimation

Vil
MW RB Cv (P

v

]

MW RB Cv CP

MW

RB

Y~ Vi
cv Cp

MW

~N R w N

2.0ES
2.1E9
2.1E9
2.2E9
2.2E9
2.2E9
2.2E9

-0.1
-0.1
-0.1
-0.1
-0.1
-0.1
-0.1

9.5E12
1.7E13
2.2E13
3.7E13
5.0E13
45E13
3.5E13

-30.7
-271.2
-14.3
-123
-16.0

94

-1.3

304
278
34.7
403
41.6
441
431

818
84.3
B5.6
90.1
89.0
92.0
921

10.3
14.1
17.4
228
259
255
22.8

1.7
-34
1.1
6.4
-1.5
-38
-0.7

41.0
87
42.2
50.6
51.8
46.9
48.3

90.0
89.2
88.1
928
914
926
92.8

12.4
16.2
189
25.1
28.1
26.3
236

17.2
79
8.0

138
59
1.8
6.8

44.3
41.2
439
53.0
54.8
48.7
30.0

924
91.2
89.5
94.1
92.0
92.8
939

133
17.1
19.5
26.0
29.1
271
245

398
31.1
349
41.2
29.3
218
319

54.4
48.1
51.4
63.0
64.6
57.8
57.0

94.4
93.5
93.5
96.1
943
95.0
96.4

14.6
189
21.8
28.9
322
30.3
27.2

4.3
i3
2.6
0.9
-5.4
-0.4
-0.0

439 91.0
515 916
504 914
845 928
56.0 92.4
54.1 94.2
543 953

126
16.8
19.0
242
27.5
26.8
237

Month Change*

Estimation
of Change

RB

Yar*

RB

v
CV

i)

CP

MW

RB

Cv

V.' 1
CP

MW

Variance estimation

-

v:l
RB CV CP

MW

RB

v

CY

t

1
CP

MW

RB

Yn" Yz
Cvy Cp

MW

2

[ LV T N )

7

6.4E7
3.5E7
2.tE7 66
2.IE7 -0.4
1.4E7 2.0
i1E7 -0.1

0.1
-1.6

1.5E13
1.3E13
24E13
24E13
2.3E13
2.7E13

-37.6
317
-29.5
-40.5
-40.8
-40.5

25.7
27.9
47.1
34.1
3
42.0

85.4
87.7
86.7
83.5
84.4
83.1

12.2
119
16.5
15.1
14.8
16.0

-8.2
-5.2

0.4
9.2

-135
-13.9

384
423
63.2
557
46.0
56.5

93.0
92.2
91.9
90.5
914
89.2

148
14.0
19.6
18.7
17.8
19.3

0.2
22
6.7
-24
6.7
-8.7

404
43.8
66.2
589
48.9
38.7

94.1
92.8
92.6
92.0
92.1
90.6

15.5
14.6
20.2
19.4
18.5
19.9

21.6
223
307
199
16.8
13.0

417
48.9
78.7
69.2
60.1
68.8

95.8
943
95.2
94.9
94.5
92.8

17.1
15.9
224
21.5
20.7
22.1

5.5
3.5
4.3
16
4.4
a7

492 926
43,2 935
96.9 90.6
90.0 92.5
53.0 915
69.5 90.8

15.9
147
19.2
19.9
18.8
20.4

Total: population total.
Change: population difference between the current month and the previous month.

Var: variance of the estimated total or change.

RB: relative bias = 100(bias/true value)%.
CV: coefficient of variation = 100 {standard errorftrue value)%.
CP: coverage probability of asymptotic confidence interval using estimated variance (in %).
MW: (mean widih of asymptotic confidence interval ) /10"
*: Scientific notation {for example, 6,700,000 is 6.7E6).

From Tables 2 through 5, the relative biases of esti-

mators of monthly totals and changes are negligible for all
variables. The following is a summary for the simulation

results of variance estimators in terms of RB and CV.

1. As expected, the naive variance estimator v, has a

large negative relative bias.

2, The asymptotically unbiased variance estimator
v,, performs well in general. Its relative bias is
always under 10% in absolute value and is frequently

Y~

under 5%.

3. The variance estimator v, has a large positive relative
bias in all cases. This indicates that the v,, term is not

12

negligible in the CES in which the overall sampling

fraction, n/N, is about 15%.

of the variance for monthly changes.

5. The variance estimator ¥, ,

The variance estimator v,,, which is the same as v,;
but with sampling fractions n,/N, incorporated
(section 4), has a negative relative bias in general. Its
negative bias may be large, especially in the estimation

which is the same as v,
but with sampling fractions n,/N, replaced by
r, /N, performs well in the simulation study,
although it is not asymptotically unbiased (section 4).
Its relative bias is large in a few cases, e.g., in variance
estimation for total of weekly pay at months 1 and 4, in

variance estimation for total of hours at month 1, and in
variance estimation for change of employment at

month 7. In many cases, however, the performance of

v,, is even better than the asymptotically unbiased

estimator Vi~V

The following is a summary for the simulation results of

confidence intervals in terms of CP and MW,

1.

The CP of the confidence interval based on the naive
variance estimator v, is substantially lower than the
nominal level 95% in most cases.

The CP of the confidence interval based on the
asymptotically valid variance estimator, v, -v,,, is
between 90% and 93% in most cases. This is often the
case for an asymptotically valid variance estimator, i.e.,
its relative bias is small but the CP of the related
confidence interval is lower than the nominal level.
One possible reason is that the convergence in distri-
bution (asymptotic normality, which is the key for
asymptotic confidence intervals) requires a larger
sample size than the convergence of the second
moment (in variance estimation),

In terms of CP, the confidence interval based on v, is
the best. This might be because the overestimation in
variance offsets the undercoverage in interval estima-
tion. The mean width of the interval based on v,; may
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be substantially larger than those of other intervals,
especially for weekly pay. '

4. The CP of the confidence interval based on v, which
is' not asymptotically valid, is similar to that of the

confidence interval based on Vi Ve

6. CONCLUSION AND DISCUSSION

For the survey estimators in the Current Employment
Survey (CES}) with imputed data, we propose an asympto-
tically unbiased and consistent estimator v, - v,, (section
3). Although v,, can be easily computed using the grouped
balanced half sample method, the computation of v,
involves separate derivations for nonlinear estimators.
Thus, several approximations, v,,, v,;, and ¥,, (section 4)
are considered and compared with v, -v, , in a simulation
study in which a CES dataset is used as population. Our
result shows that v, and 5” have large relative biases, due
to the fact that the overall sampling fraction, 15%, is not
negligible; the estimator ¥,,, which is the same as v, but
incorporates an estimated sampling fraction (using the rate
of response) in the balanced half sample method, performs
fairly well. Thus, 7,, is recommended to replace v,, -v,, if
the computation of v,, is too complicated. Since the use of
the “observed sampling fraction” r, /N, does not refiect
the fact that information is available about the nonres-
pondents from previous months, ¥,, may be improved
using a more accurate estimated sampling fraction, for
example, Rubin’s (1987) “fraction of missing information”.

Although our study is based on the CES, our results are
applicable to any survey that adopts a similar sampling
design and a similar imputation method. Furthermore, an
extension to the case where model (2) involves
YoirYe-viv o Yiesi with an integer s> 2 is straightforward,
although the derivation of v,, (for an asymptotically valid
variance estimator) is more complicated.
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APPENDIX: PROOF OF (4)

It suffices to show that
Cov, (Y,Y,) = V (¥, (9)

We show the case of a single imputation celland y, ; = y,'f
{(employment). The general case can be treated similarly.

We use mathematical induction. When ¢ =1,

¥ =47,

r

By assumption (2},

Cov, (P,Y) = ai V, (¥,) + 6" E, (¥p)

2
N (ajvy + 6% )

1]

V_(Y).

Suppose now that (9) is true at time ¢- 1. Let E,V, and
Cov, be the expectation, variance and covariance condi-

tional on yj_l',.,Rj,j=1, ...,t. Then
E{) =¥,
and

I

Cov,(Y,Y,) = Cov,(&,7_.Y)

Y, Cov,(@,Y,)

Y

= 2
=c°Y |,

where the last equality follows from assumption (2). By the
induction assumption,

Cov (¥,.Y,_,) = V (Y, )
Then

Cov,,(7,.¥,) = Cov, | E(P), E(Y)|+E,[Cov,(7,.)]
2 £y ~
- 0} Covy (7, ¥,) + P Ep(F, )
=6V (Y, ) +6*E, (Y, )

= V().
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Implementing Rao-Shao Type Variance Estimation with
Replicate Weights

MICHAEL P, COHEN'

ABSTRACT

In estimating variances so as to account for imputation for item nonresponse, Rao and Shao (1992) originated an approach
based on adjusted replication. Further developments (particularly the extension to balanced repeated replication from the
jackknife replication of Rao and Shao) were tmade by Shao, Chen and Chen (1998). In this article we explore how these

methods can be implemented using replicate weights.

KEY WORDS: Balanced Repeated Replication; Jackknife replication; Imputation; Item nonrespense; Weighted hot deck.

1. INTRODUCTION

Variance estimation by replication methods is facilitated
by the use of replicate weights (Dippo, Fay and
Morganstein 1984). In the past decade adjusted replication
methods have been developed (Rao and Shao 1992; Shao,
Chen and Chen 1998) that allow one to account for the
variation due to imputation for item nonresponse in the
estimation of variances. It is not, however, entirely obvious
how these adjusted replication procedures can be imple-
mented by means of replicate weights. This article explores
how this can be done. The focus is on ways to prepare the
dataset so that standard variance estimation software
products that make use of replicate weights will work
without modification. In the next to last section, however,
some comments are made about whether modifying the
software would help.

2. REPLICATION METHODS AND REPLICATE
WEIGHTS

Wolter (1985) provides a comprehensive introduction to
variance estimation for sample surveys. Chapters 3 and 4
cover the two replication methods pertinent to this article:
the jackknife and balanced repeated replication. Shao and
Tu {1995, chapter 6) is recommended for a more recent and
advanced treatment. Variance estimation for surveys by
replication continues to be an active area for research.
Works that are even more recent include Brick and
Morganstein (1996, 1997), Kott (2001), Rao and Shao
(1996, 1999), Rust and Rao (1996) Shao (1996) and
- Valliant (1996).

The two replication methods work by creating subsets of
the sample called replicates. The methods differ in the
pattern by which replicates are formed. In balanced
repeated replication (also called balanced half-sample
replication), the replicates consist of roughly half the units

1

in the original sample; hence they are also called half
samples. In jackknife replication (as applied to survey data),
the replicates typically consist of the original sample except
that a single primary sampling unit (PSU) or a small
number of PSUs in the same stratum is deleted. For both
methods, the replicates can be considered samples in their
own right. Therefore if 8 is an estimate of some quantlty B
based on the original sample, we can form an estimate v
of 6 based on replicate r. If there are R replicates, we
estimate the sampling variance of 8, var(8), by

R
var @) = C,, .y (7 -0y @n
r=1

where the constant C,, , depends solely on the replication
method M and the number of replicates R.

In forming the estimate & of 0, use is made of the
sample weights. For example, to estimate a population total
for a particular item y, the estimate is the weighted sum of
the values of y. Thus, if y, and w, are the values of y and
the sample weight for sample unit u, then 6 = YW,
where the sum is over all units in the sample. In addition to
the sample weight w, on the record for unit i, we can add
replicate welghts w(" r =1 to R, to the record on the file
and calculate 6 in the same way as  except that w( "
replaces w, for each sample unit . Thus for the example in
which 8 is the population total for y, 6 ): w y If unit
« is not in replicate r, then w,f ={. Some or all of the
replicate weights for units that are in the replicate will be
larger than their sample weights so that the units in the
replicate continue to represent the entire population.

The use of replicate weights provided on the file to
calculate the sampling variance estimates has advantages:

- Any statistics no matter how complicated that can be
calculated for the whole sample can be calculated
just as easily for each replicate. The sampling
variance is then estimated by (2.1).

Michael P. Cohen, Senior Mathematical Stati sliciaﬁ, U.S. Bureau of Transportation Statistics, 400 Seventh Street $W, Washington, DC 20590 U.S.A.
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— Adjustments for unit nonresponse and poststrati-
fication can (and should) be done individually for
each replicate and incorporated in the replicate
weights. This adjustment is usually done by an
experienced sampling statistician and the adjusted
replicate weights are put on the file so that the data
analyst can use them without extra effort.

—  Adjustments to the replicate weights put on the file
can make use of auxiliary information not available
to the data analyst, possibly for reasons of confi-
dentiality. Even if not restricted, the auxiliary infor-
mation may be difficult for the data analyst to obtain
or use.

-~ General purpose software is available that employs
replicate weights. Two software products that
emphasize replication methods for surveys are
WesVar from Westat, Inc. and VPLX from the U.S.
Census Bureau. See the Web page

ffwww fas harvard.edu/~stats/survey-soft/survey-
soft.htmi

for information on survey analysis software.

In this section we have ignored the complications that
come from trying to capture the component of variance due
to item imputation in the variance estimates. We begin to
address these complications in the next section.

3. ADJUSTED REPLICATION METHODS

The works of Rao and Shao (1992) and Shao, Chen and
Chen (1998) are key to this article. Shao and Chen (1999)
and Shao and Steel (1999} also treat replication-based
variance estimation for imputed survey data,

We begin by developing the notation, for the most part
using that of Shao, Chen and Chen (1998). The population
is divided into L strata with N, clusters in the Ath stratum.
In the first stage of sampling in stratum h,n, > 2 clusters
are selected, the ith cluster being selected with probability
Ppivi=l..Nh=1,.,L The clusters are selected
without replacement and clusters in different strata are
selected independently. The sampling fractions n, /N, are
assumed to be small enough that no finite population
comrection is needed. Further stages of sampling may take
place within each cluster, independently from cluster to
cluster. There are N, ; ultimate population units in cluster ¢
of stratum k. For population unit (&, ¢, j). there is a variable
¥,;; of interest. Let S be the collection of all sample units
and let {3, (n i, /)€ S} be the imputed dataset: the y,;
are equal to y, .. when the item is observed and equal to the
imputed value otherwise. The sample units are divided into
imputation classes indexed by k and A, is the index set of
respondents for item y in imputation class k. We assume
that the dataset contains. identifiers (“flags™} so that the
nonrespondents can be identified.

In adjusted replication methods, y, i in imputation class
k is adjusted to

[ - oz =
Ynij * Ea, (Vi) = EA*(yfll‘j)‘ .

< _ if y,,; is imputed
hij
Yuij

(3.1

if y, i is observed,

where E, is the expectation with respect to the original
imputation procedure within imputation class k and EA:) is
the expectation with respect to the imputation procedure
based only on data in the rth replicate within imputation
class k. This formula is given explicitly in Shao, Chen and
Chen (1998, page 822) for balanced repeated replication
and a variety of imputation methods. It also applies to the
development in Rao and Shao (1992) for jackknife repli-
cation and weighted hot deck imputation.

We shall adopt the notation that (£°i°j°) denotes a unit
that did not respond to item y and (k’i'j’') denotes a unit
that did respond to item y. We assume that

E, (¥,000) = @pocece. poioin ¥pom
A h L h
" i° wiTSea, R A R
and
N, ~ _ (r)
EAt Vpeiepe) = E Ayijoneece Yy
(Wi'JIEA,

)
pooje ANA @y, po oo ArE CONSants not

where the a,.... .. i

depending on the values of the Yy iy and al. popere =0
fo(rr) (h'i'j’) not in replicate. r. The Dpijrioitjo and
@y pjr. poiej» May depend on auxiliary information available
for all units in the sample. For the weighted hot deck of Rao
and Shao (1992) and all of the imputation methods of Shao,

Chen and Chen (1998), the expectations have this form.

3.1 Example: Ratio Imputation

This imputation method applies to situations in which
there are auxiliary data {x,,;} available for all sample units.
Ratio imputation imputes a missing item y,.,... by

Tneiej Z wh'i’j’yh'r"j'/ E Whej Xwicj

(h'i'j')eA, (Wi )EA,
So
Gy =Fpoiep Wiy | Do Wy Xy
wiren,
and
) _ (r) )
0 i =Ko Wiy | X Wk Xy
e,

Notice that the @,.,. . ;0 ,»;» and gty yoin;o depend on the

{xm.j}.


http://www.fas.harvard.edu/~stats/survey-soft/surveysoft.html
http://www.fas.harvard.edu/~stats/survey-soft/surveysoft.html
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3.2 Example: Weighted Hot Deck Imputation

This imputation method imputes a missing item by a
value randomly selected from the respondents to the same
item with probability proportional to the weights of the
respondents in the imputation class. See section 5 for
further discussion of this method. Shao, Chen and Chen
(1998, page 822} show that

E wh'r"j'yh'i'j'/ Z Wi jr

Ey (Fppp)=
(W) )eA, (h'i'jrea,

and

n n
> wh'i'j'yh'r"j'/ > Waij

oy~ _
EA., (yhnjoja) -
(h'i'j)eA, (k'i’j’)EAt

Thus

ah.l..j.;h..‘.,j. = wh'i'j’/

wh"r'”j“
ki eA,

and
(r) _ 1A )
Qpejiipeiofe = wh.l..j./ E Wyesperjoo

(hi'j)eA,

4. THE DATA FILE FOR VARIANCE
ESTIMATION

For simplicity we assume that each record contains an
identifier indicating to which imputation class the unit

belongs. Often the imputation class is determined by several -

variables on the record. A record will look something like
this:
ID IC wywyl -~ wi 5y IF, 2, IF,

where /D is the identifier for the unit, IC is the identifier for
the imputation class, w,, is the (full sample) weight,
Wi o w,”..) are the replicate weights, ¥,.. is the value
(possibly imputed) of the variable y under consideration,
IF is the imputation “flag” that indicates whether Vnij is
imputed, Z,;; is the value (possibly imputed) of another
variable z and /F, is the imputation “flag” that indicates
whether Z, .. is imputed. There, of course, may be other
variables on the files as well, for example an auxiliary
variable x, . available for all sample units. :

We propose to add additional records, called extra
records, to facilitate variance estimation. For each non-
respondent (£°:°/°) and respondent (h'i'j') to item y in
imputation class &, we create the record

ID IC 0 Wiy Woo)

Py iy Yury 1Fy O 1F,

where IC =k, ID is the identifier of the unit (A°i°;°) that
did not respond to item y and

99

-~ {r) - ) _
Wyojojo.puiey = (ah,‘.,j,:h.,-.j.

(r)
ah'l"j' :h°f°j°) whﬂ ':ﬂjh,

r=1,..,R,. 4.1

Note that the full sample weight is 0 on the extra records so
these records do not affect the full sample estimates. The
replicate estimates, though, agree with those defined by
(3.1). Note also that the weights ﬁf,f,),..j.:h.,.,j, may be
negative.

Table 1
Numerical Iilustration: Portion of Data File for
Yariance Estimation

D IC wy  wy - owd  Fu IF, % IF,
001 1 101 20.2000 0.0000 54 1- 12 1
002 1 203 406000 - 00000 51 0 13 0
003 1 184 368000 - 00000 52 0 13 ©
004 1 111 00000 - 222000 51 1 12 ©
005 1 163 00000 - 326000 51 | 14 0
006 1 154 00000 - 308000 54 O 14 O
001 1 00 3.0162 0.0000 51 2 00 3
001 1 00 27339 00000 52 2 00 3
001 1 00 -57501 0.0000 54 2 00 3
004 1 00 00000 - -83301 51 2 00 3
004 1 00 00000 -- -75505 52 2 00 3
004 1 00 00000 - 158806 54 2 00 3
005 1 00 00000 - -122325 51 2 00 3
005 1 00 00000 - -11.0876 5.2 2 00 3
005 1 00 00000 - 233201 54 2 00 3
001 1 00 55645 0.0000 00 3 13 2
001 1 00 5.0436 00000 00 3 13 2
01 1 00 -27512 00000 00 3 12 2
001 1 00 -4.0400 0.0000 00 3 14 2
001 1 00 -3.8169 00000 00 3 14 2

Table 1 provides a numerical illustration. In the illustra-
tion, the nine records (rows of the table) with IF_ =2 are
the extra records for item y. The first six recorcfs are the
original records for the six sample units that constitute
imputation class fC = 1. (The records at the end with
IF, =2 are the extra records for item z and will be
discussed in the next paragraph. In these records, the
imputation flag for y, IF, has been set to 3 to indicate that
these are extra records for an item other than y.) There are
three respondents (.’F). =0) and three nonrespondents
(IF_ =1) toitemy. The method of imputation is assumed
to be weighted hot deck. Only the first and last replicate
weights (w,f:} and w,fg.)) are presented, but these are
consistent with replicate weights used for the balanced
repeated replication method of variance estimation. We
have ¥ w,. 9, =476.650, Ywy ¥, =506.048 and
Twaiy 5, = 455.696 where the sums are over all the
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records. The reader may verify that this agrees with
5 Wy Fpiy = 476650, Twy 5i) = 506048  and
Zw,f‘;) j;',fﬁ.) = 455.696 obtained using (3.1) where the sums
are over the first six records only.

Let us now consider item z. The extra records for this
item have the form

ID IC O Wi o i Wi

e ey O IF, 2y IF,
where W ,f”, iy w",fff, jo-pry are computed by (4.1) but
using the imputation method and response pattern for item
2. The imputation method for z need not be the same as the
imputation method for y but must be of the form discussed
in section 3. In Table 1 the extra records for item z can be
identified by having /F, =2. We have then ):Wm,-f;. T

120.130, T wyy) 7, = 124349 and T w,?) ,,. = 115.400
‘where the sums are over all the records. This agrees with
the sums obtained by (3.1).

Clearly the biggest disadvantage of this approach is the
large number of extra records that have to be added to the
file. This disadvantage is less severe when the imputation
classes are small. (There are, however, many factors that go
into determining the size of the imputation classes.) The
advantages, on the other hand, include the following:

— The adjusted replicate estimates and variance esti-
mates can be computed with any software designed
to estimate variances by means of replicate weights.

— If there is another variable, say y’, with the same
pattern of nonresponse and the very same method of
imputation as y (that is, the same a and a‘” values),
the computation of replicate estimates for y' can be
accommodated without adding more records.

— One can make estimates over subdomains, even if
they cut across imputation class boundaries.

— Suppose the method of imputation is the weighted
hot deck. Then one estimates the variance of a
derived variable, say log y where y> 0, by simply
adding the derived variable to each record and
computing replicate estimates based on it. (We shall
have more to say about the weighted hot deck in the
next section.)

The data analyst may choose to delete the extra records
from a copy of the data file and use the reduced file to
check for outliers, formulate hypotheses, erc. When it
comes time (o estimate variances, the extra records would
be merged back in.

It should be pointed out that Rao and Shao (1992)
proposed and evaluated their jackknife variance estimation
method only for the estimation of totals (or means). One
must be cautioned against the use of the approach for more
complex statistics. In the same way, Shao, Chen and Chen
(1998) proposed their balanced repeated replication
variance estimation method for functions of totals and for
quantiles so it should not be used for other statistics.

5. THE WEIGHTED HOT DECK

The use of the weighted hot deck method of imputation
{e.g., Cox 1980) has a number of advantages so we devote
a separate section to it. Rao and Shao (1992} concentrate on
this imputation method and it is discussed also in Shao,
Chen and Chen (1998). Under this method, a missing item
is imputed by a value selected at random from the
respondents to that item in the imputation class. The proba-
bility of selection is proportional to w,....., the weight of the
respondent. The respondents that have a positive probability
of being selected are called potential donors; the non-
respondent being imputed is the recipient. If there is more
than one item on the file that will be imputed by the
weighted hot deck, simplifications occur if one uses
complete respondents (units who responded to all items) as
potential donors and uses only one donor to impute all items
requiring weighted hot deck imputation for a given
recipient. (The donor is selected for each sample unit
having any item for which there is item nonresponse.)

If each unit in an imputation class has the same chance
of responding to an item, the weighted hot deck yields
design consistent estimates of means, totals and sample
quantiles. The imputations, moreover, will be “plausible” in
the sense of looking like real data.

An advantageous feature of the weighted hot deck is that
it is equivariant under one-to-one transformations. To
explain equivariance, consider a derived variable d where
d=g(y) and g is a one-to-one function. Then,using the
weighted hot deck, we impute item y of unit (h°i°j°) that
did not respond to the item by ih,l..j. and use g(¥,. ;) for
d. This is equivalent to using the weighted hot deck to
impute d by d,... and using g (d,.;-» ) for y. This
feature of hot deck imputation in not shared by many other
methods. For example, under mean imputation (in which
the imputed value is the mean of the values for respondents
in the imputation class), g would have to be linear for the
equivariance property to hold. The pertinence of this to
variance estimation by adjusted replicate methods is that
when hot deck imputation is used, the data analyst can add
d =g (y) to the file and estimate variances for d as well as
for y.

Suppose. that the weighted hot deck is employed for
several variables on a file and suppose that only complete
respondents are used as potential donors. In this case, even
if the patterns of nonresponse are different for the variables
being imputed, the implementation of the adjusted repli-
cation by replicate weights described in the previous section
can be carried out with the same set of extra replicate
weights

~(0 _ _ e
Wisiepmiy = (@rpjpeiop = Bypjropeioje) Wheijo

for each variable.
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6. ALTERNATIVES

In this section we consider alternative methods including
one that requires modifying the software.

6.1 First Alternative

One way to reduce the number of records is to have extra
records of the form

D' IC 0 f) ~ Woyrs Yy

N IF, 0 IF,

where ID' is the identifier of the potential donor unit
(h'#'j') that responded to item y, B, is the index set of
units not responding to item y in imputation class & and
i _ )
Wyrprp = (ah,i,j.:h.,l.,,f
(h°i°j°)e B,

("

)wha,...jn,

ahrj H

r=1,.. R

Under this setup, for a given item there is only one extra
record per potential donor. The chief disadvantage is that,
because of the summation, estimates for subdomains that
cut across imputation classes cannot be computed.

6.2 Second Alternative

Perhaps the most obvious implementation would be to
add the ¥ h’, to the (hij) record and modify software to use
the y,f') rather than ¥,.. when computing replicate esti-
mates. The chief drawbacks are (1) sophisticated repro-
gramming of software would be needed, (2) if multiple
variables may require imputation, the number of fields
needed expands greatly and (3) it is unclear how a data
analyst would estimate the variance of a derived variable,
say d, unless the d,,,; were put on the file in advance. The
favorable features of this implementation are (1) no extra
records are needed and (2) variance estimates for sub-
domains do not require additional work.

7. CONCLUDING REMARKS

The adjusted replication methods of Rao and Shao
(1992) and Shao, Chen and Chen (1998) provide a way of
computing variance estimates that account for imputation
for item nonresponse. An important next step is the
development of ways to facilitate the computation. This
article explored implementations based on the use of
replicate weights.
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Variance Estimation for the General Regression Estimator

RICHARD VALLIANT'

ABSTRACT

A variety of estimators of the variance of the general regression (GREG) estimator of a mean have been proposed in the
sampling literature, mainly with the goal of estimating the design-based variance. Estimators can be easily constructed that,
under certain conditions, are approximately unbiased for both the design-variance and the model-variance. Several
dual-purpose estimators are studied here in single-stage sampling. These choices are robust estimators of a model-variance
even if the model that motivates the GREG has an incorrect variance parameter.

A ey feature of the robust estimators is the adjustment of squared residuals by factors analogous to the leverages used in
standard regression analysis. We also show that the delete-one jackknife implicitly includes the leverage adjustments and
is a good choice from either the design-based or model-based perspective. In a set of simulations, these variance estimators
have small bias and produce confidence intervals with near-nominal coverage rates for several sampling methods, sample
sizes, and populations in single-stage sampling.

We also present simulation results for a skewed population where all variance estimators perform poorly. Samples that do
not adequately represent the units with large values lead to estimated means that are too smail, variance estimates that are
too small, and confidence intervals that cover at far less than the nominal rate. These defects need to be avoided at the design
stage by selecting samples that cover the extreme units well. However, in populations with inadequate design information
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this will not be feasible.

KEY WORDS: Coenfidence interval coverage; Hat matrix; Jackknife; Leverage; Model unbiased; Skewness.

1. INTRODUCTION

Robust variance estimation is a key consideration in the
prediction approach to finite population sampling. Valliant,
Dorfman, and Royall (2000) synthesize much of the
model-based literature. In that approach, a working model
is formulated that is used to construct a point estimator of
a mean or total. Variance estimators are created that are
robust in the sense of being approximately model-unbiased
and consistent for the model-variance even when the
variance specification in the working model is incorrect. In
this paper, that approach is extended to the general
regression estimator (GREG) to construct variance esti-
mators that are approximately model-unbiased but are also
approximately design-unbiased in single-stage sampling. A
number of alternatives are compared including the jack-
knife and some variants of the jackknife. We will use a
particular class of linear models along with Bernoulli or
Poisson sampling as motivation for the variance estimators.
However, some of these estimators can often be success-
fully applied in practice to single-stage designs where
selections are not independent.

Associated with each unit in the population is a target
variable Y, and a p-vector of auxiliary variables
X;=(x;, X)) wWherei=1,. N. The population vector
of totali of the auxiliaries is = (T s oo T;p)’ where
T,=Yi % k=1,p The general regression estimator,
defined below, is motivated by a linear model in which the
¥’s are independent random variables with

Richard Valliant, Westat, 1650 Research Boulevard, Rockville, MD 20850.

E, (Y) = x|
var, (Y)) = v,. (1.1)

In most situations (1.1) is a “working” model that is likely
to be incorrect to some degree,

Assume that a probability sample s is selected and that
the selection probability of sample unitiis P(3,=1) =m,
where 8, is a 0-1 indicator for whether a unit is in the
sample or not. We assume that the sample selection
mechanism is ignorable. Roughly speaking, ignorability
means that the joint distribution of the ¥’s and the sample
indicators, given the Xx’s, can be factored into the product of
the distribution for Y given x and the distribution for the
indicators given x (see Sugden and Smith 1984 for a formal
definition). In that case, model-based inference can proceed
using the model and ignoring the selection mechanism.

The n-vector of targets for the sample units is
Y, =(Y¥,,...Y,), and the n x p matrix of auxiliaries for
the sample units is X = (x,, ..., x,)". Define the diagonal
matrix of selection probablhues as H = diag(n;), i€s, and
the diagonal matrix of model- vanances as V = diag (v,).
The GREG estimator of the total, T=Y." Y, is then
defined as the Horvitz-Thompson estimator or nt-estimator,
Tn =Y, Y,.In:;., plus an adjustment:

]
R
‘w

A

T, =T,+B(T -T)

(1.2)
where B=A X! V'I'Y, with A =X/V,'II'X |
and T =y

X /m,. The GREG estlmator can also be
wntten as
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(1.3)

with g =V,'X A} (T_-T)+1, and 1_ being an
n- vector of 1’s. Express:on (1. 3) will be useful for
subsequent calculations.

A variant of the GREG, referred to as a “cosmetic”
estimator, was introduced by Simdal and Wright (1984)
and amplified by Brewer (1995, 1999). A cosmetic esti-
mator also has design-based and model-based interpre-
tations. The variance estimators in this paper could also be
adapted to cover cosmetic estimation,

Assuming that N is known, the GREG estimator of the
mean is simply Y = T / N. We will concentrate on the
analysis of Y (In some sntuauons particularly ones where
multi-stage samplmg is used, the population size is
unknown and an estimate, N, must be used in the deno-
minator of ¥,.. The following analysis for the mean does
not apply in that case.) Either quantitative or qualitative
auxiliaries (or both) can be used in the GREG. If a quali-
tative variable like gender (male or female) is used, then
two or more columns in X will be linearly dependent, in
which case a generalized inverse, denoted by A, will be
used in (1.2) and (1.3). Note that, although A_, is not
unique, the GREG estimator Y is invariant to the choice
of generalized inverse. The proof is similar to Theorem
7.4.1 in Valliant er al. (2000).

The GREG estimator is model-unbiased under (1.1) and
is approximately design-unbiased in large probability
samples. Note that the model-unbiasedness requires only
that E,, (Y,) =x/ B, if the variance parameters in (1.1) are
misspecified, the GREG will still be model-unbiased. On
the other hand, if E,,(Y,) is incorrectly specified, the
GREG is model-biased and the model mean squared error
may contain an important bias-squared term. The estimation
error of the GREG Y, is defined as

Yo-¥=NT@'Y -1'Y)
where ¥ = T/N, a_=TI.'g -1, isthe (N - n)- vector of
target variables for the nonsample units, and 1_ is a vector
of N-n1’s. Next, suppose that the true model for Y, is

Ey(Y) =x/B

var, (Y)) = v, (1.4)
i.e., the vanance specification is different from (1.1) but
E, (Y, is the same. Using the estimation error, the
error-variance of ¥, is then

var, (Y, -7) = N2(a’'¥,a, +1'¥ 1)

where the n x n covariance matrix for Y  is ‘¥ = diag (‘F;)
and ¥ isthe (N - n) x'(N - n) covariance matrix for Y .
When the sample and population sizes are both large and
the sampling fraction, f=n/N, is negligible, the error-
variance is approximately

YsNZ2Y aly,. (1.5)

i€s

varM(}A’

Note that this variance depends on the true variance para-
meters, '¥',, and on the working model variance parameters,
v, because Vi is part of .. Since a_ is approximately the
same as I, g ¢ when selection probabllmes are small, the
error variance in that case is also approximately

2
var l_’G-?) = N'zz g—;‘{’

i€ m;

(1.6)

m

For model-based variance estimation, we will take either of
the asymptotic forms in (1.5} or (1.6) as the target. How-
ever, when the sampling fraction is substantial, the term
1/ _1_/N? canbe an important part of the error-variance
and (1.5) or (1.6) may be poor approximations,

We will consider the design variance under two single-
stage plans-Bernoulli and Poisson. In Poisson sampling, the
indicators &, for whether a unit is in the sample or not are
independent with P(§,=1) = 1 - P(3,=0) ==, (see Samdal,
Swensson, and Wretman 1992, section 3.5, for a more
detailed description). Bemoulli sampling is a special case
of Poisson sampling in which each unit has the same
inclusion probability. Under these two plans, the approxi-
mate design-variance of Y’G is

var, (Y.} = N2Y —LE (1.7)
i=1 T

where E,= ¥, - x/Band B = (X' V'X)"' X’ V'Y is the

-Tegression parameter estimator evaluated for the full finite

population. Samdal (1996) recommends using the GREG
in conjunction with sampling plans for which {1.7) is valid
on the grounds that the variance (1.7) is simple and that the
use of regression estimation can often more than compen-
sate for the random sample sizes that are a consequence of
such designs.

The Bemoulli and Poisson designs and the linear models
(1.1) and (1 .4) serve mainly as motivation for the variance
estimators presented in sections 2 and 3. As noted by Yung
and Rao (1996, page 24), it is common practice to use
variance estimators that are appropriate to a design with
independent selections or to a with-replacement design
even when a sample has been selected without replacement.
Likewise, variance estimators motivated by a linear model
are often applied in cases where departures from the model
are anticipated. This practical approach underlies the
thinking in this paper and is illustrated in the simulation
study reported in section 4.

2. VARIANCE ESTIMATORS

Our general goal in variance estimation will be to find
estimators that are consistent and approximately unbiased
under both a model and a design. Kott (1990) also
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considered this problem. Note that the goal here is not the
estimation of a combined (or anticipated) model-design
variance,

EME::{[(}%G_}_,) ? ]2}

Rather we seek estimators that are useful for both
var,, (¥ - ¥ and var, (¥). The arguments given here are
largely heuristic ones used to motivate the forms of the
variance estimators. Additional, formal conditions such as
those found in Royall and Cumberland (1978) or Yung and
Rao (2000) are needed for model-based and design-based
consistency and approximate unbiasedness.

First, consider estimation of the approximate model-
variance given in (1.5). In the following development, we
assume that, as N and n become large,

(1) N max (t;) =0(n) and

T
(ii) AM.IN converges to a matrix of constants, A .

A residual associated with sample unitiis r; = Y, - Y
where Y = X] ’ B. The vector of predicted values for the
sample units can be written as

Y, =H Y, 2.1
where H =X A, X vV, II The predicted value foran
individual unit is Y = Z ; where h,=x'A; 'x./
(v n:) is the (i)™ element of l-l} The matrix H lS the
analog to the usual hat matrix (Belsley, Kuh and Welsch
1980) from standard regression analysis. The diagonal
elements of the hat matrix are known as leverages and are
a measure of the effect that a unit has on its own predicted
value. Notice that the inverses of the selection probabilities
are involved in (2.1), although these would have no role in
purely model-based analysis.

The following lemma, which is a variation of some
results in Lemma 5.3.1 of (Valliant et al. 2000), gives some
properties of the leverages and the hat matrix,

() and (i) hold. For
the following properties hold for

Lemma 1.1 Assurlne 1that
H=XA X V I

all ies:

@ h;=0(n 1y

(b) H, is idempotent.
(©) Oxgh;<l.

Proof: Since h = X] A LX; I(v w.}, conditions (i) and (ii)
imply that hj -O(n )Part (i)) follows from direct
multiplication, using the definition of H,. To prove (c)
nole that A, 2 0 since it is a quadratic form. Part (b} implies
that b, = h Z Ly hy; which can hold only if £, < 1.

Next we wrtte the residual as r, =Yl —h -
Z,em) hu Yj where s (i) is the sample excludmg unit i. Since

E,(r) =0, we have EM(” ) var, (r,) and
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E, (r}) = ¥,(1-h )+

DI TAS

jesd)

(2.2)

under mode] (1.4). Using Lemma l(a), we have h s=o(l),
'}2 = o(l), and consequently, £,, (r; ) =Y. Thus m large
samples, r * isan approxlmately unbiased estimator of the
correct model -variance even though the variance specifi-
. . . 2.
cation in model (1.1) was incorrect. As a result, r;” is a
robust estimator of the model-variance for unit i regardless
of the form of ‘¥,. A simple, robust estimator of the

approximate model-variance (1.5) is then
2 Z, ar'2 r 52

which is a type of “sandwich” estimator (see, e.g., White
1982). (Note that a formal argument that v, is robust
would requ:re conditions such that n IEM(vm) and

n'N ZZ ‘P converge to the same quanuty ) Another
variance estlmator similarto v, ifa = 1'[ g,

ve, (¥g) = N (2.3)

ver (Fg) = N2Y, (3 @.4)

An estimator of the approximate design-variance in (1.7)
is

v (Y5) = N

(2.5)

i

An alternative suggested by Sirndal ez al. (1989) as having
better conditional properties is

Vssw(?c) =N (2.6)

Another, similar estimator, used in the SUPERCARP
software (Hidiroglou, Fuller and Hickman 1980) and
derived using Taylor series methods, is

2
) &% 1v &%
N2 " Sii AN Bl (27D
n-1 5[ T, nz:”T n'.]

As shown in the Appendix, the second term in parentheses
in (2.7) converges in probability to zero under model (1.1).
Thus, v, = vy, in large samples.

When the selection probability of each unit is small,
Vygw Will be similar to v, vy, and v,.. All three will be
approximately model-unbiased under (1.4) and approxi-
mately design-unbiased under Bernoulli and Poisson
sampling. On the other hand, v, is approximately design-
unbiased but ignores the g, coefficients and is biased under
either model (1.1} or (1.4).

As a simple example, consider Bernoulli sampling with

=niN and the working model E,(Y,)=x,,
var M(Y) o’ x;. Then the GREG is the ratlo est:mator

vr(?c) =
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Y, =Y x/x where X is a finite population mean. The
approximate model variance under the more general spemﬁ-
cation, var,, (Y,) = w,, is (¥ /n)(3/x )" where ¥,

E ¥, /n. The apmeImatedesngn-vanance 15 (1-£)/ (nN }

EI (Y, - x; Y1) where Y is a finite population mean.
The estimator Vo, = P(XIEV Y (Y-x VIR s
approximately unbiased for the model- variance and,
because x /EJ_E 1 in large Bernoulli samples, v, is also
approximately unbiased for the design-variance as long as
fis small. In contrast, v, = n 2(1 -f) ¥ (Y,-x, ¥./% )% is
approximately design- unbiased but is model-unbiased only
in balanced samples where X = X_. Royall and Cumberland
(1981} noted similar results for the ratio estimator in simple
random sampling without replacement.

3. ALTERNATIVE VARIANCE ESTIMATORS
USING ADJUSTED SQUARED RESIDUALS

The first alternative variance estimator we consider is the
jackknife. The particular version to be studied is defined as

n-l R

- Yo,

where }_’Gm has the same form as the full sample estimator
after omitting sample unit /. If the selection probability has
the form =x; = np,, then (3.1) can be rewritten. Using the
convenuon that the subscript (i) means that sample unit ;
has been omitted, we have

YG(f) = TG(I)/N YG() E:Es G(J) G(l)

= Ty * Be)

T =n Y Y/ [m(n-1)), T

fes(i)

(T, =T ),

-nz xl[n(n 1}, and
jes(i)

-1
B A X Vw“smysm with

A =X Vs(!} HS{DX

ns{f) s(i) s(i)
Another more conservative, but asymptotically equivalent,
version of the jackknife replaces }’ y with the full sample
estimator Y Design-based propemes of the jackknife in
(3.1) are usua]]y studied in samples selected with
replacement (see, e.g., Krewski and Rao 1981, Rao and Wu
1985, Yung and Rao 1996), but applied in practice to
without-replacement designs. Note that for the linear
estimator ¥ _=N"'Y¥__ Y,/n, in probability proportional to
size without-replacement sampling, neither the jackknife,
v, nor the approximations to v, given later in this section,
reduce to the usual Horvitz-Thompson or Yates-Grundy
variance estimators.

With some effort we can write the jackknife in a form
that involves the residuals and the leverages. The rewritten
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form will make clear the relationship of the jackknife to the
variance estimators in section 2. First, note the following

equalities that are easily verified:
7 Y, X;
n A ~ n ~
Tn(f) = [Tnm - ;’] , Tm.) = ;-:-]_ [ Tm.) - ;:] (3.2)

n-1 :

B S Apy-l
XYooy Yoo =X,V Y -xYivx,

Arw = AL ~ XX v, (3.3)

Using a standard formula for the inverse of the sum of two
matrices, the slope estimator, omitting sample unit {, equals

-1
—B+n"z A_x r

ns: r‘

’I-h v11:

Details of this and the succeeding computations are
sketched in the Appendix. After a considerable amount of
algebra, we have

A

Towy =Ty = - F,

I

n _
——{(D.-D_ )+
n-1 0i=D;) n-1
where

- &h
i n(l -hy)
and F, is defined in the Appendix. The jackknife in (3.1) is
then equal to
v (Y ) =

N2 %

-1

Es (Dl _ﬁs)z + Z Fi2 - 22; Fi (DI - DJ) ) (34)

Expression (3.4) is an exact equality and could be used as
a computational formula for the jackknife. This would
sidestep the need to mechanically delete a unit, compute

)76('.), and so on, through the entire sample.

In large samples the first term in brackets in (3.4) is
dominant while the second and third are near zero under
some reasonable conditions. Thys, in large samples the
jackknife is approximated by v, (Y,)« N2 Y (D, - D ),
or, equivalently,

= i.
v, (YG) = Fx

Ei7;
(1 - hy)

1
Nin

2.

2
&1
> m‘ . (3.5)
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As shown in the Appendix, the second term in (3.5)
converges in probability to zero under model (1.1). Conse-
quently, a further approximation to the jackknife is

2.2 2

L]

N? (1 -h.) (3.6)
As (3.5) and (3.6) show, the jackknife implicitly incor-
porates the gf coefficients needed for estimating the
model-variance. The right-hand side of (3.6) is itself an
alternative estimator that we will denote by v, (¥.).

Yung and Rao (1996) also derived an approximation to
the jackknife for the GREG in multistage sampling. For
single-stage sampling, their approximation is equal to v,
defined in (2.7), which is the same as (3.5) if the leverages
are zero. Duchesne (2000) also presented a formula for the
jackknife, which he denoted as V_,m, that involved sample
leverages. The advantage of (3.4) is that it makes clear
which parts of the jackknife are negligible in large samples.

Duchesne also presented an estimator, denoted by sz,
that is essentially the same as v, and is an approximation
to the jackknife.

Expressions (3.5} and (3.6) explicitly show how the
leverages affect the size of the jackknife. Weighted
leverages, h,;, that are not near zero will inflate v,.
Depending on the configuration of the x’s, this could be a
substantial effect on some samples.

Since h,; approaches zero with increasing sample size,
V;, Vgas Vesw» and v, have the same asymptotic properties.
In particular, the jackknife is approximately unbiased with
respect to either the model or the design and is robust to
misspecification of the variances in model (1.1). However,
the factor (1 - 4,,) in (3.6) is less than or equal to 1 and
will make the jackknife larger than the other variance
estimators. This will typically result in confidence intervals
based on the jackknife covering at a higher rate than ones
using Vp,, Vgows OF V.

Note, also, that if a without-replacement sample is used,
and some first-order or second-order selection probabilities
are not small, the choices, vg,,v,.v,, and v, will be
over-estimates of either the design-variance or the
model-variance. To account for non-negligible selection
probabilities, we can make some simple adjustments. An
adjusted version of v, (¥;), patterned after vy, is

vl = =% (1 -m)g'r;
RN PP

This expressmn is similar to V k3 Of Duchesne (2000),
although V k3 Omits the leverages Expression (3.6) also
suggests another alternative that is closely related to an
estimator of the error variance of the best linear unbiased
predictor of the mean under model (1.1) (see, Valliant et al.
2000, chapter 5). This estimator is somewhat less
conservative than (3.6), but still adjusts using the leverages:
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2.2

z 1 8 7
i) - ¥, &
D( G) N; 5 nf(l _h“)

Because h;; =o(1), v, is also approximately model and
design-unbiased. A variant of this that may perform better
when some selection probabilities are large is

2.2
(l _n,')gi r;

¥ =
"DP( G) 2 o)

N
4. SIMULATION RESULTS

To check the performance of the variance estimators, we
conducted several simulation studies using three different
populations. The first is the Hospitals population listed in
Valliant et al. (2000, Appendix B). The second population
is the Labor Force population described in Valliant (1993).
The third is a modification of the Labor Force population.
In all three populations, sampling is done without
replacement, as described below. These sampling plans will
test the notion that variance estimators motivated, in part,
by with-replacement designs can still be useful when
applied to without-replacement designs.

The Hospitals population has N = 393 and a single
auxiliary value x, which is the number of inpatient beds in
each hospital. The Y variable is the number patients dis-
charged during a particular time period. The GREG esti-
mator for this population is based on the model
E, (Y)=B,x" +P,x, var, (¥) = ¢° x. Samples of size 50
and 100 were sclected using simple random sampling
without replacement (srswor) and probability proportional
to size (pps) without replacement with the size being the
square root of x. For each combination of selection method
and samEle size, 3,000 samples were selected. The esti-
mators YG, = Vr1 YR2r Ysswe Voo Vopo vJ ,v_,P, and v,
were calculated for each sample. For comparison we also
included the m-estimator, Y T /N . The variance estimator
v, was included but is not reported here since results were
little different from v, .

The Labor Force population contains 10 841 persons.
The auxiliary variables used were age, sex, and number of
hours worked per week. The Y variable was total weekly
wages. Age was grouped into four categories: 19 years and
under, 20-24, 25-34, and 35 or more. The model for the
GREG included an intercept, main effects for age and sex,
and the quantitative variable, hours worked. A constant
model-variance was used. Samples of size 50, 100, and 250
were selected. The two selection methods used were srswor
and sampling without replacement with probability propor-
tional to hours worked. (This population has some cluster-
ing but this was ignored in these simulations.}

The third population was a version of Labor Force
designed to inject some outliers or skewness into the
weekly wages variable. We denote this new version as
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“LF(mod)” for reference. In the original Labor Force
population, weekly wages were top-coded at $999. For each
such top-coded wage, a new wage was generated equal to
$1,000 plus a lognormal random variable whose
distribution had scale and shape parameters of 6.9 and 1.
Recoded wages were generated for 4.4% of the population.
Prior to recoding, the annualized mean wage was $19,359,
and the maximum was $51,948; after recoding, the mean
was $23,103 and the maximum was $608,116. Thus,
LF(mod) exhibits more of the skewness in income that
would be found in a real population.

The resulting LF(mod) distribution is shown in Figure 1
where weekly wages is plotted against hours worked for
subgroups defined by age. In each panel the black points
are for males while the open circles are for females. A
horizontal reference line is drawn in each panel at $999.
Although there is a considerable amount of over-plotting,
the general features are clear. Wage levels and spread go up
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as age increases, hours worked per week is related, though
somewhat weakly, to wages, and wages are most skewed
for age groups 25-34 and 35+. Less evident is the fact that
wages for males are generally higher than ones for females.

Table 1 shows the empirical percentage relative biases,
defined as the average over the samples of (7 - T)/T for
the m-estimator and general regression estimator for the
various populations and sample sizes. Root mean square
errors (rmse’s), defined as the square root of the average
over the samples of (7 -T)?, are also shown. In the
Hospitals population, both estimators have negligible bias
at either sample size. The GREG is considerably more
efficient in Hospitals than the m-estimator because of a
strong relationship of ¥ to x. In the two Labor Force popu-
lations, both the n-estimator and the GREG are nearly
unbiased while the GREG is somewhat more efficient as
measured by the rmse for all sample sizes and selection
methods.

Age <= 19 Age 20-24
2 2
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Figure 1. Scatterplots of Weekly Wages versus Hours Worked per Week in Four Age Groups for the LF(mod) population. Open circles
are for females. Biack circles are for males. A horizontal line is drawn at $999 per week, the maximum value in the original

Labor Force population.
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Table 1
Relative biases and root means square errors {rmse’s) of the
n-estimator and the general regression in different simulation
studies of 3,000 samples each,
Hospitals Labor Force LF(mod)
A=50 n=100 n=50 r=100 n=250 n=50 a=100 =250
Simple random samples

PZ
Relbias (%y 02 0.1 .06 0 ¢ 01 0 -0.3
mse 766 507 342 241 155 886 612 388
2
Relbias (%} 02 02 0.1 01 02 04 02 01
rmse 326 211 283 199 124 360 574 36.0
Probability proportional (o size samples
Pl
Relbias (%) -0.1 0.1 -0.5 0 0 ¢ 01 -01
mse 376 244 282 203 126 806 546 341
e
Relbias (%} 0.1 01 -010 010 ¢ .06 -07 -04
rmse 272 169 282 193 120 818 551 335

Table 2 lists the empirical relative biases (relbiases} of
the nine variance estimators, defined as 100(v - mse)/mse,
where ¥ is the average of a variance estimator over the
3,000 samples and mse is the empirical mean square error
of the GREG. The rows of the table are sorted by the size of
the relbias in LF(mod) for stswor’s of size 50, although the
ordering would be similar for the other populations, sample
sizes, and selection methods. In the Hospitals population,
the sampling fraction is substantial, especially when n=100.
As might be expected, this results in the estimators that
omit any type of finite population correction (fpc)-v,,,
vy, v, , and v,—being severe over-estimates in either
srswor or pps samples. Because vp, lacks a term to reflect
the model-variance of the nonsample sum, it under-
estimates the mse badly when the sampling fraction is large.

In the Labor Force and LF(mod) populations, increasing
sample size leads to decreasing bias. The estimators v,

Vpi» Voo and v, have negative biases that tend to be less
severe as the sample size increases. The jackknife v, and its
variants, v, , v,p, are over-estimates, especially at n=50.
The estimators, v, and v,,,, are more nearly unbiased at
each of the sample sizes than most of the other estimators.

The empirical coverages of 95% confidence intervals
across the 3,000 samples in each set are shown in Table 3
for the Hospitals population. The three choices of variance
estimator that use the leverage adjustments but not
fpe's—vy, v, , and v/ —are larger and, thus, have higher
coverage rates than v, , vp,, and v, . The tendency of the
jackknife to be larger than other variance estimates for the
GREG has also been noted by Stukel, Hidiroglou, and
Sérndal (1996). This is an advantage for the smaller sample
size, n=30. When »=100 and the sampling fraction is
lar‘ge, the estimators with the fpc ’s—vn, Voows Vpp» and

v, ,—have closer to the nominal 95% coverage rates while
Ve Vpo v,’, and v, cover in about 97 or 98% of the
samples. The estimator v, that approximates the
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jackknife but includes an fpc, is a good choice at either

sample size or sampling plan.

Table 2
Relative hiases of nine variance estimators for the general
regression estimator in different simulation studies of 3,000
samples each.

Hospitals Labor Force LF(mod}

n=50 n=100 n=50 n=100 n=230 n=50 r=100 n=250
Simple random samples ‘

v -86 -42 -181 -123 75 -163 -28 -26
-189 -27.0 -113 99 80 96 07 33
76 -3.0 -109 9.1 59 93 01 -L1
Vaa 59 301 -105 -B2 -37 -88 1.0 1.3

Rl

Ypp -14 02 01 -38 -38 06 5.1 08
¥p 130 343 06 -29 -16 10 6.F 32
v, 184 374 139 22 03 112 105 48
Vp 54 35 140 21 -17 124 W5 27
vy 20.8 388 145 3.1 07 129 115 52
Probability proportional to size samples
v -5% -09 -22.1 -121 -68 -165 -106 -03
Vel -19.7 -324 -119 77 -71 %1 82 27
Vesw 40 00 -116 -70 -49 87 73 -01
Yo 160 526 -11.2 -60 -25 -83 -63 26
Ve or 20 08 03 -16 09 25 2.1
Vb 208 556 1.3 07 08 14 -L5 48
v, 236 572 226 118 53 146 47 7.3

Vip 44 40 197 93 31 148 39 4.9
v,‘ 260 588 203 103 55 154 50 1.7

Table 3
95% confidence interval coverage rates for simulations using the
Hospitals population and nine variance estimators. 3,000 simple
random samples and probability proportional to size were selected
without replacement for samples of size 50 and 100, L is percent
_of samples with ( ¥; - ¥) /v <-1.96, M is percent with
|¥, - Y| /v 51.96; Uis percent with (¥, - ¥)/v'?<1.96.

n=50 n=100
L M U L M u
Simple random samples
v, 31 92.1 48 2.6 936 39
Vai 4.2 91.0 4.7 4.8 89.8 5.5
Vesw 33 92.5 42 2.8 94.0 31
Vaa 2.8 93.9 33 1.4 97.0 1.6
Vpp 31 93.0 i9 2.7 94.3 2.9
Vp 24 94.6 3.0 1.2 97.3 1.5
v, 22 95.0 28 1.2 97.3 1.5
Vip 29 93.6 35 2.6 94.6 29
vy 22 95.1 28 1.2 97.4 1.4
Probability proportional 1o size samples
v, 2.9 93.9 a2 2.6 94.6 28
Ve, 4.1 92.0 l9 5.0 89.3 57
Voow 29 04.2 29 2.6 94.8 2.6
ey 2.1 95.8 2.1 0.9 98.3 0.8
Vpp 27 94.5 2.8 2.5 95.0 25
Vp 1.9 96.2 1.9 0.9 98.3 08
v, 1.8 96.3 1.9 0.9 984 0.7
Vip 2.6 94.8 2.6 24 954 22
vy 1.7 96.5 1.8 0.3 98.4 0.7
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Tables 4 and 5 show the coverage rates for the Labor
Force and LF(mod) populations. For the former, v, ,, v,
v,.V;p, and v, are clearly better in Labor Force at n=50
for both srswor and pps samples. But, for n=250, coverages
rates are similar for all estimators. The purely design- based
estimator, v_, is unsatisfactory at the smaller sample sizes
for either sampling plan. As in Hospitals, v,, gives near
nominal coverage at each sample size in the Labor Force
population.

The most striking results in Tables 4 and 5 are for
LF(mod) where all variance estimators give poor coverage.
Coverages range from 78.0% for the combmatlon (Voo
n=50, srswor} to 90.7% for (v, and v , , n =250, pps)
V:rtually all cases of non-coverage are because (Y -Yy/

7 < -1.96, where v is any of the variance esumators The
poor coverage rates occur even though the n-estimator and
GREG are unbiased over all samples (see Table 1) and, in
the cases of v,, v, and v, , the variance estimators are
overestimates (see Table 2).

Table 4
95% confidence interval coverage rates for simulations using the
Labor Force and LF(mod) populations and nine variance
estimators, 3,000 simple random samples were selected without
replacement for samples of size 50 and 100. L is percent of
samples with (¥, - ¥)/v'?<-1.96; M is percent with
|Y - ¥ | /v7<1.96; Uis percent with (Y -Y)/v1.96.

n=50 n=100 n=250
L M U L M U L M U
Labour Force
v 53 914 32 43 928 29 28 941 3.1
1 49 924 27 43 930 27 28 939 33
ssw 49 925 26 43 931 27 28 941 31
Ver 49 925 26 42 932 26 25 946 29
vop 42 936 22 39 937 24 26 945 29
Vp 42 936 22 39 939 22 24 %49 27
v, 30.951 19 34 97 19 24 950 27
Vip 30 951 19 33 947 19 25 948 27
v 30 951 19 33 948 19 24 950 27

v 210 780 09 141 855 04 99 897 04
Vpp 209 787 03 141 87 02 102 895 03
Vesw 209 788 03 140 858 02 99 899 03
Vas 208 788 03 t38 80 02 97 9.1 03
Vpp 197 800 02 134 865 01 97 9.1 03
vy 197 800 02 132 8.7 01 96 9.1 03
v, 184 814 02 127 872 01 94 903 03
Vjp 184 814 02 127 872 01 95 902 03
v, 183 8t5 02 126 873 01 93 904 03

Negative estimation errors, ?G - ¥, occur in samples
that include relatively few persons with large weekly

wages. Figure 2 is a plot of #-statistics based on yv,,, i.e.,

{ l—’G -Y) iy jp, versus the number of sample persons with
weekly wages of $1,000 or more in sets of 1,000 samples
for (srswor; n=>50, 100, 250). The negative estimation

~ errors in samples with few persons with high incomes lead

to negative #-statistics, and confidence intervals that miss
the population mean on the low side. The problem
decreases with increasing sample size, but the convergence

to the norminal coverage rates is slow and occurs “from the
bottom up.” Regardless of the variance estimator used,
coverage will be less than 95% unless the sample is quite
large.

Table 5
95% confidence interval coverage rates for simulations using the
Labor Force and LF(mod) populations and nine variance
estimators. 3,000 probability proportional to size samples were
selected without replacement for samples of size 50, 100 and 250.
Lis percent of samples with (¥ ~ ¥} /v "< -1.96; M is percent with
|¥g - Y| 1v?51.96; Uis percent with (¥, - ¥)/v'2>1.96.
n=50 "a=100 n=250
L M u L M U L M v
Labour Force
Vo 57 902 41 37 929 34 31 943 26
Va1 53 921 26 33 938 29 35 940 25
Vogw 52 922 26 32 540 2% 33 944 22
Ve, 52 923 26 31 941 28 30 948 22
e 43 936 20 29 947 24 30 949 21
Vp 43 937 20 29 947 24 28 95l 21
v, 33 955 1.2 24 958 17 26 955 19
“Vip 33 954 13 26 955 19 27 953 19
v,‘ 33 954 13 26 956 18 26 956 18

v 196 797 07 150 844 07 99 858 04
Vg, 202 796 02 159 838 03 103 894 03
Vgew 201 797 02 158 840 03 100 898 02
Vg 200 797 02 156 B41 02 98 900 02
Vpp 187 81.1 02 148 850 01 97 9.0 02
D 187 811 02 147 852 01 94 904 0.2
v, 166 832 0.1 136 864 00 91 907 02
V;p 166 833 01 139 861 00 94 904 02
73 165 834 0.1 138 862 00 91 90.7 0.2

We also examined how well the variance estimators
perform, conditional on sample characteristics. We present

- only results related to bias of the variance estimators to

conserve space. For the Hospitals population, we sorted the
samples based on D_=1' (T - T ), which is the sum of
the differences of the n-estimates of the totals of x 2 and x
from their population totals. Twenty groups of 150 samples
each were then formed. In each group, we computed the
bias of ¥ along with the rmse, and the square root of the
average of each variance estimator, The results are plotted
in Figure 3 for stswor with 2=50 and 100 and for pps with n=50

and 100. A subset of the variance estimators is plotted. The
honzonta] axis in each panel gives values of D . Since
Vi v, WVps and Vg, are similar through most of the range
of D, only the jackknife v, is plotted. Also, v, and Vp

are close and only the ]atter is plotted. The GREG does
have a conditional bias that affects the rmse in off-balance
samples. The poor conditional properties of v, are most
evident in the simple random samples where the bias of v_

as an estimate of the mse runs from negative to positive
over the range of D . Among the other variance estimates,
conditional biases are similar to the unconditional biases in
Table 2. Both v,,, and v, are in theory approximately
design and model-unbiased, and both track the rmse well.
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Figure 4 is a similar plot for the samples from the Labor
Force population. The following sets of estimates are very
similar and only the first in each set is included in the plots:
(VpsVpp)s and (v, v/, v,,). Only the srswor and pps
samples of size n = 50 and 250 are included. The horizontal
axis i8 again D, which is the sum of differences between
the m-estimates and the population values of the totals for
age and sex groups and the number of hours worked per
week. The conditional bias of v_is evident in samples with
the smallest values of D but the problem diminishes for
the larger sample size in both srswor and pps samples. The
jackknife v, is, on average, the largest of the variance
estimators throughout the range of D . The differences
among the variance estimates and their biases are less for
the larger sample size. The estimators v,,, vyoy, and v, all
track the rmse reasonably well except when D_ is most
negative, where all are somewhat low.

5. CONCLUSION

A variety of estimators of the variance of the general
regression estimator have been proposed in the sampling
literature, mainly with the goal of estimating the design-
based variance. Estimators can be easily constructed that

are approximately unbiased for both the design-variance
and, under certain models, the model-variance. Moreover,
the dual-purpose estimators studied here are robust esti-
mators of a model-variance even if the model that motivates
the GREG has an incorrect variance parameter.

A key feature of the best of these estimators is the
adjustment of squared residuals by factors analogous to the
leverages used in standard regression analysis. The desira-
bility of using leverage corrections to regression variance
estimators in order to combat heteroscedasticity is well-
known in econometrics, having been proposed by
MacKinnon and White (1985) and recently revisited by
Long and Ervin (2000). One of the best choices is an
approximation to the jackknife, denoted here by v,,, that
includes a type of finite population correction.

The robust estimators studied here are quite useful for
variables whose distributions are reasonably *“well
behaved.” They adjust variance estimators in small and
moderate size samples in a way that often results in better
confidence interval coverage. However, they are no defense
when variables are extremely skewed, and large obser-
vations are not well represented in a sample. Whether one
refers to this problem as one of skewness or of outliers, the
effect is clear. A sample that does not include a sufficient
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number of units with large values will produce an estimated
mean that is too small. A variance estimator that is small
often accompanies the small estimated mean. As the
simulations in section 4 illustrate, in such samples even the
best of the proposed variance estimators will not yield
confidence intervals that cover at the nominal rate. The
transformation methods of Chen and Chen (1996) might
hold some promise, but that approach would have to be
tested for the more complex GREG estimators studied here.

The most effective solution fo the skewness problem
does not appear to be to make better use of the sample data.
Rather, the sample itself needs to be designed to include
good representation of the large units. In many cases,
however, like a survey of households to measure income or
capital assets, this may be difficult or impossible if auxiliary
information closely related to the target variable is not
available. Better use of the sample data employing models
for skewed variables may then be useful (see, e.g., Karlberg
2000).
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APPENDIX: Details of Jackknife Calculations

Using (3.2), (3.3), and the standard matrix result in
Lemma 5.4.1 of Valliant ez al. (2000), we have

aASTETE

A-]
ns l —h‘_

sty -

g A xx'A, /vn]
+ .

From this and the definition of B the slope estimator,
omitting unit /, is B =B+nt E 6 where

Anxxi 7

The GREG estimator, after deleting unit i, is

)
A~ _ n A— i _
TG(:)‘ [Tn - - I[T n.)'

n-1 ,
After some rearrangement, this can be rewritten as

+(B-Q)|T,-

&

~ -~ r.
TG{:‘)= n - n &1 n i+ 1 K,
n-1 (1l -h;| n-1 n-1
where
h. .Y -Y
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and

- nx, .
= (B-Q,) [—'—Tx].
L

It follows that Tg, -7y, =-n(n-1)"(D,-D)+

n(n-1)'F, where F, =(G,-G_)+n"' (K, - K,) with

Gx and K  being sample means with the obvious
definitions. Substituting in the jackknife formula (3.1)
gives :

v 12’ - N2 Py

J( G) n-1

[EJ (D,-D}+Y F? 2% F.D,- l—%)]- (A.1)

Formula (A.1) is exact, but with some further
approximations we can get the relative sizes of the terms.
Using the values of G; and K, above and the fact that A,
and the elements of Q, are o(1), we have

o hl.,.Yt.-}?'. 1.~ J|onx; .
Gi+n 'K, = ———— +—(B-Q)) T'T,

where = denotes “asymptotically equivalent to.” It follows
that F,=0 and that v,(¥;)=Y (D,-D,), ie., (3.5)
holds.

Next, we can show that the second term in (3.5)
converges in probability to zero. The vector of residuals can
be expressedas r =(I-H )Y , and the second term in
(35)1sequaltoN nlg’ l'l Rl rr /U ! g, where
U =diag(l -h,},i€s. Thus thesecond termin (3 5) is the
square of B=N- n'mg n'U-'r, which has
expectation zero under any model w1th E (r;}= 0. The
model-variance of B is

N7?nvar, (g’ n'v’ r)=

NZ2ng I'U" (1-H ) x
(A.2)
V. I-HYUu'n'g,

which has order of magnitude n “? under the assumptions
we have made. Consequently, the second termin (3.5) is the
square of a term with mean zero and a model-variance that
approaches zero as the sample size increases. The second
term in {3.5) then converges to zero by Chebyshev’s
inequality. This justifies (3.6).
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