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In This Issue 

This issue of Survey Methodology contains the second in an annual invited paper series in honour 
of Joseph Waksberg. A brief description of the series and a short biography of Joseph Waksberg 
were given in the June 2001 issue of the journal. The author of the Waksberg Invited Paper for 2002 
is Wayne Fuller. I would like to thank the members of the Committee, Graham Kalton (chair), Chris 
Skinner, David Binder and Paul Biemer, for having chosen such a distinguished statistician, who 
has made profound contributions to many areas of statistical theory and practice, as the author of the 
second paper in the Waksberg Invited Paper Series. 

In his paper entitled "Regression Estimation for Survey Samples" Wayne Fuller presents a broad 
overview of historical and recent developments in the use of regression models in surveys for 
estimation, weight calibration and non-response adjustment. After a brief introduction and historical 
background, he discusses the use of regression models for estimation in complex surveys from a 
design based perspective. He follows this with an exploration of the model based perspective. Other 
topics discussed are the use of regression models for multinomial data, techniques available when 
auxiliary variables are available for every unit of the population, and regression to account for the 
effects of non-response in surveys. Finally, consideration of a few practical aspects of applications 
rounds out this insightful overview of an important area of inference from survey data to which 
Wayne Fuller himself has made many important contributions. 

"This issue also contains a special section "Remembering Leslie Kish" which includes four papers, 
one by Leslie Kish himself containing some of his last thoughts on the topics of combining samples 
and surveys. Two of the other papers discuss implementations of Leslie Kish's idea of rolling 
censuses. These two papers were also presented at the Statistics Canada Symposium 2001 in a 
special session entitled "Remembering Leslie Kish". 

The first paper in the special section, by Graham Kalton, presents an inspiring overview of Kish's 
contributions to many areas of statistics. Many of the problems that Kish worked on are put into 
historical perspective and their practical importance is emphasized. 

The paper by Kish presents ideas that he was still working on at the time of his death in October 
2000. I am grateful to Graham Kalton and Jack Gambino for making editorial cortections to the 
paper, but it is presented largely as it was at the time of Kish's death. In this paper he argues that, 
just as statistics represented a new paradigm in the scientific method, and survey sampling required 
a new paradigm in statistics, so rolling samples and multi-population surveys require new paradigms 
in survey methods. We can only speculate as to what the final paper would have been like had Kish 
lived. 

Alexander describes the American Community Survey, planned to be introduced by the U.S. 
Census Bureau in coming years as a replacement for the decennial census long form. This is a very 
large survey based very much on the idea of rolling samples and censuses that Kish introduced more 
than twenty years ago. This paper discusses the concepts, frame, sampling design, and cumulation 
of samples and weighting. 

The final paper in the special section, by Durt and Dumais, describes the new rolling census being 
introduced in France to replace their more traditional census. In this rolling census, every small 
commune will be surveyed once within a five year period; larger communes will be divided into five 
rotation groups, each rotation group being surveyed in one of the five years. This paper describes 
objectives, design and estimation procedures for the rolling census. 

In their article, Cahill and Chen develop an approach to exploit data from multiple surveys and 
epochs by benchmarking the parameter estimates of logit models of binary choice and semi-
parametric survival models. Estimates obtained from a survey rich in explanatory variables are 
benchmarked to information from a survey with significant historical depth. Cahill and Chen 
demonstrate how the method can be applied, using the maternity leave module of the LifePaths 
dynamic microsimulation project at Statistics Canada. 



In This Issue 

Garren and Chang consider the problem of the non-telephone population in telephone surveys 
using random digit dialing. Using Public Use Microdata Samples, the propensity that a household 
owns a phone is estimated using generalized linear regression and is used during estimation. 
Asymptotic biases and variances are presented for both the non-poststratified and poststratified 
estimators incorporating and not incorporating the estimated propensity. These four estimators are 
further compared through a simulation study. 

The article by Tille develops an estimator that can be used to avoid the problem of empty 
post-strata that can occurs with the usual post-stratified estimator. The idea involves using a 
conditionally weighted estimator and conditioning on ranks in the population of an auxiliary variable 
known for all units of this population. In this way, the sizes of the post-strata are set in the sample 
and random in the population. The next step is to calculate the mean of the conditionally weighted 
estimators to obtain greater stability. The estimator obtained is calibrated on distribution, linear and 
exactly unbiased. A simulation study is used to show that the proposed estimator is more robust than 
the generalized regression estimator when the relation of the variable of interest and the auxiliary 
variable is not linear. Lastly, the article proposes an approximate estimator of the variance verified 
using simulations. 

Shao and Butani consider the problem of estimating variances for imputed survey estimators. 
They show that the resulting variances can be estimated in two parts, the first of which can be 
estimated using a grouped half-sample method that incorporates adjustments to take imputation into 
account. As the estimation of the second part may entail many derivations, Shao and Butani propose 
an adjustment to the grouped half-sample method that leads to approximately unbiased variance 
estimates. 

In his paper Cohen describes a method to implement Rao and Shao's jackknife method of 
estimating variances to account for imputation using replicate weights. Rao and Shao's method 
involves calculation, for each jackknife replicate, adjusted values of imputed data points. The 
method can be used with either mean imputation or hot deck imputation. Cohen's method involves 
adding extra rows to the replicate weight file. For each imputed value, one extra row is added for 
each respondent in the same imputation class. 

In the last paper of this issue, Valliant studies several variance estimators for the General 
Regression (GREG) estimator. The interest is in finding variance estimators that, under certain 
conditions, are approximately unbiased for both the design-variance and the model-variance even 
if the model that motivates the GREG has an incorrect variance parameter. A key feature of these 
robust estimators is the adjustment of squared residuals by factors analogous to the leverages used 
in standard regression analysis. It is shown that the delete-one jackknife implicitiy includes the 
leverage adjustments and is a good choice from either the design-based or model-based perspective. 
A simulation study shows that these variance estimators have small bias and produce confidence 
intervals with near-nominal coverage rates. 

M.P. Singh 
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Waksberg Invited Paper Series 

Survey Methodology has established an annual invited paper series in honor of Joseph Waksberg, who has 
made many important contributions to survey methodology. Each year, a prominent survey researcher will 
be chosen to author a paper that will review the development and current state of a significant topic in the 
field of survey methodology. The author receives a cash award, made possible through a grant from Westat 
in recognition of Joe Waksberg's contributions during his many years of association with Westat. The 
grant is administered financially and managed by the American Statistical Association. The author of the 
paper is selected by a four-person committee appointed by Survey Methodology and the American 
Statistical Association. 

JOSEPH WASKBERG 

2002 WAKSBERG INVITED PAPER 

Author : Wayne A. Fuller 

Wayne A. Fuller is Emeritus Distinguished Professor in Statistics and Economics at Iowa State University. 
He has published approximately 100 articles in more than twenty journals and is author of the texts 
Introduction to Statistical Time Series and Measurement Error Models. As a member of the Survey Group 
at Iowa State University, he had primary responsibility for developing estimation procedures for a large 
longitudinal national survey called the U.S. National Resources Inventory. His research interests in survey 
sampling include regression estimation, small area estimation, imputation, and multiple phase sampling. 
He curtently chairs the Advisory Committee on Statistical Methods of Statistics Canada. 
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MEMBERS OF THE WASKBERG PAPER SELECTION COMMITTEE (2002-2003) 

David A. Binder (Chair), Statistics Canada 
J. Michael Brick, Westat, Inc. 
David R. Bellhouse, University of Western, Ontario 
Paul Biemer, Research Triangle Institut, U.S.A. 

Past Chairs: 

Graham Kalton (1999 - 2001) 
Chris Skinner (2001 - 2002) 

Past Authors: 

Gad Nathan (2001) 

Nominations: 

Nominations of individuals to be considered as authors or suggestions for topics should 
be sent to the chair of the committee, D.A. Binder, at Statistics Canada, 3"*, floor R.H. 
Coats Bldg. Tunneys' Pasture, Ottawa, Ontario, Canada, KIA 0T6, by e-mail 
binderdav@statcan.ca or by fax (613) 951-5711. Nominations and suggestions for 
topics must be received by December 6, 2002. 
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Regression Estimation for Survey Samples 
WAYNE A. FULLER' 

ABSTRACT 

Regression and regression related procedures have become common in survey estimation. We review the basic properties 
of regression estimators, discuss implementation of regression estimation, and investigate variance estimation for regression 
estimators. The role of models in constructing regression estimators and the use of regression in nonresponse adjustment 
are explored. 

KEY WORDS: Auxiliary information; Calibration; Least squares; Design consistency; Linear prediction. 

1. INTRODUCTION 

Design and estirhation in survey sampling involve the 
use of information about the study population to constmct 
efficient procedures. While design and estimation are 
intimately related, with estimators depending on the design, 
the two topics are often treated somewhat separately in the 
survey sampling literature. We follow tradition first 
studying estimation treating the design as given. The 
estimation task is to combine the available information 
about the population, with the sample data to produce good 
representations of characteristics of interest. 

Regression estimation is one of the important procedures 
that use population information or information from a larger 
sample, to constmct estimators with good efficiency. The 
information, sometimes called auxiliary information, may 
have been used in the design or may not have been 
available at the design stage. In surveys of the human 
population, the information often comes from official 
sources such as the national census. Similar sources may 
provide information for other types of surveys. For 
example, in a survey of land use the total surface area, the 
area owned by the national government, and the area in 
permanent water bodies may be available from national data 
archives. 

Three distinct situations can be identified with respect to 
the nature of the auxiliary information that is available. In 
the first, the values of the auxiliary vector x are known for 
each element in the population at the time of sample 
selection. In this case the auxiliary variable can be used in 
designing the sample selection procedure. 

In the second situation all values of the vector x are 
known, but a particular value cannot be associated with a 
particular element until the sample is observed. In this case, 
the auxiliary information cannot be used in design, but a 
wide range of estimation options are available once the 
observations are available. For example, the population 
census may give the age-sex distribution of the population, 
but a list of individuals and their characteristics is not 

available to non governmental institutions selecting 
samples. 

In the third situation, only the population mean of x is 
known, or known for a large sample. In this case, the 
auxiliary information cannot be used in design and the 
estimation options are limited. For example the U.S. 
Department of Agriculture might release an estimate of the 
total number of animals of a particular type on farms on a 
particular date. Our discussion concentrates on this 
situation. 

Two estimation situations can also be identified. In one, 
a single variable and a parameter, or a very small number of 
parameters, is under consideration. The analyst is willing to 
invest a great deal of effort in the analysis, has a well 
formulated population model, and is prepared to support the 
estimation procedure on the basis of the reasonableness of 
the model. In the second situation, a large number of 
analyses of a large number of variables is anticipated. No 
single model is judged adequate for all variables. The 
prototypical example of the second situation is the case in 
which a data set is prepared by the survey sampler to be 
analyzed by others. Because the person preparing the data 
set does not have knowledge of the analysis variables, 
emphasis is placed on the use of estimators that can be 
defended with minimal recourse to models. 

Regression estimators fall in the class of linear esti­
mators. Linear estimators have a particular advantage in 
survey sampling because once the weights are calculated 
they are appropriate for any analysis variable. Several 
properties of estimators will be examined in our discussion. 
Given a model, we accept the classical goal of minimizing 
the mean square ertor in a class of estimators. That class 
may be the class of linear estimators that are unbiased under 
the model, but the class may be further restricted. 

Estimators that are scale and location invariant can be 
used in general settings. Mickey (1959) suggested that the 
term regression estimator be restricted to linear estimators 
that are location and scale invariant. While we may not 
adhere strictiy to this definition, we support the distinction 

Wayne Fuller, Emeritus Distinguished Professor, Iowa State University, 221 Snedecor Hall, Ames, lA 50011-1210, U.S.A. 
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between estimators that are location and scale invariant and 
those that are not. We consider location invariance to be 
important for sampling designs where the unit of interest for 
analysis is also the sampling unit. For cluster and two stage 
designs in which weights are constmcted for primary 
sampling unit totals, location invariance is less important. 

Models play an important role in the construction of 
regression estimators. It is desirable that the estimators 
retain good properties if the model specification is not 
exact. Therefore properties conditional on the realized 
finite population, as well as properties under the model, are 
important. 

Linear estimators that reproduce the known means of the 
auxiliary variables are said to be calibrated. This is a desir­
able property in that, for example, the marginals of tables 
with an auxiliary variable as an analysis variable agree with 
known totals. If the auxiliary variable is of no analytic 
interest, then calibration is less important. 

2. BACKGROUND 

The earliest references to the use of regression in survey 
sampling include lessen (1942) and Cochran (1942). 
Regression in similar contexts would certainly have been 
used earlier and Cochran (1977, page 189) mentions a 
regression on leaf area by Watson (1937). It is interesting 
that Jessen's use of regression was essentially composite 
estimation where regression was used to improve estimates 
for two time points given samples at each point with some 
common elements in the two samples. Cochran (1942) 
gave the basic theory for regression in survey sampling 
relying heavily on linear model theory. He showed that the 
linear model did not need to hold in order for the regression 
estimator to perform well. He derived an expression for the 
0{n "') bias and an 0{n ~^) approximation for the variance. 
He also showed that for the model with regression passing 
through the origin and error variances proportional to x, the 
ratio estimator is the generalized least squares estimator. 

Regression estimation attracted theoretical interest in the 
1950' s, often in the form of studies of the bias. See Mickey 
(1959). Brewer (1963) is an early reference that considers 
linear estimation using a superpopulation model to 
determine an optimal procedure. He was concerned with 
finding the optimal design for the ratio estimator and 
discussed the possible conflict between an optimal design 
under the model and a design that is less model dependent. 
See also Brewer (1979). Royall (1970) argued for the use of 
models, that the conditional properties that are important 
are those conditional on the auxiliary information in the 
sample, and that the design should be chosen to optimize 
those properties. Royall and his coworkers, e.g., Royall and 
Cumberland (1981), studied the conditional properties of 
regression estimators, conditional on the realized sample of 
auxiliary variables. 

A great deal of research was conducted in the 1970's and 
1980's on the general nature of the regression estimator in 
survey samples and on the degree to which the model 
prediction approach can be reconciled with the design 
perspective. Fuller (1973, 1975) gave the large sample 
properties of a vector of regression coefficients computed 
from a survey sample. Isaki (1970) studied regression 
estimators and the results were published in expanded 
versions in Isaki and Fuller (1982) and Fuller and Isaki 
(1981). It was shown that a regression estimator constructed 
under a model is design consistent for the population mean 
if the model contains certain variables. Cassel, Samdal and 
Wretman (1976) considered both model and design 
principles in estimator constmction and suggested the term 
"generalized regression estimator" for design consistent 
estimators of the total of the form 

y.GREG •'y.HT "̂  ^'x,N ^Tx.N-'^x.m)^' 

where T j^^ and t^ ^.^ are the Horvitz-Thompson 
estimators of the totals of y andjc, respectively, T. ^ is the 
know population total of x and p is an estimated regression 
coefficient. Samdal (1980), Wright (1983), and Samdal 
and Wright (1984) discussed classes of regression 
estimators. The text by Samdal, Swensson and Wretman 
(1992) contains an extensive discussion of regression 
estimation and Mukhopadhyay (1993) is a review. 

It was the 1970's before the use of regression for general 
purpose, multiple characteristic, surveys appeared and it 
was the 1990's before the use of regression weighting could 
be called widespread. An early use of regression weights 
was at Doane Agricultural Services Inc., now Doane 
Marketing Research. During 1971-1972 a readership study 
of farmers was conducted under the direction of Mr. John 
Wilkin in which 6,920 farmers responded. Weights for the 
respondents were constructed using regression procedures, 
where the controls came from the U.S. Agricultural Census 
and from Department of Agriculture sources. Doane 
provided financial support to Iowa State University to 
develop a regression weight generation program. To 
guarantee positive weights in the Doane study, observations 
with small weights were grouped and assigned a common 
weight. Grouping continued until the common weight was 
positive. Later computer programs used modifications of 
the Huang and Fuller (1978) procedure to guarantee 
positive weights. Doane has used regression weights for 
their syndicated market research studies since 1972. 

Regression estimation was first used at Statistics Canada 
in 1988 for the Canadian Labour Force Survey. In 1992 
regression estimation was used by the 1991 Canadian 
Census of Population to ensure that the weighted sum of 
variables collected via the long form (a one in five 
systematic sample of all households in Canada) was equal 
to known household and population totals as collected in 
the 1991 Census. See Bankier, Rathwell and Majkowski 
(1992) and Bankier, Houle and Luc (1997). The regression 
estimator is also the key component of the Generalized 
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Estimation System (GES) developed at Statistics Canada 
and used in numerous business and social surveys since its 
release in 1992. The methodology is described in Estevao, 
Hidiroglou and Samdal (1995). See also Hidiroglou, 
Samdal and Binder (1995). Regression estimation is now 
used to construct composite estimators for the Canadian 
Labour Force Survey. See Singh, Kennedy and Wu (2001), 
Gambino, Kennedy and Singh (2001) and Fuller and Rao 
(2001). 

Bethlehem and Keller (1987) report on the use of 
regression estimation at the Netherlands Central Bureau of 
Statistics (now Statistics Netherlands) in a program called 
LIN WEIGHT. Nieuwenbrock, Renssen and Hofman 
(2000) describe the software package Bascula, that has 
replaced LIN WEIGHT. Deville, Samdal and Sautory 
(1993) describe a computer program CALMAR developed 
at Institut National de la Statistique et des Etudes 
Economiques (I. N. S. E. E.) that computes weights of the 
regression type with options for different objective 
functions. A program developed at Statistics Sweden and 
called CLAN97 is documented in Anderson and Nordberg 
(1998). Folsom and Singh (2000) discuss a procedure 
developed at the Research Triangle Institute. 

3. THE CLASSICAL LINEAR MODEL 

The classical linear model is the foundation for survey 
regression estimation, but the survey situation requires 
certain adaptations. To introduce regression estimation for 
survey samples, we review the classical linear model. 
Assume 

y. = x.fi + e., i = 1,2, ,n, 

e. ~ Nl{0,ol), (3.1) 

where e. is independent of the A:-dimensional row vectors x. 
for all / and j , and p is the unknown parameter column 
vector. We will also use matrix representations for the 
sample quantities. Thus, for a sample of n elements, 

X' =(x;,x^,-,x;,) and y' = (y,,y2, •,)'„) • 

Given a sample of size n and treating the x̂ . as fixed, the 
best (minimum mean squared ertor) estimator of p is 

P = f Ex;x ,V'E '';•>',• = (X'X)-'X'y, (3. 
V ieA J i€A 

2) 

where A is the set of indexes of the sample elements and we 
assume, as we will throughout, that the matrix to be 
inverted is nonsingular. If the e. are not normally distri­
buted, p is the estimator with smallest variance in the class 
of linear unbiased estimators. The estimator of a linear 
combination of the coefficients, say 9̂  = X; = i ° P > '̂ ^^ ̂ ^ 
written as 

e„ =-E % 
ieA 

where the weights, w^., minimize the Lagrangean 

E >*'aVE^ E>^a,-̂ ,7~"; 
ieA y = l V i^A ) 

and the X. are Lagrange multipliers. The variance of 9̂  is 

{̂ea} = WEw„,4=Ew„',°^ 
{ieA J ieA 

because the weights are functions of the x̂ . and not of y,.. 
The covariance matrix of p is 

v̂{P} = [Ex;x,]-v|Eb;\[Ex;xV-
,̂ ieA j \ieA J ^ ieA ) 

= V\T c 1 (3.3) 

where \}'. = \'.e. and c. = {li!Xy^\'. e.. Because e. is 
independent of x. for all / andj, 

WEb;.l = Ev{b;.} -Y^K^.o] 
{ieA J ieA ieA 

and we obtain the familiar expression, 

vm = [^M'"' 
The usual unbiased estimator of the covariance matrix of B 
is obtained by replacing ô  with the unbiased estimator of ô  
obtained as the mean square of the residuals, e. = y. - x. p. 
An estimator of the covariance matrix that estimates 
V{E,.,^b;.} directly is 

n{P} = [Ex;.x,.]-'E6;6,fEx;.x,.l-' 
V ieA ) ieA \ ieA ) 

E £;e,' (3.4) 
ieA 

where h'. = xj. e. and ĉ . = {X!X)' x! e.. In the same way 

2 ^2 
VbiV = E ^ate; 

ieA 
(3.5) 

is a linear combination of the elements of (3.4) and is a 
consistent estimator of ^{9^^}. The estimator (3.4) is a 
consistent estimator of V{fl] when the covariance matrix 
of the Cj is a diagonal matrix with bounded elements. Thus 
it is a more robust estimator. However, the estimator (3.4) 
is biased downward because the variance of e. is usually 
less than the variance of e.. Two methods are available for 
reducing the bias. The first isjo make a degrees-of-freedom 
adjustment by multiplying V^{P} by {n -k)'^n, where A: 
is the dimension of x,.. An alternative adjustment is to 
replace e, with 

3'/ 
e, = (l-v|/,)-"-^e,, 
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where \\i.. is the i-th diagonal element of X (X' X)"' X'. See 
Horn, Horn and Duncan (1975), Royall and Cumberland 
(1978) and Cook and Weisberg (1982, section 2.2). 

If we observe the value x. for an element, but do not 
observe y., then the best predictor of y. for that element is 
y. = Xj. p. Likewise, if we know the sum of x,. for a set of 
x's, then the best predictor for the sum of the y. is the sum 
of X. p. Thus, given a set of Â  elements that satisfy model 
(3.1), a set of observations (y., x.) on a subset denoted by 
A, and the known values of x̂ . for the remaining N-n 
elements, 

W-n, reg Ey, 
ieA 

E x,P, 
ieA 

where A is the set of elements for which y is not observed, 
is the best predictor of the sum of the unobserved y's. See 
Goldberger (1962), Brewer (1963), Royall (1970), Harville 
(1976) and Graybill (1976, section 12.2). Hence 

y.reg Eyi^fi 
ieA 

N-n,rtg (3.6) 

is the best predictor for the total of N observations. 
If the first element in the J:-vector is always one, we can 

partition the x-vector as x̂ . = (l,x, .) and write the 
regression estimator of the mean as 

^N^-yn^(HN-^l.n)^l' (3-7) y = N 
-'teg 

-!• 
y.reg 

where p of (3.2) is partitioned as (PQ.P,') ' and (y„, x„) is 
the vector of simple sample means. We call x^p the 
regression estimator of the mean. 

Given the model (3.1), the expected value of the mean of 
y for the finite population of Â  elements generated by the 
model is x^p and x^p is an unbiased estimator of the 
finite population mean. This, we believe, is the point at 
which regression estimation for the finite population mean 
under more complex designs begins. 

4. DESIGN BASED ESTIMATION 

The development of this section treats the finite 
population as a sample realization from an infinite popu­
lation. The use of such models has a long history in survey 
sampling. Some references through 1970 are Cochran 
(1939, 1942, 1946), Deming and Stephan (1941), Madow 
and Madow (1944), Yates (1949), Godambe (1955), Hajek 
(1959), Rao, Hartley, and Cochran (1962), Konijn (1962), 
Brewer (1963), Godambe and Joshi (1965), Hanurav 
(1966), Ericson (1969), Isaki (1970), and Royall (1970). 

To discuss the large sample properties of regression 
estimators we consider sequences of finite populations and 
associated probability samples. The set of indices of the 
elements in the Mh finite population is C/̂  = {1, •••,N), 
where N=l,2,--. Associated with the ith element of the 
Mh population is a row vector of characteristics 
^iN = (>',yv' ^ w ) • Let 

* Â  [' yiN' ^ I N ) ' ( y2N' ^21^)' •••' ( yNN' ^NN ) \ 

he the set of vectors for the Â -th finite population. The 
subscript N on the vectors will often be omitted. The finite 
population mean is 

^N = (^yN''^N) = ' ' ^ " ' E (3',-.x,). (4.1) 
1 = 1 

We denote the set of indices appearing in the sample 
selected from the Â th finite population by A^. 

When the finite population is a sample from an infinite 
superpopulation, the probability properties of a sample are 
determined by the properties of the superpopulation and the 
properties of the probability mechanism used to select the 
sample. One can consider the unconditional properties, the 
properties conditional on the particular finite population, or 
the properties conditional on some part of the realized 
sample. 

Properties conditional on the finite population depend 
primarily on the survey design and are often called design 
properties. Thus an estimator 9 is said to be design consistent 
for the finite population parameter 9^ if, for all e > 0, 

lim probjl 0 - 9 / y | > e | F ») 0, 

where the notation means that we condition on the realized 
finite population F̂ y and, hence, the probability is with 
respect to the design. 

Assume the finite population is generated as independent 
selections from a superpopulation for which E[z'. z.] is 
positive definite, where z. = {y., x.). We define a super-
population vector of least squares regression coefficients by 

P =[£{x;x.} ]- '£{x;y, .} . (4.2) 

Given a sample of n observations on z. we define the 
nx{k+l) matrix Z = (y, X) of observations, where the ith 
row of Z is (y,., x,). If we assume the model 

y = Xp + u, (4.3) 

£:{u,uu'} = (0 ,0 ) , 
the generalized least squares estimator of p is 

P = ( X ' 0 - ' x ) " ' X ' 0 - i y . (4.4) 

The model (4.3) serves as motivation for estimators of the 
form (4.4) but we shall consider estimators where O is a 
general symmetric positive definite weight matrix, not 
necessarily the covariance matrix of the ertors. 

We give the large sample properties of the vector of 
estimated regression coefficients (4.4) following Fuller 
(1975). See also Hidiroglou (1974), Scott and Wu (1981), 
and Robinson and Samdal (1983). 

Assume the superpopulation has eighth moments and 
that the sample design is such that the error in the Horvitz-
Thompson estimator of the mean is O {n ""^), where the 
Horvitz-Thompson estimator of the mean is 
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'HT (yHT'XHT) = A ^ " ' E Jt/ 'z,- (4.5) 
ieA 

' reg 
X^P, (4.13) 

and K. is the selection probability for element /. Then the 
ertor in the vector of regression coefficients is 

where 

p-P;v|F;v = Q:lt^^in^O(n-'), 

PAT ~ ^xxN^xyN' 

(4.6) 

(4.7) 

where p is of the form (4.4) with a general O matrix. The 
estimator can be written as w 'y , where the vector of 
weights can be constmcted by minimizing the Lagrangean 

w ' O w + (w' X -Xfj)k 

and X is the vector of Lagrange multipliers. 
If there is a column vectors y such that 

(QxxS'Qxy,) =E{{Q^xAy)\'PN}' (4-8) 

( a . ' Q . v ) = " - ' ( X ' O - ' X . X ' O - ' y ) , 

'HT = A^-'E'^;'b, (4.9) 
ieA 

h'.=n'^ NK.C,ie.,e.=y.-x.fl^, and l:^. is column / of 
X 'O" ' . By (4.9) the ertor in the estimator of p^ is 
approximately the error in a Horvitz-Thompson estimator 
of the mean. In result (4.6), the p^ is defined as a function 
of the expected values of the sample quantities (Q„,Q^,). 
Thus Pyy is not necessarily the ordinary least squares finite 
population regression coefficient. The vector b. of (4.9) is 
the generalization of the vector b̂ . of (3.3). If the limiting 
distribution of the properly standardized Horvitz-Thompson 
estimator is normal, and if there is a design consistent esti­
mator of the variance of the Horvitz-Thompson estimator, 
then it is possible to constmct tests and confidence intervals 
for the coefficients. Assume the design is such that 

V57 (z HT iN)\^t N{0,1), (4.10) 

as N,n- °°, where V_ is the covariance matrix of 
z^. If V - is 0(n"') and the estimator V - is 

'HT 
consistent for V—, then 

[ v { p r ( p - P . ) | F , i A ^ ( 0 , I ) , (4.11) 

XY = <I>D„ J (4.14) 

for all possible samples, where D̂^ = diag(7[,,7i2, -, TÎ ) and 
J is an n-dimensional column vector of ones, then the 
regression estimator x^ p of (4.13) with p defined in (4.4) 
is a design consistent estimator of y^. It follows from 
(4.11) that 

[ x - , v { p } x - ; ] - ( x - , p - y - j i N ( 0 , l ) . (4.15) 

The requirement of (4.14) that O D^ J be in the column 
space of X is cmcial for design consistency. Simple ways to 
satisfy this requirement are to let one column of X be the 

as O, or to let 
I, or to let 

one column of X be the elements 71. and set O = D .̂ If X is 
composed of the single column vector with elements K^ and 
if O = D^, then the estimator (4.13) reduces to the Horvitz-
Thompson estimator of (4.5) for fixed size designs. If 
X = J and O = Djj, the estimator (4.13) reduces to the ratio 
estimator. 

column of ones and to use a multiple of D̂^ 
one column of X be the elements TI,' and set O 

(S"'] E 
ieA 

Tt: yi' (4.16) 

which is location and scale invariant. 
To see the nature of the estimator when (4.14) is 

satisfied, let, with no loss of generality, X = (XQ, X,), where 
and x. = {xQ.,Xy.). Then XO = O D ; ' J 

reg ^O.N^ ' 3'n + (X O.n l.Af •'^O.N'^O.n ^l. )P,. (4.17) 

where 

V{p}=Q:,'v^nQ;,'. = V{c-̂ T-}. (4.12) 

Vg = V{b .̂p} is the estimated design variance of b .̂̂  
calculated with h'. =n'^ NK.C,'.e. e.=y.-x.^, and 
V{ĉ .p} is the estimated design variance of c .̂̂  calculated 
with c'. = Q^̂  h'.. The limiting properties hold for stratified 
samples and for stratified two stage samples under mild 
restrictions on the sequence of populations. 

By analogy to (3.7), a regression estimator of the finite 
population mean is obtained by evaluating the estimated 
regression function at the population mean of x to obtain 

where 
-1 P. =[(^.- ' 'oMx,) ' ' l»" ' (X,-XoM„) 

x(X,-XoA„)'«!»-• y. 

M ,̂ =XQ^ Xy^, arid {y^,x^) is defined in (4.16). The 
ratios, such as x^^ y^, can also be written as ratios of 
Horvitz-Thompson estimators. If J is in the column space 
of X, estimator (4.17) is location invariant. If O = D .then 

: - l 
*0,K -^o./v x„„x^,,, = 1, and 

>̂ reg = ' ' v P =>^n + ( ' ' l , / V - X , . „ ) P p (4.18) 

where 



10 Fuller: Regression Estimation for Survey Samples 

E(x , , , - x , , „ ) ' J t ; ' ( x , , . - x , J 
ieA 

xEK,-x,„)'<'(y,-y-„). (4.19) 
ieA 

Also, when O =D^, the p̂ ^ of (4.7) is the population 
regression coefficient regression coefficient 

P̂  E 
ieU 

X X. ' E x ; y , 
ieU (4.20) 

Because the regression estimator of the mean is a linear 
combination of regression coefficients, it is a regression 
coefficient for a linear combination of the original x-
variables. To see this, let x. = {x^ ., x,;) = (l,x, .), and 
define a new vector with one in the first position and a 
second vector with population mean equal to zero obtained 
by subtracting the original population mean x, ^ from the 
original x, . vector. Let q,. = (l,x, ^ - x, ^) be the trans­
formed vector. Then the transformed regression model is 

3', = q, y + e., 

where the finite population coefficient vector is 

Y;v = (5*/v' KN )'=f E q/ q,l"' E q/ 3',-
\ ieU ) ieU 

(4.21) 

(4.22) 

The expression for the regression estimator of the mean 
becomes 

3'reg ^N^ V Q ' (4.23) 

where y is obtained from (4.4) with q̂ . replacing x̂ .. 
Because the estimator is a linear estimator of the form 
w' y, we can write 

>'reg = E %-3',- = E <'?,3', ' (4.24) 
ieA ieA 

where W. = K] g.. Furthermore, the estimated variance 
from (4.12) is 

^{^reg} = ^{YO} = ^ { E < ' i8i^i)V (4.25) 

where it is understood that the estimated design variance of 
(4.25) is computed for the variable g. e., e. = y, - x̂ . p, and p 
is defined in (4.4) The variance estimator (4.25) is a direct 
generalization of expression (3.5). By transforming the 
variables so that the population mean of the auxiliary vector 
is zero, the first element of the regression vector is the 
regression estimator of the mean and the first element of 
(4.12) is an estimator of the variance of the regression 
estimator that contains a component due to estimating p. 
This was pointed out in Hidiroglou, Fuller, and Hickman 
(1978). Also, see Samdal (1982). Samdal, Swensson and 
Wretman (1989) suggested the ̂ -factor terminology for the 
calculation of the estimated variance of a regression 
estimated total. 

From (4.17), we can write 

3̂reg = \N^0,1 [y. - X,,„ P,;, - (y^- X,,/,P,^)] 

+ o^(«''), 

= e\-0^{n-^ 

where e. = ŷ . - x .̂p. Hence, the variance of the regression 
estimator can be estimated with 

'^(^•>=1S"'T'S-'^'f (4.26) 

where e. = y. - x.p. Because (4.25) is as easy to compute 
as (4.26), and is applicable when x, ^̂  x, ^ IS not 
O (n' ) , the estimator (4.25) is recommended. 

The variance of the regression estimator can also be 
computed using the jackknife or other replication methods, 
and the use of replication methods is becoming more 
common. See Frankel (1971), Kish and Frankel (1974), 
Woodruff and Causey (1976), Royall and Cumberland 
(1978), and Duchesne (2000). Yung and Rao (1996) 
showed that (4.25) is identical to a jackknife linearization 
estimator for stratified multistage designs. 

The approach to regression estimation associated with 
(4.18) and (4.19) falls completely within a design formu­
lation. No models of the population, beyond the existence 
of moments, are used, through one rrught argue that one 
would only consider regression when one feels there is 
some linear correlation between x, . and y.. 

The estimator (4.19) is a very natural estimator because 
the estimated regression coefficient is a design consistent 
estimator of the population regression coefficient. It is 
mildly annoying that (4.18) does not always yield the 
smallest large sample design variance for the estimated 
mean. Treating p, of (4.18) as a fixed vector, the value that 
minimizes the variance of the linear combination of means 
is 

K.o,i-ly{K.\^t.}rC{x,_„,yjY,]. (4.27) 

See Cochran (1977, page 201), Fuller and Isaki (1981), 
Montanari (1987,1999) and Rao (1994). If there is a design 
consistent estimator of the variance of x, ,̂ then the p, ^ 
that minimizes the estimated variance 

^iy.-KJu)' (4.28) 

denoted by p, ^ , is a consistent estimator of p, . ,. It 
follows that the estimator 

3'rf,reg = > ' n + ( X l . W - ^ l , n ) P l , dopt (4.29) 

has the minimum limit variance for design consistent 
estimators of the form y^ + (x, ^ - x, ^)fi^ j . Also 

' ^ { ^ „ } r ( y . , r e g - y ; v ) ^ ^ ( 0 , l ) , 
(4.30) 
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where V{e^} is the estirnator of (4.26) constructed with 

^" ,=3 ' , - yn - ( ' ' i . / - ' ' i . . )P i . dop . -
In a large sample sense, (4.29) answers the question of 

how to constmct a regression estimator with optimum 
design properties. In practice a number of questions remain. 
The estimator is obtained under the assumption of a large 
sample and a vector x of fixed dimension. In practice there 
may be a number of potential auxiliary variables and if a 
large number are included in the regression, terms excluded 
in the large sample approximation become important. This 
is particularly tme for cluster samples where the number of 
primary sampling units in the sample is small. In such cases, 
the number of degrees-of-freedom in ^(x, ĵ } is small and 
the inverse can be unstable. These issues are discussed 
further in section 9. 

The estimator p, . ^ of (4.29) is linear in y for most 
designs. See Rao (1994). For example, for a stratified 
design with simple random sampling within strata, 

C{x,, „ ,y„} 

H "b 

= E ^ / . E (x,.A;-x,,A)'(>'„;-y,), (4 31) 

where 

= N-'rt;\l-f^){n^-l)-'n„ 

N'^Nf^ = W ,̂ N^ is the size of stratum h, /;, = Jt̂  = Â^ «,,, 
and n̂  is the sample size in stratum h. It follows that the 
weights associated with estimator (4.29) are 

^/./ = ^ " ' ' t / ; ' + ( X , , ; V - X , , „ ) 

E^ ,E(Xuy-x , , , ) ' ( x , , , , - x , , , ) 
1=1 j=i 

X ^ / , (x , . / „ -x , , , ) ' . (4.32) 

See also Samdal (1996). The weights of (4.32) can be 
constructed by minimizing Y,hieA ^hi ̂ h subject to the 
constraints 

Y, w,. = N-'N,,h = l,2,-,H, 
ieA„ 

and 

hie A 
^hi ^l.hi ^l.N^ 

where Â  is the set of sample elements in stratum h. 
The estimator of (4.19) with <]> = D^ is a function of 

Horvitz-Thompson estimators of population moments. The 
estimator (4.17) with O"' = diag {/f,}, the diagonal matrix 
with K^ on the diagonal for elements in stratum t, and 
dummy variables for stratum effects, gives the estimator of 
the mean in the class 

' reg \^(\N-''l.n)f^l 

with the smallest estimated design variance. If the true 
slopes in the strata are the same and if the selection proba­
bilities are proportional to the square roots of the within-
stratum variances, then the use of O = D„ gives a smaller 
small sample MSE than the use of <J>'^ = diag{K^} 
because the sum of vv̂ /O;, is smaller. Fuller and Isaki 
(1981) noted that the design-optimum estimator is often 
well approximated by the estimator constructed with 

We have introduced regression estimation for the mean, 
but it is often the totals that are estimated and totals that are 
used as controls. Consider the regression estimator of the 
total ofy defined by 

v, reg 
T + 

V. It ('^x.N-^x.JKx' (4.33) 

where T^^ is the known total of x and {f,,'t ) is a 
vector of design consistent estimators of (7"̂  ^, T^ ^). By 
analogy to (4.28), the estimator of the optimum p is 

P,.. =[^{T.,J]"'c{t;„,f,„), (4.34) 

where VCT̂ ĵ} is a design consistent estimator of the 
variance of "r̂  ^ and C{T^^,T^,J is a design consistent 
estimator of the covariance of 'T and f . 

x.n _ V.n 

The estimator of the total is A'y for simple random 
sampling, but the exact equivalence may not hold in more 
complicated samples, because in such situations the esti­
mated mean may be a ratio estimator. However, if the 
regression estimator of the two totals is constructed using 
(4.34), the ratio of the two estimated totals has large sample 
variance equal to that of the regression estimator of the 
mean. To see this write the error in the regression estimated 
totals ofy and u as 

y, reg 
T -T 

-K;.-t,,„)p,,.,,^-0^(A^n-') 

and 

".reg U,N U, Jl u,N 

^KN-t.J)Kx.N-0^{Nn-^), (4.35) 

where we are assuming f ,̂  - 7̂ . ^, p̂ ,.̂  - p ,̂.̂ ^ and the 
corresponding quantities for u, to be 0 (Nn'^'^) and 
C>(n""^), respectively. Then the error in f̂"̂^ f, ̂ ^ is 

r-jn ~ I rrf rri ~ 1 rji rjy ~ \ I m m I 

' u.resy;reg~ ' U.N' y.N ~ ' U.N[\' y,ii~ ' y-.N/ 

^(T,;v-t,J(P,,,^-/?^P,,^)] 

+ 0 / / V / Z - ' ) , (4.36) 
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where R^ = T„"̂  T ^. If we construct the regression esti­
mator for /?^ starting with R = t^^ f^.^, we have 

where 

and 

^̂eg = ^ - ( T , V - T , J P « . , , 

P«.. = [^{t,„)]"'c{t;,„,^} 

(4.37) 

It follows that the large-sample-design-optimum coefficient 

for the ratio is T^,N(^y^x.N ~ ^t^f^nx.N) ̂ ^^ ^̂ e ratio of 
design-optimum regression estimators is the large sample 
design-optimum regression estimator of the ratio. 

5. MODELS AND REGRESSION ESTIMATION 

In this section we assume that the analyst postulates a 
detailed superpopulation model. Assume also that the 
sample is an unequal probability sample or (and) the 
specified error covariance structure is not a multiple of the 
identity matrix. Then, only in special cases will the design 
optimal estimator of (4.29) agree with the best estimator 
constmcted under the model, conditioning on the sample 
x-values. To investigate this possible conflict, write the 
model for the population in matrix notation as 

e ^ ~ (0, E^^yu), (5.1) 

where y ^ = (y,,y2,-.yAf)' ' £(/ = («!'^2'••• '^^)' ^"'̂  
Xy = (x,', Xj, • , x^)'. It is assumed that E^̂ ŷ is known or 
known up to a multiple. The model for a sample of n 
observations is 

ŷ  =x ,P-e, , 

^A ~ {^''^eeAA)' 

where y^ = (>'i.>'2.-'yj'' ^^ = (« i ' ^2 ' - ' ^J ' ' 
X ̂  = (X,', Xj, • • •, X ̂ )', and we index the sample elements by 
1, 2, ..., n, for convenience. We have used the subscript U 
to identify population quantities, and the subscript A to 
identify sample quantities, but we will often omit the 
subscript A to simplify the notation. For example, we may 
sometimes write the nxn covariance matrix as S^̂ . The 
unknown finite population mean is 

y^ = x^P+e-^. (5.2) 

Under model (5.1), the best linear, conditionally 
unbiased predictor of 0^ = y ̂ , conditional on X is 

Q=N- i:y,. + (N-n)x^.„P 
ieA 

+ 1' F-
• ' N - n * AA 

(y^-xj) (5.3) 

where F^^ =E^^^i:;;^, x^.„= {N-n)-'{Nx^-nx„), 

P = (x '2: ; lx)- 'x ' : ̂eeAA y. 

C/i =(^«.i'^n.2'-'^A')'_J/v-« 's an N-n dimensional 
column vector of ones, x ^ is the simple sample mean, and 
A is the set of elements in U that are not in A. See Royall 
(1976). Under the model. 

0->'A, = C , , (P -P)+A^- ' j ; . „ ( r ; i , e , -e , ) 

and 

v(9-y^|x,}=c,,v{p}c;,-

^^'^^'N-n(^eeAA '^AA^eeAA) K-n' (5.4) 

where 

c^A =N''l(N-n)%-„-y,.„r^x,]. 
Design consistency of estimator (5.3) and the situations 

in which the model estimator reduces to the Horvitz-
Thompson estimator have been considered by, among 
others, Isaki (1970), Royall (1970, 1976), Scott and Smith 
(1974), Cassel, Samdal, and Wretman (1976, 1979, 1983), 
Zyskind (1976), Tallis (1978), Isaki and Fuller (1982), 
Wright (1983), Pfefferman (1984), Tam (1986), Brewer, 
Hanif and Tam (1988), Montanari (1999), and Gerow and 
McCulloch (2000). 

The estimator (5.3) reduces to x^ p if there is an T| such 
that 

X A ' H ~ ^eeAA ^n "̂  ̂ eeAA ^N-n' (5.5) 

for all samples with positive probability. If there is also y 
such that 

X^Y = ^eeAA'^n h (5.6) 

for all samples with positive probability, then 9 of (5.3) is 
design consistent, where D̂^ was defined for (4.14). Given 
a k such that 

X, k = 2 , , ^ (D; ' J „ - J„) -2 , , ^ - J,.„, (5-7) 

then 0 of (5.3) is expressible as 

e=5^ „ - ( x ; v - \ )P (5-8) 
and if the design is such that y^ is design consistent for 
y^, 9 of (5.8) is design consistent for y^. 

We call a regression model of the form (5.1) for which 
(5.5) and (5.6), or (5.7), holds a full model. If (5.6) or (5.7) 
does not hold, we call the model a reduced model or a 
restricted model. We cannot expect the conditions for a full 
model to hold for every analysis variable in a general 
purpose survey because T,^^ will be different for different 
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y's. Therefore, given a reduced model, one might search for 
a good model estimator in the class of design consistent 
estimators. 

To constmct a design consistent estimator of the form 
x^p when model (5.1) is a reduced model, we can add a 
vector satisfying (5.7) to the X-matrix to create a full model. 
There are two possible situations associated with this 
approach. In the first, the population mean (or total) of the 
added variable is known. With known mean, one can 
construct the usual regression estimator and the usual 
design variance estimation formulas are appropriate. 

To describe an estimation procedure for the situation in 
which the population mean of the added variable is not 
known, let q = (?,, ^2' "'^n)' denote the added vector, 
where q is the vector on the right side of the equality in 
(5.7). Let H = (X, q ), where X is the matrix of auxiliary 
variables with known population mean vector, x^. We 
write the full model for the sample as 

y = Hp^,.,+e, (5.9) 

where e ~ (0, E^^). The best linear conditionally unbiased 
estimator of p . i s 

Kh = (H'2;;.'H)''H'Z;;y. (5.10) 

If the coefficient for q in (5.9) is not zero, it is not 
possible to construct a conditionally unbiased estimator of 
h^P^,.^ because thp ^^ component of h^ is unknown. 
However, because p̂ ,.̂  is unbiased for p .̂̂ , it is possible to 
construct a conditionally unbiased estiriiator of any linear 
function of fi .. Thus, it is natural to replace the unknown q ̂ ^ 
with the "best available" estimator of q^, and a reasonable 
choice is the regression estimator. 

9reg = ^n^{''N-K)K. (5.11) 

where p .̂̂  
becomes 

(X'2:;jX)"'x'2:;'q. Thentiieestimator(5.3) 

0 -y.*l{^N'^teg)-{K'^n)]K (5.12) 

The estimator (5.12) can be expressed in the familiar 
regression estimator form. 

3̂ reg =>*n + ( ^ ^ - \ ) P y . (5.13) 

That is, the regression estimator of the finite population 
mean ofy based on the full model, but with the mean of q. 
unknown and estimated with the regression estimator, is the 
regression estimator with p̂ ,.̂  estimated by the generalized 
least squares regression of y on x using the covariance 
matrix E^ .̂ See Park (2002). The estimator is conditionally 
model unbiased under the reduced model containing only x 
if the reduced model is tme. If the population coefficient for 
q^ is not zero, the reduced model is not true. Then the 
estimator is conditionally model biased, but the estimator is 
unbiased for the finite population mean under the full model 
and an unbiased design, because 

^ { > ^ r e g - ^ 4 = ^ { ^ [ > r e g - > ' J H ] } 

= £{(0,^„g-^/.)P,. . .}^0. (5.14) 

where y is defined in (5.12) and the approximation is due 
to the approximate design expectation of the regression 
estimator q^^^. 

The estimator (5.13) is a linear estimator, where the 
vector of weights, w, minimizes the Lagrangean 

w'5:^^w.[w'H-(x^,^, ,J]X. (5.15) 

The estimator is location invariant if the column of ones is 
in the column space of X. 

Because the variable q is the variable whose omission 
from the full model can produce a bias, it seems prudent to 
test the coefficient of q before using the reduced model to 
constmct an estimator for the mean ofy. This can be done 
using a model estimator of the variance. 

^{PrJ")=("'^«« 

or using the design estimator of variance of (4.12). See 
Du Mouchel and Duncan (1983) and Fuller (1984). 

A working specification for 2^^ may be particularly 
appropriate for two-stage samples, see Royall (1976, 1986) 
and Montanari (1987). A reasonable model is that in which 
there is common correlation among items in the same 
primary sampling unit and zero correlation between units in 
different primary sampling units. Because the associated 
2^^ is block diagonal of a particular form, it is relatively 
easy to invert and hence the estimator based on such a 
working O is relatively easy to constmct. The regression 
estimator using a O with a non zero cortelation for units in 
the same primary sampling unit is a combination of the 
estimator based on primary sampling unit totals and that 
based on elements. See Fuller and Battese (1973). Thus, the 
use of such a O can avoid variance problems associated 
with the use of primary sampling unit totals. 

6. MAXIMUM LIKELIHOOD AND RAKING 
RATIO 

The theoretical foundation for the regression estimators 
discussed in section 3 and section 4 is maximum likelihood 
estimation for the linear model with normal errors. We now 
consider the likelihood for multinomial variables. Given a 
simple random sample from a multinomial defined by the 
entries in a two way table, the logarithm of the likelihood, 
except for a constant, is 

E E «y log p.J, 
/•=] ; = 1 

(6.1) 

where a., is the estimated fraction in cell ij, p.. is the 
population fraction in cell ij, r is the number of rows, and 
c is the nuriiber of columns. If (6.1) is maximized subject to 
the restriction ]CJ^P; = 1, one obtains the maximum 
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likelihood estimators p.. = a... If the marginal row fractions 
p., jy and the marginal column fractions p. ^ are known, it 
is natural to maximize the likelihood subject to these 
constraints by using the Lagrangean 

r e r I c ' 

E E "y log p +Yh E Pij -Pi;N 

r+c r 

+ E \ YPij-Pj.N 
j=r*l • • 1 = 1 (6.2) 

where X.,i = 1,2,..., r, are for the row restrictions and 
>.., 7 = 1,2, •••, c, are for the column restiictions. There is no 
explicit expression for the solution to (6.2) and there may 
be no solution if there are too many empty cells. A 
procedure that produces estimates close to the maximum 
likelihood solution is that called raking ratio or iterative 
proportional fitting. The procedure iterates, first making 
ratio adjustments for the row restrictions, then making ratio 
adjustments for the column restiictions, then making a ratio 
adjustments for the row restrictions, etc. The method is 
generally credited to Deming and Stephan (1940). See, for 
example. Bishop, Fienberg and Holland (1975, Chapter 3). 

Deville and Samdal (1992) considered a class of 
objective functions of the form L,s/i^(^i'"i)' where 
G{w,a) is a measure of distance between an initial weight 
a. and a final weight w.. The objective function is mini­
mized subject to the constraints 

E ^x,. 
ieA 

^N- (6.3) 

Deville and Samdal (1992) used the term calibrated to 
describe weights satisfying (6.3). If the initial weight is 
a. = {Y^KJ )"' Kj and if one is the first element of x̂ ., the 
solution to the minimization problem is approximated by a 
regression estimator of the mean of the form 

>̂ reg =>^. + ( X ; v - \ ) P ' (6.4) 

where 

P = E x;(p,7'x,.l''l]x;(p:'y., 
ieA ieA 

and (p.. is the second derivative of G{w,a) with respect to 
w evaluated at (w,a) = (aj.,a.). Using this approach, 
Deville and Samdal (1992) showed that the maximum 
likelihood and raking ratio estimators have the same 
limiting distribution as the regression estimator (4.18) with 
O = Djj. To obtain the raking ratio weights they used the 
objective function 

Y, w.loga-^w.^a.-w. (6.5) 

and to obtain the maximum likelihood weights they used 
the objective function 

^ [w,.-a.-a,, log a,:'W.J. (̂  g) 

Deville, Samdal and Sautory (1993) investigated four 
estimators in the class. Although weights constructed using 
different functions could differ considerably, the authors 
concluded that estimates were quite similar, a result 
consistent with the theory. Singh and Mohl (1996) and 
Theberge (1999, 2000) discuss estimators with the 
calibration property. 

7. POPULATION OF AUXILIARY VECTORS 
KNOWN AT ESTIMATION STEP 

If the x-vector is known for all of the population 
elements, the number of possible regression-type estimators 
is greatiy expanded. Most procedures involve the fitting of 
an approximating function for the relationship between y 
and the auxiliary variables. The most used procedure is to 
assign the population elements to categories on the basis of 
the auxiliary data and to use these categories as post strata. 
This procedure is equivalent to approximating the expected 
value of y given x by a step function. The estimator is 
formally equivalent to the regression estimator (4.19) where 
the x-vector is a vector of indicator variables for post-
stratum membership. 

The application of the procedure often requires the 
development of criteria to use in forming the post strata. 
Typically the post strata are formed so that each post 
stratum contains a minimum number of sample elements 
and so that the weights for any post stratum are not overly 
large. Estimation with post strata and the formation of post 
strata have been studied by Fuller (1966), Holt and Smith 
(1979), Tremblay (1986) Kalton and Maligalig (1991), 
Little (1993), Eltinge and Yansaneh (1997), and Lazzeroni 
and Littie (1998), among others. Holt and Smith (1979) 
argued for the use of a conditional variance estimator for 
post stratification. 

Given the population of x-vectors, one can use the 
sample to estimate a functional relationship between y and 
X and then predict the unobserved y. If the procedure is to 
be design consistent, then a condition similar to (4.14) must 
hold. One way to ensure design consistency is to require the 
fitted model to satisfy 

ieA 
>',-/(x,.,P) = 0, (7.1) 

where f{x., P) is the model estimated value for the i-th 
observation. 

Firth and Bennett (1998) pointed out that some nonlinear 
models satisfy (7.1). If the initial model does not satisfy 
(7.1), an estimated intercept term can be added to create an 
expanded full model. 

/;K;P)=/h;P) 

ieA Ev 
ieA 

^,--/(",; p)]-
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This is a direct extension of the ideas of difference 
estimation to the nonlinear case. See Isaki (1970), Cassel, 
Samdal and Wretman (1976) and Wright (1983). A closely 
related approach was suggested by Wu and Sitter (2001) in 
which the fitted function f{x., P) is used as the auxiliary 
variable in a linear regression estimator. 

A number of "local" procedures, other than step 
functions, can be used to approximate the functional 
relationship between x and y. Spline functions and 
polynomials are linear models that fall within the class of 
section 4. Estimators that use some kind of local smoothing 
to estimate population quantities have been considered for 
finite populations from a model viewpoint by Kuo (1988), 
Dorfman (1993), Dorî man and Hall (1993), Chambers 
(1996), and Chambers, Dorî man and Wehriy (1993). Breidt 
and Opsomer (2000) showed tiiat estimators based on local 
polynomial regression are design consistent. Firth and 
Bennett (1998) also considered local fit models. 

8. REGRESSION ESTIMATION AND 
NONRESPONSE 

Regression estimation is frequently a part of procedures 
used to adjust data for unit nonresponse. Regression can be 
justified on the basis of a model such as (3.1) or on tiie basis 
that regression can adjust for unequal response probabi­
lities. See Cassel, Samdal and Wretman (1979, 1983), 
Little (1982,1986), Bethlehem (1988), Kott (1994), Fuller, 
Loughin and Baker (1994) and Fuller and An (1998). 

Consider an estimator of the population regression vector 
of the form (4.4) with O = D^ constmcted with the 
responding units. Denote the estimator by p and let p. be 
the conditional probability of observing unit / given that the 
unit is selected for the sample. Then under regularity 
conditions, the estimator p is a consistent estimator of 

(Ex;.,x,) -1 

ieU 
hPiyi- (8.1) 

The population mean ofy can be expressed as 

ys^^Nts^^N (8-2) 
where a^ = y. - x j ^ and o"̂  is tiiejwpulation mean of tiie a.. 
The regression estimator y = x ̂  p will be consistent for y^ 
if the probability limit of a^ is zero. The probability limit 
of d^ will be zero if the sequence of finite populations is a 
sequence of random samples from an infinite population in 
which 

>-, = x,.p + e., (8.3) 

and the e. of the sample are independent of x. with 
£{^. |x.}=0. 

Altematively, a sufficient condition for a^ to be zero is 
the existence of a column vector ^ such that 

x,-^ -Pi (8.4) 

for 1 = 1,2, •••, Â . Thus, if the reciprocal of the response 
probability is a linear function of the control variables, the 
regression estimator is a consistent estimator of the mean of 
y. One way in which (8.4) can be satisfied is for the 
elements of x. to be dummy variables that define subgroups 
and for the response probabilities to be constant in each 
subgroup. 

If (8.4) holds and if the probability of responding is 
independent from unit to unit, then the estimated variance 
based on (4.12) is an appropriate estimator for the variance 
of the regression estimator of the mean. It is particulariy 
important that a variance estimator of the form (4.12) or 
(4.25), and not of the form (4.26) be used, because x^ - x^ 
is, in general, not O (n "^) in the presence of nonresponse. 
Singh and Folsom (2000) make a similar argument for the 
variance estimator (4.25) when using regression to adjust 
for coverage ertor. 

Often a preliminary adjustment to the selection proba­
bilities is made for nonresponse and this is followed by 
regression estimation. The most frequently used response 
adjustment is to form adjustment cells (post strata) and to 
ratio adjust the weights of respondents in the cell so that the 
sum of the weights is equal to the estimated (or known) 
total for tiie cell. See, for example, Littie and Rubin (1987, 
page 250). Procedures using an estimated response proba­
bility function are discussed by Cassel, Samdal and 
Wretman (1983), Rosenbaum and Rubin (1983), Folsom 
and Witt (1994). Fuller and An (1998), and Folsom and 
Singh (2000). Brick, Waksberg and Keeter (1996) use an 
estimated contact probability to adjust for frame coverage. 

To consider procedures based on estimated response 
probabilities, assume that the inverse of the response 
probability for individual / is given by 

p,*' = g(z,.;e°), (8.5) 

where z. is a vector of variables that can be observed for 
both respondents and nonrespondents, 6° is die tme value of 9, 
and g{z.;Q) is continuous in 9 with continuous first and 
second derivatives in an open set containing 9" for all z.. 
The vector (y., x̂ ., z.) is observed, and we assume that p. is 
bounded below by a positive number. 

Let 5j. be the indicator variable with 5,. = 1 if a response is 
obtained and 5,. = 0 if a response is not obtained. Using the 
vector {?>., z,.), the parameter 9" of the response probability 
function is estimated. Assume that 9 - 9" = O (/z '^) , where 
9 is the estimator of 9. Let p^ denote the finite population 
regression vector for the regression ofy on x. Let 

P = f E x; X.<'PV' 6,]"' E x; y,n:'p;' 5,, (8.6) 
V ieA j ieA 

where TÎ  are the selection probabilities and p,"' =g{z.;Q). 
Under conditions of the type used in section 4, 

P - P/v = M '̂ E 5, <'p,"'x; a, [ 1 . p,. g,,. (9 - 0°)] 
i e A ^ •• 
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where g,,. is the row vector of first derivatives of g(z.; 0) 
evaluated at 9=9" and M„ = X,,, x,.' x,.7t;'p,"' S,- If g,, .•ieA • 

is uncortelated with a., then the term involving g, .a,, is 
O (n ' ' ) and the variance estimator constmcted as if 
g(z;9") is known is appropriate. The conditions are 
satisfied if z. is a subvector of x. and z. defines imputation 
cells (adjustment cells) with equal response rates within a 
cell. 

9. PRACTICAL CONSIDERATIONS 

If the regression weights are to be used in a general 
purpose survey, no individual weight used in estimating a 
total should be less than one. Also, it seems reasonable, on 
robusmess grounds, to avoid very large weights. We discuss 
some procedures that have been developed to accomplish 
these objectives. 

A number of algorithms produce positive weights with 
a high probability. Raking ratio procedures produces 
positive weights for most data configurations. Deville, 
Samdal and Sautory (1993) discuss the extension of raking 
ratio to general ;c-variables and extensions to include 
bounds on the weights. 

Tille (1998) suggested the use of approximate 
conditional probabilities, conditional on x̂ ,̂ to compute an 
estimator. His approximation can be extended to produce 
regression weights that are positive with high probability. 
Let x„*'̂  be an estimator obtained by deleting element /, or 
primary sampling unit i, and modifying the remaining 
weights so that x„''̂  is unbiased, or consistent to the same 
order as x^, for the population mean of all elements 
excluding i. The estimator x„''̂  can be the estimator used to 
constioict jackknife deviates. Let L ^ be an estimator of the 
covariance matrix of x„ and let 2_, . , be an estimator of 
the conditional covariance matrix of x„ conditional on 

— —ii) 

i € A. Then, in large samples x̂^ and x„ are approximately 
normally distributed and an estimator of the probability that 
/ is in the sample given the estimated mean x̂ ,̂ is 

ft,l,=P{/eA|F^,x„} 

-K.\ 
" « ( ' • ) I 

"exp{0.5(G^-G^,))} (9.1) 

where 

^xx(i)-\^n ^Nl^xxiny^it ^Nj ' 

^^•> and x)^ = {N - l)'^ {Nx^-x.). For simple random 
sampling, Tille (1998) showed that the estimator 

V=^"'E<^>',. (9.2) 
ieA 

where n.,^ is the conditional probability calculated under 
the normality assumptions, is approximately equal to the 

regression estimator. Because the estimator is not 
calibrated, we suggest a calibrated version obtained by 
computing the regression estimator with ft^i^ as initial 
weights. The difference between (9.2) and the regression 
estimator constmcted with initial weights ft,.,̂  is O (n"'). 
Hence, there is a good chance that the regression weights so 
constmcted will be positive. The variance estimator 2̂ -̂y(,) 
is relatively simple to compute for stratified samples but 
may require considerable computation for other cases. Thus 
one may choose to approximate E—^̂ .j. 

Given that the regression weights are being constructed 
by minimizing an objective function, one can add 
restrictions to the problem to place bounds on the weights. 
Huang and Fuller (1978) gave an interative procedure 
equivalent to constmcting a O matrix at each step that 
reduces the weight on observations whose current weight 
deviates from the average by a large absolute amount. 

To discuss additional procedures associated with 
quadratic objective functions, assume we have a working 
covariance matrix, denoted by O^ ,̂ for the model (5.1) that 
is to be used to construct a regression estimator. Let a be 
the column vector of initial weights and assume O^^a is in 
the column space of X. Then the weights that minimize the 
conditional model variance are the weights that minimize 
w'O w or, equivalently, that minimize 

(w-a ) 'O^^(w-a ) 

subject to the constraint 

w'X " A T -

(9.3) 

(9.4) 

Given an objective function, we can add restrictions on the w. 
such as 

L, <. w. i Lj, ieA, (9.5) 

where L^ and Lj are nonnegative constants. Minimizing 
(9.3), subject to the constraints (9.4) and (9.5) is a quadratic 
programming problem. The use of quadratic programming 
was suggested by Husain (1969) and was used by Isaki, 
Tsay and Fuller (2000). 

If a large number of control variables are used, it may not 
be possible to constmct weights satisfying the calibration 
constraints and also falling within reasonable bounds. The 
practitioner is faced with making compromises. The most 
common practice is to drop variables from the model. See 
Bankier, Rathwell and Maijkowski (1992) and Silva and 
Skinner (1997). To discuss an alternative procedure, 
consider the situation in which some of the constraints are 
required but others can be relaxed. Let the matrix of 
observations on the auxiliary variables be partitioned as 
(XQ, Xj), where X^ is the set of variables for which exact 
constraints are required and X^ is the set for which the 
constraints can be relaxed. Assume O^^a is in the column 
space of Xg.Then a generalization of (9.3) and (9.4) is the 
function 

(w-a)'<D^^(w-a) + (w'X2-X2;,)T(w'X2-X2;,) '(9.6) 
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and the constraint 

w'Xo-Xo^ = 0, (9.7) 

where O^̂  and 'V are positive definite symmetric matrices 
and x^ = (XQ ^, x̂  fj)- The w that minimizes (9.6) subject 
to (9.7) minimizes the mean squared error of the unbiased 
linear predictor of x^ p under the mixed model 

y =XoPo + X2p2+e, 

where p^ ~ (0, T) , e - (9, O^^), the random vector p^ is 
independent of e, and PQ is a fixed vector. See Lazzeroni 
and Little (1998) for the use of random models for post 
stratification. 

The vector w' that minimizes (9.6) subject to restriction 
(9.7) is 

Then the diagonal T that minimizes the approximate 
variance has elements 

w' =a'+(x^-x„)H;;,x'«i>;;, (9.8) 

where 

H = 
x\^x 

'xo'o;jXo 

, X 2 ' O ; ; X Q 

XQ'OJJX, 

«p->+X2'o;Jx,^ 

The estimator can be written 

3*rreg = ^ y = y„ + (x^ - x j 9 , 

(9.9) 

(9.10) 

where 9 = H^^ X' Ojj y. See Henderson (1963), Robinson 
(1991), and Rao (2002, Chapter 6). 

Husain (1969) considered (9.6) for a simple random 
sample from a normal distribution with XQ = J, O^̂  = I, 
and T"' =Y '^;t22' where E_̂ 22 1̂  ^^^ estimated cova­
riance matrix of x^ ̂ , and y is a constant to be determined. 
For this case, Husain showed that the optimal y is 

Yop. =[k2{l-R')]-'{n-k2-2)R\ (9.11) 

where /Cj is the dimension of x̂  and R^ is the squared 
multiple correlation coefficient. Bardsley and Chambers 
(1984) considered the function (9.6), the division of x̂ . into 
two components, and studied the behavior of the estimator 
from a model perspective. The procedure associated with 
(9.5), (9.6) and (9.7) was used by Isaki, Tsay and Fuller 
(2000). In that application, the vector x^^^ contained 
marginal totals of a multiway table and x^ ̂  contained 
totals for interior cells. Rao and Singh (1997) studied a 
closely related estimator in which tolerances are given for 
the difference between the final estimates for elements of 
X2 fj and the cortesponding elements of x^ /̂  • 

Park (2002) extended Husain's optimality results to a 
more general T. The Xj vector can be transformed so that 
V {Xj „} for the transformed vector is a diagonal matrix and 
so that Xj ^ee^2 '̂  ^ diagonal matrix, where Xj is the 
part of Xj that is orthogonal to XQ in the metric O^̂ . That 
is. 

V. = (m,Vp3,)-•p^ (9.12) 

X2 -X2 • X O ( X Q ' < I > ; ; X Q ) ' X ' O ' X 
-^0 ^ee ^ 2 " 

where ni^. is the ith element of the diagonal matrix 
Xj 0 „ Xj and Vg^.. is the variance of ^. in the 
transformed scale. 'To implement the procedure one must 
estimate the population parameters or choose realistic 
values for a general purpose V. If one postulates a super-
population random model for p, then the P, of (9.12) is 
replaced with E[ p,}, where the expectation is the model 
expectation. 

19. COMMENTS 

Regression estimation is a flexible and powerful tool for 
the incorporation of auxiliary information into the esti­
mation process. Closely related procedures, such as raking 
ratio, have large sample properties equivalent to those of 
regression estimators. The linearity of such estimators is of 
paramount importance because it permits the constmction 
of a general purpose data set that provides very good 
estimators for a wide range of parameters. 

Given a concentrated interest in a single y-variable, 
efficiency gains may be possible by postulating a particular 
set of auxiliary variables and a particular error covariance 
matrix. Because of the simple nature of the design 
consistency requirement, it is easy to test such models for 
design consistency. 
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APPENDIX 

This appendix contains theorems supporting the limiting 
properties of the regression estimators discussed in section 4. 

TheoremA.I.Let { C/̂ , F^, Afj,n^: N = k •>• 3,k->• 4,... ] 
he a sequence of finite populations and samples, where F̂ ^ 
is a sample from an infinite population with eighth 
moments, A^ is the sample of size n^ selected from the A'th 
population. Let p be defined by (4.4) of the text, and let 
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Q = « ' z ' a > ' z , 
where O is a positive definite symmetric nxn matrix that 
may be a function of X but not ofy, Z is defined following 
(4.2), and we omit the subscript Â  on sample quantities. 
Assume Q is positive definite with probability one. If O 
is random, assume the rows of O ' ' Z have bounded fourth 
moments. Assume the selection probabilities satisfy 

0<K,<A^n-'7t,.<A:2, 

where K^ are the selection probabilities. Assume the sample 
design is such that for any z with bounded fourth moments 

( Z H T - Z ; V ) ' , ( Q ^ 

where 
Q.v) 0^{n-'''), (A.l) 

z^^^. = (yHx-XHr) = N'^Y ^i^^r (A.2) 

Q^^ = ^{ Q^ i F/v}' Z/v is the finite population mean of 
z, Q^^ is a positive definite matrix for the Nth population, 
and the limit of Q^^ is positive definite. Then 

1 c-P - P ^ | F ^ = Q;;A^b'„.r*C>fn-'), 

where p^ = Q;];, Q^^^, b^^ = A^"' X,e^ ̂ t,:' b, , b;. = 
n'^NK.C,le., 

^zzN 

'^yyN ^yxN 

^ ^xyN "xxA/y 

(A.4) 

p-p^ = (x'a)-'x)-'[x'o-'y-x'«D-'xp^] 

= Q j ( n - ' X ' O - ' e ) . 

Now p is a generalized least squares estimator. Therefore 

e ' O ' X = ( y - X p ) ' a ) - ' X = 0 

^"d Q^.^ - fiy Q^fj = Q„;v = 9. By assumption (A.l) 

Q;^= n-'X'<l>-'e = 0/n-' '^). 

Thus 

p-P;v = Q:^;v[«-'E^;^,)-Op(«'') 

-Q'xlt.[N-^Y^'ib;yoy^). 

The b,. have bounded fourth moments by the assumptions. 
Thus, by assumption (A.5) 

(A.3) where 

Vp'J(p-pJ-^(o,i), 

* BB ^xxN ^ bb ^xxN 

andV^^ = V{bHT.}.Now 

w-'X'O-'e =n-'X'0-'e+n-'X'<I>-'x(Pjv-p) 

-.N-'Y<b'i-^-'Y<hr 
ieA 

e. = y. - X. p^, and C,'. is column i of X'O"'. 
Assume the design is such that 

V ^ ^ N T - ^ J F V } ^ ^ ( 0 ' I ) ' 

where 

(A.5) 

as «;v~*'~ for any z with finite fourth moments, where V— 
is the covariance matrix of Z„T. - z ,̂. Assume that V— is 

. M l IN f. ZZ 

0{n' ) and that the design admits an estimator V - such 
that 

n ( V - - V - ) | F „ = o (1) 
\ zz zzl ' N p^ ' 

for any z with bounded fourth moments. Then 

[ V { p } ] - ' ' ' [ p - p j | F ^ i A ^ ( 0 , I ) , 

where 

v{p} =QJV^^QJ, 

(A.6) 

(A.7) 

(A.8) 

V^̂  = V{b'ĵ .j.} is the estimated design variance^of b'̂ ^^ 
calculated with \)'.=n '^NK.(,'. e. and e. = y. - x,p. 

Proof. The ertor in p is 

h;=«- 'A^; t ,gx,8p 

and 5p = p^ - p. For any fixed 5, by (A.6), the estimated 
variance of N'^H.^^K^^h'. +h!) is consistent for the 
variance of the estimator of the mean of b-i-h. By 
assumption, the elements of C,.x. have fourth moments. For 
a fixed 8 the variance of h ^ is 0{n"'). For 6 = 8p, 

and 

{̂h,W} = V " ' ) ' 

V{K-r} = V{Kr]-o^{n-^) 

because §„ = O (n "'^). Result (A.7) then follows from the 
asymptotic normality of p - p^. 
Theorem A.2. Let y '= (y,,y2. -.>'„) arid 
X' = (XpXp -, x^). Let O be a nonsingular symmetric 
nxn matrix and let O^ be a nonsingular synrmietric NxN 
matrix. Let 

y„ ,x„ ,n- ' (X '0- 'X) and n - ' X ' ^ - ' y 

be design consistent estimators for finite population 
characteristics ŷ y, x^, Q^̂ ^ and Q̂ .̂̂ ,̂ respectively, where 
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[Q« .̂ Q.,w] = [^''x^o;,'x^, A^-'x^o;,'y^ (A.9) 

Let P^ = Q^/vQ^,^. Let there be a sequence of column 
vectors {y^} such that 

Xy^ = OD„-'j„ (A.IO) 

for all possible samples, where D̂^ = diag (TI,, TÎ , •-, \) and 
J^ is an n-dimensional column vector of ones. Then, the 
regression estimator x ̂  p with 

P = ( x ' 0 - ' x ) " ' X ' 0 - ' y , (A.ll) 

is a design consistent estimator of y ̂ . 

Proof. If p is defined by (A. 11), then by the properties of 
generalized least squares estimators, 

(y -Xp) 'O- 'X = 0. 

If(A.lO) holds, then 

(y-XpK'j=|En:'j(y„-xj)=0. 

It follows that y is design consistent because reg 

0=plim {(y„-x„pj|F^} 

= ̂ 1™ {(y„-X„P;v)lM 

= p lim {(y^-x^p^)lF^}. 
N-oo 

Theorem A.3. Let a sequence of populations and samples 
be as defined in Theorem A.l. Let z. be a vector of the 
form z. = {y., 1, x,,.) and let z, ,. = (y., x, .). Assume z, „ 
is a design consistent estimator of the population mean z, ^ 
with nonsingular covariance matrix 

V{z, J F ^ } = 0 ( n - ' ) (A. 12) 

and 

n'H-z,^-z,,)\F,hN{0,'L^), (^.13) 

where 51^ is the limit of n Vfz, ^ | F^}. Assume there is an 
estimator of the variance of z^ ^, denoted by V{z, j^}, 
such that 

pl im n'*«(v{z,„}-V{z, J F ^ } ) = 0 (A. 14) 

for some 5 > 0. Let p, ^^ , 

^ { ^ „ - ^ I . . P M } 

be the vector that minimizes 

(A. 15) 

and let p — .-. ri be the vector that minimizes 
^{ yn - ''•..Pi. J - Let y , ^̂g be defined by (4.29). Then 
yj f̂g has the minimum limit variance for design consistent 

estimators of the form ŷ  + (x, ^ - x, jj)P, j . Also 

'^{\)]'"'(hr.g-y,)^N(o,i), (A. 16) 

where V{e^} is the estimator of (A. 14) constmcted with 

^',=>',->^n-(x,,,-x,,„)P,,dop,-
Proof. The estimator 

Pi,dop, = [^{x,„}]"'c{x,„,y„} 

minimizes the estimated variance of (A. 15), and, by 
assumption (A. 14), the estirnated variance is consistent for 
the tme variance. Hence, p, . , is design consistent for 
Pi.dopt and Pi.dop, minimizes V{ y„ - x,^p}. Therefore,no 
estimator of the form (4.29) has a linut distribution with 
smaller variance. 

Now 

3'rf,reg yN 3'n •yN-('' l.N l.JPl, dopi 

= e„ + o^ {n -"), 

where e. = y. -y^- (x, ,. - x , ^ ) p , Therefore the 
variance of the limiting distribution of n ( y^ ~ J/y) 'S 
the variance of n''^{e^- g^). By assumption'(A. 14), the 
estimator V{z^y) is a consistent variance estimator of 
V {z„y} forany fixed y. Because p, ,„p, - p, ,„p, = o^ (1), 
the estimated variance based on e. converges to the 
estimated variance based on e^ and (A. 16) holds. 
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Leslie Kish's Impact on Survey Statistics 
GRAHAM KALTON' 

ABSTRACT 

Leslie Kish, one of the pioneers of survey sampling, died on October 7,2000, at the age of 90. This paper reviews his impact 
on survey statistics, mainly in terms of his research but also in terms of his promotion of sound probability sampling 
methods around the world. Kish's research was broad-ranging, covering sampling methods, variance estimation and design 
effects, nonsampling errors, small area estimation, survey designs across time and space, and observational studies. He 
promoted probability sampling designs through consultancies in many countries, his writings, and in particular through the 
highly effective intensive summer Sampling Program for Foreign Statisticians that he established at the Survey Research 
Center of the University of Michigan. 

KEY WORDS: Sample design; Variance estimation; Nonsampling errors; Rolling samples. 

1. INTRODUCTION 

Leslie Kish, one of the pioneers of survey sampling, died 
on October 7, 2000, at the age of 90. During his long and 
productive career, he had a major impact on the field, 
achieved both through his impressive research contributions 
and through his extremely successful promotion of the use 
of scientific probability sampling methods throughout the 
world, and especially in developing countries. His wide-
ranging research always focused on issues of practical 
importance, and his innovations facilitated the use of effec­
tive probability sampling in diverse areas. He promoted the 
practice of probability sampling through his expository 
writings (particularly for sociologists and demographers), 
through his numerous consultancies and advisory services, 
and through his training of survey statisticians, particularly 
those from developing countries. 

This paper reviews Kish's impact on survey statistics, 
primarily with respect to his contributions to the advance­
ment of survey sampling and survey research more gene­
rally. It is useful to start with a brief account of his career in 
order to place these contributions in a temporal context. The 
interview of Kish in 1994 by Frankel and King (1996) is 
recommended for those interested in more details of Kish's 
fascinating life. Some of the material in this paper is drawn 
from that interview. 

Kish was bom in 1910 in Poprad, which was then part of 
the Austro-Hungarian Empire and is now in Slovakia. In 
1926, he emigrated to the United States with his family. 
When his father died the following year, he became a 
laboratory assistant at the Rockefeller Institute for Medical 
Research, while attending Bay Ridge Evening High School. 
He graduated from high school in 1930 and enrolled in the 
College of the City of New York night school, while 
continuing to work for 54 hours a week at the Rockefeller 
Institute. His interest in statistics arose out of his work at 
the Institute, and he studied on his own books by Fisher, 

Yule, Wallace and Snedecor, Tippett, Pearl, and others. In 
1937, he interrupted his education to join the International 
Brigade to fight for the Loyalist cause in the Spanish Civil 
War. He retumed to the United States in 1939 and earned 
a B.S. in Mathematics, cum laude, in that year. He was then 
hired by the U.S. Census Bureau as a Section Head, and 
subsequently moved to be a Statistician at the United States 
Department of Agriculture (USDA) Division of Program 
Surveys. In 1942, he left the Division of Program Surveys 
for war service, retuming there in 1945 after the war. In 
1947, he moved with a group of USDA colleagues headed 
by Rensis Likert to set up the Survey Research Center at the 
University of Michigan. He remained at the Survey 
Research Center until his retirement in 1981, when he 
became a Professor Emeritus. He remained fully active 
professionally until his death in 2000. 

2. RESEARCH 

At the start of Kish's career, survey sampling was in its 
infancy. Much survey research was based on nonprobability 
samples. Methods for probability sampling were under 
development and many problems remained to be resolved. 
While at the USDA, Kish identified three important 
problems that he pursued at the Survey Research Center 
(SRC) in developing sampling methods there. 

One of these problems was how to have an interviewer 
randomly select an individual within a sampled household. 
At the time, probability sampling methods for sampling 
households had been developed and were being applied in 
the Current Population Survey, but the CPS collected data 
on all members of sampled households, so that no selection 
of persons within households was needed. Kish invented a 
method for objective respondent selection and wrote it up 
in a memorandum. He was urged by his colleague Angus 
Campbell to submit the work for publication, and it resulted 
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in the famous paper that was his first published research 
(Kish 1949). The widely used method is now known as the 
Kish selection table. 

The second problem that Kish identified was counting 
nonresponse. He had to argue for counting and reporting 
nonresponse with probability samples against the concerns 
of colleagues who felt that to do so would put the SRC at a 
competitive disadvantage, particularly with organizations 
using nonprobability methods. He won his case and SRC 
adopted his approach, which is now fully accepted as 
standard good practice. 

The third problem was that of deep stratification. 
Standard stratification assumes independence of selections 
between strata, with the maximum number of strata possible 
being the number of selections. Particularly when the 
number of selections is small, as is often the case with the 
primary sampling units (PSUs) in a multistage design, it can 
be desirable to obtain greater balance in the sample than 
standard stratification permits. With Roe Goodman, Kish 
developed the technique of controlled selection that 
provides that greater balance by dropping the requirement 
of independence of selections between strata, while still 
retaining probability sampling (Goodman and Kish 1950). 
Kish, who was always concemed to coin good names, 
preferred to call the technique 'multiple stratification', and 
he uses that term in his sampling text (Kish 1965a). 

Kish's subsequent research in survey statistics was 
wide-ranging, covering many aspects of survey sampling, 
nonsampling errors, small area estimation, survey designs 
across time and space, and observational studies. His many 
contributions have had a major impact on the development 
of the practice of survey sampling and of survey research 
more generally. The following paragraphs outiine some of 
his contributions organized by topic. 

Variance estimation. Before the 1970s, the analysis of 
survey data was severely limited by the analytic tools 
available, then mostly punch card equipment, such as 
counter-sorters and tabulators, and hand calculators. Thus, 
for example, weights - and particularly non-integer weights 
- were difficult to handle. For this reason Kish examined 
the use of uniform weights with the Kish selection table, 
even though unbiased estimation calls for weights propor­
tional to the number of eligible household members. 

As a result of the computational difficulties, prior to the 
1970s sampling ertors were rarely computed in a manner 
that reflected the complex sample designs typically 
employed in survey research. A widespread practice was to 
compute variances as if a simple random sample (SRS) had 
been drawn. Kish sought to promote the use of appropriate 
variance estimation methods by social researchers, which 
he did by illustrating the sizable underestimation that often 
arises when SRS formulas are applied to clustered samples 
(Kish 1957). Initially he developed and applied simple 
computational procedures, emphasizing the simplicity that 
can be obtained with a paired selection design in which two 
PSUs are sampled in each stratum (Kish and Hess 1959a; 

Kish 1968). He coined the term "design effect" for the ratio 
of the variance of a survey estimate for a given design to the 
variance of the same estimate obtained from a simple 
random sample of the same size. He made much use of this 
concept in his famous Survey Sampling book (Kish 1965a), 
which provides an encyclopedic treatment of practical 
survey sampling and is still widely read as a Wiley classic. 
He retained his interest in design effects throughout his 
career as an important tool in the design and analysis of 
survey samples (see, for example, Kish 1982, 1995a; Kish, 
Frankel, Verma and Kaciroti 1995; Kish, Groves and Krotici 
1976). An important term in the design effect for a clustered 
sample is the intra-class correlation, which is featured in 
Kish's Ph.D. dissertation (Kish 1952) and in a number of 
his other papers {e.g., Kish 1954, 1961a). 

With the development of computers, Kish was quick to 
see their importance for variance estimation, and with SRC 
colleagues he developed an early Sampling Error Program 
Package (Kish, Frankel and Van Eck 1972). With his 
doctoral student Martin Frankel, he also extended the range 
of statistics for which sampling errors from complex sample 
designs could be computed (Kish and Frankel 1970, 1974). 
This highly influential research developed, applied, and 
evaluated balanced repeated replication (BRR) and jack-
knife repeated replication (JRR) methods of variance esti­
mation. It also provided a definition of the population 
parameters estimated by analytical survey statistics in the 
finite population context. 

Multipurpose surveys. The survey sampling literature 
deals mostiy with an efficient sample design for estimating 
a single population parameter. Kish recognized the limita­
tion of this approach since virtually all surveys are multi­
purpose in nature. He wrote several important papers 
dealing with multipurpose surveys, producing effective 
compromise designs that provide estimates not only for the 
population as a whole but also for various domains (Kish 
1961b, 1969,1976; Anderson, Kish and Cornell 1976; Kish 
and Anderson 1978; Kish 1980; Kish 1988). In recent years, 
he extended his interests to multipopulation surveys {e.g., 
Kish 1999,2002). 

Small area estimation. In considering the production of 
estimates for domains, Kish (1980,1987a, 1987b) classified 
domains into major, ntinor, and nuni domains and rare 
items. Estimates for major domains can be produced from 
a survey using standard sample-based estimators, particu­
larly if the sample is designed to give sufficient domain 
sample sizes for this purpose. The sample sizes of most 
surveys preclude the production of estimates of adequate 
precision for minor or mini domains that comprise less than, 
say, one-tenth of the population. Yet, as Kish recognized 
early on, the demand for up-to-date estimates for small 
domains, particularly small geographical areas, would 
expand. This recognition led to his research in two related 
areas. 

When a survey's sample size is too small to produce 
small area sample-based estimates of adequate precision. 
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reliance may be placed on statistical models to produce 
indirect estimates. Much research on small area estimation 
techniques using this model-dependent approach has been 
conducted in recent years. In the 1970's, Kish contributed 
to the development of the field through his direction of 
three doctoral dissertations at the University of Michigan 
(Ericksen 1973; Kalsbeek 1973; Purcell and Kish 1979, 
1980). 

Direct, or sample-based, estimates for small domains are 
sometimes possible. One obvious source of estimates for 
domains of any size is a population census, and indeed 
censuses are a major source of small domain estimates. 
However, data from a decennial census become out-of-date 
as the decade progresses. To address this problem, Kish 
proposed replacing the census by a rotating or rolling 
sample so that, by spreading the data collection over time, 
more up-to-date estimates can be produced. He first 
proposed such a procedure in 1979 (Kish 1979a,b), and 
wrote many papers on this topic after that (Kish 1981,1983, 
1986, 1990, 1997, 1998, 2002; Kish and Verma 1986), 
including the issue of how to cumulate sample data over 
time (Kish 1999). In another paper in this volume, Charles 
Alexander (2002) provides a detailed review of Kish's work 
on this topic and its influence on the large-scale continuous 
survey, the American Community Survey, that the U.S. 
Census Bureau plans to introduce to replace the long form 
in the 2010 Census. 

Special sample design problems. During the course of 
his work, Kish encountered a number of specialized 
sampling problems that often occur and he offered some 
efficient solutions. The areas to which he contributed 
include the following: 

- Sampling rare and elusive populations. One of the 
most challenging design tasks faced by sampling 
statisticians is constructing an efficient sample 
design for a rare or elusive population (such as 
persons with a rare illness or the homeless). Kish 
(1965b, 1991) provides insightful reviews of 
methods for tackling this type of problem. 

- Maximizing overlap. When a population is 
sampled repeatedly over time, the issue arises of 
how to control the sample overlap between one 
round and the next. A particular example occurs 
when a master sample of PSUs is used and needs 
to be updated when new census data become 
available. Frequently it is desirable to maximize 
the overiap in the sample of PSUs, while updating 
measures of size and changing the stratification to 
reflect current data. Kish and Scott (1971) provide 
a relatively simple and effective method of 
satisfying these requirements. 

- Sampling organizations of unequal size. Some 
surveys are designed to produce estimates for units 
at different levels, for instance, for hospitals and 

for patients. When hospitals vary considerably in 
their numbers of patients, a design conflict arises 
between the production of efficient hospital- and 
patient-level estimates. Kish (1965c) examines this 
problem and clarifies the issues involved. 

Nonsampling errors. Kish clearly recognized the harmful 
effects that nonsampling errors can have on the quality of 
survey estimates. Early in his career he collaborated with 
Jack Lansing to investigate the response errors in 
respondents' reports of the values of their homes by 
comparing these reports with estimates made by 
professional appraisers (Kish and Lansing 1954). In his 
studies of interviewer variance, he took advantage of the 
theory on cluster sampling, measuring interviewer variance 
with the intra-class correlation coefficient, and determining 
the optimum number of interviews per interviewer based on 
a simple cluster sample cost model (Kish 1962). With Irene 
Hess, he conducted a study of noncoverage in area samples 
of dwelling units. The study was stimulated by a 10 percent 
noncoverage rate in SRC surveys at that time, and led to 
improvements that reduced this rate to about 3 percent 
(Kish and Hess 1958). Also with Irene Hess, he introduced 
an imaginative replacement procedure for noncontacts in 
one survey by substituting noncontacts from a previous, 
similar, survey (Kish and Hess 1959b). For stochastic 
imputation schemes, Kish was an early proponent of 
replicating the imputations to reduce imputation variance, 
in what he termed a repeated replication imputation 
procedure (RRIP) and what is now known as fractional 
imputation (Kalton and Kish 1984). 

Observational studies. Early in his career, Kish (1959) 
wrote a widely cited paper on the design of studies to 
investigate causal relationships, particularly nonrandomized 
studies. In his writing about this topic he made use of his 
survey sampling expertise as, for instance, in the relation­
ship between stratification and matching (Anderson, Kish 
and Comell 1980). His work developed into his book 
Statistical Design for Research (Kish 1987a) in which he 
compared surveys, experiments, and observational studies 
for investigating causal effects in terms of the three R's: 
realism, randomization and representativeness (see also 
Kish 1975). He also made clear the importance of assessing 
both bias and variance in assessing the ability of different 
study designs to measure causal effects, rather than concen­
trating on bias as had been common in the literature on this 
topic. 

3. OTHER CONTRIBUTIONS 

Kish's seminal and wide-ranging contributions to the 
methodology of survey statistics are of great importance. 
Yet of possibly even greater importance are his contri­
butions to the promotion of the use of sound probability 
sampling methods around the world. 
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Kish's writings, of course, contributed to the current 
widespread use of probability sampling methods by 
emphasizing good practical methods. His three books 
Survey Sampling (Kish 1965a), Statistical Design for 
Research (Kish 1987a), and Sampling Methods for 
Agricultural Surveys (Kish 1989) are all extiemely valuable 
in this respect, as are his expository writings for social 
scientists. 

Kish had a long-standing dedication to assisting deve­
loping and transition countries, and that can be seen in 
many of his activities. He was a sampling consultant to the 
Worid Fertility Survey from 1973 to 1983 and he consulted 
in many countries, he ran a training program for foreign 
statisticians, and he wrote specifically for statisticians in 
developing countries. Sampling Methods for Agricultural 
Surveys was, for instance, written for the FAO, particularly 
for use in developing countries. He contributed a 
Questions/Answers column for the Survey Statistician, the 
newsletter of the International Association of Survey 
Statisticians, from 1978 to 1994. In that column he provided 
sound advice on many practical sampling problems that 
frequently arise but that are not well addressed in the 
literature. The column was considered so useful that the 
lASS published the full set of questions and answers in a 
special volume (Kish 1995b). 

Kish was rightly particularly proud of the intensive 
two-month summer Sampling Program for Foreign 
Statisticians that he established at the Survey Research 
Center in 1961. The SPFS has now trained more than 500 
survey statisticians from 105 countries. It is significant that 
Kish chose "Developing samplers for developing countries" 
as the topic for his 1994 Morris Hansen Memorial Lecture 
(Kish 1996). To help maintain this important program, the 
Leslie Kish International Fellows Fund was established at 
the University of Michigan at a celebration of Kish's 90th 
birthday. Of all his accomplishments, the SPFS was the one 
that gave him greatest pleasure. 

4. CONCLUDING REMARKS 

Leslie Kish is a giant in the field of survey sampling. His 
contributions were enormous and recognized by many 
honors. These honors included, among others. President of 
the Intemational Association of Survey Statisticians in 
1983-85, President of the American Statistical Association 
in 1978 (see Kish 1978, for his Presidential address on 
"Chance, Statistics and Statisticians"), Honorary Fellow of 
the Intemational Statistical Institute, Honorary Fellow of 
the Royal Statistical Society, Honorary Member of the 
Hungarian Academy of Sciences, Fellow of the American 
Association for the Advancement of Science, Fellow of the 
American Academy of Arts and Sciences, recipient of the 
American Statistical Association's Samuel L. Wilks Award 
in 1997, recipient of the Mindel Shep Award from the 
Population Association of America in 1998, recipient of the 
Methodology Award from the American Sociological 

Association in 1989, and honorary degrees from the 
University of Bologna, the Athens University of Economics 
and Business, and the Eotvos Lorand University in 
Budapest. 

Yet Kish remained down-to-earth, approachable by all. 
He had a great enthusiasm for many subjects including 
sport, art, literature, politics, philosophy, and science. He 
was always concemed with improving the conditions of the 
world's population. He was particularly interested in young 
people and one of his favorite sayings was "Keep young by 
being curious, and have young friends". Undoubtedly his 
endearing personality played an important part in his great 
success in promoting sound sampling methods around the 
world. Ivan Fellegi's excellent obituary in Survey 
Methodology was aptly titled "Leslie Kish - A Life of 
Giving" (Fellegi 2000). Kish gave so much personally to so 
many people and so much professionally to the develop­
ment of survey statistics. 
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New Paradigms (Models) for Probability Sampling 
LESLIE KISH" 

1. STATISTICS AS A NEW PARADIGM 

In several sections I discuss new concepts in diverse 
aspects of sampling, but I feel uncertain whether to call 
them new paradigms or new models or just new methods. 
Because of my uncertainty and lack of self-confidence, I 
ask the readers to choose that term with which they are most 
comfortable. I prefer to remove the choice of that term 
from becoming an obstacle to our mutual understanding. 

Sampling is a branch of and a tool for statistics, and the 
field of statistics was founded as a new paradigm in 1810 
by Quetelet (Porter 1987; Stigler 1986). This was later than 
the arrival of some sciences: of astronomy, of chemistry, of 
physics. "At the end of the seventeenth century the 
philosophical studies of cause and chance... began to move 
close together... During the eighteenth and nineteenth 
centuries the realization grew continually stronger that 
aggregates of events may obey laws even when individuals 
do not." (Kendall 1968). The predictable, meaningful, and 
useful regularities in the behavior of population aggregates 
of unpredictable individuals were named "statistics" and 
were a great discovery. 

Thus Quetelet and others computed national (and other) 
birth rates, death rates, suicide rates, homicide rates, 
insurance rates, etc. from individual events that are unpre­
dictable. These statistics are basic to fields like demography 
and sociology. Furthermore, the ideas of statistics were 
taken later during the nineteenth century also into biology 
by Frances Gallon and Karl Pearson, and into physics by 
Maxwell, and were developed greatly both in theory and 
applications. 

Statistics and statisticians deal with the effects of chance 
events on empirical data. The mathematics of chance had 
been developed centuries earlier for gambling games and 
for errors of observation in astronomy. Also data have been 
compiled for commerce, banking, and govemment. But 
combining chance with real data needs a new theoretical 
view, a new paradigm. Thus statistical science and its 
various branches arrived late in history and in academia, 
and they are products of the maturity of human 
development (Kish 1985). 

The populations of random individuals comprise the 
most basic concept of statistics. It provides the foundation 
for distribution theories, inferences, sampling theory, 
experimental design, etc. And the statistics paradigm differs 
fundamentally from the deterministic outlook of cause and 
effect, and of precise relations in the other sciences and 
mathematics. 

2. THE PARADIGM OF SAMPLING 

The Representative Method is the title of an important 
monograph, almost a century after the birth of statistics and 
over a century ago now, which is generally accepted as the 
birth of modem sampling (Kiaer 1895). That term has been 
used in several landmark papers since then (Jensen 1926; 
Neyman 1934; Kmskal and Mosteller 1979a, 1979b, 1979c, 
1980). The last authors agree that the term "representative" 
has been used for so many specific methods and with so 
many meanings that it does not denote any single method.. 
However, as Kiaer used it, and as it is still used generally, 
it refers to the aims of selecting a sample to represent a 
population specified in space, in time, and by other 
definitions, in order to make statistical inferences from the 
sample to that specified population. Thus a national 
representative sample demands careful operations for 
selecting the sample from all elements of the national 
population, not only from some arbitrary domain such as a 
"typical" city or province, or from some subset, either 
defined or undefined. 

The scientifically accepted method for survey sampling 
is probability sampling, which assures known positive 
probabilities of selection for every element in the frame 
population. The frame provides the equivalent of listings of 
sampling units for each stage of selection. The sampling 
frame for the entire population is needed for mechanical 
operations of random selection. This is the basis for 
statistical inferences from the sample statistics to the 
corresponding population statistics (parameters) (Hansen, 
Hurwitz and Madow 1953a, 1953b). This insistence on 
inferences based on selections from frame populations is a 
different paradigm from the unspecified or model based 
approaches of most statistical analyses. 

It took a half century from Kiaer's paper to the wide 
acceptance of survey sampling. In addition to neglect and 
passive resistance, there was a great deal of active 
opposition by national statistical offices which distmsted 
sampling methods to replace the complete counts of 
censuses. Some even preferted the "monograph method," 
which offered complete counts of a "typical" or 
"representative" province or district instead of randomly 
selected national sample (O'Muircheartaigh and Wong 
1981). In addition to political opposition, there were also 
many opponents among academic disciplines, and among 
academic statisticians. The tide in favor of probability 
sampling tumed with the report of the UN Statistical 
Commission led by Mahanalobis and Yates (United Nations 
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Statistical Office 1950). Five influential textbooks between 
1949 and 1954 started a flood of articles with both theory 
and wide applications. 

The strength, the breadth, and the duration of resistance 
to the concepts and use of probability sampling of frame 
populations implies that this was a new paradigm that 
needed a new outlook both by the public and the 
professionals. 

3. COMPLEX POPULATIONS 

The need for strict probability selection from a 
population frame for inferences from the sample to a finite 
population is but one distinction of survey sampling. But 
even more important and difficult problems are caused by 
the complex distributions of the elements in all the popu­
lations. These complexities present a great contrast with the 
simple model of independence that is assumed, explicitly or 
implicitiy, by almost all statistical theory, all mathematical 
statistics. 

The assumption of independent or uncorrected obser­
vations of variables or elements underlies mathematical 
statistics and distribution theory. We need not distinguish 
here between independently and identically distributed 
(IID) random variables and "exchangeability," and 
"superpopulations." The simplicity underlying each of 
those models is necessary for the complexities of the 
mathematical developments. 

Simple models are needed and used for early stages and 
introductions in all the sciences: for example, perfect 
circular paths for the planets or d = gt^l2 for freely 
dropping objects in frictionless situations. But those models 
fail to meet the complexities of the actual physical world. 
Similarly, independence of elements does not exist in any 
population whether human, animal, plant, physical, 
chemical, biological. The simple independent models may 
serve well enough for small samples; and the Poisson 
distribution of deaths by horsekicks in the Pmssian Army in 
43 years has often served as an example (precious because 
rare) (Fisher 1926). 

There have also been attempts to constmct theoretical 
populations of IID elements; perhaps the most famous was 
the classic "collective" of Von Mises (1931); but they do 
not cortespond to actual populations. However, with great 
effort tables of random numbers have been constmcted that 
have passed all tests. These have been widely used in 
modem designs of experiments and sample surveys. 
Replication and randomization are two of the most basic 
concepts of modem statistics following the concept of 
populations. 

The simple concept of a population of independent 
elements does not describe adequately the complex distri­
butions (in space, in time, in classes) of elements. 
Clustering and stratification are common names for 
ubiquitous complexities. Furthermore, it appears impossible 

to form models that would better describe actual popu­
lations. The distributions are much too complex and they 
are also different for every survey variable. These 
complexities and differences have been investigated and 
presented now in thousands of computations of "design 
effects." 

Survey sampling needed a new paradigm to deal with the 
complexities of all kinds of populations for many survey 
variables and a growing list of survey statistics. This took 
the form of robust designs of selections and variance 
formulas that could use a multitude of sample designs, and 
gave rise to the new discipline of survey sampling. The 
computation of "design effects" demonstrated the existence, 
the magnitude, and the variability of effects due to the 
complexities of distributions not only for means but also for 
multivariate relations, such as regression coefficients. The 
long period of disagreements between survey samplers and 
econometricians testifies to the need for a new paradigm. 

4. COMBINING POPULATION SAMPLES 

Samples of national populations always represent 
subpopulations (domains) which differ in their survey 
characteristics; sometimes they differ slightiy, but at other 
times greatiy. These subclasses can be distinguished in the 
sample with more or less effort. First, samples of provinces 
are easily separated when their selections are made sepa­
rately. Second, subclasses by age, sex, occupation, and 
education can also be distinguished, and sometimes used 
for poststratified estimates. Third, however, are those 
subclasses by social, psychological, and attitudinal charac­
teristics, which may be difficult to distinguish; yet they may 
be most related to the survey variables. Thus, we recognize 
that national samples are not simple aggregations of indi­
viduals from an IID population, but combinations of sub­
classes from subpopulations with diverse characteristics. 
The composition of national populations from diverse 
domains deserves attention, and it also serves as an example 
for the two types of combinations that follow. Furthermore, 
these remarks are pertinent to combinations not only of 
national samples but also of cities, institutions, establish­
ments, etc. 

In recent years two kinds of sample designs have 
emerged that demand efforts beyond those of simple 
national samples: a) periodic samples and b) multipopu­
lation designs. Each of these has emerged only recently, 
because they had to await the emergence of three kinds of 
resources: 1. effective demand supported by financial and 
political resources; 2. adequate institutional technical 
resources in national statistical offices; 3. new methods. In 
both types of designs we should distinguish the needs of the 
survey methods (definitions, variables, measurements), 
which must be harmonized, standardized, from sample 
designs, which can be designed freely to fit national (even 
provincial) situations, provided they are probability designs 
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(Kish 1994). Both types have been designed first and 
chiefly for comparisons: periodic comparisons and multi­
national comparisons, respectively. But new uses have also 
emerged: "rolling samples" and multinational cumulations, 
respectively. Each type of cumulation has encountered 
considerable opposition, and needs a new outiook, a new 
paradigm. 

"Rolling samples" have been used a few times for local 
situations (Mooney 1956; Kish, Lovejoy and Rackow 
1961). Then they have been proposed several times for 
national annual samples and as a possible replacement for 
decennial censuses (Kish 1981, 1990). They are now being 
introduced for national sample censuses first and foremost 
by the US Census Bureau (Alexander 1999; Kish 1990). 
Recommending this new method, I have usually expe­
rienced opposition to the concept of averaging periodic 
samples: "How can you average samples when these vary 
between periods?" In my contrary view, the greater the 
variability the less you should rely on a single period, 
whether the variation is monotonic, or cyclical, or 
haphazard. Hence I note two contrasting outlooks, or 
paradigms. Quite often, the opposition disappears after two 
days of discussion and cogitation. 

"For example, annual income is a readily 
accepted aggregation, and not only for steady 
incomes but also for occupations with high 
variations (seasonal or irregular). Averaging 
weekly samples for annual statistics will prove 
more easily acceptable than decennial 
averaging. Nevertheless, many investors in 
mutual stock funds prefer to rely more on their 
ten-year or five-year average eamings (despite 
their obsolescence) than on their up-to-date 
prior year's eamings (with their risky 
"random" variations). Most people planning a 
picnic would also prefer a 50 year average 
"normal" temperature to last year's exact 
temperature. There are many similar examples 
of sophisticated averaging over long periods 
by the "naive" public. That public, and policy 
makers, would also leam fast about rolling 
samples, given a chance." 

(Kish 1998) 

Like rolling samples, combining multipopulation 
samples also encountered opposition: national boundaries 
denote different historical stages of development, different 
laws, languages, cultures, customs, religions, behaviors. 
How then can you combine them? However, we often find 
uses and meanings for continental averages; such as 
European birth and death rates, or South American, or 
sub-Saharan, or West African rates. Sometimes even world 
birth, death, and growth rates. Because they have not been 
discussed, they all usually combined very poorly. But with 
more adequate theory, they can be combined better (Kish 
1999). But first the need must be recognized with a new 

paradigm for multinational combinations, followed by 
developing new and more appropriate methods. 

5. EXPECTATION SAMPLING 

Probability sampling assures for each element in the 
population {i = 1,2, ...,A^) a known positive probability 
{Pj>0) of selection. The assurance requires some mecha­
nical procedure of chance selection, rather than only 
assumptions, beliefs, or models about probability distri­
butions. The randomizing procedure requires a practical 
physical operation that is closely (or exiactly) congment 
with the probability model (Kish 1965). Something like this 
statement appears in most textbooks on survey sampling, 
and I still believe it all. However, there are two questionable 
and bothersome objections to this definition and its 
requirements. 

The more important of the two objections concerns the 
frequent practical situations when we face a choice between 
probability sampling and expectation sampling. These 
occur often when the easy, practical selection rate for listing 
units of IIF yields not only the unique probability IIF for 
elements, but also some with variable k.lF for the ith 
element (/= 1,2,..., Â ) and with k.>0. Examples of 
k.>l, usually a small integer, occur with duplicate or 
replicate lists, dual or multiple frames of selection, second 
homes for households, mobile populations and nomads, 
farm operators with multiple lots. Examples of k. < I are 
selecting a single adult from households, selecting single 
dwellings from buildings. In these examples often the k. 
can be easily ascertained, and it is cheaper, more convenient 
and economical to use weighting than attempting to obtain 
IIF for all the elements. These problems are described in 
books and articles. 

In most cases, we find it more convenient and less 
expensive to accept the variable probabilities and to counter 
them with weighting the expected values 1 Ik. or k. than to 
operate another stage of selection. Thus, to paraphrase 
probability sampling: expectation sampling assures for each 
element in the population (/ = 1,2,..., N) a known positive 
expected number of selections (^./F>0). These procedures 
are used in practice for descriptive (first order) statistics 
where the k. or 1 Ik. are neither large nor frequent. The 
treatments for inferential - second order or higher -
statistics are more difficult and diverse, and are treated 
separately in the literature. Note that probability sampling 
is the special (and often desired) situation when all k. are 1. 

The other objection to the term probability sampling is 
more theoretical and philosophical and concems the word 
"known" in its definition. That word seems to imply belief. 
Authors from classics like John Venn and M.G. Kendall to 
modem Bayesians like Dennis Lindley - and beyond at 
both ends - have clearly assigned "probability" to states of 
belief and "chance" to frequencies generated by objective 
phenomena and mechanical operations. Thus, our insistence 
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on operations, like random number generators, should 
imply the term "chance sampling." However, I have not 
observed its use and it also could lead to a philosophical 
problem: the proper use of good tables of random numbers 
implies beliefs in their "known" probabilities. I have spent 
only a modest amount of time on these problems and 
agreeable discussions with only a few colleagues, who did 
agree. I would be grateful for further discussions, 
suggestions and corrections. 

6. SOME RELATED TOPICS 

We called for recognition of new paradigms in six 
aspects of survey sampling, beginning with statistics itself. 
Finally, we note here the contrast of sampling to other 
related methods. Survey methods include the choice and 
definition of variables, methods of measurements or obser­
vations, control of quality (Kish 1994; Groves 1989). 

Survey sampling has been viewed as a method that 
competes with censuses (annual or decennial), hence also 
with registers (Kish 1990). In some other context, survey 
sampling competes with or supplements experiments and 
controlled observations, and clinical trials. These contrasts 
also need broader comprehensive views (Kish 1987, section 
A.l). However, those discussions would take us well 
beyond our present limits. 
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Still Rolling: Leslie Kish's ^̂ RoUing Samples 
and the American Community Survey 

CHARLES H. ALEXANDER' 

ABSTRACT 

Leslie Kish long advocated a "rolling sample" design, with non-overlapping monthly panels which can be cumulated over 
different lengths of time for domains of different sizes. This enables a single survey to serve multiple purposes. The Census 
Bureau's new American Community Survey (ACS) uses such a rolling sample design, with annual averages to measure 
change at the state level, and three-year or five-year moving averages to describe progressively smaller domains. This paper 
traces Kish's influence on the development of the American Community Survey, and discusses some practical 
methodological issues that had to be addressed in implementing the design. 

KEY WORDS: Rolling sample; Multi-year averages; Asymmetrical cumulations. 

1. INTRODUCTION 

A "rolling sample design", defined below, gives a single 
survey the flexibility to serve multiple purposes. The 
concept was developed by Leslie Kish in a series of papers 
(including Kish 1979a, 1979b, 1981, 1983, 1986, 1990, 
1997, 1998 and Kish and Verma 1983, 1986) in which he 
elaborated the principles of cumulating information over 
space and time from a rolling sample. Kish advocated its 
use for a variety of purposes (Kish 1998), especially in 
developing countries (Kish 1979b), but also in the context 
of the U.S. census (Kish 1981). His personal use of rolling 
samples goes back at least to 1958, under the name 
"continuous sampling" (Kish, Lovejoy and Rackow 1961); 
a still earlier project (Mooney 1956) is cited in Kish (1998). 

The American Community Survey (ACS), which is 
being developed as a replacement for the traditional "long 
form" survey conducted as part of the census, will use a 
form of the rolling sample design. This paper describes how 
the rolling sample concept is being implemented for the 
ACS, influenced by its specific objectives and operational 
considerations. The design decisions made for the ACS 
illustrate some issues that may arise for rolling samples in 
general. They also illustrate how Leslie Kish influenced 
survey development on multiple levels: philosophical, 
personal, and practical. 

2. ROLLING SAMPLES 

A "rolling sample" design jointly selects k non-
overlapping probability samples (panels), each of which 
constitutes IIF of the entire population. One panel is 
interviewed each time period until all the sample has been 
interviewed after k periods. Depending on the precision 
requirements, a single panel of 1/F may be sufficient to 
provide good estimates for the population as a whole, and 

possibly for some large domains. For smaller domains or 
for greater precision for large domains, cumulations of 
different numbers of consecutive panels can be used, up to 
k/F of the population. A rolling sample design with A:=F is 
called a "rolling census". For a monthly rolling sample, it is 
natural to have F be a multiple of twelve, and natural 
cumulations are quarterly, semi-annual, annual, and 
multiple years. 

"Domains" include both geographic areas and demo­
graphic subgroups. Kish (1987, section 2.3) presents a 
framework for the tradeoff between geographic and 
demographic detail, for a given required level of precision. 
Even more central to the idea of rolling samples was the 
idea of "asymmetrical cumulation" of data, over different 
lengths of time for different sizes of domain (Kish 1990, 
1998), which was later broadened into a view of the basic 
similarities of averaging over space and averaging over time 
(Kish 1998), as well as averaging over different demo­
graphic domains. The flexibility of the rolling sample 
design comes from the opportunities it provides to make 
different tradeoffs between spatial, temporal, and demo­
graphic detail. 

Leslie Kish left his colleagues with a challenge to extend 
these ideas into a "theory of combining populations" (Kish 
1999, 2001). He organized a contributed paper session on 
"combining surveys" at the 1999 meetings of the Inter­
national Statistical Institute, explaining to the presenters 
that we were all working on different aspects of the same 
problem, whether we knew it or not. The scope of this 
problem includes various forms of cumulation of data from 
rolling samples, as well as the question of how to combine 
data from different countries into statistics for larger entities 
such as the European Union. Kish (2001) suggests that 
these problems have fundamental features in common with 
the problem of combining information from different 
experiments (Cochran 1937, 1954). 
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3. THE CENSUS LONG FORM AND 
INTERCENSAL ALTERNATIVES 

The decennial census "long form" survey is the main 
source of subnational data about the characteristics of the 
U.S. population and housing. Estimates of the number of 
people and housing units come from the "short form" part 
of census administered to all households. With an overall 
sampling rate of one-in-six, the long form survey provides 
precise, detailed ("Precise" refers to the sampling error, and 
"detailed" means that estimates are given for many demo­
graphic domains within the geographic domain.) estimates 
of a variety of demographic and economic characteristics 
for individual states, large cities, and large counties or 
groups of counties. It provides useful, though less precise 
and less detailed, estimates for even very small areas such 
as small towns and Indian Reservations, as well as census 
tracts, which average about 4,000 population. For the 
smallest govemmental units, higher sampling rates are used, 
as high as one-in-two for the smallest places, so that there 
are usable estimates for these areas. To compensate for the 
higher sampling rates in these areas, the rate is one-in-eight 
in the largest tracts. 

Between the censuses, the federal government's statis­
tical programs provide relatively little information about the 
characteristics of the population below the national level. 
The basic census counts are updated by an intercensal 
demographic estimates program, but other demographic and 
economic characteristics are available mainly from national 
surveys. The Current Population Survey (CPS), the U.S. 
monthly labor force survey, has about a one-in-1000 
sampling rate with substantial overlap in the sample units 
from one month to the next so that the sample cannot be 
profitably cumulated over time as a rolling sample can. A 
March Supplement to the CPS collects additional infor­
mation once a year, providing estimates for income and 
poverty at the state level, but with limited precision and 
demographic detail. There are programs which use 
modeling methods based on administrative records to make 
small-area estimates for unemployment, and for income and 
poverty, but not for a variety of characteristics. 

The need for more frequent information for sma:ller 
domains (or "communities") has long been recognized 
(Hauser 1942; Eckler 1972, page 212; Bounpane 1986). 
Leslie gave credit to his friend, Philip Hauser, for proposing 
an "annual sample census" in 1941. Kish (1981) proposed 
a rolling sample as a way to meet this need, presenting 
several options including a rolling sample for the CPS. 
Instead a mid-decade census was authorized for 1985, but 
it was never funded. Nor was a proposal to double the size 
of the CPS (Tupek, Waite and Gaboon 1990). 

Interest at the Census Bureau in intercensal information 
about population characteristics was revived by a proposal 
for a "Decade Census Program" advanced by Herriot, 
Bateman and McCarthy (1989). This program would have 
collected data in different states in different years; 

ultimately this proposal did not gain acceptance. However, 
Roger Herriot's energetic and eloquent advocacy of the 
importance and potential value of intercensal subnational 
data created awareness in federal statistical agencies of the 
possibility of a "new paradigm" for the decennial cycle of 
data collection. Awareness of Kish's rolling sample 
proposal was definitely a factor during this period, as the 
Bureau considered new approaches for the 2000 census (see 
Bounpane 1986). 

There was renewed Congressional interest in intercensal 
characteristics data (Melnick 1991; Sawyer 1993), and a 
"continuous measurement" alternative to the census long 
form was considered as part of the research for Census 
2000, starting in 1992. Kish's rolling sample design was 
eventually proposed for this purpose because it provided 
flexibility in making estimates, as well as the potential for 
efficient data collection (Alexander 1993, 1997; National 
Academy of Sciences 1994, 1995). My recollection is that 
the most influential articles were Kish (1981, 1990), and 
that Kish and Verma (1983, 1986) were also consulted. 
"Continuous Measurement" was later renamed the 
"American Community Survey (ACS)". 

The proposed ACS was not adopted for Census 2000, 
but after limited testing during 1996-1998, the ACS metho­
dology was implemented in 36 counties for the years 1999-
2001, so that ACS results could be compared to the 2000 
census long form data. There was also a large-scale test in 
2000, for a state-representative annual sample of about 
700,000 addresses called the Census 2000 Supplementary 
Survey, of collecting long-form data separately from the 
census, using the ACS questionnaire. In 2001 and 2(K)2, the 
Supplementary Survey is being continued, as part of the 
transition to the ACS. 

4. THE PLANNED AMERICAN COMMUNITY 
SURVEY 

The ACS will start in 2003, if funded by Congress, with 
a monthly sample of about 250,000 addresses, a new panel 
of addresses starting each month. This cortespbnds to a 
monthly rolling sample with an average rate of approxi­
mately F = 480 or an annual sample with F = 40. The 
survey will use k = 60, with the shortest published cumu­
lation being calendar year estimates. The ACS will be 
conducted by mail, with nonresponse followup by tele­
phone. A random sample of one-third of the remaining 
nonrespondents will be selected for followup in person. 

For domains with average response rates, with a monthly 
F = 480, the standard errors for a 5-year average estimate 
from the ACS will be somewhat larger than for a cortes­
ponding estimate from the census long form, typically on 
the order of 1.33 times as large. This was judged to be 
"sufficientiy close" for most purposes, given the advantage 
of timeliness and the expected lower missing data rates due 
to having a permanent staff of interviewers. In areas with 



Survey Methodology, June 2002 37 

lower-than-average mail response rates, the subsampling for 
nonresponse follow-up will reduce the effective sample 
size. This happens not only because the number of inter­
views is reduced, but also because the unequal weights 
typically lead to a higher design effect (Kish 1965, pages 
429-431). To compensate for this, the ACS will probably 
use a higher nonresponse subsampling rate in low-response 
areas, balanced by a lower sampling rate in areas with 
higher-than-average mail response. The details of this are 
still being determined. There also will be an oversample of 
addresses in small govemmental units, as with the census 
long form sample. 

An important development in the last decade, that made 
the ACS possible, (Kish (1981) suggests an altemative 
approach of "cumulative rolling listings", but this would be 
quite expensive for making regular estimates for all of the 
smallest domains, such as census tracts.) is the Census 
Bureau's program to maintain an ongoing Master Address 
File (MAF), linked to our TIGER geographic database. The 
main source of address updates throughout the decade is the 
Postal Service's Delivery Sequence File (DSF). The Bureau 
is implementing a MAF/TIGER modernization program 
that will augment the DSF updates with new addresses from 
data files provided by local governments, and from other 
administrative sources. This will be supplemented by new 
addresses encountered by interviewers from the ACS and 
other surveys in more mral areas. The monthly samples are 
actually generated by selecting an annual sample from the 
MAF in the previous September, and dividing it into 12 
monthly panels. In Febmary, there is a supplemental sample 
of new units from the DSF, spread across the remaining 
months of the year. 

Replacing the 2010 census long form, by the ACS, is one 
component of a program to re-engineer the 2010 census. 
This also includes the modemization of MAF/TIGER, as 
well as a program of early research and testing to automate, 
streamline, and improve the census operations for 2010. 
This combination of improvements is expected to have a 
budgetary cost for the full 10-year cycle that is less than the 
cost of repeating the Census 2000 methods in 2010. This is 
a quite different plan than the vision of ACS described in 
National Academy of Sciences (1994, Chapter 6; 1995, 
Chapter 6), where I expressed hopes that eliminating the 
long form by itself, without other fundamental improve­
ments, might save enough to pay for the ACS. 

5. SOME VARIATIONS ON THE BASIC DESIGN, 
AND SOME ISSUES 

5.1 Multi-stage Cluster Samples 

The ACS uses an unclustered one-stage systematic 
sample, because the goals include providing data for all 
small geographic domains, such as tracts or block groups, 
each year. From discussions in Kish (1981, 1998), it is clear 
that rolling samples can also use cluster samples and 

multiple stages of selection, as well as varying probabilities 
of selection. However, to qualify as a "rolling sample", the 
primary sampling units themselves must be a rolling 
sample. A design with a fixed set of primary sampling units 
(PSUs), with a rolling sample within each PSU, is a 
"cumulated representative sample" (Kish 1998). 

Leslie was emphatic that the proposal by Herriot et al. 
(1989), was not what he meant by "rolling sample". 
However, it would seem to fit the definition as stated in 
Section 2, if the states are considered as PSUs. I think this 
demonstrates that there is an implicit requirement that a 
rolling sample must yield a useful representative probability 
sample in each time period, for each geographic domain of 
interest; this additional requirement does not hold if the 
PSUs are states. This requirement means that the clusters or 
PSUs need to be substantially smaller than the smallest 
domain of interest. (See Kish 1998, page 38.) 

5.2 Differential Sampling Rates 

Kish (1998, section 4) notes that a rolling sample can use 
different sampling fractions in different strata. This can get 
complicated, especially if the sampling fractions change 
over time, because the conditional probability of selecting 
a unit (without replacement) for the / ' ' panel in the /i"" 
stratum depends on the sampling rates used in the previous 
panels in that stratum. This is even more complicated if the 
strata change over time, for example as the boundaries of 
govemmental units change. 

To simplify this for the ACS, we select the sample in two 
stages. The first stage selects a rolling "super sample" using 
a constant sampling rate for each panel and each year, equal 
to the largest sampling rate required in any stratum. The 
second stage subsamples the initial sample, to give the 
desired sampling rate for each stratum for that year. The 
selection of subsequent samples, which avoids overlap with 
the entire previous supersamples, needs only to keep track 
of the sampling rate for the first stage. 

5.3 Updates to the Frame 

In practice, the population is a little different for each 
panel. New addresses are added to the frame. Some old 
addresses cease to exist; they may be removed from the 
address list, or they may stay on the list and be deleted only 
after attempts to contact them. This presents no funda­
mental conceptual problem. It does mean that a "rolling 
census" would not necessarily contact every population unit 
that ever exists, since some units may go in and out of 
existence too quickly to fall into sample. 

To avoid record-keeping of different conditional 
sampling rates for different "cohorts" of addresses which 
were added during Master Address File updates at different 
times, we have found it convenient to assign artificial "back 
samples" by selecting addresses from each set of new 
addresses not only for the curtent panel, but for past panels. 
These units are not interviewed, since the times for their 
assigned panels are past, but they are avoided during the 
without-replacement selection of future panels. 
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5.4 What Happens After Panel k? 

One question Leslie did not address explicitiy, as far as 
I know, is how to draw the sample for panel k-t-l.l think he 
assumed that panel k + I would be the same as panel 1, 
panel k-\-2 repeats panel 2, and so forth. This works fine 
for a simple random sample, but not so well for a systematic 
sample intended to spread the sample over a geographically 
sorted list, because as the frame changes over time, panel 1 
doesn't keep its even spacing. 

Our plan is to select panel k-¥ I, and future panels, as a 
fresh systematic sample. Each one will avoid overlap with 
the previous k - I panels, so there will always be k conse­
cutive non-overlapping panels, but we won't worry about 
overlapping with panels before that. 

5.5 Questionnaire Reference Date, Given an 
Extended Interview Period 

The interviews from each monthly ACS panel take place 
over a three-month period, allowing two months for mail 
returns and telephone followup before starting the more 
expensive personal visits in the third month. Thus, the data 
actually collected in June consist of early mail retums from 
the June panel, late mail retums and telephone interviews 
from the May panel, and personal-visit followup cases from 
the April panel. This raises the issue of whether to ask the 
survey questions as of the time the survey was mailed out -
the best choice as far as sampling bias - or as of the time 
the questions are asked - the best choice as far as response 
error and other nonsampling errors, especially for people 
who have moved from the address. 

Taking these quality tradeoffs into account, we chose to 
use a "curtent" reference date, collecting the characteristics 
of the household members at the time of interview. One 
reason for this decision is that we think the nonsampling 
ertors will be harder to evaluate than the sampling bias. 
Also the sampling biases in the monthly estimates will tend 
to cancel over the course of the year. This is one reason for 
limiting the ACS to annual and multiple-year estimates. 

5.6 Use of Intercensal Population Estimates as 
Survey Weighting Controls 

The Census Bureau has a program of "intercensal" 
(Leslie would call these "post-censal" estimates, reserving 
"intercensal" for estimates between two censuses that have 
been completed.) demographic estimates, based on demo­
graphic models. These models update the previous census, 
using vital records and other administrative records 
information. These estimates are used as independent 
weighting conti-ols, or "post-stratification factors", for most 
national household surveys (see Kish 1965, pages 90-92). 
Adjusting the survey weights to agree with controls can 
reduce the variances of survey estimates, adjust for 
differences in coverage by age, sex, race, or Hispanic 
origin, and improve consistency across surveys. The census 
long form similarly uses the census counts as controls in its 
weighting. 

The weighting controls have traditionally not been 
available for the smallest geographic domains, at least not 
with the demographic detail available for larger areas. 
Plans to produce more detailed controls for use in ACS 
weighting are described in Alexander and Wetrogan (2000). 
Some improvements will come from improved sources of 
adnunistrative data, but in addition the ACS itself will 
provide information on changes in the population, which 
can be incorporated into the demographic models. The 
problem is complicated by the differences between the 
"curtent resident rule" used in the ACS and the "usual 
resident rule" used in the census; the ACS includes a 
question about part-year residents to help in adjusting for 
this difference. To facilitate this integration of survey data 
and demographic models, and especially to develop ertor 
measures for the resulting estimates, the Census Bureau is 
trying to develop "statistical" versions of the demographic 
models used in producing the intercensal population 
estimates. The inspiration for this effort to blend the 
statistical and demographic approaches is Purcell and Kish 
(1979). 

6. DIFFERENT CUMULATIONS FOR 
DIFFERENT PURPOSES 

For the main ACS objective, to replace the census long 
form as a source of detailed descriptive statistics, we plan 
to use 5-year ACS cumulations, for a data product similar 
to traditional long form "summary files". This is the 
shortest time period for which the ACS sampling error is 
judged to be reasonably close to that of the census long 
form. All sizes and types of geographic areas would be 
included on these 5-year data files. For allocating 
govemment funds based on an assessment of curtent need 
for the funds, simulations suggest that 3-year cumulations 
may be preferable to the 5-year, sacrificing precision for 
greater recency (Alexander 1998). 

For individual areas, the most prominently published 
data will be one-year averages for areas greater than 65,000 
population, and 3-year averages for areas greater than 
20,000, in addition to the 5-year averages for all areas. 
Annual average estimates for areas below these thresholds 
will be available for more "sophisticated" uses to use in 
time series models, and to indicate large variations within 
the multi-year averages, but will not be as prominently 
displayed in our publications or on our websites. 

These planned published ACS data products are 
designed to encourage analysts to use the same length of 
cumulation when comparing areas of different sizes, on the 
grounds that to do otherwise may be perceived as unfair to 
smaller jurisdictions. In doing this, we have accepted the 
notion of "asymmetrical cumulations" as far as levels of 
geography, but not necessarily within the same level of 
geography. For example, we would use one year for 
comparing states, but would recommend 5-years for all the 
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counties in a table comparing large and small counties. In 
this latter recommendation, we differ somewhat from Kish 
(1998, pages 42-43) which would let us use tables of 
counties with one-year estimates for large counties, 3-year 
averages for medium-sized ones, and 5-year averages for 
small ones. It will be interesting to see what practices data 
users will adopt in this regard. 

7. WEIGHTING THE YEARS IN MULTI-YEAR 
CUMULATIONS 

Kish (1998) points out that there are a number of choices 
for weighting multi-year cumulations. If there are ten yearly 
means y., then there are many choices of y = Z ^z >*,' ^'^^ 
Ĵ  w. = 1, to use as the ten-year cumulations. 

For the ACS 5-year and other multi-year cumulations, 
discussed in section 6, our plans are to give the years equal 
weights in the standard published data products, e.g., 
w. = 0.2 for the 5-year average. This was an area of 
disagreement with Kish (1998), which gently urges us to 
consider of alternatives, in particular weights of the form 
w.̂ , = Cw., with C>1. 

An underlying issue in thinking about unequal weights 
is what statistical problem we are trying to solve. Using the 
2003 - 2007 cumulation as an example, is the goal: 

- to provide a "direct design based" estimate for the 
2003 - 2007 historical average; 

- to provide a "model-based" estimate for the 2007 
value; or 

- to provide a "direct, designrbased" estimate for a 
weighted 2003 - 2007 historical average, with more 
weight on recent years? 

To interpret the 2003 - 2007 estimate as an estimate for 
2007 requires a model or assumptions about the time series 
for the area. The problem may be viewed as combining a 
direct estimate for 2007 with a forecast for 2007 based on 
the years 2003,..., 2006, with the requirement that the same 
formula be used for all areas and all characteristics to 
preserve additivity in the tables and comparability across 
tables. 

I have previously interpreted the decision as a choice 
between the first two goals, and have shied away from the 
second approach for the ACS, ultimately because of the 
concems expressed in Hansen, Madow and Tepping (1983, 
sections 3 and 5.5) about using model-based estimates for 
general-purpose "official statistics". With the variety of 
statistics and geographic areas covered by the ACS, there 
inevitably will be some where the compromise model fails 
badly; a data user may be unaware of tiiis failure, or may be 
very aware. In what sense can the compromise average be 
viewed as a valid estimate for 2007 when the compromise 
model clearly fails, and what measure of ertor would be 
associated with it? With this view of the issue, we have 

recommended using the unweighted multi-year averages as 
the standard general-purpose data product, with the time 
series of annual estimates being available for use in time 
series models for specific applications, and for interpreting 
the multi-year averages when there is variation within the 5-
year period. 

However, upon rereading Kish (1998), I now interpret 
his view of the weighted average to be the third formu­
lation, a design-based estimator of a more up-to-date popu­
lation parameter. This avoids the concems about model fit 
for general-purpose uses, although there is still the question 
of how to justify and achieve a consensus solution. Also, 
the unequal weights tend to increase the standard errors of 
the multi-year averages. But Kish (1998, page 40) will get 
the last word on the subject: 

"Important questions remain for further 
discussions and research. Perhaps forever, and 
this can become a 'growth industry.'" 

8. NOT COMBINING THE CPS AND THE ACS 

Leslie often said he was pleased to see his idea being 
implemented in the ACS, but I think he was disappointed 
that we did not try to replace both the census long form and 
the CPS with one survey. By contrast with some other 
issues where we had lively discussions, Leslie took a 
"hands off stance on this issue. I think he viewed this as a 
decision about quality tradeoffs, which the govemment 
agencies had to work out for ourselves. There were two 
main reasons for our decision: 

We cannot adequately measure the monthly unemployment 
rate with a mail survey. Cortect measurement of the 
unemployment rate requires complex questions that would 
not be feasible to ask by mail, for example, to probe to be 
sure that someone who is "looking for work" did conduct 
an active job search. (See Butani, Alexander and Esposito 
1999). The Census 2000 Supplementary Survey, using the 
ACS procedures, dramatically overestimated the 2000 
national unemployment rate (5.3 percent versus 4.0 percent 
in the CPS). A similar difference was seen in the 1990 
census. 

A mail survey would lag substantially in producing 
monthly rates, compared to the CPS. In addition, the 
impossibility of completing all the mail interviews for a 
panel in the designated month introduces biases in monthly 
estimates (see section 5.5 above). These problems would be 
reduced somewhat for quarterly moving averages instead of 
monthly estimates, which Leslie frequentiy suggested (for 
example Kish 1999), but the monthly unemployment report 
is an indispensable economic indicator in the U.S. 

// is too expensive to replace the long form without using 
mad. A rolling sample survey, conducted in person with a 
large enough sample to replace the long form, would have 
to be 3 or 4 times as large as the CPS. This is a function of 
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the size of the U.S. population, and the number of tract-
sized domains for which estimates are required from the 
long form. Such a survey would be much more expensive 
per case than the CPS, because it could not use a cluster 
sample or telephone interviews for repeated interviews of 
the same households, as does the CPS. The total cost of 
such a survey would be several times as great as the 
combined cost of the proposed ACS and the CPS. 

Because it is designed so narrowly as a long form 
replacement, the ACS does not illustrate the full range of 
flexibility that Leslie envisioned from a rolling sample. 
Under different circumstances, for a smaller population, 
with less need for very small domains from the "long form 
survey", or less strict requirements for timing and questions 
for the labor force survey, it might be possible for a labor 
force survey with a rolling sample to meet the demands for 
small domain data. With the further addition of a split panel 
or other components (Kish 1998, pages 40-41) an even 
wider range of objectives could be met. 

9. CONTRIBUTIONS: PHILOSOPHICAL, 
PERSONAL, AND PRACTICAL 

The long list of articles by Leslie Kish on the subject of 
rolling samples clearly demonstrates the intensity and 
tenacity of his campaign for what he understood as an 
important idea. The evolution of the idea over the course of 
these papers also illustrates the depth of his attention to 
"philosophical" questions about the fundamental quality 
objectives for a survey: What are we trying to do? How 
does the choice of survey design relate to what we are 
trying to do, and why? This kind of guidance is crucial at 
the start of a survey program, when the "big questions" are 
being addressed, and makes the difference between ideas 
that quickly fall by the wayside and those that are "still 
rolling". 

Leslie's personal support of other statisticians went far 
beyond his papers. Though I was by no means one of his 
closest colleagues, he regularly provided personal advice or 
encouragement when he sensed it was needed. The "still 
rolling" in this paper's title was the title I used in e-mail 
messages to him when I had news about the ACS's perilous 
passage through the annual budget cycle, which was most 
of the time. He would respond briefly by e-mail, but 
important messages always came in the form of handwritten 
letters. 

Finally, based on these papers, it is clear that Leslie was 
always a practical person, even at his most philosophical, 
and that his papers cannot be fully appreciated without 
knowing what was going on in the survey world when he 
wrote them. Looking back over his rolling sample papers, 
I can see many comments, about both details and general 
principles, that were aimed at enlightening specific 
decisions that the Census Bureau needed to make at the 
time. I would guess that throughout his work, there are 

specific messages to help out someone somewhere in the 
world who faced a practical design decision at the time. 
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Redesign of the French Census of Population 
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ABSTRACT 

Census-taking by traditional methods is becoming more difficult. The possibility of cross-linking administrative files 
provides an attractive altemative to conducting periodic censuses (Laihonen 2000; Borchsenius 2000). This was proposed 
in a recent article by Nathan (2001). INSEE's redesign is based on the idea of a "continuous census," originally suggested 
by Kish (1981, 1990) and Horvitz (1986). A first approach that would be feasible in France can be found in Deville and 
Jacod (1996). This article reviews methodological developments since INSEE started its population census redesign 
program. 

KEY WORDS: Balanced sampling; Census; Continuous census; Calibration. 

1. INTRODUCTION 

1.1 Reasons for the Redesign 
France has been conducting censuses for many years to 

measure the de jure population of its administrative districts 
and to describe the socio-demographic characteristics of its 
territory at all levels of geography, from districts of 
communes to the country as a whole. The 1999 census was 
conducted in the usual manner: delivering and retrieving 
questionnaires by census interviewers, organisation, tech­
nical assistance and control by INSEE, execution by the 
Mayor as the state representative. For various reasons, how­
ever, we decided to re-examine the census. 

First, the interval between censuses has a tendency to 
increase in length. Indeed, the periodicity of censuses is not 
covered by laws, and each census date is determined by a 
statutory order. Before the war, censuses were taken every 
five years; then the gap grew to seven years, then eight, the 
last census, originally planned for 1997, was postponed 
until 1999 for budgetary reasons, that is, 9 years after the 
previous census. Moreover, the public does not always 
understand the need for such a massive operation at a time 
when the number of administrative files is increasing, even 
though that same public has expressed serious concems 
about the cross-referencing of such files. In addition, the 
decentralization that has been going on in France for over 
20 years has generated numerous requirements for statistics 
in support of local policy-making. As the supreme source of 
local information, the census had to adapt to these changes 
and provide fresher yet still highly detailed data. 

As a result, a population census redesign program was 
established at INSEE in the late 1990s. Since France has no 
population register and, in view of the circumstances, is 
unlikely to institute one, the decision was made to consider 
a compromise solution that would combine annual sample 
surveys with the use of non-nominative administrative files 
that INSEE is authorized to use solely for statistical 

purposes. Communes whose population is below a certain 
threshold (10,000 for the moment) will be covered by 
annual take-all surveys with a rotation period of five years. 
For the other communes, a sample survey will be conducted 
each year, with the entirety of the commune being covered 
within the same five-year rotation period. To carry out this 
redesign, a new legal framework was needed. The project 
was submitted to the Conseil d'Etat, which recommended 
on July 2, 1998, that the govemment table draft legislation 
in Parliament. 

Aside from the need to strenghten the census legal basis, 
the Conseil was of the view that since population counts 
were referted to in over 200 statutes or regulations, making 
a major change in the way they were produced would 
require legislative approval. Within this framework, the 
purpose of the legislation was essentially to set out the 
principles and mles goveming the organization of the 
census. 

The operation was placed under State responsibility and 
control: INSEE was to establish the collection framework 
(concepts, protocols), select the samples, ensure the quality 
of the information collected, and process and disseminate 
the data. The communes as local organisations, were to 
prepare and conduct the census surveys. The State would 
provide financial assistance to cover the costs. These 
arrangements clarity the role and responsabilities of each of 
the partners. 

1.2 Quality Goals 

The program has the following quality goals: 

1.2.1 Data Quality 

Timeliness: The goal is to be able to disseminate by the 
end of year A the de jure population of all administrative 
districts as at January 1 of year A-2; a statistical description 
of all geographic units (communes and commune groups, 
districts of major cities, lands, etc.) as of January 1 of year 
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A-2; and a statistical description of France and its major 
geographic units (regions, etc.) as of January 1 of year A. In 
comparison with the general census, the redesigned census 
will produce similar population and housing data an 
average of three to four years earlier. 

Relevance: The data produced must be relevant to local 
needs. In particular, data that are worth studying only at 
levels of geography far above the commune will be set 
aside in favour of data that are more useful for local 
purposes. What data will be collected will be determined by 
the Conseil national de 1'information statistique (CNIS), 
whose membership includes representatives of various 
categories of producers and users of public statistics. A 
CNIS working group has proposed changes while at the 
same time preserving the necessary continuity with previous 
censuses and limiting the response burden. 

Precision: The census must provide data that are 
meaningful for all levels of geography in France. The data 
produced must be sufficiently precise, even at the sub-
communal levels, for the most useful cross-tabulations at 
those levels. This means, in particular, distributions by sex 
and age, by type of activity and socio-professional category, 
and by type of housing. It must be possible to estimate the 
precision of the data, and users must be informed of that 
precision. 

User-friendliness: To avoid annoying users, the data 
produced must be easy to understand and comparable in use 
to data produced by a general census. 

1.2.2 Process Quality 

Response burden: To limit the response burden for the 
public, the amount of information collected must be kept to 
a bare minimum. In particular, information available for the 
same level of geography from other sources will not be 
collected in the census unless it can be used to produce 
useful cross-tabulations with other variables. As in previous 
censuses, the personal questionnaire will be confined to one 
double-sided sheet of paper. 

Questionnaire: Since collection is by the drop-off/ 
pick-up method, the questionnaires must be universally 
accessible. To ensure that the questions will be understood, 
qualitative testing was conducted using focus groups. In 
addition, a collection test was cartied out on 4,000 
dwellings in the first half of 2001. 

Confidentiality: Data gathered in the census are 
protected by law. Personal information collected in the 
census can be accessed only by authorized persons. The 
data are for INSEE and can be used only for statistical 
purposes. Only data essential to the preparation and conduct 
of census surveys are shared with communes or commune 
groups, on a need-to-know basis. 

Quality of coverage: The coverage of general censuses 
was not systematically evaluated. Following the 1990 
census, a postcensal survey indicated that the rate of under-
coverage was about 1.8% and the rate of overcoverage was 
about 0.9%, for an overall precision of roughly 0.9%. The 

largest undercounts were in large agglomerations. By 
conducting an annual sample survey in communes with a 
population of more than 10,000 and thereby reducing the 
number of people to be covered in the census, we will be 
able to focus our efforts on obtaining answers from 
respondents. The coverage of the redesigned census will be 
evaluated on a regular basis through comparison with 
administrative data and through special surveys. 

Technical and organizational robustness: Because of 
the volume of data processed and the importance of the 
census, the program must be based on tried and tme 
technical innovations. Furthermore, the robustness of the 
census apparatus must be evident in the launch of the opera­
tion. Technical or functional innovations can be introduced 
at any time in the census cycle as part of evolving mainte­
nance or specific projects. The annual surveys can be used 
to test the effectiveness of such projects before they are 
applied to the entire process. However, major changes such 
as questionnaire updates will generally be made only for the 
beginning of a five-year cycle. The organization of the 
census will depend on a balanced partnership between 
INSEE and the communes. INSEE must be capable of 
building the proposed stmcture within its budget and its 
work program by reorganizing its operations. Similarly, the 
communes and intercommunal cooperation bodies must be 
able to support the census organization. The yearly cycle of 
surveying large communes and the option that small and 
medium communes will have of delegating collection to an 
intercommunal body are likely to promote the professional-
ization of collection workers. 

With the integration of census operations into the annual 
work program of the regional offices, and the fact that the 
operation is one-seventh the size of the general census, 
INSEE will have tighter control of the census. Instead of 
having 110,000 census agents collecting data from 60 
million people in 36,700 communes in a particular year, it 
will have only 18,000 agents visiting roughly 9 million 
residents in about 8,000 communes. 

The division of responsibilities between INSEE and the 
communes, the resources that the communes will require, 
and the validation processes for the various stages will be 
set out in a decree. 

Cost control: With the five-year collection cycle, the 
financial burden of conducting the census can be spread 
over a longer period. For communes with a population of 
more than 10,000, the cost of the redesigned census will be 
lower than the cost of the curtent census of population. On 
the other hand, for communes with fewer than 10,000 
residents, the cost should be equal to that of a general 
census, but it would be every five years instead of the 
roughly eight-year cycle of the general census. The cost of 
the redesigned continuous census will be equivalent to one 
seventh of that of a general census. This will contribute to 
archive the reform without budget increase. However, a 
slightly larger budget in the first few years would help to 
iron the kinks out of the collection process. 
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2. SAMPLING STRATEGY 

The commune is the linchpin of the redesign effort. The 
set of "small and medium-sized communes" (those with a 
population of less than 10,000) will be sampled at an 
average rate of 20% a year, and all their dwellings will be 
visited; all "large communes" will be visited annually, but 
only a fraction of their dwellings will be surveyed. 

2.1 Small and Medium-sized Communes 

Let's start with "small and medium-sized communes". In 
each region, five rotation groups of communes will be 
formed using data from the 1999 population census. They 
will consist of balanced samples (Deville and Tille 1999, 
2000) of the age-sex distribution of the communes' popu­
lation. This approach should help minimize year-to-year 
variation due to sampling. 

NUMBER OF WOMEN AGED 20-39 

Rhone-Alpes, 1990 

i ° § g § 

g I I a I iiiii 
ROTATION GROUP 

Figure 1 

NUMBER OF PRINCIPAL RESIDENCES 

Rhone-Alpes, 1990 

iiiii 
ROTATION GROUP 

Figure 2 

Figures 1 and 2 show how balanced the five rotation 
groups will be. They contain box-and-whisker diagrams of 
two variables measured in the 2,811 small and medium 

communes in Rhone-Alpes in the 1990 population census. 
For each rotation group, both the quartiles and the range of 
the distribution are shown. It is interesting to note how 
similar the charts are. The "number of women aged 20 to 
39" variable was used to form the groups. Neither the 
number of principal residences nor any of the household or 
dwelling variables plays a part in the balancing. 

Each year, the population and housing in all the 
communes in one rotation group will be fully enumerated. 
Hence, each "small and medium commune" will be 
completely enumerated once every five years, and a fifth of 
all the "small communes" will be covered each year. 

2.2 Large Communes 

The "large commune" sample will be based on the 
"repertoire d'immeubles localises" (RIL) (inventory of 
located buildings). The RIL is a list of buildings 
(residential, institutional or commercial) identified indivi­
dually so as to generate a digitized map. Initially, the RIL 
will be populated with data from the 1999 census, which 
will provide a statistical portrait of each residential 
building. (In the 1999 census, a building is defined as the 
set of dwellings served by the same staircase; thus, a single 
physical building can consist of more than one "census 
building".) 

The RIL will be continually updated using building 
permits, demolition permits, utility records (water, gas, 
hydro, etc.), information supplied by local governments, 
and field observations. Thus, the RIL may be used to create 
a building sample frame for "large communes". 

In each IRIS2000 (an IRIS2000 is a set of "Tlots 
regroupes selon des indicateurs statistiques" (blocks 
grouped by statistical indicators), a homogeneous area with 
a population of about 2,000) of each "large commune", 
five rotation groups of addresses will be formed using the 
same sampling model as in "small and medium communes". 
Three additional strata will be created in each IRIS2000: 
one for industrial buildings (plants, warehouses, etc.), 
another for collective dwellings (institutions, group homes, 
communal groups, boarding schools, etc.) and a third for 
new addresses. 

One fifth of the industrial buildings will be visited each 
year to verify that they contain no dwellings (custodian's 
quarters or space converted for habitation); any dwellings 
found in such buildings will be considered self-representing 
because of their special nature. All collective dwellings will 
be covered each year; 20% of them will be visited, and the 
population counts of the remaining 80% may be updated by 
telephone. Finally, all new residential buildings will be 
inserted in the rotation groups. 

As noted above, each address rotation group will be 
visited once in each five-year period. A sub-sample of 
addresses, which cortesponds to 40% of the dwellings of 
the group, will be selected. In each selected address, the 
complete dwelling content will be surveyed. 
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In summary, the annual sample will consist of some 8 
million individual forms, 6 million from "small and medium 
communes" and 2 million from "large communes". 

3. OVERALL AND DETAILED ESTIMATES 

In the continuous census system, three sets of estimates 
will be produced and published each year: a set of de jure 
population estimates, a set of detailed estimates (from 
which the de jure population estimates will be derived) and 
a set of overall estimates that will be used to calibrate the 
detailed and de jure population estimates. 

3.1 Overall Estimates 

According to current dissemination plans, the national 
and regional results of the survey conducted at the 
beginning of year A will be published on December 31 of 
year A. These estimates will be the overall estimates for 
year A. In addition, the results for each "small and medium 
commune" visited during the year A collection campaign 
will be published on the same date. 

3.2. Detailed Estimates 

Administrative files will supply additional information 
at a sufficient level of detail. It will then be possible to 
measure the systematic error between what has been ob­
served and what is in the files for similar objects (buildings, 
blocks, etc.). This systematic ertor in carefully chosen 
aggregates can be used to produce an adjustment factor 
which will then be applied to the administrative data to 
ensure that their adjusted totals match the census estimates. 

Current plans are to use administrative files at a level of 
geographic aggregation (building, block, census agent 
district, etc.) that will provide information about individuals 
(age and sex according to health insurance files) or their 
dwellings (property tax files). 

Detailed results for year A-2 will be released on 
December 31 of year A. (Aquisition and processing of 
administrative files are expected to take about two years.) 
These detailed results will be a blend of survey data (large 

communes) or census data (small and medium communes) 
with synthetic data. 

The synthetic data will be obtained from the relationship 
between observed data and administrative data for the same 
point in time and space. For example, for commune C of 
Group II enumerated in year A-3 (census count denoted 
/?c I?)' the imputed census count for target year A-2 will be 
given by 

;/i-2 A-3 
" C , / / ~ '^€,11 ^ 

Adm' A-2 

Adm' A-i ^ c . / / ^ 

Y Admf̂  
cell 

Y Admf̂  
cell 

where Adm^ is the value derived from administrative 
sources for commune c and year a. 

In the continuous census, for a "small and medium 
commune" surveyed in years A-5 and A (see the table 
below), person variables (age, sex, labour force activity, 
occupation, etc.) and dwelling variables (household size, 
number of rooms, tenure, conveniences, etc.) will be 
measured at two points in time. 

In addition, for Groups IV and V, the synthetic estimates 
for year A-2 could benefit from the information collected in 
the campaigns for years A-1 and A respectively. Adjust­
ment factors could be computed in relation to the most 
recent census and used to produce backward projections for 
the intercensal period. For example, for commune D in 
Group rv, we can compute the following: 

^i -'^D.iv^ 

EAdm^ A-2 

EAdm^ A-6 
e t 0 , = O ^ i ^ 

Y Adm A-2 

celV 

Y Adm 
ceiv 

A-1 
c 

It is virtually certain that these two series, extrapolations 
and backward projections, will not match. Nevertheless, it 
is best to publish just one set of estimates for any area and 
any point in time. It makes sense to produce a "composite" 
series whose end points are tied to census data. The 
following linear combination may accomplish just that 
while giving more weight to the more recent survey data: 
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R^Djy = 0.2 X 0 , + 0.8 X 0^. 

Similariy, for commune E in Group V, with Ql and Q2 
appropriately defined, we would have: 

R 
A-2 
E.V 0.4 X 0 , + 0.6 X ©2. 

Adjustment factors 0 will have to be calculated for 
relatively detailed population strata, such as age-sex classes, 
so as to keep as much demographic and geographic flexibi­
lity as possible in the census adjustment. The quality of the 
administrative files and local disparities will dictate the 
level at which the adjustment can be made most conve­
niently (for departements, metropolitan areas,...). The same 
process can be applied to large communes if we replace 
"small commune" with "address". 

Finally, when every commune in every group has been 
imputed, the estimated total for a variable of interest from 
the imputed file (detailed estimates) is unlikely to match the 
total estimated from observations alone (overall estimates 
published two years earlier). It has therefore been decided 
that the detailed estimates will be calibrated on the overall 
estimates. Once again, the level of calibration will depend 
on local trends and the quality of the overall estimates. 

3.3. De Jure Population Estimates 

The de jure population estimates are the third set of 
estimates derived from the census. They are the population 
figures that are used, by law, to determine commune 
funding, electoral boundaries, the composition of municipal 
councils, etc. 

The "total de jure population" of a commune includes 
persons 
- whose principal residence is within the commune, 
- who live in an institution or a collective dwelling 

located within the commune, 
- who have a residence in the commune and live in an 

institution or a collective dwelling located in another 
commune but have kept a dwelling in their commune 
of origin, 

- who live in a collective dwelling in another commune 
for work or live in another commune for education, 

- who are attached to the commune for administrative 
purposes (itinerant workers, sailors and so on). 

Cleariy, these populations cannot be estimated until the 
entire tertitory of the commune has been covered, that is, 
until the detailed estimates have been produced. 

3.4. Estimation of Sampling Variance 

The global and detailed estimates will be accompanied 
by a measure of their statistical quality. Work on this 
project began in the fall of 2001. The preferred option at 
this time is to use reference tables, as is done in the 
Canadian Labour Force Survey, for example. The sampling 

variances will probably be obtained by resampling the 
frame. 

3.5. Imprecision Due to Synthesis 

In the section 3.2, we showed how collected data will be 
used to produce synthetic estimates: first, an extrapolation 
for an "old" census, for two rotation groups (I and II, say); 
then directly using the census results for a third rotation 
group (III, say); and finally, combining extrapolations and 
backward projections to calibrate the last two groups (IV 
and V, say). 

This synthesis can be formalized using a non-response 
model (Samdal 1990). The annual campaign is similar to a 
take-all survey that has an 80% non-response rate, which is 
dealt with using ratio imputation. If we let s represent the 
whole sample, r the respondents and s-r the non-
respondents, we have 

if i t e r 

^x. if ke s-r 
with p = ^ . 

Thus, the imputation model is 

'yk = ^Xk*h-

4:. £(£,)= 0 

V{B,)=o'x, 

where the errors ê  are not correlated. With such a model, 
under simple random sampling, 

n n [ r "-r I 

= N^x 

The uncertainty around estimation with imputation depends 
on the sampling errors and the quality of imputation model 

{Y.-Y) = (Y-Y) + {Y-Y) 

Total = sampling + incertainty 

uncertainty uncertainty of model 

If we assume that the imputation is unbiased: 

E^E^E^{Y-Y)=0 

we have, 

Ko.i-E^E,E^iy--y)' = -

= E^E^E^{Y-Yf^E^E^E^{Y-Y)^ 

= E,V +E E V, 

V =V + V 
total sainple imputation 
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assuming that the design and response mechanism are 
independent from imputation. Using imputed data as if they 
were observed data to compute the estimate of V^ results in 
an underestimate of V^^^^^^. In terms of expectation, 

For the estimators of these variances, Samdal shows that 
we get 

sampling =NH^h{s'-c,d') 
n N ^ ' 

with CQ close to| 1 m .and6^close to- and 

imputation m n 
Ax^d\ 

with A =x^^^lx which we can take as a respondent 
selection effect. We note that if x̂  = 1, then we obtain a 
two-phase sample of size m in « and n in N. In addition, if 
c = r V = V 

' total sampling' 

In Samdal's model, the x (administrative data) and y 
(census data) are contemporaneous; at the very least, we 
will have observed some of the y. Using the stmcture 
developed in the previous section, we would have: 
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That is, y,'J"^X,'̂ "^ K./,'̂  and xf,'^ are not all measured 
or observed in the same year. In fact, if we look at Group HI 
on its own, for example, we have a sample of size n in year 
A-2 and an identical but totally non-respondent sample in 
year A-3. Consequently, some parameters in the estimate of 

t̂otai cannot be calculated. 
On the other hand, if we take the problem over a specific 

period, we have a sample of size n and 4n non-respondents. 
We could approximate the uncertainty of the asynchronous 

imputation process (the process we have in the redesigned 
census) with the uncertainty of the synchronous imputation 
process (similar to Samdal's model). 

This approach was tested on the small and medium 
communes of Rhone-Alpes, for which the rotation groups, 
1990 property tax data and 1990 population census data are 
available (Kauffmann 20(X)). The method gives good results 
for variables tiiat are highly cortelated witii property tax; the 
results also indicate that a source of administrative data that 
are similar to variables describing people will be necessary 
to maintain the model errors at an acceptable level. 

4. WORK IN PROGRESS 

The methodological work involved in redesigning the 
census is far from complete. The following projects are still 
under way: 

- establishment of mles for crossing the size threshold, 
problems of oscillation around the 10,000 population 
threshold, and calculation of the de jure population; 

- the sensitivity of stratum boundaries in large 
communes and their robustness over time; 

- the updating and maintenance of sampling frames and 
samples, especially adjustments that may be required 
when a commune crosses the size threshold and the 
incorporation of new objects into rotation groups; 

- massive imputation and synthesis, both models and 
their precision; 

- estimation of the precision of estimators; and 

- collecting data from mobile population groups. 
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Benchmarking Parameter Estimates in Logit Models of Binary Choice 
and Semiparametric Survival Models 

IAN CAfflLL and EDWARD J. CHEN' 

ABSTRACT 

An approach to exploiting the data from multiple siirveys and epochs by benchmarking the parameter estimates of logit 
models of binary choice and semiparametric survival models is developed. The goal is to exploit the relatively rich source 
of socio-economic covariates offered by Statistics Canada's Survey of Labour and Income Dynamics (SLID), and also the 
historical time-span of the Labour Force Survey (LFS), enhanced by following individuals through each interview in their 
six-month rotation. A demonstration of how the method can be applied is given, using the maternity leave module of the 
LifePaths dynamic microsimulation project at Statistics Canada. The choice of maternity leave over job separation is 
specified as a binary logit model, while the duration of leave is specified as a semiparametric proportional hazards survival 
model with covariates together with a baseline hazard permitted to change each month. Both models are initially estimated 
by maximum likelihood from pooled SLID data on maternity leaves beginning in the period 1993-1996, then benchmarked 
to annual estimates from the LFS 1976-1992. In the case of the logit model, the linear predictor is adjusted by a log-odds 
estimate from the LFS. For the survival model, a Kaplan-Meier estimator of the hazard function from the LFS is used to 
adjust the predicted hazard in the semiparametric model. 

KEY WORDS: Microsimulation; Benchmarking; Semiparametric survival models; Binary logit. 

1. INTRODUCTION 

Researchers often base econometric models on a survey 
conducted over a short period of time. In this case it may be 
desirable to incorporate information from a supplementary 
data source covering a longer period, even if measurements 
are only available for the dependent variable. For a broad 
class of non-linear models, we develop a simple method of 
benchmarking the parameter estimates obtained from a 
survey rich in explanatory variables to information from a 
survey with significant historical depth. A primary objective 
is that model predictions accord with information from the 
secondary data source. We demonstrate application of the 
method first to a simple logit model of binary choice, and 
secondly to a semiparametric survival model. Since the 
survival model can be viewed as a sequence of binary 
choices, while retaining an interpretation as an incompletely 
observed continuous time model, it provides a natural 
generalization of the first application. 

The illustration we provide is a study of maternity leave. 
The Statistics Canada Survey of Labour and Income 
Dynamics (SLID) provides data on both the incidence of 
choosing a maternity leave over withdrawing from the 
labour force, and on the duration of matemity leave, as well 
as a rich set of explanatory variables. Because of this we 
use SLID to estimate base parameters, including those 
determining the effects of the explanatory variables on the 
incidence (the logit model) and hazard of retuming to work 
(the survival model). The Canadian Labour Force Survey 
(LFS) conducted by Statistics Canada provides reasonable 
proxies for both the incidence and duration extending back 

to 1976. The SLID parameter estimates are therefore 
benchmarked to LFS estimates of incidence and the hazard 
of retuming to work during the period 1976-1992, which is 
prior to the availability of SLID data. 

The work was carried out while developing the matemity 
leave module of the LifePaths microsimulation model at 
Statistics Canada. The goal of the LifePaths project is to 
constmct a dynamic microsimulation model encapsulating 
as much detail as possible on socio-economic processes in 
Canada, as well as the historical patterns of change in those 
processes. LifePaths has been employed in a broad range of 
policy analysis and research activities. Examples include 
Canada Student Loan policy (under contract to Human 
Resources Development Canada and the Govemment of 
Ontario), retums to education (Appleby, Boothby, Rouleau 
and Rowe 1999), time use (Wolfson and Rowe 1996; 
Wolfson 1997; Wolfson and Rowe 1998a), tax-transfer and 
pensions (Wolfson, Rowe, Gribble and Lin 1998; Wolfson 
and Rowe 1998b), and labour force careers (Rowe and Lin 
1999). In addition, the task of assembling data for LifePaths 
has required new research into, for example, educational 
careers (Chen and Oderkirk 1997; Rowe and Chen 1998; 
Plager and Chen 1999) and eamings cortelation (Chen and 
Rowe 1999). 

LifePaths is intended to incorporate socio-economic 
information from all relevant sources available to Statistics 
Canada. Consequently the construction of the model has 
motivated research into application of methodologies for 
exploiting multiple data sources. Embedding an estimated 
model in LifePaths is a powerful tool for deriving impli­
cations of the model that can be compared to information 
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from other sources. For example, Rowe and Lin (1999) 
derived job tenures by simulation from a model estimated 
using short-period longitudinal data, then compared the 
results with data from a cross-sectional survey. We report 
on one aspect of the continuing effort to build a tool 
providing the maximum information that can be extracted 
from Statistics Canada's data sources. 

The paper is organized to illustrate the way in which 
technical problems are often encountered in the course of 
building LifePaths, and how their solution is integrated with 
the model development process. To do this, a fair amount 
of background detail on associated issues is provided. 
Section 2 outlines the context of the benchmarking 
problem, and section 3 presents the theory behind our 
solution, with some possible extensions for further work. 
Section 4 describes the models to which it will be applied, 
including some details concerning the estimation of their 
parameters in the base period, then section 5 describes the 
application of the benchmarking method to these models. 
We display and discuss our empirical results in section 6, 
then close with some overall conclusions in section 7. 

2. CONTEXT OF THE PROBLEM 

We provide context in this section by presenting an 
overview of the LifePaths model stmcture, a brief descrip­
tion of data sources involved, and a discussion of how the 
benchmarking problem arose. 

2.1 Structure of the LifePaths Model 

The LifePaths model simulates individual lifetimes as a 
series of events which modify the set of "state variables" 
describing the demographic, social, and economic circum­
stances of the individual. Waiting times to every possible 
event are associated with an individual, although they may 
be infinite. The waiting times may be conditioned on the 
values of state variables. The event type with the shortest 
waiting time occurs (its associated functions are called). 
Modification of any state variable at the occurtence of an 
event may lead to the generation of new waiting times for 
other events. 

LifePaths initialises a case by randomly generating a 
"dominant" individual's sex, province of residence, age at 
immigration and year of birth. The year of birth can range 
from 1892 to 2051. Mortality and immigration assumptions 
are designed to reproduce provincial age-sex structures. 
When a dominant individual marries, enters a common-law 
union, or has a child, a non-dominant individual of suitable 
characteristics is created and is linked to the dominant 
individual, forming part of the case. Once created, non-
dominant individuals undergo the same possible events as 
dominant individuals. However, since their purpose is to 
complete the profile of the dominant actor, they are usually 
filtered from all tabular reports. 

LifePaths presently includes models of fertility, 
mortality, marriage (including common-law unions), educa­
tional careers, labour force careers, matemity leave, hours 
of work, eamings, taxes, and transfers. The model of the 
labour force careers describes transitions between the states 
"paid employee," "self-employed," and "not employed." It 
also includes a model of retirement and student work. The 
model of secondary and post-secondary educational careers 
at the provincial level is mature and highly developed. 

2.2 The Data Sources 

The estimation of base parameters for the model of 
matemity leave was carried out using data from SLID 
covering matemity leaves beginning in the period 
1993-1996. Using data from 1997 allowed us to follow 
most matemity leaves to completion rather than using 
extensively censored data. This is a household survey 
designed to permit both longitudinal and cross-sectional 
analysis of people's financial and work situations. Starting 
in 1993, SLID follows the same respondents for six years, 
with new rotation groups introduced every three years. Each 
rotation groups includes about 15,000 households with 
30,000 adults. From this survey we obtain the month of 
child birth, monthly data on labour force status, and a rich 
set of explanatory variables including job tenure, an 
indicator of self-employment, birth order of the child, 
presence of an employed spouse, province of residence, 
education level, and age. We can also determine if a mother 
who left a job within 4 months of birth has retumed to the 
same job within 16 months. This is used as a practical 
definition of matemity leave and becomes our unit of 
analysis, with a slight expansion to include the 1 % of cases 
where a mother retumed to a different job from a labour 
market state of absence in the previous month. Using this 
unit of analysis we get a sample size of 835 births. As we 
show in section 6, this sample size is adequate to reveal 
some key explanatory factors. More precisely, several 
factors are found to be significant at the 95% confidence 
level. This sample contains about 730 unique mothers, 
representing over 87% of the sample of births. This means 
that there will be some correlation between observations as 
a result of those mothers who have two or more matemity 
leaves within the observation period, but we did not feel 
that it is of sufficient magnitude to warrant any special 
statistical tools. 

The LFS is a monthly household survey focussing on 
labour force status, and also reporting a number of 
demographic characteristics. The survey is normally used 
exclusively for cross-sectional analysis. For the LifePaths 
project, however, a file covering the period from 1976 to 
1995 was constmcted that follows individuals as they rotate 
through the six monthly rotation groups of the survey, 
providing a six-month window on each individual's labour 
market activity. Since the number and ages of children are 
recorded each month, it is possible to observe the 
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appearance of a new child. Since all surveys throughout the 
period are used, the sample size is very large, and about 
26,000 births are observed. 

In the LFS window we note the labour force status of a 
new mother when the child is first reported. This is the key 
to estimating the probability of choosing a matemity leave, 
rather than leaving the labour force. We begin by consi­
dering P(E), the proportion of such mothers who are 
employed. If the mother is "employed, at work," we 
suppose that they took a brief absence from their job - less 
than a month. If they are "employed, absent from work," it 
may be that they have chosen to take a matemity leave 
absence from their job and then retum to it. However this 
may not always be the case. A new mother who we observe 
as employed and absent {EA) may later make a transition 
out of employment (to NE). To correct for this, considering 
mothers with a child of age less than a year observed in a 
window, we calculate the proportion P{EA-NE) of 
transitions out of the "employed, absent from work" state 
that are to a not-employed state. We also estimate the 
proportion P{NE-OJ) of mothers who retum to an old job 
{OJ) after having left employment. The estimate is obtained 
by using observations on mothers with a young child who 
make transitions from a not-employed state to a job with a 
start date earlier than the previous month. Our estimate of 
the probability of choosing a matemity leave is now P{E) -
P{EA -NE) + P{NE - OJ). 

It is also possible to observe mothers with a child of age 
less than a year making a transition from the status 
"employed, absent from work for personal or family 
responsibilities" to the status "employed, at work." We use 
this transition as a proxy for the retum to work after a 
matemity leave. Since the duration of absence is reported in 
the previous month, this is the key to benchmarking the 
survival model. 

The preceding discussion illustrates the weakness of the 
LFS data for a study of matemity leave, relative to SLED 
data. In addition to having fewer explanatory variables 
available than in SLID, we must accept proxies for the 
dependent variables. Nevertheless, we require the historical 
depth of the LFS. This relationship between the data sets is 
the context of the benchmarking problem described in the 
next section. 

Both the SLID and the LFS have complex sample 
designs involving detailed stratification, and complex 
methods for calculating observation weights. We always 
make use of observation weights, both in estimation and in 
the calculation of frequencies. The methods used are fairly 
simple, and are discussed in sections 4 and 5. 

2.3 The Benchmarking Problem 

The context of our benchmarking problem is a model of 
women choosing between leaving the labour force or taking 
a matemity leave, and if they choose a leave, deciding how 
long that leave should be. The first decision is represented 
by a binary logit model, and the second by a semiparametric 

survival model, both including a vector of explanatory 
variables and associated parameters. In LifePaths, the 
decisions are made as part of the matemity leave choices 
event, which always occurs in the middle of a pregnancy. 
SLED is quite adequate for estimation of the base para­
meters of both these models. However, since a major goal 
of the LifePaths project is to incorporate historical pattems 
of change in socio-economic processes, it was necessary to 
benchmark the SLID parameter estimates to annual esti­
mates of dependent variable means obtained from the LFS. 

In this problem, we assume stable observed charac­
teristics of the population. There are two reasons for this. 
First, LifePaths is a work in progress, and the benchmarking 
exercise we report on was carried out at a stage when other 
parts of the model that predict these characteristics were 
being extensively revised. In section 3.3, we touch on the 
consequences of evolving population characteristics. 
Second, we suppose that the primary reason for systematic 
change in observed outcomes between time periods is 
change in some factors not included in the measured 
characteristics of individuals. In the case of our application 
we observed a trend towards choice of matemity leave over 
leaving the labour force which seems to be due to social 
change rather than changes in the composition the 
population. We also observed a change in the distribution 
of matemity leave durations that appears to be due to 
changes in the Unemployment Insurance (UI) program 
implemented in Bill C-21 in 1990. At that time Parental 
Benefits were introduced, which extended the period during 
which many mothers could receive benefits from 15 to 25 
weeks. Many mothers retum to work at a time close to 
when they have exhausted UI benefits. 

3. BENCHMARKING METHODOLOGY 

In this section we present the method in an abstract form 
in order to clarify the assumptions, develop notation, and to 
reveal the similarity between the application to binary 
choice and to survival analysis. 

3.1 Application to Binary Choice 

The basic model for the benchmarking methodology 
relates to binary choice. Since we are not primarily 
interested in changes in the population, we simplify the 
analysis by assuming that the explanatory variables or indi­
vidual characteristics in period x are represented by a series 
of independent identically distributed random vectors X^. 
We recognise that this is quite a strong assumption. Never­
theless, for the reasons discussed in section 2.3, we use it 
our empirical work. Section 3.3 shows that it is a fairiy 
simple matter to extend the theory to incorporate trends in 
the independent variables. 

Consider a linear predictor given by 

T\\x) = ^'x ^f (3.1) 
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where P is a vector of coefficients constant over time, x is 
a possible outcome of X^, and ŷ  represents a parameter 
specific to period x. Notice that x contains no "constant 
term." Let Y^ be a random variable,jointiy distributed with X\ 
that takes the values 1 if an event occurs and 0 if it does not. 
Suppose that the probability of the event, conditional on 
characteristics x, is given by 

E{Y' \X'=x)= K\X) = F{T]'{x)) (3.2) 

where we require F to be a continuous distribution function. 
The values of the function will then be bounded by zero and 
one, and it will have an inverse g, so that 

vi'{x)=g{K'{x)). (3.3) 

In the context of generalised linear models, g is called a link 
function. We begin by finding maximum likelihood esti­
mates of the base parameters P and y^° using data for the 
time period XQ (in our case this is the period when SLID 
data are available). Of course these data must include 
variables cortesponding to outcomes of both X^ and Y^. 
It remains to estimate y'' for each period x. Equations (3.1) 
and (3.3) imply that 

E{r]HX^)-r\\X'°)] =f -y''>=E{g{K'{X'))] 

-E[g{n'°{X'°))}. (3.4) 

Since we have observations only on the outcomes of Y^ 
from the LFS for every period, we estimate the terms y^ by 

f=r^g{ft')-g{K°) (3.5) 

where ft^ is an estimate of £()"). Using the LFS, this 
estimate is the weighted frequency of the event in the time 
period X (taking each weight from the month where a child 
is first observed). To justify this procedure we use equation 
(3.4) and assume an approximation 

E{g{KHX^))) -E{g{K\x'o))] ^g{E{K^X^)}) 

-g(£{;i^°(X^°)}). (3.6) 

Inaccuracy will arise due to Jensen's inequality in regions 
where g is convex or concave. Nevertheless, if g can be 
locally approximated by a linear function in the regions 
where K^{X'') and K°{X^'') are concentrated, then (3.6) 
may be quite accurate. The fact that g has an inflection 
point at 0.5 may aid the approximation when probabilities 
are dispersed around this value. 

Fortunately we are able to test the adequacy of the esti­
mator by simulating the estimated model in LifePaths and 
comparing the predicted frequencies of the event with 
cortesponding weighted frequencies observed in the data. 
The results indicate that it is quite adequate for our appli­
cation. 

3.2 Application to Survival Analysis 

We will show in section 5.2 that the approach outlined 
above can also be extended for use with a semiparametric 
survival model by adding an index t representing the 
duration in the current state, so that (3.5) becomes 

f (0 =yV)^g{n'{t))-g{7t\t)) (3.7) 

where Tt\t) represents the empirical hazard function. 

3.3 Trends in the Independent Variables 
The benchmarking method may be improved by taking 

the changes in observed characteristics into account. As we 
noted in section 2.3, this would be considered when other 
parts of LifePaths are in a more mature form. To do this we 
relax the assumption that the random vectors X^ are 
identically distributed. Equation (3.4) then becomes 

E{r\\X')-^\X''')} =y' -y'" + ^'{E{X')-E{X"°)} 

= E{g{K\X'))} 

-E{g{K'>{X''>))] (3.8) 

Based on this, we might estimate Ŷ  by 

f = y° + g{Tt') - g{K°) - P' {x\-x'°) (3-9) 

where x^ is the vector of mean values of the characteristics 
in period x. Of course it may not be possible to obtain all of 
the mean values from the same data source. The method 
would extend to the survival model case in the same manner 
as (3.7) to give 

nt)-y°{t)^8{m))-g{^\t)) 

-P'(r(o-(Jc'''(0). (̂ -̂ ^̂  

4. MODELS AND THE ESTIMATION OF BASE 
PARAMETERS 

As explained in section 3.1, the base parameters P and f̂ ° 
are estimated by maximum likelihood using data from the 
period XQ. We use data from SLID on all matemity leaves 
beginning in the period 1993-1996 (our base period XQ). 
We do not attempt to estimate annual changes in the 
constant term y throughout this period. 

4.1 The Binary Logit Model 

We adopt the logit model to represent a mother's choice 
between taking a matemity leave and withdrawing from the 
labour force. From now on we adopt a more conventional 
econometrics notation and use a subscript i to index a 
random variable or outcome associated with an individual 
/. We suppose that a random variable Yj takes values 0 or 
1, with YJ = 1 indicating that new mother / with vector of 
characteristics x. in period x chooses to take a matemity 
leave, conditional on her having been employed, and that 
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:P(y ; = i) = F(ri;) = 
exp(Ti') 

1 +exp(Ti') 
(4.1) 

where rj' = P' x. + y' is the linear predictor of equation (3.1) 
and F is the logistic distribution function. We estimate the 
base parameters P and ^^'' using Â  observations from SLID 
by maximising the log-likelihood In L(p, y^°) where 

Z.(p,f) = P{Y^=yyY2=y2,-,Y^ = y^) 

n U-nvi])] UFir^i) 

mi'iw'u-F'i^i)] ^i>->. (4.2) 

and 

l n L ( P , f ) = 5 : { y . l n F ( T i ; ) 

M l - y . ) l n [ l - F ( T i ; ) ] } . (4.3) 

Longitudinal SLID weights in the year of the child's birth 
are scaled to sum to the sample size, and are then used to 
weight the terms of the log-likelihood and its derivatives. 
The weighted score equations are 

op , 1 

dy^ i i 

0 

(4.4) 

The solution, which maximises the log-likelihood, was 
found by Newton-Raphson iteration. The logit model has 
been used often by statisticians and econometricians, and 
there is an extensive literature. For example, see Chambless 
and Boyle (1985), Roberts, Rao, and Kumar (1987), and 
Morel (1989). 

4.2 The Semiparametric Survival Model: 
Basic Form 

For mothers who have chosen to take a matemity leave 
from their job, we use a survival model to describe the dura­
tion of their leave. The probability density function (pdf) of 
the distribution has a complex shape, as can be seen from 
the graphs in section 6.4. There is spike at durations of less 
than a month and a mode which appears to represent the 
maximum Unemployment Insurance special benefits 
entitlement available to mothers after 1990 (15 weeks of 
Matemity Benefits, plus 10 weeks of Parental Benefits, plus 
a two-week waiting period). We began the study by 
estimating various fully parametric models, including a 
log-logistic survival model combined with a logit model to 

predict durations of less than a month, but were unable to 
obtain an adequate fit. To solve this problem, we follow 
Prentice and Gloeckler (1978), Han and Hausman (1986) 
and Meyer (1990), by nonparametrically estimating the 
effect of time on the hazard of retuming to work. The 
hazard of retuming to work is specified in a proportional 
hazards form: 

X]{t) = -^{t)exp{^'x.{t)} (4.5) 

where X^(r) is the unknown baseline hazard at leave 
duration t and time period x, x.{t) is a vector of explanatory 
variables for mother i, and p is a vector of coefficients. 
The data tell us which of the intervals [0,1), [1,2), [2,3), ... 
contains the spell duration (in our case the units are 
months), and the model can be interpreted as an incomple­
tely observed continuous time hazard model with no restric­
tion on the form of the baseline hazard. If T/ is the duration 
of leave for mother / during period x, then for / = 1,2, 3, 
..., the probability that the spell lasts until time t, given that 
it has lasted until t- I, can be written as 

P ( 7 ' > r | T / ^ f - l ) = e x p -J,'.,A,J(M)du 

= exp -exp{p'x,.(r));;.,A;(M)du (4.6) 

if we assume that x.{t) is constant on the interval between 
t - I and t. In order to apply the theory of section 3, we can 
rewrite equation (4.6) as 

l-K]{t)=P{T^it\T;^t-l) 

exp[-exp(p'j:,.(0+Y'(0}] 

exp[-exp{ri'(/)}] 

where 

y\t) = In L ' - i ^ ( " )du 

(4.7) 

(4.8) 

One may censor any ongoing observations at some large 
duration T. Again we can estimate the base parameters p 
and Ŷ " using Â  observations from SLED by maximising the 
log-likeUhood lnL(Y°, p). Since we will always be 
referring to data from the base period for the remainder of 
section 4, we drop superscripts XQ. 

The likelihood function is given by 

n[[ l -exp{-exp(Ti . (* . ) )}f 
1 = 1 

nexp(-exp(Ti,.(0)}] 
/ = i 

(4.9) 

where y = [y{l),y{2), ...,y{T)y,Ci is a censoring time, 
5. = 1 if T. i C. and0otherwise, k. = min(int(T.), C.). The 
log-likelihood is therefore 
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In L(Y, P) = Y [S, ln[l - exp {-exp{t].{k.))}] 
1 = 1 

- E exp (11,(0)]. (4.10) 
/ = ! 

Weights from the months that a child is first observed are 
scaled to sum to the sample size, and then used to weight 
the terms of the log-likelihood function and its derivatives. 
The weighted log-likelihood function is maximised by the 
quasi-Newton algorithm of Broyden, Fletcher, Goldfarb, 
and Shanno (BFGS), using an implementation based on 
Dennis and Schnabel (1983). 

4.3 The Semiparametric Survival Model: 
with Work-to-Birth Gap Decision 

The situation in our application is complicated somewhat 
by our desire to model the duration from leaving the job 
until the birth (the work-to-birth gap), as well as the hazard 
of retuming to work from a matemity leave. The model of 
work-to-birth gap is estimated separately, based on SLID 
data. Examination of the mean gap duration for each year 
in the LFS data indicates that this duration has been fairly 
stable over time, so the model is not benchmarked. Never­
theless, a modification of the semiparametric survival 
model is necessary to incorporate the separate model of 
work-to-birth gap. This can be accomplished by assuming 
that the work-to-birth gap decision, possibly involving 
health considerations, acts to constrain the desired total 
duration. This means that the above model would apply to 
the desired total duration, which is unobservable, and might 
be labelled T\ 

In cases where the desired duration was shorter than the 
work-to-birth gap, the mother might retum to work as soon 
as possible after the birth. This means that in cases where 
we observe a significant work-to-birth gap (greater than a 
month), and the mother retums soon after birth (within a 
month), all that is known about desired duration is that 

T' ^T 

where T is the total duration of leave. This is equivalent to 
a situation labelled "left censoring" by Cox and Oaks 
(1984, page 178), where observation does not start imme­
diately and some individuals have already failed before it 
does. 

From such an observation we get a contribution to the 
likelihood function and its logarithm given by 

Li = l-llP{T'it\T'it-l) = l 

'\] (4.11) 
-nexp[-exp(Ti,.(r))] 

f=i 

and 

ln(L.) = ln{l -exp[-Y exp(ti.(0)]}. (4.12) 
/=i 

Unfortunately the log-likelihood expression does not 
simplify like the corresponding expression for "right-
censored" observations. In spite of this, Monte Carlo 
experiments indicate that estimation is not a problem even 
in heavily censored data sets. 

Longitudinal SLID weights in year of the child's birth 
are used in same manner as for the basic form of the 
survival model. 

5. BENCHMARKING THE MODELS 

To begin the benchmarking procedure we must invert the 
distribution function F given in equation (3.2) to find the 
link function g. We then apply equation (3.5) in the case of 
the logit model, and equation (3.7) in the case of the 
survival model. 

5.1 Application to the Binary Logit Model 

To benchmark the logit model we first invert the logistic 
distribution function in equation (4.1) to obtain 

T\] = g{Tti) = In 

'-<! 
(5.1) 

where g is the well-known logit function. We can then 
apply equation (3.5) and (5.1) to obtain 

f =f°+g(ft')-g(ft'°)=f'' + ln 7iV(l -it') 

[ ft^°/(l -ft'»)j 
(5.2) 

where for x < XQ, each ft^ is the frequency of choosing 
matemity leave calculated from LFS data for matemity 
leaves beginning in year x, and ft ° is the frequency from 
SLID data. 

5.2 Extension to the Survival Model 

From equation (4.7) we get 

<(0 = 1 - exp[-exp {Ti;(0}] = F(Ti;(0} (5.3) 

where 

T i ; ( o = P ' ^ , « + f ( o . (5.4) 

In this case F is an extreme value distribution that is easily 
inverted to obtain 

ii;(0 = ln[-ln(l-<(r))]=g(7i;(0). (5.5) 

For benchmarking we can use equation (3.7) with the 
observed frequencies in period x represented by the 
empirical hazard or occurtence/exposure ratio given by 
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Te{t)=d\t)/r\t) (5.6) 

where, for spells beginning in period x, rf^(0 is the number 
of mothers who fail in the interval {t-l,t] and r ̂  (f) is the 
number of mothers in view at duration t, including those 
censored at time t (censoring can only occur at the end of 
intervals). Numbers of mothers were calculated from 
sample counts by applying the LFS weight from the month 
that a new mother retums to work. The empirical hazard 
and the cortesponding estimator for the survivor function 
implied by the product law of probabilities were studied by 
Kaplan and Meier (1958). The use of the empirical hazard 
in equation (3.7) together with equation (5.5) yields 

f{t)=f'{t)^ In ln[l-ft^(0] 
\ 

ln[l -K'{t)]} 
(5.7) 

6. EMPIRICAL RESULTS 

The results of estimation in the base period, and the 
results of simulation with benchmarked parameter estimates 
are presented for both models. The simulation results are 
compared with annual survey sample frequencies of 
choosing a matemity leave in the case of the logit model, 
and with annual survey frequency distributions of matemity 
leave duration in the case of the survival model. 

6.1 Estimation Results for the Binary Logit Model 
The estimation results obtained from estimating the logit 

model from SLED data are presented in Table 1. Omitted 
dummy variable categories, which form the reference cate­
gories for the variables used in the model, were province of 
residence Ontario and highest education level "some post 
secondary." Individual and family income variables were 
tested, but were found not to be significant, and so were not 
included in the regression. 

There may be some bias in the estimates, particularly 
those of the standard errors, due to the fact that the complex 
SLID sample design was accounted for only through the 
weights applied to the log-likelihood. 

The significant positive effect of job tenure seems 
reasonable for a number of reasons. A lengthy tenure might 
indicate that the woman has acquired firm-specific human 
capital and has achieved some seniority. It would also be an 
indicator of strong attachment to the labour force generally. 
On the firm side, the longer the woman's job tenure, the 
longer the leave that the firm is likely to grant with a 
guarantee that she can retum to her job. Also, provincial 
govemment guarantees of job security also depend on job 
tenure. Finally, a lengthy job tenure means that the woman 
will likely meet the Unemployment Insurance eligibility 
requirements (20 weeks of insured employment). A dummy 
variable indicating that UI entrance requirements were met 
was tested and found to be just significant at the 5% level. 
However, because we are not able at this stage to model 

changes in the UI program through the influence of 
covariates, because of uncertainty in interpretation, and 
because of high correlation with job tenure, it was not 
included. In the LFS, self-employed workers are reported 
as having a transition out of employment only when they 
terminate their business. Since taking a leave simply means 
not terminating the business, a significant positive effect for 
the indicator of self-employment is to be expected. Having 
been self-employed before the birth increases the odds of 
taking a matemity leave by 333%, the strongest effect that 
we see for an indicator variable. 

Table 1 
Binary Logit Parameter Estimation Results 

Parameter 

Constant 
NFLD 

PEI 
NS 
NB 
QUE 
MAN 
SASK 
ALTA 

BC 
Job Tenure (mths)/10 
Self-employed? 
Age (Years) 
(Age'^2)/10 
< High School Grad 
High School Grad 
University Grad 
First Child? 

Estimate of 
Coefficient 

-6.432 
-0.829 
0.931 

-0.456 
0.207 

-0.361 
-0.490 
-0.163 

-0.200 
-0.120 
0.094 

1.203 
0.479 

-0.071 
-0.702 
-0.148 

-0.292 
-0.525 

Contribution 
to Odds Ratio* 

0.002 
0.436 

2.537 
0.634 
1.230 
0.697 

0.613 
0,850 

0.819 
0.887 
1.099 
3.330 
1.614 
0.931 
0.496 
0.862 
0.747 
0.592 

Std Error of 
Coefficient 

2.995 
0.741 
1.612 
0.541 

0.675 
0.247 

0.503 
0.458 
0.325 

0.300 
0.026 
0.418 
0.199 
0.033 
0.357 
0.276 

0.229 
0.192 

Prob-
Value 

0.0318 
0.2636 

0.5633 
0.3992 
0.7596 
0.1437 

0.3306 
0.7218 

0.5379 

0.6899 
0.0003 
0.0040 
0.0160 
0.0296 
0.0490 
0.5913 

0.2027 
0.0063 

log-likelihood = -381.553 
Number of Observations = 835 
Observations are given the SLID longitudinal weight from the year of 
birth, scaled to sum to the sample size 

* This is the exponential of the coefficient. It may be interpreted as 
the proportional change in the odds ratio due to a unit change in the 
corresponding independent variable. 

The effect of the first child indicator also seems reason­
able. The odds for matemity leave for a first-time mother 
is only 59% of the odds for matemity leave for a mother of 
more than one child, given that all other characteristics are 
the same - i.e. first-time mothers are more inclined to job 
separation than the mothers who already have children. 
This may be partly a consequence of the fact that our 
sample consists of mothers who have been employed within 
4 months of the birth. Mothers who have more than one 
child tend to space them within a few years at most. If they 
are employed just before a second or subsequent births, 
they will have already demonstrated that they retumed to 
work after an absence that must have been less than the gap 
between births. This at least rules out some common 
pattems of withdraw from the labour force - for example 
staying at home until all children are in school. 
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The effect of age is more difficult to interpret since the 
effect on the log-odds ratio is non-linear. By drawing a 
graph of the term -.479* age - .0071 * age^ one can see that, 
as age increases, the log-odds of taking a matemity leave 
first increases, but that the rate of increase declines until a 
level point at the maximum log-odds is reached by the age 
of 34. Since the number of mothers declines considerably 
after this age, the subsequent decline may not be 
meaningful. One might hazard a conjecture that, among 
young mothers, being relatively older indicates more 
attachment to the labour force and thus a stronger tendency 
to take a matemity leave, while among older mothers, who 
are past the stage of first entering the labour force, this 
effect is reduced. However, the results are probably not 
precise enough to draw any firm conclusion about this. 

6.2 Simulation Results for the Benchmarked Binary 
Logit Model 

The benchmarking exercise consists of adjusting the 
constant term of the model in the manner described by (5.2) 
for each year in the period 1975-1992. The constant term is 
not adjusted after 1992, partly because the LFS data do not 
indicate a strong trend after 1992. The model is then 
incorporated in LifePaths and a simulation is mn. For each 
year from 1976 to 1995, Figure 1 shows both the frequency 
of choosing a leave in the LifePaths simulation, and the 
frequency estimated from the LFS. For the period 
1993-1995, estimates from SLID are also presented. 

-̂JZ_ 
../^ V^'^'^^^^^^^r:?^" ""'• 

.'.7^' 

/f 
J^ LFS LFS(3-yrMA) SLID LiloPaths 

>-J 

A jA A A 

Figure 1. Frequency of Choosing a Matemity Leave 1976-1996 

The simulation captures the change over time revealed 
by the LFS data during the period 1976-1992. There is no 
benchmark adjustment implemented in the LifePaths simu­
lation after 1992, so that the base parameters estimated from 
pooled SLID data 1993-1996 are effective. The simulated 
frequency is slightly lower than the observed SLED 
frequency during this period. Two possible sources of error 
are an insufficiently flexible specification of the binary 
choice model, and differences between the SLED estimates 
of explanatory variables and those provided by LifePaths. 

6.3 Estimation Results for the Survival Model 
The results obtained from estimating the semiparametric 

survival model from SLED data are presented in Table 2. 
As in the binary logit model estimation, omitted dummy 
variable categories were province of residence Ontario and 
highest education level "some post secondary." Since the 
dependent variable is the hazard of retuming to work, a 
positive coefficient for a covariate indicates an influence 
that tends to shorten the duration of matemity leave. 

The estimates of the constant terms in the duration-
dependent linear predictor given by (4.7) are denoted in 
Table 2 by GAMMA/, / = 1,2,..., 15. This represents the 
influence of the baseline hazard incorporating the influence 
of duration. 

Table 2 
Survival Model Parameter Estimation Results 

Parameter 

Job Tenure (mths) /lO 

NFLD 

PEI 

NS 

NB 

QUE 

MAN 

SASK 

ALTA 

BC 

Self-Employed? 

Age 

Age** 2 /10 

First Child? 

< High School Grad 

High School Grad 

University Grad 

Employed Spouse? 

Gamma 1 

Gamma2 

Gamma3 

Gamma4 

GammeS 

Gamma6 

Gamma7 

Gamma8 

Gamma9 

Gamma 10 

Gamma 11 

Gamma 12 

Gamma 13 

Gamma 14 

Gamma 15 

log-likelihood = -1165.06 

Number of Observations 3411 

Estimate 

-0.030 

0.195 

0.307 

0.173 

0.109 

0.111 

-0.402 

-0.303 

0.270 

-0.440 

1.665 

-0.253 

0.043 

-0.301 

0.508 

-0.124 

-0.374 

0.109 

2.570 

-1.136 

-0.466 

0.780 

1.425 

2.755 

3.640 

3.413 

3.465 

3.387 

4.579. 

4.285 

3.645 

3.746 

6.215 

Std Error 

0.010 

0.426 

0.490 

0.253 

0.293 

0.117 

0.253 

0.213 

0.154 

0.148 

0.157 

0.041 

0.007 

0.090 

0.206 

0.125 

0.108 

0.151 

0.609 

0.816 

0.719 

0.640 

0.627 

0.613 

0.612 

0.620 

0.630 

0.649 

0.655 

0.785 

1.110 

1.281 

2.415 

Prob-Value 

0.0024 

0.6470 

0.5313 

0.4940 

0.7091 

0.3411 

0.1116 

0:i539 

0.0798 

0.0030 

0.0000 

0.0000 

0.0000 

0.0009 

0.0135 

0.3212 

0.0006 

0.4703 

0.0000 

0.1636 

0.5176 

0.2232 

0.0231 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0010 

0.0034 

0.0101 

Observations are given the SLID longitudinal weight from the year of 
birth, scale to sum to the sample size 
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Again, individual and family income variables were 
tested and found not to be significant. Both this finding and 
the importance of a self-employment indicator as a pre­
dictor of early retum to work accord with the findings of 
Marshall (1999). Marshall found that education variables 
were not significant in determining whether a mother would 
retum to work within a month. We find however, that 
university graduation has a significant negative effect on 
the hazard (positive effect on duration). Job tenure has a 
significant negative effect on the hazard, possibly reflecting 
its relationship with Unemployment Insurance entitlement 
and job security. 

6.4 Simulation Results for the Benchmarked 
Survival Model 

In the case of the semiparametric survival model, bench­
marking consists of adjusting all of the terms GAMMA/, 
/= 1,2,..., 15 of the previous section according to (5.8) for 
each of the years in the period 1975-1992. The model is 
then simulated as part of LifePaths. 

The frequency distribution of simulated matemity leave 
durations is presented and compared to the corresponding 
observed frequency distribution from LFS data. In order to 
present the results, the frequencies in 3-year periods were 
averaged. A key feature of the frequency distribution is an 
abmpt change apparently due to the introduction of parental 
benefits with Bill C-21 at the end of 1990. Since mothers 
with matemity claims in progress at the time of implemen­
tation were entitied to parental benefits, the claims 
beginning in 1990 represent a mixture of regimes. For this 
reason the year 1990 is not included in any of the 3-year 
averages. In Figures 2 and 3 we use disjoint 3-year periods 
covering 1976-1984. To balance periods before and after 
1990 using available data, in Figures 4 and 5 we use the 
overlapping periods 1985-1987, 1987-1989, 1991-1993, 
and 1993-1995. 

Figure 3. LFS Data: Distribution of Leave Durations for 1976-1984 

o 

s 

• 

0 

' / "\ 
\ \ 

\ 
\ 

1 ' \ •'•• • ' ' • 
/ ^ \ •• ' ' •• '• 

/ •/C 
/ ••• • ' \ 

i / -•••• '• \ 

^f - / •• / \ 

\ "• ' ^ 

• ' • ' 

1985-87 1987.89 
1991-93 1993-95 

\ 
'• » 

•• V 
•. V 

.̂,/.̂  "v ' "'•* ̂  

•• = ^ ^ ^ ^ * * — L . 

1 2 3 4 5 6 7 8 9 10 I t 12 13 14 15 18 
Duration (months) 

Figure 4. LifePaths: Distribution of Leave Durations for 1985-1989 
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The distribution of durations derived from SLED data 
1993-1996 is presented in Figure 6. This may be compared 
with the simulated data shown in Figure 4 for the period 
1993-1995, since no benchmarking is applied after 1992. 

1 2 3 

Figure 6. SLID Data: Distribution of Leave Durations for 
1993-1996 

In Figure 7 we present the average duration of matemity 
leaves beginning in each year of the observed period. The 
average of simulated durations are compared with those 
from the surveys. 
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Figure 7. Average Duration of Matemity Leave 1976-1996 

6.5 Evaluation of Benchmarking Performance 

The benchmarking method appears to be very effective 
in the case of the binary logit model. The trend of the LFS 
data is well reflected in the LifePaths simulation. In the case 
of the survival model, the key feature of the LFS data is the 
abmpt shift of the mode of the frequency distribution after 
1990, apparently due to the introduction of parental 
benefits. This shift has been captured by the simulated data. 
Also the average duration of matemity leave in the 
simulation fits the LFS data very closely. 

A noticeable divergence between the simulation and the 
LFS data is the height of the mode at the interval (3, 4] 
months in the frequency distribution of the durations from 

LifePaths from 1982-1989. This may be due to the effect of 
trends in the values of explanatory variables, which we have 
assumed to be stable. Further work is necessary to establish 
this. A possible extension to the model was discussed in 
section 3.3. 

7. CONCLUSIONS 

The technique that we have developed appears to be 
quite successful in benchmarking of the logit and survival 
model parameters so that the essential features of the LFS 
data are captured in LifePaths predictions. The key to 
benchmarking the logit model is the adjustment of the 
parameter cortesponding to the "constant term" in the linear 
predictor that is imbedded it the logistic distribution 
function in order to predict the conditional expectation of 
the dependent variable. Section 3.1 develops the technique 
in a general framework that includes other models of binary 
choice. Particularly, it would extend to the popular probit 
model where a linear predictor is embedded in the standard 
normal distribution function. Benchmarking of the semi­
parametric survival model hinges on the adjustment of all 
the parameters representing the baseline hazard. Our results 
illustrate how the entire shape of the distribution of dura­
tions predicted by the model can be made to evolve through 
time according to a pattern revealed by supplementary data. 
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Improved Ratio Estimation in Telephone Surveys Adjusting 
for Noncoverage 

STEVEN T. GARREN and TED C. CHANG' 

ABSTRACT 

Since some individuals in a population may lack phones, telephone surveys using random digit dialing within strata may 
result in asymptotically biased estimators of ratios. The impact from not being able to sample the nonphone population is 
examined. We take into account the propensity that a household owns a phone, when proposing a post-stratified phone-
weighted estimator, which seems to perform better than the typical post-stratified estimator in terms of mean squared error. 
Such coverage propensities are estimated using the Public Use Microdata Samples, as provided by the United States Census. 
Non-post-stratified estimators are considered when sample sizes are small. The asymptotic mean squared error, along with 
its estimate based on a sample, of each of the estimators is derived. Real examples are analyzed using the Public Use 
Microdata Samples. Other forms of nonresponse are not examined herein. 

KEY WORDS: Asymptotics; Census Public Use Microdata Samples; Post-stratification; Telephone survey. 

1. INTRODUCTION 

Consider surveys where the telephone population is 
sampled. Major problems in telephone surveys include 
nonresponse {i.e., refusal to participate in the survey) and 
noncoverage {i.e., lacking telephone service). Nonresponse 
may cause larger bias than noncoverage, since nonresponse 
propensities are usually much higher than noncoverage 
propensities. However, nonresponse is reviewed rather 
briefly, because the focus of this article is noncoverage. 

1.1 Literature Review 

Khurshid and Sahai (1995) provided an extensive 
bibliography of papers on telephone surveys. Examples of 
nonresponse rates may be found in Steeh, Groves, Com­
ment and Hansmire (1983, pages 189-197). Cortections for 
nonresponse, using weights and imputation, were discussed 
by Littie (1986) and Rubin (1987). Rao (1997) provided an 
overview of sample surveys, including discussions on 
resampling methods, especially the jackknife, for variance 
estimation. His discussion includes techniques to estimate 
the variance in the presence of imputation. 

Regarding noncoverage. Brick, Waksberg and Keeter 
(1994) found the 94% of the households in the United 
States have phones at any given time. They also found that 
the households with interrapted telephone service usually 
are indigent. Keeter (1995) discussed that in a survey 
conducted from 1992 to 1993 more than half of all house­
holds without continuous telephone service during that year 
were transient, i.e., these transient households were both 
with and without telephone service at different times during 
that year. He also found that most socioeconomic factors 

(excluding home ownership) for transient telephone house­
holds are similar to those factors for households which are 
continuously without phones. These similarities between 
the transient and the nonphone populations suggest that 
valid inferences may be made on the entire (phone, non­
phone, and transient) population, based on telephone 
surveys. Thomberry and Massey (1988) examined non-
coverage for various socio-demographic groups from 1963 
to 1986, and found income to be the most important factor 
in determining the likelihood that a household has a phone. 

1.2 Our Approach 

Given several various characteristics, such as home 
ownership and household language, the propensity of a 
household to have phone service is estimated in this article 
using the Virginia portion of the 1990 Census Public Use 
Microdata Samples (PUMS), which represent 5% of the 
population. Whether or not households have phones is 
included in the PUMS. The estimation of these propen­
sities, or probabilities of phone service, is based on genera­
lized linear regression with a log - log link, since the logit 
link provides a poor fit. We advocate using our fitted 
regression model, with the estimated parameters, for esti­
mating these likelihoods in general whenever a random 
sample is taken from the Virginian phone population. 

Because it is such' a huge data set, the PUMS have 
another useful purpose in this article. The PUMS are used 
to compare and contrast estimators in terms of bias and 
variance, by examining the entire phone population and by 
taking repeated samples of the phone population. Cate­
gorical data consisting of 75 household and 75 personal 
variables are listed for all individuals in the households 
selected to be in the PUMS. 

Steven T. Garren, Department of Mathematics and Statistics, MSC 7803. James Madison University, Harrisonburg, Virginia, 22807, U.S.A. Research partially 
supported by NIMH grant MH53259-01A2; Ted C. Chang, Division of Statistics, 108 Halsey Hall, University of Virginia, Charlottesville, Virginia, 22903, 
U.S.A. Research partially supported by ONR grant N-00014-92-J-1009. 
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In the examples in section 6 high school graduation rate, 
mean number of cars per household, and mean household 
income are estimated using both post-stratified and non-
post-stratified estimators for samples of size 500 from the 
PUMS. The post-stratification variables for high school 
graduation rate are gender, age, and race of the head of 
household. The post-stratification variable for mean number 
of cars per household is household income only. Estimators 
of the mean household income are analysed twice. For one 
analysis, post-stratification is on only the race of the head 
of household. For the other analysis, post-stratification is on 
gender, age, and race of the head of household. Each of 
these post-stratification variables is divided into two cate­
gories, except income, which is divided among three 
categories. 

A serious drawback to estimators not taking into account 
the propensities of phone service is that these estimators are 
not asymptotically unbiased as the sample size gets large. 
A major focus of this article is to show that bias is reduced 
substantially when the estimators take into account the pro­
pensities of phone service, as estimated by the PUMS. 
Since both post-stratified and non-post-stratified estimators 
as well as both using and not using the propensities of 
phone service are considered, then four estimators are exa­
mined herein. In particular, these four estimators of a popu­
lation mean are the sample mean, the usual post-stratified 
estimator, a phone-weighted estimator, and a proposed post­
stratified phone-weighted estimator. The mean squared 
ertors (MSE) of the phone-weighted estimator and the post­
stratified phone-weighted estimator go to zero as the sample 
size gets large, unlike the other two estimators. 

We adopt a two-phase model for our four estimators. 
The first phase involves selection from the entire population 
into the phone population. We treat the propensity of a 
household to have phone service as the probability that the 
household will be selected into the phone population, and 
we assume that this probability is positive (although 
possibly small) for each household. The second phase is a 
stratified (perhaps geographically stratified) simple random 
sample from the phone population. In the examples in 
section 6, we consider post-stratification by characteristics 
such as race and age of the head of household. Since our 
sample sizes are small, we do not geographically stratify the 
population of Virginia, although our formulas allow for 
both stratification and post-stratification. 

Ideally, one would post-stratify using the same covariates 
used for estimating the propensities of phone service in the 
first phase of our model. In this case, the three estimators 
which use the propensities of phone service and/or post-
stratification will be almost identical. However, the sample 
size for each post-stratified category should not be too 
small, so practical linutations restrict the number of cate­
gories which should be used for post-stratification. Never­
theless, many categories may be used for constmcting the 
propensities of phone service from the PUMS, because the 
entire population is used. 

Even if post-stratification by many covariates is feasible, 
the usual variance formulas for post-stratification require 
that a stratified random sample be taken from the entire 
population. In our situation, however, a stratified random 
sample is taken from the phone population, so the usual 
variance formulas are not applicable to our situation. The 
techniques by Politz and Simmons {cf Cochran 1977, pages 
374-377) require the sampling frame to be the entire 
population, not just the phone population, and hence are not 
applicable to our scenario, which allows noncoverage. 

We derive the asymptotic variances of the four estima­
tors of a population ratio, and we determine reasonable esti­
mates of these variances. Since a population mean is a 
special case of a ratio, and a population total is a multiple of 
a ratio, then the results regarding estimators of means or 
totals follow from the results regarding estimators of ratios. 

2. NOTATION 

Consider Â  households in a population, U. For each 
household in U, let two variables of interest be denoted by y, ̂^ 
and y2i^, for keU. At any given time, the event that the ^h 
household does or does not have a phone is treated as 
random, while y^ is treated as fixed. 

Letting 

Â  -1 

keU 

for i = 1,2, the goal is to estimate a,, a^, and the ratio 

p = a , / O j . 

Without loss of generality we concentrate on estimating Oj 
and p. 

An important special case of estimating a ratio p arises 
when one desires to estimate the mean of a variable z^. for keD 
for some subpopulation DcU but one cannot sample 
directly from D. Examples include subpopulations defined 
by race. Let x̂  be 1 if ^ 6 D and 0 otherwise. Let y ̂  = Zi^X/^ 
and yj^ = x^. Then p is the population mean of ẑ  over the 
subpopulation D. 

Assume there are H strata, and h is used to index the 
strata. Assume there are G groups, and g is used to index 
the groups, which are used to constmct the post-strata. The 
strata are known prior to sampling, but the groups are not 
observed until after the final sample is taken. Therefore, 
U ^ denotes all households in group g and stratum h; N . 
denotes the size of U ., and N, denotes the size of i/,. 
Other variables are defined similarly in terms of g and h. 

Let Uj. denote the population of households in U which 
currently have telephones, and let Nj denote the size of 
Uj.. The probability, or propensity, that the kth household 
in U is also in f/̂  is denoted by p^, and we assume that 
Pi^>0 for all k. A simple random sample of size «̂  is taken 
from Uji^ for h =1,. . . , H. Let 5̂  denote this final sample 
in stratum h. The size of the final sample, s, is denoted by 
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n. For asymptotics herein, we assume that nIN-'O as « - «> 
in the same spirit as 
(1992, pages 166-169) 

To determine the variance and bias of ctpsd), set yj^ = 1 
in the same spirit as Samdal, Swensson and Wretman for all k, so that p and p become a ,,. and a,, respec­

tively. One may then apply (3.1) and (3.2) so that 

3. THE ESTIMATORS 

The sampling design is treated as a two-phase design 
with Poisson sampling at the first phase and stratified 
simple random sampling at the second phase. Each indi­
vidual enters the telephone population with probability /P ,̂ 
for keU, and then enters the final sample according to a 
simple random sample of size n^, /i = 1,..., H. The p^ are 
assumed known or can be estimated accurately, as shown in 
section 5. The estimators of p discussed in this section will 
be validated in the appendix. 

3.1 The Post-stratified and Ratio Estimators 

Post-stratified estimates of a, and Uj are 
H G 

«ps(/) = ^ " ' Y Y ^gh'^gh Y yik' 
* = ' « = 1 kesgi, 

for / = 1,2, and the post-stratified estimate of p is 
MDS ~ "osfn ^̂ Dsav ^ ^^hd estimate of the variance, condi-ps V d ) RS(2) 
tional on U^., is known to be {cf. Samdal etal. 1992, pages 
270-271) 

var(MpJf/r) 

H C 
2 

•ps(2)'' Z ^ ^^ '"gh 
/i = l g = t 

= (^aps(2,)"T Y N, 

Y 

^-inJN,A 

kes, 
gK 

yik - Mps y2k -"«A' Y O-iy - Mpsyy) 
j^\i (3.1) 

Although the bias cannot be estimated from the final 
sample, the theoretical bias of Q„̂  is well-known to be 

ps 

bias p 

H G 

Yl 
h-l g-l - jeu^. 

Y Y '^gh\Y p]'' Y Pkyik 
keU.^ 

ps H G 

Y Y f^gh\ Y p\' Y Pky2k 

H C 

v a r a p , „ ) = ^ ' ' E YKH 
/. = ! g = l 

Y 
and 

-I V- ? 
yik-f'gh L ^i; 

bias fipsd) 

H G 

(3.3) 

= N-YYNgh[YpyYPkyik-^i^o{n-^) 
h-l g-l \jeU^, ) keU^, 

= 0(1) 

as n-oo. Cochran (1977, pages 134-135) provided a 
cortection factor, which is of order n'^, to (3.3). This 
cortection factor, however, is irrelevant to (3.1), since the 
error term due to estimation from the ratio is 0{n '^). 

As usual, the ratio estimator, denoted by >'i/y2. 'S 
defined to be the ratio of the sample mean of y, to the 
sample mean of yj. That is, 

h^h = Y yik/Y yy 
kes jes 

The post-stratified and ratio estimators are identical when 
G = H = I. Since we will be using only one stratum {i.e., 
H = I) in section 6, we need not reference separate theory 
for the ratio estimator. 

3.2 The Phone-weighted Estimator 

Since the post-stratified estimator, p , is biased, two 
altemative estimators are suggested. One is the phone-
weighted estimator, which takes into account the proba­
bility that an individual has a phone. In this section we 
assume that the /?̂  are known for all kes or can be esti­
mated accurately. Estimation of p^ using the PUMS is 
discussed in section 5. 

For a cmde estimate of a, for / = 1,2, use 
H 

«M/) = ^ " ' E ^ T A ^ ' E Pk'yik-
h-l kes. 

(3.4) 

E>'u 
keU 

Y y2k 
keU 

+ 0{n-^) (3.2) 

as n - °o. Noting (3.2), the MSE of p does not go to zero 
in general as the sample size n gets large. 

Then, estimate p by 

(3.5) 

which is asymptotically unbiased for p, since â ,̂., is 
unbiased for a„(,), for J = 1,2. A valid estimate of the 
variance of p is shown to be 
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varp^ = [A^fi.a)r 'E 
« N^,[l-{n,IN^)] 

h-l n.{n,-l) 
var Pp,„ = [Na^,^^2^-^Y NI\ Y PA 

h-l \jes^ ) 

-2 

Y 
kes. 

yik-Ky2k - i ^ y i j - K y y 

Pk 
VE 

i^h Pj 

. (3.6) 

Since the estimator, p^, is asymptotically unbiased, then a 
valid estimate of the MSE of p̂ ^ is identical to the estimate 
of the variance. 

I \ I 
n,. 

\ h I N Th 
Y Y Pk' 
g=l kes^. 

J^^.i 
k-Ppswy2k-\YPj'\ Y Pm(yim-Mpswyim) 

Setting ŷ  = 1 in (3.4) and (3.5) allows a valid estimate unlikely, then a more familiar and intuitive estimator of var p 
of a^(,) tobe 

(3.8) 

Notice that if N .̂̂  were known, which is however 
'linr and inhiiri ve e.srimatnr of var ij 

psw 
would be 

'wd) 

H 

y. 
h-l 
Y^Th"h^Y Pk 

kes. 

H G 

Y ^Th"h'Y Pk yik-
h = l kes. 

The variance of fi^^,,. may be estimated by setting yj. = 1 
in (3.6). 

3.3 The Post-stratified Phone-weighted Estimator 

Another proposed estimator combines post-stratification 
with the phone-weighted estimator, and is perhaps the best 
among the four, when sample sizes are large enough to 
justify post-stratification. This new estimator requires, how­
ever, that all Â  ^ be large enough so that with high probabi­
lity the n ^ are not too small. To estimate â . we use 

Vw(,f^"'EEA^,. 
H G 

EY 
h-l «=i 

TPJ- E Pk yik' 
kes„. 

for / = 1,2. We then estimate p by Pp̂ ^ = Q.J„^^l)/\,^^2y 
The estimate of the variance of p is 

psw 

var Ap.w = [^«psw(2) ]" 'E E ^ ' 4 E Pi 
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Z.^ Pm ^yim "psw. '2m' ' 
(3.9) 

Since Nj. ̂  typically is unknown, then (3.9) usually is not 
a practical estimator. However, (3.9) helps motivate (3.7) 
and (3.8), which are quite practical. 

Since the estimator, p , is asymptotically unbiased, 
then a valid estimate of the MSE is identical to the estimate 
of the variance. Further, setting ŷ .̂ = 1 in (3.7) and (3.8) 
allows one to estimate the variance of &psv/{iy 

When G = I, the estimator p does not reduce to p^, 
as one might naively anticipate. The preferred estimator 
when G = 1 is p^, since p̂ ^ is based on only one ratio, 
whereas p is based on a ratio of ratios. The estimator 
p requires large sample sizes in each stratum-group 
category, but p,̂  requires only a large overall sample size. 
When H =G = 1, however, the estimators p^ and pp^̂  are 
identical; the variance estimators based on p^ are 
preferable to those based on p because the estimates of 
the variance of p are based on a ratio of ratios. 

y i t - Apsw ^2* - I E P / ' 1 E P m ' ( y 1 m - Ppsw 3'2m) " 
(3.7) 

If any of the n ^ terms are small, then one might instead 
prefer the estimator 

4. ASYMPTOTIC MEAN SQUARED ERRORS 

The asymptotic mean squared errors of the estimators 
defined in section 3 now are stated. The proofs follow from 
Taylor linearization and are given in the appendix, along 
with the minor regularity conditions needed. 
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4.1 The Post-stratified Estimator 
To find the asymptotic theoretical variance of the post­

stratified estimator of p, we first define 

H c 

a; = p l i m „ _ V o = ^ " ' E E f^gh 
h-l g-l 

Y p . V E Pkyiv 
(4.1) 

for / = 1,2, and also define 

p* = a;/c4. (4.2) 

Note that a* * a. and \i' * \i in general. The asymptotic 
theoretical variance of p„„ is 

ps 

varp =(Ara ; ) -^EE 
h-l g-l 

N. gh YPJ] -«* 
i E Pk 

"hi Y Pj]\( Y Pj] -Ak^'j,!.' 

^ u - M y2k 

Y Pjiyij-1''yy) 
j^",i. 

^Pj 
i^^.1, 

+ 0{n-^*N-^) 

(4.3) 

as n -> 0°. The asymptotic bias of p was shown in (3.2) to 
be 0(1) as w - <=». Therefore, the asymptotic MSE of Pp̂  
is also 0(1) as n - oo. 

4.2 The Phone-weighted Estimator 

The asymptotic theoretical variance of the phone-
weighted estimator of p is 

var V^^ = {Na2)'^Y 

Y PJ] -"h\( YPJ 

h-l n. Y P] -1] 

YPk 
keU, 

Y (yij-i^yy)^' 
yik-i^y2Jc j^u. 

Pk Y.Pj 
+ 0{n-^*N-^). 

(4.4) 

Since p^ is asymptotically unbiased, then its MSE is the 
same as the right hand side of (4.4). 

4.3 The Post-stratified Phone-weighted Estimator 

The asymptotic theoretical variance of the post-stratified 
phone-weighted estimator of p is 

varpp3«=(A^a2)-^X:E 
h-l g-l 

Y Pj]\( YPj] -«/, 

"JfEp,]-! YPk' 
keU. 

«* 

yik-i^y2k-^g'h Y (^u-Myz,) 

+o(«-^+yv-'). 

isymptotically ur 
same as"the right hand side of (4.5). 

(4.5) 

Since p is asymptotically unbiased, then its MSE is the 

5. ESTIMATING THE Pj USING PUBLIC 
USE MICRODATA SAMPLES 

The United States Bureau of the Census produced the 
Public Use Microdata Samples (PUMS), which include 1% 
and 5% samples of the population in each of the 50 states 
and Washington, D.C, for year 1990. For each person 
selected in the sample, 75 household variables and 75 
personal variables are listed, where each household has a 
clearly defined head of household. We utilize the PUMS for 
two reasons. We estimate the p̂ ^ using the PUMS in this 
section, whereas in section 6 we mn simulations on the 
PUMS to constmct examples for comparing and contrasting 
the estimators. 

In this article, we use the 5% sample from Virginia. 
Since 5% represents a huge number of households, we treat 
this sample as if it were the entire population of Virginia. 
Since we are interested in telephone surveys, then from this 
5% sample we will sample households. Inferences may be 
made on personal variables, such as high school graduation 
rate, and household variables, such as the number of cars in 
a household or household income. Information pertaining 
to whether or not each household has a phone is included in 
the PUMS. We removed from our study all households 
whose telephone status is listed as "not applicable." Such 
households were either vacant or were group quarters 
(institutions and non-institutions). The number of house­
holds remaining in 1990 is 110,744, of which 104,606 have 
phones; hence, the proportion of these households which 
have phones is 94.5% 

Using generalized linear regression with a log - log link 
on the 5% sample from Virginia along with the household 
weights assigned in the PUMS, we estimate p^, which is 
the probability, or propensity, that the kth household has a 
phone. McCullagh and Nelder (1991, pages 107-110) 
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recommended the use of a log - log link when the 
probabilities are close to one, and we found that this link 
provided a good fit. We also found that the logit link 
function provided a poor fit. 

The PUMS household weights are used when estimating 
the p^ but are not used elsewhere herein. In particular, in 
section 6 when constmcting Monte Carlo samples of the 
PUMS population, the samples are simple random samples 
from the telephone population. 

Examples of estimating the p^ 
Six covariates, the number of persons in the household, 

tenure (home owner or renter), the date the head of house­
hold moved into the dwelling, household income, house­
hold language, and race of the head of household, are used 
to estimate the p^. These six covariates were chosen, along 
with the categories for each covariate, based on a thorough 
analysis of the 1990 PUMS using generalized linear 
regression techniques in SAS. All of these covariates were 
found to be highly statistically significant. Estimates of the p^ 
are made by summing the appropriate estimates of the 
covariates in Table 1. The covariate for the number of 
persons should be multiplied by the number of persons in 
the household; however, if the number of persons exceed 

five, then, for computations, convert this number of persons 
to five. For example, if the household consists of three 
English-speaking Asian Americans with two cars in a house 
purchased in 1987, where the household income is $75,000, 
then Table 1 indicates that the estimate of p̂ ^ is the solution 
to 

l og ( - logpJ = 3x0.2747-0.5552 + 0.5920 

+ 0.1896 + 1.0004 + 0.6156 + 0.0000. 

Notice that in Table 1 within each of the covariates date 
moved in, number of cars, and income, the values corres­
ponding to the categories are monotonically decreasing, as 
anticipated, except when income is negative. 

An adjustment which should be made when using 
random digit dialing is to ask each respondent the number 
of phone lines in the household, and multiply that number 
by the estimate of p^ from Table 1 to obtain a new estimate 
of Pi^ Consequentiy, p^ now is a weight, rather than a 
probability. For the simulations discussed in section 6 this 
adjustment is not necessary, since households are equally 
likely to be selected using simple random sampling from the 
PUMS, regardless of the number of phone lines. 

Table 1 
Values of covariates for estimating pausing the Virginia 5% PUMS. Standard errors are in parentheses. If the number of persons 

exceeds five, then convert this number to five. The covariate "tenure" did not appear in the 1980 PUMS. The 1980 category "$40,000 
to $49,999" actually includes "$40,000 or greater". The "other" category for the 1980 covariate "language" includes Spanish. 

Covariate 

Number of persons 

tenure 

date moved in 

number of cars 

income 

language 

race 

intercept 

Category 

home owner 
renter 

1989 or 1990 
1985 to 1988 
1980 to 1984 
1970 to 1979 
1969 or earlier 

0 
1 
2 
3 or more 

less than $0 
$0 to $9,999 
$10,000 to $19,999 
$20,000 to $29,999 
$30,000 to $39,999 
$40,000 to $49,999 
$50,000 to $59,999 
$60,000 to $69,999 
$70,000 to $79,999 
$80,000 or greater 

English 
Spanish 
other 

black 
other 

1990 Value 

0.2747 

-0.5552 
0.0000 

0.9742 
0.5920 
0.3489 
0.2185 
0.0000 

1.2927 
0.6842 
0.1896 
0.0000 

3.5325 
3.7929 
3.4878 
3.0299 
2.4297 
1.8899 
1.5992 
1.2144 
1.0004 
0.0000 

0.6156 
0.4889 
0.0000 

-0.4233 
0.0000 

-7.6707 

(0.0022) 

(0.0079) 
(0.0000) 

(0.0121) 
(0.0119) 
(0.0138) 
(0.0136) 
(0.0000) 

(0.0152) 
(0.0143) 
(0.0145) 
(0.0000) 

(0.1294) 
(0.0539) 
(0.0538) 
(0.0539) 
(0.0543) 
(0.0556) 
(0.0578) 
(0.0631) 
(0.0704) 
(0.0000) 

(0.0164) 
(0.0216) 
(0.0000) 

(0.0064) 
(0.0000) 

(0.0588) 

1980 Value 

0.1929 

-0.7845 
0.0000 

NA 
NA 
NA 
NA 
NA 

0.8633 
0.3981 
0.0399 
0.0000 

2.3639 
2.5238 
1.9763 
1.0220 
0.3889 . 
0.0000 

NA 
NA 
NA 
NA 

0.4232 
NA 

0.000 

-0.3837 
0.0000 

-4.9024 

(0.0020) 

(0.0057) 
(0.0000) 

(0.0118) 
(0.0109) 
(0.0112) 
(0.0000) 

(0.0830) 
(0.0260) 
(0.0258) 
(0.0269) 
(0.0317) 
(0.0000) 

(0.0153) 

(0.0000) 

(0.0058) 
(0.0000) 

(0.0322) 
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Table 1 thus can be used for estimating p^ when con­
ducting telephone surveys. When a generalized linear 
regression model calculated from a PUMS of an earlier date 
is used to analyse a later survey, reseating should be 
performed to take into account changes in the distribution 
of household income across time. Table 1 also gives the 
coefficients of a model calculated from the 1980 PUMS. 
We discuss in section 6 an example when the 1980 PUMS 
model is used to calculate p^ for a sample from the 1990 
PUMS population. We note that the 1980 PUMS did not 
include "date moved in" and that a better fitting model 
arose when the language categories "Spanish" and "other" 
were combined. In addition, median household income 
almost doubled between 1980 and 1990, so fewer income 
categories were used in 1980. 

Although Table 1 is convenient when sampling from the 
PUMS and performing simulations, the covariates listed in 
Table 1 might not be available in actual surveys involving 
random digit dialing. One may reproduce Table 1 using 
different covariates, or one may estimate the p^ according 
to the following altemative method. 

An alternative method for estimating the p̂^ 

The participants in a telephone survey based on random 
digit dialing may be asked the following two questions: "(1) 
How many telephone lines have been in your household 
during the past twelve months? (2) During the past twelve 
months, how many months was each telephone line in 
service?" Now, let p^ be the sum of the answers to question 
(2). For example, in a household with two phone lines, 
where one of the lines was in service all twelve months and 
the other was in service only five months, the estimate of p^ 
would be 12-1-5=17. Again, p^ represents a weight rather 
than a probability here. Asking the respondent this second 
question is similar to an approach advocated by Brick et al. 
(1994), who also suggested weighting the data to take into 
account the probability that a household has phone service. 

6. INFERENCES ON HOUSEHOLD AND 
PERSONAL VARIABLES 

We will compare the four proposed estimators of p as we 
make inferences on the high school graduation rate among 
people at least 21 -years-old, the mean number of cars per 
household, and the mean household income, in the state of 
Virginia. We performed 100,000 simulations of simple 
random samples of 500 households with telephones from 
the 1990 Virginia 5% PUMS using one stratum {i.e., H=l). 

In section 6.1, two sets of p^ are used. One is based upon 
a GLIM regression fit to the 1990 PUMS, and the other is 
based upon a GLIM fit to the 1980 PUMS with the income 
categories inflated by the ratio of the 1990 median 
household income ($32,800) to the 1980 median household 
income ($17,510). Using the 1980 p^ to estimate a 1990 
parameter demonstrates how well our method works when 

GLIM coefficients are used for future data sets, provided 
than an adjustment for inflation is made. Only the 1990 Pj^ 
are used in section 6.2 and section 6.3. 

Post-stratification should be used when the sample sizes 
are sufficiently large. Non-post-stratified estimators may be 
compared to each other, and post-stratified estimators may 
be compared to each other. Comparing y,/y2 to p̂ ,̂ is 
appropriate, and comparing p to p is appropriate. 
These comparisons show the improvements when using the p̂ ^ 
in the estimators. 

6.1 Estimating the High School Graduation Rate 

Using the entire 1990 Virginia 5% PUMS, the mean 
high school graduation rate among all Virginians at least 
21-years-old is p=0.75118. When estimating the graduation 
rate using a simple random sample and p or p , we 
post-stratify by gender (male, female), age (less than 45 
years old, at least 45 years old), and race (black, other) of 
the head of household. The p^ are estimated using Table 1. 
The values of the biases and standard deviations discussed 
below are shown in Table 2, when 1990 p^ are used. 

Table 2 
Biases and Standard Deviations of Estimates of High School 

Graduation Rate 
Estimator 

not post-stratified post-stratified 
yi'h M„ Mps Mpsw 

aggregate bias 0.01471 0.00722 0.01461 0.00874 
telephone bias 0.01472 0.00720 0.01463 0.00850 
second phase bias 0.00000 0.00002 -0.00002 0.00024 
theoretical bias 0.00777 0 0.00663 0 

simulated standard 0.01683 0.01737 0.01605 0.01643 
deviation 
estimated standard 0.01680 0.01734 0.01601 0.01635' 
deviation 
theoretical standard 0.01700 0.01752 0.01617 0.01658 
deviation 

root mean squared 
error 

0.02236 0.01881 0.02171 0.01861 

The true high school graduation rate is 0.75118. Post-stratification is 
based on gender, age, and race. Samples of size 500 were taken and 
100,000 simulations were performed. 

This value is based on (3.7), whereas the value based on (3.8) is 
0.01610. 
The aggregate biases of the four estimators of p are 

estimated by the average over 100,000 simulations of the 
difference between the estimate from a sample of size 500 
and p. These aggregate biases produced by y^ Iy2, p^, p , 
and p are estimated to be 0.01471, 0.00722, 0.o"i461, 
and 0.00874, respectively, when 1990 p^ are used. Hence 
using the p^ reduces the bias of the non-post-stratified 
estimator by 51 %, and reduces the bias of the post-stratified 
estimator by 40%. 
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When the 1980 p̂ ^ are used, similar results arise. These 
aggregate biases produced by p̂ ^ and p are estimated to 
be 0.00578, and 0.00856, respectively, when the 1980 p^ 
are used. These results, however, are not summarized in the 
tables. 

The telephone bias, listed in Table 2, is the bias obtained 
when the entire telephone population, f/̂  is sampled when 
calculating y, /y2, p„, p-j, and p . This bias is caused by 
the fact that Uj. is sampled rather than U. Throughout this 
example, we use the convention of listing the estimates 
based on the 1980 p^ in parentheses, when these estimates 
differ from those based on the 1990 p^. The telephone 
biases are 0.01472, 0.00720 (0.00577), 0.01463, and 
0.00850 (0.00838), and are relatively close to the aggregate 
biases. 

The second phase bias is the difference between the 
aggregate bias and the telephone bias, and is caused by the 
fact that the estimator approximates a ratio. This second 
phase bias, modulus rounding enor, for y^Ty2, p^, p ^, and 
p are estimated to be 0.00000, 0.00002 (O.O&OOl), 
-0.00002, and 0.00024 (0.00018), respectively. Hence, the 

second phase bias is trivial compared to the telephone bias 
for this example. 

The theoretical biases, based on (3.2), of y, Iy2, and p 
are 0.00777 (0.00905) and 0.00663 (0.00678), respectively. 
These biases differ from the aggregate biases, since (3.2) 
is based on all possible phone populations, whereas the 
aggregate biases are conditional on the one realization of 
the phone population. The theoretical bias is based upon the 
model that each household has a phone with probability p^ 
and hence is dependent upon the model used to fit p^. 
Since p̂ ^ and pp^^ are aymptotically unbiased, then their 
theoretical biases are defined to be zero. 

The simulated standard deviations of the 100,000 simu­
lated estimates of p for y,/y2, p„ ,p , and p are 
0.01683, 0.01737 (0.01734), 0.016Cr5, and ().01643 
(0.01634). These four numbers are fairly close to the esti­
mated standard deviations, which are the squareroot of the 
average estimated variance of the estimator of p, based on 
(3.1), (3.6), and (3.7). Specifically, these estimated 
standard deviations are 0.01680, 0.01734 (0.01732), 
0.01601, and 0.01635 (0.01628), respectively. The esti­
mated altemative standard deviation, based on (3.8), of 
Ppsw '^ 0-01610 (0.01606), which again is fairiy close to the 
value 0.01635 (0.01628). The theoretical standard devia­
tions are 0.01700 (0.01697), 0.01752 (0.01749), 0.01617 
(0.01621), and 0.01658 (0.01653), based on the entire 1990 
Virginia 5% PUMS and (4.3), (4.4), and (4.5). These 
theoretical standard deviations also are close to the other 
standard deviations calculated. 

Using the p^ reduces the aggregate bias in the non-post­
stratified estimator by 51 % (61 %), and in the post-stratified 
estimator by 40% (41%). The standard deviation, however, 
increases slightly. Using the aggregate biases and the 
simulated standard deviations, the root mean squared errors 
of the estimators y,/y2' M '̂Mps' and pp^^ are 0.02236 

(0.02236) 0.01881 (0.01828), 0.02171 (0.02171), and 
0.01861 (0.01844), respectively. Hence, using the p^ 
reduces the MSE in the non-post-stratified estimator by 
29% (33%), and reduces the MSE in the post-stratified 
estimator by 27% (28%). Notice that there is little differ­
ence between y, /y2 and p and between p̂ ^ and p , in 
terms of MSE. Therefore, post-stratification offers little 
improvement. 

6.2 Estimating the Mean Number of Cars per 
Household 

The mean number of cars per household is 1.80397, as 
determined by the entire 1990 Virginia 5% PUMS. Post-
stratification was based upon household income, using 
categories {less than $20,000, at least $20,000 but less than 
$35,000, and at least $35,000}. The p^ are again estimated, 
but this time the covariate "numbers of cars" was excluded 
from the GLIM fit to the 1990 PUMS, since mean number 
of cars per household is what is being estimated. 

As shown in Table 3, the estimates of the aggregate 
biases using 100,000 simulations of 500 simple random 
samples are 0.04872, 0.01629, 0.02226, and 0.01471, and 
the telephone biases are 0.04872, 0.01623, 0.02220, and 
0.01458, for estimators y,/y2, P„, Pg ,̂ and pp^^, respecti­
vely. Therefore, the second phase biases are rather small. 
Using the p̂ ^ reduces the bias from the non-post-stratified 
estimator by 67%, and reduces the bias from the post­
stratified estimator by 34%. Perhaps the reason why this 
latter amount of bias that can be removed is smaller than the 
former is that income is a strong predictor of whether or not 
a household has a phone {cf Groves 1989, pages 116-119; 
Thomberry and Massey 1988), and the post-stratification 
groups for determining p and p are based on income. 

Table 3 
Biases and Standard Deviations of Estimates of Mean 

Number of Cars per Household 

Estimator 

not post-stratified post-stratified 

yi'yi M„ Pps Mpsw 

aggregate bias 

telephone bias 

second phase bias 

theoretical bias 

simulated standard 
deviation 

estimated standard 
deviation 

theoretical standard 
deviation 

0.04872 0.01629 0.02226 0.01471 

0.04872 0.01623 0.02220 0.01458 

0.00000 0.00006 0.00006 0.00013 

0.03388 0 0.00859 0 

0.04694 0.04764 0.04162 0.04172 

0.04682 0.04753 0.04148 0.04158" 

0.04715 0.04791 0.04152 0.04161 

root mean squared error 0.06765 0.05035 0.04720 0.04424 
The true mean number of cars per household is 1.80397. Post-
stratification is based on income. Samples of size 500 were taken and 
100,000 simulations were performed. 

This value is based on (3.7), whereas the value based on (3.8) is 
0.04142. 
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The standard deviations of the simulations are 0.04694, 
0.04764, 0.04162, and 0.04172, respectively. The root 
mean squared ertors for the four estimators are approxi-

• mately 0.06765, 0.05035, 0.04720, and 0.04424, respecti­
vely, so using the p^ reduces the MSE by 45% and 12% for 
non-post-stratification and post-stratification, respectively. 

We also performed simulations, not summarized in the 
tables, where "number of cars" was retained for the GLIM 
fit to the 1990 PUMS. These aggregate biases for the 
estimators p,^ and p are 0.00116 and 0.00006, respecti­
vely, which are much smaller than 0.01629 and 0.01471, 
the respective aggregate biases when "number of cars" was 
removed from the GLIM fit. Furthermore, we feel that 
appropriate analysis requires removing the variable being 
studied {i.e., number of cars) from the GLIM fit to the 
PUMS. 

6.3 Estimating the Mean Household Income 

The mean household income is $40,187, as determined 
by the entire 1990 Virginia 5% PUMS. The p^ are again 
estimated, but this time the covariate "income" was 
excluded from the GLIM fit to the 1990 PUMS, since mean 
household income is what is being estimated. 

In Table 4, when estimating household income using a 
simple random sample of size 500 and p or p , we 
post-stratified only by the race (black, other) of the head of 
household. The estimates of the aggregate biases using 
100,000 simulations are $1,412, $640, $1,192, and $633, 
and the telephone biases are $1,414, $640, $1,193, and 
$630, for estimators y,/y2. P^'Mps' and p , respectively. 
Thus, the second phase biases are small relative to the 
telephone biases. Overall, using the p̂ ^ reduces the bias 
from the non-post-stratified estimator by 55%, and reduces 
the bias from the post-stratified estimator by 47%. 

The standard deviations of the simulations are $1,534, 
$1,518, $1,502, and $1,488, respectively. Hence the root 
mean squared errors for the four estimators are approxi­
mately $2,085, $1,647, $1,918, and $1,617, respectively, so 
using the p^ reduces the MSE by 38% and 29% for non-
post-stratification and post-stratification, respectively. The 
improvements from using post-stratification are more 
minor, according to the MSE criterion. 

In Table 5, we again are estimating household income, 
but this time we post-stratify by gender (male, female), age 
(less than 45 years old, at least 45 years old), and race 
(black, other) of the head of household. Note that the non-
post-stratified estimators are not affected by this new post-
stratification. The estimates of the aggregate biases using 
100,000 simulations are $1,173 and $757, and the 
telephone biases are $1,177 and $747 for the post-stratified 
estimators, p and p , respectively. Again, the second 
phases biases are small relative to the telephone biases. 
Using the p^ reduces the bias from merely post-stratifi­
cation by 35%. 

The theoretical bias for the post-stratified estimator is 
$463. The standard deviations of the simulations are $ 1,445 

and $1,435, for estimators p and p , respectively. The 
root mean squared ertors are $1,861 and $1,622, for esti­
mators p and p , respectively. Hence, using the p^ 
reduces the MSE of the post-stratified estimator by 24%. 

The MSE of p is approximately the same in Table 4 
and Table 5. However, the MSE of p decreases somewhat 
from Table 4 to Table 5. 

Table 4 
Biases and Standard Deviations of Estimates of Household 

Income, Post-stratified by Race 

Estimator 

aggregate bias 

telephone bias 

second phase bias 

theoretical bias 

simulated standard 
deviation 

estimated standard 
deviation 

theoretical standard 
deviation 

root mean squared error 

not post-stratified 

yi'yi 
$1,412 

$1,414 

-$2 

$789 

$1,534 

$1,537 

$1,535 

$2,085 

K 
$640 

$640 

$0 

$0 

$1,518 

$1,521 

$1,518 

$1,647 

post-stratified 

^^ps 

$1,192 

$1,193 

-$2 

$586 

$1,502 

$1,506 

$1,503 

$1,918 

'̂̂ psw 

$633 

$630 

$3 

$0 

$1,488 

$1,491" 

$1,488 

$1,617 

The true mean household income is $40,187. Note that ^i/Jj and fi^ 
are independent of post-stratification, so their results are identical to 
those in Table 5. Samples of size 500 were taken and 100,000 
simulations were performed. 

* This value is based on (3.7), whereas the value based on (3.8) is 
$1,490. 

Table 5 
Biases and standard deviations of estimates of household 

income, post-stratified by gender, age, and race 

Estimator 

aggregate bias 

telephone bias 

second phase bias 

theoretical bias 

simulated standard 
deviation 

estimated standard 
deviation 

theoretical standard 
deviation 

root mean squared error 

not post-stratified 

yi'h 
$1,412 

$1,414 

-$2 

$789 

$1,534 

$1,537 

$1,535 

$2,085 

K 
$640 

$640 

$0 

$0 

$1,518 

$1,521 

$1,518 

$1,647 

post-stratified 

^ s 

$1,173 

$1,177 

-$4 

$463 

$1,445 

$1,448 

$1,440 

$1,861 

"psw 

$757 

$747 

$10 

$0 

$1,435 

$1,438" 

$1,430 

$1,622 

The true mean household income is $40,187. Note that y, Iy2 and p^, 
are independent of post-stratification, so their results are identical to 
those.in Table 4. Samples of size 500 were taken and 100,000 
simulations were performed. 

This value is based on (3.7), whereas the value based on (3.8) is 
$1,421. 
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7. DISCUSSION APPENDIX: DERIVATIONS OF EQUATIONS 

We have proposed here to use publicly available large 
data bases {e.g., the PUMS) to develop a model for the 
propensity p^ of a household to have a telephone. We have 
used, for Virginia in 1990, a GLIM model with a log - log 
link and predictor variables number of persons, tenure, date 
moved in, number of cars, household income, language, and 
race. 

We have proposed to use the telephone weights p^ to 
reduce the bias of estimators due to noncoverage in tele­
phone surveys. This bias can be expected to occur when the 
variable of interest is related to telephone ownership. The 
examples we have chosen are all variables of this type and 
hence the improvements using telephone weights are better 
than one would expect for variables with littie relationship 
to telephone ownership. 

The weights can be combined with post-stratification. 
We have found that the use of such telephone weights 
greatly reduces the bias of both non-post-stratified and post­
stratified estimators. 

Post-stratification requires a large enough sample size so 
that each post stratum has a negligible probability of being 
empty. Our experiments dealt with samples of size 500, 
and hence the number of post strata was relatively limited. 
Certainly, if one had a large enough sample so that one 
could post-stratify on the same predictor variables as used 
to develop the p^, the use of telephone weights should offer 
negligible improvement over post-stratification. However, 
many nationwide telephone opinion polls use approximate 
sample sizes of 1,000, and we believe for these sample 
sizes, the use of telephone weighs would offer a genuine 
improvement. 

We have also reported results from using telephone 
weights developed from the 1980 PUMS on 1990 data, with 
categories related to household income adjusted for 
inflation. The results are comparable to those for telephone 
weights developed from the 1990 PUMS. Therefore, 
although PUMS data are produced only every ten years and 
might be as much as twelve years out of date, substantial 
reductions in the biases of telephone sampling can be made 
using propensity models derived from older PUMS data 
sets, provided that the categories are suitably adjusted for 
inflation. 

Finally, the PUMS are divided by state and major metro­
politan areas.. This allows separate telephone-weighted 
models to be developed for major geographical units, and 
this would seem appropriate for large surveys. 
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Before deriving the equations in section 3 and section 4,, 
some regularity conditions must be assumed for sequences 
{a,.,, 0̂ 2' •••}' for i = 1,2. Further, some lemmas must be 
proved. Then, the equations involving the estimators 
Mps' Pw' and p will be.derived in the subsections below. 
Whenever the error variable ^̂  is introduced below, then 
^̂  = 0^(1) and £"(̂ )̂2 = 0(l)as * - «>. For simplicity (but 
slight abuse) of notation, the sequence {̂ ,, ^2. •••} will be 
allowed to be different across different equations. 

Condition A: Each 0,̂ ^ represents a sample mean of 
observations such that Ea.j^-a. = 0{k"'), E\ a . ^ - a j ' = 
0{k -^% and a,.̂  - a,. = 0^{k -"^) as )k - °o for / = 1,2. Let 
M* = au/a2, forA: = l,2,.... 

LEMMA A.l Condition A implies that E]Jii^-\i = 
0{k •') as )k - ~. 

PROOF: Define the function /(Y,,Y2) =YI/Y2- ^y a 
Taylor series linear expansion. 

M*-M= 0,^/02,-0,702 

= ("u-«i) 
5/(a,,a2) 

da, 
+ ( 0 2 , - 0 , ) 

8 a, •k-'^k 

= (a,,-a,)(02)"' -(a2,-a2)p(a2)"^ + A:"'^,. 

The result follows from Condition A. 

Condition B: The sequence {a.,, 0-2, ..} for J = 1, 2 
satisfies ^ 

1/2 
a 

'•2k 

N 

I \ 
a 

V«2y j 

I 2 
po,a. 1"2 

pO,02 O2 

'̂ -"'̂ U 
-1/2 

^2k] 

2 2 

for some constants o,, O2, and p. 

LEMMA A.2 Under Conditions A and B, 

MSEp, = (a2)-^var(a„-Ma2,) + 0(*-2), 

and 

The authors are very thankful to an anonymous referee 
for many helpful suggestions. 

varp, = (02)"^ v a r ( a „ - p a 2 , ) + 0(^-^), 

as /: - oo. 
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PROOF: By a Taylor series linear expansion, 

M^-M =^ikl^2k-^il'^2 

a / ( a , , a ) a/(a,,a2) 
= ( « ! * - " i ) ^ ^ ( « 2 * - " 2 ) 

3a, 

1 
+— (a„ -a,> 

aV(a,,a2) 

5 a, 

+ (02, - a2) 
5(a,)2 

d'f{o.y0.2) ^, ^^ aV(a,,a2) 

a (a,)' 
^ 2 ( a „ - a , ) ( a 2 , - a 2 ) 

'•2> 

-3/2] 

3a, 3a2 

= (a, , - a,) (a2)"' - (aj , - a2)M {o.^'^ 

+ (a2, - a2)^p (02)"^- (a , , - a,) (02, - a^) (a^)"^ 

^k-'-^l,. 

«2 ( a u - M a 2 , ) 1 - a2" (a, , - a,) ^ - ^ , . 

Therefore, 

(M,-M)2 = a2"'(a,,-Ma2,) ' 1-2a2"'(02,-02)+/:-"^,, 

which implies that 

MSEp, = a^^var (a , , -pa2 , ) -202 ' ' 

cov {(a„ - p a2,)l (02, - a2)} + /: "̂  ̂ ,. (A. 1) 

Now we will show that the covariance term in (A.l) is 
asymptotically negligible. Since 

A:"2(a,,- Ma2, )^A^(0 , a^)+*-"2^ , 

for some constant 03, then 

^ ( « u - M a 2 / t 03X1 + *""^^*. 
2 

where Xi denotes a chi squared random variable with one 
degree of freedom. Furthermore, 

/: "2 (a2, - 02) d N (0, 02)+*-"^^, . 

If the signs on a., are negated for / = 1,2, then 
/ : ( a „ - p a 2 , ) ^ does not change but / :"^(a2,-Oj) is 
negated. Therefore, by symmetry, 

cov{ ^ a , , - M a2,)^ k "^ (02, - 02)} = 0{k ''<'') 

as /: - «>. Hence, 

cov{ (a„ - M a^,)^ (a^, - a^)} = 0{k'') (^.2) 

as k- °°. Combining (A.l) and (A.2) the first part of the 
lemma follows. Since Lemma A.l implies that 

bias M, = 0 ( ^ " ' ) 

ask- ">, then the second part of this lemma follows. 

Condition C: Defining a^. = plim^_„a|. given Uj, the 
estimator, â ., of a,, satisfies the following, for / = 1,2: 

£ (a. I i/^) - a^, = 0 ( n - ' ) ; 

and 

Given (/r ,a, .-a^, = O {n-'''); 

£ ( { l a , . - a „ n | ( / ^ ) = 0(n-^'2) 

as ^ - °o. 

Condition D: Given (/, 

, 112 
( . \ 

a, 
^ 2 ; 

*n 

*r2 

N\\ ^ | , I | -
-1/2 Ĵ 

for some positive definite matrix S, where a .̂. = plim^^^ fi. 
given (/^. Also, 

E{[\a..-a^.\') \U^) = 0{n-'^) 

as n - 00, for / = 1, 2. 

THEOREM A.l Under conditions C and D, we have that 

varp = Uj £• var (fi, - p ^ a 2 l ^ r ) "̂  ^ ( " ^ "*̂ ^ ' ) 

as « - 00, where \Xj = a^,/a^2-

PROOF: First we determine £ var (p|{/^). Under 
Condition D we apply Lemma A.2 to obtain 

var (p I UJ.) = 0̂ .2 var (a, -\)iy^o.2 \ f/j.) +«"^^„. (A.3) 

Since 
a/2 = (a2)-^+^-'^^^„ 

and 

var (a, -M^a2|f/j.) = n" '^„ , 

then (A.3) implies that 

E var(p \U.J.) = 

a2^Evar{^.^ -\ij.Q.2 \Uj.) + 0{n-^+n-^ N -"^) (A.4) 

as n-oo. Now we determine var£(p | Uj.). Condition C 
and Lemma A. 1 imply that 

£(p | ( /^ ) = p^ + „ - ' ^^ = p - . («- ' +yv-"2)^^. 
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Hence, 

varE{(i\Uj.) = 0{n-'-^N'') (A.5) 

as n - oo. Combining (A.4) with (A.5) the result follows. 

A.l The post-stratified estimator 

Here we derive the equations related to the post-stratified 
estimator, p , where d ,,j and a ,2j satisfy Conditions C 
and D. Note that 

H C 

Ei%,,,\Ur)-N-'YYN,hKti E yik 
l>-\ «=1 keUj^i, 

for » = 1,2, and we define û . = 
£(a (,j|i/j.)/£(a ,2)l^r)- Ĵ ^^all the definitions of a, 
andp* in (4.1) and (4.2). 

Derivation of (4.3), the asymptotic variance of p 
Since 

var(aps(,)-M7-,ps«ps(2)l^r'V) 

w c ;v„2 [ i - „ /w ] 
_yy-2y^ Y^ gh ^ gh Tgh' y-̂  

h-l g-l n^^{Nj.^^-l) keuj^. 

ps 

>'u-Mr,ps>'2*-''Vri Y 0'i;-Mr.ps>'2j) 

then 

^var(ap3(,)-Mr,psaps(2)i^r'V^ 

(A.6) 

H G 

-N-'YY 
N. gh Y P}^ - n, 

h-l g-l nJ Y Pj]\( Y PJ] 

Y Pk 
keU„, 

3'u-M y2k-

Y Pj(yij-i''y2j) 

• + 0 ( n - ^ + n - ' N - " 2 ) 

as n - oo. Also, since 

^ (V( l ) -Mr ,ps«ps (2 ) l^7- '« , / , ) 

(A.7) 

H G 

YY 
h-l «=i 

^''YYl^ghl^TghY CVi*-Mr,ps)'2*)' (A.8) 

var Pp̂  = (a2 )-^£ var (fip̂ ,̂, - p^ p̂  ap̂ (2) i ^r'«gA) 

as n - oo, then (A.9) implies (4.3). 

Derivation of (3.1), tlie estimated variance of p 

In light of (A.6) we have the estimator 
ps 

var I «;; Y {yik - Mr.ps '̂2*) 1 ^T' ''gh] 

1 - ^h'^Tgh ^ 

n , , ( « , , - ! ) kes^, 

yik - Mr.ps y2k - "g'h Y CViy - Mr.ps ^2;) 
j^s,, 

Using (A.IO) the result follows. 

Derivation of (3.2), the estimated bias of p „ • 
ps 

Mns-M* = 0 ( « - ' ) 

Lemma A. 1 implies that 

as n - 00. Since 

E%sti) = a; + o(yv-') 
as N - 00 for I = 1,2, the result follows. 

A.2 The phone-weighted estimator 

Here we derive the equations related to the phone-weighted 
estimator, p , under Conditions C and D, where d ,,, and 
5.^^2) satisfy Conditions C and D. Note that 

EK,,Wr)=^-'Y yik'Pk 
keUj 

for / = 1,2, and we define Pj. 

£(5„(,J(/,)/£(fi^,2))l^r)-

Derivation of (4.4), the asymptotic variance of p 
ps 

keU. TgJ, 

then 

£[var£(ap^(„ - M̂ .ps V(2) I ^r-",/,)!^/-] = 0- (A.9) 

Since Theorem A.l and (A.7) imply that 

Since 

var(5„(,)-Mr^ 5̂ (2)1 f̂ r) 

h-l n,(/Vr/,-l) keu,, 

yik M7-,w^2A _ M " I Y ^ ^ 0 ' 
Th ' ^ 

Pk J^U-m 

-Mr..v>'2,-

then 
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Evarla ,n - Mr 5 ,-,AUT.] \ w(i) f^r.iv «'(2)i / / 

^jeu, ) [jeu, ) 

Pk 
keU. Tgh 

yik l^psv/.Ujy2k '<hY PJ-] 

H 

-N-'Y 
h-l n. 

(A.ll) ^ - 1 y ^ ]yij M7-,psw>'2j 

i^^n, [ Pj IJ 

n-' %. 

Therefore, 

Y Pk 
Y (yij-i^y2j) 

yik-i^y2k J^UH 

Pk T.Pj 

var 

Y Pk' {3'u-Mr,psw>'2;fe} 
kes,. 

Y Pk 
kes, 

-1 
I UT, n . 
I T' gh 

U., 

O (« - ' N''^) 

as n-oo. Applying Theorem A.l to (A.l l) the result 
follows. 

1 ;.-in. (A.12) {^Th- V ( 

"h^Tgh^^Tgh - 1) 
</, Y Pj'' 

Y Pk 
-2 

ps 
Derivation of (3.6), the estimated variance of p 

In light of Theorem A.l a valid estimate of varp^ also 
estimates 

(a2)-^£var(a^(,)-M^^a^(2)l^r) ' 

keU. Tgh 

<h Y 

yik MT,psw>'2t 

\yij Mr.psw^2/-

Nigh Y Pj'' 
J^'^Tgh 

\^2 

J^^Tg, [ Pj 

n-'^. 
(A. 13) 

(a2)"^£var 

which is equivalent to 

A^- 'V ! ^ y ^1*:" ^T.wy2k,y 
h-l n^ kes, p . 

The result follows. 

A.3 The post-stratified phone-weighted estimator 

Here we derive the equations related to the post-stratified 
estimator, p , under Conditions C and D, where a /,, 
and ct (2j satisfy Conditions C and D. Lemma A.l implies 
that 

Since 

^KhY Pj'' =(Y PkV'Ngh *o{N-^) 
i^^Tgh \k^u^, ) 

as Â  - oo. then (A. 13) implies the unconditional expectation 

£var 
E Pi' {3'u-M7-.psw>'2*} 

kes., 

Y Pi 
i^r-V 

kes„. 

H G Y Pi'yik 

^(Vw,ol^r)=^"'E Y^ 
keU. Tgh 

h-l g-l 
gh 

Y Pi 
n- '^ 

^n 

Ng^{YPj]\{YPj]-n 

keU. Tgh 

for / = 1,2, and we define p^ 

^ (V( i ) | f ^ r ) / ^ (Vw(2) l^ r ) -

Derivation of (4.5), the asymptotic variance of p ̂  

Using Lemma A.2 it follows that 

E Pi 
keU., 

E P , I - I 
j^^gh 

yik-i'y2k-Ng'h Y (yy- i^yy) 
j^"ih 

psw 

var 

E Pi' {>'u-M7-,psw>'2;t 
kes,, 

Y Pi 
Wr'^h 

kes 

I - n . INT , I 1 w-^ 
^h Tgh w - 1 y ^ 

"ghC^Tgh-^) [ J^Ur,,, , 

+ 0 {n-'^ +N"') 

as n - oo. By Theorem A. 1, 

varp 

(A. 14) 

-2 

= a2 , £ var (fip^^,,, - p ̂ .p^̂  ap̂ (̂2) I ̂ r- «,/, ^^S^^) 

+ a2'£ var[£(ap^^„, -Mj.p^^ap^ (̂2) I 

U.,,n^,,yg,h)\n^,,\/g,hY O {n-^ ^ N-') (^.15) 
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as n - oo. Lemma A. 1 implies that 

var[£(ap,w(,)-Mr,pswVw(2)l 

U.,,n^,,\/g,h)\n^,,yg,h] = n-H„. 

Since (4.1) implies that 

var (fipswd) - Mr.psw Vw(2) I ^ r ' " « J 

-N"Y Nl 
h-l 

(A. 16) 

var 

E P*"'{>'u-M7-.psw>'2*} 

N'h'YNgh'''^' ^ ., 1^: 
Pk 

kes,, 

then (A. 14), (A. 15), and (A. 16) imply the result. 

Derivation of (3.7), the estimated variance of p : 

Observe that 
psw 

^Tgh Y Pj 
je^h 

^h^h 

N N 
'"Tgh'^Th 

""gh^h 

^ h 

Y Pi' 

Noting (4.5) the result follows. 

Derivation of (3.8), another estimated variance of 

psw' 

Since 
A'. gh 

Y p'k 
kes,. 

'^Tgh _ '^Th 

\ h ^h 

N. 

Y pi 
kes. 

the result follows from (3.7). 
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Unbiased Estimation by Calibration on Distribution in Simple Sampling 
Designs Without Replacement 

YVES TILLE' 

ABSTRACT 

The post-stratified estimator sometimes has empty strata. To address this problem, we construct a post-stratified estimator 
with post-strata sizes set in the sample. The post-strata sizes are then random in the population. The next step is to construct 
a smoothed estimator by calculating a moving average of the post-stratified estimators. Using this technique it is possible 
to construct an exact theory of calibration on distribution. The estimator obtained is not only calibrated on distribution, it 
is linear and completely unbiased. We then compare the calibrated estimator with the regression estimator. Lastly, we 
propose an approximate variance estimator that we validate using simulations. 

KEY WORDS: Unbiased estimation; Calibration on a distribution function; Conditional inclusion probabilities; 
Weighting. 

1. INTRODUCTION 

It is possible during a survey by sampling to identify the 
values of an auxiliary character for all population units. 
This information may be available when the units are 
selected in a database containing other variables of interest. 
The temptation is then to calibrate the results of a survey on 
this auxiliary information. The decision is made either to 
retain from this auxiliary variable only certain functions 
(moments, sizes) for the purpose of using a calibration 
method (see for example Deville and Samdal 1992 or 
Estevao, Hidiroglou and Samdal 1995), or this variable can 
be divided into classes with the view to using a 
post-stratified estimator. 

If the decision is to opt for the post-stratified estimator, 
deciding on the strata divisions can be delicate. Theoreti­
cally, the strata must be defined prior to the selection of the 
sample. Where should the post-strata boundaries be placed? 
What size should the post-strata be? This latter question is 
the most embarrassing because the main problem with 
post-stratification is the possibility of obtaining empty 
post-strata. This means that the post-strata have to be large 
enough so that the probability of obtaining an empty post-
stratum is negligible. These problems are not limited to 
post-stratified estimators. Indeed, it is also possible to have 
no regression or calibrated estimators for some samples. 

Our objective is to define a new method of using auxi­
liary information in the population. This method is based on 
the definition of post-strata for which the number of units 
is set in the sample and not in the population. In this way, it 
is possible to import into the estimator complex auxiliary 
information resulting from knowledge of all of the values 
taken by the auxiliary variable, while avoiding both the 
problem of defining post-strata borders and the problem of 
empty post-strata. 

This article is organized as follows. In section 2, the 
notation is defined and in section 3, we describe the 
principle of rank conditioning, which is used to define the 
unbiased estimators in section 4. In section 5, the smoothed 
estimator is defined, and a specific case is examined in 
detail in section 6. Section 7 contains an application of the 
estimation of a distribution function. In section 8, this new 
estimator is compared with the regression estimator and the 
estimator for a simple design without replacement. Compu­
tation of variance is discussed in section 9. As a result of 
the impossibility of providing an exact solution, an approxi­
mation is provided in section 10, which is tested by 
simulations in section 11. Lastiy, general conclusions are 
presented in section 12. 

2. NOTATION 

We assume a population composed of A' observation 
units, with the labelling being denoted as {1, ...,k, ...,N). 
In this population, we are interested in a character of 
interest Yi^,keU. The objective is to estimate the total 
Y = Y^keu ^k- ^^ select a random sample 5 of fixed size n 
by means of a simple random design without replacement. 
We denote /, the random indicator variable, which takes 
the value 1 if the unit k is in the sample and 0 if not. The 
inclusion probabilities first order are therefore defined by 
Pr( / :€S) = 71, = nIN, ke U, and the second order 
inclusion probabilities by Pr(A:,/eS) = 7i„ = «(n - 1)/ 
{N{N-l)),k*leU. 

We will be interested in the class of linear estimators of 
Y, which is written as 

t = E w,y,, 
keS 
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where the weights w, may depend on the sample S and 
therefore be random. 

One of die possibilities is to take w, = I/TI, = nIN, which 
gives the Horvitz-Thompson estimator, 

'HT 
kes 7t, 

N 
YYk^ 

n keS 

which is unbiased. 
We will be focussing instead on the more general class 

of conditionally weighted estimators (Till6 1998, 1999a) 
where the units are weighted by inverses of conditional 
inclusion probabilities. If Z is some statistic, then the 
conditionally weighted estimator 

^1 I ''/' ''l*q' ''l*2q' —' ''hhq' "• ' ''hHql • 

for I = b, ...,b-^q- I. 

For example, if n = l1,,q=4,b = ?>, then 

3 ~ ' '^3' ^T' ^IV ^15' ' 

^ 4 ~ t '•4. '•g. ''12' ' ' 1 6 ' ' 

^ 5 - I ''5' ''9' ^^131' 

^ ^ h E{I,\Z) '̂̂  
is strictly unbiased if and only if £( / , | Z) > 0, for all keU. 
In effect, 

E{Y\z) = Y ^ ^ ^ ^ ^ = y-
' ' ' tv E{I,\Z) 

Since the estimator is conditionally unbiased, it is also 
unconditionally unbiased. Depending on which statistic Z 
is used, estimator (1) generalizes the stratified estimator as 
well as (a close approximation) the regression estimator 
(see Tille 1998). 

3. CONDITIONING ON RANKS 

Let us now assume that the N values X,,..., X,,..., X^ of 
an auxiliary character x are known for Â  units of the 
population. First, we assume tiiat all of the X, take separate 
values (this hypothesis will be removed in section 5). The 
rank /?, of unit k is 

/?, = ^leU\X^^X^). 

Moreover, we denote r.,j = l,...,n, the ordered population 
ranks of the n selected units in the sample, thus 
r, < Tj <... < r̂ _, < r^. The r. are random variables with a 
negative hypergeometric distribution (see Tille 1999b). 

The statistic used to define the conditional probabilities 
of inclusion is a subset of {r,,..., r.,..., r^}. First, we define 

- an integer q such that 2 <. q <. n, defining the 
period, 

- an integer b such that 2 ^ b, defining the border, 

- an integer / such that b <,l <.b+q-l, defining the 
interval. 

The quantities q, b, and / serve to define a subset of indices: 

^6 {''6'''IO'^'M)-

The conditional inclusion probability is computed in 
relation to one of the E^. 

The value of // is defined in such a way that 
/ + Hq <.n-b + I and thus H is the largest integer such 
that H <.{n-b-l* l)lq. It is clear that H depends on /. 

The next step is to compute the inclusion probabilities: 

E{I,\E) 

if keE, 

q-l 

^l*hq ^l*(h-l)q 

l-l 
' • / - I 

n-{l+Hq) 

- j - i f^/.( / ,- i) ,<* 
<r,^,^h = l,...,H 

if k<r, 

N-r, 
if k>r, 

l*Hq 
l*Hq-

These inclusion probabilities are thus relatively uneven. 
However, they are all positive, including the borders. It is 
important to use a border b^2 so that the first and the last 
post-stratum are not empty. 

4. CLASS OF UNBIASED ESTIMATORS 

Since £(/,|£',) > 0, we can constmct an estimator that is 
unbiased and even conditionally unbiased with respect to 
£•,. By denoting y,, ...,y, —,y„ the n values taken by the 
units in the sample ordered according to the /?,, we obtain 
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tfs E{I,\E,) 

r,-l '-' 

" ( r -r - 1 1:1 "1 
^ , Z.V yi*(h-l)q*j y^hq 

q-l 

N-r, l*Hq 

n-{l-^Hq) j-i,Hq*i ' 

where 

h-l 

N, 0|/ r , - l , 

^/.|/= ' • / . / . ^ - ' ' K / . - I ) , - 1 - ' ' = 1 ' • • • ' ' ' ' 

^H*l|/ N ''hHq' 

l-l 

fo\i= Tj^yj' 
I 1 j-i 

rhli 

q-ir-
£ >'K/,-1),.;'^ = 1 ' - ' ^ ' 

and 

^w*i|/ -
n-{l+Hq)j-i,Hq*i ' 

This estimator is in reality a post-stratified estimator 
where the sizes of the post-strata are set in the sample. 
Since £(/ , |£,)>0, P, is strictly unbiased unconditionally 
and conditionally to E^, which is clearly not the case for the 
traditional post-stiatified estimator, because the latter has a 
non-zero probability of having an empty post-stratum. By 
setting the size of the post-strata in the sample, creating 
empty post-strata becomes impossible. The corresponding 
size of the post-stratum in the population is a random 
variable A'̂ .̂ . 

The estimator Y^ has another interesting property. By 
using the definition of the £•(/,!£•,), we can quite easily 
show that 

1 
keS E{li^ I Ef) 

N. 

The estimator is thus calibrated on the size of the 
population. This property, which is also held by the 
Horvitz-Thompson estimator in simple designs, is therefore 
not lost. Units where the ranks are in £, are called pivot 
units, and are assigned a weight equal to 1, which makes the 
weights very unequal. A downside to f, is the use of widely 
dispersed weights. This problem can be resolved by 
smoothing the estimators. 

5. SMOOTHING ESTIMATORS 

To resolve the problem of the dispersion of the weights, 
we compute a moving average for the estimators as follows: 

yc = i Y Yr 
q i-b 

Y^ retains all of the properties of the ?,. This means that it 
is unbiased, calibrated on Â  and linear and can therefore be 
written as 

K = Y ^jyj> 
7 = 1 

where w. = 

i'f 
q I'b l-l 

j<b. 

'£ ' ; . ; - » ' m " ( j 

q\ I'b j+l-b-m'(j+l-b-q)-l 

'l-b-g) ^ , 

[ h q-l j ' 

b-^q-\ r + - r -1 

I'b m*^j,i.hyj,,.,,.^.i 

I , b<.j<b+q-\. 

b+q-\<.j<.n-b + 2-q. 

n-b + 2-q<jin-b + I, 

i ' ^ ' ^ ^ i - ^ . i - r ' 
q i-.b /l + l - ( / l + l - / ) - l 

l * ^ ' ^ - ^ . i - / Ig 

m'(,x) = 

q I'b l-l 

0 if x<b 

X if not 

n + l if x>n - b + I 

X if not 

n - b + I <j. 

(2) 

ro = 0, and r„^, =N+l. 
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Under the apparent complexity arising from the specific 
treatment of the borders, the weighting system is relatively 
simple. In the case where we are not too close to the 
borders, it takes the value 

w, = . 
1 

9(9 

E ^ 
l-b 

—) % ^'^ 
I) a=0 

l-b ^j*l-b-q I 
+ 1 

r. ) . 
j*a-q> 

If all of the values of the auxiliary variable are not 
distinct, we can assign the unit ranks with common values 
randomly. For example, if X, = 2, Xj = 5, X3 = 5, X3 = 5, 
X4 = 7, Xj = 8, we select with a probability Vi, between, 
ranks 7?, = l,/?2=2,/?3=3,/?4=4,^5=5, or /?, = l,/?2 = 3, 
7?3 = 2, /?4 = 4, /?5 = 5. We then compute the smoothed 
estimator for each permutation, and we calculate their 
mean. The advantage of this method is that it preserves an 
unbiased estimator. In effect, for each possible permutation, 
the estimator is unbiased. In practice, it is not necessary to 
compute estimators for all of the permutations. We can 
calculate the estimator for one permutation and then simply 
equalize the weights of the units having the same values for 
the variable x. 

6. CASE WHERE 9 = 2,6 = 2 

When q = 2, and b = 2, we obtain after a few 
calculations 

1 n-2 

yc-\[Yyjirj.i-rj.O 

r3 + 2 r , - 3 
yi 

'-3*1 

r , - r T+1 
n + l n-2 

• > ' « -

•3'2 

3 ' -„ . i -2r„ . , -V2-3 
•yn\ 

4{E^.(V.-M) 

yi 

+ y 

r,-3 
^yr 

2r , + 1 - Tj 

r , + r - + 1 - 2r 
n + I n-2 n . + y -

'•n.l-''n-2-3 

2 " 2 j 
where rQ = 0 and r^^, = N + 1 . This brings us to an 
estimator proposed by Ren (2000, page 140) and obtained 
using a calibration argument. The way in which the borders 
are managed is the only slight difference. 

Example 1: With a population of size N = 20. Let us 
assume that the values of the variable of interest are found 
in Table 1. We also assume that the sample of size n = 7 is 
composed of the units with ranks (3, 7, 8, 11, 12, 15, 17}. 
If we take q = 2, I = 2, b = 2 •we obtain £2 = {^2^ ''4' T^) = 

{7, 11, 15}. We can tiien calculate £•(/, l^^ = (7, H, 15}). 
The conditional inclusion probabilities are as follows: 

E{I,\E2 

E{I,\E2 

E{I,\E2 

E{Iu\E2 

E{In\E2 

E{I,,\E2 

E{I„\E2 

Example of 

= {7,11,15}) =1/6, 

= {7,11,15}) = 1 , 

= {7,11,15}) =1/3, 

= {7,11,15}) =1 , 

= {7,11,15}) =1/3, 

= {7,11,15}) = 1 , 

= {7,11,15}) =1/5. 

Table 1 
a Population of Size N=20 

k 

** 

«* 

1 

9 

2 

2 

71 

14 

3 4 5 6 7 

72 35 91 14 3 

15 6 20 3 1 

8 9 10 11 12 13 14 15 16 17 18 19 20 

36 64 38 81 52 78 62 86 16 20 59 84 55 

7 14 8 17 9 16 12 19 4 5 11 18 10 

The estimator 

yk 

E( / , | £2 = {7, 11,15}) 

is therefore unbiased and conditionally unbiased. Further, 
it is linear and 

V - 1 

ts £ ( / , | £ 2 = {7 , l l ,15}) 
= A .̂ 

However, if we take q = 2, I = 3, b = 2, we obtain 
£3 = {r3, Tj} = {8, 12}. Using the same example, we then 
compute £( / , |£3 = {8,12}), and we obtain 

£(/3|£3 = 

E{I,\E, = 

E{I,\E, = 

E{I,,\E, = 

EUn I ^3 = 
E{I,,\E, = 

E{h, I E, = 

The estimator 

{8, 12}) = 2/7, 

{8,12}) =2/7, 

{8,12}) = 1 , 

{8,12}) =1/3, 

{8,12}) = 1 , 

{8,12}) =2/8 = 1/4, 

{8,12}) =2/8 = 1/4. 

yk 

' ^ £ ( / , | £ 3 = {8, 12}) 

is also unbiased and linear. 
Lastly, we compute the mean of the two estimators: 

Y + Y 
'0 ' I 
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The weights are obtained simply by calculating the mean of 
the weights of estimators Y^ and Yy and have the values 

W3 = (6 + 7/2)/2 = 19/4, 

W7 = (1 + 7/2)/2 = 9/4, 

Wg = (3 + l)/2=2, 

w„ = (1 +3)/2 = 2, 

w,2 = (3 + l)/2=2, 

w,5 = (1 +4)/2=5/2, 

w,7 = (5 +4)/2=9/2. 

Estimator Y^ is linear and strictly unbiased. 

7. APPLICATION TO THE ESTIMATION 
OF THE DISTRIBUTION 

There are several ways to appropriately use auxiliary 
information to estimate a distribution function. A descrip­
tion of these techniques can be found in Ren (2000) and in 
Wu and Sitter (2001). The method that we suggest also 
makes it possible to estimate the distribution. The distri­
bution in the population is defined by 

>.()') = ^ E ny^^y], 
N keU 

and can be estimated by 

E ^k'^yk^y) 
F,{y) = 

keS 

keS 

where I{y ^yi^} is the indicator function, and the w, are 
the weights allocated to the units k which have the value 
llKi^=Nln for the Horvitz-Thompson estimator, and 
which are given in (2) for the calibrated estimator. 

Note that the two functions are discrete, but that there are 
far fewer jumps in S than in U. To offset the differences in 
the distributions between the sample and the population, we 
have smoothed the distribution functions by using, as 
Deville (1995) did, a linear interpolation of the centres of 
the risers, which involves defining F2{y) by linking the 
points 

\{fi(yk)-''i(yk-^)}' 

for keU, where e is a strictly positive, arbitrarily small real 
number. We then define £2 (j) by linking the points 

1 
{^i(yk) - ^ ( y * - ^ ) ) . 

Example 2: A population of size A' = 1 000 was generated 
using independent log-normal variables that are equally 
distributed. A sample of size n = 16 was then selected and 
we set h =5. Figure 1 gives £2(jc) in the population. 

0 .8 

o.e 

0 .4 

0 .2 

2 4 6 

Figure 1. Population distribution function 

Figure 2 shows £2 {x) and the distribution estimated by the 
Horvitz-Thompson estimator. Lastiy, Figure 3 shows £2 {x) 
and the distribution estimated by the calibrated estimator. 

0 .8 

o.e 

0 .4 

0 .2 

2 4 6 8 

Figure 2. Population distribution function and Horvitz-Thomson 
distribution estimator 

0 . 8 

0 . 6 

0 . 4 • 

0 . 2 

for the sample. 

2 4 6 8 

Figure 3. Population distribution fiinction and calibrated distribution 
estimator 



82 Tille: Unbiased Estimation by Calibration on Distribution in Simple Sampling Designs Without Replacement 

8. COMPARISON WITH THE REGRESSION 
ESTIMATOR 

In order to compare the qualities of the proposed 
estimator, a series of simulations was conducted to compare 
the estimator calibrated on distribution with the Horvitz-
Thompson estimator and the regression estimator. Three 
populations of size 1,000 were gisnerated by means of the 
following models. 

- Model A Linear dependence: The population is 
generated using the model X, ~N(0,1) and 
y, = X, + 1.33333 X e, where e,~N{0,1). The 
coefficient of correlation obtained in the 
population is p = 0.616154. 

- Model B Non-linear dependence I: The population 
is generated using the model X, ~A^(0,1) and 
Y. =(0.2 +X,)2 + 1.33333 x e. 
e,-A^(0, 1). The coefficient of 

where 
correlation 

obtained in the population is p = 0.28975. 

Model C Non-linear dependence 2: The population 
is generated using the model X, ~yV(0,1) and 
y, = (0.4+ X,)2 + 1.33333 x e , where 
e, ~A^(0,1). The coefficient of correlation 
obtained in the population is p = 0.476158. 

In each population, 100,000 samples of size 100 were 
selected. Three weighting systems were computed for each 
sample. 

1. the weights associated with the simple design 
w, =N In, 

2. the weights of the distribution calibrated estimator 
given in (2) using the window q = 10 and border 
b = 6, 

3. the weights of the regression estimator given by 

" ^ 'Yi^k-^f 
keS 

where X is the total of the X, in the population, 
Xj^ is the Horvitz-Thompson estimator of X, and 
X=X^IN. 

Using these weights, the estimator of the mean and of the 
nine deciles were calculated for each sample. We then 
estimate the variance of these estimators by means of the 
simulations. 

The results are given in Tables 2, 3 and 4. The variances 
were brought to 1 for the simple design. For the linear 
model, the regression estimator is slightly preferable. 
However, in the non-linear case, the distribution calibrated 
estimator significantly increases the precision on the mean 

and on the quantiles. This means that our proposed 
estimator is robust when there is a non-linear relationship 
between the auxiliary variable and the variable of interest. 

Table 2 
Model A: Estimator Variance 

(Reference: Horvitz-Thompson=I) 

Parameter 

Mean 

1st decile 

2"" decile 

3"" decile 

4'* decile 

5'^ decile 

6'* decile 

7'* decile 

8"* decile 

9"* decile 

Table 3 
Model B: Estimator Variance 

(Reference: Horvitz-Thompson=l) 

Distribution 
calibration 

0.674422 

0.905273 

0.815403 

0.842681 

0.806749 

0.783731 

0.818051 

0.794411 

0.857114 

0.884424 

Regression estim. 

0.632608 

0.893876 

0.802082 

0.815071 

0.768283 

0.740765 

0.782549 

0.773794 

0.844874 

0.884032 

Parameter 

Mean 

1 St decile 

2"̂  decile 

3'" decile 

4'' decile 

5"̂  decile 

6'' decile 

7'' decile 

S"" decile 

9'* decile 

Distribution 
calibration 

0.429689 

0.913598 

0.919394 

0.829860 

0.792094 

0.703908 

0.622705 

0.550028 

0.443828 

0.549615 

Regression estim: 

0.953025 

0.958656 

1.009270 

0.987950 

0.989114 

0.992023 

1.009830 

0.981249 

1.010340 

1.029120 

Table 4 
Model C: Estimator Variance 

(Reference: Horvitz-Thompson=l) 

Parameter 

Mean 

1 st decile 

2™" decile 

3'" decile 

4"̂  decile 

5"- decile 

6"" decile 

7'* decile 

8"̂  decile 

9"̂  decile 

Distribution 
calibration 

0.30768 

0.95560 

0.85920 

0.73854 

0.65728 

0.60500 

0.52139 

0.45709 

0.40752 

0.39820 

Regression estim. 

0.808114 

0.983582 

0.970913 

0.930401 

0.950651 

0.956807 

0.930514 

0.907537 

0.903593 

0.860050 
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9. VARIANCE AND ESTIMATION OF 
VARIANCE 

To compute the variance of Y^, we begin by computing 
the variance of Y^. Since y, is unbiased conditionally to £,, 
we have 

V{Y,) = EV{Y,\E,). 

As with each of the post-strata, conditionally to £, the 
design is a fixed-size simple sampling without replacement, 
we have 

H*l 

V{Y,\E,) = YKi^ifhu) 
h-O 

H*l N - n S 
w - ^ T ' ' L I / ' ' 1 . 1 / J i E <„ 
h-0 

2 "fci; " A | ( ^ / I U 

^ n | / " A K 

where 

"01; = ' - 1 ' 

n.:, = 9 - l,/i = 1,...,H, 
' A l ' 

•'H^i\i n-{l^Hq), 

I 
^o|/ = TT- E ^w A^nl, * = i '0|/ 

0.(111-1 
1 ' ^ • 

'•I' N „ ^ I '^"^ 
'^h\l *=''H'.-I)«*' 

K,„/i = l,...,//, 

E !'<«-

(3) 

conditional variance (and thus of the variance) by simply 
estimating (3), by 

V(y,\E,) = Y N ^ , ^ ^ ^ s ^ , , (4) 
h-O Nh\l%l 

where 

*0|/ 

'h\l 

—^Y(yj-%ii)'' 
"o | ; ' ;=i 

^ 7 7 E (3'^(/,-l),.y-^/,|;)^'' = l.•••'W' 
" A I ; ' j ' l 

and 

^H*l\l 
I " 

T E (>'y-f«M|/)' 

The estimator V(yj£,) is not only unbiased for V'(y,|£,) 
but also for V(y,). 

10. APPROXIMATIONS FOR COMPUTING THE 
VARIANCE 

Unfortunately, computing the variance of Y^ becomes 
more complex because of covariances. In effect, we have 

viK) = —2 ^ ^ Cov(y, ,y , ) . 
q '• l-b i-b 

When / = i", the problem is to estimate V(y.), which is 
done easily. When / * i, it is necessary to compute 

Cov (y,,y,.) =£Cov(y,,y,.|£,) 

^ 0 1 / - 1 *=i 

5 ' - ^ 
A^.,,-1 

E (V - V 2̂ 
A | , - l *=r,*(/i-l),M 

^(*)~^/.|;) ' ' ' - l . - . ' ^ . 

and 

^H*l|/ 
Â , H*l\l ' ^^/^-O.//,*' 

2^ (M*) ^W*I|O) ' 

where the Y^y^ represent the values of y, sorted by 
increasing order of the X,. 

Note that it is very difficult to calculate the unconditional 
variance of Y^, that is, the expectation of V(y,|£,). In 
effect, A'̂ i, and 5̂ ,̂, are random. However, we can estimate 
V(y;|£,) simply and obtain an unbiased estimator of the 

+ C o v ( £ ( y , | £ , ) , £ ( y . | £ , ) ) . 

Since £(y, |£ , ) = y, we obtain 

Cov (y,,y.) = £Cov(y,,y,.|£,) 

= £ £ ( y , y , . | £ , ) - y ^ 

Unfortunately, it does not appear possible to extricate the 
computation of £(?, , y,|£,) and therefore we must find an 
approximation. 

One way is to find a value that is greater than the 
variance. Since 

Cov(y, ,y . ) ^ ^v{Y,)V{Y.), 
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we have a greater value given by 

b*q-l b*q-l 

V(yc)^-^i2 i )IV{Y,)V{Y.] 
g ' /=* i-b 

-2 {"f f ^ ) 
9 V l-b I 

which can be estimated by 

b*a-l 

,̂(i'c) = -^ E /v(y,|£,) , 
l-b 

which comes back to estimating the standard deviation of 
the means by the mean of the standard deviations. 

Lastiy, a second possibility involves using a residuals 
technique. Generally, when an estimator is corrected using 
a calibration technique, the variance is estimated by means 
of a residuals technique (see Deville and Samdal 1992 and 
Deville 1999 on this topic). When computing the variance 
of y,, it is possible to use a residuals technique to obtain 
the exact variance. Consider the variable 

vo= 

' N^{N-n) 

, Nn{n-l) 

0 

-'^^ Kii^h^i-nhi,)^" (n-v 
[^h\i"h\i(^h\r^)) 

" "• ~ '"/•(/i-D^ + l ' •••' ''hhq-l 

if ^ = ''/.(/>-i), orA: = r„^^ 

which can appear as a residual associated with the estimator 
y,. The variable v,(/) inserted in the ti-aditional expression 
of the fixed-size simple sampling design without replace­
ment is exactiy equal to the conditional variance y, given 
in (3). In effect. 

N 
jN-n I 

nN N-l ^u 

Ev, ) 2 

keU 

N 
= v(y,i£,). 

This variable, however, depends on the y^,, which are 
unknown. We can estimate v,(/) by 

N^{N-n) 

Nn{n-l)) 
V^hu-^hu) 

\Vi 

, ' 'V/.|/"/>|/(«/.|/-l), 
(yj-yh\i) 

v.(/)=' 
ifj = lHh-l)q^l,...,l^hq-l 

if j = l + {h-l)q or j = l + hq 

If we insert v,(/) in the estimator of the variance for the 
simple design without replacement, we obtain an unbiased 
estimator of the conditional variance, and therefore of the 
variance. 

N 
jN -n 

nN n - I j= 
V. -

J 

5̂  = v(y,|£,). 

Deville (1999) shows that the variance of a sum of 
estimators can be determined by adding the residuals 
associated with these estimators, the residuals having been 
computed by linearization. To estimate the variance of Y^, 
we could therefore simply take the mean of the residuals 
v,(/), which is written 

"k = 
1 

h*q-l 

Y V, (/). 
q l-b 

In this way, it would be possible to estimate the variance by 

V^iYr) = 
_ N^{N-n) I 

nN 7E 
Z " \2 

"kV 
keS 

These two variance estimators need to be tested by 
simulations. 

11. SIMULATIONS FOR VARIANCE 
ESTIMATORS 

The simulations shown in Table (5) are based on 
populations of size Â  = 100, that are generated by means of 
normal independent random variables. For each case 
studied, we give the value of q and the coefficient of 
correlation between the variable of interest y, and the rank /?, 
of the auxiliary variable X,. The border b is defined by 
taking the integer of ^/2-i-l. Since our purpose is to validate 
the variance estimator, we use 3,000 samples of size 
n = 20 for each simulation and we compare the variance 
estimated by the simulations of the calibrated estimator 
V^.(y^) with the expectations under the simulations of the 
two variance estimators denoted £^,(^„ {Y^))^ ct = 1,2. The 
last two columns of the tables show the relative bias defined 
by 

. . E .V {Y ) - V. {Y ) 
R B . V ( y ) = •" ° ' ^ - - ^ , a =1,2 . 

St a^ c^ « 

V.{Y ) 

The simulations show that the two proposed estimators 
overestimate the variance. The overestimation appears to 
diminish as q increases. The estimator ^2(1^ )̂ definitely has 
the smallest bias. We will therefore prefer to use ^ 2 ( 0 ' 
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Table 5 
Simulation Results 

q 
4 
5 
6 
7 
8 

q 
4 
5 
6 
7 
8 

q 
4 
5 
6 
7 
8 

Correlation: 

V'.- (>'c) 
0.045 
0.045 
0.056 
0.058 
0.063 

Correlation: 

St ^ c' 

0.048 
0.045 
0.044 
0.044 
0.045 

Correlation: 

0.281 
0.297 
0.279 
0.267 
0.282 

0.802 

0.065 
0.066 
0.076 
0.079 
0.088 

0.481 

E.VAY) 
SI l^ C^ 

0.066 
0.060 
0.056 
0.,054 
0.052 

0.111 

E,V,{Y^) 
0.471 
0.420 
0.363 
0.342 
0.327 

E,V2(yc) 
0.054 
0.057 
0.070 
0.059 
0.087 

E.VJY) 
SI 2^ c ' 

0.059 
0.054 
0.051 
0.051 
0.048 

EsiV2{y.) 
0.363 
0.356 
0.316 
0.324 
0.281 

/f5„V,(K) 
0.444 
0.467 
0.357 
0.362 
0.397 

RB,V,{Y^) 
0.200 
0.267 
0.250 
0.017 
0.381 

I^By^iY^) RBy,{Y^) 
0.375 0.229 
0.333 
0.273 
0.227 
0.156 

RBy,{Y,) 
0.676 
0.414 
0.301 
0.281 
0.160 

0.200 
0.159 
0.159 
0.067 

RB .VJY) 
0.292 
0.199 
0.133 
0.213 

-0.004 

12. CONCLUSIONS 

Our proposed estimator is one of the rare estimators that 
is both unbiased and linear, that uses auxiliary information 
and that is calibrated on the size of the population. It can be 
parameterized using the width of window q. This new 
estimator is robust compared with the regression estimator. 
It can take into account auxiliary information with a 
non-linear relationship with the variable of interest. Most 
simulations appear to show that the width of the window 
does not significantly impact the preciseness of the mean 
estimator. However, it also appears that a small window 
width is not penalizing, even if there is no dependence 
between the auxiliary variable and the variable of interest. 
The smaller q is, the tighter the calibration, and the variance 
estimator will then be significantly penalized because the 
degree of freedom is lost in each post-stratura The choice 
of ^ must therefore refiect this problem. 

There are many other methods that allow for the use of 
the information given by a distribution function (see Ren 
2000) to improve an estimator. The results that we have 
presented are limited to simple sampling designs, but we 

think they are important just as post-stratification is 
important as a specific case of calibration techniques. 
Post-stratification is one of the few examples where it is 
possible to show with accuracy that calibration corresponds 
to a conditional approach. Further, our approach can be 
seen as a calibration on a distribution function providing an 
unbiased estimator. A good general distribution calibration 
technique should therefore include in simple sampling 
designs the method we have presented. 
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Variance Estimation for the Current Employment Survey 
JUN SHAO and SHAIL BUTANI' 

ABSTRACT 

Like most other surveys, nonresponse often occurs in the Current Employment Survey conducted monthly by the U.S. 
Bureau of Labor Statistics (BLS). In a given month, imputation using reported data from previous months generally provides 
more efficient survey estimators than ignoring nonrespondents and adjusting survey weights. However, imputation also has 
an effect on variance estimation: treating imputed values as reported data and applying a standard variance estimation 
method leads to negatively biased variance estimators. In this article we propose some variance estimators using the grouped 
balanced half sample method and re-imputation to take imputation into account. Some simulation results for the finite 
sample performance of the imputed survey estimators and their variance estimators are presented. 

KEY WORDS: Balanced half samples; Non-negligible sampling fractions; Ratio imputation; Stratified sampling. 

1. INTRODUCTION 

The Current Employment Survey (CES), commonly 
known as the payroll survey, is conducted monthly by the 
U.S. Bureau of Labor Statistics (BLS). The data are 
obtained from establishments on a monthly basis by various 
automated methods including computer assisted telephone 
interviews, touchtone data entry, FAX, electronic data 
interchange, mail, etc. The main variables are the employ­
ment, production or non-supervisory workers and their 
working hours and eamings on nonagricultural establish­
ment payrolls. Population employment counts are obtained 
once a year from Unemployment Insurance administrative 
records. 

Nonresponse often occurs in the CES. In any particular 
month, imputation using reported data from previous 
months generally provides more efficient survey estimators 
than using reported data in the current month only and 
adjusting survey weights. This is particularly tme in the 
CES because the nonresponse rate is about 60-80% and 
about 60% of the nonrespondents in a given month may 
become available one or several months later so that these 
data can be used as "reported data from previous months" 
(historical data) in a future month. 

However, it is well known that treating imputed values 
as reported data and applying a standard variance esti­
mation method leads to biased (often negatively biased) 
variance estimators. Valid variance estimators can be 
derived under some assumptions on sampling designs, 
imputation methods, and response mechanisms (and, 
sometimes, models that generate data). 

The purposes of this article is to study variance 
estimation for the CES. After describing the sampling 
design and the imputation procedure currently used for the 
CES in section 2, we derive valid (asymptotically unbiased 
and consistent) variance estimators for imputed survey 

estimators in section 3. To simplify the computation of 
variation estimators, we propose some approximations in 
section 4 and study their properties by simulation in section 
5. Some conclusions are made in section 6. Although our 
study is motivated by the CES, we believe that our results 
are general and applicable to any survey that adopts a 
similar sampling design and a similar imputation method. 

2. SAMPLING DESIGN AND IMPUTATION 

The CES adopts the following stratified probability 
sampling design. Let P be a finite population containing a 
set of establishments {1,..., A }̂, which is stratified by the 
type of industry and by the size of the establishment. Within 
the hth stratum, a sample of size n̂  ^ 2 is taken without 
replacement from Â^ population units, using probability 
sampling independently across strata. The sampling 
fractions n̂  /Â ^ are not necessarily negligible; for some 
sti-ata with large establishment sizes, n̂  = N .̂ Let S denote 
the sample. For ieS, at month t = 0,1, ...,T, values on the 
number of employees (y,,), the number of non-supervisory 
workers (y,,), the number of hours worked (y,,), and the 
weekly pay (y,,) are observed (if there is no nonresponse). 
Let y,,. denote any of y,j,y,j,y", or y,^. In CES, the 
main parameters of interest are population totals 
Yj = Y,ig y,i, t= l,...,T. Since population totals can be 
obtaineo once a year from administrative records, we 
assume without loss of generality that Y^ is known. If there 
is no nonresponse, Y^ is estimated by a ratio estimator 

y,-yoY^iy,.i/Y^iyo,r t = i T, 
ieS ieS 

(1) 

where w. is the survey weight for the ith unit in the sample 
and the hth stratum. 

Jun Shao, Department of Statistics, University of Wisconsin, Madison, WI53706; Shall Butani, Statistical Methods Division, The Bureau of Labor Statistics, 
Washington, D.C. 20212. 
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In our research, starting from month 1, nonrespondents 
are imputed using the imputation method proposed in 
Butani, Harter and Wolter (1997), as described below. 
Imputation is carried out within an imputation cell, which 
is the same as stratum or a union of strata. Imputed values 
in months l,...,t -I are carried over to impute non-
respondents in month t, unless nonrespondents in months 
1,..., r -1 become respondents prior to month t. 

1. The number of employees. If y,, is a nonrespondent, 
it is imputed by 

ytj = a,5'M.,. 

where y,-i, = y,-i, (reported value) if y,.,, is available 
at month t and otherwise y,.,, is an imputed value, 

Assume that the population P is divided into K disjoint 
imputation cells £,,..., P^^ and for each k, 

a. = 
E ^jy,j 
jeR, 

E ^jy,-i.j 
jeR, 

and R^ is the set of all reporting units for months t and 
/ - 1. 

2. The number of non-supervisory workers. If y,, is a 
nonrespondent, it is imputed by 

y,.i = yi-i.iy,.iiy,-i.i' 

where y,.,, is defined similarly to y,.,,. 

3. The number of hours worked. If y,, is a non-
respondent, it is imputed by 

yi.i = y,y,-i.iy,.i'yt-i,i' 

where y,_,, is defined similarly to y,.,, and 

y, = 

"^jyi.j/Y ^jy,.j 
jeR, jeKj^ 

E H / V ^ W ' 

"Vjy.-i.j/h "^jy.-i.j 
jeR, jeR, 

P . 4. The weekly pay. If y,, is a nonrespondent, it is imputed 
by 

~ P p. ~ P ~H ,~ H 

yi.i = P, >',-!., A,/3',-i, , ' 

P F 

where y,.,, is defined similarly to y,.,, and 

P, 
E "^jy.j/Y ^jy" 

jeR, jeR, 

E ^ • > ' M , ; / E '^jy"l.j 
jeR, jeR, 

Once nonrespondents are imputed, estimated monthly 
totals are calculated according to (1) by treating imputed 
values as reported data. 

y,.i = ̂ ,.ky,-i.i^ ^yi^i^ur 

^.(>',,,)=Ma' En(',.i)=^' /6P , , r= 1,2,..., 

v.(y,.i)=\k^ yn,(^,.i) = ^k^ (2) 
E W H P 

where y,,. denotes any of y,,, y, ,•, y,,., or y,,., £^ and V^ 
are the model (marginal) expectation and variance, respec­
tively, a,, and o, are unknown parameters, e^.'s are iid 
and the two processes {y,,} and {e,,} are independent. 
Within each £,, it is assumed that the response indicator 
a^; (=1 if y, • is a respondent and = 0 otherwise) and y,. 
are independent, given y^_^., a,_ .̂, 5=1,2, ...,t. Under this 
response mechanism, which is called unconfounded 
response mechanism (Lee, Rancourt and Samdal 1994), a,. 
and y,|. are dependent, but through y,.^,,a,.^,, 
s= 1,2, ...,t. It is more general than the assumption that 
{y^ I —,y,,) and {a^ . ..., a,,) are independent. Finally, 
response indicators from different units are assumed to be 
independent. Under these assumptions, the estimators y, 
based on imputed data as described in the previous section 
are asymptotically unbiased with respect to the joint 
expectation under model (2) and sampling from the finite 
population. 

In the CES, the imputation cells are unions of strata so 
that 

Y w. = M^, k = l,...,K, 
ieSnP^ 

where M, is the number of population units in the kth 
imputation cell £,. Consequently, the y, are conditionally 
unbiased with respect to the model expectation (given 5), 
i.e., 

Ejy,-y.) = o-

3. VARIANCE ESTIMATION 

Let £^ and V^ be the sampling expectation and variance, 
respectively, and V be the overall variance. Then 

V{Y,-Y,)=E^[VJY, - Y,)] . V^[EJY, - Y,)] 

= EAVJY,-Y,)], (3) 

since £„(y, - Y,) = 0- Furthermore, it is shown in the 
Appendix that 

y.(y.-y,) = ^ . ( ^ , ) - ^ . (>',)• (4) 
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Note that (4) is obvious in the case of no nonresponse. 
Because of (3) the estimation of V(y, - Y^) is the same 

as the estimation of V^(y, - y,). Also, because of (4), we 
can first derive estimators v̂ , and v,2 of V^(y,) and 
V^( y,), respectively, and then take the difference v,, - v,2 
as our variance estimator for Y,. Since V {Y,) isacondi-
tional variance, given S, we do not need to consider the 
sampling fractions n̂  IN^^ in the estimation of V^{Y,)-

We first consider the estimation of V {Y,). If an 
approximate formula of V^{Y^) can be derived, then we 
can direcUy estimate V^{Y^) by substitution. The explicit 
form of y,, however, is very complex when t is not small so 
that the derivation of V^ (y,) is very difficult. Thus, in the 
CES we adopt a grouped half sample method that incor­
porates Rao and Shao's (1992) adjustment (or re-impu­
tation) to take imputation into account. Specifically, 
sampled units in each stratum are randomly grouped into 
two groups. R half samples are created using a Hadamard 
matrix, where //+1 <.R <,H + 4 and H is the number of 
strata. For the rth half sample and the ith sampled unit, 
define 

W; 
.W 

(1 +0.5) W; if the unit is in the rth 
half sample 

(1 -0.5) w,. if the unit is not in the rth 
half sample, 

'•- ( r ) 

where w. is the original survey weight. Let Y^ be the same 
as y, except that the weights w. are replaced by the w,- '̂ , 
including the weights used in imputation {i.e., a,, f,, and p, 
are re-computed for every r, which is equivalent to Rao and 
Shao's adjustment). A grouped half sample variance 
estimator of V^(y,) is 

-Y 
R ^ 

-I 
t i E yT 

Rt- (5) 

Note that the use of 0.5, instead of 1, in the constmction 
of w/ is based on Fay's method (Dippo, Fay and 
Morganstein, 1984; Judkins 1990; Rao and Shao 1999). 
Asymptotically, v̂ , is unbiased and consistent for V^(y,) 
(Shao, Chen, and Chen 1998; Rao and Shao 1999; Shao 
and Chen 1999). 

We now consider the estimation of V {Y,). Under 
model (2), 

y,nO^.) =YMk\k^ 
k 

which is of the order O {N), where N is the size of the 
population P. Usually V^(y,) is of the order 0{N^ln), 
where n = Y,h^h '̂  ̂ ^̂  sample size. Hence ^m(y,)/^„(y,) 
is of the order 0{nlN) and the estimation of V^{Y^) is not 
necessary if nIN is negligible (although some sampling 
fractions n^ /N^ are not negligible). 

In the CES, however, nIN is around 15% and is not 
negligible. Hence, the estimation of V^{Y^) is necessary. 
An asymptotically unbiased and consistent estimator of 
yjy.) is 

"12 Y'^kh.v 
(6) 

where st, is the usual sample variance based on the 2 
^k.t 

respondents y,. in the ̂ h imputation cell. 

4. APPROXIMATE VARIANCE ESTIMATORS 

From section 3, a correct variance estimator for y, is 
V,, -v,2, where v̂ j and v̂ j are given by (5) and (6), 
respectively. Although v̂ j can be easily extended to the 
case where y, is replaced by some nonlinear estimator such 
as y, /y, (the ratio of weekly pay over hour), the 
extension of v,2 involves the derivation of Taylor 
expansion for each separate nonlinear estimator. Thus, for 
the CES, it is desired to derive an approximate variance 
estimator that is not exactiy correct but does not require the 
computation of Vj2. 

Note that if n IN is negligible, then we can simply use 
V,, as an estimator of V{Y, - y,). In the CES, however, 
using V,, leads to overestimation, since nIN is not 
negligible (see also the simulation results in section 5). 
Since this overestimation is caused by the sampling 
fraction, a possible way to fix the problem is to incorporate 
sampling fractions in the half sample method. When there 
is no nonresponse, sampling fractions can be incorporated 
into the half sample method by using formula (2) with w/ 
replaced by 

^'P=\ 

(1+0.5 Jl -nJNf^ )w. if the unit is in 
the rth half sample 

(1-0.5 ^1 -ni^lN^ )w. if the unit is not 
(7) 

in the rth half sample. 

when / is in stratum h. 
Let V . be the variance estimator obtained using (5) but 

with wy' replaced by vv, . If we use v,, as an estimator 
of V{Yj - y,), however, it has a negative bias, although it is 
better than the naive estimator that treats imputed values as 
observed data (see the simulation results in section 5). 

While V,, overestimates and v,, underestimates the tme 
variance V{Y^ ~ ^,)' ^ compromise is to replace the 
sampling fraction «̂  /N^ in (7) by the "estimated sampling 
fraction" r^, INf^, where r^, is the number of respondents 
in stratum h at month t. Let v,, be the variance estimator 
obtained using (5) and (7) but with n̂  //V^ in (7) replaced 
by ^,,/^*-Then 

^,1 ^ ^ V. 
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All three variance estimators are asymptotically unbiased 
and are approximately equal when nIN is negligible. When 
nIN is not negligible, however, they are asymptotically 
biased. 

To see the magnitude of the biases of v^yV^y and v ,̂, 
we consider the simplest case of no strata and r = 1. Let 
>",• = >'u' ^i = yo.i and 

y = Yaiyi +Ea-«,)^^,. 

and is always non-positive; and the bias of v̂ , = v is of the 
same order as 

NU{1 -U)s]Al --^J (2NURsj^ + NR^s^l (8) 

The bias in (8) is non-negative if Sj^ ^ 0 and U ~ 1 (which 
is tme if a. is independent of x^). 

where a^ = 1 if y. is a respondent and a. = 0 otherwise, 
R = J^a,.y|./5^a..)c.,and all summations are over ieS. Let 
U = {Y^x^ln)l{Y^a.x.lr), where r is the number of 
y-respondents. Then the correct variance estimator for Y 
is V, -V2 with 

and 

N'^u'^Sj 2N^URsj^-^N^R^s^ 

V2 = NUs] + 2NURsj^-^NR^s^, 

where s^ = {r - l)-'j:a.{y.-Rx.)\ s,^ = {r - I)-' 
Z^,-^,(>', ~^-^,)' ^n'l ^x is '^^ sample variance based on 
x.'s. Also, 

l-^ 
N 

N^U^Sj 2N^URsj^ + N^R^s^ 

n 

nNU Sj , , . 2 9 
= v, --2NURSj^-NR s; 

and 

1 - 1 
A^ 

N'^u'^s] 2N^URSJ^ + N^R'^S^ 

-v,-NUs,-
.2 2 2rNURs,, + rNR^sJ "dx 

Since v, - V2 is asymptotically unbiased, the bias of v̂ j = v, 
is of the same order as V2 and is always non-negative; the 
bias of V,, = V, is of the same order as 

5. SOME SIMULATION RESULTS 

To further study the biases of the variance estimators 
Vjj, Vj, and v ,̂, we conducted a simulation study using a 
CES dataset (from 1980's) of 149,044 units as the popu­
lation P. Each unit ieP has a vector y.= 

E W H P 

(>'f,i' yi.i' yi.i' yi.i' t = 0,l,..., 7) and a vector r. consisting 
of response indicators of the components of y _., although all 
values of y. are available (from administrative records). 
The sample 5 in the simulation was obtained by generating 
a stratified simple random sample {y.} of size 23,092 from 
P according to die sample allocations listed in Table 1. The 
response indicators of [y.] in the simulation were 
generated by drawing another (independent) stratified 
simple random sample [r.] from P. Thus, nonrespondents 
in the simulation were random and distributed according to 
the values of the r,.'s in the dataset P, but independent of 
the y .'s. 

After the sample data and nonrespondents were 
generated, nonrespondents were imputed as described in 
section 2. Estimated monthly totals y, and monthly changes 
y, - y,., were calculated based on imputed data and their 
variance estimators, v^yV^yV^y and v̂ , - v̂ j were 
computed as described in sections 3 and 4. For comparison, 
the naive variance estimator v̂ g, computed by treating 
imputed values as observed data, was also computed. 

Based on l.OCX) simulations, the relative biases (RB) and 
variances (Var) of the estimated totals Y^ and changes 
y, - y,_,, the RB and coefficient of variations (CV) of the 
variance estimators for Y^ and Y^ - y,.], the coverage proba­
bility (CP) of the approximate 95% confidence intervals of 
the form 

the estimate ± 1.96 v'the estimated variance, 

and the width (MW) of the confidence interval are given in 
Tables 2 through 5 respectively for 4 different variables. 
Estimated simulation standard errors are 2% for RB, CV, 
and MW, and 0.5% for CP. 

NUs^ nU 
-NUs: E(i-^,)^, 

E ^i^i 
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Table 1 
Sample Size by Stratum 

SIC 

10,12-14 

15-17 

24-25, 32-29 

20-23,26-31 

40-49 

SIZE 

I 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 

Stratum 
Size 

567 
433 
526 
210 
165 

5055 
4476 
5281 
2111 
1005 
3103 
3905 
6381 
4273 
4143 
1754 
1953 
3591 
3108 
3448 
1648 
1463 
1988 
1171 
759 

Sample 
Size 

14 
303 
526 
210 
165 
129 
570 
1154 
836 
1005 
73 
331 
891 
1036 
2127 
40 • 
128 
524 
596 
1041 
31 
101 
221 
211 
108 

Sampling 
Fraction 

0.02439 
0.70000 
1.00000 
1.00000 
1.00000 
0.02549 
0.12731 
0.21854 
0.39583 
1.00000 
0.02349 
0.08475 
0.13966 
0.24242 
0.51351 
0.02276 
0.06564 
0.14599 
0.19167 
0.30189 
0.01902 
0.06918 
0.11111 
0.18033 
0.14286 

SIC 

50-51 

52-59 

60-62,67 

63-64 

7,70-99 

SIZE 

1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2.' 
3 
4 
5 

Stratum 
Size 

3631 

3678 
4300 
1831 
833 

7084 
5701 
8363 
4511 
4087 
1384 
971 
1529 
981 
728 
1364 
652 
754 
435 
344 

9641 
6701 
7833 
4839 
4352 

Sample 
Size 

66 
183 
403 
289 
320 
149 
440 
1037 
763 
1002 
17 
38 
115 
67 
73 
15 
20 
87 
48 
57 
230 
643 
1275 
1317 
2067 

Sampling 
Fraction 

0.01812 
0.04987 
0.09375 
0.15789 
0.38461 
0.02103 
0.07724 

0.12403 
0.16915 
0.24528 
0.01230 
0.03906 
0.07500 
0.06818 
0.10000 
0.01119 
0.03125 
0.11538 
0.11110 
0.16667' 
0.02385 
0.09602 
0.16275 
0.27215 
0.47500 

Table 2 
Simulation Results for Employment 

Estimation 
of total 

"rO 
Month Total* RB Var* RB CV CP MW 

Variance estimation for estimated total 

^,1 "̂,1 ^,1 
RB CV CP MW RB CV CP MW RB CV CP MW RB CV CP MW 

1 6.7E6 0.0 5.5E7 
2 6.8E6 0.0 8.8E7 
3 6.9E6 0.0 1.4E8 
4 6.9E6 0.0 2.1E8 
5 6.9E6 0.0 2.7E8 
6 6.9E6 0.0 2.0E8 
7 6.9E6 0.0 1.5E8 

-37.0 47.6 85.3 7.7 
-34.3 28.8 86.9 9.6 
-26.1 30.4 88.2 12.9 
-22.5 32.9 89.3 16.1 
-21.9 35.0 88.3 18.4 

-8.8 40.5 91.7 17.1 
-12.4 34.8 91.8 14.5 

-4.1 67.5 92.3 9.2 
-7.3 40.4 92.6 11.4 
-4.1 42.3 91.8 14.7 
-2.4 44.0 92.1 18.1 
-7.7 45.2 90.9 20.0 
-5.2 41.7 91.9 17.4 
-8.6 36.1 92.5 14.8 

4.9 69.8 93.1 9.6 
0.9 42.9 93.6 12.4 
1.4 44.2 92.9 15.1 
3.8 46.3 92.7 18.7 

-1.1 47.9 92.0 20.7 
0.0 43.6 93.1 17.9 

-2.0 38.3 93.6 15.3 

19.5 76.1 95.1 10.3 
15.3 47.6 94.7 12.7 
18.8 49.9 94.8 16.3 
22.3 53.1 94.7 20.3 
16.2 55.6 94.4 22.4 
19.7 51.8 95.5 19.6 
16.8 45.0 96.2 16.7 

7.4 67.4 92.8 9.7 
4.4 49.1 92.3 12.1 
3.6 50.5 90.8 15.2 
2.7 51.3 91.4 18.6 

-4.7 54.2 90.9 20.3 
-3.1 52.5 90.5 17.6 
-6.6 42.4 92.7 15.0 

Esdmation 
ofchange 

Month Change* RB* Var 

Variance estimation for estimated change 

•̂ lO -ri - i i ' f l - i i - ,2 
RB CV CP MW RB CV CP MW RB CV CP MW RB CV CP MW RB CV CP MW 

8.0E4 -0.1 6.1E7 -43.0 25.4 84.9 7.5 -11.3 41.4 92.3 9.3 -4.5 43.9 93.7 9.7 9.4 48.7 95.6 10.3 8.6 51.7 93.5 10.3 

9.7E4 -1.8 7.4E7 
1.8E4 2.9 1.1E8 
4.4E4 3.4 I.1E8 

-1.1E4 9.3 1.1E8 

-35.0 31.7 85.0 8.7 
-31.8 42.3 87.4 11.0 
-41.9 34.5 83.1 10.1 
-41.0 29.9 84.1 10.2 

-8.5 46.0 90.5 10.4 
-0.9 60.6 93.1 13.2 
10.8 57.3 91.4 12.5 
12.6 42.0 91.1 12.4 

-3.2 47.7 91.0 10.7 
4.9 63.2 93.6 13.6 

-4.9 60.4 92.3 12.9 
-6.4 44.2 93.0 12.8 

11.7 53.1 93.4 11.5 -3.1 48.8 90.9 10.7 
25.0 73.5 95.9 14.8 -2.5 47.7 89.9 13.1 
13.2 69.4 94.6 14.1 0.8 94.1 93.1 13.3 
9.4 50.2 94.6 13.9 -4.1 53.9 93.0 13.0 

1.6E3 3.2 1.2E8 -43.8 38.4 82.9 10.4-15.9 57.5 89.6 12.7 -11.3 60.1 90.5 13.1 5.6 69.9 92.6 14.2 -0.2 75.5 90.0 13.8 
Total: population total. 
Change: population difference between the current month and the previous month. 
Var: variance of the estimated total or change. 
RB: relative bias = 100(bias/true value)%. 
CV: coefficient of variation = 100 (standard error/true value)%. 
CP: coverage probability of asymptotic confidence interval using estimated variance (in %). 
MW: (mean width of asymptotic confidence interval)/10'. 
*: Scientific notation (for example, 6,700,000 is 6.7E6). 
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Table 3 
Simulation Results for Non-supervisory Workers 

Month 

1 
2 

3 
4 

5 
6 
7 

Month 

2 

3 
4 

5 
6 
7 

Estimation 
of Total 

Total* RB Var* 

5.4E6 
5.5E6 

5.6E6 

5.6E6 
5.7E6 
5.7E6 
5.7E6 

-0.1 
-0.1 

-0.1 

-0.1 
-0.1 
0.0 
0.0 

4.6E7 
7.6E7 
1.2E8 

1.9E8 
2.4E8 
1.8E8 
1.4E8 

Estimation 
of Change 

Change* 
7.7E4 

9.IE4 
1.6E4 

4.4E4 
-1.0E4 
7.9E2 

RB 

-0.8 
-1.4 

19.6 
-0.4 

-19.3 
48.7 

Var* 

5.1E7 
6.2E7 

9.1E7 

9.5E7 
9.0E7 
1.0E8 

RB 

-33.3 
-30.6 
-23.6 

-19.0 
-18.9 

-7.6 
-10.9 

RB 

-40.8 
-31.2 
-27.2 

-37.5 
-37.0 
-39.3 

CV 

49.7 
31.4 

31.2 

34.5 
36.8 
41.7 
36.1 

v, 
CV 

27.0 
32.1 
44.0 

38.4 
32.4 
42.6 

lO 

CP 

80.9 
84.0 
85.6 

88.4 
87.8 
91.8 
91.9 

rO 
CP 

84.5 
86.4 

87.1 
83.4 
83.4 
83.7 

MW 

7.0 
9.2 

12.1 

15.7 
17.6 
16.3 
14.1 

MW 

7.0 

8.3 

10.3 

9.7 
9.5 
9.9 

RB 

-4.4 
-7.4 

-4.8 

-2.4 
-7.1 
-4.7 
-7.7 

RB 
-12.9 

-8.7 
-1.1 

-10.0 
-11.1 
-14.5 

V 

CV 

66.1 
41.1 

41.0 

43.8 
45.3 
42.8 
37.2 

V 

CV 
41.2 

42.8 
59.4 

58.6 
43.1 
59.7 

'd 
CP 

88.1 
89.4 

89.5 

91.7 
89.7 
92.4 
92.2 

'M 
CP 

91.5 

91.2 
92.8 

90.8 
89.6 
89.2 

MW 

8.4 

10.6 
13.5 

17.2 
18.9 
16.6 
14.4 

MW 

8.4 

9.5 
12.0 

11.7 
11.3 
11.7 

Variance estimation 

RB CV CP MW 

4.6 
0.9 
0.7 

3.8 
-0.4 

0.6 
1.0 

68.6 
43.7 
42.9 

46.3 
48.2 
44.8 
39.4 

89.9 
91.0 

90.0 

91.9 
90.7 
92.7 
93.6 

8.8 
11.1 

13.9 

17.8 
19.6 
17.0 
15.0 

Variance estimation 

^ 1 
RB 

-6.0 

-3.2 
4.7 

-3.9 
-4.7 
-9.8 

CV 

43.7 

44.5 
62.1 

61.8 
45.5 
62.4 

CP 
92.4 

91.7 
94.1 

91.3 
90.4 
90.2 

MW 

8.8 

9.8 
12.3 

12.1 
11.7 
12.0 

RB 

19.8 
15.8 
18.4 

22.5 
17.2 

20.6 
18.3 

RB 

8.2 

12.3 
24.9 

14.5 
11.7 
7.6 

CV 

75.5 
48.7 
48.7 

53.2 
56.0 

53.1 
46.3 

", 
CV 

48.8 
49.9 

73.0 
71.4 
51.8 
72.6 

ii 
CP 

92.3 
93.8 

93.1 
94.1 
93.0 
95.4 
95.9 

t l 

CP 
94.4 
94.1 

95.8 
93.4 
92.4 
92.6 

MW 

9.4 
11.9 

15.1 

19.3 
21.2 
18.6 
16.3 

MW 

9.4 

10.6 

13.5 
13.2 
12.7 
13.1 

RB 
3.4 

4.2 
3.9 

1.8 
-4.1 
-3.3 
-8.5 

RB 
9.9 

-3.1 

-5.3 
-2.1 
-3.3 
-1.3 

cv 
65.3 
50.8 
50.9 

71.7 
54.7 
53.1 
42.5 

^ 1 " 
CV 

54.8 
47.7 
91.8 

79.4 
54.7 
76.8 

"a 
CP 

89.9 
88.3 
90.8 

90.5 
90.4 

90.5 
92.6 

• ^ ? 

CP 
93.0 

91.3 
91.4 

92.3 
90.9 
90.6 

MW 

8.7 
11.3 
14.1 

17.6 
19.2 
16.7 
14.3 

MW 

9.5 
9.8 

11.7 

12.2 
11.8 
12.6 

Total: population total. 
Change: population difference between the current month and the previous month. 
Var: variance of the estimated total or change. 
RB: relative bias = 100(bias/true value)%. 
CV: coefficient of variation = 100 (standard error/true value)%. 
CP: coverage probability of asymptotic confidence interval using estimated variance (in %). 
MW: (mean width of asymptotic confidence interval) /lO'. 
*: Scientific notation (for example, 6,700,000 is 6.7E6). 

Table 4 
Simulation Results for Hours 

Month 
1 
2 

3 
4 

5 
6 
7 

Month 
2 

3 
4 

5 
6 
7 

Estimation 
of Total 

Total* 
1.9E8 
2.0E8 
2.0E8 

2.0E8 
2.1E8 
2.1E8 
2.1E8 

RB Var* 
-0.1 5.8E10 
-0.1 1.2E11 
-0.1 1.8E11 
0.0 3.2E11 

0.0 4.4E11 
0.0 3.4E11 

0.0 2.3E11 

Estimation 
of Change 

Change* 
5.0E6 

3.8E6 
1.0E6 

2.1E6 

-7.7E5 
2.5E5 

RB Var* 
0.1 8.8E10 

-1.0 l . lE l l 
11.0 2.1E11 

-0.5 2.2E11 
-7.8 1.9E11 
-7.2 2.1E11 

^,0 
RB CV CP 

-31.5 28.0 79.0 
-30.2 32.8 84.7 
-23.3 30.0 86.3 
-20.2 35.6 90.2 

-21.2 40.5 88.9 
-10.4 46.3 92.1 

-7.0 40.8 93.0 

^,0 
RB CV CP 

-38.8 25.9 89.0 
-36.5 25.2 88.4 

-31.2 45.6 87.3 

-41.6 39.9 85.6 
-40.1 35.1 82.5 
-39.0 48.4 82.9 

MW 
8.0 

11.6 
14.9 
20.2 

23.6 
22.1 

18.5 

MW 
9.3 

10.6 
15.2 

14.3 
13.5 
14.3 

RB 
2.3 

-7.7 
-6.3 
-0.5 

-7.9 
-5.9 
-2.2 

RB 
-9.7 

-12.6 
-5.0 

-14.3 
-12.7 
-15.1 

V 

CV 
44.4 
40.4 
36.7 

47.1 

52.3 
48.9 

42.8 

V 

CV 

35.1 
34.5 
59.3 

63.9 

47.5 
60.3 

' i i 

CP 
88.3 
90.6 

90.3 
93.4 

90.7 
92.2 
93.2 

',1 
CP 

92.4 

91.9 
90.9 

91.1 

89.5 
89.5 

MW 
9.7 

13.3 
16.4 

22.6 

25.5 
22.6 
19.0 

MW 

11.3 
12.4 

17.9 
17.4 

16.3 
16.9 

Variance estimation 

RB 
12.3 
0.1 

-1.0 

5.6 
-1.6 
-1.0 
4.2 

'^.i 
CV CP 
46.5 90.5 
42.8 91.7 
38.1 91.2 

49.7 93.3 

55.1 92.0 
50.7 93.0 
44.7 94.1 

MW 
10.2 
13.9 
16.9 

23.3 
26.3 
23.2 
19.6 

Variance estimation 

RB 
-2.2 

-6.7 
0.6 

-8.4 

-6.5 
-10.6 

^,1 
CV CP 
37.2 93.7 

36.0 92.4 
62.4 91.6 

66.6 90.1 

50.3 90.7 
62.4 90.3 

MW 
11.7 

12.8 
18.4 

18.0 
16.9 

17.3 

RB 
33.4 
19.7 
19.6 

27.9 
18.0 
20.8 
27.2 

RB 
16.3 
10.4 

21.6 

10.5 
12.7 
8.0 

\ 
CV 
53.4 
49.4 

43.8 

59.8 
64.4 

59.9 
53.2 

,̂ 
CV 
43.0 
41.2 

75.2 

76.0 
60.1 

72.3 

t l 

CP 
93.6 
94.3 
94.6 

95.3 
94.2 
94.7 

95.8 

t l 

CP 
96.1 

93.9 
93.9 

94.9 
94.1 
94.0 

MW 
11.1 
15.2 
18.6 
25.6 

28.8 
25.6 

21.6 

MW 
12.8 
13.9 
20.2 

19.7 

18.5 
19.0 

RB 
8.0 
3.8 
1.4 

-0.4 

-5.1 
-3.3 

-7.7 

RB 
6.7 
0.4 

-3.4 

1.5 
-9.5 
-3.9 

^ , 1 -
CV 
48.7 
49.1 
45.2 

79.7 
64.2 
65.7 

49.0 

^ , 1 " 
CV 
43.8 
41.3 
98.8 

95.1 

55.1 
82.0 

• ^ 2 

CP 
90.9 
90.1 
90.7 
91.2 

90.9 
90.3 
90.9 

-",2 
CP 

93.6 

93.2 
91.5 

93.2 

91.1 
91.8 

MW 
10.0 
14.1 
17.1 

22.6 
25.8 
22.9 
18.4 

MW 
12.3 

13.3 
18.0 

18.9 
16.6 
18.0 

Total: population total. 
Change: population difference between the current month and the previous month. 
Var: variance of the estimated total or change. 
RB: relative bias = 100(bias/true value)%. 
CV: coefficient of variation = 100 (standard error/true value)%. 
CP: coverage probability of asymptotic confidence interval using estimated variance (in %). 
MW: (mean width of asymptotic confidence interval) /lO'". 
*: Scientific notation (for example, 6,700,000 is 6.7E6). 
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Month 
1 

2 
3 
4 

5 
6 

7 

Month 
2 

3 
4 
5 
6 
7 

Estimation 
of Total 

Total* RB Var* 
2.0E9 

2.1E9 

2.1E9 
2.2E9 
2.2E9 

2.2E9 
2.2E9 

-0.1 

-0.1 

-0.1 
-0.1 

-0.1 
-0.1 

-0.1 

9.5E12 

1.7E13 
2.2E13 
3.7E13 

5.0E13 
4.5E13 

3.5E13 

Estimation 
of Change 

Change* 

6.4E7 
3.5E7 
2.1E7 
2.1E7 
1.4E7 
i.lE7 

RB 

-0.1 
-1.6 
6.6 

-0.4 
2.0 

-0.1 

Var* 

1.5EI3 
1.3E13 
2.4E13 
2.4E13 
2.3E13 
2.7E13 

RB 

-30.7 
-27.2 

-14.3 
-12.3 

-16.0 
-9.4 

-7.3 

RB 
-37.6 
-31.7 
-29.5 
-40.5 
-40.8 
-40.5 

V 

CV 

30.4 

27.8 
34.7 

40.3 
41.6 
44.1 

43.1 

V 

CV 

25.7 

27.9 
47.1 
34.1 
31.1 
42.0 

to 
CP 

81.8 

84.3 
85.6 

90.1 
89.0 
92.0 

92.1 

to 
CP 

85.4 

87.7 
86.7 

83.5 
84.4 

83.1 

MW 

10.3 

14.1 
17,4 

22.8 
25.9 
25.5 

22.8 

MW 
12.2 

11.9 
16.5 
15.1 
14.8 
16.0 

Table 5 
Simulation Results for Weekly Pay 

RB 
1.7 

-3.4 

1.1 
6.4 

-1.5 
-3.8 

-0.7 

RB 
-8.2 
-5.2 
0.4 

-9.2 
-13.5 
-13.9 

^ 1 
CV CP 

41.0 90.0 

38.7 89.2 
42.2 88.1 
50.6 92.8 

51.8 91.4 
46.9 92.6 

48.3 92.8 

^ 1 
CV CP 
38.4 93.0 
42.3 92.2 
63.2 91.9 
55.7 90.5 
46.0 91.4 
56.5 89.2 

MW 

12.4 

16.2 
18.9 
25.1 

28.1 
26.3 

23.6 

MW 

14.8 
14.0 
19.6 
18.7 
17.8 
19.3 

Variance estimation 

RB CV CP MW 

17.2 

7.9 
8.0 

13.8 

5.9 
1.8 

6.8 

44.3 92.4 

41.2 91.2 

43.9 89.5 
53.0 94.1 

54.8 92.0 
48.7 92.8 

50.0 93.9 

13.3 

17.1 

19.5 
26.0 
29.1 
27.1 

24.5 

Variance estimation 

RB 
0.2 
2.2 
6.7 

-2.4 

-6.7 
-8.7 

CV CP 
40.4 94.1 

43.8 92.8 
66.2 92.6 
58.9 92.0 
48.9 92.1 
58.7 90.6 

MW 

15.5 
14.6 
20.2 
19.4 
18.5 
19.9 

RB 

39.8 

31.1 
34.9 
41.2 

29.3 
27.8 
31.9 

RB 

21.6 
22.3 
30.7 
19.9 
16.8 
13.0 

V 

CV 

54.4 

48.1 
51.4 

63.0 

64.6 
57.8 
57.0 

V 

CV 

47.7 
48.9 
78.7 
69.2 
60.1 
68.8 

t l 

CP 
94.4 

93.5 
93.5 
96.1 

94.3 
95.0 
96.4 

tl 
CP 

95.8 
94.3 
95.2 
94.9 
94.5 
92.8 

MW 

14.6 

18.9 
21.8 
28.9 

32.2 
30.3 

27.2 

MW 

17.1 
15.9 
22.4 

21.5 
20.7 
22.1 

RB 

4.3 

3.3 
2.6 

-0.9 
-5.4 
-0.4 

-0.0 

RB 

5.5 
3.5 

-4.3 
3.6 

-4.4 
-3.7 

" , 1 -
CV 

48.9 

51.5 
50.4 

84.5 
56.0 
54.1 

54.3 

" / l " 
CV 

49.2 
43.2 
96.9 
90.0 
53.0 
69.5 

• ^ 2 
CP 

91.0 

91.6 
91.4 

92.8 
92.4 

94.2 

95.3 

• " , 2 

CP 
92.6 
93.5 
90.6 
92.5 
91.5 
90.8 

MW 

12.6 

16.8 
19.0 
24.2 

27.5 
26.8 

237 

MW 

15.9 
14.7 
19.2 
19.9 
18.8 
20.4 

Total: population total. 
Change: population difference between the current month and the previous month. 
Var: variance of the estimated total or change. 
RB: relative bias = 100(bias/true value)%. 
CV: coefficient of variation = 100 (standard error/true value)%. 
CP: coverage probability of asymptotic confidence interval using estimated variance (in %). 
MW: (mean width of asymptotic confidence interval) /lO'^. 
*: Scientific notation (for example, 6,700,000 is 6.7E6). 

From Tables 2 through 5, the relative biases of esti­
mators of monthly totals and changes are negligible for all 
variables. The following is a summary for the simulation 
results of variance estimators in terms of RB and CV. 

1. As expected, the naive variance estimator v,o has a 
large negative relative bias. 

2. The asymptotically unbiased variance estimator 
v̂ j - VJ2 performs well in general. Its relative bias is 
always under 10% in absolute value and is frequently 
under 5%. 

4. 

variance estimation for total of hours at month 1, and in 
variance estimation for change of employment at 
month 7. In many cases, however, the performance of 
1?,, is even better than the asymptotically unbiased 
estimator v,, - v^2-

The following is a summary for tiie simulation results of 
confidence intervals in terms of CP and MW. 

1. The CP of the confidence interval based on the naive 
variance estimator v,o is substantially lower than the 
nominal level 95% in most cases. 

3. The variance estimator v„ has a large positive relative 2. The CP of the confidence interval based on the 
asymptotically valid variance estimator, Vj,-v,2, is bias in all cases. This indicates that the v,2 term is not 

negligible in the CES in which the overall sampling 
fraction, nIN, is about 15%. 
The variance estimator v,,, which is the same as v,, 
but with sampling fractions n^^lN^^ incorporated 
(section 4), has a negative relative bias in general. Its 
negative bias may be large, especially in the estimation 
of the variance for monthly changes. 

The variance estimator v ,̂, which is the same as v,, 
but with sampling fractions nf^lN^^ replaced by 
r^,IN^, performs well in the simulation study, 
although it is not asymptotically unbiased (section 4). 
Its relative bias is large in a few cases, e.g., in variance 
estimation for total of weekly pay at months 1 and 4, in 

between 90% and 93% in most cases. This is often the 
case for an asymptotically valid variance estimator, i.e., 
its relative bias is small but the CP of the related 
confidence interval is lower than the nominal level. 
One possible reason is that the convergence in distri­
bution (asymptotic normality, which is the key for 
asymptotic confidence intervals) requires a larger 
sample size than the convergence of the second 
moment (in variance estimation). 

In terms of CP, the confidence interval based on v,, is 
the best. This might be because the overestimation in 
variance offsets the undercoverage in interval estima­
tion. The mean width of the interval based on v , may 
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be substantially larger than those of other intervals, 
especially for weekly pay. 

4. The CP of the confidence interval based on v,,, which 
is not asymptotically valid, is similar to that of the 

We use mathematical induction. When t = I, 

confidence interval based on v. "12-

6. CONCLUSION AND DISCUSSION 

For the survey estimators in the Current Employment 
Survey (CES) with imputed data, we propose an asympto­
tically unbiased and consistent estimator v,, - v,2 (section 
3). Although V,, can be easily computed using the grouped 
balanced half sample method, the computation of v,2 
involves separate derivations for nonlinear estimators. 
Thus, several approximations, v,,,v,j, and v,, (section 4) 
are considered and compared with v,, - v,2 in a simulation 
study in which a CES dataset is used as population. Our 
result shows that v,, and v,, have large relative biases, due 
to the fact that the overall sampling fraction, 15%, is not 
negligible; the estimator v,p which is the same as v,, but 
incorporates an estimated sampling fraction (using the rate 
of response) in the balanced half sample method, performs 
fairly well. Thus, v,, is recommended to replace v,, - v,2 if 
the computation of v,2 is too complicated. Since the use of 
the "observed sampling fraction" r^, /Â ^ does not reflect 
the fact that information is available about the nonres­
pondents from previous months, v,, may be improved 
using a more accurate estimated sampling fraction, for 
example, Rubin's (1987) "fraction of missing information". 

Although our study is based on the CES, our results are 
applicable to any survey that adopts a similar sampling 
design and a similar imputation method. Furthermore, an 
extension to the case where model (2) involves 
^/i'^»-i I' —'yt-si ^i'i^ ^" integer j ^ 2 is straightforward, 
although the derivation of v,2 (for an asymptotically valid 
variance estimator) is more complicated. 

y . = a. J'o-

By assumption (2), 

Cov„ (y„y,) =aiVJY,)^a'EJY,) 

= N (OIVO + O ^ P Q ) 

= yjyo-

Suppose now that (9) is tme at time r - 1 . Let £,, V, and 
Cov^ be the expectation, variance and covariance condi­
tional on y.., •,R.,j=l,..., t. Then 

and 

E.iy.) ='x.y.-, 

Cov, (y,,y,) = Cov, (a, y,.,,y,) 

= y,., Cov,(a,,y,) 

= ^' y,-v 

where the last equality follows from assumption (2). By the 
induction assumption, 

covjy,.y,.,) = v„(y,.,). 

Then 

cov„(y,,y,) = cov„ £,(y,),£,(y,) +£„cov,(y,,y,) 

= a;cov^(y,.„y,.,) + o^£„(y,.,) 
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APPENDIX: PROOF OF (4) 

It suffices to show that 

Cov ( y , y,) = V (y,). (9) 

We show the case of a single imputation cell and y,,. = y,, 
(employment). The general case can be treated similarly. 

<^:yjy,-i)-^'E„(y.-i) 

yjy,)-
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Implementing Rao-Shao Type Variance Estimation with 
Replicate Weights 

MICHAEL P. COHEN' 

ABSTRACT 

In estimating variances so as to account for imputation for item nonresponse, Rao and Shao (1992) originated an approach 
based on adjusted replication. Further developments (particularly the extension to balanced repeated replication from the 
jackknife replication of Rao and Shao) were made by Shao, Chen and Chen (1998). In this article we explore how these 
methods can be implemented using replicate weights. 

KEY WORDS: Balanced Repeated Replication; Jackknife replication; Imputation; Item nonresponse; Weighted hot deck. 

1. INTRODUCTION 

Variance estimation by replication methods is facilitated 
by the use of replicate weights (Dippo, Fay and 
Morganstein 1984). In the past decade adjusted replication 
methods have been developed (Rao and Shao 1992; Shao, 
Chen and Chen 1998) that allow one to account for the 
variation due to imputation for item nonresponse in the 
estimation of variances. It is not, however, entirely obvious 
how these adjusted replication procedures can be imple­
mented by means of replicate weights. This article explores 
how this can be done. The focus is on ways to prepare the 
dataset so that standard variance estimation software 
products that make use of replicate weights will work 
without modification. In the next to last section, however, 
some comments are made about whether modifying the 
software would help. 

2. REPLICATION METHODS AND REPLICATE 
WEIGHTS 

Wolter (1985) provides a comprehensive introduction to 
variance estimation for sample surveys. Chapters 3 and 4 
cover the two replication methods pertinent to this article: 
the jackknife and balanced repeated replication. Shao and 
Tu (1995, chapter 6) is recommended for a more recent and 
advanced treatment. Variance estimation for surveys by 
replication continues to be an active area for research. 
Works that are even more recent include Brick and 
Morganstein (1996, 1997), Kott (2001), Rao and Shao 
(1996, 1999), Rust and Rao (1996), Shao (1996) and 
Valliant (1996). 

The two replication methods work by creating subsets of 
the sample called replicates. The methods differ in the 
pattern by which replicates are formed. In balanced 
repeated replication (also called balanced half-sample 
replication), the replicates consist of roughly half the units 

in the original sample; hence they are also called half 
samples. In jackknife replication (as applied to survey data), 
the replicates typically consist of the original sample except 
that a single primary sampling unit (PSU) or a small 
number of PSUs in the same stratum is deleted. For both 
methods, the replicates can be considered samples in their 
own right. Therefore if 9 is an estimate of some quantity 9 
based on the original sample, we can form an estimate 9**̂^ 
of 0 based on replicate r. If there are R replicates, we 
estimate the sampling variance of 9, var(O), by 

var(e) = c„.«E(e^'' e)̂  (2.1) 
r-l 

where the constant C^ ̂  depends solely on the replication 
method M and the number of replicates R. 

In forming the estimate 9 of 9, use is made of the 
sample weights. For example, to estimate a population total 
for a particular item y, the estimate is the weighted sum of 
the values ofy. Thus, if y^ and w^ are the values ofy and 
the sample weight for sample unit u, then ^ =Y,„w^y^ 
where the sum is over all units in the sample. In addition to 
the sample weight w„ on the record for unit u, we can add 
replicate weights w,̂ '̂ \ r = 1 to /?, to the record on the file 
and calculate 9 in the same way as 0 except that ŵ  
replaces w^ for each sample unit u. Thus for the exjunple in 
which 0 is the population total for y, 9 = Y,u ̂ u yu- ^ ""' ' 
u is not in replicate r, then wj = 0. Some or all of the 
replicate weights for units that are in the replicate will be 
larger than their sample weights so that the units in the 
replicate continue to represent the entire population. 

The use of replicate weights provided on the file to 
calculate the sampling variance estimates has advantages: 

- Any statistics no matter how complicated that can be 
calculated for the whole sample can be calculated 
just as easily for each replicate. The sampling 
variance is then estimated by (2.1). 

Michael P. Cohen, Senior Mathematical Statistician, U.S. Bureau of Transportation Statistics, 400 Seventh Street SW, Washington, DC 20590 U.S.A. 
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- Adjustments for unit nonresponse and poststrati­
fication can (and should) be done individually for 
each replicate and incorporated in the replicate 
weights. This adjustment is usually done by an 
experienced sampling statistician and the adjusted 
replicate weights are put on the file so that the data 
analyst can use them without extra effort. 

- Adjustments to the replicate weights put on the file 
can make use of auxiliary information not available 
to the data analyst, possibly for reasons of confi­
dentiality. Even if not restricted, the auxiliary infor­
mation may be difficult for the data analyst to obtain 
or use. 

- General purpose software is available that employs 
replicate weights. Two software products that 
emphasize replication methods for surveys are 
WesVar from Westat, Inc. and VPLX from the U.S. 
Census Bureau. See the Web page 

//www.fas.harvard.edu/~stats/survey-soft/survey-
soft.html 

for information on survey analysis software. 

In this section we have ignored the complications that 
come from tiying to capture the component of variance due 
to item imputation in the variance estimates. We begin to 
address these complications in the next section. 

3. ADJUSTED REPLICATION METHODS 

The works of Rao and Shao (1992) and Shao, Chen and 
Chen (1998) are key to this article. Shao and Chen (1999) 
and Shao and Steel (1999) also treat replication-based 
variance estimation for imputed survey data. 

We begin by developing the notation, for the most part 
using that of Shao, Chen and Chen (1998). The population 
is divided into L strata with Â^ clusters in the hth stratum. 
In the first stage of sampling in stratum /i,n^ 2; 2 clusters 
are selected, the ith cluster being selected with probability 
Pf^.,i = I, ...,Nf^;h = l,...,L. The clusters are selected 
without replacement and clusters in different strata are 
selected independently. The sampling fractions n^ IN^ are 
assumed to be small enough that no finite population 
correction is needed. Further stages of sampling may take 
place within each cluster, independently from cluster to 
cluster. There are N^. ultimate population units in cluster / 
of stratum h. For population unit {h, i,j), there is a variable 
y^.. of interest. Let 5 be the collection of all sample units 
and let {y^.., (/i,/, y ) e5} be the imputed dataset: the y;,,-, 
are equal to y^. when the item is observed and equal to the 
imputed value otherwise. The sample units are divided into 
imputation classes indexed by k and /l^ is the index set of 
respondents for item y in imputation class k. We assume 
that the dataset contains identifiers ("flags") so that the 
nonrespondents can be identified. 

In adjusted replication methods, y^,. in imputation class 
k is adjusted to 

yS 

rW 
hij ^ ^A, (yhij) - \(yhij) 

if y^.. is imputed 

yhij 

if y^.j is observed, (3.1) 

where £^ is the expectation with respect to the original 
imputation procedure within imputation class k and EA[ is 
the expectation with respect to the imputation procedure 
based only on data in the rth replicate within imputation 
class k. This formula is given explicitiy in Shao, Chen and 
Chen (1998, page 822) for balanced repeated replication 
and a variety of imputation methods. It also applies to the 
development in Rao and Shao (1992) for jackknife repli­
cation and weighted hot deck imputation. 

We shall adopt the notation that {h° i°j°) denotes a unit 
that did not respond to item y and {h' i'j') denotes a unit 
that did respond to item y. We assume that 

^A(yh'i'j') = Y 
(h'i'r)eA^ 

'i'j'; h''i°j° yh'i'j' 

and 

.w 
EAl'^yh'i'j') = Y ai^'vy.h'i'j'yh'i'j' 

(h'i'j')eA^ 

where the a;,.,.....^.,.. and al^y.^^.^.j. are con 
depending on tne values of the y^:-:. and a^.,.,. 

constants not 
depending on the values of the y^',y and <3^V/;/>°IT " ^ 
for {h'i'j') not in replicate r. The ah'i'i'-.h'rj' ^^^ 
^hrj'h-rj- "^^y depend on auxiliary information available 
for all units in the sample. For the weighted hot deck of Rao 
and Shao (1992) and all of the imputation methods of Shao, 
Chen and Chen (1998), the expectations have this form. 

3.1 Example: Ratio Imputation 

This imputation method applies to situations in which 
there are auxiliary data { A:̂  ..} available for all sample units. 
Ratio imputation imputes a missing item y;,.,o» by 

i°j' 2^ ^h'i'j'yWi'j' I 2L^ 
t,h'i'j')eA^ {h'i'j')eA^ 

W^.....X^.,... 

So 

h'i'j'•.h''i-j' ^h°i°j°^h'i'j' / 1^ 
(h"i"j")eA^ 

W,.,,.„ .„ X^..,..... 

and 

(r) (r) / V^ 
ah'i'j':h'rj' = ̂ h'i'j''^h'i'j'/ , Z . Wh''i"j" h"i"j" 

th"r'j")eA^ 

Notice that the a^,.,.,.j^...j. and a '̂v '̂;/,=,•;» depend on the 

http://www.fas.harvard.edu/~stats/survey-soft/surveysoft.html
http://www.fas.harvard.edu/~stats/survey-soft/surveysoft.html
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3.2 Example: Weighted Hot Deck Imputation 

This imputation method imputes a missing item by a 
value randomly selected from the respondents to the same 
item with probability proportional to the weights of the 
respondents in the imputation class. See section 5 for 
further discussion of this method. Shao, Chen and Chen 
(1998, page 822) show that 

^A,(yh'ir)= Y ^h'i'j'yh'i'j'/ Y ^h'vj' 
(h'i'j')eA^ (h'i'j')eA^ 

and 

(h'i'j')eA^ (h'i'j')eA^ 

Thus 

and 

Vi'j':h°i°j° '^ h'i'j' I 2^ ^A"/"/' 
(A"<"/')eA, 

(r) tr) / V^ (r) 
^h'i'j'.h'i'j'-^ h'i'j' L <"i"j"-

(h"i"j")eA„ 

4. THE DATA FILE FOR VARIANCE 
ESTIMATION 

For simplicity we assume that each record contains an 
identifier indicating to which imputation class the unit 
belongs. Often the imputation class is determined by several 
variables on the record. A record will look something like 
this: 

(1) ID IC w,..w^„ 
h IJ hij 

(R) ~ 
^hij yhij IF z... IF 

y hij z 

where ID is the identifier for the unit, IC is the identifier for 
the imputation class, w^.j is the (full sample) weight, 
^hij ••• ^hij "̂"̂  ^^^ replicate weights, y^.. is the value 
(possibly imputed) of the variable y under consideration, 
/£^, is the imputation "flag" that indicates whether y^.. is 
imputed, z^.. is the value (possibly imputed) of another 
variable z and IF^ is the imputation "flag" that indicates 
whether z .̂. is imputed. There, of course, may be other 
variables on the files as well, for example an auxiliary 
variable x,^.. available for all sample units. 

We propose to add additional records, called extra 
records, to facilitate variance estimation. For each non-
respondent {h°i°j°) and respondent {h'i'j') to itemy in 
imputation class k, we create the record 

-d) ~(R) ID IC 0 vv-...,,,.,... vv-.. . , , , . . y,.,^, / £ 0 / £ 

where IC = k, ID is the identifier of the unit {h° i°j°) that 
did not respond to item y and 

w 
(r) .W (r) 

r=l,...,R. (4.1) 

Note that the full sample weight is 0 on the extra records so 
these records do not affect the full sample estimates. The 
replicate estimates, though, agree with those defined by 
(3.1). Note also that the weights wl'^^^j^.^.-.j. may be 
negative. 

Table 1 
Numerical Illustration: Portion of Data File for 

Variance Estimation 

ID 

001 
002 

003 
004 

005 
006 

001 
001 
001 

004 
004 
004 
005 

005 

005 

001 
001 
001 
001 
001 

IC 

1 
1 

1 
I 
1 
1 

1 
1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 
1 

w... 
hij 

10.1 

20.3 

18.4 

11.1 

16.3 

15.4 

0.0 
0.0 

0.0 

0.0 
0.0 
0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 
0.0 

< •• 

20.2000 • 

40.6000 

36.8000 • 

0.0000 • 

0.0000 

0.0000 

3.0162 

2.7339 •• 

-5.7501 • 

0.0000 

0.0000 • 

0.0000 •• 

0.0000 • 

0.0000 • 

0.0000 • 

5.5645 •• 

5.0436 •• 

-2.7512 •• 

-4.0400 •• 

-3.8169 • 

(«) 
• ^bij 

0.0000 

0.0000 

0.0000 

• 22.2000 

• 32.6000 

30.8000 

0.0000 

0.0000 

0.0000 

• -8.3301 

• -7.5505 

• 15.8806 

• -12.2325 

• -11.0876 

• 23.3201 

• 0.0000 

• 0.0000 

0.0000 

0.0000 

0.0000 

ybij 

5.4 

5.1 
5.2 
5.1 
5.1 
5.4 

5.1 
5.2 
5.4 

5.1 
5.2 

5.4 
5.1 
5.2 
5.4 

0.0 
0.0 

0.0 
0.0 

0.0 

""r 
1 

0 
0 
1 
1 

0 
2 

2 
2 

2 
2 
2 
2 

2 
2 

3 
3 

3 
3 
3 

^ 
1.2 

1.3 
1.3 
1.2 
1.4 
1.4 

0.0 
0.0 

0.0 
0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

1.3 
1.3 

1.2 
1.4 
1.4 

^̂ . 
I 

0 
0 
0 
0 

0 
3 
3 

3 

3 
3 
3 
3 
3 

3 
2 
2 

2 
2 

2 

Table 1 provides a numerical illustration. In the illustra­
tion, the nine records (rows of the table) with IF =2 are 
the extra records for item y. The first six records are the 
original records for the six sample units that constitute 
imputation class /C = 1. (The records at the end with 
/£j = 2 are the extra records for item z and will be 
discussed in the next paragraph. In these records, the 
imputation fiag fory, /£^, has been set to 3 to indicate that 
these are extra records for an item other than y.) There are 
three respondents {IF =0) and three nonrespondents 
(/£ ,̂ = 1) to itemy. The method of imputation is assumed 
to be weighted hot deck. Only the first and last replicate 
weights {Wf^]j and wl,1j) are presented, but these are 
consistent with replicate weights used for the balanced 
repeated replication method of variance estimation. We 
have ̂  I w,.. y,.. = 476.650, I wj^ y,.. = 506.048 and 
Y.'^hij yhij =455.696 where the sums are over all the 
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records. The reader may verify that this agrees with 

I ^hij hij = 476.650, E w<;; y i j = 506.048 and 

L f̂c/y yLj ~ 455.696 obtained using (3.1) where the sums 
are over the first six records only. 

Let us now consider item z. The extra records for this 
item have the form 

ID IC 0 ^^%r:h'ry-^'^i'j-.h'i'j'^fPy Zh'i'j' tF, 

where Wh-i'j--.h'i'j' 
-(R) ^h°i°j° h'i'j' ^^ computed by (4.1) but 

using the imputation method and response pattern for item 
z. The imputation method for z need not be the same as the 
imputation method for y but must be of the form discussed 
in section 3. In Table 1 the extra records for item z can be 
identified by having IF^ = 2. We have then Y.'^hij^hij ~ 
120.130, Iw,';; z~,̂ . = 124.349 and Ew.^J ~z,,j = 115.400 
where the sums are over all the records. This agrees with 
the sums obtained by (3.1). 

Clearly the biggest disadvantage of this approach is the 
large number of extra records that have to be added to the 
file. This disadvantage is less severe when the imputation 
classes are small. (There are, however, many factors that go 
into determining the size of the imputation classes.) The 
advantages, on the other hand, include the following: 

- The adjusted replicate estimates and variance esti­
mates can be computed with any software designed 
to estimate variances by means of replicate weights. 

- If there is another variable, say y', with the same 
pattern of nonresponse and the very same method of 
imputation as y (that is, the same a and a ^''^ values), 
the computation of replicate estimates for y' can be 
accommodated without adding more records. 

- One can make estimates over subdomains, even if 
they cut across imputation class boundaries. 

- Suppose the method of imputation is the weighted 
hot deck. Then one estimates the variance of a 
derived variable, say log y where y > 0, by simply 
adding the derived variable to each record and 
computing replicate estimates based on it. (We shall 
have more to say about the weighted hot deck in the 
next section.) 

The data analyst may choose to delete the extra records 
from a copy of the data file and use the reduced file to 
check for outiiers, formulate hypotheses, etc. When it 
comes time to estimate variances, the extra records would 
be merged back in. 

It should be pointed out that Rao and Shao (1992) 
proposed and evaluated their jackknife variance estimation 
method only for the estimation of totals (or means). One 
must be cautioned against the use of the approach for more 
complex statistics. In the same way, Shao, Chen and Chen 
(1998) proposed their balanced repeated replication 
variance estimation method for functions of totals and for 
quantiles so it should not be used for other statistics. 

5. THE WEIGHTED HOT DECK 

The use of the weighted hot deck method of imputation 
{e.g.. Cox 1980) has a number of advantages so we devote 
a separate section to it. Rao and Shao (1992) concentrate on 
this imputation method and it is discussed also in Shao, 
Chen and Chen (1998). Under this method, a missing item 
is imputed by a value selected at random from the 
respondents to that item in the imputation class. The proba­
bility of selection is proportional to w .̂,. ., the weight of the 
respondent. The respondents that have a positive probability 
of being selected are called potential donors; the non-
respondent being imputed is the recipient. If there is more 
than one item on the file that will be imputed by the 
weighted hot deck, simplifications occur if one uses 
complete respondents (units who responded to all items) as 
potential donors and uses only one donor to impute all items 
requiring weighted hot deck imputation for a given 
recipient. (The donor is selected for each sample unit 
having any item for which there is item nonresponse.) 

If each unit in an imputation class has the same chance 
of responding to an item, the weighted hot deck yields 
design consistent estimates of means, totals and sample 
quantiles. The imputations, moreover, will be "plausible" in 
the sense of looking like real data. 

An advantageous feature of the weighted hot deck is that 
it is equivariant under one-to-one transformations. To 
explain equivariance, consider a derived variable d where 
d = g{y) and g is a one-to-one function. Then,using the 
weighted hot deck, we impute item y of unit {h° i°j°) that 
did not respond to the item by y;,°,v and use g{y^^i>j^) for 
d. This is equivalent to using the weighted hot deck to 
impute d by ^̂ ,=,0 . and using g''(J^,,.o.„ ) for y. This 
feature of hot deck imputation in not shared by many other 
methods. For example, under mean imputation (in which 
the imputed value is the mean of the values for respondents 
in the imputation class), g would have to be linear for the 
equivariance property to hold. The pertinence of this to 
variance estimation by adjusted replicate methods is that 
when hot deck imputation is used, the data analyst can add 
d-s{y) to the file and estimate variances for d as well as 
fory. 

Suppose that the weighted hot deck is employed for 
several variables on a file and suppose that only complete 
respondents are used as potential donors. In this case, even 
if the pattems of nonresponse are different for the variables 
being imputed, the implementation of the adjusted repli­
cation by replicate weights described in the previous section 
can be carried out with the same set of extra replicate 
weights 

-w .w .w 
^h'i°j°-.h'i'j' - {(^h'i'j'-.h'i'j' ~^h'i'j':h'i°j°>'^h'i'j' 

for each variable. 



Survey Methodology, June 2002 101 

6. ALTERNATIVES 

In this section we consider altemative methods including 
one that requires modifying the software. 

6.1 First Alternative 

One way to reduce the number of records is to have extra 
records of the form 

ID' IC 0 ivj^lj. ... ^vj^j. y,,.. IF^ 0 IF^ 

where ID' is the identifier of the potential donor unit 
{h'i'j') that responded to item y, B̂^ is the index set of 
units not responding to item y in imputation class k and 

vw<^> E / (O _ X (r) 

y^h'i'j'.h'i'j' ^h'i'j'.h'i'j'' ^h'i'j'' 
{h'i'j°)eB^ 

r= l,...,R. 

Under this setup, for a given item there is only one extra 
record per potential donor. The chief disadvantage is that, 
because of the summation, estimates for subdomains that 
cut across imputation classes cannot be computed. 

6.2 Second Alternative 
Perhaps the most obvious implementation would be to 

add the y^jj to the {hij) record and modify software to use 
the yljj rather than y^^.. when computing replicate esti­
mates. The chief drawbacks are (1) sophisticated repro-
gramming of software would be needed, (2) if multiple 
variables may require imputation, the number of fields 
needed expands greatly and (3) it is unclear how a data 
analyst would estimate the variance of a derived Variable, 
say d, unless the di^j were put on the file in advance. The 
favorable features of this implementation are (1) no extra 
records are needed and (2) variance estimates for sub-
domains do not require additional work. 

7. CONCLUDING REMARKS 

The adjusted replication methods of Rao and Shao 
(1992) and Shao, Chen and Chen (1998) provide a way of 
computing variance estimates that account for imputation 
for item nonresponse. An important next step is the 
development of ways to facilitate the computation. This 
article explored implementations based on the use of 
replicate weights. 
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Variance Estimation for the General Regression Estimator 
RICHARD VALLIANT' 

ABSTRACT 

A variety of estimators of the variance of the general regression (GREG) estimator of a mean have been proposed in the 
sampling literature, mainly with the goal of estimating the design-based variance. Estimators can be easily constructed that, 
under certain conditions, are approximately unbiased for both the design-variance and the model-variance. Several 
dual-purpose estimators are studied here in single-stage sampling. These choices are robust estimators of a model-variance 
even if the model that motivates the GREG has an incorrect variance parameter. 
A key feature of the robust estimators is the adjustment of squared residuals by factors analogous to the leverages used in 
standard regression analysis. We also show that the delete-one jackknife implicitly includes the leverage adjustments and 
is a good choice from either the design-based or model-based perspective. In a set of simulations, these variance estimators 
have small bias and produce confidence intervals with near-nominal coverage rates for several sampling methods, sample 
sizes, and populations in single-stage sampling. 
We also present simulation results for a skewed population where all variance estimators perform pooriy. Samples that do 
not adequately represent the units with large values lead to estimated means that are too small, variance estimates that are 
too small, and confidence intervals that cover at far less than the nominal rate. These defects need to be avoided at the design 
stage by selecting samples that cover the extreme units well. However, in populations with inadequate design information 
this will not be feasible. 

KEY WORDS: Confidence interval coverage; Hat matrix; Jackknife; Leverage; Model unbiased; Skewness. 

1. INTRODUCTION 

Robust variance estimation is a key consideration in the 
prediction approach to finite population sampling. Valliant, 
Dorfman, and Royall (2000) synthesize much of the 
model-based literature. In that approach, a working model 
is formulated that is used to construct a point estimator of 
a mean or total. Variance estimators are created that are 
robust in the sense of being approximately model-unbiased 
and consistent for the model-variance even when the 
variance specification in the working model is incorrect. In 
this paper, that approach is extended to the general 
regression estimator (GREG) to constmct variance esti­
mators that are approximately model-unbiased but are also 
approximately design-unbiased in single-stage sampling. A 
number of alternatives are compared including the jack-
knife and some variants of the jackknife. We will use a 
particular class of linear models along with Bernoulli or 
Poisson sampling as motivation for the variance estimators. 
However, some of these estimators can often be success­
fully applied in practice to single-stage designs where 
selections are not independent. 

Associated with each unit in the population is a target 
variable Y. and a p-vector of auxiliary variables 
\.= {Xjy ...,Xi )' where / = I, ...,N. The population vector 
of totals of tne auxiliaries is T, = (T ,,..., 7"̂ „)' where 

A/ —. ,* I Xp 

^xk ~ Xi=i ^ki'^ ~ '̂ •••'/'• ^ ^ general regression estimator, 
defined below, is motivated by a linear model in which the 
Ts are independent random variables with 

EM(yi) = ^ ' P 
var^(y, ) = V,.. (1.1) 

In most situations (1.1) is a "working" model that is likely 
to be incorrect to some degree. 

Assume that a probability sample s is selected and that 
the selection probability of sample unit / is £( 6. = 1) = ttj 
where 5,. is a 0-1 indicator for whether a unit is in the 
sample or not. We assume that the sample selection 
mechanism is ignorable. Roughly speaking, ignorability 
means that the joint distribution of the Ts and the sample 
indicators, given the x's, can be factored into the product of 
the distribution for I' given x and the distribution for the 
indicators given x (see Sugden and Smith 1984 for a formal 
definition). In that case, model-based inference can proceed 
using the model and ignoring the selection mechanism. 

The n-vector of targets for the sample units is 
Y^ = (Yy ..., YJ', and the nxp matrix of auxiliaries for 
the sample units is X^ = (x,,..., x^)'. Define the diagonal 
matrix of selection probabilities as H^ = diag(7i,.), ies, and 
the diagonal matrix of model-variances as V^ = diag (v.). 
The GREG estimator of the total, T = X M J',, is then 
defined as the Horvitz-Thompson estimator or Ji-estimator, 
T^ = Y,^ YifTtj, plus an adjustment: 

T = 7".^B'(T.-T,) (1.2) 

with A. =x'v:'n:'x. where B = Al X ' V ; ' n ; ' Y , 
and T =y xln.. The GREG estimator can also be 

X i-IS I I 

written as 

Richard Valliant, Westat, 1650 Research Boulevard, Rockville. MD 20850. 
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To = g ; n : ' Y , (1.3) 
var M {Y-Y)^N-^Y<'l'^i- (1.5) 

with ĝ  = V; 'x^A;' ( T ^ - t j + 1̂  and 1̂  being an 
n-vector of I's. Expression (1.3) will be useful for 
subsequent calculations. 

A variant of the GREG, referred to as a "cosmetic" 
estimator, was introduced by Samdal and Wright (1984) 
and amplified by Brewer (1995, 1999). A cosmetic esti­
mator also has design-based and model-based interpre­
tations. The variance estimators in this paper could also be 
adapted to cover cosmetic estimation. 

Assuming thatJV is known, the GREG estimator of the 
mean is sir^ly ?^ = f^lN. We will concentrate on the 
analysis of F^. (In some situations, particularly ones where 
multi-stage sampling is used, the population size is 
unknown ai\d an estimate, N, must be used in the deno­
minator of Fg. The following analysis for the mean does 
not apply in that case.) Either quantitative or qualitative 
auxiliaries (or both) can be used in the GREG. If a quali­
tative variable like gender (male or female) is used, then 
two or more columns in X^ will be linearly dependent, in 
which case a generalized inverse, denoted by A^ ,̂ will be 
used in (1.2) and (1.3). Note^that, although A^̂  is not 
unique, the GREG estimator F^ is invariant to the choice 
of generalized inverse. The proof is similar to Theorem 
7.4.1 in Valliant ef a/. (2000). 

The GREG estimator is model-unbiased under (1.1) and 
is approximately design-unbiased in large probability 
samples. Note that the model-unbiasedness requires only 
that £^(y.) = xf P; if the variance parameters in (1.1) are 
misspecified, the GREG will still be model-unbiased. On 
the other hand, if £^^(1',) is incorrectly specified, the 
GREG is model-biased and the model mean squared error 
may contain an important bias-squared term. The estimation 
error of the GREG F^ is defined as 

y ^ - y = A^- ' (a 'Y I ' Y ) 

where F = TIN, 3^=11^ ĝ  - 1 j , Ŷ  is the (Â  - n) - vector of 
target variables for the nonsample units, and 1̂  is a vector 
of N-n I's. Next, suppose that the true model for Y. is 

var^(y.) = v|/,.. (1.4) 

i.e., the variance specification is different from (1.1) but 
£^(y.) is the same. Using the estimation error, the 
error-variance of F^ is then 

var„(F„-F) = N-^{a"¥ a +1"¥ 1 ) 
M ^ C ' ^ s s s r r r' 

where the n x « covariance matrix for Y^ is 4* = diag (4*.) 
and T^ is the (Â  - n) x{N - n) covariance matrix for Y^. 
When the sample and population sizes are both large and 
the sampling fraction, f=nlN, is negligible, the error-
variance is approximately 

Note that this variance depends on the tme variance para­
meters, T., and on the working model variance parameters, 
V,., because v. is part of a.. Since â  is approximately the 
same as n̂ " ĝ  when selection probabilities are small, the 
error variance in that case is also approximately 

v a r ^ ( F ^ - y ) - A -̂̂ E Si 
"V,. (1.6) 

•es 71. 

For model-based variance estimation, we will take either of 
the asymptotic forms in (1.5) or (1.6) as the target. How­
ever, when the sampling fraction is substantial, the term 
1 ̂ ' T ^ 1 ̂  / Â  ̂  can be an important part of the error-variance 
and (1.5) or (1.6) may be poor approximations. 

We will consider the design variance under two single-
stage plans-Bemoulli and Poisson. In Poisson sampling, the 
indicators 5. for whether a unit is in the sample or not are 
independent with P(5. = 1) = 1 - P(8,. = 0) =ii. (see Samdal, 
Swensson, and Wretman 1992, section 3.5, for a more 
detailed description). Bemoulli sampling is a special case 
of Poisson sampling in which each unit has the same 
inclusion probability. Under these two plans, the approxi­
mate design-variance of F^ is 

var„ O-c) N-
N 1 

•Y-
i-l 

(1.7) 

where £. = y. - xf B and B = (X'V- 'X) ' ' X' V ' Y is tiie 
regression parameter estimator evaluated for the full finite 
population. Samdal (1996) recommends using the GREG 
in conjunction with sampling plans for which (1.7) is valid 
on the grounds that the variance (1.7) is simple and that the 
use of regression estimation can often more than compen­
sate for the random sample sizes that are a consequence of 
such designs. 

The Bemoulli and Poisson designs and the linear models 
(1.1) and (1.4) serve mainly as motivation for the variance 
estimators presented in sections 2 and 3. As noted by Yung 
and Rao (1996, page 24), it is common practice to use 
variance estimators that are appropriate to a design with 
independent selections or to a with-replacement design 
even when a sample has been selected without replacement. 
Likewise, variance estimators motivated by a linear model 
are often applied in cases where departures from the model 
are anticipated. This practical approach underlies the 
thinking in this paper and is illustrated in the simulation 
study reported in section 4. 

2. VARIANCE ESTIMATORS 

Our general goal in variance estimation will be to find 
estimators that are consistent and approximately unbiased 
under both a model and a design. Koti (1990) also 
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considered this problem. Note that the goal here is not the 
estimation of a combined (or anticipated) model-design 
variance, 

E^K {[{h-y)-E.E^[?o-y)Y\ 

Rather ^we seek estimators that are useful for both 
var̂ ĵ  {? -Y) and var^(F). The arguments given here are 
largely heuristic ones used to motivate the forms of the 
variance estimators. Additional, formal conditions such as 
those found in Royall and Cumberland (1978) or Yung and 
Rao (2000) are needed for model-based and design-based 
consistency and approximate unbiasedness. 

First, consider estimation of the approximate model-
variance given in (1.5). In the following development, we 
assume that, as Â  and n become large, 

(i) Â  max (;t.) = 0{n) and 

(ii) Ajĵ  IN converges to a matrix of constants, A^. 

A residual associated with sample unit / is r. = Y^ - Y. 
where Y. = x_' B. The vector of predicted values for the 
sample units can be written as 

H. Y. (2.1) 

where H^ = X^ A ; ;^X; V^' H^ ' . The predicted value for an 
individual unit is Y, = Y,^h..Y. where h.. = x'.A'x.l 
(v.71.) is the {ij) element of H^. The matrix H^ is the 
analog to the usual hat matrix (Belsley, Kuh and Welsch 
1980) from standard regression analysis. The diagonal 
elements of the hat matrix are known as leverages and are 
a measure of the effect that a unit has on its own predicted 
value. Notice that the inverses of the selection probabilities 
are involved in (2.1), although these would have no role in 
purely model-based analysis. 

The following lemma, which is a variation of some 
results in Lemma 5.3.1 of (Valliant et al. 2000), gives some 
properties of the leverages and the hat matrix. 

Lemma 1. Assume that (i) and (ii) hold. For 
Hj = X^ A^̂  X '̂ Vj Hj the following properties hold for 
all ies: 

(a) h.j = 0{n-') 

(b) H^ is idempotent. 

(c) 0^h..^l. 

Proof: Since h.. = \'. A' \.l{v. n.), conditions (i) and (ii) 
imply that h.. = 0{n ) . Part (D) follows from direct 
multiplication, using the definition of H^. To prove (c) 
note that /J.. ̂  0 since it is a quadratic form. Part (b) implies 
that /i.. = /i,,. + Y.j*i^ij^ji which can hold only if h.. <. I. 

Next, we write the residual as r. = Y.{1 -h..)-
Y,-es(i) ^i y where s{i) is the sample excluding unit /. Since 
£«('-,) = 0, we have E^{rf) = var^(r,.) and 

£ M ( ' • / ) = ^ , ( l - ^ • , ) ' - E hlj^j (2.2) 
jesd) 

under model (1.4). Using Lemma 1 (a), we have h.. = o{l), 
hjj = o{l), and consequently, £^(r,. )^'^y Thus, in large 
samples, r, is an approximately unbiased estimator of the 
correct model-variance even though the variance specifi­
cation in model (1.1) was incorrect. As a result, r- is a 
robust estimator of the model-variance for unit / regardless 
of the form of 4'̂ .. A simple, robust estimator of the 
approximate model-variance (1.5) is then 

^Ri^h) = N-'Ys 
2 2 

O; r-
(2.3) 

which is a type of "sandwich" estimator (see, e.g.. White 
1982). (Note that a formal argument that v^, is robust 
would require conditions such that n''£jj^(v^,) and 
n'^N'^Y^s ^i ^i converge to the same quantity.) Another 
variance estimator, similar to v^, if â  s fl̂  g^, is 

^R2(ya)-^-'Ys^rf. 
Tt; 

(2.4) 

An estimator of the approximate design-variance in (1.7) 
IS 

V„(?C) -N-'Ys 
1 - 7 1 . 

2 
1 ; 

(2.5) 

An altemative suggested by Samdal etal. (1989) as having 
better conditional properties is 

•̂ ssw '̂ ' c 
(ya)-N-'Ys^'sfrf. (2.6) 

Another, sinular estimator, used in the SUPERCARP 
software (Hidiroglou, Fuller and Hickman 1980) and 
derived using Taylor series methods, is 

( 

v^(Fc) = N-
n-l 

Si'-i I E Si'-i 
\2 

(2.7) 

As shown in the Appendix, the second term in parentheses 
in (2.7) converges in probabitity to zero under model (1.1). 
Thus, v^ = v̂ 2 •" l̂ '̂ĝ  samples. 

When the selection probability of each unit is small, 
''ssw ^'^' ^^ similar to v^,, v^j' ^^'^ ^r- '^^ '̂̂ '"̂ ^ ^ ' " ^^ 
approximately model-unbiased under (1.4) and approxi­
mately design-unbiased under Bemoulli and Poisson 
sampling. On the other hand, v̂^ is approximately design-
unbiased but ignores the g. coefficients and is biased under 
either model (1.1) or (1.4). 

As a simple example, consider Bemoulli sampling with 
•K. = nlN and the working model £^(y.)=j: . p, 
var^(y.) = a^x.. Then the GREG is the ratio estimator 



106 Valliant: Variance Estimation for the General Regression Estimator 

Yf^ = Y^xlx^ where A: is a finite population mean. The 
approximate model variance under the more general specifi­
cation, var^{Y.) = v|/., is {H'Jn){xlx^)'^ where T^ = 
Y,,^jln. The approximate design-variance is (1 -f)l{nN) 

Zi=i(^,".^,.F/J)^ where F is a finite population mean. 
The estimator v„, = n'^{xIx )^ Y {Y.-x.Y Ix )^ is 

A 2 ^ S'' t—is ^ I IS s^ 

approximately unbiased for the model- variance and, 
because x lx^^\ in large Bemoulli samples, v^^ '^ also 
approximately unbiased for the design-variance as long as 
/ i s small. In contrast, v̂^ = n "^(1 - / ) Xi( ,̂. ~^i ^s^^s )^ '^ 
approximately design- unbiased but is model-unbiased only 
in balanced samples where x = x^. Royall and Cumberland 
(1981) noted similar results for the ratio estimator in simple 
random sampling without replacement. 

3. ALTERNATIVE VARIANCE ESTIMATORS 
USING ADJUSTED SQUARED RESIDUALS 

The first altemative variance estimator we consider is the 
jackknife. The particular version to be studied is defined as 

n-l 

1=1 
G(i) • C ( . ) . 

(3.1) 

where Y^^^..^ has the same form as the full sample estimator 
after omitting sample unit /. If the selection probability has 
the form n^ = np., then (3.1) can be rewritten. Using the 
convention that the subscript (i) means that sample unit / 
has been omitted, we have 

^C(0 ^ G ( i ) ^ ^ ' ^G(.) Z^U ^ G ( i ) ' " ' 'G(i) 

= ^.(0^B(0(T.-t,,), 

to) =nY / / [ V " - ! ) ] . 7̂ .(0 
' ' ( ' • ) 

= nY Xj/[^i{n-l), and 

ies(i) 

jes(i) 

^(0 =^»i(o^,(,)'^.«n;(!) 1̂ ,(0 with 

A =y ' v " ' n ' ' y 
• ^ » ( 0 ^ j ( 0 ^s(i)^hit)'^s(i) 

Another more conservative, but asymptotically equivalent, 
version of t|ie jackknife replaces Y^^ ^ with the full sample 
estimator y^. Design-based properties of the jackknife in 
(3.1) are usually studied in samples selected with 
replacement (see, e.g., Krewski and Rao 1981, Rao and Wu 
1985, Yung and Rao 1996), but applied in practice to 
without-replacement designs. Note that for the linear 
estimator Y^=N'^ Y^ies ^i ̂ '^z'" probability proportional to 
size without-replacement sampling, neither the jackknife, 
Vj, nor the approximations to Vj given later in this section, 
reduce to the usual Horvitz-Thompson or Yates-Grundy 
variance estimators. 

With some effort we can write the jackknife in a form 
that involves the residuals and the leverages. The rewritten 

form will make clear the relationship of the jackknife to the 
variance estimators in section 2. First, note the following 
equalities that are easily verified: 

' 1(0 n - l 

' ^ y-
T - — ,T x(i) n-l 

t - - i (3.2) 

x;„v;^)n;<;)Y,„ = x,v:'n;'Y, -x,y/v,7r„ 

A ,., = A - x.x.7v.7r. 
ni(i) ns II It 

(3.3) 

Using a standard formula for the inverse of the sum of two 
matrices, the slope estimator, omitting sample unit i, equals 

Bo)=B-n-T. 
A" x. r. 

ns I I 
1 - h.. v.n. 

II I I 

Details of this and the succeeding computations are 
sketched in the Appendix. After a considerable amount of 
algebra, we have 

T -T 
' G(i) ' G(-) 

" (D . -D , ) + - ^ £ . 
n - l n - l ' 

where 

D 
Sin 

' n.{l-h..) 
I ^ It' 

and F. is defined in the Appendix. The jackknife in (3.1) is 
then equal to 

M^o) = ̂  -2 n 

n-l 

Ysi^i-^sf -Y Fi -'^Ys Pi^^i-D^) (3.4) 

Expression (3.4) is an exact equality and could be used as 
a computational formula for the jackknife. This would 
sidestep the need to mechanically delete a unit, compute 
Fp^.j, and so on, through the entire sample. 

In large samples the first term in brackets in (3.4) is 
dominant while the second and third are near zero under 
some reasonable conditions. Thus, in large samples the 
jackknife is approximated by v̂  {Y^) ^ N'^Y,, (^i ~ ^t)^-
or, equivalently, 

M Gl ^2 

SJi 

7 1 , ( 1 - / , , ) N'n 
Ys 

Si n 

7 1 , ( 1 - / « , ) 
(3.5) 
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As shown in the Appendix, the second term in (3.5) 
converges in probability to zero under model (1.1). Conse­
quently, a further approximation to the jackknife is Vo(̂ c) = -77E ' ' " ' 

M^o) -Y 
2 2 

Si n 

7t?(l h.) 
II' 

(3.6) 

As (3.5) and (3.6) show, the jackknife implicitly incor­
porates the gj coefficients needed for estimating the 
model-variance. The right-hand side of (3.6) i|, itself an 
altemative estimator that we will denote by vj (F^). 

Yung and Rao (1996) also derived an approximation to 
the jackknife for the GREG in multistage sampling. For 
single-stage sampling, their approximation is equal to v^, 
defined in (2.7), which is the same as (3.5) if the leverages 
are zero. Duchesne (2000) also presented a formula for the 
jackknife, which he denoted as V̂ ^̂ j > that involved sample 
leverages. The advantage of (3.4) is that it makes clear 
which parts of the jackknife are negligible in large samples. 
Duchesne also presented an estimator, denoted by V/ĵ -j, 
that is essentially the same as v̂ 2 "̂"̂  '̂  an approximation 
to the jackknife. 

Expressions (3.5) and (3.6) explicitiy show how the 
leverages affect the size of the jackknife. Weighted 
leverages, / i , , that are not near zero will inflate v .̂ 
Depending on the configuration of the x's, this could be a 
substantial effect on some samples. 

Since h.. approaches zero with increasing sample size, 
Vj, v^2. ̂ ssw' ^^^ ^r ^^^^ '^^ same asymptotic properties. 
In particular, the jackknife is approximately unbiased with 
respect to either the model or the design and is robust to 
misspecification of the variances in model (1.1). However, 
the factor (1 - h..) in (3.6) is less than or equal to 1 and 
will make the jackknife larger than the other variance 
estimators. This will typically result in confidence intervals 
based on the jackknife covering at a higher rate than ones 
using v^^'^ssw'Or v^. 

Note, also, that if a without-replacement sample is used, 
and some first-order or second-order selection probabilities 
are not small, the choices, v^^'^o'^y ^"'l ^j will be 
over-estimates of either the design-variance or the 
model-variance. To account for non-negHgible selection 
probabilities, we can make some simple adjustments. An 
adjusted version of v/ (F^), pattemed after v^^^, is 

A^' n]{l-h..f 

This expression is similar to V̂ '̂ ĵ of Duchesne (2000), 
although V/'ĵ j omits the leverages. Expression (3.6) also 
suggests another altemative that is closely related to an 
estimator of the error variance of the best linear unbiased 
predictor of the mean under model (1.1) (see, Valliant et al. 
2000, chapter 5). This estimator is somewhat less 
conservative than (3.6), but still adjusts using the leverages: 

N' 'n]{l-h,) 

Because h.. =o(l),v^ is also approximately model and 
design-unbiased. A variant of this that may perform better 
when some selection probabilities are large is 

Hp[yG)-—2Ys 3 • 
^ 71,. ( 1 - / I , , ) 

4. SIMULATION RESULTS 

To check the performance of the variance estimators, we 
conducted several simulation studies using three different 
populations. The first is the Hospitals population listed in 
Valliant et al. (2000, Appendix B). The second population 
is the Labor Force population described in Valliant (1993). 
The third is a modification of the Labor Force population. 
In all three populations, sampling is done without 
replacement, as described below. These sampling plans will 
test the notion that variance estimators motivated, in part, 
by with-replacement designs can still be useful when 
applied to without-replacement designs. 

The Hospitals population has Â  = 393 and a single 
auxiliary value x, which is the number of inpatient beds in 
each hospital. The Y variable is the number patients dis­
charged during a particular time period. The GREG esti­
mator for this population is based on the model 
E^{Y) = P,x"^ + PjX, var^(y) = o^ x. Samples of size 50 
and 100 were selected using simple random sampling 
without replacement (srswor) and probability proportional 
to size (pps) without replacement with the size being the 
square root of x. For each combination of selection method 
and sample size, 3,000 samples were selected. The esti­
mators ?c'^:i'^Ri'^fi2'^ssw' ^D^^DP'^J'^JP' and v̂  
were calculated for each sample. For comparison we also 
included the 7t-estimator, F, = f w . T h e variance estimator 
VJ. was included but is not reported here since results were 
little different from v̂ ^ • 

The Labor Force population contains 10,841 persons. 
The auxiliary variables used were age, sex, and number of 
hours worked per week. The Y variable was total weekly 
wages. Age was grouped into four categories: 19 years and 
under, 20-24, 25-34, and 35 or more. The model for the 
GREG included an intercept, main effects for age and sex, 
and the quantitative variable, hours worked. A constant 
model-variance was used. Samples of size 50, 100, and 250 
were selected. The two selection methods used were srswor 
and sampling without replacement with probability propor­
tional to hours worked. (This population has some cluster­
ing but this was ignored in these simulations.) 

The third population was a version of Labor Force 
designed to inject some outliers or skewness into the 
weekly wages variable. We denote this new version as 
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"LF(mod)" for reference. In the original Labor Force 
population, weekly wages were top-coded at $999. For each 
such top-coded wage, a new wage was generated equal to 
$1,000 plus a lognormal random variable whose 
distribution had scale and shape parameters of 6.9 and 1. 
Recoded wages were generated for 4.4% of the population. 
Prior to recoding, the annualized mean wage was $19,359, 
and the maximum was $51,948; after recoding, the mean 
was $23,103 and the maximum was $608,116. Thus, 
LF(mod) exhibits more of the skewness in income that 
would be found in a real population. 

The resulting LF(mod) distribution is shown in Figure 1 
where weekly wages is plotted against hours worked for 
subgroups defined by age. In each panel the black points 
are for males while the open circles are for females. A 
horizontal reference line is drawn in each panel at $999. 
Although there is a considerable amount of over-plotting, 
the general features are clear. Wage levels and spread go up 

as age increases, hours worked per week is related, though 
somewhat weakly, to wages, and wages are most skewed 
for age groups 25-34 and 35-I-. Less evident is the fact that 
wages for males are generally higher than ones for females. 

Table 1 shows the empirical percentage relative biases, 
defined as the average over the samples of {T -T)IT for 
the 7i-estimator and general regression estimator for the 
various populations and sample sizes. Root mean square 
errors (rmse's), defined as the square root of the average 
over the samples of {t-T)^, are also shown. In the 
Hospitals population, both estimators have negligible bias 
at either sample size. The GREG is considerably more 
efficient in Hospitals than the 7c-estimator because of a 
strong relationship of Y to x. In the two Labor Force popu­
lations, both the 7t-estimator and the GREG are nearly 
unbiased while the GREG is somewhat more efficient as 
measured by the rmse for all sample sizes and selection 
methods. 

Age<= 19 Age 20-24 

Age 25-34 

40 60 
Hours 

• • 

^JUniyvOU^^^?^ 

20 

r^AiJf'.'j 
80 too 

Hours 

Figure 1. Scatterplots of Weekly Wages versus Hours Worked per Week in Four Age Groups for the LF(mod) population. Open circles 
are for females. Black circles are for males. A horizontal line is drawn at $999 per week, the maximum value in the original 
Labor Force population. 
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Table 1 
Relative biases and root means square errors (rmse's) of the 
7i-estimator and the general regression in different simulation 

studies of 3,000 samples each. 
Hospitals 

/i=50 /i=100 

Simple random samples 

t 
Relbias(%) 0.2 -0.1 rmse 76.6 50.7 

Relbias (%) 0.2 0.2 
rmse 32.6 21.1 

Lxibor Force 

n=50 

-0.6 
34.2 

0.1 
28.3 

Probability proportional to size sampl 

Relbias (%) -0.1 0.1 
rmse 37.6 24.4 

(1 

Relbias (%) 0.1 0.1 
rmse 27.2 16.9 

-0.5 
28.2 

-0.10 
28.2 

n=lOO 

0 
24.1 

0.1 
19.9 

;s 

0 
20.3 

0.10 
19.3 

n=25C 

0 
15.5 

0.2 
12.4 

0 
12.6 

0 
12.0 

/i=50 

-0.1 
88.6 

0.4 
86.0 

0 
80.6 

-0.6 
81.8 

LF(mod) 
/i=100 

0 
61.2 

0.2 
57.4 

-0.1 
54.6 

-0.7 
55.1 

/i=250 

-0.3 
38.8 

-0.1 
36.0 

-0.1 
34.1 

-0.4 

33.5 

Table 2 lists the empirical relative biases (relbiases) of 
the nine variance estimators, defined as 100( v - mse)/mse, 
where v is the average of a variance estimator over the 
3,000 samples and mse is the empirical mean square error 
of the GREG. The rows of the table are sorted by the size of 
the relbias in LF(mod) for srswor's of size 50, although the 
ordering would be similar for the other populations, sample 
sizes, and selection methods. In the Hospitals population, 
the sampling fraction is substantial, especially when n=100. 
As might be expected, this results in the estimators that 
omit any type of finite population correction ( ^ c ) - v ^ 2 ' 
Vp,Vy', and v^-being severe over-estimates in either 
srswor or pps samples. Because v^, lacks a term to reflect 
the model-variance of the nonsample sum, it under­
estimates the mse badly when the sampling fraction is large. 

In the Labor Force and LF(mod) populations, increasing 
sample size leads to decreasing bias. The estimators v̂ ,̂ 
v^ 1. v^2' ^nd Vgg^ have negative biases that tend to be less 
severe as the sample size increases. The jackknife Vj and its 
variants, vJ, vjp, are over-estimates, especially at n=50. 
The estimators, v^ and v^^, are more nearly unbiased at 
each of the sample sizes than most of the other estimators. 

The empirical coverages of 95% confidence intervals 
across the 3,000 samples in each set are shown in Table 3 
for the Hospitals population. The three choices of variance 
estimator that use the leverage adjustments but not 
fpc's-Vjj, Vj', and v / -a re larger and, thus, have higher 
coverage rates than v̂ ,̂ v^^ > "̂<̂  ^ssw • ̂ ^ tendency of the 
jackknife to be larger than other variance estimates for the 
GREG has also been noted by Stukel, Hidiroglou, and 
Samdal (1996). This is an advantage for the smaller sample 
size, n=50. When n = 100 and the sampling fraction is 
large, the estimators with the fpc's-v^,v^^,^,Vjjp, and 
Vj' ,-have closer to the nominal 95% coverage rates while 
^R2'^D'*'y*' ^"^ ^j cover in about 97 or 98% of the 
samples. The estimator Vj'p, that approximates the 

jackknife but includes an Jpc, is a good choice at either 
sample size or sampling plan. 

Table 2 
Relative biases of nine variance estimators for the general 

regression estimator in different simulation studies of 3,000 
samples each. 

Hospitals Labor Force LF(mod) 

' « 1 

^SSW 

"yp 

"Rl 

^ssw 

••JP 

n=50 «=100 

-8.6 -4.2 
-18.9 
-7.6 

5.9 
-1.4 

13.0 
18.4 
5.4 

20.8 
ortiona 

-5.9 
-19.7 
-4.0 
16.0 
0.1 

20.8 
23.6 
4.4 

26.1 

-27.0 
-3.0 
30.1 

0.2 
34.3 
37.4 

3.5 
38.8 

n=50 

-18.1 
-11.3 
-10.9 

-10.5 
0.1 
0.6 

13.9 
14.0 
14.5 

1 to size sampl 
-0.9 

-32.4 

0.0 
52.6 

2.0 

55.6 
57.2 
4.0 

58.8 

-22.1 
-11.9 
-11.6 
-11.2 

0.8 

1.3 
22.6 
19.7 

20.3 

n=100 

-12.3 
-9.9 
-9.1 
-8.2 

-3.8 
-2.9 
2.2 
2.1 

3.1 
5S 

-12.1 
-7.7 

-7.0 
-6.0 
-0.3 

0.7 
11.8 
9.3 

10.3 

n=250 

-7.5 
-8.0 
-5.9 
-3.7 

-3.8 
-1.6 

0.3 
-1.7 
0.7 

-6.8 
-7.1 

-4.9 
-2.5 
-1.6 

0.8 
5.3 
3.1 

5.5 

n=50 

-16.3 
-9.6 

-9.3 
-8.8 
0.6 
1.0 

11.2 
12.4 

12.9 

-16.5 
-9.1 

-8.7 
-8.3 
0.9 

1.4 
14.6 
14.8 
15.4 

n=100 

-2.8 
-0.7 
0.1. 
1.0 

5.1 

6.1 
10.5 
10.5 
11.5 

-10.6 
-8.2 

-7.3 
-6.3 
-2.5 

-1.5 
4.7 
3.9 
5.0 

n=250 

-2.6 
-3.3 
-1.1 

1.3 
0.8 

3.2 
4.8 
2.7 
5.2 

-0.3 
-2.7 

-0.1 
2.6 
2.1 

4.8 
7.3 
4.9 

7.7 

Table 3 
95% confidence interval coverage rates for simulations using the 
Hospitals population and nine variance estimators. 3,000 simple 

random samples and probability proportional to size were selected 
without replacement for samples of size 50 and 100. L is percent 

of samples with (?g-P)/v"^<-1.96; Mis percent with 
|Fg - F| /v"2s 1.96; f/ispercem with (F ,̂ - P)/v'«<1.96. 

L 

Simple random samp 

^ 
^fii 

^ssw 
"^2 

^DP 

"D 
VJ 

VJ'P 

V 

3:1 

4.2 

3.3 

2.8 

3.1 

2.4 

2.2 

2.9 

2.2 

n=50 

M 

es 

92.1 

91.0 

92.5 

93.9 

93.0 

94.6 

95.0 

93.6 

95.1 

Probability proportional to size 

„̂ 
"RI 

^ssw 
"RI 

^DP 

"D 

VJ 

V/p 
v/ 

2.9 

4.1 

2.9 

2.1 

2.7 

1.9 

1.8 

2.6 

1.7 

93.9 

92.0 

94.2 

95.8 

94.5 

96.2 

96.3 

94.8 

96.5 

U 

4.8 

4.7 

4.2 

3.3 

3.9 

3.0 

2.8 

3.5 

2.8 

samples 

3.2 

3.9 

2.9 

2.1 

2.8 

1.9 

1.9 

2.6 

1.8 

L 

2.6 

4.8 

2.8 

1.4 

2.7 

1.2 

1.2 

2.6 

1.2 

2.6 

5.0 

2.6 

0.9 

2.5 

0.9 

0.9 

2.4 

0.8 

/i=100 

M 

93.6 

89.8 

94.0 

97.0 

94.3 

97.3 

97.3 

94.6 

97.4 

94.6 

89.3 

94.8 

98.3 

95.0 

98.3 

98.4 

95.4 

98.4 

U 

3.9 

5.5 

3.1 

1.6 

2.9 

1.5 

1.5 

2.9 

1.4 

2.8 

5.7 

2.6 

0.8 

2.5 

0.8 

0.7 

2.2 

0.7 
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Tables 4 and 5 show the coverage rates for the Labor 
Force and LF(mod) populations. For the former, v^p, v^, 
Vj, Vj'p, and vJ are clearly better in Labor Force at n=50 
for both srswor and pps samples. But, for n=250, coverages 
rates are similar for all estimators. The purely design- based 
estimator, v̂ ,̂ is unsatisfactory at the smaller sample sizes 
for either sampling plan. As in Hospitals, vjp gives near 
nominal coverage at each sample size in the Labor Force 
population. 

The most striking results in Tables 4 and 5 are for 
LF(mod) where all variance estimators give poor coverage. 
Coverages range from 78.0% for the combination (v^, 
n=50, srswor) to 90.7% for (v^ and vJ ,n = 25J3, pps). 
Virtually all cases of non-coverage are because (F^ - F ) / 
V "^ < -1.96, where v is any of the variance estimators. The 
poor coverage rates occur even though the 7i-estimator and 
GREG are unbiased over all samples (see Table 1) and, in 
the cases of Vj, vjp, and vJ, the variance estimators are 
overestimates (see Table 2). 

Table 4 
95% confidence interval coverage rates for simulations using the 

Labor Force and LF(mod) populations and nine variance 
estimators. 3,000 simple random samples were selected without 

replacement for samples of size 50 and 100. L is percent of 
samples with (F^ - P) / v "̂  < -1.96; M is percent with 

I Fg - PI / V "̂  s 1.96; U is percent with {Y^-Y)lv"^>l .96. 
n=50 n=100 n=250 

L.abour Force 

'Rl 
'̂ssw 

"JP 
VJ' 

LF(mod) 
v^ 
VRI 

^ssw 

""DP 

VJ'P 

5.3 
4.9 
4.9 
4.9 
4.2 
4.2 
3.0 
3.0 
3.0 

21.0 
20.9 
20.9 
20.8 
19.7 
19.7 
18.4 
18.4 
18.3 

M 

91.4 
92.4 
92^5 
92.5 
93.6 
93.6 
95.1 
95.1 
95.1 

78.0 
78.7 
78.8 
78.8 
80.0 
80.0 
81.4 
81.4 
81.5 

3.2 
2.7 
2.6 
2.6 
2.2 
2.2 
1.9 
1.9 
1.9 

0.9 
0.3 
0.3 
0.3 
0.2 
0.2 
0.2 
0.2 
0.2 

4.3 
4.3 
4.3 
4.2 
3.9 
3.9 
3.4 
3.3 
3.3 

M 

92.8 
93.0 
93.1 
93.2 
93.7 
93.9 
94.7 
94.7 
94.8 

2.9 
2.7 
2.7 
2.6 
2.4 
2.2 
1.9 
1.9 
1.9 

2.8 
2.8 
2.8 
2.5 
2.6 
2.4 
2.4 
2.5 
2.4 

M 

94.1 
93.9 
94.1 
94.6 
94.5 
94.9 
95.0 
94.8 
95.0 

3.1 
3.3 
3.1 
2.9 
2.9 
2.7 
2.7 
2.7 
2.7 

14.1 85.5 0.4 9.9 89.7 0.4 
14.1 85.7 0.2 10.2 89.5 0.3 
14.0 
13.8 
13.4 
13.2 
12.7 
12.7 
12.6 

85.8 
86.0 
86.5 
86.7 
87.2 
87.2 
87.3 

0.2 
0.2 
0.1 
0.1 
0.1 
0.1 
0.1 

9.9 
9.7 
9.7 
9.6 
9.4 
9.5 
9.3 

89.9 
90.1 
90.1 
90.1 
90.3 
90.2 
90.4 

0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 

Negative estimation errors, Y^^ - Y, occur in samples 
that include relatively few persons with large weekly 
wages. Figure 2 is a plot off-statistics based on sSv^p, i.e., 
(Fg - F ) /yv/p, versus the number of sample persons with 
weekly wages of $1,000 or more in sets of 1,000 samples 
for (srswor; n=50, 100, 250). The negative estimation 
errors in samples with few persons with high incomes lead 
to negative /-statistics, and confidence intervals that miss 
the population mean on the low side. The problem 
decreases with increasing sample size, but the convergence 

to the nominal coverage rates is slow and occurs "from the 
bottom up." Regardless of the variance estimator used, 
coverage will be less than 95% unless the sample is quite 
large. 

Table 5 
95% confidence interval coverage rates for simulations using the 

Labor Force and LF(mod) populations and nine variance 
estimators. 3,000 probability proportional to size samples were 
selected without replacement for samples of size 50,100 and 250. 
L is percent of samples with (F^ - P) / v "̂  < -1.96; M is percent with 

\Y^-Y\lv^'^i\.9(i; {/is percent with (y^ " >')/v'">1.96. 
fi=50 fi=100 n=250 

Labour Force 

'Rl 
^SSW 

"JP 
VJ' 

LF(mod) 
V^ 

VRI 

^SSW 

"•jp 

5.7 
5.3 
5.2 
5.2 
4.3 
4.3 
3.3 
3.3 
3.3 

19.6 
20.2 
20.1 
20.1 
18.7 
18.7 
16.6 
16.6 
16.5 

M 

90.2 
92.1 
92.2 
92.3 
93.6 
93.7 
95.5 
95.4 
95.4 

79.7 
79.6 
79.7 
79.7 
81.1 
81.1 
83.2 
83.3 
83.4 

4.1 
2.6 
2.6 
2.6 
2.0 
2.0 
1.2 
1.3 
1.3 

0.7 
0.2 
0.2 
0.2 
0.2 
0.2 
0.1 
0.1 
0.1 

3.7 
3.3 
3.2 
3.1 
2.9 
2.9 
2.4 
2.6 
2.6 

15.0 
15.9 
15.8 
15.6 
14.8 
14.7 
13.6 
13.9 
13.8 

M 

92.9 
93.8 
94.0 
94.1 
94.7 
94.7 
95.8 
95.5 
95.6 

84.4 
83.8 
84.0 
84.1 
85,0 
85.2 
86.4 
86.1 
86.2 

3.4 
2.9 
2.9 
2.8 
2.4 
2.4 
1.7 
1.9 
1.8 

0.7 
0.3 
0.3 
0.2 
0.1 
0.1 
0.0 
0.0 
0.0 

3.1 
3.5 
3.3 
3.0 
3.0 
2.8 
2.6 
2.7 
2.6 

9.9 
10.3 
10.0 
9.8 
9.7 
9.4 
9.1 
9.4 
9.1 

M 

94.3 
94.0 
94.4 
94.8 
94.9 
95.1 
95.5 
95.3 
95.6 

89.8 
89.4 
89.8 
90.0 
90.0 
90.4 
90.7 
90.4 
90.7 

U 

2.6 
2.5 
2.2 
2.2 
2.1 
2.1 
1.9 
1.9 
1.8 

0.4 
0.3 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 

We also examined how well the variance estimators 
perform, conditional on sample characteristics. We present 
only results related to bias of the variance estimators to 
conserve space. For the Hospitals population, we sorted the 
samples based on D_̂  = 1' (T^ - T^), which is the sum of 
the differences of the 7c-estimates of the totals of A: "^ and x 
from their population totals. Twenty groups of 150 samples 
each were then formed. In each group, we computed the 
bias of Fg along with the rmse, and the square root of the 
average of each variance estimator. The results are plotted 
in Figure 3 for srswor with n=50 and 100 and forpps with n=50 
and 100. A subset of the variance estimators is plotted. The 
horizontal axis in each panel gives values of D . Since 
Vj, Vj' ,Vp, and v^^ "̂"e similar through most of the range 
of D^, only the jackknife v̂  is plotted. Also, v^^ and Vj'p 
are close, and only the latter is plotted. The GREG does 
have a conditional bias that affects the rmse in off-balance 
samples. The poor conditional properties of v̂^ are most 
evident in the simple random samples where the bias of v̂^ 
as an estimate of the mse mns from negative to positive 
over the range of D^. Among the other variance estimates, 
conditional biases are similar to the unconditional biases in 
Table 2. Both Vj'p and v^^^ are in theory approximately 
design and model-unbiased, and both track the rmse well. 
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Figure 2. Plot of f-statistics versus the number of sample persons with weekly wages greater than $ 1,000 in the sets of 1,000 simple 
random samples of size n =50,100, 250 from the LF(mod) population. Horizontal reference lines are drawn at ±1.96. 
Points are jittered to miniinize overplotting. 
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Figure 3. Plot of conditional biases, rmse's, and means of standard error estimates of the GREG for the samples from the Hospitals 
population. Horizontal and vertical reference lines are drawn at 0. The lowest curve each panel is the bias of the GREG. The 
thick solid line is the conditional root mean square error. 



112 Valliant: Variance Estimation for the General Regression Estimator 
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Figure 4. Plot of conditional biases, rmse's, and means of standard error estimates of the GREG for the samples from the Labor Force 
population. Horizontal and vertical reference lines are drawn at 0. The lowest curve in each panel is the bias of the GREG. 
The thick solid line is the conditional root mean square error. 

Figure 4 is a similar plot for the samples from the Labor 
Force population. The following sets of estimates are very 
similar and only the first in each set is included in the plots: 
(VQ,VQP), and (Vy,v/,v^p). Only the srswor and pps 
samples of size n = 50 and 250 are included. The horizontal 
axis is again D^, which is the sum of differences between 
the ;t-estimates and the population values of the totals for 
age and sex groups and the number of hours worked per 
week. The conditional bias of v̂^ is evident in samples with 
the smallest values of D^ but the problem diminishes for 
the larger sample size in both srswor and pps samples. The 
jackknife Vj is, on average, the largest of the variance 
estimators throughout the range of D^. The differences 
among the variance estimates and their biases are less for 
the larger sample size. The estimators v^, v^^^, and v̂  all 
track the rmse reasonably well except when D^ is most 
negative, where all are somewhat low. 

5. CONCLUSION 

A variety of estimators of the variance of the general 
regression estimator have been proposed in the sampling 
literature, mainly with the goal of estimating the design-
based variance. Estimators can be easily constructed that 

are approximately unbiased for both the design-variance 
and, under certain models, the model-variance. Moreover, 
the dual-purpose estimators studied here are robust esti­
mators of a model-variance even if the model that motivates 
the GREG has an incorrect variance parameter. 

A key feature of the best of these estimators is the 
adjustment of squared residuals by factors analogous to the 
leverages used in standard regression analysis. The desira­
bility of using leverage corrections to regression variance 
estimators in order to combat heteroscedasticity is well-
known in econometrics, having been proposed by 
MacKinnon and White (1985) and recently revisited by 
Long and Ervin (2000). One of the best choices is an 
approximation to the jackknife, denoted here by vjp, that 
includes a type of finite population correction. 

The robust estimators studied here are quite useful for 
variables whose distributions are reasonably "well 
behaved." They adjust variance estimators in small and 
moderate size samples in a way that often results in better 
confidence interval coverage. However, they are no defense 
when variables are extremely skewed, and large obser­
vations are not well represented in a sample. Whether one 
refers to this problem as one of skewness or of outliers, the 
effect is clear. A sample that does not include a sufficient 
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number of units with large values will produce an estimated 
mean that is too small. A variance estimator that is small 
often accompanies the small estimated mean. As the 
simulations in section 4 illustrate, in such samples even the 
best of the proposed variance estimators will not yield 
confidence intervals that cover at the nominal rate. The 
transformation methods of Chen and Chen (1996) might 
hold some promise, but that approach would have to be 
tested for the more complex GREG estimators studied here. 

The most effective solution to the skewness problem 
does not appear to be to make better use of the sample data. 
Rather, the sample itself needs to be designed to include 
good representation of the large units. In many cases, 
however, like a survey of households to measure income or 
capital assets, this may be difficult or impossible if auxiliary 
information closely related to the target variable is not 
available. Better use of the sample data employing models 
for skewed variables may then be useful (see, e.g., Karlberg 
2000). 
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APPENDIX: Details of Jackknife Calculations 

Using (3.2), (3.3), and the standard matrix result in 
Lemma 5.4.1 of Valliant et al. (2000), we have 

and 

n j ( ' ) 

.-1 A;'X,.X/A„'/V,.7I, 

A„, + — 1 -K 

From this and the definition of B^.., the slope estimator, 
omitting unit /, is B,., = B +n "' £jQ, where 

Q, 
A.,x. r. 

1 -h..v.n.' 

The GREG estimator, after deleting unit /, is 

' C(<) n-l ^ i , 

(B-Q,.)' 
n-l 

\ 
- ^i 

After some rearrangement, this can be rewritten as 

g r. 
Ot I f = ^ f _ " 

n-l n-l 7r,(l-/t,, n-l ' n-l ' 

where 

h.Y.-Y. a = " • ' 
7 t , . ( l - / l , ) 

K. = (B - Q,)' 
n\. 

Tt. 

•CO) ' c ( . ) - - " ( ' ' - l ) - ' ( Z > , - 0 , ) + It follows that Tgyj - T^ 
ri{n- 1)-'F. where F. = {G. - G J +n"' {K. - K^) with 
G^ and K^ being sample means with the obvious 
definitions. Substituting in the jackknife formula (3.1) 
gives 

'Ah) N -2 n 
n-l 

Ys(DrDf^YEf-2Y,Ei(D,-D,) (A.l) 

Formula (A.l) is exact, but with some further 
approximations we can get the relative sizes of the terms. 
Using the values of G. and K. above and the fact that h.. 
and the elements of Q. are o(l), we have 

n\. ^ 
— i - T G.^n-'K. = —^ L_ + 1 ( B - Q )' 

' n.{l-h..) n 

Y. ^ X. 1 . . 
= - - ^ +B' — - - B ' T ^ 

71. n. n 

= - 1 B t 
n 

where = denotes "asymptotically equivalent to." It follows 
that F.-O and that v /F^) ^X.(^, " ' ^ , ) ^ i.e., (3.5) 
holds. 

Next, we can show that the second term in (3.5) 
converges in probability to zero. The vector of residuals can 
be expressed as r j = (I-H^)Y^, and the second term in 
(3.5) is equal to N'^ n "' g/ fi;' U"' r^r/ U"' fi;' g, where 
U = diag(l -h..), ies. Thus, the second term in (3.5) is the 
square of B =N"' / t -"^g; n ; ' u - ' r , which has 
expectation zero under any model with £^ (r.) = 0. The 
model-variance of B is 

- ' i T - l . /V-^n- 'var^ , (g ;n/U- ' r , ) = 

' i i - i N " ' « ' ' g ; n ; 'u- ' ( i -H^)x 

V r i - H j ' u - ' n ; ' g , 
(A.2) 

which has order of magnitude n "̂  under the assumptions 
we have made. Consequentiy, the second term in (3.5) is the 
square of a term with mean zero and a model-variance that 
approaches zero as the sample size increases. The second 
term in (3.5) then converges to zero by Chebyshev's 
inequality. This justifies (3.6). 
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