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In This Issue

This issue of Survey Methodology includes papers on a variety of topics including overviews of
small area statistics and data quality in statistical offices, survey nonresponse and imputation, survey
design, data collection and estimation.

In the first paper of this issue, Brackstone identifies strategies and approaches for the
development of small area statistics programs in national statistical offices. The topic of small area
estimation will be covered by a number of papers in a special section in the June 2003 issue of
Survey Methodology. The paper first considers the crucial role of censuses, and discusses issues
related to their usefulness for small area statistics. Other potential sources of small area statistics
include administrative files and sample surveys, either on their own or combined with census data
to provide estimates for the intercensal period or for characteristics not directly covered by the
census. Rolling censuses are also discussed, as well as the unique challenges in producing small
area business and environmental statistics. Finally, issues of organization of national statistical
offices for production and dissemination of small area statistics are considered.

Trewin reviews the practices and approaches used to maintain high quality of output from a
national statistical office. Important ingredients include good relations with respondents, skilled and
motivated staff, sound statistical and operational methods, and relevance of statistical programs.
Current challenges include increasing the use of administrative data sources, effective use of the
internet for both collection and dissemination, maintaining knowledge and skills as staff leave, and
handling increasing user expectations. This paper is based on a talk presented as the keynote address
at Statistics Canada’s Symposium 2001.

Thibaudeau presents an innovative approach to the imputation of demographic characteristics in
a large scale survey or Census. Instead of relying on the usual approach of either the closest
complete record in the processing stream or constructing imputation groups, Thibaudeau proposes
a compromise method which uses maximum likelihood estimation based on the conditional
probabilities. This approach seeks to create groups that are close in order and in geography to the
imputed record. He also presents an interesting Bayesian approach to evaluating the method.

Nandram, Han and Choi consider the problem of analyzing multinomial nonignorable non-
response data from small areas in the framework of Bayesian inference. This paper extends some
earlier work by Stasny by assuming a Dirichlet prior underlying the multinomial probabilities and
using a prior distribution on the hyperparameters. The authors apply this model to Body Mass Index
data from a complex survey design.

In the Stewart paper, the possible biases introduced by different contact strategies in telephone
time-use surveys are investigated. Two contact strategies, convenient-day scheduling, where the
designated reference day changes with the contact day, and designated-day scheduling, where the
reference day remains fixed, are discussed and compared through simulation studies.

Bell and McCaffrey consider the problem of unbiasedly estimating the variance of coefficients
of linear regressions from multi-stage survey data when only a small number of Primary Sampling
Units (PSUs) are sampled. After investigating situations where the bias of the linearization variance
estimator can be large, a bias reduced linearization variance estimator is proposed. In addition, a
Satterthwaite approximation is used to determine the degrees of freedom to be used for tests and
confidence intervals in conjunction with the bias reduced linearization variance estimator.

Sirken considers estimation of the volume of transactions that a population of establishments has
with a population of households. An approach based on indirect sampling of establishments through
the households that they have transactions with is compared to the more typical approach based on
direct pps sampling of establishments. Estimators and expressions for the variances are derived and
compared for the two methods. Situations where one approach or the other is preferable are
explored.

Rivest considers the problem of identifying stratum boundaries. The commonly used Lavallée-
Hidiroglou algorithm assumes that the values of the study variable are available and are used in the
determination of optimal stratum bounds. In his paper, Rivest relaxes this assumption and modifies
the Lavaliée-Hidiroglou algorithm to account for a discrepancy between the stratification variable
and the study variable through the use of models that link these two variables together. These models
are then incorporated into the Lavallée-Hidiroglou algorithm.
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In the Lu and Sitter paper, the problem of the sample size being smaller or only slightly larger
than the total number of strata is considered. Consequently, conventional methods of sample
allocation to strata may not be applicable. One solution for this problem is to use a linear
programming technique to minimize the expected lack of desirability of the samples subject to a
constraint of expected proportional allocation (EPA). However, as the number of strata increases
this solution rapidly becomes expensive in terms of magnitude of computation. In the proposed
approach, the amount of computation is reduced substantially at the small cost of approximate EPA
for strict EPA.

Renssen and Martinus explore the use of generalized inverse matrices in survey sampling. After
reviewing the properties of generalized inverses, they consider the generalized regression estimator
when the set of regressors is not of full rank, and they set out a regularity condition under which the
estimator is invariant to the choice of generalized inverse. They then present an algorithm for
calculating the regression weights, and briefly discuss weighting in the Dutch Labour Force Survey.

M.P. Singh
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Strategies and Approaches for Small Area Statistics

GORDON J. BRACKSTONE!

ABSTRACT

National statistical offices are often called upon o produce statistics for small geographic areas, in addition to their primary
responsibility for measuring the condition of the country as a whole and its major subdivisions. This task presents challenges
that are different from those faced in statistical programs aiming primarily at national or provincial statistics. This paper
cxamines these challenges and identifies strategies and approaches for the development of programs of small area statistics.
The important foundation of a census of population, as well as the primary role of a consistent geographic infrastructure,
are emphasized. Potential sources and methods for the production of small area data in the social, economic and
environmental fields are examined. Some organizational and dissemination issues are also discussed.

KEY WORDS: Small area statistics; Census; Geography.

1. INTRODUCTION

The mandate of most national statistical offices (NSO)
focuses on the monitoring of social, economic, and environ-
mental conditions at the national level, and for the major
administrative units (provinces, states, major metropolitan
areas) within the country. However, the demand for data at
lower geographic levels is always present, especially from
local governments and from businesses needing to make
investment, marketing, and location decisions that depend
on knowledge of local areas. We will use the term “small
area statistics” to mean statistics for areas below the level of
state, province, or major metropolitan areas — a broad
spectrum of areas from large towns, through urban neigh-
bourhoods, to rural villages. In some circles the term “small
areas” is used more broadly to refer to any small sub-group
or domain of the population, but here we are talking strictly
about small geographic areas.

The extent of an NSO’s responsibility for small area
statistics depends on the division of governmental responsi-
bilities within a country. For example, in some countries
local governments are the creation of provinces and the
responsibility for supporting their statistical needs may rest
with provincial governments. But in many countries,
whatever the formal division of powers, it is, de facto, the
NSO that is expected to respond to the need for small area
statistics, either within its own resources or in cooperation
with other levels of government. At the very least, it is the
NSO that must set the standards and framework for small
area data if these are not to become a mishmash of uneven
and overlapping statistics incomnparable across the country.

With limited budgets an NSO is faced with the difficult
trade-off between investment in national statistics and
provision of small area detail. How should it choose
between covering more subject areas, or existing subject
areas in more detail, at the national and provincial levels,
and, on the other hand, providing more small area detail for

t

subject areas it is already covering nationally? There is no
formula for resolving this problem. The balance struck in
any country ‘will be largely a function of national needs,
relative powers, and historical tradition, with perhaps some
statistical considerations on the margin. Nevertheless, there
is a series of measures and approaches that a NSO can
consider to maximize the degree to which it can satisfy
demands for small area statistics within a limited budget.

Four potential sources of small area statistical data either
individually or in combination, account for most production
of small area data by statistical agencies. Censuses or
complete enumerations of populations are the traditional
source. Administrative records, including national registers,
that cover all, or almost all, of a defined population are in
many respects equivalent to a census. National sample
surveys are rarely large enough to produce small area data
directly but they do represent a valuable current source of
information that can be used, under certain assumptions and
in combination with other sources, to produce small area
data. And finally, local studies focused on particular small
areas will produce small area data, but not for complete sets
of small areas. Sources such as satellite imaging or aerial
photography can be thought of as censuses or local studies
depending on their coverage.

In this paper we first review the important role of the
Census of Population, with or without a population register,
in the provision of small area socio-economic data (Section
2), and then emphasise the fundamental role of an up-to-
date geographic infrastructure to support any production of
small area statistics, including especially the census of
population (Section 3). We then examine approaches to
providing small area data on individuals and families
between censuses (Section 4), on business activities
(Section 5), and on environmental issues (Section 6). We
conclude with some general observations about the
dissemination of small area statistics and the management
of small area statistics within an NSO.

Gordon J. Brackstone, Informatics and Methodology Field, Statistics Canada, Ottawa, Ontario, K1A 0T6. E-mail; bracgor@statcan.ca.
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2. CENSUS OF POPULATION

The census of population, in most countries, plays the
central role in the provision of small area data about people,
families and households. Based on a complete enumeration
of the population (at least for basic characteristics), its esti-
mates are free of the sampling error that limits the ability of
sample surveys to produce small area estimates. Provided
the individual households are geographically coded to a fine
level {e.g.. a block or block face), direct tabulations of
households can produce statistical aggregates for any geo-
graphic area that can be defined, or approximated, in terms
of the lowest level of geographic coding.

However, censuses have their drawbacks. They are
costly, and therefore they are infrequent. Data from the last
census may provide a poor representation of a small area
that is undergoing rapid development. In many countries,
sampling is utilized in the census for many of the questions.
While this introduces sampling error into estimates from the
census, these samnples are still huge compared with those in
a typical sample survey. Furthermore, the samples are
typically spread through every enumeration area of the
country, so the ability to produce small area estimates is
maintained, even though the small areas will need to be
somewhat larger than in a true census.

Potentially more serious, with respect to accuracy, are
nonsampling errors such as coverage error and response
bias. Most censuses miss some people, or count some
people twice, and it has been repeatedly shown that those
miscounted are generally not typical of the population as a
whole. Census estimates may therefore be biased against
certain sub-groups of the population. If these subgroups
(e.g., certain immigrant groups) tend to be geographically
clustered, this can have a serious impact on estimates for
some small areas. Response bias arises if a census question
is systematically misunderstood by many respondents, Both
small area and large area estimates would be affected by
such errors.

Countries that maintain a population register have the
potential to produce census-like data for small areas more
frequently than the traditional 5-10 year cycles of a census.
Up-to-date residence registration is clearly a requirement
for accurate small area data from such registers. The
breadth of data available from a register system may be less
than that available through a conventional census, since the
former is limited to the characteristics maintained in link-
able administrative registers. In some countries the popula-
tion register may be used as the basis for a census that
collects the necessary additional characteristics not avail-
able within existing registers Redfern (1989) provides a
useful description of practices within Europe in this regard.

Since the Census has the potential to produce estimates
for very small areas, rules to protect against direct or
residual disclosure of individual data have to be in place.
These can include imposing a minimum population on areas
for which data will be released, random perturbation of

data, suppression of data, or other techniques (Jabine
(1993), Zayatz, Steel and Rowland (2000)). NSOs have also
to be concerned about privacy issues arising with the publi-
cation of small area census data that, while not disclosing
any individual responses, do reveal dominant characteristics
of an area (e.g., that 90% of the families received
unemployment benefits). Such findings cannot be withheld,
but they can be selected and presented with sensitivity.

Though a census, with or without a population register,
is a source of direct small area data as of census day, the
value of such data declines as time passes. However, the
role of census data in the provision of small area statistics
goes well beyond the direct use of the results from each
periodic enumeration. Inter-censally, census data may be
used as a benchmark, a sampling frame, or as auxiliary
information to be used with other sources of data that are
available between censuses. These usages are pursued in
section 4, An innovative alternative to the traditional census
is described in Section 4.4.

3. GEOGRAPHIC INFRASTRUCTURE

To enable a national census to produce accurate data for
small areas, a geographic infrastructure of boundaries and
mapping capacity covering the whole country is a
prerequisite. Such an infrastructure requires that each
dwelling be associated with a precise geographic location
on the ground, where the degree of precision determines the
fineness with which small areas can be defined. Though
medern global positioning technology makes it possible to
pinpoint each dwelling to a specific pair of coordinates, it
is usually sufficient for statistical purposes to associate each
dwelling in an urban area with a block face (i.e., one side of
a street between two intersections}, or a building in the case
of high-rise buildings. In rural areas, the chosen degree of
precision will depend on local administrative and natural
boundaries, though maximum flexibility is preserved by
using precise coordinates for each dwelling.

While necessary for a census, a geographic infrastructure
is equally required for the provision of small area statistics
from other sources. Essentially each data point, from
whatever source, has to be associated with a geographic
location at a level detailed enough to allow aggregation into
any small areas of statistical interest. For example, if the
data source is an administrative register, or a business
register, the address in each record must be convertible into
a pair of geographic coordinates, or at least into a small area
within which the address falls. Since administrative
registers often use mailing addresses, a file that converts
postal codes into geographic locations is a valuable tool in
the development of small area data.

The availability of an accurate up-to-date geographic
infrastructure, whether maintained by the NSO or obtained
from outside, is essential if a program of small area
statistics is to have flexibility in the choice of areas for
which statistics are produced.
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4. SMALL AREA STATISTICS ON PERSONS
AND HOUSEHOLDS - BETWEEN CENSUSES

We turn now to the issue of producing small area data
for persons or households inter-censally, Clearly the exis-
tence of a current population register makes a fundamental
difference to what is possible, and how it can be done. We
will confine ourselves to the case where no regularly
updated population register exists.

In such circumstances, there are three main classes of
approach. The first is to utilize census-like files that come
from administrative systems and purport to cover the whole
of a well-defined population. The second is to exploit
sample survey data and, through additional model assump-
tions, produce estimates for smaller (though still not very
small) areas than is possible through direct survey esti-
mation. The third category is the combination of one or
both of these first two approaches with the use of data from
the most recent census. In the following paragraphs we
review some of the characteristics of these approaches.

4.1 Administrative Files

An example of an administrative file with small area
statistical potential is the annual file of individual income
tax returns. Other examples, with narrower population
definitions, might be drivers’ licences, employment insur-
ance recipients, or health insurance records. In the case of
tax data, if each record contains a residential address that
can be associated with a geographic point or small area,
then data can be tabulated directly for small areas, with due
regard for confidentiality (as with census data). The charac-
teristics available would generally be restricted to demo-
graphic and income varjables, and the coverage would be
limited to taxfilers. Nevertheless, such a file represents a
rich source of annual data for quite small areas. Population
coverage can be improved through the imputation of
dependents “claimed” on the tax record. In Canada, the
coverage of such imputed files is approaching that of the
census as coverage increases among low income carmers
who need to file tax returns 1o obtain social assistance
benefits.

With administrative data in general, the statistician has
to take what is available (though some influence on content
may be possible in the longer term), reconcile any differ-
ences in concepts, definition or coverage between the admi-
nistrative file and the statistical objectives, and assess any
issues of reporting or coding accuracy in the records.
Subject to these precautions, administrative data can
provide a geographically rich potential source of small area
data (Brackstone 1987).

4.2 Sample Survey Data

The problem with sample survey data as a source of
small area statistics is sample size. There are frequently
“insufficient sample cases in the small area to allow a
reliable direct estimate to be produced, and sometimes none

119

at all. In large national sample surveys it may be possible to
devise sampling strategies that ensure an acceptable level of
precision for planned small areas, such as sub-provincial
regions, without significantly degrading the reliability of
estimates at higher levels (Singh, Gambino and Mantel
1994). But for smaller areas, or for areas of similar size not
taken into account during design, reliable estimation will
not be possible. Larger samples help, and may allow direct
estimation for some of the larger small areas, but budgets
usually constrain this approach as a general solution. If no
other data sources are available, statisticians can only resort
to model-based methods which involve making assump-
tions about how data for a small area relate to other data.
These methods are often described as “borrowing strength”
since they borrow information from elsewhere in the sample
survey to augment the number of units that contribute to the
estimate for a given small area. The borrowing can be from
other time periods, from sample units outside the given
small area, or from other variables measured on the same
sample unit. Some examples follow. Most of these
examples will allow some expansion of the range of small
area estimates that can be produced from sample surveys
with relatively large samples. They cannot magically
convert small sample surveys into rich sources of small area
data.

1. In a monthly survey, it may be possible to combine
data for a small area over a period of consecutive
months to produce direct estimates of a multi-month
moving average for the area. For example, quarterly
estimates may be possible where monthly ones were
not.

2. One may be ready to assume that means or pro-
portions estimated for a larger area apply equally to
a smaller component area within it. If the size of the
small area is known, an estimate can be obtained by
multiplying by the assumed mean or proportion.
This assumption may be more realistically made
within subgroups of the population (e.g., age
groups), rather than for the population as a whole. In
this case, if the size of each sub-group is known for
the small area, a synthetic estimator can be built up
by multiplying the sizes by the assumed means and
aggregating,

3. Ifadditional related variables are available from the
survey, more elaborate models may be set up relating
the variable being estimated to these auxiliary
variables. The parameters of the model may be
estimated at a higher geographic level where there is
sufficient sample to estimate them reliably. The
model is then applied with the estimated parameters
to the data for the given small area.

All of these approaches suffer from the lack of reliable
baseline data for each small area. If such data are available,
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for example from a recent census or from administrative
records, then the data may be used in combination to
produce more reliable estimates than from either source
alone.

4.3 Combined Sources

Methods that combine census or administrative infor-
mation from the recent past with current sample survey data
are borrowing strength from outside the survey. They still
require model assumptions. However, these can often be
weaker (since they involve assumptions about change from
the benchmark, rather than about absolute levels of each
small area) and so more acceptable, or more plausible, than
in the case of sample survey data alone.

A wide variety of estimation methods (which we won’t
attempt to describe here) have been developed to handle
this situation. Some of these methods can be thought of as
estimating change since the most recent benchmark, others
as distributing reliable current sample survey estimates
among component small areas based on benchmark data,
and yet others as recalibrating old benchmark figures to
new current estimates. In essence, they all involve some
kind of balancing of three kinds of estimates: (a) high
variance but unbiased direct current survey estimnates for the
small area in question; (b) low variance current survey
estimates for some surrounding or comparable larger area;
and (c ) census-type estimates for the same small area from
recent administrative data, or a past census, which may
contain unknown bias due to the source and the time lag.
Any available auxiliary data can be incorporated to improve
the accuracy of each component estimate. The way in which
these three types of estimates are combined is determined
by the choice of model and model parameters.

In summary, the methods of this and the previous section
essentially reduce variance by making use of more data, but
at the expense of introducing potential bias due to model
assumptions that will never be exactly correct. It is very
important to analyse the performance of these methods
before their use, for example by carrying out the estimation
process in a census year when direct estimates are available
for comparison, and periodicaily thereafter. Mode! checking
is becoming an area of increased research activity (Bayarri
and Berger 2000). For more detailed descriptions of
available methods in this class see, for example, Purcell and
Kish (1979); Fay and Herriott (1979); Ghosh and Rao
(1994); Singh ef al. (1994); Schaible (1996); Rao (1999)
and Gambino and Dick (2000).

44 Rolling Censuses

An innovative alternative to the census is being investi-
gated in at least two countries. The method of producing
small area data based on a large rolling sample has long
been advocated by Leslie Kish as an alternative to the
traditional census (Kish 1990, 1998). The sample survey
“rolls” in the sense that over a long period (e.g., a decade)
each of the smallest areas for which estimates are required

would be included once in the sample so as to provide a
direct estimate for that area once each period. Successively
larger areas (aggregates of the smallest areas) would be
represented more eften in the sample, allowing either more
reliable or more frequent estimates for those areas. For even
larger areas, including provinces and the whole country, the
accumulated sample would be sufficient to provide reliable
annual, or more frequent, estimates at certain levels of
detail. The approach may be considered with or without a
periodic census to collect basic demographic data against
which to calibrate the inter-censal survey estimates.

The rolling census avoids the need for the assumption of
models, but presumes that unbiased estimates of multi-year
averages, or asynchronous estimates for different areas of
the country, are satisfactory altemnatives to the simultaneous
point-in-time estimates of the traditional census. Relative
cost is also a key factor, especially in the situation where a
basic census is also carried out. On the other hand, by
producing reliable annual estimates for many of the larger
areas, and with much of the content detail of a census, this
approach could effectively address the issue that census
estimates can be up to 12 years old before the next ones
appear. It also responds to mounting concerns over
increasing difficulties and costs associated with the conduct
of a traditional census.

This approach is being tested in the United States under
the name of the American Community Survey (Alexander
1999, 2002) and in France where it is referred to as the
“recensement continu” (Isnard 1999; Durr and Dumais
2002).

5. BUSINESS STATISTICS

The problems of producing small area data for
businesses are different in many important respects from
those encountered for data on persons or households.

Whereas the association of each individual with a “usual
place of residence” is, for the vast majority of the popu-
lation, a fairly clear and unambigucus concept (though
perhaps becoming less clear with the growth of second
residences, the incidence of prolonged absences away from
the snow, and more flexible living arrangements), for
businesses the question of where, geographically, to attri-
bute various characteristics of a business is less clear in
many situations. For single establishment businesses where
all the activity takes place in a single location there is no
conceptual problem, though there may still be a practical
problem if the source of information is an administrative
file that provides, say, an accountant’s address rather than
the place of business. For some variables, such as
employment, there may be no major conceptual problem
even for larger businesses (except perhaps for those
working in the transportation industry, or certain service
industries). However, for variables such as revenues and
profits there can be real questions about how these should
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be allocated geographically in multi-establishment
businesses. The larger the geographic area the smaller the
problem — location within a province doesn’t matter if one
is only interested in provincial totals, But, in general,
geographic attribution rules have to be determined before
small area estimates for business activity can be considered,
and for some aspects of business activity small area esti-
mates may not make conceptual sense.

While for household surveys the main obstacle to the
production of small area estimates is sample size, for
business surveys considerations of confidentiality usually
constitute the major barrier. The smaller the area, the
greater the chance that a particular industry will be domi-
nated by one or a few major companies, thus precluding the
provision of estimates for that area due to disclosure risk.
Methods for checking statistical output on businesses to
recognize potential disclosure risks are fairly well devel-
oped (Federal Committee on Statistical Methodology 1994)
but require constant attention on the part of the NSO. The
confidentiality problem is less of an issue in those industries
characterized by small units — which may be the same
industries in which the conceptual problems of the previous
paragraph are not so severe. In those industries, consider-
ations of sample size may indeed be the limiting factor, in
which case the families of methods described in the
previous section are available.

A third area of contrast with data on individuals, at least
for countries that do not maintain a population register, is
the existence of a relatively up-to-date list frame of
businesses. This not only provides a base for sampling and
a source of some auxiliary data for estimation, but also
constitutes a potential source of direct estimates of business
demography, at least annually. In many countries the
currency of the business register is maintained by receiving
transactions from the business tax system, which itself
provides an annual census-like source of administrative data
on business activity. However, use of tax data still requires
careful consideration of the conceptual, geographical and
confidentiality issues raised above.

6. ENVIRONMENT STATISTICS

Environment statistics provide yet different challenges
for the production of small area statistics. While some
environmental issues are national or even global in scope,
many are by their nature local. Many sources of pollution
are typically localized with their impacts being felt most
severely in the neighbourhood of a plant or accident. The
socio-economic impacts of broader environmental problems
(e.g., loss of fish stocks) are frequently felt in smalt and
often isolated resource-based communities.

Some environment data are collected from households or
individuals (e.g., recycling practices, fuel use) and their
potential as a source of small area data is subject to the
considerations already described in section 4. Other
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environment data {e.g., waste generation, environmental
protection expenditures, use of natural resources) come
from businesses and would be governed by the consi-
derations of Section 5. However, a great deal of environ-
ment data is obtained from physical surveys (e.g., geolo-
gical, physiographic, hydrographic), from instrument
measurement (e.g., temperature, air quality, water quality,
ozone layer thickness), and from direct observation (e.g.,
land use). Different considerations govern the relation of
these data sources to small area data.

Because environment data are no respecters of admi-
nistrative boundaries, the need for a flexible geographic
infrastructure, emphasised in Section 3, is especially
important here. Small area geographic identification is
needed to regroup data to geographical units that are more
suitable for environmental analysis. For example, the pro-
duction of waste attributable to a certain type of agricultural
activity might be aggregated for all of the producers within
ariver basin. Environmental geographic units are either pre-
defined (ecozones, drainage basins) or dictated by special
events (areas covered with different thicknesses of ice, land
areas flooded by heavy rains or spring thaws). In some
cases, the area studied could be a very small site such as a
park.

Physical quantity or quality data can be difficult to
aggregate or summarize. In some cases, point source data
such as air quality measures cannot be considered repre-
sentative of any larger geographic unit. Water quality may
be summarized or compared by using an indicator, such as
the number of days beaches are open for swimming, but not
simply as an aggregate or average of water quality readings.
For many measures, the focus of interest may be on change
over time rather than small area comparisons. In other
cases, sampling and estimation techniques may need to
make use of spatial analysis techniques such as contouring
or interpolation.

The privacy and confidentiality concerns associated with
environment data depend on their source. Data collected
from households or businesses, even if they involve
physical measurements, are protected by the same confiden-
tiality rules as other data from those sources. Direct mea-
surements of the stock of natural resources or the quality of
the environment do not raise these concerns. Cartographic
representation of spatial patterns may be one way to over-
come some of the analytical frustrations of data suppression
for small areas. Choropleth maps (maps which show the
distribution of variables or characteristics by using colour
or shading for ranges of the distribution) can explicitly
represent the ranges implicit in rows or colurmns that would
be suppressed in a published table.

Cross-border pollutant flows and their global effects
make physical environment data an international issue.
Cooperation between neighbouring countries is necessary
to ensure that national boundaries do not impede analysis of
the impact of physical processes that recognize no such
boundaries.
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In summary, the small area dimension is particularly
important for environment data, not only because a locality
is frequently the point of interest, but also because data
must often be reaggregated to geographic areas more appro-
priate for environmental analysis such as ecozones or water-
sheds.

7. ORGANIZATION AND DISSEMINATION
ISSUES

Most NSOs are organized by subject-matter area. The
production of small area estimates cuts across subject-
matter areas, but requires support from Geography staff for
geographic infrastructure, from Methodology staff for esti-
mation and evaluation methods, and perhaps from other
staff for analyzing and packaging data across subject areas.
The question of how to organize small area estimation
within an NSO therefore arises.

Requiring subject-matter areas to manage small area
estimation in their areas, with support from methodology
and geography staff as needed, is a natural choice since they
should be most in touch with the data requirements and data
limitations in their subject areas. More of an issue is how to
package data for small areas for dissemination to users.
Who should be responsible for pulling together data from
different subject-matter areas for a particular small area?
Should this be a regular program, or something that is done
‘on demand’? Here there are different models to choose
from — and Statistics Canada has tried most of them over
the years.

At some periods in the past a division focussing on
regional or urban statistics has existed to provide a regional
focus for statistical data. At times, the census program,
which is of course the richest source of small area data, has
spearheaded the production of small area data profiles. At
other times, an inter-divisional project has been used to
manage a program of profiles for electoral districts or for
other geographic areas. At the same time, regional office
staff have played a key role in pulling together information
for small areas in response to client requests. None of these
arrangements has been ideal. The production of profiles has
typically been a labour-intensive task requiring a broad
subject-matter understanding and a lot of searching and
manipulation of data. Despite the existence of standard
geographic areas, the combination of data based on several
different geographic bases is usually an issue. Ensuring that
data for a large number of small areas are properly matched
and collated can be an arduous quality assurance chalienge.

Pre-planned profiles on paper were never overly
successful. As a result, a strategy of maximizing respon-
siveness to client demands as they arose was preferred.
With recent advances in technology, and broader coverage
of small area data in the corporate database, a more auto-
mated approach is possible. A component of the Statistics
Canada website (www.statcan.ca), called Community

Profiles, and largely based on Census of Population data, is
our most recent attempt to make small area data more
accessible and promises to be a precursor of future
directions in this field. Some health data for health districts
are already included, and certain other non-census sources
of community data are under consideration.

8. CONCLUSIONS

The production of small area statistics by an NSO raises
issues that are qualitatively different from those faced in its
regular production of national, provincial or other large area
data. The statistical theory that makes data based on
sufficient individual measurements inherently reliable for
large areas (ignoring bias for the moment) begins to break
down for smaller areas. Unless a current census or admi-
nistrative source with full coverage is available, this means
that the NSO has to resort to some model-based help in
order to provide estimates. Since altermative models can
produce different estimates, a degree of arbitrariness is
introduced into estimates, and this may be seen by some as
undermining the objectivity of a NSO and its methods. The
fundamental principle of openness and transparency about
methods, including the choice of any models used and the
impact of different assumptions, takes on even greater
importance in the domain of small area estimation.

On top of this, an NSO should expect that small area
estimates will come under more focused scrutiny than do
many large area estimates. Though large area estimates
receive broader attention, few individuals have the capacity
to confirm or refute an estimate at the national level. But at
the local level there will be many who think they know
what is going on in their town. And typically small area
estimation does not work uniformly well for all areas. The
argument that a method works well on average will not
quell criticism from those areas where it has not worked
well — unless it has also worked to the local advantage! The
NSO has to be prepared for the double jeopardy of weaker
estimates under closer scrutiny.

If that is not enough already, confidentiality considera-
tions loom larger at the small area level. The very fact that
estimates are being produced for local areas highlights the
potential for identification of individuals even though the
NSO has taken sufficient precautions to prevent such
disclosure. Some users of small area data for marketing
purposes do not help the situation by implying in their
advertizing that they can target mail to households based on
individual or household characteristics, when they are
actually using small area data to distinguish neighbour-
hoods. Some methods of small area estimation reguire
record linkage which may also raise privacy concerns,
Again a policy of openness and careful review of all such
applications, at a senior level and before they begin, is
necessary to ensure that the public benefit outweighs any
privacy invasion.
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Despite these potential difficulties, the demand for small
area data remains high, technology offers new approaches
to the management and dissemination of small area data,
and methodological work on small area estimation is an
active research area among statisticians. While small area
data will generally not be an NSO’s first priority, the
relevance of its statistical programs will be magnified many
times if it is able to cater to the most important small area
data needs.
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The Importance of a Quality Culture

DENNIS TREWIN!

ABSTRACT

The reputation of a national statistical office (NSO) depends very much on the quality of the service it provides. Quality
has to be a core value — providing a high quality service has to be the natural way of doing business. It has to be embedded

in the culture of the NSO.

The paper will outline what is meant by a high quality statistical service. It will also explore those factors that are important
to ensuring a quality culture in a NSO. In particular, it will outline the activities and experiences of the Australian Bureau

of Statistics in maintaining a quality culture.

KEY WORDS: Continuous quality improvement; National Statistical Office.

1. INTRODUCTION

Fellegi (1996) provides a strong argument that the trust
in the national statistical agency is how most users judge the
quality of its statistical products.

“Credibility plays a basic role in determining the
value to users of the special commodity called
statistical information. Indeed, few users can validate
directly the data released by statistical offices. They
must rely on the reputation of the provider of the
information. Since information that is not believed is
useless, it follows that the intrinsic value and
usability of information depends directly on the
credibility of the statistical system. That credibility
could be challenged at any time on two primary
grounds: because the statistics are based on
inappropriate methodology, or because the office is
suspected of political biases.”

Trust will not happen unless the culture is right. Culture
is a word with many meanings but I am interpreting culture
as “the way we do things”. Core values are important to
this. They cannot be just statements hanging on the wall.
They have to be understood. They have to be reflected in
behaviours, particularly by leaders of organizations.

The Australian Bureau of Statistics (ABS) places great
reliance on adherence to its core values. More than any-
thing, they distinguish us from other survey providers in
Australia. The core values are:

- Relevance - regular contact with those with policy
influence, good statistical planning, which requires
a keen understanding of the current and future
needs for statistics, are essential, as is the need for
statistics to be timely and relatable to other
statistics.

~ Integrity — our data, analysis and interpretation
should always be objective and we should publish

' Dennis Trewin, Australian Statistician, Australian Bureau of Statistics.

statistics from all collections. Qur statistical system
is open to scrutiny, based on sound statistical
principles and practices.

— Access for all - our statistics are for the benefit of
all Australians and we ensure that equal opportunity
of access to statistics is enjoyed by all users.

- Professionalism — the integrity of our statistics is
built on our professional and ethical standards. We
exercise the highest professional standards in all
aspects of ABS statistics.

— Trust of providers — we have a compact with
respondents; they are encouraged to provide us with
accurate information and we ensure that the
confidentiality of the data provided is strictly
protected. We keep the load and intrusion on
respondents to a minimum, consistent with meeting
Justified statistical requirements.

Adherence to core values is just one element of
maintaining a quality culture. Part 2 discusses the key steps
the ABS uses to maintain a quality culture.

It is now widely recognized that quality is much more
than accuracy (e.g., Brackstone 1999 and Carson 2000). In
Part 3, the different dimensions of quality are discussed
before identifying in Part 4 what I think are some of the
major quality challenges for the ABS over the medium
term. Many of these will be shared by other national
statistical organizations.

2. TOWARDS A HIGH QUALITY STATISTICAL
SERVICE

Quality assurance is a responsibility of all staff in the
ABS. There is no central “quality management” group
although Methodology Division is encouraged to be our
conscience on quality issues — a role it takes on with
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enthusiasm, sometimes to the annoyance of others. How-
ever, that is a good sign — they are provoking debate on
some of the more difficult quality issues. Support from
senior management for this type of role is very important.

The key strategies for ensuring a high quality are
described under six broad headings.

— A high degree of credibility for the ABS and its
outputs.

— Maintaining the relevance of ABS outputs.
— Effective relationships with respondents.
—~ Processes that produce high quality outputs.

— Regular review and evaluation of statistical
activities.

—  Staff who are skilled and motivated to assure the
quality of ABS outputs.

2.1 A High Degree of Credibility

Credibility is fundamental to the effective use of official
statistics. Credibility arises from a system of statistics which
provides an objective window upon the condition of a
nation’s economy and society.

The legislative framework within which the ABS
operates is an important pre-condition for the integrity of
Australia’s official statistics. The Australian Statistician
(i.e., the chief executive of the ABS) is guaranteed
considerable independence by law. This helps ensure that
the ABS is, and is seen to be, impartial and free from
political interference. In particular, the independence of the
Statistician supports his objectivity in determining the
statistical work program and determining what statistics are
published. Although the legal authority is there, it still
needs to be reflected in the way senior staff behave.

Govemment statisticians must not just apply profession-
alism skills to their work; they must also be seen to adhere
to high ethical standards, especially with respect {0 objec-
tivity and integrity. We are frank and open when describing
our statistical methods to users; we publish information
about our performance — for example, in terms of both
sampling and non-sampling errors, and revision histories
for key series; we are willing and able to identify and
address user concerns regarding quality; we are receptive to
objective criticism and prepared to respond quickly even if
the problem is one of perception rather than reality. We
promote good relationships with the media as they have a

major influence on public opinion of the ABS and its .

outputs. Also, most Australians find out about official
statistics through the media. We engage in other user
education activities aimed at fostering intelligent use of
official statistics.

The fact and perception of ABS objectivity are rein-
forced by our policies of pre-announcing publication dates
for main economic indicators, allowing very limited pre-
release of publications (the details of which are in the
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public domain), and making special data services available
on an even handed basis to all.

2.2 Maintaining the Relevance of ABS Outputs

There can be, of course, tension between (on the one
hand} being responsive to changing policy needs and (on
the other) maintaining the continuity of a system of
statistics that can objectively monitor performance. Senior
staff of the ABS devote a great deal of attention to
maintaining personal contact with key users, to gather
intelligence about policy issues and emerging areas of
economic, social and environmental concern. This includes
regular meetings with the most senior staff of the
government agencies responsible for policy. The Directors
of our State offices have similar arrangements with State
officials. That intelligence feeds into strategic planning and
the reviews of national statistical programs.

The ABS has a range of other means for communicating
with the users of statistics, to ensure that our products are
relevant to their needs. For example, advisory groups
representing users and experts in various fields provide
valuable guidance to our statistical activities,

There may also be some tensions or trade-offs between
the different aspects of quality. The ABS positions itself at
the higher accuracy end of the information market, to
protect the valuable ABS “brand name”. But if, for
example, there is an urgent demand for data in a new field,
some aspects of quality may be traded off in order to
achieve timeliness and relevance. Nevertheless, there is a
“bar” below which we will not go. Because it is probable
that the new statistics will be used to inform significant
decisions or debate, the ABS makes very clear statements
about the accuracy of the data to help users understand how
they can be used. On occasion, such new statistics may be
differentiated from our other products by labelling them
“experimental” or releasing as an information or occasional
paper, rather than a standard publication. We regard this
form of branding as very important to reliable interpretation
of our statistics.

2.3 Effective Relationships with Respondents

An official statistical agency must maintain good
relations with respondents, especially trust, if it wants them
to co-operate and provide high quality data. The ABS
approach includes — explaining the importance of the data
to government policy, business decisions and public debate;
a policy of thoroughly testing all forms before they are used
in an actual survey; obtaining the support of key stake-
holders; minimizing the load placed on respondents parti-
cularly by using administrative data where possible; and
carefully protecting privacy and confidentiality.

The ABS monitors and manages the load it imposes on
both households and businesses; we have developed
‘respondent charters’ for both groups. As well, a Statistical
Clearing House has been set up within the ABS to
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coordinate surveys of businesses across govermnment
agencies (including the ABS), to reduce duplication and to
ensure that statistics of reasonable quality are produced.

All ABS forms and collection methods are tested to
ensure that the data we seek are available at reasonable cost
to respondents, and the best available methods are used to
collect them. For business surveys, our units model, classi-
fications and data items, are designed to be as consistent as
possible with the way businesses operate. This now corres-
ponds closely with their reporting for taxation purposes,
making it easier to integrate survey data with data collected
for taxation purposes. For household surveys, the extensive
use of cognitive testing tools within the ABS, and the esta-
blishment of a questionnaire testing laboratory, have helped
to improve quality and to reduce respondent load.
Standards for form design and form evaluation are set out
in manuals and are promoted and supported by experts in
form design.

The ABS uses efficient survey designs to minimize
sample sizes to achieve a specified level of accuracy, and
hence total reporting load; we also control selection across
collections to spread the load more equitably. To take
advantage of current reforms of the Australian taxation
system, the ABS is seeking every opportunity to improve
the efficiency of our sample designs, through the use of
taxation data as benchmarks, as well as using it as a
substitute for some of the data now gathered through direct
collections. We have changed the business unit structure
used in our surveys to make it consistent with the structure
used for taxation purposes.

For household surveys, the introduction of computer
assisted interviewing has helped to streamline interviewing
procedures, reduce respondent load, and improve the
quality of data collected.

2.4 Processes that Produce High Quality Outputs

The quality of ABS statistics is underwritten by the
application of good statistical methods during all stages of
a collection including the design stages. The ABS has a
relatively large Methodology Division (about 120 staff)
which reports directly to the Australian Statistician. The
Division is responsible for ensuring that sound and defen-
sible methods are applied to all collections and compila-
tions. The Methodological Advisory Committee, a group of
academic experts, provides independent reviews of our
statistical methods.

The ABS puts substantial effort into developing statis-
tical standards, including concepts, data item definitions,
classifications, and question modules. All ABS surveys
must use these standards. The standards are supported by
relevant data management facilities to ensure they are
accessible and to make it easier to use standard rather than
non-standard approaches.

Sample design and estimation methods are the responsi-
bility of the Methodology Division. Where possible, a “total
survey design” is used — accuracy requirements are set
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according to the intended use of the data, and accuracy is
measured in terms of both sampling and non-sampling
errors. For example, in business surveys total survey design
guides the allocation of resources to the intensive follow up
of non-respondents or the editing of questionnaires; the
effort for reducing non-sampling errors is optimized
according to the impact of errors on overall quality. The
cost to data providers is also taken into consideration. The
“total survey design” has to be approved by a senior ABS
committee before it is implemented.

In recent years, the ABS has made substantial progress
by applying standardized best practice across surveys. For
example, business surveys based on the business register
now draw their frames at a common date each quarter, and
use a common estimation method to ensure all collections
have a consistent and complete coverage. Standard rules are
adopted for frame maintenance, field collection and estima-
tion, and generalized processing facilities are available to
support the use of these rules. Standard methods are used to
allow for “new businesses” not yet included on the survey
frame. The ABS is thereby able to increase the coherence
of estimates across different business surveys.

For household surveys, a master sample system has been
adopted since the mid 1960°s. The system is updated
regularly after each five-yearly census, and has been the
corngrstone for ensuring the accuracy of statistics collected
from houschold surveys.

Achieving quality in surveys is easier when computer
systems support current best practice. The ABS has
invested in generalized tools. They have been developed for
all major processing steps of both business and household
surveys, including sample frame management, data input
and editing, imputation, estimation and aggregation.

The ABS embraces a rigorous continuous quality impro-
vement approach wherever appropriate. The Australian
Population Census is a classic example of raising quality
through a strategy of measuring quality and involving all
staff in examining and devising solutions to quality
problems. This approach was applied very effectively at the
data processing centre for the 1996 and 2001 Censuses. In
both cases, the centre achieved significant budget savings,
better quality and an improvement in timeliness. Contin-
uous quality improvement is also applied to the coding of
businesses on the business register, and to many other ABS
processes.

At the output end of collections, each subject group is
required to confront its data with other ABS data and with
external information, to ensure the coherence of our
statistics. The key macroeconomic data have to be “signed
off” by the national accountants in meetings established
especially for the purpose of clearing the statistics. The
national accountants then have an obligation to use this data
without further adjustment in the compilation of the
accounts, enhancing consistency between the national
accounts and source data collections. More generally,
confrontation of different data sources is undertaken by our
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national accountants through use of an ‘input-output
approach’ to compiling national accounts estimates. The
new methodology has led to more consistent accounts.
Furthermore, the data confrontation and balancing process
at detailed levels have helped to identify data deficiencies.
Information about quality is fed back to the economic
collection groups and is resulting in a more focused
approach to improvements in the quality of source data.

One important quality improvement initiative that the
ABS has pursued is the development of an Information
Warehouse to rmanage and store all of our publishable data.
By drawing together different datasets into a single data-
base, the Warechouse enables our statisticians to confront
statistics produced from different collections. Furthermore,
all forms of publication, be they paper based or electronic,
are to be produced from a single data store, with the objec-
tive of ensuring that the same data released in different
products, and at different times, are consistent.

Another important element of quality management is
documentation. Good documentation supports review acti-
vity and facilitates the dissemination of quality information
to users, so they can assess the fitness of the data for the
purposes they have in mind. As part of the Information
Warehouse initiative, the ABS can now enforce standards
for documentation of the metadata that describe concepts,
definitions, classifications and quality.

A relevant and responsive statistical service must do
more than provide data to clients. The ABS has recently
strengthened its analytical ability. A team of analysts has
been set up to develop new measures of socioeconomic
concepts, to explore relationships between variables and to
prototype new analytical products. The expanded program
of analysis work is expected to deliver significant benefits
in the form of insights into data gaps and quality concerns.

2.5 Review and Evaluation of Statistical Activities

Each ABS area is responsible for continuous quality
review and improvement. For statistical collection areas,
quality management is supported by sets of performance
indicators. A standard set of measures has been developed
to permit a comparison of quality across collections. Tools
are now being developed to calculate these measures as part
of our normal survey processes, and the Information
Warechouse will allow us to store and display the measures.
The key indicators are also included in the annual reports
each Branch makes to the ABS Executive for review.

Quality measures are of interest to the users of statistics.
The Information Warehouse will improve users’ access to
information about quality issues. As well, the ABS places
high priority on helping users understand the quality of data
and their implications for them, and has adopted active
education strategies to promote such understanding. As
highlighted in Lee and Allen (2001), there is much to do to
improve user understanding of quality.

Each ABS household survey now includes an evaluation
program which reviews the effectiveness and efficiency of

Trewin: The Importance of a Quality Culture

all survey activities and assesses the extent to which the
data are used by clients. The Statistical Clearing House
conducts a review of each ABS business survey. These
initiatives ensure that all collections are subjected to at least
a basic evaluation, and brings to light opportunities for
improvements to quality and efficiency.

As well as making internal comparisons of performance
across its own collection areas, the ABS has established a
benchmarking network with overseas statistical agencies;
the aim of the network is to share information about survey
design, processes and costs. The benchmarking exercise is
providing very useful guidance to the ABS’s efforts to
improve its processes and outputs.

2.6 Skilled and Motivated Staff

The ABS could not provide high quality information to
its user community if it did not employ people who bring
skills and energy to our statistical work. The staff are
responsible for implementing the strategies discussed
above. They must take a professional approach and be
commiited to the development of new methods, to conti-
nuous quality improvement, and to the open discussion of
methods and quality issues.

Quality improvement and on-going statistical work
compete for the time and energies of our staff. The ABS
approach is, as far as possible, to integrate quality work
with on-going processes and systems. We emphasize to
staff that guality management is a corporate priority and
ensure that tools and resources are made available to
support it. In particular, the ABS is implementing a tighter
approach to project management; this is being supported by
manuals, systerns and training.

Statistical training plays an important role in maintaining
and improving quality. The ABS is always searching for
new, more effective, approaches to skills development. An
important element of cur performance management system
is a focus on identifying and addressing individuals’ deve-
lopment needs.

Relationships with other national and statistical agencies
are a very important element of the ABS efforts to
improving official statistics. The ABS is commitied to using
international standards; we take advantage of the wide
range of expertise embodied in those standards. On the
other hand, there is an obligation for us to make a positive
contribution to the development of the standards. In doing
so, we try to take account of the interests of the Asia/Pacific
region as well as those of Australia. With ever increasing
globalization of economic activity and the pursuit of world
wide social goals, the compatibility between Australian
statistics and those of other countries, is an important
element of quality. The ABS maintains strong links with
many overseas agencies. We are fortunate that there is a lot
in common in the challenges we face and there are great
benefits from sharing experiences with other statistical
agencies.
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3. DIMENSIONS OF QUALITY

Figure 1 is taken from Lee and Allen (2001). Among
other things, it neatly summarizes, on the left hand side,
three existing frameworks for judging quality. There are
some differences with the descriptors used but basically

they are providing the same message — there is much more .

to quality than accuracy. This is now widely accepted
although it was not so long ago that discussion of the
quality of a statistic focussed on its accuracy and the
sampling variability in particular,

There are several messages in the right hand side of Figure
1.

(i There are many different ways of compiling official
statistics — from modelled data/analytical outputs to
censuses and sample surveys. In Australia we are
making greater use of administrative data, systems
of accounts (linked to the national accounts) and
model based and other analytical methods to
produce statistical outputs, compared with five
years ago. The quality challenges differ between the
different means of compiling statistics.

(ii) There are several groups of activities associated
with statistical outputs — from “frameworks,
concepts, standards and classifications” through to
“services/dissemination”. Each is important in its
own right and has its own quality challenge.
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(iii)  The performance of a National Statistical Office is
extremely important to its quality image as
recognized in the opening quote of the paper. A
number of the elements are specified in Figure 1.
All are important. Indeed you cannot have a high
performing statistical office unless you rate well
against each of these elements; including
management and financial performance.

(iv)  There are other elements such as institutional
settings (e.g., legislation) which are also important.

The main purpose in describing the above is to emphasize
that the list of quality challenges for a national statistical
office is very large. All have to be tackled in some way -
this would not be possible unless you have a quality culture,
i.e., attention to quality is the responsibility of all staff.
There are many “moments of truth” to genuinely test
whether a guality culture exists or not.

4. CURRENT QUALITY CHALLENGES AT ABS

Psychologists say that it is difficult to grasp more than
seven points at one time so the remainder of the paper is
limited to identifying seven major quality challenges for the
ABS.
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' national statistical agencies or groups  *
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judging Quality Srmmrmrmiesersrmisisis et ey S
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IMF i Canada Sweden / : relations with Government, & ! concepts
OV | Burosta ' funding of National Statistical 1 i
: Ofics i ! i
— ; : — )
{ Integrity | ER Performance of National Statisticat Office
§ Method- | Statistical leadership, direction setting
i ologed
Ls?urmass [ User liaison JL
______ { Relevance f [Content f X = - Financial
. rameworks, |
....... Coherence/ SQNlOGS, Products PFOOQSSGS. ooncepls M
Service: Coherence comper ahility dissam- & data. methods standardé, Values,skills
PRI Bttt Inati ificati . §
ehility nation classifications | moyvation of
....... - rassnsanarmanns, statf
[Timiness] [ Timaliness ]
IT
Interpret- .
infrastructure
Aiummy ability Avalability dces 5
S & clarity . Administrativa byproduct.
i-Aooadbllltﬂ | yp = Relations
— L Censuges.’ = .+ with data
Ao - T T F o roviders
&relichility | | Accuracy | | Accuracy | I Sample,surveys ;0 - P
| S—— 1T 4

Figure 1. A Framework for Assessing Quality
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(i) The increasing use of large, but imperfect,
administrative and transactional data bases for
compiling official statistics.

(i)  Increasing user expectations raising the quality
“ba{”.

(iiiy ~ Managing the tension between improving business
processes (which can mean removing those
responsible for statistical outputs from direct
involvement with input processes) and maintaining
or improving the quality of statistical outputs.

(iv)  Quality assurance on electronic outputs,

(v)  The presentation of statistics on the internet,
including the need to educate the user community
on quality of official statistics.

(vi}  Managing the transfer of knowledge and skills with
an ageing senior management team, many of whom
will retire over the next 5 years.

(vii)  Use of international statistical standards to maintain
comparability where the standard may not be the
most appropriate for national statistics.

4.1 Increasing Use of Administrative/Transactional
Data Bases

We have used administrative data bases for many years
{e.g., vital registrations for births and deaths, customs for
trade data) to compile official statistics. Others have been
used to develop frameworks for statistical collections. The
issues at hand are the increasing availability of these data
bases, their under-utilization for statistical purposes, and
taking advantage of the potential to link across data bases
and ABS collected data sets using a common identifier
(e.g., the Australian Business Number for business
statistics).

Examples of administrative data bases that are becoming
available are extended personal and business income tax
data bases, health insurance transactions, and details of
those on income support.

Transactional data bases are becoming available,
although not in readily accessible form. Data bases of
particular interest to the ABS are scanner data bases from
retail outlets and eftpos (i.e., electronic fund transfers
between customers and retailers) data bases.

There are some particular advantages in using admi-
nistrative or transactional data bases:

— they reduce the compliance cost we impose on
respondents

— they are often “censuses” and therefore provide
scope for producing detailed data sets (e.g., by
geography)

~ they often have a longitudinal element (e.g., tax
data) to support this form of analysis
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— they often contain an identifier which facilitates
analysis across data sets {e.g., the Australian
Business Number will facilitate analysis across
business tax data sets, customs data, and ABS
surveys)

— they might be cheaper than directly collected data
sets.

There are negatives of course — for example, the defini-
tions may not be consistent with the preferred statistical
concepts; less attention may have been given to incoming
quality; and they may be out of date. Managing privacy
aspects is a particularly important element. Although our
motives are entirely honourable, and are in the public
interest, matching data bases is a sensitive issue and ignored
at our peril. Many of our users, particularly those in the
academic community, are not as sensitive to these concerns.

There is also the question of whether the ABS should
produce the statistical outputs or the agency responsible for
the data sets. A number of issues come into consideration
— the importance of the outputs to the national statistical
service, costs, the extent to which quality can be managed
and the basic question of whether the administrative agency
is prepared to give up custodianship. Only the most
important data sets will be brought into the ABS for
compiling official statistics; for the others, we will work
with the administrative agency to help them deliver “fit for
purpose” statistical outputs into the public domain.

What have been our key responses to this important
quality management issue?

— We are developing protocols for the publication and
management of data from administrative sources.
Associated with this is the promotion and support of
good statistical and data management practices.

— For each statistical field, we are preparing infor-
mation development plans in conjunction with other
stakeholders which identify those areas of greatest
importance and set out specific activities which will
lead to increased availability of non-ABS data,
particularly quality management issues.

— We are actively promoting good practice in infor-
mation management.

- — A major investment project has been the greater
utilization of taxation data to provide cost- effective
statistics.

— We are investigating methods for assuring the
quality of the very large but imperfect data sets that
are available through administrative and trans-
actional data holdings.

4.2 Increasing User Expectations

User expectations on quality are changing - they are
much higher than what they were as recently as 5-10 years
ago. This trend is likely to continue. The increasing
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globalization of financial markets will mean that key
macroeconomic statistics have intenational, as well as
national prominence.

There is a perception that statistics have become more
volatile. In some cases they have because the underlying
phenomenon has become more volatile. However, we do
not believe statistical measurement methods are a signi-
ficant contributing factor — in most cases methodological
developments have led to improvements although the
perception may be different. For example, the volatility in
the key national accounts series is considerably less than
what it was 10-15 years ago yet this is quite different to the
perception of some users.

We also receive more criticism of inaccuracies in very
detailed data (e.g., Population Census tables) than

previously. Again, it is not that the quality is deteriorating"

— it is that the expectation is higher.

We have to accept that “the bar is rising” and do what we
¢an to improve quality to the expected Ievel. That is not
always possible of course so managing expectations is
important. This can be done by:

- providing good explanations of the strengths and
weaknesses of particular data sets;

— talking to key users whenever possible about the
strengths and weaknesses of data series;

~ responding to their informed criticism (seek
partnerships in improving quality e.g., in our
detailed foreign trade statistics we openly seek
feedback from users on the quality of the statistics);
and

- providing as much explanation as possible for
statistics that might seem unusual or different to
expectation.

4.3 Improving Business Processes

Like several statistical organizations, the ABS is looking
at how it might use new technologies, and other elements
such as increased access to taxation data, to improve the
efficiency of its business statistics processes.

We are also investigating the business processes asso-
ciated with household surveys, particularly as increased use
is made of computer assisted interviewing (CAI). However,
in this section the paper will concentrate on the changes we
are making to the way we manage business statistics to
describe this particular quality challenge.

A team was set up to look at the possibilities. As a
consequence, a number of significant changes were agreed
to — this is to be known as the Business Statistics Innovation
Program. We are looking at revised business processes that
will be in place for at least 10 years and will yield a signi-
ficant return on the investments required to set it up. We
will:

— extend the responsibilities of the Business Register
Unit to capture and store taxation data with a direct
link to the Business Register through the Australian
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Business Number (ABN). The ABN is now allo-
cated through the taxation registration scheme and
is available with most business transaction data
bases. The data will be stored in a way that it can be
used by the various ABS statistical areas to compile
statistics directly from taxation data or in combi-
nation with ABS survey data;

— improve the way we manage business respondents
— this will include some preference in how they
provide data to us;

— setup an input data warehouse, with the Australian
Business Number as the link across the various data
sets;

— establish a business statistics processing environ-
ment based around the input data warehouse; and

- increase centralization of a number of the functions
associated with compiling business statistics.

We can see the positives in these developments — more
efficient delivery of business statistics, enhanced use of
taxation data and other administrative data, data bases that
support a wider range of statistical analysis. However, it
will reduce the level of contact that statistical output areas
have with their input data sources. What impact will that
have on quality? What strategies can we deploy to mitigate
the impact? These are important questions that we will have
to answer. It is the main risk we will have to manage in
implementing the Business Statistics Innovation Program.

4.4 Quality Assurance on Electronic Outputs

Great care is taken on the quality of our paper products.
This has been built on many years of experience. Cur
record is good and the quality assurance processes well
embedded in the way we go about our business. Yet, more
and more of user community receive their data in electronic
form only. They will make analyses based on these outputs
often leading to important decisions being made. It is just
as embarrassing to us to have errors in electronic outputs as
to have them in paper outputs.

Our quality assurance procedures for electronic outputs
are not as sophisticated, but they are evolving. The key
responses have been as follows:

— Our data warechouse supports the storage of all the
objects associated with the dissemination with a
particular set of statistics, including data cubes and
meta data.

— Statistical areas are asked to approve each object —
they are individually developing their own
techniques for quality assurance (but sharing ideas
on best practice).

— A publishing system has been developed to support
the simultaneocus release of all outputs. If they are
delivered from the same set of objects, there is less
chance of inconsistency between the outputs.
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4.5 The Presentation of Statistics on the Internet

Ultimately the user can only make judgements about the
fitness of a statistical output for their purposes. These vary
of course and what might be fit for one purpose may not be
for another. There is an obligation on us to provide a range
of supporting information on data outputs, including that on
quality, so that the statistical users can make their own
judgements on fitness of use. There are a number of
existing, well proven practices relating to declarations about
the quality of statistics. These activities are now a routine
part of existing dissemination practices. They include:

— Concepts, Sources and Methods publications that
describe in detail the methods used to compile
major statistical cutputs. These are available on our
web site as well as on other media.

— An assortment of Information and Working Papers,
and feature articles in publications, which are used
to draw attention to issues specific to particular
outputs or changes that are being made to their
compilation methods.

- A policy of “no surprises” when there are
significant changes to the methods used for the
compilation of statistical series. As well as
Information Papers etc, if there are important
changes to statistical series, we embark on a
program of seminars and bilateral discussions with
key users to explain the changes and the reasons for
their changes.

- Material on methods is included in all our
publications. The ordering and physical
presentation of this information is according to
agreed standards. These were developed following
research undertaken for us by a communications
consultant on how our users use the material in
statistical publications.

- The analysis section of our publications includes
material that explains, among other things, large or
unusual movernents in our statistical series. Often
this will be based on information that is only
available to ABS staff through their contact with
respondents or their intimate knowledge of the
methods used in compiling statistics. Our User
Groups have advised that this is one of the most
valuable forms of analysis that we can undertake.

We believe that our key users have a reasonable
understanding of the quality of the statistics they use.
However the increased reliance on electronic dissemination
poses new challenges. In one sense this move provides a
wonderful opportunity to present a range of information on
quality that is easily accessible through a few well-designed
*clicks”. But because information about the quality of the
statistics is “not in your face” like it can be in hard copy
publications it is easier for users to avoid the key messages
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that you are trying to convey. The real challenge for us is
to develop methods for presenting quality in a way that is
not easy for users to avoid the main messages we want to
convey.

One means of doing this may be to provide separate
messages that draw attention to particular information you
want to transmit on quality. These could be automatically
activated as particular statistical series are accessed or could
be delivered by a separate email message. Research is
required into the most effective means.

Lee and Allen (2001) have described some of our
research work to date on this issue . The work is still at the
exploratory stage. Things that are being investigated are:

— Usability testing of how users prefer to access
information on quality.

— Showing leadership and developing user education
programs on how to use information on quality. A
trial version of the is now available.

— The development of four prototype tools to assist
users understand the quality of particular statistics.
The four prototype tools are “Quality Issue
Summaries”, “Quality Measures”, “Data Accuracy”
and “Integrated Access to Data and Metadata™.

More details are available in Allen (2001).

4.6 Managing the Transfer of Knowledge and Skills

Like several other national statistical organizations,
many of the ABS management team, and other senior staff,
are aged in their 50’s. Some have retired in recent years,
Others are expected to over the next few years. If managed
correctly, this is a great opportunity to refresh the
organization through providing new blood to management
positions. These will normally be younger staff who will
bring new ideas and energy into the management team.

On the other hand, experience and know-how will be
lost. Both sides of this equation need to be managed
carefully. Our strategy is as follows.

— We have developed special programs for those staff
with potential. Specifically, they undertake a
leadership and management development program
which has been specially customized for the ABS.
Staff are chosen for these programs by senior
managers. You cannot select yourself to be a
participant in the program. Furthermore, after staff
have completed the program they can be expected
to be chosen for a special assignment or rotated to
a new position. The underlying philosophy is that
the best way of learning is to obtain a variety of
work experiences. A very high proportion of recent
promotions to senior management positions have
been participants in these programs. So far this has
helped us to adequately cover the gaps created by a
larger number of retirements than in the past.
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— We retain links with retired ABS staff through a
variety of informal and formal means (e.g., social
functions, including them on the distribution list for
ABS News, etc). Their knowledge is accessible if
required.

— We have placed a stronger emphasis on knowledge
management, using the facilities of our groupware
product (Lotus Notes), means that key parts of our
work are well documented and easily accessible.

— We have made substantial moves to standardize
methods and systems meaning there is less
dependence on local knowledge.

— For some key positions (e.g., Director of National
Accounts) we ensure shadowing of work prior to
the retirement of the incumbent,

To date we have managed this transition well. We have
been able to adequately fill vacant senior positions and at
the same time refresh the organization by promoting staff
with fresh ideas. There is a need to remain adroit.

4.7 Use of International Standards

Our starting position is that where international standards
exist we should use them. This has not always been the
case. For example, although our industrial classification has
been loosely based on ISIC, and a concordance developed
with ISIC, the classification is largely homegrown
reflecting the specific interests of Australia and New
Zealand. We have agreed to use the 2007 version of ISIC,
at least for the upper two levels, with variations at lower
levels only where there are specific circumstances that
justify it.

There are often pressures on us to divert from
international standards. Sometimes this is to make the
Augstralian situation look better. In other cases, such as with
the [LO unemployment definition, the pressure is because
the international definition does not seem to reflect the real
situation in Australian circumstances. We resist these
pressures but it is important that we have a well docu-
mented international standard as a reference point to justify
our position. Nevertheless, where diversions from the
international standard are made on an exception basis, they
need to be well documented with a clear explanation of the
reason. In cases where there is a need to have information
on a basis other than the international standard our position
is that we should publish statistics on both bases. The
headline figure would still reflect international standard as
increasingly the Australian situation is being compared with
that of other countries and it is important that it is done on
a comparable basis. For example, this appreach is being
taken to satisfy the demand for underemployment data and
to reduce criticisms of the [ILO unemployment definition.

There is a tension that needs to be managed but if we are
serious about the importance of international comparisons
it is imperative that international standard is the main
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guiding light in developing the concepts, sources and
methods used in Australia. For these reasons we regard it as
a priority to make a significant contribution to the develop-
ment and revision of intenational standards.

5. CONCLUSION

We would all agree that attention to quality is a
fundamental aspect of our operation. In this paper, we have
attempted to show that there are many dimensions to
quality. This same message is clear from the frameworks
for quality that have been developed by other organizations,
such as the IMF, Statistics Canada and Statistics Sweden.
The consequence is that a quality organization depends on
the actions of all its staff as all can have an impact on
quality in one way or another. Tt cannot be left to a work
group with designated responsibility for quality. Therefore,
quality can only happen if there is a genuine quality culture
within the organization. The paper attempts to describe how
we achieve this within the ABS, Nevertheless, it is
important to have someone who performs the role of the
corporate conscience on quality. We have given this respon-
sibility to the Methodology Division and made the Chief
part of the ABS Executive team so that it is easier for key
messages to be conveyed to the senior managers. Among
other things they draw attention to the most important risks
to quality or behaviours they see as contrary to our
corporate objectives.
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Model Explicit Item Imputation for Demographic Categories

YVES THIBAUDEAU'

ABSTRACT

We propose an item imputation method for categorical data based on a MLE derived from a conditional probability model
(Besag 1974). We also definc a measure for the item non-response error that is useful to evaluate the bias relative to other
imputation methods. To compute this measure, we usc Bayesian iterative proportienal fitting (Gelman and Rubin 1991;
Schafer 1997). We implement our imputation method for the 1998 dress rehearsal of Census 2000 in Sacramento, and we
use the error measure to compare item imputations between our method and a version of the nearest neighbor hot-deck (Fay
1999; Chen and Shao 1997, 2000) at aggregate levels. Our results suggest that our method gives additional protection
against imputation biases caused by heterogeneities between domains of study, relative to the hot-deck.

KEY WORDS: Nearest Neighbor; Conditional probability approach; Bayesian iterative proportional fitting.

1. INTRODUCTION AND BACKGROUND

Let § represent a demographic categorical count
requested from a census, or needed to compute a survey
statistic, and suppose S can be computed from the records
of a survey file f, when the records are complete. Also,
suppose f is ordered in such a way that proximity in the
order of f corresponds to geographical proximity. Consider
the situation where f includes records with unreported
items. We propose to estimate § with d (A(f)), where
A(f) is an imputation method that produces a complete
survey file, and d(*) estimates S by replacing the un-
reported items with their values imputed with A{f). A(f)
is based on a likelihood that models transitions between two
neighbors in f, and associations between the items to- be
imputed and the relevant domains of study (Cochran 1977,
page 34} defined by partitions of the population. A(f) is
meant as an advantageous alternative to the popular
sequential hot-deck (Kovar and Whitridge 1995), which is
a version of the nearest neighbor hot-deck (Fay 1999; Chen
and Shao 1997, 2000} that attempts to minimize geogra-
phical distance between a unit with unreported items and a
snitable imputation donor, while also guaranteeing the
distributional homogeneity of the observed and the imputed
items with respect to each domain of study. When the
domains of a same partition tend not to geographically
overlap, borrowing imputation items from a near-by
neighbor preserves homogeneity. But, when small domains
tend to be dispersed within large domains, the methodo-
logist faces a dilemma. Then, she must choose between
hot-deck rules that lead to borrowing the imputed items
from geographically close units, leaving the possibility of
imputation biases reflecting the local heterogeneity between
domains, and domain-specific rules, which guarantee distri-
butional homogeneity by domain, but may not minimize
geographical distance. A(f) is an alternative designed to
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preserve domain integrity, while also simulating the distri-
butional profile of an imputation donor sharing some
characteristics with a geographical neighbor. We motivate
the design of A(f) with examples and a theoretical
description. In this section we review a classification of
current hot-deck methods for item imputation with their
operating principles, so that we can properly compare them
with A(f) in later sections. We also give details on the
dress rehearsal of Census 2000 in Sacramento, our test bed
throughout the paper.

Fay (1999), and Sande (1981) identify the sequential
hot-deck (SHD) as the first category of hot-decks, which we
call the “pure” SHD. They add a second category, the
fixed-cell hot-deck (FCHD), which we call the pure FCHD.
Fay defines a third category of hot-decks: the nearest
neighbor hot-deck (NNHD). Chen and Shao (1997, 2000)
give an abstract definition of the NNHD in terms of a
measure of proximity | |, based on a covariate x. With the
NNHD, a “donor” is any unit such that |x_ - x,| is mini-
mal, where x, corresponds to the receiving unit (receiver),
and x, corresponds to the provider of the imputations
(donor). By constructing the appropriate measure, and
defining a suitable x, we recover both the pure SHD and the
pure FCHD as special cases of the NNHD. The pure SHD
imputes a receiver item by replacing it with the corre-
sponding item from the closest unit for which it was
reported, in the order of . The pure FCHD relies only on
the value of variables that we call the class variables to
divide the units between post-strata that are homogenous
with respect to the items to be imputed. A donor is chosen
at random from the same post-stratum as that of the
receiver, irrespective of the order of f.

Fay (1999}, and Fay and Town (1998) propose the
concept of exchangeability to validate the NNHD. For
categorical data two units in f are exchangeable if they are
uncorrelated and identically distributed, given the
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information avatlable prior to imputing. The operational
assumption of the NNHD is that a unit and its nearest
neighbor(s) are exchangeable. For the pure SHD it means
two contiguous units in f are exchangeable. For the pure
FCHD it means that units sharing the same values for their
class variables anywhere in f are exchangeable. We define
a third instance of the NNHD, which we call the hybrid
sequential hot deck (HSHD). To guarantee exchangeability
the HSHD requires proximity both in terms of the order of
f. and in terms of the class variables.

‘We use the term “nearest neighbor” in the abstract sense
of the NNHD, unless specified otherwise. We use the terms
“closest neighbor” to designate the nearest neighbor of the
pure SHD, and “closest complete neighbor” to mean the
survey unit with no unreported items that is closest in the
order of f. In the case of the Sacramento dress rehearsal, the
Census Bureau uses a HSHD to estimate householder counts
by tenure, race, origin (Hispanic origin}, and sex. The house-
holder, usnally an adult, is unique for each housing enit, and
is determined by the ages, relationships, and order of the
persons on the census questionnaire. The HSHD substitutes
unreported items with the values of these items corres-
ponding to the last householder who reported them and is in
the same post-stratum (Treat 1994). The sorted order of f
maintains the proximity of geographical neighbors. The
intent behind the HSHD is to define nearest neighbors who
are close, both in geography and “in kind”. Throughout the
paper, we continue to use the term householder, although its
meaning may extend to a generic survey unit.

The design of the HSHD is well suited for item impu-
tation in populations geographically clustered by domain.
Then the need for class variables is limited. But difficulties
arise when the geographical boundaries between the
domains begin to blur. Designing a HSHD with good
discrimination power in those conditions is an attempt at
walking a fine line between specifying enough class
variables to account for heterogeneities between domains,
and specifying too many, which could yield post-strata so
narrowly defined in terms of domain that they don’t capture
the local geographical character of the receivers. Compli-
cating the situation is the fact that the demographic compeo-
sition of the population may change as the geography
changes, and thus a particular scheme for the HSHD might
need to be revised, as the geography changes. In the face of
these difficulties A(f) is innovative in the sense that,
instead of searching for an ideal nearest neighbor, it gene-
rates imputations through a model-based simulation that
integrates information relating to the local geography, as
well as to domain partitions. A(f) integrates both kind of
information by calibrating the parameters of a log-linear
model on the basis of the strength of the correlations
between the covariates and the variables subject to impu-
tation. Qur parameter estimation strategy is the same as that
of Zanutto and Zaszlavsky (1995a, b). However, because
they have access to a representative sample of complete
non-respondents, these authors can obtain estimates of the

Thibaudeau: Model Explicit tem Imputation for Demographic Categories

imputation probabilities by implementing a one-step EM

_algorithm (Dempster, Laird and Rubin 1977). In our

situation, we don’t assume access to a representative
sample, and we implement the full EM algorithm. Impli-
citly we make an assumption of items *“missing at random”
{MAR) (Little and Rubin 1987, page 16).

To analyze the results obtained with A(f), and to
compare them with those of the HSHD, we derive error
measures related to A (f) based on approximations com-
puted using a Bayesian algorithm first introduced by
Gelman and Rubin (1991). There are fundamental objec-
tions to Bayesian methodologies. Fay (1992) shows that
variance estimation based on multiple imputations (Rubin
1996) can lead to inflated estimates of variance, whereas in
the same situation the jackknife estimator (Rao and Shao
1992) avoids biases. Meng (1994) suggests that Fay's
example stems from a poor communication between an
imputer who has specific model information, and an analyst
who only has knowledge of the estimation process. In the
language of Meng, this situation is uncongenial. While
requirements for coordination between imputer and analyst
are restrictive, imputation based on exchangeability also has
dangerous pitfalls, as we show in section 2. In addition the
Bayesian approach allows for asymptotic approximations of
error measures through mechanical algorithms, while a
strict frequentist approach might require tedious
expansions, as we show in section 5.

Our objective is to present A (f). and to show its compa-
rative advantages over the HSHD, using the Sacramento
dress rehearsal as an example. In this case f contains records
for the 138,271 physically enumerated householders
{Kostanich 1999), of whom 90,156 returned a census
questionnaire by mail or were visited by an enumerator at
a first attempt, and 48,115 were selected in a sample. We
implement our method at the level of the tract, a connected
unit of geography containing on average 1,300 house-
holders in f.

The paper is organized as follows. In section 2 we
illustrate the difficulties of designing a HSHD methodology
that guarantees exchangeability. In section 3, we define
A(f), and in section 4 we present a likelihood for the
model parameters. In section 5, we show how to implement
A(f) and derive a measure of error to make comparisons
with the HSHD. Section 6 presents and motivates the basic
model for the dress rehearsal, and section 7 gives results for
both A(f) and the HSHD in this case. In section 8, we
summarize the differences and we make recommendations.

2. ASSESSING EXCHANGEABILITY WITH
RESPECT TO A PARTITION BY
DOMAINS OF STUDY

We illustrate the difficulties inherent in designing a
HSHD that preserves exchangeability between domains of
study (Cochran 1977, page 34} with an example, where
tenure (ownership) is the measurement of interest, and the
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relevant domains of study are defined by race. To impute
tenure, the Census Bureau uses the class variable “house-
hold type” to post-stratify fin five post-strata defined by the
presence/absence of a live-in spouse for the householder,
and the size of the household (1, 2, 3+) (Wilson 1998). The
intent is to define post-strata that establish distributional
homogeneity in terms of ownership at the level of the
post-stratum, rendering the domain boundaries of a relevant
partition uninformative within each post-stratum.

We examine the post-stratum comprising ail the house-
holders without a live-in spouse, and living in households
of 3 or more. We call it post-stratum 3. For the purpose of
this example, we have removed from f all the householders
with unreported tenure, and each nearest neighbor is exclu-
sive to a single householder. Table 1 gives householder
frequencies for eight exhaustive race-tenure categories for
post-siratum 3. Table 1 also gives the rate of ownership for
their nearest neighbors, cross-classified by their race and by
the same eight race-tenure categories of the corresponding
householders. We observe that, on average, when a
householder is either in the Black-owner or in the Black-
renter category, his nearest neighbor is at least 25% more
likely to be an owner when this nearest neighbor is White,
than when he is Black. It is tempting to explain this differ-
ential rate by geographical differences. However, table 2,
which shows the rates of ownership of the householders in
post-stratum 3, cross-classified by their own race and that
of their nearest neighbors, reveals that in fact Blacks with
White nearest neighbors have a slightly lower rate of
ownership than Blacks with Black nearest neighbors. What
this means is that, if the probability of not reporting tenure
is constant for all Blacks, then imputing their tenure by
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substituting the tenure of their nearest neighbor over-
estimate ownership for Blacks in post-stratum 3.

These distributional disparities between householders
and their nearest neighbors reflect a lack of exchange-
ability. A McNemar test leads to a formal rejection of the
exchangeability hypothesis. There are 1,784 Black house-
holders with White nearest neighbors. In 1,187 instances,
tenure is tied. Among the 597 non-tied cases, the owner is
White in 396 cases. Under the exchangeability hypothesis,
ownership goes to either race with probability one-half.
But the propertion of Whites among the owners is eight
standard deviations above one-half. This example illustrates
the difficulties in designing a valid NNHD that maintains
exchangeability. In the next section we present our impu-
tation method, which is devised for this type of situation.

3. ANIMPUTATION METHOD BASED ON
DEMOGRAPHIC TRANSITION PROBABILITIES

Besag (1974) describes the conditional probability
approach to spatial processes. This approach gives a frame-
work for probabilistically modeling the values of “sites”, in
terms of the values of their “neighbours” to construct a
spatial process. Besag (1974) also suggests making a
unilateral approximation to simplify this construction.
Then, the value of each site depends only on a finite
number of “predecessors”. This approach is natural in our
situation since f provides a unilateral ordering of house-
holders who play the roles of sites and predecessors, in turn.
Specifically, we construct a first-order process where each
householder is a site, and the complete closest neighbor is

Table 1
Number of Householders and Rates of Ownership of the Nearest Neighbors in Post-Stratum 3 by Race of the Nearest Neighbor
and Joint Race and Tenure of the Householder

Race-Tenure Category of the Householder

White  White Black Black Asian  Asian  Other  Other
Owner Renter Owner Renter Owner Renter Owner Renter
Number of Householders in Post-Stratum 3 3,347 5197 1,319 3,630 872 1,196 681 1,637
Rate of Ownership of the White Nearest Neighbors 0556 0564 0562 0299 0561 0287 0540 0.63
Rate of Ownership of the Black Nearest Neighbors 0379 0189 0427 0211 0443 0202 0471 0.158
Rate of Ownership of the Asian Nearest Neighbors 0589 0332 0667 0320 0668 0262 0535 0302
Rate of Ownerships of the Other Nearest Neighbors 0423 0251 0497 0237 0595 0177 0463 (152
Table 2

Rates of Ownership of the Houscholders in Post-Stratum 3 by
Race of the Householder and Race of the Nearest Neighbor

Race of the Nearest Neighbor

White Black  Asian  Other
Rate of Ownership of the White Householders 0415 0358 0384 0337
Rate of Ownership of the Black Householders 0257 0264 0304 0.267
Rate of Ownership of the Asian Householders 0441 0441 0400 0.360
Rate of Ownership of the Other Householders 0.309 0297 0337 0234
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its only predecessor. In this set-up, the value of a site is the
state of a houscholder, which we define shortly. We refer
to the conditional probability for the value of a site given
that of its predecessor as the transition probability from the
state of the closest complete neighbor to the state of the
householder. Our imputation methodology is based on the
MLE of the transition probabilities at the level of a tract. In
this section we describe the imputation methodology, and
in the next section we introduce a likelihood for the transi-
tion probabilities.

Consider a population of householders in f representing
a tract. Let ¥ represent a set of C categorical variables that
characterize each householder. The variables are labeled
1,.., C, and have respectively K|, ..., K. categories. Let
P* denote the Cartesian product of the categorical
variables in . Then, ¥* is the state space of the house-
holder and has X states, where K =I1_,, K. Similarly, let =
be the set of E categorical variables defining the closest
complete neighbor in £ The variables are labeled 1, ..., E,
and have F, ..., F categories. Z" is the state space of the
closest complete neighbor and has F states, where
F =11, - F. The items represented in = are also repre-
sented in Y. Let the state of the householder be s € ¥,
where s is a vector whose components represent the
variables in V. Similarly, ¢ € Z* is the state of the closest
complete neighbor. Under the assumptions above, let
P(s | t) represents the transition probability from¢ to s in
the order of f. Now suppose a householder only reported the
categorical variables in a subset Z< '¥. Let v € Z* be the
vector of reported variables. Let o(W,Z, v) < %" be the
subset containing all the values of s, such that 5 agrees with v
on the variables in Z. Define

ﬂ—u; sec(VY,Z, v).

Y Pl
ueo(¥,Z,v)

To impute the items in the set difference ¥ -Z
according to A (f), we roll dice weighted by the values of
the MLE of P(s|¢, Z, v), for each householder in marginal
state v and with closest complete neighbor in state £. Under
our assumptions, the MLE of P(s|¢, Z, v) contains all the
information available from f on the unreported items. In the
next section we formulate a likelihood for P(s|¢, Z, v).

P(s|t,Z,v) = )

4. A LIKELIHOOD FOR THE TRANSITION
PROBABILITIES

Let N(t, Z, v) be the number of householders who only
reported the items defining the marginal state v involving
only the items in Z c ¥, and with closest complete neigh-
bor in state £. Let N be a vector with the N{¢, Z, v)’s as its
components, at the level of a tract. Let P = [P(s|¢)] be the
vector comprising the P(s|£)’s ordered lexicographically
by f and 5. Based on the assumptions described above, we
have the following likelihood for the transition proba-
bilities.

Lv:py =T 11 n( ¥ e

teZX Zcy veZ* \ s€o(W,Zy)

P(s |t)]

Pc@®,. (2)

The running indices in (2) are ¢, Z, v, and s. If every item
is reported, then ¥ is the only instance of Z with
N{t,Z,v) =0, for some £ and v. In that case (2) is analo-
gous to the likelihood of the transition probabilities of a
first-order Markov chain (Bishop, Fienberg and Holland
1975 page 263). In general, we model ®, as a log-linear
subspace. For this purpose it is more convenient to work
with an expression equivalent to (2) that has a simpler
algebraic representation. We introduce the nuisance
parameter U = [ U (#)], where U is a probability vector, that
is Y, .=U@®)=1, and O<U®) <1, for all teZ*. U
represents the prevalences of the states of the closest
complete neighbors. Let Q(s,#) =U(t)x P(s|¢), and
@ =[Q(s,1)]. Then @ is a probability vector with KxF
components lexicographically ordered by ¢ and s. We set
up ©, the parameter space of @, as a hierarchical log-linear
model (Agresti 1990, page 143; Bishop, Fienberg and
Holland 1975, page 67). Then, if we design ® so that it
includes the interactions of all orders between the variables
in 2, (2)is equivalent to the following likelihood in terms

of @.

voie - I (32 06n)™:
teE" ZcW rez* \ sco(V,Zn)
0co (3)

That is, if ® has the architecture described above, a
specific choice for ® unambiguously defines ©, in (2),
and since the items of the closest complete neighbor are
always reported, the factorization L(N; P)-=
L'(N;0)xR(N;U) holds, for some R(;). (3)is easier
to manipulate than (2) since it corresponds te the likelihood
of the cell probabilities associated with a partially classified
contingency table (Little and Rubin 1987, page 1381). Under
mild conditions on the non-response mechanism (for
example, strictly positive and constant probabilities for each
response configuration (Thibaudeau 1988)) the likelihoods
in (2) and (3) are identifiable and asymptotically unimodal.
Multimodality is theoretically possible for finite samples,
but it does not appear to occur in the cases studied in the
paper, where the proportions of unreported items are small.

5. FINDING THE MLE AND DERIVING
MEASURES FOR THE NON-RESPONSE ERROR

In this section, we recall how to compute ﬁ, the MLE of
P, and we derive measures of errors for A(f) and another
predictor $(s), which we term the “MLE” of the expected
value of S(s), which is the actual count of householders in
state § at the tract level. An error measure for §(s) will be
useful in section 7 to evaluate the imputation results
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obtained with A(f) relative to those with the HSHD. We
compute P by maximizing (3), in terms of Q, with the EM
algorithm. Because of the factorization described in section
4, this maximum also yields P

To derive measures of error in predicting S(s) for a
given s, consider all the triples of the form (¢, Z, v) in (1)
that are observed in the sample (i.e, the tract) for which it is
possible, but due to item non-response it is not known, that
one or more householders corresponding to such a triple are
in state s. Let A (s) be the number of such triples. We index
these triples with A = 1, ..., A(s). Let (&) be the number
of householders corresponding to triple A, and let p, (s) be
the probability that such a householder is indeed in state s,
where p, (5) is derived from P. Let A(s,) be the unknown
number of householders who are indeed in state § among
the d(A) candldates Based on our model we have S(s) =
S s (8) + Ek )A(.s' 1), where S obs {s) is the number of
householders who reported being in state s and A(s, }) is
Bmormal(&().) p, (s)). Furthermore, let S(s) = S,ps(8) +
21 I S(X)pl(s), where P, (s) isthe MLE of p, (s). If we
treat the A.’s as mdependent predictors, like in a regression
situation, and since P is asymptotically normal with mean
P, we have the following large sample approximation for
the MSE of $(s) in predicting S(s).

2
|P

As)
E [?: 8P, (S)-Als, M)
=1

Alg) Als)
=V Eﬁ(l)ﬁk(s)li’ +V EA(S M| P

Let V, and V_ be the first and second variances on the
RHS of (4). Gelman and Rubin (1991), Larsen (1996), and
Schafer (1997, page 324) introduce data augmentation
Bayesian iterative proportional fitting (DABIPF) to simu-
late posterior and predictive distributions associated with
log-linear models with data missing at random. We can use
DABIPF to approximate model-consistent estimators for
Vp and V_+V,, through simulations of the posterior dis-
tnbutlon of i {;)8 (M) p, (s) and the predictive distribution
of S(s) respectwely Furthermore, we approximate the
MSE of the demographic counts obtained imputing with
A(f) by adding another V_to V, + V', in (4) to account for
the additional noise of the “dice roll” involved in A (f).

6. MODELING AND SENSITIVITY ANALYSIS

6.1 A Conditional Independence Model for
Sacramento

Using the notation of section 3, the householder
variables in ‘¥ are race, origin, tenure, and sex. The cate-
gories for race are White, Black, Asian, and Other. For
origin they are Hispanic and non-Hispanic. For tenure they
are owner and renter. For sex they are male and female.
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The neighbor variables in E are race, origin, and tenure.
The categories for race of the neighbor are Black and
non-Black. The categories for origin and tenure of the
neighbor are the same as for the householder. We design ©
in (3), by selecting interactions between the variables in ¥
and E. To ensure equivalence between (2) and (3), we
select the interactions of all orders between the variables in
E. We attemnpt to maintain through the imputations the
correlation between successive householders in fin terms of
each item in =. Thus we include each interaction asso-
ciating an item in = to the corresponding item in ¥. We
complete the model by selecting consistency associations:
We include the six interactions representing the associa-
tions involving a pair of items in ‘¥'. The resulting contin-
gency table has 256 cells, and the log-linear model has
thirty free parameters.

This model leads to a conditional independence tran-
sition structure. For example, conditional on the race of the
closest complete neighbor, the race of the householder is
independent of the tenure of the closest complete neighbor.
Conditional independence allows us to combine neighbor
information obtained from multiple neighbors to produce a
synthetic closest complete neighbor. This approach ensures
that we can use all the information available from the
closest neighbor, even if he is not complete. With this
approach, the correlation structure among the items of the
householder is maintained whenever only one item per
householder is imputed. In Sacramento, among 138,271
householders, approximately 0.1% did not report sex, 3.5%
did not report race, 2.9% did not report origin, and 7.6% did
not report tenure. Furthermore, race and origin are missing
jointly for 0.49% of the houscholders, race and tenure
0.48%, origin and tenure 0.69%. Given these low rates of
jointly missing items, we expect our model to do well.

6.2 Sensitivity Analysis and Evaluation

In section 7 we use the standard error of the predictive
distribution of S(s) to approximate /V_+V,, the error
of $(s) in predicting S(s), as denved n (4), and we
assume asymptotic normality of S(s)-S (s). The accuracy
of this approximation depends on the accuracy of the
approximation of the distribution of the MLE P with the
posterior distribution of P. This later approximation is
accurate asymptotically when the model holds, but we still
need to verify the extent to which this asymptotic result is
applicable when the sample is finite. To do so we examine
the sensitivity of the posterior distribution of P under prior
changes. A low sensitivity implies that the posterior distri-
bution of P is a good approximation of the distribution of
P. We focus on the posterior distribution for the condi-
tional probability that origin is Hispanic, conditional on
each race. An increase of .1 in the value of a, the prior para-
meter of the constrained Dirichlet family (Schafer 1997,
page 346), which is the natural family for (3), is equivalent
to observing three additional Hispanics and three additional
Non-Hispanics of each race. Table 3 gives the posterior
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modes and standard deviations (SD) of the posterior density
of the conditional probability that crigin is Hispanic given
each race, for four choices of a, for a specific tract X.
Figure 1 shows the posterior of the conditional probability
given race is White. This posterior is stable under prior
disturbances and we expect it to give a good approximation
for the distribution of the corresponding MLE. On the other
hand, Figure 2, which shows the posterior of the conditional
probability given race is Black, displays a high sensitivity,
suggesting that our proposed asymptotic approximation is
less accurate in this case. This is not surprising in light of
the facts that, for Blacks, the MLE of the conditional proba-
bility is close to 0 and the domain (race) size is smaller
(among the 1,583 householders in tract X, there are 1,087
Whites, 179 Blacks, 56 Asians, 172 Others, while 89 did
not report race). In the next section we focus on cases
where the conditional probabilities are not near 0 or 1, and
the size of the domain is large. We retain the choice a = .01

for the prior, which is approximately Jeffrey’s prior on the
marginal conditional probabilities that define the model. It
is beyond the scope of the paper to address the difficulties
when the domain is small and/or the MLE is near 0/1.

Table 3
MLE, Posterior Mode (approximate), and Standard Deviation for
the Conditional Probabilities of Origin Being Hispanic Given
Race for Four Choices of Prior Distribution

Race MLE Mode S.D.Mode 8$.D.Mode S.D.Mode S.D.
0=.01 =01 a=1 a=1 =5 =5 a=1 o=1
White .1784 .178 01195 .184 01247 .180 .01219 .188 .01186
Black 07428 .0690 .02272 .081 .02330 .120 02428 .160 .02782
Asian 09113 .105 .04086 .108 .04550 .195 .04881 .276 .04952
Other 9662 966 .01171 964 01347 950 .01495 .930 .01666
4000
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Figure 1. Posterior Distribution
Prob. Origin is Hispanic — White Householder

Freq
#000

1000

0.05 0.10 D.13 020 0.1% 030
Probability

Figure 2. Posterior Distribution
Prab. QOrigin is Hispanic — Black Houscholder

7. RESULTS FOR THE SACRAMENTO DRESS
REHEARSAL

Table 4 gives count estimates at the level of Sacramento
derived with A (f) based on the model of section 6.1 fitted
for each of the 102 tracts, as well as count estimates
obtained with the HSHD. Table 4 also gives error measure-
ments based on a sequence of 2000 DABIPF iterations with
2000 bum-in iterations, for each of the 102 tracts in
Sacramento (see appendix A for convergence), serving to
approximate /V, + V, derived from (4). Wecall (V_+ VP

the prediction error of the MLE. We estimate ‘/_178 sepa-
rately by “rolling dice” loaded with the MLE. We call /V,
the model residual error. We use 2V, + V_, which we call
the total imputation error, to express the error of A(f ) in
estimating the true count. If we assume § (s) is positively
correlated with the HSHD, the prediction error of the MLE
can be used as an upper bound for the standard error of the
distance between the count estimates corresponding to the
MLE and the HSHD. For the Black owners, this distance is
severely incompatible with the hypothesis that the MLE and
the HSHD have the same expectation. This is no surprise in
light of the results of section 2.

Interestingly, the results of table 4 can serve to improve
the performance of the HSHD. Since tenure is unreported
twice as often as race, our results for the Black owners
suggest improving the HSHD by including race as a class
variable for the imputation of tenure with the HSHD. Table
5 shows results obtained with this re-engineered HSHD,
and exchangeability of tenure between nearest neighbors
based on this new post-stratification is more plausible than
for the original scheme.
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Table 4

Population Counts and Uncertainty Measures for Sacramento

Imputed Count Imputed Count MLEofthe Model Residual Prediction Error Total Imputation

With HSHD  With Modet Expected Count Error of the MLE Error
All 138,271 138,271 138,271.0 0.0 0.0 0.0
White 89,032 88,914 88,927.7 31.5 35.2 472
Black 19,962 19,943 19,9529 149 16.5 223
Asian 17,405 17,421 17,426.2 14.0 149 205
Other 11,872 11,953 11,964.1 20.8 335 448
Hispanic 21,024 21,050 21,038.1 10.3 10.6 14.7
Non-Hispanic 117,247 117,221 117,232.8 10.3 10.6 14.7
Owner 70,054 70,022 70,026.3 42.8 433 60.9
Renter 68,217 68,249 68,2447 42.8 433 60.9
‘White Hispanic 9,068 8,972 8,991.1 29.9 33.6 45.0
White Non-Hispanic 79,964 79,942 79,936.6 15.4 15.7 220
Black Hispanic 605 612 608.6 11.0 12.6 16.7
Black Non-Hispanic 19,357 19,331 19,344.3 10.8 10.7 15.2
Asian Hispanic 518 515 516.5 10,0 11.5 15.2
Asian Non-Hispanic 16,887 16,906 16,909.7 104 10.3 14.6
Other Hispanic 10,833 10,951 10,921.9 20.7 33.3 44.6
Other Nen-Hispanic 1,039 1,042 1,042.3 35 34 49
White Owner 47,722 47,767 47,7105 37.8 41.3 56.0
‘White Renter 41,310 41,147 41,157.3 39.0 41.4 56.9
Black Owner 7,661 7,538 7.542.3 19.6 20.7 28.5
Black Renter 12,301 12,405 12,4106 21.1 225 30.8
Asian Owner 9,810 9,853 9.872.8 18.4 18.6 26.1
Asian Renter 7,595 7,568 7.5534 18.2 18.8 26.1
Other Owner 4,861 4,864 4,840.7 24.4 28.2 37.3
Other Renter 7,011 7,129 7,123.4 254 28.6 38.2
Hispanic Owner 9.409 9434 59,402.2 19.5 20.9 28.6
Hispanic Renter 11,615 11,616 11,629.9 201 214 204
Non-Hispanic Owner 60,645 60,588 60,618.0 389 394 554
Non- Hispanic Renter 56,602 56,633 56,614.8 38.7 30.6 55.4
Table 5 8. CONCLUSION

HSHD with Race as an Additional Class Variable

In section 2 we have shown that the HSHD may fail to
retrieve exchangeable householders, producing a bias
relative to a situation where exchangeability holds. As more
evidence that A(f) partly corrects this relative bias, we
compare the observed and the imputed cross-product ratios
(Bishop, Fienberg and Holland 1975, page 14) between two
races (Black, White) and the two tenures. We look at the

Imputed  Imputed Imputed MLEof Prediction
Count with count with Count the Error of
HSHD HSHDre- with Expected the MLE
engineered Model  Count
with Race
as a Class
Variable
White
owner 47,722 47,687 47,767 47.770.5 41.3
Black
Owner 7,661 7,573 7,538 75423 20.7
Asian
Owner 9,810 6,851 9,853 9,8728 18.6
Other
Owner 4,861 4,840 4864  4,840.7 28.2
Owner 70,054 69,951 70,022  70,026.3 433

¢ross product ratio involving:

1. Only observed householders.
2. Householders with tenure imputed with the HSHD.
3. Householders with tenure imputed with A(f).
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There are 73 tracts where all these cross-product ratios
can be measured. 2. The HSHD produces cross-product
ratios smatler than those observed for 53 tracts. A(f)
displays more symmetry as it produces cross-product ratios
smaller than observed only for 43 tracts. A sign test
confirms that A(f)(p =.064) is more in sync with the
observations than the HSHD (p =.0001).

In general, we expect the HSHD to give good count
estimates when the householders tend to geographically
coalesce by domain of study. But difficulties arise in a
situation where domains of study exhibiting substantial
distributional dissimilarities are geographically integrated.
In such a situation, implementing the HSHD requires accu-
rate parsing of the class variables. Frugality is tantamount
when specifying class variables, but at the same time the
price to pay for omitting a crucial variable can be sub-
stantial. Thus the designer of the HSHD has little room for
error. By contrast, although model misspecification cer-
tainly remains a danger, the user of A{f) has more
freedom to posit several domain partitions without im-
peding on the ability of A(f) to adjust the imputations for
the local geographical character, based on information from
the closest complete neighbor. A(f) will be useful to
impute categorical measurements when the impact of the
relevant domain partitions on the measurements is not
known a priori, and some of the relevant domains may
define small subpopulations dispersed within the entire
population. Then, based on policy considerations, A(f)
can be applied directly, or to help parse the class variables
of the HSHD, as we did in section 7.

A referee notes that a comparison with a procedure based
on an unbiased sample, building on the method of Zanutto
and Zaslavsky (1995a,b), would be a defining test for
A (f). This procedure would require collecting information
from the item non-respondents on a scale sufficiently large
to ensure bias detection, and we should take advantage of
any such opportunity to perform a test of this type. Unfor-
tunately, because of limited resources, samples containing
this information are seldom collected. Nevertheless, we are
hopeful that the analysis of the returns from Census 2000
aided with procedural information can provide new insights
on the reliability of A(f).
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APPENDIX A - CONYERGENCE OF DABIPF

We ran two chains of 8,000 iterations each, with over-
dispersed starting points, for the case a = (.01, for tract X.

We computed \[E {Gelman and Rubin 1992) for @ (s, ¢) in
(3), for sequences of 1,000, 2,000, and 4,000 iterations,
after burn-in lags of 1,000, 2,000, and 4,000 iterations
respectively. After 2,000 iterations, with 2,000 burn-in
iterations, we observed that Y& < 1.010 in all studied cases,
including those in table 3. We think this level of accuracy
is acceptable for approximating modes and variances.
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A Hierarchical Bayesian Nonignorable Nonresponse Model for
Multinomial Data from Small Areas

BALGOBIN NANDRAM, GEUNSHIK HAN and JAI WON CHOI'

ABSTRACT

The analysis of survey data from different geographical areas, where the data from each area are polychotemous, can be
easily performed using hierarchical Bayesian models even if there are small cell counts in some of these areas. However,
there are difficulties when the survey data have missing information in the form of nonresponse especially when the
charactenistics of the respondents differ from the nonrespondents. We use the selection approach for estimation when there
are nonrespondents because it permits inference for all the parameters, Specifically, we describe a hierarchical Bayesian
model to analyze multinomial nonignorable nonresponse data from different geographical areas, some of them can be small.
For the model, we use a Dirichlet prior density for the multinomial probabilities and a beta prior density for the response
probabilities. This permits a “borrowing of strength™ of the data from larger areas to improve the reliability in the estimates
of the model parameters corresponding to the smaller areas. Because the joint posterior density of all the parameters is
complex, inference is sampling based and Markov chain Monte Carlo methods are used. We apply our method to pravide
an analysis of body mass index (BMI) data from the third National Health and Nutrition Examination Survey (NHANES
IM). For simplicity, the BMI is categorized into three natural levels, and this is done for each of eight age-race-sex domains
and thirty-four counties. We assess the performance of our modei using the NHANES III data and simulated examples,
which show our model works reasonably well, -

KEY WORDS: Latent variable; Metropolis-Hastings sampler; Nonignorable nonresponse; Selection approach; Small area.

1. INTRODUCTION

145

{1998) used a Bayesian hierarchical model for the probabil-

The nonresponse rates in many surveys have been
increasing steadily (De Heer 1999; Groves and Couper
1998), making the nonresponse problem more important
For many surveys the responses are polychotomous. For
example, in the third National Health and Nutrition
Examination Survey (NHANES III), we can estimate the
proportions of persons belonging to three levels of body
mass index (BMI), although BMI is & continuous variable.
The purpose of this paper is to describe a new hierarchical
Bayesian model to study nonignorable multinomial non-
response for small areas, and to apply it to the NHANES [T
BMI data.

Rubin (1987} and Little and Rubin (1987) describe two
types of models which differ according to the ignorability
of response. In the ignorable nonresponse model the
distribution of the variable of interest for a respondent is the
same as the distribution of that variable for a nonrespondent
with the same values of the covariates. In addition, the
parameters in the distributions of the variable and response
must be distinct (see Rubin 1976). All other nonresponse
models are nonignorable. We use both ignorable and
nonignorable nonresponse models for our data because
there are no nonrespondents for some domains.

Crawford, Johnson and Laird (1993) used nonignorable
nonresponse models to analyze data from the Harvard
Medical Practice Survey. Stasny, Kadane, and Fritsch

ities of voting guilty or not on a particular trial when the
views of nonrespondents differ from those of respondents
in various death-penalty beliefs. Park and Brown (1994)
used a pseudo-Bayesian method (Baker and Laird 1988),
and Park (1998) applied a method in which prior observa-
tions are assigned to both observed and unobserved cells to
estimate the missing cells of a multi-way categorical table
under nonignorable nonresponse. Our approach differs
from these anthors. We describe small area estimation for
multinomial data, and we use Markov chain Monte Carlo
methods to implement the methodology. This permits the
inclusion of all sources of variability in our models.

There are two approaches to model nonresponse. The
selection approach is used for the hypothetical complete
data, and a nonresponse mode! is added conditional on the
hypothetical data. This approach was developed to study
sample selection problems (e.g., Heckman 1976 and Olson
1980). In the pattern mixture approach the respondents and
the nonrespondents are modeled separately, and the final
answer is obtained by a probabilistic mixture of the two.
We use the selection approach for our problem.

Stasny (1991) used an empirical Bayes model to study
victimization in the National Crime Survey, and she fol-
lowed the selection approach. This analysis pools binomial
data from several domains, and some of them have small
counts. Essentially this is an exercise in small area
estimation. A related method was presented by Albert and
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Gupta (1985), who used an approximation to obtain a
Bayesian approach for a population with a single domain
(see also Kaufman and King 1973). That is, unlike Stasny
(1991}, these latter authors did not perform. small area
estimation, and their analysis in a single domain do not use
data from other domains.

Since the Bayesian approach can incorporate other
information about nonrespondents, the Bayesian method is
appropriate for the analysis of nonignorable nonresponse
(Little and Rubin 1987 and Rubin 1987). However the main
difficulty is how to describe the relationship between the
respondents and nonrespondents. Using the selection
approach within the framework of Bayes empirical Bayes
(see Deely and Lindley 1981), Stasny (1991) estimated the
hyper-parameters by maximum likelihood methods and then
assumed them known, thereby suppressing some variability.
We extend this approach in two directions.

First, we consider multinomial data obtained indepen-
dently from several geographical areas. It is worthy to note
that Basu and Pereira (1982) considered multinomial non-
response data from a single domain using a multinomial
Dirichlet model when the hyper-parameters are assumed
known. Recently, Forster and Smith (1998) used graphical
multinomial Dirichlet log-linear models to analyze data
from the panel survey in British general election. Again the
hyper-parameters are assumed known, and a mode] with a
single domain is used. Secondly, we obtain a full Bayesian
approach for multinomial nonignorable nonresponse data
from several areas. We do not estimate the hyper-para-
meters using the data.

As a summary, we develop a multinomial nonignorable
nontesponse model which is used for pooling data over
many small areas, and we note that it can be used in other
applications. The rest of the paper is organized as follows.
In section 2 we describe the NHANES III. In section 3 we
discuss the Bayesian model for nonignorable nonresponse.
In particular, a three-stage Bayesian hierarchical multi-
nomial model is applied to the NHANES III data to investi-
gate the nonresponse problem. In section 4 we describe an
analysis of the NHANES III data in which we include a
regression analysis to combine all the age-race- sex
domains. In section 5 we describe a simulation study to
assess the performance of our model. Finally, section 6 has
the conclusion.

2. NHANES III DATA AND NONRESPONSE

The NHANES I is one of the periodic surveys used to
assess an aspect of health of the U.S. population (National
Center for Health Statistics 1994). Our research is
motivated by nonresponse of body mass index (BMI) in the
NHANES IIT. The data for our illustration come from this
survey, and were collected from October 1988 to September
1994, In section 2.1 we describe the actual data, and in
section 2.2 we describe the data we analyze.

2.1 NHANESIII Data

The NHANES IN consists of two parts. The first part is
the interview of the sampled individuals for their personal
information and the second part is the examination of those
sampled. Cne or more persons from the sampled house-
holds were placed into a number of subgroups depending
on their age, race and sex. Some subgroups were sampled
at different rates. Sampled persons were asked to come to
a mobile examination center (MEC) for a phyzsical
examination, Those who did not come were visited by the
examiner for the same purpose. Details of the NHANES III
sample design are available (National Center for Health
Statistics 1992). We incorporate design features associated
with clustering in our model.

The main reasons for NHANES III nonresponse are *‘not
interested”, “no time/work conflict”, “concerns/suspicious”,
“don’t bother me” and “health reasons”. The nonresponse
rate of younger individuals is very high because the parents,
especially older mothers of an only child, were extremely
protective of their babies, and would not allow them to
leave their homes for the MECs. Field workers often
observe that obese persons tend to avoid the medical
examination. So that nonresponse might be nonrandom and
hence require some special attention.

NHANES III data are adjusted by multistage ratio
weightings for the data to be consistent with the population
{Mohadjer, Bell and Waksberg 1994). The ratio is the
proportion of persons in the sample to the number of
persons who completed interview and examination.
Weighting with nonresponse ratio is one of these stages. In
nonresponse ratio estimation, the proportions of non-
respondents in the multinomial cells are the same as those
for the respondents (i.e., ignorable nonresponse). In this
case since the proportions are of interest, no adjustment is
required. Clearly, this ratio estimation can be incorrect
when these two groups are different. Therefore there is a
need to consider the adjustment by a method other than
ratio adjustment. In this paper we investigate a Bayesian
method as an alternative to ratio weighting for nonignorable
nomesponse.

NHANES I nonresponse also occurs at several levels
in the survey: interview and examination. The interview
nonresponse arises from sample individuals who did not
respond for the interview. Some of those who were already
interviewed did not come to the MEC, missing all or part of
the examinations. In this paper, our population consists of
those individuals who would have agreed to take the phys-
ical examination in the MECs. Thus, nonrespondents are
those individuals who agreed to take the physical examina-
tion, and did not show up at the MECs. More specifically,
since we are considering item response, the nonrespondents
are those individuals who agreed to come to the MECs and

their heights and/or weights were not measured.
Schafer, Ezzati-Rice, Johnson, Khare, Little and Rubin

(1996) attempted a comprehensive multiple imputation
project on the NHANES HI data for many variables. The
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purpose was 1o impute the nonresponse data to provide
several data sets for public use. Unfortunately, one of the
limitations of the project was that “the procedure used to
create missingness corresponds to a purely ignorable
mechanism; the simulation provides no information on the
impact of possible deviations from ignorable nonresponse.”
Another limitation is that the procedure did not include
geographical clustering. OQur purpose is different; we do not
provide imputed public-use data.

2.2 Data Used for Illustration

Our data have two age groups (younger than 45 years,
45-, and 45 years or older, 45+}, two race groups (white and
non-white) and, of course, two groups for sex (male and
female). Thus, there are eight age-race-sex domains.

One of the variables of interest in the NHANES III is
BML, an index of weight adjusted for height (Kg / m?), that
broadly categorizes obesity within age-race-sex groups
(Kuczmarski, Carrol, Flegal and Troiano 1997) as low body
fat (level 1: BMI < 20), healthy body fat (level 2: 20 < BMI
< 25), hefty or unhealthy (level 3: BMI > 25). We use this
broad classification for each of the eight age-race-sex
groups.

Rather than a categorical data analysis, one can also
provide an analysis that treats BMI as a continuous variable.
While some information is lost by discretizing the BMI
values, an analysis using continuous models for BMI will
also be approximate and there is a need to search for an
appropriate transformation. In the final analysis, a doctor
only needs to know what proportions of the public belong
to different levels of BML so he or she can tell his patient’s
standing in obesity.

The analysis of BMI data using categorical data methods
is not uncommon. For example, Malec, Davis and Cao
(1999) described a Bayes empirical Bayes analysis of the
NHANES III data. They classified an individual older than
20 years as normal if her/his BMI is below a certain gender
specific threshold. This is an application of a Bayesian
analysis of binary data. However, their classification is
somewhat restricted (see Kuczmarski et al. 1997). By
considering muitinomial data, we have generalized the
analysis of Malec et al. (1999). In fact, they did not provide
a nonignorable nonresponse model,

Unlike Schafer ez al. (1996), we include clustering at the
county level, although there is a need to include clustering
at the household level. For the complete data there are
6,440 households. Of these households 52.1% contributed
one person to the sample, 22.5% two persons, and 21.4% at
least three persons. We have calculated the correlation
coefficient for the BMI values based on pairing the
members within households (see Rao 1973 page 199). It is
0.19 which indicates that as a first approximation the
clustering within households can be ignored.

Table 1 shows the number of respondents for each BMI
level for each apge-race-sex domain and 34 counties
(population at least 500,000). The pattern of respondents
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differs greatly by age. The nonresponse rate for the older
group (45+) is negligible. Therefore the main concern about
nonresponse must be given to the younger group (45-).
There is also higher response rate among females than
males. We note that the selection procedure is not random
over the single population of males and females.

Table 1
Number of individuals in each BMI level and number of
nonrespondents (Non) by age, race and sex over all 34 counties

BMI

Ape Race  Sex 1 2 3 Non
45- w M 1,098 651 597 558
F 845 434 380 233
B M 1,198 713 665 574
F 745 463 524 214
45+ w M 46 439 1,014 3
F 51 223 365 4
B M 79 470 942 8
F 48 169 552 6

Note: BMI (1=less than 20; 2 = at least 20 and smallter than 25;
3 = greater than 25)
Age (Younger than 45 years = 45-; 45 years or older = 45+)
Race (White = W; all others =B)
Sex (Male = M; Female = F}

Table 2
Number of individuals in each BMI level and number of
nonrespondents (Non) for eight examples (Ex) of small
age-race-sex domains from different counties

BMI Level

Ex Age Race  Sex 1 2 3 Non
1 45. W M 1 3 1 14
2 F 3 4 1 0
3 B M 5 5 6 10
4 F k) 1 1 1
5 45+ w M 1 2 6 0
6 F 1 3 4 0
7 B M 3 3 5 0
8 F 2 0 1 1

[ ]

Note: BMI (1=less than 20; 2 = at least 20 and smaller than 25;

3 = greater than 25)

Age (Younger than 45 years = 45-; 45 years or older = 45+)
Race (White = W, all others = B)

Sex (Male = M; Female = F)

One important aspect of our work is on small area esti-
mation. Because we consider inference for each age- race-
sex domain separately over the the geographical areas
(counties), the samples from some of these areas can be
very small. Thus, small area estimation techniques are
required to estimate the parameters corresponding to these
smaller areas. Specifically, we need to “borrow strength”
from the larger areas to make the estimates for the smaller
areas more reliable. Table 2 presents eight examples to
show the need for small area techniques. We have selected
eight counties that have small domains; all the cell counts
are at most 6 and many of them are as small as 1 (one of
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them is O for 45+). We will present overall estimates and
the estimates for the first four examples (45-). Note that in
comparison to the cell counts, the nonrespondents are large
for two of them (14 and 10 nonrespondents).

We note that the purpose is not a comprehensive analysis
of the NHANES III data although it forms an approximate
analysis for these data. Our method is general enough to
analyze multinomial nonresponse data from many areas,
some of which can be small. It is for these small areas that
we develop this modeling technique. Thus, in this paper we
use the NHANES TII data to illustrate our method.

Our method considers each domain separately with a
“borrowing of strength” across the 34 areas (counties) to
analyze the BMI data. Thus, there are eight separate
analyses, each with 34 areas, and some of them are small.
We use a hierarchical multinomial nonresponse model to
analyze data of this form. The small cell counts, substantial
nonrespondents and multinomial data make the methodo-
logy much more practical. Our methodology is also
extended to incorporate all the domains simultaneously
through logistic models,

3. METHODOLOGY FOR HIERARCHICAL
MULTINOMIAL MODEL

We propose a model for each of the eight age-race-sex
domains but for all counties taken simultanecusly. How-
ever, the models fall into two broad classes. We will use a
nonignorable nonresponse model for the younger group and
an ignorable nonresponse model for the older group since
the nonresponse rate for the older group is negligible. Of
course, it is worthwhile to compare the ignorable non-
response model and the nonignorable nonresponse model
for the younger group. We will show how to combine the
groups later using logistic regression, although this is not
the key issue of this paper.

For each age-race-sex group, the k™ individual in the i
county belongs to one of J BMI levels. Then for the &%
individual in {™ county, the characteristic variable at the
7™ BMI level is defined as follows,

=1,..,¢6,k=1,..,n.,

- L
X = (X345 rres Kijr vees Kig ) s d ;

where each x,;, =0 or 1,j=1,.., J, andx_]xj = 1.
The response variable, y, s 18 deﬁned for each age-race-sex
domain

1, if individual k belonging to BMI
level j in county i responded
y'_ =
% o, if individual  belonging to BMI
level j in county i did not respond.

We use a probabilistic structure to model the x,, and i
In our application, there are ¢ = 34 counties and J = 3 BMI
levels.

3.1 Ignorable and Nonignorable Nonresponse
Models

For both ignorable and the nonignorable nonresponse
models, we have

X | Pg Multmom]al (1,p;) (¢))]

where p,; is the probablhty that an individual in the i
county belongs the j% BMI level. Next, we describe the
remaining portions of the ignorable and the nonignorable
models,

First, we describe the ignorable nonresponse model. Let rc
denote the probability that an individual within the i™
county responds (i.e., the probability of responding depends
only on the county). Then, we assume that

Yor | B id Bemoulti (=) @

At the second stage, letting p, = (@, Uyp0 -0 1y,), We take

P, 1,1, 2 Dirichlet (n, t,), 3)

T | By Ty id Beta () Ty, (1 - pyy) 7y)) @

where
J llufl'l J
P(e:luy o) [Ipy™" 7D 7)), 0<py<l, Z;‘ p;=1
I= i=
and
J J
Dwywy) = T Guy;m) /r(r.),o<u1j<1,}:; My, =
I= J=

The components of pu, are the prior means of the corres-
ponding components of the p,, and 1, can be interpreted as
a prior sample size. Similar interpretations can be given for .,
and 1,, for m,. Thus, assumption (3) expresses similarity
among the cell proportions p, and (4) expresses similarity
among the response probabilities x,. It is this structure that
causes the “borrowing of strength” across the ¢ counties.

Second, we describe the nonignorable nonresponse
model. Let ": denote the probablhty that an individual
within the i® county responds in the 7 BMI level (i.e., the
probability of responding depends not only on the county
but also on the BMI level). Then, we assume that

Ve | (e = Giggo X)o7} 39 Bemoulii (m) (5)
where Xijx = 1, s Xijop = 0,j=j for j j=12,.,J.
Letting My = (Mgqs Hags oo 370 atthesecondstagewealso
take

P, ln,. 1 iid Dirichlet (p, ;) (6)
and

L FTYPS 141 Beta(u4,t4,,(l BT =1, 3. (D)
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Like the assumptions in (3) and (4}, the assumptions in
(6) and (7) express similarity among the counties. We note
that the response parameters 7. are weakly identifiable
(i.e., unreliable estimates). However, the selection model
works to our advantage, because the joint density of x,, and
Y = (¥irpr =¥z} connects the Py and T; . In fact, this
is an advantage over the pattern mixfure approach

To ensure a full Bayesian analysis, at the third stage we
take the prior densities for the hyper-parameters as follows.
For the ignorable nonresponse model, the prior densities are

, ~ Dirichlet (1,1, ..., 1), p,, ~ Beta (1, 1),

o @ 0

~Gamma (", v, ) and 1,, ~ Gamma (n,;, vﬂ)),

where (letting ¢ denote either 1, or 1,,, a either n(o) or Ny,
and & either vl(ﬂ) or v2,’) T~ Gamma (g, b) means that
f()=b°""1e ""/l"(a) £ Oand £(t) =0 otherwise.
The hyper-parameters 'r]ls, 12 ,'r|21 and v, are to be
specified. The corresponding part of the nonignorable non-
response model is

Beta (1,1),

us ~ Dirichlet (1,1, ..., 1), p,; -

1, ~ Gamma (n(so), v30)) and

0 .
T,; ~ Gamma (nf,J), v,,(f’) Jj=1,..,7.

Again, the hyper-parameters ngo),vs(m, nff_:), v:f), i=1,..,J

are to specified. It is p0551ble to use other prior densmes
such as shrinkage priors, but it is likely that these will
provide similar inference as our sensitivity analysis
indicates in section 4.

It is an attractive property of the hierarchical model that
it introduces correlation among the variables. For example,
in our application (1), (2), (3) and (4) make the (x oY )
equi-cotrelated across the individuals within the i area.
This is the clustering effect within the areas. Such an effect
can be obtained directly, but it will not be as simple as in a
hierarchical model. A further benefit of the hierarchical
model is that it takes care of extraneous variations among
the areas, and this effect can be obtained directly by using
random effects model. But in our case, this will loose the
natural multinomial data structure.

Let 7, be the number of respondents in county i and y,.
the number of respondents having the j© BMI level in the { #
county. Then r, and y,, are random variables; n, - r;isthe
number of nonrespondents. Since the number of non-
respondents at the j BMI level is unknown, we denote
them by the latent variables z,. (see the tree diagram in
Figure 1). If we can tell what the z,; are, our nonresponse
problem will be sotved. Of course, under the assumption of
ignorable nonresponse, they can be estimated easily using
ratio estimation. The z,. are useful because under the
assumption of nonignorable nonresponse they simplify the
sampling based method to obtain estimates of the
parameters of interest.
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Vil Yiz s Zi1 Zi2 Zin

Figure 1. Latent nonignorable response tree diagram. From a sample
of n, individuals, there are r; respondents of which Yij
belong to category j, j=1, 2, 3. Among the (n; - r,)
nonrespondents z,. individuals belong to category j, ‘where
zZ; are latent vam{bles

The likelihood function for the ignorable nonresponse
mode! is

€
f(y,rip,n)=n i n (1 - )"
=1 i
a7 et
i=1 )'“, ""yl',] j =1

Here the likelihood function has two distinct parts, one for Py
and the other for the .. Using Bayes’ theorem the Jomt
posterior density of all the parameters is

F(p,m By, Ty, T, | Y, T)

10 P R
} / by

-1 - -
TL:‘zt‘zl (1 _'nt)(l M)ty -1

At

i=1

By, 1y, (1-13))7))

1 @
"
exp (- v,@tl)} {tzi' exp (-v 121)}.

o
W
X {Tll

Similarly, the augmented likelihood function (ie.,
including the 2,) for the nonignorable nonresponse model
is

¢ B r o
faarnzipa)=]]
i=1 L)\ Ve oY) G 4y

J
X 111 {(“;;P;j )yij((l - “;j)P;j)z”} }
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and using Bayes’ theorem the joint posterior density of all
the parameters is

F(R. 2,1y T B T, | Y, T
o

e:H H( pu))'u (
e gy it

f) J
Hasty =1

X I I] pijaja /D(l‘l3t3).| I]

j= j=

) py)

Hajtyy—]

I
B(M‘U T4j, (l _I-I4j)1:4j)

(L-m ) ot

1@ J (0)
0 n ()
x{r3 exp( v“'r3)} [1 {14;’ exp (- v‘fj)t4j)}
j=

We consider lnference about the p,,, lhe proportion of
individuals at the j® BMI level in the i™ county, and the
probability of responding,

J
&, =jz; Ttup‘j,i =1,..,c¢

However, the joint posterior densities in (8) and (9) are
complex, and can not be used to make inference analyti-
cally. Thus, we use a Markov chain Monte Carlo algorithm
to obtain estimates of the posterior distribution of the para-
meters. Our methed is to use a Metropolis-Hastings (MH)
sampler to get samples from (8) and (9) and then to use
these samples to make posterior inferences about p; and §,.

3.2 Computations

For the ignorable nonresponse model, it is convenient to
represent the posterior density function as

FP 7 Uy T Hyye Ty | 30T
[
= y FR(ARA ST STNC ALA NTREANY
=1

X F3 (M T Mgy Ty | ¥ 1)

where f(-) is Dirichlet density,

ind
P Ym0 Dy, +m-repT),

£,() is beta density,

ind
flyf’rf’MZI’tZI Beta(r;+ 1y Ty 1y~ 1+ (1 -y ) 1y))

and
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fg(pp 1:1: l-‘zp 121 I Y, l')
“H {D(Y; AR IR T])/D(}Il ’H)}P(Fp Il)
i=1

x - JB(’}J'”znTzv"i—rt*(l_“2:)121)
U By Ty (1-py) 1)

with p(p,,1,) and p(p,,,T,,) the prior distributions.
Hence, f, and f, are obtained through the Gibbs kemnel,
while for f, we use the MH algorithm (Nandram 1998).
For the nonignorable nonresponse model, it is con-
venient to represent the posterior density function as

f(p.mz,0, T, 0,7, y.T)

Py Ty)

c

_H {{ H f (nijly’r’z’”:wt@ }f.hl(pi | y.1,Z, p3!13)}

i=1
xfj+2("3’13, By Ty Z | y.r),

where f,(-}, ..., f,(-) are beta densities,

ind
u[yu iy’ u ”41 t4.f

Beta(y; + M%7+ (1 -1y )7))

f;.(*) is a Dirichlet density,

p | y:’ z‘: pga tj '"' D(}'I.+zf+[l31.'3)
and f, () is given by
fra(My Tty T2 [ Y, T)
c n-n
<[] {DCy,+2,+1,73)/Dluyty) ) (1, T)
Uz zy

5| B(u4,r4j,(1 Ma))Ta;)

with p(u,, T;) and p(m,, t,) the prior distributions. Thus,
fis s Fy,, are obtained through the Gibbs kernel, while
f,., is obtained using the MH algorithm (Nandram 1998).
We obtain the latent variables z,; through one of the condi-
tional posterior densities of the MH algorithm. A sketch of
the procedure is given in Appendix 1.

We drew 5,500 iterates, threw out the first 500, and took
every fifth (obtained by trace plots). This strategy was
satisfactory to wash out the autocorrelation among the
iterates and to have good jumping probabilities (0.25-0.50)
for the Metropolis steps. For the computation, first we set
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@ O @ (O _® {0 {0 (0)
the hyper-parameters 1, ", v, , 3,5 Va1 » T3 » V3 »Tajs Vaj s

J=1,..,J equal to 0. Then we ran our MH algorithm to
obtain posterior samples of t,,1,,,7, and Typ J = 1,..,J.

Tg') er(los)urfiu) pr% r posterior densities, we estimate
@ @ 0 0 (@ . .
My o V1 oMo Var s M3 Vs s Ng;s Va - J = 1, ., J, by fitting

the gamma priors on the posterior samples for t,, 7,;, T, and
Ty J =1, ..., J. These values are shown in Table 3. Finally,
with these proper priors we ran our algorithm to obtain
posterior samples. Specifically, we obtained M = 1,000
iterates (pf"], 6?')), h=1,..M,i=1, .., c. Inferenceabout
the p;, §, and any function of them can be made using these
iterates in a straightforward manner.

Table 3
Estimates of 3 and v®corresponding to the gamma densities
on 1, T,, for 45+ and 1,, 1,,, 7,,, T,, for 45- by race and sex

Ape
45- 45+
Race Sex T Ty Tp T T Ty,
w M n® 3698 2341 3.085 2685 4.408 3.94]

v® 036 071 201 163 009 052

F 1@ 4200 3294 2481 1.819 4788 4.384

v©® 030 059 072 .017 008 .019

B M 1n© 4948 2922 3.156 2404 5971 4.376
v® 068 096 .169 .147 .107 .036

F N 3745 3.084 1.893 2350 3.292 4.488

v® 055 036 049 .116 009 .036

4. AN ANALYSIS OF THE NHANES III DATA

‘In this section we illustrate our methodology using the
BMI data from NHANES III. First, we study our estimates
based on summary measures over the counties. Specifically,
we use the weighted posterior distributions of the p, i

[ £

and the weighted posterior distribution of the &,
- [ [
6 = 12; "1 5:/ iz; ":

for each of the eight age-race-sex domains. Then, for the
first four examples in Table 2 we show small area effects.

We also show how to relate the Py and the =, ; to age,
race and sex using linear and nonlinear logistic regression
models

4.1 Data Analysis

First, we performed a sensitivity analysis to assess the
specifications of @ and v@. We compared three choices
of hyper-parameters Q = (119, v @) to check the sensitivity
of the specification of the hyper-parameters on inference.
Our first choice is 4 times of Q, ie., 4Q = (4n©@, 4vO);
our second choice is the hyper-parameters without any
change, i.e., Q@ = (M, v@); and our third choice is one
fourth of Q i.e., Q/4 =(n®/4,v©/4),
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Table 4 shows the simulation results for the sensitivity to
the inference of p i for the younger group (45-}). The point
estimates and standard deviations of the proportions are
very similar over the three choices of hyper-parameters.
Similarly, Table 5 shows the simulation results for p j for
the older group (45+). The point estimates for males are
very similar over the three choices of the hyper-parameters,
but there are small changes in the point estimates for
females from 4Q to Q. The standard deviations are
increased when Q decreases for the females, but no
substantial changes are detected for males. Generally, the
nonignorable nonresponse model performs better than the
ignorable nonresponse model, as the nonignorable non-
response model is not sensitive to choices of the hyper-
parameters.

Table 4

Sensitivity of § i for choice of 'q;m. v:fo). n.(,(}) and v}f’. j=1..4

for the younger group (45-) for the three BMI levels

Race  Sex B, swdp)) p, std(F)) F, std(p;)
(ay40
w M 428 022 216 019 35 022
F 476 025 232 020 292 .04
B M 412 020 212 016 369 020
F 434 026 185 023 381 .027
(]
w M 427 022 211 020 362 025
F 476 026 223 024 301 031
B M 419 020 208 017 373 022
F 435 025 178 026 387 029
() V4
w M 427 022 210 021 364 027
F 475 026 220 026 304 034
B M 419 020 206 018 375  .024
F 435 025 177 028 388  .029

. [C I (). O (v N (1 O I 1 B I (1
Notel: Q2 =(n;", vzf R 115“)' v4(1 +Tlazs Vaz s Tlazs Vaz

Note 2: The nonignorable nonresponse model is applied to the
younger group.

Table 5

Sensitivity of § . for choice of 'q(lm, vl(o), ng“.’ . v;,“l” for the

older group (45+) for the three BMI levels

Race Sex By std(p)) B, sd(F)  p, sd(F,)
(@)4Q
w M .030 005 306 .018 .664 018
F .081 .002 436 004 483 004
B M 053 011 317 017 .630 .018
F 075 005 20 .004 724 006
()} 1]
W M .031 .005 292 it 677 016
F .063 .002 .443 .0ge 494 005
B M .053 01 316 019 631 .020
F .066 012 .237 018 697 019
(c)fv4
w M 031 005 .293 018 676 019
F 073 015 359 011 568 019
B M .053 010 317 018 630 019
F 055 013 221 022 714 025

Notel: Q= (n‘lo), vlm)’ ng::’, vz(?)).
Note 2: The ignorable nonresponse model is applied to the older
group.
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Table 6
Point estimates and 95% credible intervals for the weighted probability of response, § = Y8y in,
for three choices of Q and the younger group

40 Q (9773
Race Sex & std(S) Interval 5 std(S ) Interval 5 std(s) Interval
W M 775 0l6 (744,805 .76% 017 (735, .801) .767 018 (.732,.799)
F 855 .017 (.821,.886) .855 .020 (810,.887) 853 022 (-806, .887)
B M .786 016 (.752,.817) .780 .018 (740, .813) .778 018 (.739, 811
F_.880 .013 (854,.902) 878 015 (.845,.903) .876 .015 (.838, .903)

Note: See the note to Table 1.

Table 6 shows point estimates of the probability of
responding &, and their 95% credible intervals for three
choices of Q. The probabilities of responding for males are
lower than those for females, and this pattern remains the
same for three choices of Q. If a similar survey is
conducted in the future, we should increase the sample size
by 1.30 = (1/.769) times for white males and 1.17 = (1/.855)
times for white females (e.g., if complete data are required
from 1,000 households, the interviewer needs to contact
1,300 white males).

In Table 7 we present 95% credible intervals for the b;
for the three BMI levels. For the younger group, p1 of
BMI level 1 is the highest, and 5, of BMI level 2 is the
lowest. The lower bounds for 5, and p, are similar for the
younger group except for white females, and those for 5,
are similar except for the non-white females. For the older
group, j, of BMIlevel 3 is highest, and p, of BMI level
1 is Jowest. Specifically p,, p, are highand f, is low for
the white males.

Table 7
95% credible intervals for the weighted proportions,
P;=Yi.1npyl i n by age, race and sex

95% credible interval
Age Race Sex B, B, P
45- W M (382,.470) (.174,.252) (.314, 412)
F (425,.525) (.171,.269) (.243, .371)
B M (381, .455) (.176,.241) (.333, .419)
F (385, .482) (.130,.230) (329, .442)
45+ W M (022,.041) (.255,.326) (.643, .710)
F (.059,.068) (431, .451) (.486, .505)
B M (.035.076) (.282,.352) (.592,.670)
F_ (.040,.093) (.206, .265) (.661,.731)
Note 1: The nonignorable nonresponse model is applied to the
younger group.

Note 2: The ignorable nonresponse model is applied to the older
group.

As suggested by a referee, we have looked at the results
for older white females (45+) in Table 7 in greater detail.
From Table 1 the cbserved proportions in the three BMI
levels are .079, .347 and .568. However, the 95% credible
intervals for the population proportions in Table 7 are
(.059, .068), (431, .451) and (.486, .505) respectively. That

is, while the observed proportions are close to the intervals,
none of these intervals contains the observed proportions.
We can explain this phenomenon in the following manner,
The data for older white females (45+) are very sparse. For
the 34 counties the quartiles of the observed counts in the
three BMI levels are (0,1,3), (3,6,10) and (5,9,14) respec-
tively. Thus, when the ignorable nonresponse model is fit to
the 34 counties, there is shrinkage not only across the
counties but also across the BMI levels. Consequently, the
largest proportion tends to be smaller and the smallest pro-
portion tends to be larger, and since the three proportions
must add up to one, the second proportion must also
“shrink” somewhat. In addition, consider the sensitivity
analysis in Table 5. We can approximate 95% credible
intervals for p,, p, and §,, by using the posterior mean
% 2 x standard deviation. The intervals at 4£2 and Q2 do not
contain the observed proportions, but the intervals at £0/4
do. Therefore, because of the sparseness of tha data, there
is some sensitivity to inference for older white females
(45+) with respect to the prior misspecification of €. These
results are expected within the small area context, when
there are sparse data.

We use the first four examples in Table 2 to illustrate
small area estimation. As it can be imagined, it is too
cumbersome to present all the estimates for the 34 counties
and the 8 domains. Table 8 shows the posterior means,
standard deviations and 95% credible intervals for the py
and the §,.

First, we compare the estimates of the py from the
ignorable and nonignorable nonresponse mode]s The
estimates from the two models are generally different with
the intervals for the nonignorable nonresponse model wider
than those for the ignorable nonresponse model.

Second, we consider the estimates (based on the non-
ignorable nonresponse model) of p,, for the individual
counties in Table & with the overall averages, the p
Table 7. As expected when the £ . are obtained, there i i an
overall reduction in variability because of the extra
smoothing, thereby making the intervals for the smaller
domains relatively much wider. In fact, all the intervals for
the small domains contain the intervals for p P

Finally, in Table 8 we consider the estimates of § y for
the individual counties with the overall average, p i in
Table 7. The message is similar to that for the Py
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However, we note that the first example is an exception
where the credible interval for §,(.459,.773) is almost
completely to the left side of the credible interval for
&(.735, .801). Thus, there is much shrinkage for this
example which is due to the relatively large number of
nonrespondents, 14 in this county for white males 45-.

Table 8
Comparaison of the ignorable (ig) and the nonignorable (nig)
nonresponse models for the four examples (Ex) corresponding
-to small domains using the cell probabilities ( p;) and the
probability of responding (8)

Ex Meodel P P2 P 8
1 ig avg 444 308 248
std 073 067 067
Cl (.297,.593) (.193,.450) (.125,.386)
nig avg 450 276 273 637
std 093 079 082 081
CI (256,.638) (137, .444) (133, 448) (.459,.773)
2 ig avg 480 308 213
std 075 066 062
CI (324, 619) {(.193,.452) (.097,.344)
nig avg 493 .263 244 879
std 074 065 062 041
Cl (338,.628) (.141,.406) (.121,.394) (.782, .948)
3 ig avg 420 306 274
std 071 063 .063
Cl (.276,.561) (192, 437y {(.161, 416)
nig avg 438 252 310 741
std 079 072 074 058
CI (283,.591) (.116,.406) (.186, 483) (.607,.836)
4 ig avg 448 .263 288
std .089 075 081
CI (.278,.620) (.127, 424) (138, 468)
nig avg 430 .261 308 874
std 100 086 .091 046

Cl (217,.619) (104, .453) (.145,.517) (768, .948)

Note:  For cach parameter avg = posterior mean; std = posterior

standard deviation; CI = 95% credible interval

4.2 Linear and Nonlinear Logistic Regression
Models

Let g denote the probability that a respondent in
I™(I=1,8) age-race-sex group in the i™ county belongs
to the j™ BMI level, (We add the subscript  to the pyto
denote the domains.) Letting v, = lcng{z‘,j6= 1 D!

. b
(1-Y5.1g5)) j=1,.. J -1, we take

vy = (8- (= o))/, (10)

subject to the constraints ¥;.,p,=0,¥7 ) 8, =0,
¥ ., 9,=0,and ¥, In y, = 0. The parameters 8, p,, ,
and v, in (10) have posterior distributions whose properties
are inherited from the posterior distributions of g;;r Each
iterate of the MH algorithm provides a value for 4, which
is used in (10), and a nonlinear least squares problem is
solved using an iterative method to get the values of

0;.1;. @, and v, (see Appendix 2). Alternatively, we can
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also use the much simpler linear logistic model in which the
v, in (10) are taken equal to unity. In this case, the least
squares estimators of Gj @, 1, and o, exist in closed form
at the A™ iteration of MH algorithm. Specifically, for
@; = 0, we have the least squares estimates i, =v... - v, ,
6 =V, 6, =V. -V, where

= J-1 g8

Ve 2 L1 Yiay 2t Vil 8c (I - 1),

= J=ly8

Vi = Yja1 Lier Vg /8T - 1),

- 8
Vi =Yt v/ 8¢

and ¥,=Y;., ;7| vy/c(J - 1). The nonlinear least
squares problem 1s solved using an iterative method to get
the values of 8., ,, i, and &,

We present 95% credible intervals for 6,8, and
@, ..., &g for the younger and older groups by regression
type in Table 9. For the cut-points ej, 0, gives a large nega-
tive effect compared to 6, The relative measure
o,(l=1,..,4) of the younger group gives a negative
effect, while the relative measure a,(/ =35, ...,8) of the
older group gives positive effects. The 95% credible
intervals for linear and nonlinear estimates are essentially
the same.

We also relate the probability of response, §,=
Xf=1 m,; Py to race and sex using linear and nonlinear
logistic regression models for the younger group. The 95%
credible intervals for 8 and a,, ..., o, for the young group
by regression type are shown in Table 10, Credible intervals
for all o, for the nonlinear model are shorter than those for
the linear model. However, for the nonlinear model the
credible interval for @ is wider than and on the right of that
for the linear model.

Table 9
Comparaison of 95% credible intervals for 0,,0, and a,, ..., a;
for both younger and older groups by regression type

Linear Nonlinear
i3 (-1.743, -1.469) (-1.731, -1.466)
g, (0.028, 0.196) (0.025,0.193)
o, (-1.167, -0.751) {-1.159, 0.751)
o, {-1.395,-0..939) (-1.385, -0.937)
o, (-1.127,-0.723) (-1.119,-0.728)
a, (-1.112, -0.659) (-1.103, -0.658)
a, (1.198, 1.514) (1.188, 1.498)
a, (0.513, 0.689) (0.506, 0.685)
a, (0.715, 1.210) (0.725, 1.225)
ag (0.809, 1.310) (0.803, 1.300)
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Table 10
Comparaisont of 95% credible intervals for® and
@,, ..., a, for the younger group by regression type

Linear Nontinear
6 (1.455, 1.729) (1.664, 2.174)
a, (0.165, 0.592) (0.146, 0.523)
a, (-0.535, 0.014) (-0.467, 0.007)
o (0.078, 0.546) (0.079, 0.484)
o, (-0.704, -0.165) (-0.638,-0.169)

5. A SIMULATION STUDY

We describe a small simulation study to assess the
performance of our muitinomial nonignorable nomesponse
model. We focus on the probability of responding.

We use the observed data from younger white males to
obtain the posterior means of p,,, p;,, p;, and ®,, ,,, 7,5
for each county. These are takcn to be the true (t; values
which we denote by ,r:v,1 . pfl'), pﬁ and n!('l), n‘?}. 1:,3 Thus,
th(g true pI‘Ol(i;;’iblhty of responding in the {™ county is
8, 2 1Py T‘: and the weighted probability of
responding is 8(') =¥ n 8 %5 n,. In our simulated
examples, we used the n, as in the BMI data for younger
white males, and we kept the p,. ) fixed throughout. How-
ever, we Vaned the 7 in the followmg manner. We kept

, fixed at 1:“, and we denote the vector of the m,, by
1:] The 34 values of the n” range from .73 to .83. Then
we set m, =an, and 7, = bm,, where a, b =0.8,0.9, 1.0.
(We denote the vectors of the m, and the =, by =, and
n, respectively.) Thus, there are 9 simulated examples.

Then, for each (a, b) we generated counts for a multi-

normal probablhty mass funcuon with )probabilities
Pi %10 Piy Ty Pis LOED Pn (1-m,), Pi (1 -my,),
p,3 (1 -x,,). Wedenote these cell counts by Yirr yjz, Yige
Z1» 2y %3 and the number of respondents is r; = ): - y
Then, we fit the nonignorable nonresponse model to
above data usmg the MH sampler, and we obtained M =
1,000 values (p, ,n;)) h =1, .., M. Foreach value, we
computed 8“') =¥i.n iﬁ(")l E, \n, where &=
Zj (h) (h)

In Table 11 we report posterior means, standard devia-
tions, numerical standard errors (using the batch means
method) and 95% credible interval for the probability of
responding for each choice of (a, #). We also computed
Pr(8 <§©|y,r) by counting the number of 3® that are
as large as 8”. An extremely large or small value of this
latter quantity suggests model failure.

We plotted the estimates of the posterior densities of &
by choices of a and b which we obtained by using normai
kernel density estimator with an optimal window width
from an output analysis of the MH algorithm. The densities
are an unimodal, peaked and almost symmetric. By
increasing (a, £) from (0.8,0.8) to (1.0, 1.0), the mede of the
posterior densities increase.

Table 11
Characteristics of the probability of responding

i

m, stat 0.8 xm 0.9 =, 1.0 *m,
08 xm true 0.690 0.719 0.748
avg 0.712 0.739 0.764
std 0.016 0.015 0.014
nse 0.0030 0.0031 0.0029
CI (0.678,0.742) (0.708,0.767) (0.734, 0.750)
prab 0.082 0.055 0.135
09 *m true 0.706 0.735 0.764
avg 0.710 0.742 0.776
std 0.017 0.016 0.014
nse 0.0030 0.0031 0.0031
Cl  (0.673,.0.742) (0.712,0.769) (0.745, 0.802)
prob 0.377 0.303 0.210
1LO+m true 0.722 0.751 0.780
avg 0.726 0.758 0.784
std 0.017 0.015 0.015
nse 0.0036 0.0036 0.0026
Cl  (0.693,0.757) (0.725,0.784) (0.750, 0.809)
prob 0.399 0.318 0.380
Note: avg = posterior mean; std = standard deviation; nse =

numericat_standard error; CI = 93% credible interval;
prob=Pr (5 <8 | y, r); the 34 values of =, range from .73
to .B3.

In Table 11 we show that all the credible intervals
contain the true values and the posterior means are close to
the true value with the least discrepancy for the near igno-
rable nonresponse cases. The standard deviations are very
similar across the nine simulated examples. Also, the nuo-
merical standard errors (nse) are small and similar for all
nine simulated examples. The estimates of Pr(3 <8(')|y r)
range from 0.30 to 0.40, except for the most nonignorable
nonresponse cases in which (a, &) = (.8, .8) and (.8, .9).
Thus, the model does perform reasonably well.

6. CONCLUSION

We have described a Bayesian methodology that can be
used to analyze multinomial data for small areas when there
is nonignorable nonresponse. A hierarchical model is used,
and we have shown that it performs reasonably well. In fact,
we have extended the method of Stasny (1991) in two
directions: (a) we have considercd multinomial data with
more than two cells (binomial) and (&) we have done a full
Bayesian analysis. Both (a) and (b) have been implemented
for small areas

The Markov chain Monte Carlo method permits an
assessment of the complex structure of the multinomial
nonresponse estimation. Our empirical analysis and simu-
lation study indicate good performance of the model for
these data, Thus, the method of ratio estimation currently
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used in NHANES III may be replaced by our Bayesian
method as the nonrespondents’ characteristics might differ
from those of the respondents. In fact, an application of our
model to the NHANES Il data shows that in each county
there are substantial differences in the proportions of
individuals at the three BMI levels by age and sex. This can
be seen in Table 1 when the observed counts are summed
over the counties. But, we have obtained inference
(including measure of precision) for each county by age,
race and sex.

Our methodology can be extended in three ways. First,
it is feasible to use a model that incorporates an extent of
nonignorability, rather than just the dichotomy of ignorable
nonresponse and nonignorable nonresponse. Second, one
can use other prior distributions (e.g., Dirichlet process
prior) to model heterogeneity in the clustering of the areas
rather than assuming homogeneity of the areas as we have
done. Third, one can use a fourth stage in our model to
accommodate clustering within households as well as
clustering within areas (counties) in NHANES III. These
tasks are very difficult.
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APPENDIX 1

Metropolis-Hastings Samplers

For the ignorable nonresponse model, {(p,7,) and
(Myys Tyy) are independent a posteriori with

S 1Py T
P(ﬂl,'ﬁh’,r)ﬂp(ﬂpfl)g{ ITRS) (A1)

and
p(HZI’ 121 | Y, r)ap(l-lzp 1-21)

By T 1yt (-, )t |
(A.2)
1 { B (Mg Ty (1 - 115))75)

where p(p,t,) and p(u,,,1,,) are the prior distribu-

tions. Samples can be obtained from each of (A.1) and
(A.2) using the MH algorithm of Nandram (1998).

For the nonignorable nonresponse model, it is conve-

nient to condition on z to obtain

9 1Dtz rmyt)

|z, Yy, r)a ,T — " (A

pry, 1z y, r)ap(p, 3)E { RS }(A 3)
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Pny» 1]z Y, ap(n,;, )

£ {B(yfj"'“qtﬁs Z;j"'(l "'“4_,')1:4]')

}, (A.4)
B(P:;j 1:4_,;’ ( 1 - ll4j)T4j)

i=1

where p(pa,ra),p(u4j,t4j), J=1,..,, J are the prior
distributions. Given z, (A.3) and (A.4) are independent with

Pz, =By =y | V.01, T My Ty Jj=1..,0):

- -

Wity
Syt by A -
- fy=

(A.5)

w.
iyttt

J =
forg;=0,1,.om -1, 3y 8y =m -1y,

n -,
: D(y, + 4+ 13 73)

w. =
ity iy ¢
il g

J
I1 Byt hg; Ty ty+ (1 - 1))
J=1

We ran the MH sampler by drawing a random deviate from
each of (A.3), (A.4), and (A.5). It is easy to draw a random
deviate from (A.5). Samples were obtained from each of
(A.3), (A.4) and (A.5) using the MH algorithm of Nandram
(1998).

APPENDIX 2

Nonlinear least squares estimates
Let

Vi1 =108 {2} qm/ ( 1 ‘i} q,-,,] },j =1,..,J-1=J.

£=

These v, are obtained for each iterate from the
Metropolis-Hastings sampler. To solve the nonlinear least
squares problem we minimized

c J 8 @ 2
£ 55 buers-ono)
subject to the constraints 12: . b =0, Efﬂ 8,=0, Z,sﬂ
o, =0, and letting e¥ = WY In y, =0
Taking partial derivatives to find the least squares
estimate, we have

(A.1)

J 8 .
=| ’ZI VUI(ej_n!-d) .
¢, =log § =— =logw,  (A2)
-0 -a
Wg(, .-,
where
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eeetn)l e

With these settings we draw the a4 from a MH algorithm,
and the nonlinear least squares problem is solved using an
iterative method to get values of ¢,, 0;, p, and @;. Let

J
e $ it /[ 15 at) |
s=1 §=1
where qif? denotes the value of g, , at the 2™ iterate of the
MH algorithm. Then we minimize (A.I) subject to the above
constraints at the A® iterate to obtain ¢§”>, 9}"), p?') and
a?'). These iterates provide an estimate of the posterior
distributions of ¢, 8, u; and a,. Convergence occurred for
our application in less then 10 iterations.
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Assessing the Bias Associated with Alternative Contact Strategies in

Telephone Time-Use Surveys

JAY STEWART!

ABSTRACT

In most telephone time-use surveys, respondents are called on one day and asked to report on their activities during the
previous day. Given that most respondents are not available on their initial calling day, this feature of telephone time-use
surveys introduces the possibility that the probability of interviewing the respondent about a given reference day is
correlated with the activities on that reference day. Furthermore, noncontact bias is a more important consideration for
time-use surveys than for other surveys, because time-use surveys cannot accept proxy responses. Therefore, it is essential
that telephone time-use surveys have a strategy for making subsequent attempts to contact respondents. A contact strategy
specifics the contact schedule and the field period. Previous literature has identified two schedules for making subsequent
aftempts: a convenient-day schedule and a designated-day schedule. Most of these articles recommend the designated-day
schedule, but there is little evidence to support this viewpoint. In this paper, we use computer simulations to examine the
bias associated with the convenient-day schedule and three variations of the desi gnated-day schedule. The results support
using a designated-day schedule, and validate the recommendations of the previous literature. The convenient-day schedule
introduces systematic bias: time spent in activities done away from home tends to be overestimated. More importantly,
estimates gencrated using the convenient-day schedule are sensitive to the variance of the contact probability. In contrast
a designated-day-with-postponement schedule generates very little bias, and is robust to a wide range of assumptions about

the pattern of activities across days of the week.

KEY WORDS: Telephone time-use surveys; Contact strategies; Bias; Computer simulations.

1. INTRODUCTION

Telephone time-use surveys present a unique data
collection challenge because respondents are called on one
day and asked to report on their activities during the
previous day. The challenge arises because most
respondents — about 75% (Kalton 1985) — are not contacted
on their original calling day, necessitating additional
contact attempts. In most surveys, it does not matter when
these additional attempts are made, because respondents are
being asked to report about a fixed reference period. And in
most surveys recall does not suffer too much if respondents
are contacted several days after the initial calling day, But
in time-use surveys, respondents’ ability to recall their
activities on a given day falls off dramatically after a day or
so, which means that the respondent must be assigned a
new reference day if no contact is made on the initial
calling day. As we will see below, this scenario introduces
the possibility that the probability of interviewing the
respondent about a given reference day is correlated with
the activities on that reference day. Therefore it is essential
that these surveys have a strategy for making subsequent
attempts to contact respondents that does not introduce bias.

Contact Strategies

A contact strategy is comprised of a contact schedule and
a field period. The contact schedule specifies which days of
the week that contact attempts will be made, and the field
period specifies the maximum number of weeks attempts
will be made.,

Contact schedules fall into two main categories:
designated-day schedules and convenient-day schedules.
Both types of schedule randomly assign each respondent to
an initial calling day. If the respondent is contacted on the
initial calling day, the interviewer attempts to collect infor-
mation about the reference day, which is the day before the
calling day. It is for subsequent contact attempts that these
schedules differ.

Under a designated-day schedule, there are two
approaches to making subsequent contact attempts. The
interviewer could call the respondent on a later date, and
ask the respondent to report activities for the original
reference day. This approach maintains the original
reference day, but extends the recall period. Harvey (1993)
recommends allowing a recall period of no more than two
days. The second approach is to postpone the interview and
assign the respondent to a new reference day. Kalton (1985)
recommends postponing the interview by exactly one week,
$0 that the new reference day is the same day of the week as
the original reference day.

These approaches are not mutually exclusive. For
example, Statistics Canada’s designated-day schedule
allows interviewers to call respondents up to two days after
the reference day (Statistics Canada 1999), and to postpone
the interview by one week if the respondent cannot be
reached after the second day of attempts. The interview can
be postponed no more than three times (Statistics Canada).
To illustrate, if the initial reference day is Monday the 1st,
the respondent is called on Tuesday the 2™ and, if
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necessary, on Wednesday the 3. If no interview is obtained
on either of these days, the respondent is called on Tuesday
the 9 and, if necessary, on Wednesday the 10®, and asked
to report on activities done on Monday the 8". This process
continues until the respondent is interviewed, refuses, or
until four weeks pass.

The convenient-day schedule does not maintain the
designated reference day. If no contact is made, the
interviewer calls on the next day and each subsequent day
until the respondent is contacted. Once contact is made, the
interviewer attempts to complete the interview or, if the
respondent is unwilling to complete the interview at that
time, reschedule it to a day that is convenient for the
respondent. The reference day is always the day prior to the
interview, It is worth noting that because respondents are
not likely to schedule interviews on busy days, allowing
them to choose their interview day is really no different
than the interviewer proposing consecutive days (or calling
on consecutive days} until the respondent accepts. Hence,
one may think of the convenient-day schedule as being
functionally identical to an every-day contact attermnpt
schedule.

A variant of the convenient-day schedule described
above was used in the 1992-1994 Environmental Protection
Agency (EPA) Time Diary Study conducted by the
University of Maryland (see Triplett 1995). Respondents
were not assigned to an initial calling day. Instead, they
were assigned to either the weekday or the weekend
sample. For example, those who were assigned to the
weekend sample could be called on Sunday (to report about
Saturday) or Monday (to report about Sunday). Interviewers
were instructed to make at least 20 call attempts before
finalizing the case as noncompleted.

Most methodological papers argue in favor of using a
designated-day schedule (Kinsley and O’Donnell 1983;
Kalton 1985; Lyberg 1939; Harvey 1993; and Harvey
1999). For example, Lyberg (1989) argues that the
convenient-day schedule may introduce bias because “the
respondent may choose a day when he/she is not busy, a
day he/she is not engaged in socially unacceptable behavior,
a day he/she thinks is representative, erc.” Kinsley and
O’Donnell (1983) argue that the convenient-day schedule
could exaggerate the number of events taking place outside
the home, because the respondent is more likely to be inter-
viewed on a day that immediately follows a day that he or
she was out of the house.

Two of these studies directly compare the designated-
day and convenient-day schedules (Kinsley and O’ Donnell
1983; Lyberg 1989). In Kinsley and O’Donnell (1983), the
experimental design divided the sample into two groups.
They found that the two schedules produced similar
response rates, and that the demographic composition was
similar for both samples. They also found that the estimated
time spent away from home was much higher under the
convenient-day schedule than under the designated-day
schedule. But it is impossible to determine whether the

convenient-day schedule overestimates time spent away
from home or if the designated-day schedule underestimates
time spent away from home, because the truth is not known.
In Lyberg (1989), two diaries were collected from each
respondent. One was collected using a designated-day
schedule and the other was collected using a
convenient-day schedule. However, the convenient-day
diaries were conducted by an interviewer, while the
designated-day diaries were self-administered several days
after the convenient-day interview. So it is impossible to
determine whether any differences were due to differences
in contact schedules or whether they were due to mode
effects.

Two studies (Lyberg 1989; Laaksonen and Pisikkénen
1992) investigate the effect of postponement on response
rates. Both studies found that postponement increases
response rates. Laaksonen and Pidkkonen (1992) also
found that it was difficult to evaluate whether postponement
introduces bias. Their results showed that respondents who
postponed their interview spent less time on housekeeping
and maintenance, and more time on shopping and errands.
However, it is unclear whether these differences are the
result of bias introduced by postponement, unobserved
heterogeneity that is correlated with the postponement
probability, or simply random noise. In any case, they
argued that the differences were small, so that any bias was
small.

One advantage of the convenient-day schedule is that it
is possible to make many contact attempts in a short period
of time. In contrast, the designated-day schedule — as
proposed - permits only one contact attempt per week. So
it is natural to ask: Would it be reasonable to modify the
designated-day schedule to allow some form of day-of-
week substitution? For example, if the respondent cannot be
reached on Tuesday to report about Monday, would it be
acceptable to contact the respondent on, say, Thursday and
ask him or her to report about Wednesday? This modified
schedule would allow for more contact attempts without
having to extend the field period.

Because this type of substitution makes sense only if the
substitute days are fairly similar to the original days, the
first step was to determine which days, if any, were similar
to one another. In earlier work, Stewart (2000) showed that
Monday through Thursday are very similar to each other,
Fridays are slightly different from the other weekdays, and
Saturday and Sunday are very different from the weekdays
and from each other. Hence, it would be reasonable to allow
day-of-week substitution at least for Monday through
Thursday.

Activity Bias and Noncontact Bias

When selecting a contact strategy, we need to be
concermed with two types of bias: activity bias and non-
contact bias. Activity bias occurs when the probability of
contacting and interviewing a potential respondent on a
particular day is correlated with his or her activities on that
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day. Note that here and throughout the paper, the term
contact probability refers to the probability of a productive
contact (one that results in an interview}. In order to isolate
the effects of using alternative contact strategies, it is
assumed that respondents always agree to an interview
when contacted. Noncontact bias occurs when differences
in contact probabilities across individuals are caused by
differences in activities across individuals. Two simple
numerical examples will illustrate these biases.

Example 1 — Activity Bias: Suppose that potential
respondents’ days fall into two categories: hard-to-contact
(HTC) days and easy-to-contact (ETC) days. Further
suppose that interviewers never contact respondents on
HTC days (i.e., that P, =0, where P, is the contact proba-
bility on an HTC day), and that they always contact
respondents on ETC days (i.e., that P; = 1, where P is the
contact probability on an ETC day). Finally, suppose that
the probability that any day is an ETC day is 0.5, so that on
average half of each potential respondent’s days are ETC
and half are HTC. Note that all potential respondents are
identical in the sense that the probability that any given day
is an ETC day is 0.5 for all potential respondents. For
simplicity, I assume that the activittes of a given day can be
summarized by an “activity index,” I,, where I =
I - P, (J =H, E). The activity index represents time spent
in activities that are negatively correlated with the contact
probability. Thus, HTC days are days in which more time
is spent in activities that are done away from home
(working, shopping, active leisure, efc.}, while ETC days
are days in which more time is spent in activities that are
done at home (housework, passive leisure, etc.). The true
average activity index for the population of potential
respondents is 0.5 (=0.5 x 1 + 0.5 x 0).

If a convenient-day contact schedule is used and there is
no limit on the number of call-backs, then HTC days are
oversampled. To see why this occurs, it is instructive to
work through the two possible contact sequences. If the
initial contact attempt occurs on an ETC day, then the
respondent is contacted and asked about the previous day
(the diary day). Because HTC and ETC days are equally
likely, on average half of these diary days will be HTC and
the other half will be ETC. Therefore, the average activity
index for the diary days of these respondents is equal to 0.5,
which is the same as the population average. If, on the other
hand, the initial contact day is an HTC day, then no inter-
view takes place and the respondent is called on the
following day. Contact attempts continue every day until
the respondent is reached (on an ETC day). The average
activity index for the diary days of these respondents is
equal to one, because the respondent is always interviewed
on an ETC day that immediately follows an HTC day. So if
a given day is HTC (i.e., the respondent does a lot of
activities away from home), then it is more likely that that
day will be selected as the reference day. Hence, the
probability of interviewing the respondent on a given
reference day is correlated with the activities on that
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reference day. Since half of the initial contact attempts are
made on HTC days and half are made on ETC days, the
average activity index for the final sample is equal to 0.75
(=05 x05+05x 1)

Example 2 - Noncontact Bias: Now suppose that potential
respondents differ with respect to their contact probabilities,
and that the contact probabilities for each individual do not
vary from day to day. Suppose also that half of all potential
respondents are HTC, with P,; =0.25,and that the other
half are ETC, with P, =0.75. If we atiempt to contact each
potential respondent four times, given these probabilities,
virtnally all (99.6%) ETC potential respondents are
contacted. In contrast, only 68.4% of HTC potential
respondents are contacted, The overall contact rate is 84%
(99.6% x 0.50 + 68.4% x 0.50), but the final sample is not
representative: 59.3% of the sample are ETC and only
40.7 % are HTC. Therefore, estimates based on this sample
will tend to underestimate the time spent in activities done
by HTC people, and overestimate the time spent in
activities done by ETC people.

The biases described above are not limited to time-use
surveys. Although most surveys take steps to minimize
noncontact bias, less attention has been devoted to activity
bias. For example, in addition to their main focus on
collecting event history information on employment, the
National Longitudinal Surveys also include a few questions
about labor force activities (employment and hours) during
the week prior to the interview. Because these interviews
tend to be scheduled at the convenience of the respondent,
the respondent’s activities during the reference week Wwill be
correlated with the probability of interviewing the
respondent about that reference week. The intuition behind
this correlation is exactly the same as that in Example 1.
This correlation introduces bias into hours-worked esti-
mates, although the direction of the bias is indeterminate.
Hours worked per week tend to be overestimated for
respondents who were unable to schedule an interview
because of a heavy work schedule, and tend to be under-
estimated for respondents who were away on vacation.
Activity bias is also an issue for travel surveys. Time spent
away from home will tend to be overestimated if
respondents are asked about, say, the four weeks prior to
the interview. Asking respondents about a fixed reference
period can eliminate this bias.

It is worth noting that noncontact bias is a more
important consideration for time-use surveys than for other
surveys, because, unlike most other surveys, time-use
surveys cannot accept proxy responses. If proxy responses
could be accepted then data on HTC individuals could be
collected from proxies, who may be easier to contact. This
would weaken the correlation between the individual’s
activities and the probability of collecting data about that
individual.

The rest of the paper is organized as follows. In section
2, four contact strategies are introduced, and simple
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simulations are used to assess the activity bias associated
with each strategy. In section 3, the simulations are
augmented with data from the May 1997 Work Schedule
Supplement to the Current Population Survey and the 1992-
94 University of Maryland Time Diary Study, and how the
bias varies by specific activity is examined. In addition, the
overall bias is decomposed to assess the relative contri-
bution of activity bias and noncontact bias. Section 4
surmnmarizes these results and makes recommendations.

2. CONTACT STRATEGIES, CORRELATED
ACTIVITIES, AND ACTIVITY BIAS

In this section, the activity biases associated with the
convenient-day schedule and each of the three variants of
the designated-day schedule are compared, These schedules
are defined as follows:

1. Convenient day (CD). Attempt to contact potential
respondents every day following the initial contact
attempt until contact is made or until the field period
ends.

2. Designated day (DD): Attempt to contact potential
respondents only once (no subsequent attempts).

3. Designated day with postponement (DDP): Attempt to

contact potential respondents on the same day of the

week as the initial attempt until contact is made or
until the field period ends (as recommended by Kalton
1985). :

4. Designated day with postponement and substitution
(DDPS): Attempt to contact potential respondents
every other day following the initial contact attempt
until contact is made or until the field period ends.

The DDPS schedule assumes alternating Tuesday/
Thursday and Wednesday/Friday contact days. Whether the
first week is Tuesday/Thursday or Wednesday/Friday
depends on the start day, which is randomly assigned.

As seen in Example 1, it is siraightforward to show that
a convenient-day schedule can introduce activity bias into
time-use estimates when the base contact probability is the
same each day (0.5} except for random noise (+0.5 with
probability %2 or -0.5 with probability 14). Even though
Stewart (2000) shows that Monday through Thuarsday are
very similar on average, it is likely that the contact probabi-
lities for some individuals vary systematically by day each
week. For example, some individuals may be hard to
contact on Monday, Wednesday, and Friday of each week.
This systematic variation makes it considerably more
complicated to determine whether sample estimates are
biased, and to determine the direction and extent of that
bias. One could model contact strategies and analytically
solve for the bias under different assumptions about the
pattern of contact probabilities. However, this is a cumber-
some process, because each assumption about the pattern of

contact probabilities across days would require a separate
solution. In contrast, computer simulations are an ideal way
to assess the bias associated with alternative contact
strategies under different assumptions about the pattern of
contact probabilities. The computer program is simpler and
produces more intuitive results than the analytical solution,
And it is easy to modify the program to allow for different
patterns. In section 3, realism is added to the simulations by
incorporating real time-use data — something that would be
impossible to do when taking an analytical approach,

Simulations

The simulation strategy was very straightforward. First,
four weeks worth of “data” for each of 10,000 potential
respondents was created. In order to focus on contact
strategies, the sampling procedures are ignored and it is
assumed that the sample of potential respondents is
representative of the population. The simulations are
designed to compare the four contact schedules above, so
it is assumed that the “week” is five days long. Eligible
diary days were restricted to Monday through Thursday,
because, as noted above, these days are the most similar to
each other. The next step was to simulate attempts to
contact these respondents using the four contact schedules
described above. Finally, the estimates generated using each
schedule were compared to the true sample values.

To simplify the simulations I abstracted from specific
activities, as in the examples above, and characterized each
day using an activity index, I, (J = H, E) that ranges from
0 to 1. The activity index is given by I, = 1 - P, where P,
is the probability of contacting and interviewing the
respondent. To simulate the variation in activities across
days, the contact probability on a given day is:

P, =P, +¢,

where l_:’J is the average contact probability on an HTC
(I =H) oran ETC (J =E) day, and £ ~ U( - &, £). [ assume
that 13H < P, which means that, on average, respondents
are less likely to be contacted on HTC days than on ETC
days. To insure that contact probabilities lie in the [0,1)
interval, I'set & so that £ <min (P, 1 - By).

There are many assumptions one can make regarding the
pattern of activities across days. The simplest case is where
all days are identical except for random noise. But as noted
above, it is possible that potential respondents are systema-
tically harder to contact on some days than others. To cover
a wide range of activity patterns, the simulations were
performed under the following eight assumptions about the
pattern of HTC and ETC days in each of the four weeks:

1. Actual values of the activity index are distributed as
U(0.1), so that the average value is 0.5.

2. The first two days of every week are HTC and the last
three days are ETC (HHEEE).

3. The first three days of every week are HTC and the
tast two days are ETC (HHHEE).
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4. The first four days of every week are HTC and the last
day is ETC (HHHHE).

5. The first day of every week is ETC and the last four
are HTC (EHHHH).

6. The first two days of every week are ETC and the last
three are HTC (EEHHH).

7. The first three days of every week are ETC and the last
two are HTC (EEEHH).

8. For half the sample Monday, Wednesday, and Friday
are HTC and Tuesday and Thursday are ETC
(HEHEH). For the other half of the sample the reverse
is true (EHEHE).

In pattem 1, the base probability of contacting the
respondent is the same, so that all of the variation in
probabilities is due to the random term. In patterns 2-7,
HTC days are grouped together either at the beginning of
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the week or at the end of the week. And in pattern 8, the
base probabilities altermate between HTC and ETC days.
To focus on activity bias, separate simulations were
performed for each of the 8 patterns described above. Thus,
within a simulation all individuals have the same pattern of
base probabilities.

Table 1 shows the results from a representative subset of
the 153 simulations performed. The first four columns show
the average contact probability on HTC and ETC days, the
value of £, and the true average activity index. The
remaining columns contain estimates of the bias associated
with the four contact schedules. The bias was computed as
the difference between the estimated amount of time spent
in each activity and the true amount of time spent in each
activity, and then the difference was expressed as a
percentage of the true value. Entries with an asterisk
indicate that the bias is statistically different from the zero
at the 5% level.

Table 1
Activity Bias Associated with Each Contact Strategy Under Alternative Assumptions About the Correlation
of Activities Across Days

Estimated Bias (Expressed as a

Average Contact Probability percent of the true activity index)
Activity Pattern  Hard-to-contact days Easy-to-contact days 2 True Average Activity Index CD DD DDP  DDPS
Identicat Base Probabilities :
0.50 0.10 0.500 07+ -0.1 0.0 0.1
0.50 030 0.500 53 .03 0.1 0.2
0.50 0.50 0.500 151*  -09 04 0.7
Grouped Base Probabilities
HHEEE 0.75 025 0.05 0.500 07 -10.7* 47 -138+
075 0.25 0.25 0.500 52% -109% -4.8% -139*
0.60 0.40 0.05 0.500 -0.1 -22*% 07 2.8+
0.60 0.40 0.20 0.500 2.5 -26* 07 -25%
HHHEE 0.75 0.25 0.05 0.625 27 87 40 -127¢
0.73 0.25 0.25 0.625 0.8  -103* 41* -12.8%
0.60 0.40 0.05 0.550 -04%  -1.8* -06% 25
0.60 0.40 0.20 0.550 1.9 -24% D5 2.2+
HHHHE 0.75 025 0.05 0.750 0.1 0.1 0.1 0.0
0.75 0.25 0.25 0.750 23* 05 0.2 0.2
0.60 0.40 0.05 0.600 0.1* 0.0 0.0 0.0
0.60 0.40 0.20 0.600 19* 03 02 0.2
EHHHH 075 0.25 0.05 0.625 1.7* 1.0 1.4% 0.7
0.75 0.25 Q.25 0.625 42+ 03 1.2» 0.7
0.60 0.40 0.05 0.550 1.1* 0.3 0.5* 03
0.60 0.40 0.20 0.550 2.9* 0.0 0.6* 04
EEHHH 0.75 025 0.05 0.500 -18.2%  -17.1*  43% 217
0.75 0.25 025 0.500 -15.9*%  -17.9* -45*%  .20.9*
0.60 0.40 0.05 0.500 20 22 04 -2.6*
0.60 0.40 0.20 0.500 -0.4 24 03 -2.6*
EEEHH 0.75 0.25 0.05 0.375 -l6.6*  -17.6*% -5.5% -20.3*
0.75 0.25 0.25 0.375 -114% -176% -5.6% -19.6%
0.60 0.40 0.05 0450 2.0 23* 04 -2.5*%
0.60 0.40 0.20 0.450 0.0 253 05 -2.5*
Altemnating Base Probabilities
HEHEH/EHEHE 0.75 0.25 0.05 0.500 31.5% 26.4* 9.6% 28.5*
0.75 0.25 0.25 0.500 34.7%  26.5* 9.7 20.4*
0.60 0.40 0.05 0.500 5.6* 4.5* 1.3* 5.1*
0.60 0.40 0.20 0.500 7.8* 4.3% 1.2* 5.1*

Note: Asterisks indicate that the estimated average activity index is statistically different from the true value at the 5% level.
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Pattern 1 — Identical Base Probabilities with Random
Noise

This pattern is essentially the same as in the numerical
example above. The main result is that all of the contact
schedules generate unbiased estimates for the average
activity index, except the CD schedule. As expected, the
CD schedule overestimates the average activity index.
More importantly, when using the CD schedule, the
estimated average activity index — and hence the bias when
activities are uncorrelated across days — is positively
correlated with the variance of £. As the variance increases
from 0.003 ( € =0.1) to 0.083 ( & =0.5), the bias increases
from less than 1% to 15%. One can see the intuition behind
this result by noting that a large negative realization of € on
a particular day makes it less likely that the respondent will
be contacted on that day, and hence, more likely that that
day will become the diary day. None of the other contact
schedules are sensitive to the variance of €.

Patterns 2-7 — Grouped Base Probabhilities

The results are mixed when HTC days are grouped at
either the beginning or the end of the week. In the
simulations where Py - P, is relatively small (0.2), all of
the contact schedules perform reasonably well. The
absolute value of the bias is less than 3% in all cases.
However, when P - P, is relatively large (0.5), there are
significant differences in the bias associated with each
contact schedule. The DDP schedule performs the best
overall. The bias exceeds 5% (in absolute value) only in
pattern 7 (EEEHH), for which the bias is — 5.5%. In
contrast, when using the DD and DDPS schedules, the bias
is in the 10 — 14% range in patterns 2 (HHEEE), 3
(HHHEE), and in the 16-20% range in patterns 6
(EEHHH), and 7 (EEEHH). The differences between the
DD and DDPS schedules and the DDP schedule for these
patterns are significant, both statistically and in practical
terms, In patterns 4 (HHHHE) and 5 (EHHHH) the DDP
schedule performs slightly worse than the DD and DDPS
schedules, but the bias is so small (less than 1.5%) that the
difference is of no practical significance. The CD schedule
fares somewhat better than the DD and DDPS schedules.
The bias is less than 5%, except in pattemns 6 and 7 where
the bias is in the 11 — 18% range. As in pattern 1 above, the
estimated average activity index increases with the variance
of £ under the CD schedule, but not under any of the other
schedules. And as can be seen from Table 1, in patterns
where the bias is negative (patterns 6 and 7), an increase in
the variance of € decreases the bias.

Pattern 8 — Alternating Base Probabilities

All of the contact schedules generate biased estimates,
because ETC days are undersampled. As above, all of the
schedules perform reasonably well when P, -PB, is
relatively small. The bias is in the 5-8% range for all

schedules except DDP, for which the bias is about 1 %.
However, when P -P, is large, all of the contact
schedules generate significant bias. The bias of about 10%
for the DDP schedule is higher than for the other patterns
but it is smaller than the 25-35% bias for the other
schedules. Again, these differences are significant statis-
tically, and they are significant in practical terms.

The reason that the DDPS schedule generates a large
activity bias is that contact attempts are made on two HTC
days and then on two ETC days (or the reverse). This
pattern results in contacting respondents on a relatively
large fraction of ETC days, and hence, diary days will be
disproportionately HTC days. Not surprisingly, if the DDPS
schedule is modified so the respondent is contacted on the
same two days each week, there is virtually no bias.

It is clear from these simulations that the activity bias
associated with each contact schedule depends on the
pattern of activities across days, the contact probabilities on
HTC and ETC days, and the variance of those probabilities.
However, it is also clear that the DDP schedule outperforms
the other schedules regardless of the pattern assumed. If
each pattern is viewed as a different type of respondent,
then the overall bias (which includes both activity and
noncontact bias) depends on the relative frequency of each
type in the population. Information on the incidence of each
type would allow one to measure the overall bias, and, for
each strategy, decompose the overall bias it into the portion
due to activity bias, and the portion due to noncontact bias.
This is investigated in the next section.

3. AUGMENTED SIMULATIONS

If one is willing to make some additional assumptions, it
is possible to augment the simulations using data from other
sources. The first assumption is that individuals’ work
schedules are a reasonable proxy for the patterns of HTC
and ETC days, so that work days correspond to HTC days
and nonwork days correspond to ETC days. The second
assumnption is that it is possible to replicate an individual’s
week by taking one day from each of five individuals.

Data from the May 1997 Work Schedule Supplement to
the Current Population Survey (CPS) were used to obtain
information about individuals’ work schedules. Note that
because of the need to know the prevalence of each type of
schedule for the entire population, nonworkers were also
included. Table 2 shows the patterns of work (W) days and
nonwork (N) days from the May 1997 CPS. Approximately
88% of all individuals fall into two patterns. Forty-eight
percent work all five weekdays, and 39% do not work any
weekdays. Another 4% work four weekdays and have either
Friday or Monday off. The remaining individuals do not
exhibit any discernible pattern. To simplify the simulations,
it was assumed that individuals either worked all 5
weekdays (workers) or that they did not work any weekdays
(nonworkers).
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Table 2
Distribution of Work Schedules
Activity Pattemn
M Tu W T™h F Percent Cumulative Percent
- - - - - 39.40 39.40
W W W W W 438.11 87.51
W W W W - 2.63 90.14
- W W W W 1.63 91.77
W W W - - 0.81 92.58
VW - - - 0.26 92.84
- - - W W 0.37 93.21
- - W W W 0.68 93.89
- W - W 0.49 94.38

- W -« W - 0.25 94.63
- - - - W 0.51 95.14
W - - - 0.25 95.39
W W - W W 0.73 96.12
w - - w 0.36 96.48
W - - W W 0.70 97.18
Other patterns 2.82 100.00
Total 100.00

Note: A “W" indicates a workday, and a *-" indicates a nonwork day.
Author’s tabulations from the May 1997 Work Schedule Supplement
to the CPS. Observations were weighted using supplement weights.
The sample size is 89,746 observations,

To generate information on individual activities, data
from the 1992-94 EPA Time Diary Study, conducted by the
University of Maryland were used. This dataset contains
time-diaries for a sample of 7,408 adults (see Triplett 1995).
Because each individual was interviewed only once, there
is only one observation per person. The following repeated
sampling method was used to construct 8 weeks worth of
data for a sample of 18,974 “individuals.” The diary data
were divided into workdays and nonwork days, A diary day
was considered a workday if the individual did any paid
work during the day. Workdays were assigned to workers
and nonwork days were assigned to nonworkers. Mondays
were drawn from Monday observations, Tuesdays were
drawn from Tuesday observations, efc. No observation was
used more than once for a given individual, but the same
observation could be used for more than one individual.
The final sample proportions look fairly similar to the
proportions from the CPS. Fifty-eight percent of individuals
in the final sample were workers and 42% were non-
workers, which is reasonably close to the ratio of workers
to nonworkers {1.38 vs. 1.23) in the CPS.

To compute the contact probabilities, it was necessary to
make a third assumption. Following Pothoff, Manton, and
Woodbury (1993), the contact probability was assumed to
be equal to the number of minutes spent in activities done
at home (excluding sleeping) divided by the time spent in
all activities other than steep. This process for generating
contact probabilitics has two important properties: (1) the
contact probability for a given day is related to the activities
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done on that day, and (2) one group of potential
respondents (workers) has a lower average probability of a
productive contact (.36 vs. 0.72).

Tables 3a and 3b summarize the bias estimates from the
augmented simulations. Table 3a shows the bias estimates
assuming a 4-week field period, and Table 3b shows the
same estitnates assuming an 8-week field period. Each of
the first four columns contains estimates of the bias
associated with the four contact strategies. The entries for
each strategy and each 1-digit activity include estimates of
the activity bias for workers and nonworkers, and an
estimate of the overall bias. The overall bias includes
noncontact bias, so it is possible that the overall bias is
larger (or smaller) than the activity bias for either group.
The bias was computed as in the previous simulations,
strategy and as before, an asterisk indicates that the bias is
significantly different from the zero at the 5% level. The
fifth column shows the true time spent in each activity by
group and overall.

Comparing Tables 3a and 3b, we can see that the main
difference is that, except for the DD strategy for which the
field period is irrelevant, the overall bias is smaller when
the field period is 8 weeks. This smaller overall bias is due
mainly to the increased number.of contact attempts, which
disproportionately increases the probability that workers are
contacted and makes the sample more representative (see
Table 4). In contrast, estimates of the activity bias asso-
ciated with the various contact strategies are not sensitive to
the length of the contact period. The rest of this discussion
will focus on the results in Table 3b.

The DID strategy generated virtually no activity bias.
There were a few activities — Active Leisure, Entertain-
ment/Socializing, Organizational Activities, Education/
Training, and Active Child Care for workers, and Active
Child Care for nonworkers — for which the activity bias was
rather large, but none of these bias estimates are statistically
significant. The overall bias for the DD strategy is quite
large for most activities, which, as will be seen below, is
primarily due to noncontact bias.

Comparing the other three strategies, one can see two
patterns emerge. First, activity bias is significantly smaller
(and generally not statistically significant) when using the
DDP strategy or the DDPS strategy than when using the
CD strategy. Second, the bias in the CD estimates follows
the expected pattern. The bias tends to be positive for
activities that are done away from home (Active Leisure,
Entertainment/Socializing, Organizational Activities,
Education/Training, Purchasing Goods/Services, and Paid
Work), and negative for activities done at home (Passive
Leisure, Personal Care, Active Child Care, and House-
work). This pattern is consistent with research cited in the
introduction that finds that reported time spent away from
home is greater under a convenience-day strategy than
under a designated-day strategy. More important, it is now
clear that this finding is due to bias in convenient-day
strategies rather than bias in designated-day strategies.
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Table 3a
Estimated Bias — Augmented Simulations (4 Week Ficld Period)

Activity/Emp, Status Time Spent in

Employment Status CD DD DDP DDPS Activity (Truth)
Passive Leisure

Nonworkers -8.44% 0.12 -1.54 -1.03 314.72

Workers -5.40% 1.07 0.43 0.82 152.04

Overall -8.62* 13.56* 2.53%* 0.38 220.70
Active Leisure

Nonworkers 9.80* 2275 0.99 -0.66 65.94

Workers -0.07 -7.34 -4.69 1.91 26.89

Overall 4.03* 11,75+ 3.31 1.08 43.37
Entertainment/Socializing

Nonworkers 19.41* -2.01 -0.25 -1.20 67.30

Workers 8.63* 1.14 521 372 27.87

Qverall 13.11* 15.78* 5.64* 1.37 44,51
Organizational Activities

Nonworkers 19.58* -0.98 9.00 384 19.25

Workers 13.77* 6.95 717 7.48 8.72

Overall 15.24* 15.26* 12.37* 5.99 13.16
Education/Training

Nonworkers 32.77* 0,42 12.54* 8.2+ 43.60

Workers -1.17 7.63 0.57 1.59 13.16

Overall 19.17* 22.02* 15,39+ 8.00* 26.01
Personal Care

Nonworkers -0.50 -0.29 -0.49 -0.44 663.04

Workers -0.52% 0.01 -0.06 -0.13 580.71

Overall -0.79* 2.20* 0.34 (.15 615.46
Purchasing Goods/Services

Nonworkers 12.62% 1,35 0.11 -1.28 72.98

Workers -4.05 4.62 -3.62 -5.43* 23.28

Overall 4.67* 22.36% 4.25% -1.49 44.25
Active Child Care

Nonworkers -7.89% 5.11 -1.06 -0.54 2413

Workers -7.69% -6.05 -4.09 -0,92 12.64

Overall -9.09* 14.21* 0.77 -0.09 17.49
Housework

Nonworkers -8.88%* 1.71 0.33 2.27 169.04

Workers -10.55% 0.85 -2.03 -0.14 5792

Overall -11.49* 20.77* 4.53% 2.52# 104.82
Paid Work

Nonworkers —_— —_ —_ —_ -

Workers 2.95% 077 0.25 -0.27 536.77

Qverall 6.74* 31.44* -7.74* -1.87* 310,22

Note: Asterisks indicate that the bias in the estimated time spent in the activity is significantly different from zero at the 5% level.

Noncontact Bias

In general, the contact rate increases and the sample
becomes more representative as the number of contact
atternpts increases (see Table 4). The contact rate is the
lowest under the DD strategy (40%), and the sample is the
least representative. Under both the DDP and the DDPS
schedules, the contact rate increases and the sample
becomes more representative as the field period increases
from 4 to 8 weeks. Using a DDPS schedule with an 8-week
field period (16 contact attempts) results in a contact rate of
80% and a representative sample. Not surprisingly, the
sample generated by the DDP schedule with an § week field
period is virtually identical to the one generated by the
DDPS schedule with a 4 week field period.

Activity Bias vs. Noncontact Bias

To get a clearer picture of the contribution of each type
of bias to the overall bias, the overall bias was decomposed
into the portion due to activity bias, the portion due to
noncontact bias, and the portion due to the interaction
between the two biases. The overall bias for activity a and
group g (workers or nonworkers) is given by:

EX  Fy X, =
Fy (X Xap) + XoFy-Fp) + (F-F) (X, -X,)
Activity

+ Noncontact + Interaction
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Table 3b

Estimated Bias — Augmented Simulations (8 Week Field Period)

Activity/Emp. Status

Time Spent in

Employment Status CD DD DDP DDPS Activity (Truth)
Passive Leisure

Nonworkers -8.63* -0.09 -1.62 -1.21 315.38

Workers -5.24% 1.28 0.39 1.10 151.72

Overall -8.72% -13.51# -0.35 -0.31 220.79
Active Leisure

Nonworkers 10.62% -2.03 1.76 0.06 65.46

Workers 0.00 -7.29 -3.50 221 26.87

Qverall 4.49* 12.30* 0.50 0.82 43.16
Entertainment/Socializing

Nonworkers 19.77* -1.72 -0.15 -0.91 67.10

Workers 8.09* 6.64 5.52 2.76 28.00

Overail 13.06* 15.80* 2.47 0.40 44 .50
Organizational Activities

Nonworkers 18.92* -1.53 8.59 3.25 19.36

Workers 14.03* 7.00 3.18 7.25 872

Overall 14.89% 14.88* 7.14% 4,76 13.21
Education/Training

Nonworkers 33.56* 0.18 12,91* 9.55% 43.34

Workers -0.72 8.24 077 2.01 13.09

Overall 19,73* 22.74% 10.29* 7.32% 25.86
Personal Care

Nonworkers -0.50 -0.29 -0.48 -0.44 663,03

Workers -0.55% 0.00 -0.08 -0.16 580.81

Overall -0.82* 2.20* -0.17 -0.29 615.51
Purchasing Goods/Services

Nonworkers 12.64* 1.36 -0.09 -1.28 72.97

Workers -4.41 4,23 -3.66 -5.45% 23.36

Overall 4.48% 22,23+ -0.42 -2.58 44.30
Active Child Care

Nonworkers -7.67* 5.36 -1.04 -0.31 24.07

Workers -8.02* -6.18 -4.98 -1.65 12.66

Overall -9.14%* 14.30* -2.23 -0.89 17.48
Housework

Nonworkers -9.02* 1.55 0.20 2.10 169.30

Workers -10.55* 0.80 -2.15 -0.20 5795

Overall -11.64* 20.63* 0.17 1.34 104.94
Paid Work

Nonworkers —_— —_ — — _

Workers 2.96* -0.78 0.30 -0.26 536.82

Overall 6.86% -31.44% -0.86 -0.22 310.25

Note: Asterisks indicate that the bias in the estimated time spent in the activity is significantly different from zero at the 5% tevel,

Table 4

Contact Rate Summary — Augmented Simulations

Field

Period

4 weeks Contact Rate
Percent Nonworkers
Percent Workers

8 wecks  Contact Rate
Percent Nonworkers
Percent Workers

CD DD DDP
89.68 40.35 71.79
40.08 60.07 46.82
59.92 39.93 53.18
£9.79 40.35 78.87
40.02 60.07 42.88
59.98 39.93 57.12

DDPS
78.35
43.14
56.86
80.17
42.19
57.81

Truth

42.21
57.79

4221
5719

where F, is the fraction of the sample in group g, and X e
is the time spent in activity @ by group g, and asterisks
indicate the true values. The total bias for activity a is

obtained by summing this expression over workers and
nonworkers, and is given by:

ggv;N (FX,, -F; X..) =g§‘.w Fy(X,, - Xyp)
+ ) X (F-F)
2=W,N
+ 2 (F-F )X, -X,),

g=w,N

there are several things to take from these decompositions
(shown in Table 5). First, under the CD schedule, all of the
overall bias is due to activity bias. The large number of
contact attempts virtvally guarantees a representative
sample, so that increasing the field period from 4 to 8 weeks
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does not make much difference. In contrast, noncontact bias
accounts for all of the bias under the DD schedule. Under
both the DDP schedule and the DDPS schedule there is
virtually no activity bias, and noncontact bias decreases
dramatically as the field period is increased from 4 to 8
weeks. Not surprisingly, the noncontact bias for the DDP
schedule with an 8-week field period is about the same as
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the noncontact bias under the DDPS schedule with a
4-week field period. In these simulations, the sample
becomes fully representative when the field period is long
enough to allow 16 contact attempts. Finally, the small
magnitude of the interaction terms reflects the fact that
activity and noncontact biases associated with each contact
strategy are negatively correlated.

Table §
Bias Decomposition — Augmented Simulations

4 — week field penod

8 — week field period

Total Bias Activity Noncontact Interaction Total Bias Activity  Noncontact Interaction
Bias Bias Bias Bias
Passive Leisure
CD -8.62 -7.23 -1.57 0.18 -8.72 -1.29 -1.62 0.19
DD 13.56 0.50 13.16 -0.10 13.51 0.46 13.24 -0.18
DDp 2.53 -0.75 340 -0.11 -0.35 -0.83 0.50 -0.02
DDPS 038 .29 0.69 .02 -0.31 -0.30 -0.01 0.00
Active Leisure
cD 4.03 6.27 -1.92 -0.32 4.49 6.80 -1.96 -0.35
DD 11.75 -4.40 16.08 0.06 12.30 -3.92 1597 0.26
DDP in -1.05 4.15 0.20 0.50 -0.13 0.60 0.03
DDPS 1.08 0.26 0.84 -0.02 0.82 0.83 -0.02 0.00
Entertainment/Socializing
CD 13.11 15.51 -1.89 -0.51 13.06 15.53 -1.92 -0.54
DD 15.78 1.30 15.82 -1.34 15.80 1.32 15.69 -1.21
DDP 5.64 1.72 4.08 0.17 247 191 0.59 -0.02
DDFPS 1.37 0.58 0.82 -0.04 0.40 0.42 -0.02 0.00
Organizational Activities
CcDh 15.24 17.36 -1.70 -0.42 14.89 17.06 -1.76 -0.40
DD 1526 2.05 14.28 -1.08 14.88 1.72 14.39 -1.23
DDP 1237 8.30 3.69 039 7.14 6.53 0.54 0.07
DDPS 599 524 0.74 0.01 4.76 477 -0.02 0.00
Education & Training
CD 19.17 22.84 -2.49 -1.18 19.73 23.53 -2.56 -1.24
DD 22,02 1.94 20.90 -0.82 22.74 2.54 20.90 -0.69
DDP 15.39 9.04 540 0.96 10.29 9.36 0.78 0.14
DDPS 8.00 6.78 1.09 0.13 7.32 7.35 -0.02 0.00
Personal Care
ch -0.79 -0.51 -0.28 0.00 -0.82 -0.53 -0.29 0.00
DD 2.20 -0.13 2.39 -0.06 220 -0.13 239 -0.06
DDP 034 -0.26 0.62 -0.02 -0.17 -0.26 0.09 0.00
DDFPS -0.15 -0.27 0.12 0.00 -0.29 -0.29 0.00 0.00
Purchasing Goods/Services
Ch 4.67 7.58 -2.39 -0.49 4.48 7.44 -2.45 -0.51
DD 22.36 234 20.06 -0.04 22,23 2.23 20.00 0.00
DDP 425 -1.02 5.18 0.10 -0.42 -1.18 0.75 0.01
DDPS -1.49 -2.54 104 0.01 -2.58 -2.55% -0.02 0.00
Active Child Care
CDh -9.09 -7.81 -1.40 011 9.14 -7.82 -1.43 0.10
DD 1421 0.45 11.72 2.04 14.30 0.53 11.66 212
DDP 0.77 -2.32 3.03 0.07 223 -2.69 0.44 0.01
DDPS -0.09 -0.69 0.61 0.00 -0.89 0.87 -0.01 0.00
Housework
cD -11.49 -6.42 -2.26 0.18 -11.64 -9.51 -232 0.19
DD 20.77 1.43 18.93 0.41 20.63 1.31 18.95 0.37
DDP 4.53 -0.43 4.89 0.08 0.17 -0.55 0. 0.01
DDPS 2.52 1.50 0.99 0.03 134 1.36 -0.02 0.00
Paid Work
CcD 6.74 2.95 3.69 0.11 6.86 2.96 3.79 .11
DD -31.43 -0.77 -30.90 0.24 -31.44 -0.78 -30.50 0.24
DDP -1.74 0.25 -7.98 -0.02 -0.86 0.30 -1.16 0.00
DDPS -1.87 -0.27 -1.61 0.00 -0.22 -0.26 0.03 0.00
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4. SUMMARY AND RECOMMENDATIONS

Telephone time-use surveys have unique characteristics
that make data collection more challenging. Unlike most
other surveys, time-use surveys cannot accept proxy
responses, so it is more likely that the probability of
contacting a potential respondent is correlated with his or
her activities. And because telephone time-use surveys ask
respondents to report on their activities during the previous
day, it is possible that the probability of interviewing the
respondent about a given reference day will be correlated
with the activities on that reference day. This paper shows
how these characteristics can generate noncontact bias and
activity bias. Two sets of computer simulations showed that
the extent of these biases depends on the survey’s strategy
for contacting potential respondents.

In the first set of simulations, it was shown that the
extent of the bias associated with any given contact
schedule depends on the pattern of easy-to-contact (ETC)
and hard-to-contact (HTC) days. The designated-day-
with-postponement (DDP) schedule outperformed the other
contact schedules for all of the activity patterns examined.
These simulations also showed that estimates generated
using a convenient-day (CD} schedule are sensitive to the
within-person variance of the contact probability. Estimates
of the time spent in activities that are positively correlated
with the contact probability (for example, activities done at
home} decrease as the variance increases. In contrast, esti-
mates generated by other contact schedules are not sensitive
to the within-person variance of the contact probability.

Given the results of the simple simulations, it is clear that
the overall bias for the different contact strategies depends
on the relative frequency of each pattern in the population.
Direct data on these patterns do not exist, so the first set of
simulations was augmented using CPS data on work
schedules and actual time-use data from the 1992-94 EPA
Time Diary Study. The results from the augmented
simulations confirm those from the simple simulations, and
show how the bias can affect estimates of time spent in
specific activities. As expected, the CD contact strategy
introduces systematic activity bias into time-use estimates,
The time spent in activities done at home is underestimated,
while time spent in activities done away from home is
overestimated. There is no systematic activity bias in the
samples generated by the DDP and DDPS strategies. The
simulations also show that increasing the number of contact
attempts reduces noncontact bias.

These results clearly show that the choice of contact
strategy matters and point to two recommendations.

First, time-use surveys should use the DDP schedule.
The DDP schedule generates less activity bias than the
other contact schedules under all of the activity patterns
tested. The DDPS schedule performed nearly as well in the
more common activity patterns. But given that contact rates
and field costs are a function of the number of contact
attermpts, the DDPS offers no cost advantage over the DDP
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schedule. Hence, there is no reason to choose the DDPS
schedule over the DDP schedule.

Second, time-use surveys need to take steps t¢ minimize
noncontact bias. Because noncontact bias is largely a
function of the number of contact attempts, an obvious way
to minimize noncontact bias would be to increase the
number of contact attempts. No further elaboration will be
made on this point, because other authors have looked at
this issue in depth. For example, Bauman, Lavradas and
Merkle (1993) show that age and employment status are
related to the number of callbacks and that additional
callbacks generate a more representative sample, and
Botman, Massey and Kalsbeek (1989) propose a method for
determining the optimal number of callbacks. Another
alternative would be to try to increase the probability of
contacting potential respondents. This could be done by
determining when they are likely to be home and calling at
those times, or by allowing them to call on their designated
interview day. Paying incentives is another way to make
potential respondents become “more available.” A less
costly approach to minimizing noncontact bias would be to
adjust sample weights. Pothoff er al. (1993) show that,
when the variable being measured is correlated (across
individuals) with the contact probability, weighting based
on the number of callbacks is practical and effective. In the
end, the correct mix of these approaches will depend on the
constraints facing the survey manager.
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Bias Reduction in Standard Errors for Linear Regression with
Multi-Stage Samples

ROBERT M. BELL and DANIEL F. MCCAFFREY"

ABSTRACT

Linearization (or Taylor series) methods are widely used to estimate standard errors for the coefficients of linear regression
models fit to multi-stage samples. When the number of primary sampling units (PSUs) is large, linearization can produce
accurate standard errors under quite general conditions. However, when the number of PSUs is small or a coefficient
depends primarily on data from a small number of PSUs, linearization estimators can have large negative bias. In this paper,
we characterize features of the design matrix that produce large bias in linearization standard errors for linear regression
coefficients. We then propose a new method, bias reduced linearization (BRL), based on residuals adjusted to better
approximate the covariance of the true errors. When the errors are i.i.d., the BRL estimator is unbiased for the variance.
Furthermore, a simulation srudy shows that BRL can greatly reduce the bias even if the etrors are not i.i.d. We also propose
using a Satterthwaite approximation to determine the degrees of freedom of the reference distribution for tests and
confidence intervals about linear combinations of coefficients based on the BRL estimator. We demonstrate that the
Jjackknife estimator also tends to be biased in situations where linearization is biased. However, the jackknife’s bias tends
to be positive. Qur bias reduced linearization estimator can be viewed as a compromise between the traditional linearization

and jackknife estimators.

KEY WORDS: Complex samples; Linearization; Jackknife; Satterthwaite approximation; Degrees of Freedom,

1. INTRODUCTION

Regression analysis of multi-stage samples has becormne
very common in recent years (for example, Ellickson and
McGuigan 2000, Shapiro, Morton, McCafrrey, Senterfitt,
Fleishman, Perlman, Athey, Keesey, Goldman, Berry and
Bozzette 1999; Goldstein 1991; Landis, Lepkowski, Ekland
and Stehouver 1982). Although hierarchical models (Bryk
and Raudenbush 1992; Gelman, Carlin, Stern and Rubin
1995, Chapter 13) allow analysis of both fixed and random
effects, many analysts prefer the simplicity of standard
regression models when random effects are not of direct
interest. Standard regression estimators produce unbiased
parameter estimates that can be efficient, but the default
standard error estimators do not account for the sample
design, resulting in inconsistent standard errors (Kish 1965;
Skinner 1989a). Various methods produce consistent
standard error estimates applicable when the number of
primary sampling units (PSUs) is sufficiently large. These
include sample reuse methods such as the jackknife, boot-
strap and balance repeated replication as well as linear-
ization (or Taylor series) methods.

Linearization (Skinner 1989b) is a nonparametric
method for estimating the standard errors of design-based
statistics such as means and ratios as well as coefficients
from linear and nonlinear regression models. By non-
parametric, we mean that linearization does not rest on any
assumptions about the within-PSU error structure, such as
an assumption of constant intra-cluster correlation. When
the number of PSUs can be considered large, linearization

1

produces consistent standard errors in the presence of
multiple features of complex sample designs-stratification,
multi-stage sampling, and sampling weights-as well as
heteroskedastic errors (Fuller 1975). Because of these
desirable properties and its increased availability in
software such as SUDAAN, Stata, and SAS Version 8.0
(Shah, Barnwell, and Biefer 1997; StataCorp. 1999; SAS
Institute, Inc. 1999), linearization has become a common
method for estimating standard errors and confidence
intervals and for conducting statistical tests on data from
complex sample designs (for example, Ellickson and
McGuigan 2000; Shapiro et al. 1999; Rust and Rao 1996).
Linearization has also been proposed for estimating
standard errors from Generalized Estimating Equations
(GEE) fit to multi-stage data (Zeger and Liang 1986).

However, the linearization method has limitations.
When the number of primary sampling units is small,
standard error estimates can be severely biased low, they
can have large coefficients of variation, and the standard
degrees of freedom may be far too liberal (Kott 1994;
Murray, Hannan, Wolfinger, Baker and Dwyer 1998).
Consequently, standard linearization inference for coeffi-
cients based mainly on data from a small number of PSUs
may produce confidence intervals that are too narrow and
tests with Type I error rates that are substantially higher
than their nominal values. Sample reuse methods like the
jackknife have similar limitations.

In this paper, we characterize the design factors (i.e., the
distribution of explanatory variables within and between
PSUs) that produce large bias in linearization and jackknife
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standard errors for linear regression coefficients and
demonstrate that the problem can persist even when the
number of PSUs is quite large. We then propose an
alternative to the standard linearization estimator that is
unbiased for independent, identically distributed (i.i.d.)
errors and tends to greatly reduce bias otherwise. We also
present approximate degrees of freedom for use with tests
and confidence intervals based on our variance estimator.
Simulation results show improved small sample properties
of our alternative estimator and test compared with those of
more traditional methods. Finally, we present an example of
our methods using data from a national experiment
evaluating care for depression. '

2. BIAS OF THE LINEARIZATION METHOD

For simplicity, we restrict consideration in the body of
this paper to unweighted linear regression for two-stage
nonstratified samples. Extensions to weighted estimators
and stratified samples are presented in McCaffrey, Bell and
Botts (2001} and discussed further in section 8.

Let n equal the number of PSUs and m, equal the
number of final sampling units from the j-th PSU, for
i=1,..,n. The overall sample size is M =Y m, We
assume that Yy = B’x,.].+s‘.., where £ has mean 0 and
covariance matrix V, and where Yij»%;» and g, all refer to
the j-th observation from the i-th PSU. We drop the
standard OLS assumption of i.i.d. errors, assuming only that
errors from distinct PSUs are uncorrelated. Specifically, we
assume that V is block diagonal, with mxm, blocks V, for
i=1,..,n In addition to the notation of this model,
throughout the paper, we let I denote an MxM identity
matrix and I, equal an m;xm, identity matrix.

Let B denote the estimated coefficients of the linear
regression model. To simplify presentation, we generally
discuss a linear combination of the regression coefficients,
I' B, for an arbitrary column vector /. For the special case
where one element of / = I and the rest are 0, I’ § equals a
single estimated coefficient. If errors are uncorrelated
across PSUs, the variance of I’ B, is

Var('B) = I'(X'X)"! (X'X)"', (1)

n
> X[V,
I=

where X and X, are the design matrices for the entire
sample and for PSU i, respectively.

The standard linearization estimator of the variance of
I’ B is given by:

v, = U(X'X)™! [CZ; X', r'.‘X!.)(X'X)'ll v3)]

where r, is the vector of residuals for the i-th PSU.
Comparison of (1) and (2) shows that linearization simply
involves estimating V, by a constant ¢ times the outer
product of the residuals. The constant ¢ is typically set
equal to n/(n-1), the value used by SUDAAN and the
Stata svy procedures (Shah, Barnwell, and Bieler 1997;
StataCorp. 1999). For GEE procedures, Zeger and Liang
(1986) set ¢ = 1.

Under fairly general conditions, nv, converges in proba-
bility to the variance of the asymptotic distribution of
yn (I'B - I'B) and the relative bias of v, is O(1/n) as the
number of PSUs gets large (Fuller 1975; Kott 1994). To
demonstrate convergence for the bias of v;, Kott (1994)
assumes that the number of observations from every PSU is
bounded and that elements of (X'X)™ X' are bounded by
B/n for a constant B, These assumptions effectively ensure
that the influence of any PSU on the final estimate dimi-
nishes as the number of PSUs grows. Convergence of the
bias of v, holds for heteroskedastic data from stratified
samples with unequal sampling weights and arbitrary corre-
lation structure within PSUs. Unfortunately, consistency
does not guarantee good properties for small to moderate
numbers of PSUs,

Theorem 1. When V = ol and c=n/(n-1), E(v;) s
Var(l'B) with equality if and only if / (X'X)! XX, is
constant across i.

Proof. Without loss of generality, we assume that o2 = 1 so
that V=1 The residual vector r can be written as
(1-H)e, where H = X (X' X)"! X’ is the hat or projection
matrix for X. Thus, we have that r, = (1 - H), &, where
(I - H), contains the m; rows of (I - H) for the i-th PSU.
Consequently,

= |1x'xy!
E(v)) (n—l) ( )

]

Y. X; Q-H),E(e)@-H),'X,|(X'X)1.
i=1

= [ LJ '(X'X)™!
n-1

(X; X, - X; X, X)X X ) (XX 3)

n
i=1

becanse E(ee’) = I and (I -H),(I-H); =(I, - H,) for
H,=X,(X’X)"'X/. Let D, =X X, - (1/n} (X’ X). Note
that ¥ . D, =Y X, X,-X'X = 0. Thus,
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n ¥ ¥ -1
E(v,)= (—] 'X'X)
n-1

3 (XX, -[(1m) X X+D, 1 (X X)™ [(1/m) X’ X +D ]}

i=l

(X'xX)y

=(—-]I(XX)1

n-

X'xX)

(x'x-(un)x'x-f; D,(X'X)"'D,
i=1
= rX'X)1- [ ]t(x X)!

X'X)M

[): D,X'X)"'D,
i=1

=Var(I'f) ~( ﬁ] Y a (X'X)-la,.] ”
= i=1

fora,=D, (X' X) U=X; X, -(Un)(X’X)) (X'X)'L
Because (X’X)' is posmve deﬁmte E(v)) < Var(l’ﬁ)
with equality if and only if a,=0, or equivalently,
X/X,(X'X)™1 is constant across the i.

Rephcatlon methods do not necessarily avoid the
problem of bias for regression variance estimators. A
jackknife estimator for multi-stage samples can be derived
from the set of pseudo values {B,}, estimates of B from
data that exclude the i-th PSU:

= (- m Y, (B - B)(B, B E O

(Cochran 1977; Rust and Rao 1996). If (I, - H,.l.)" exists
for all i, then

Vi =ln-DmF X' X7, X! d,-H,)™!
re @ -H) X, XX, ©

which  follows from the updating formula
(xx X/ X)) =X X)'+(X' X)X, d,-H)!
X.(X'X)" 1 (Cook and Weisberg 1982; Bell and
McCaffrey 2002, page 34). Some authors (Efron and
Tibshirani 1993) suggest an alternative jackknife estimator
with f replaced by the mean of the [3 ’s in (5). These two
methods provide very similar esnmates in our simulations,
so we discuss only the version based on (5) in what follows.

Theorem 2. When V =¢?I and (I, - H,))™! exists for all
i, then E(v”() = Var(!' [3) with equahty if and only if
PX'X) 1X X, is constant across i (proof in appendix).

The followmg example shows that the conditions for
linearization and the jackknife estimators to be unbiased are
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very restrictive even for simple linear regression.
Example 1. Consider simple linear regression. We have
that
' ot m, 1 X;
XX XX)y'ls—-

-, =2
Ms®|x, 57 +%;

where s2 and {s7} are ML estimates for the overall and
within-PSU variances of x, with divisors M and {m]},
respectively. So we have

X X,X'X)'l=
stex?-x % X-x
m.
i
— !
Ms*| 2, -3v= 2,22 = 2, -2 - -
($“+x)x,= (57 +X)X s +X; -X X

To have v, and v, unbiased for the slope, ie., for
I'=(0,1), we must have that m(x,-x) and
m_(s; +32—f X) are both constant across i. The former
1mplles that X; =X, and together they imply that
m;s s} = Tix,; _X ) is constant. Note that m, need not be
constam "These two conditions are not sufficient to
guarantee unbiasedness for I’ = (0, 1), however. Additional
algebra shows that the bias in the linearization estimator for
the variance of the slope equals

& {E{m &, x)12+2[2 (x,;~ %)% - s’

(ﬂl)M34 i=1 | j=1

Consequently, the bias includes a part that is proportional
to the weighted variance of the PSU means of x and another
that is proportional to the variance of the within-PSU sums
of squares,

The example shows that when the errors are i.id., v L 18
unbiased only under very restrictive conditions, When
V =1, Theorems | and 2 do not hold, and the bias in v,
can even be positive (see Example 2 of Bell and McCaffrey
2002).

In general, v, tends to have negative bias. The estimator
is the sum over PSUs of squares of linear combinations of
residuals, ¢ 21’ (X' X) ' X r,. These sums of squares tend
to be too small for two reasons: residuals are generally
smaller than true errors due to overfitting, and residuals
tend to have lower intra-cluster correlation than the errors.
The factor ¢ =n/(n-1) corrects completely for these
problems only in very restricted circumstances like the
conditions in Theorem 1.

The bias of the linearization estimator (or the jackknife)
increases with the between-PSU variance of the explanatory
variables. Consequently, explanatory variables that are
(nearly) constant within PSUs tend to exhibit the largest
bias. When there are several such explanatory variables,
there can be substantial underestimation of intra-cluster
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correlations, leading to large bias in estimated variances for
all the corresponding coefficients. Even greater bias
potential appears to occur when certain PSUs account for
most of the variability in the covariates and have dispro-
portionate impact on the determination of /' fi.

3. THE BIAS REDUCED LINEARIZATION
METHOD

Phillip Kott has proposed two methods for reducing the
bias in linearization. Kott (1994) suggested correcting the
bias in v, by using the residuals and the design matrix to
estimate the negative of the bias of v, by R (R >0, typi-
cally) and setting vy, =v, /(1 -R/v, ). Kott suggested the
estimator vy, rather than the more obvious (v, +R) as
ad hoc compensation for the relative bias in R as an
estimator of the true negative bias, R.

In his 1996 paper, Kott suggests calculating the ratio of
Var(I'f) to E(v,) under the assumption that V =T and
adjusting v, by the ratio. If V =1 then the resulting esti-
mator vy, will be unbiased.

In the context of generalized estimating equations,
Mancl and DeRouen (2001) take a different approach to
correcting the bias in the linearization estimator. They
suggest adjusting the residuals from each PSU to reduce the
bias in r,r/ as an estimator of V. For the unweighted
linear model given in section 2, they approximate E(r;r;)
by (I,-H)}V.(I,-H,) and suggest replacing r; in
(I,-H,)'r, equation (2). Thus, for unweighted linear
models the Mancl and DeRouen estimator equals
ni(n-1)v,, and the properties on this estimator follow from
the properties of the jackknife estimator.

We present an alternative approach that we first
proposed in 1997 (McCaffrey and Bell 1997). The method
is also based on replacing r, in equation (2} with adjusted
residuals of the form r] = A r, intended to act more like
the true errors €. Like Kott (1996), we derive an estimator
that eliminates the bias of v, when V equals U, a specified
block-diagonal covariance matrix, and reduces the bias for
other V. Like Mancl and DeRouen (2001) we adjust the
residuals from each PSU. However, using U we derive an
alternative approximation to the E(r,r;) and our resulting
estimator is not proportional to the jackknife but rather can
be seen as a compromise between the linearization and
jackknife estimators. Qur approach is also a generalization
of the method of MacKinnon and White (1985}, who adjust
individual residuals to produce a heteroskedastically-
consistent variance estimator (in the sense of White 1980)
that is unbiased when the errors are independent and
homoskedastic.

Theorem 3. For a specified block-diagonal covariance
matrix U, consider the class of estimators v, =I'(X'X)"!

(Lo XA r/ASX) (X'XY', where A, satisfies

e

A(I-HUI-H)/1A, =U, for i=1,...,n. If V=kU

for some scalar k, then E(v,.) = Var(l' fi).
Proof. The expected value of v, . is given by
E(v,.)

=1 (x'xrl[ X! A, (I-H),(kU)(@ -H);A;x,.]
i=1
X'X)!

X'X) " =Var(l'p).

= l’(X’X)"(Zﬂ: X! (U)X,
i=1

Without external evidence to the contrary, an analyst is
likely to use a working covariance matrix of the form
U=c’l, which simplifies the condition on A, to
A@d,-HHA =1 or

A'A, - ai_Hii)—l' €}

We set U =1 in what follows,

A solution to equation (7) exists for PSU i whenever
(I, -H,,) is full rank, which is true if all the eigenvalues of H,,
are strictly less than 1 (the eigenvalues of H,; are always
between 0 and 1). An eigenvalue of H, mayequal 1 -e.g.,
when the model includes a dichotomous explanatory
variable that is one if and only if an observation falls in the
i-th PSU.

For m>1,A, is not unique. If A ; satisfies
A[A =(I,-H,)", then so does OA, for any m,xm,
orthogonal matrix Q. If V = ¢?I, the choice of A, is
unimportant because any solution to (7) will produce an
unbiased variance estimator. However, the resulting esti-
mators are biased when V = oI, and the bias can vary
greatly with the choice of A ;. Heuristically, it makes sense
to choose the solution A ; “closest” to the identity matrix, so
as to “mix” the residuals as little as possible. Two
promising candidates are the Cholesky decomposition of
(1,-H,)™", which has all 0’s below the diagonal, and the
symmetric square root of (I,-H,)™". Let P be an
orthogonal matrix whose columns are the eigenvectors of
@;-H,)™ and A be a diagonal matrix containing the
corresponding  eigenvalues of (I,-H.)", so that
(I;-H;)"' =PAP’. Then for A'? equal to the elementwise
square root of A, PA?P’ is symmetric and solves (7). In
contrast, multiplying either of these two solutions by a
random orthogonal matrix could greatly distort the
residuals.

Among the class of adjusted residuals of the form A r,
where A, satisfies (7), those based on the symmetric square
root of (I, ~H, )"\, r; =PAYP'r,, are “best” in the sense
of Theil (1971} — i.e., they minimize the expected sum of
the squared differences between the estimated and true i.i.d.
errors (see pages 36-37 of Bell and McCaffrey 2002 for
details). When there is intra-cluster correlation, simulation
results in section 6 suggest that the bias of v, based on the
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symmetri¢c square root is greatly reduced compared with
that of the traditional linearization estimator, v, . For these
reasons, we consider only the symmetric root in the
remainder of the paper and refer to the estimator using this
root as the biased reduced linearization estimator, v, .

As Kott (1994) proved for v, , if the number of units in
every PSU is bounded and the elements of (X’ X)™'X' are
bounded by B/n for some constant B (ie.,
(X'X)'X’ = O(1/n)), then the bias in vy, is O(n %) and
the relative bias is O(1/n) (Bell and McCaffrey 2002, page
15).

4. VARIANCE OF THE ESTIMATORS AND
TESTING

. We note that v, Vgpe» and v, can all be written in the
orm

vi=d' X'X)'L XA /A X XX,

where: ¢=n/(n-1),1, or (n-1}/n, respectively, and
A =L, (L-H)™, or (I,-H,)™, respectively. This
formulation of the estimators shows that Vpry Can be
viewed as a compromise between v, and v, chosen to
offset their opposing biases.

Theorem 4. Let the error terms be distributed as
multivariate normal with mean 0 and nonsingular
covariance matrix V. Then for any variance estimator of the
form

v = (X'XYTY XA A X (XIX) Y,

v* equals the weighted sum of independent xf random
variables where the weights are the eigenvalues of the n x n
matrix for G={g; Vg}, for g, =c?d-H)
A X, (X'X)™ (proof in appendix).

We can write v, as a quadratic form y’ Gy, where the
M-by-M matrix G* =Y, g8/, so that v, is a weighted
sum of independent chi-square random variables with
weights equal to the eigenvalues of G*V. The proof
consists of showing that the nonzero eigenvalues of G*'V
equal the nonzero eigenvalues of G.

The mean and variance of v * are simple functions of the
eigenvalues of G, namely E(v*) =Y. &, E(u}) =Y. %, and
Var(v*)=Yp A Var@?)=Y" 2\, K V=0l and
XX, (X'X)"'I for i=1,...,n are constant, conditions for
v, and v, to be unbiased, then Theorem 4 implies that
avp,avy, and avg, are all distributed xi_l for
a=(n-1)/Var('f) (Bell and McCaffrey 2002, pages
41-42). However, in general, the X; X (X' X)"!/ will not be
constant and the squared coefficient of variation will exceed
2/(n-1), the corresponding statistic for a xi_l random
variable.

This excess variability is of particular concern when
considering reference distributions for testing the null
hypothesis that I’ =0, with test statistics of the form
t=UBAv’. For v,, Shah, Holt and Folsom (1977)
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suggested comparing ¢ to a reference t-distribution with
n -1 degrees of freedom, which is now the default in Stata
(Stata Corp. 1999), SUDAAN (Shah, Barnwell and Bieler
1997) and SAS (SAS Institute 1999). The choice of n~1

degrees of freedom is motivated by the fact that v, can be
written as the sum of squares of n random variables
¢*I'(X'X)"'X, r, However, because the variance of
(n-1)v, /E(v,) tends to be greater than 2(n - 1), tests that
use a r-distribution with n-1 degrees of freedom would
tend to have Type I error rates that exceed the nominal
value, even if v, were unbiased.

Satterthwaite (1946) suggested agproximal:ing the distri-
bution of a linear combination of ¥, variables by xf (up to
a constant) where the first two moments of the linear
combination match those of xz. We would approximate
Y.\ Vage OF vy bya 3y where f = 2/cv? = (X1 3,/ 0 A2
and the A, are the eigenvalues of the corresponding matrix
G. Tests based on reference #-distributions with f degrees of
freedom would be expected to provide better Type I error
rates than tests based on n -1 degrees of freedom. Rust and
Rao (1996) also suggest using a Satterthwaite approxi-
mation to estimate the degrees of freedom for the jackknife
estimator. They present results for the estimator of a mean,
while Theorem 4 extends this approach to testing linear
combinations of regression coefficients. Kott (1994, 1996)
suggests using the Satterthwaite approximation to estimate
the degrees of freedom for tests based on his alternatives to
linearization.

The coefficient of variation for any of the nonparametric
variance estimators can be very large for certain designs.
High variability occurs under the same conditions that v,
and v, are most biased — when residuals from only a few
PSUs effectively determine the final variance estimate. This
variability of the estimators is an inherent cost of using
nonparametric techniques.

Because the Satterthwaite degrees of freedom f requires
specifying the unknown matrix V, we have investigated two
methods for setting V. The first treats V as block-diagonal
and estimates each block with the outer-product of the
residuals for the PSU. Because preliminary simulation
results showed that degrees of freedom based on this
empirical estimate of V produced tests that were extremely
conservative, we do not present any simulation results for
this method. Kott (1994) also found that estimating V for
use in the formula for estimated degrees of freedom proved
unsatisfactory. Instead, we used a second method that sets
V identically equal to the identity matrix — i.e., it assumes
independent, homoskedastic errors for purposes of deter-
mining degrees of freedom.

The distribution of vy, (and the other variance
estimators) tends to be less skewed and have less mass in
the lower tail than the distribution of a x} where f equals the
Satterthwaite degrees of freedom. Hence, reference
r-distributions based on the Satterthwaite approximation
tend to overestimate tail probabilities. For example, when
data from a couple of PSUs nearly determine the value of a
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coefficient, the Satterthwaite degrees of freedom can be less
than two, incorrectly implying a chi-square density that is
infinite at zero. Consequently, the probability of very large
t-statistics may not be as large as the Satterthwaite approxi-
mation would imply, especially when the Satterthwaite
degrees of freedom are less than 4 or 5.

5. SIMULATION METHODS

We use a Monte Carlo simulation to study the properties
of alternative variance estimators and tests for a balanced
two-stage cluster sample with # = 20 PSUs and a constant
m =10 observations in each PSU. All simulation repli-
cations use a common design matrix X with four explana-
tory variables chosen to represent a range of difficulty for
nonparametric variance estimators. The first two
explanatory variables, x, and x,, are dichotomous (0 or 1)
and constant within PSU. The variable x, is 1 in half the
clusters: 1, 3,...,19, while x, is I in just three clusters: 9, 10,
and 11. Both x, and x, were generated from standard
normal distributions. They differ in that x; was generated
from a multivariate normal with intra-cluster correlation of
0.5 within PSU, while x, was generated from independent
normal distributions. Observed intra-cluster correlations are

.1.00, 1.00, 0.62 and -0.04, respectively. Observed

comrelations among the explanatory variables are all very
small with the exception of Corr(x,,x,)=0.14,

Corr(x,, x;) =0.25 and Corr(x,, x,) = -0.11. The estimated
regression coefficients are linear combinations of the
" dependent variable with multipliers given by the rows of
(X'X)"'X’, which are shown in Figure 1. For the first three
coefficients, and to a lesser extent Bs’ observations from the
same PSU tend to have similar multipliers. Of more
importance, Bz,BO, and B are determined primarily by
results in a small number of PSUs with relatively large
multipliers (in absolute value). For example, Figure 1 shows
that the multipliers for B3 are large for the second PSU,
which has a mean that is over two standard deviations from
the average PSU mean. In general, variance in the PSU
means gives some PSUs greater weight for estimating B,.

“The dependent variable was generated from the equation
Vi = B'x, £ where B =0 and the £,’s are standard
mulnvanate normal random variables with intra-cluster
correlation p. We use three alternative values of p =0,1/9,
and 1/3, corresponding to design effects for the sampie
mean of DEFF = 1, 2, and 4, respectively
(DEFF=1 +({m-1)p). Monte Carlo results are based on
100,000 replications of y for our fixed X.

We evaluated the ordinary least squares (OLS) variance
estimator, s27'(X’X)"'/, and five nonparametric variance
estimators: the standard linearization estimator given in
equation (2} with ¢ = n/(n-1); the jackknife estimator
given in (5); bias reduced linearization; and Kott’s two
adjustments to linearization. BRL and the Kott adjustments
are all based on working intra-cluster correlations of p = 0.
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Figure 1. Values of the rows of { X’ X} ! X' for the design matrix used in simulations
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We estimated Type I error rates for eight alternative test
procedures based on 100,000 replications from the null
hypothesis where each Bk 0, for k = Oto 4. Each proce-
dure compares a “t-statistic” against a reference ¢-distribu-
tion. For the 's based on linearization, the jackknife, and
BRL, we use critical values from r-distributions with both
(n-1) =19 degrees of freedom and the corresponding
Satterthwaite approximation. For Kott’s methods, we use
his proposed degrees of freedom. All computations were
implemented in SAS.

6. SIMULATION RESULTS

Table 1 shows the bias of several variance estimators for
the five regression coefficients (including the intercept) for
p =0,1/9, and 1/3. Except for Kott (1994), all values are
exact based on the X matrix described above. Because Kott
{1994) cannot be written as a linear functional, its bias is
estimated from the Monte Carlo simulations, and the
standard error of the bias is shown in parentheses.

Table 1
Bias of Variance Estimators (as a Percentage of the True Variance)
Estimator Bs B, B, By B
p=0
OLS 0.0 0.0 0.0 0.0 0.0
Linearization 96 -132 325 -133 -1.8
Jackknife 117 172 512 176 2.1
Kott (1994) 40 2.5 -1.0 22 47
{Standard error) 02 ©n (©3) 02 oD
Kott (1996) 0.0 0.0 0.0 0.0 0.0
BRL 0.0 0.0 0.0 0.0 0.0
p=1/9
OLS -50.2 497 2507 -31.7 4.1
Linearization -103  -142 -332 -17.1 -2.5
Jackknife 1.0 164 50. 19.8 32
Kott (1994) 3.9 2.7 -0.8 15 4.6
(Standard error) ©2) @O @©3 ©2 ©0n
Kott (1996) -0.8 -1.2 -1.0 -4.4 0.7
BRL 0.7 -1.0 -0.8 -1.2 0.1
p=1/3
OLS -758 -755 -762 653 138
" Linearization -10.7  -148 335 -199 41
Jackknife 10.7 159 495 214 59
Kott (1994) 3.6 24 -0.6 14 4.4
(Standard error) 02 ©1) (©3) (02 @O
Kott (1996) -1.2 -1.9 -1.5 17 -2.3
BRL -1.0 -1.5 -1.3 -2.1 0.4

Note: All values are exact except for Kott (1994), which is based on
100,000 simulation replications.

The OLS variances are unbiased for p = 0, but they are
badly biased for p = 1/9 and 1/3. As discussed in Wu, Holt
and Holmes (1988), the OLS variances are too small by
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roughly a factor of 1/[1+p(m-1)ICC)), where ICC,
denotes the intra-cluster correlation for an x variable.
Hence, for PSU-level variables (including the intercept), the
OLS variances are too small by roughly a factor of 1/DEFF.
Similarly, the bias is smaller, but still substantial for x,, the
individual-level variable with large intra-cluster correlation.
The positive bias for the OLS variance of B results from
the slight negative intra-cluster correlation for x,.

Linearization and the jackknife each suffer from large
biases, relatively independent of p, but the biases point in
opposite directions. For each estimator, the magnitude of
the bias varies greatly among the coefficients. The Iargest
biases (in absolute value) occur for B, which depends
mainly on the data from three PSUs. The next greatest
biases occur for B followed closely by f8, and Bo

Except for B4, Kott (1994) has much smaller magnitude
bias than linearization, However, the method tends to over-
compensate, often resulting in notable positive bias. An
exception is Bz, for which Kott’s estimator remains biased
low,

By design, Kott (1996) and BRL eliminate the bias for
p =0. Consequently, choice among these alternatives
should rest mainly on how well they hold down bias for
V=#1 Both methods reduce the magnitude of bias
dramatically relative to linearization for p=1/9 and 1/3.
Althongh differences between the two methods are often
small, BRL does uniformly better, with its worst bias being
-2.1 percent. While Kott (1996) is practically
indistinguishable from BRL for the PSU-level variables, it
performs substantially worse for ﬁ3 and [34.

The linearization, jackknife, BRL and Kott estimators
are highly correlated with similar coefficients of variation.
For any given regression coefficient, the correlation among
the variance estimators always exceeded 0.969, with most
exceeding 0.99 (not shown). The smallest correlations
tended to be between the jackknife and other estimators,
The coefficients of variation (also not shown) were largest
for Kott (1994) and tended to be smallest for linearization
and Kott (1996) (except for the intercept). For the intercept,
the jackknife had the smallest coefficient of variation. The
relative variance of the BRL estimator was similar to that of
the alternative nonparametric methods. Its coefficient of
variation was between 1 and 6 percent larger than that of
the linearization estimator but about 5 to 10 percent smaller
than that of Kott (1994). Thus, the five nonparametric
variance estirators tend to differ from each other mainly by
constant factors, and Table 1 summarizes the main
difference among these variance estimators.

Table 2 shows the Satterthwaite degrees of freedom for
each of the five coefficients for the linearization, jackknife,
BRL and Kott variance estimators. For all estimators the
degrees of freedom were calculated assuming V =1 and
consequently depend only on the design matrix and not on
the values of y. The approximations are similar for linear-
ization and BRL although the linearization degrees of
freedom tend to be slightly larger reflecting the fact that for
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this design matrix the relative variances of the BRL. estima-
tors are marginally larger than those for linearization.
Kott’s approximation derives the coefficient of variation for
a linearization-type estimator based on the true errors rather
than the residuals. As a result, Kott’s approximate degrees
of freedom, which are larger than those for linearization or
BRL, tend to overstate the precision of his estimator (see
Kott 1994, section 6). Across all four estimators, the
approximations are smallest for f,.

Table 2
Degrees-of-Freedom for Selected Estimators

Method B, B, B, B, B,
Satterthwaite (LIN) 9.02 1445 330 11.56 16.65
Satterthwaite 952 1330 262 906 1623
(Jackknife)

Satterhwaite (BRL) 924 1408 290 1026 1645
Kott's method 1033 1641 432 1136 17.44

Table 3 shows that Type I error rates for the standard
linearization method with (n - 1) degrees of freedom con-
sistently exceed 5 percent for all three values of p. Type I
errors are most common for ﬁz, where they reach as high as
16 percent, but they also occur much too frequently for
By By, and Bs’ ranging from 7.0 to 8.8 percent. The magni-
tude of this problem correlates closely with the size of the
bias of the linearization estimator (see Table 1). Type I
error rates are much lower, 5.7 to 6.4 percent, for tests
based on the Satterthwaite degrees of freedom. Thus using
the alternative degrees of freedom improved the Type 1
error rates by about 30 to 88 percent.

There is a less consistent pattern for the Type I error
probabilities for the jackknife. The jackknife with (n-1)
degrees of freedom tends to be conservative for Bl and B3,
in accord with the positive bias in the jackknife variance.
In contrast, the probability of Type I error is much too large
for B and a bit too large in two of three cases for the inter-
cept Bo The apparent explanation is that the choice of
(n-1) as the degrees of freedom for the reference
t-distribution sometimes counteracts the bias in the
jackknife variance. This conclusion is supported by the
very low Type I error rates for the jackknife with
Satterthwaite degrees of freedom; smaller degrees of
freedom combined with large positive biases result in very
conservative tests.

BRL with (n - 1) degrees of freedom improves substan-
tially on linearization with the same degrees of freedom.
Because BRL is unbiased when p =0, comparing the fifth
row of the table against the first demonstrates the reduction
in Type I errors that results from removing the bias of
linearization. Excluding B +» BRL reduces Type [ error rates
by about 45 to 88 percent. However, BRL with (n-1)
degrees of freedom remains consistently liberal, especially
for ﬁz. Comparison of rows 2 and 5 of each section shows
the relative impact of bias reduction and the Satterthwaite

Bell and McCaffrey: Bias Reduction in Standard Errors for Linear Regression with Multi-Stage Samples

adjustment. For Bo and Bz, degrees of freedom are more
important, while bias matters more for Bl and B3
Performance for BRL with the Satterthwaite approximation
is very good, except for [32, where the Type I error falls to
about 3 percent.

Table 3
Type I Error Rates for Tests of the Null Hypothesis that f = 0
Estimator Df ﬁo ﬁl ﬁz ﬁa |§4

p=0
Linearization n-1 754 700 1599 735 538
Linearization Satt 575 6.45 633 628 5.18
Jackknife n-1 5.01 392 758 452 502
Jackknife Sat 380 343 141 326 477
Kott (1994) Kott 487 503 713 5.21 4.67
Kott (1996) Kott 511 508 485 476 3507
BRL n-1 628 537 1125 590 521
BRL Sat 473 486 312 472 500
p=1/9
Linearization n-1 7.81 7.14 1619 8.18 3534
Linearization Satt 6.03 660 643 705 514
Jackknife n-1 531 406 763 449 477
Jackknife Satt 411 36t 148 324 451
Koit (1994) Kott 507 503 700 551 4.56
Kott (1996) Kott 542 528 514 532 501

BRL nl 652 550 1127 623 508
BRL Sat 504 500 319 493 434
p=1/3

Linearization n-l 810 728 1639 879 566
Linearization Satt 630 678 662 753 544
Jackknife n-1 545 411 776 456 4.67
Jackknife Satt 413 3.61 151 335 446
Kott (1994) Kot 514 506 702 580 4.84
Kott (1996) Kott 559 544 514 588 531
BRL n-1 676 563 1155 645 519
BRL Satt 518 514 330 526 498

Note: Entries with a true value of 5.00 percent have standard errors
of 0.07 percent.

Tests based on Kott’s 1994 estimator with his proposed
degrees of freedom perform very well for the coefficients
where the variance estimator is biased upward. It appears
that the upward bias in the variance estimator is offset by
the upward bias in the approximate degrees of freedom.
Kott’s variance estimator is slightly negatively biased for
[32 and therefore the upward bias in the degrees of freedom
compounds the bias in the estimator resulting in a Type I
error rate of about 7 percent for all three values of p.

Tests based on Kott’s 1996 estimator also perform well.
For almost all the coefficients and all values of p the Type
I error rate is close to 5 percent. The exception is the test for
[33 when p =1/3, which has an error rate of 5.88 percent as
a result of the moderate bias in the variance estimator,
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7. EXAMPLE FROM THE PARTNERS IN CARE
EXPERIMENT

We illustrate the methods in this paper using data from
Partners in Care, a longitudinal experiment assessing the
effect of *“quality improvement” programs on care for
depression in managed care organizations (MCOs) (Wells
et al. 2000). The experiment followed 1356 patients who
screened positive for depression in 1996-1997 in 43 clinics
of seven MCOs. Clinics were assigned at random to one of
three experimental cells: usual care, a quality improvement
program supplemented by resources for medication
follow-up, or a quality improvement program supplemented
by resources for access to psychotherapists. Clinics were
assigned at random after forming 27 clinic sets—three for
each of nine blocks (six MCOs constituted single blocks,
and one MCO was divided into three blocks based on
ethnic mix of the clinics). Within blocks of more than three
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clinics, clinic sets were combined to match as closely as
possible on anticipated sample size and patient character-
istics. See Wells et al. (2000) for additional details.

We present results from an OLS regression on the mental
health summary score from the SF-12 (Ware, Kosinski and
Keller 1995) for 1048 patients at 6-month follow-up.
Scores were standardized to have mean 50 and standard
deviation 10 in a general population, with higher scores
indicating better health. As in Wells et al. (2000), the
explanatory variable of primary interest is an intervention
indicator that estimates the combined effect of medication
or therapy versus care as usual. The first two columns of
Table 4 show OLS coefficients and standard errors for the
intervention effect and all the covariates used by, but not
reported in, Wells et al. (2000). Our regression differs from
theirs because we do not weight for nonresponse or impute
for missing values of the outcome variable, but the results
for the intervention effect agree reasonably closely.

Table 4
Comparison of OLS, Linearization, and BRL Inference for Partner-in-Care
SE py SEpn P-value
Explanatory Variable ﬂ} SEq ¢ SEq s SEqs DFyp,, OLS LIN BRL
PSU-Level
Intercept 28.795 3409 1.03 1.06 237 0.000 0.000 0.000
Intervention 1.724 0.746 0.73 0.84 154 0.021 0.003 0.015
Block 1 1.386 1.867 0.63 0.80 2.7 0.458 0.244 0.426
Block 2 -0.031 1.576 0.88 1.07 3.6 0.984 0.982 0.986
Block 3 -1.042 1.230 0.53 0.61 3.9 0.397 0.117 0.241
Block 4 0.038 1.231 0.62 0.73 45 0.976 0.961 0.968
Block 5 -3.707 1.503 0.66 0.78 47 0.014 0.001 0.027
Block 6 -0.025 1.562 115 1.32 4.9 0.987 0.989 0.991
Block 7 -2.784 1.644 0.84 0.97 7.0 0.090 0.051 0.126
Block 8 0.822 1.233 093 1.03 12.0 0.505 0.476 0.527
Demographic
Black 0972 1.448 0.74 0.79 7.6 0.502 0.369 0.419
Hispanic 0.202 1.004 0.73 0.75 243 0.841 0.785 0.791
Other nonwhite -1.033 1.409 0.77 0.80 21.6 0.463 0.349 0.369
Female -0.502 0.803 1.09 .12 231 0.532 0.571 0.581
Log of net worth + $1,000 0.015 0.215 0.87 0.89 236 0.943 0.936 0.937
Less than high school -1.650 1.217 1.00 1.04 25.3 0.165 0.173 0.192
Some college -1.140 0.879 0.77 0.78 26.0 0.195 0.097 0.108
College graduate -0.703 1.047 0.78 0.79 21.1 0.502 0.393 0.404
Age 0.039 0.032 0.91 0.93 26.5 0.064 0.047 0.056
Married 0.541 0.748 1.05 1.07 28.5 0.470 0.496 0.504
Baseline Health
1 chronic condition (of 19) -0.973 1.039 0.92 0.94 23.7 0.345 0.313 0.327
2 chronic conditions 0.198 1.116 0.87 0.90 23.0 0.859 0.840 0.846
3+ chronic conditions -0.201 1.132 0.90 0.91 24.0 0.859 0.844 0.347
Depression and dysthymia -5.305 1.335 0.93 0.95 258 0.000 0.000 0.000
Depression or dysthymia -3.882 0982 1.12 115 23.7 0.000 0.001 0.002
Prior depression only -2.396 1.109 1.02 1.05 212 0.031 0.040 0.052
Mental component of SF-12 0.287 0.036 1.11 1.14 26.6 0.000 0.000 0.000
Physical comp of SF-12 0.079 0.036 0.88 0.89 24.6 0.029 0.017 0.022
Anxiety disorder -2.438 0.749 1.20 1.23 26.3 0.001 0.010 0.014
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Because patients from the same clinics could have
similar outcomes, OLS standard errors could easily be too
low-especially for PSU-level variables like Intervention.
Columns 3 and 4 of Table 4 show the ratios of linearization
and BRL standard errors to the OLS standard errors. We
use clinic as the PSU because there is very little reason to
expect correlations of errors across clinics after controlling
for block.

Using the method of Wu, Holt and Holmes (1988), we-

estimate the intra-clinic correlation of the errors as -0.0026,
easily consistent with a true value of 0. Nonetheless, there
is no reason to expect any of the correct standard errors to
fall much below those obtained from OLS. Column 3 of
Table 4 shows that the linearization standard errors
frequently fall far below those obtained from OLS -
especially for the PSU-level explanatory variables at the
top of the table. Similarly, linearization with a reference
t,_, often produces much smaller P—values than does OLS.
BRL improves over linearization. BRL standard errors are
always larger and sometimes substantially larger than the
linearization standard errors. For example, the BRL
estimates for PSU-level explanatory variables are on
average 15 percent larger than the linearization estimates.
On the other hand, BRL standard errors for PSU-level
variables are still often smaller than the OLS estimates.
Thus, even though BRL estimators should be nearly
unbiased, the variability in the estimators results in esti-
mates for some coefficients that are small. The variability
is also reflected in degrees of freedom that are very small
for the block indicators and, while larger for patient level
variables, are still considerably less than 42, the number of
clusters minus one. The degrees of freedom are especially
small, 7.6, for the indictor variable Black (equal to one if
the patient was African American and zero otherwise).
Plots analogous to Figure 1 show that Black was con-
centrated in three clusters. The Black indicator equals zero
for all the patients in 24 of 43 clusters, and 48 of the 78
African Americans in the sample were found in just three
clusters. As discussed in sections 2 and 4, the concentration
of Black into a small number of clusters results in high
variance for both estimators and large bias in the linear-
ization estimator, both of which can be seen in Table 4.

8. DISCUSSION

Although linearization is a valuable tool that provides
consistent standard errors and valid inference as the number
of PSUs grows large in multi-stage samples, users should
recognize problems with the method. Estimated variances
of linear regression coefficients (including domain means)
tend to be biased low — especially for coefficients {or linear
combinations of coefficients) that depend largely on data
from a small number of PSUs. Depending on the design,
large biases can persist even when the total number of PSUs
is quite large. The standard jackknife for multi-stage

samples tends to have at least as large bias in the opposite
direction. Similarly, using a reference ¢ distribution with
degrees of freedom equal to one less than the number of
PSUs may greatly understate the uncertainty in the
estimated variance. Because the two problems (bias and
overstated degrees of freedom) tend to occur in tandem for
linearization, confidence intervals and statistical tests based
on that method may be far too liberal.

Bias reduced linearization (BRL) produces unbiased
variance estimates in the event that errors are homo-
skedastic and uncorrelated, and it tends to greatly reduce
bias for other covariance structures investigated in our
simulations. In our simulations, BRL consistently exhibited
smaller biases than linearization by 90 percent or more and
tended to improve substantially on Kott's 1994 adjusted
linearization method. Results for BRL were comparable to
those for Kott’s 1996 method.

When BRL was used with the estimated Satterthwaite
degrees of freedom, statistical inference improved greatly
in comparison with the standard use of linearization. Bias
reduction and Satterthwaite degrees of freedom seemed to
contribute about equally to the improved performance.
Although Satterthwaite’s approximation may overcom-
pensate, leading to conservative inference in certain situa-
tions, the problem does not seem noteworthy until the
Satterthwaite degrees of freedom drop below 5 (based, in
part, on simulations not reported in this paper). In such
cases, analysts might choose to estimate critical values
using simulations based on Theorem 4.

It is important to note some limitations of our simulation
results. First, we only report results for four distinct expla-
natory variables plus an intercept. We choose those
variables to span a wide variety of situations. Although
some might describe x, as extreme or pathological, it is not
outside the range of situations that we have seen in our own
consulting work. Variables like x, can results from group-
randomized trials (see section 7) or observational data
where only a few PSUs exhibit a particular trait or from use

. of a series of dummy variables to represent levels of a

categorical variable. Second, we present results only for
n =20 PSUs. To the extent that X remains similar as n
increases (e.g., by replication), Equation (4) implies that the
bias declines in proportion to 1/(n-1). Also, the results
observed for n = 20 could occur for much larger » if the
bulk of the variation in X is contributed by a few PSUs, and
the determination of /' depends similarly on a small
number of PSUs. Finally, to reduce the number of factors
affecting the results, we simplified the design in several
ways: constant PSU sizes, no weights or strata, and little
multicollinearity. We suspect that relaxing any of those
constraints would actually tend to make standard lineari-
zation and the jackknife perform worse, We do not believe
that the choice of m = 10 for the PSU size had much impact
either way on our findings.

Although we believe that our proposed methods will
prove valuable to analysts of multi-stage samples, these
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methods will not completely solve the inference problem
for unweighted linear regression. Both authors have
frequently observed the disturbing situation where standard
linearization methods produced shorter confidence intervals
than methods that ignore the design. Certainly, the bias of v,
and improper use of n - 1 degrees of freedom contribute to
the frequency of this phenomenon, but our methods would
not eliminate its occurrence (see section 7). Linearization,
like sample reuse methods, necessarily produces estimators
with high variance for some or possibly all coefficients in
certain designs. When confronted with situations like the
coefficients for our x,, where the Satterthwaite degrees of
freedom fall near 3 or lower, analysts should seriously
consider whether they can afford the large variability, and
corresponding loss of power, that comes with nonpara-
metric variance estimators. Parametric alternatives like
hierarchical linear models or inference based on estimating
a common intra-class correlation across all the PSUs (Wu,
Holt, and Holmes 1988) should produce more stable results.

Although this paper has focused on unweighted linear
regression for samples without stratification, we have no
reason to expect that the bias and degrees-of-freedom
problems of linearization would be lessened by stratifica-
tion or for either weighted least squares or generalized
linear models (GLMs). As shown in McCaffrey, Bell and
Botts (2001) the BRL method extends immediately to
weighted  linear regression by wusing H-=
X(X’'WX)'X'W in the main condition of Theorem 3.
Because solutions to GLMs, such as logistic regression, are
equivalent to the final steps of iteratively reweighted least
squares (McCullagh and Nelder 1989), the obvious choice
for these models is to use BRL based on the final weights
and to set U = W-L, Nevertheless, Theorem 3 does not
extend to GLMs because the weights are estimated from the
data, and we have not investigated the properties of BRL in
this context.

Korn and Graubard (1995) suggest vﬁﬂ as a standard
error estimator for stratified samples in situations where the
stratification 1s non-informative. The same reasoning
applies to vBRL Fuller (1975) proposed an alternative
design consistent standard error estimator for stratified
samples. Bell and McCaffrey (2002, pages 32-33) show that
by adjusting the vector of residuals for each stratum, BRL
can reduce or remove the model bias that can exist in
Fuller’s estimator.
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APPENDIX

f Theorems 2 and 4

Proof of Theorem 2

Following the first steps of the proof of Theorem 1,
equation (6) implies that

E(v;)=

n

Y x:a, -H,.,.)-*x,.] X' X)L
i=l

[ n___l] l;(xrx)-l
n

The existence of (I, = H,)™! implies that the eigenvalues of

H_ are stnctly less than 1 so that (I, = H,)™' can be written

as E ~o HI;. Consequently, lettmg D= (lln) X'X) and
= (X ‘X ) D, we have

E(v;.)

o[22 erxexy E[E[(Dm)(X'X) gy

n ) =1 \ k=1

n i=1 \ k=1 r=0

n-1 A e[k 1 alr
|y X 2 Y| s paex]
n

w

| r-t r(x'xr'i[fj > [ r:‘] ls[D,.(x'X)"]’t
i=1 n

r=0 g20
r+s=0

The term for r = 0 equals '(X'X) " {=Var(/’p). The
term for r = 1 equals 0. By the binomial theorem,

i resy 1 (0 n r+l

5=0 r n* n-1 ,
so that the remaining terms can be paired, for r = 2, 4,6, ...,
to give

n T ] < v -1 2
—1 1 XXy'D.
(72 £ flocwrn)
[(X’ X)™! +( Ll) (X'X)"D,.(X'X)"] D, X' X)“]’“}i
n-
The middle factor in the summation can be written as ,

( ](x X)1+ [ & ](X'X)-'(x;x,.)(rxr‘,
n-1 n-1
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which is positive definite, so that the whole expression must
be positive. Consequently, we have shown that
E(v,}2 Var('B) with equality if and only if
l'(X'X)‘]‘D,.=O, which is true if and only if
I'(X'X)"'X/ X, is constant across i.

Proof of Theorem 4
vi=c) 'X'X)'X; A,(I-H)ee (I-HY
i=1
AX,XX)U

n
= e‘;:gig,.'a.

Let P equal the matrix of eigenvectors and A denote the
diagonal matrix with elements A, ..., &,, equal to the eigen-
values of VW™Y! g oa'V2Z-B'B where B'-=
V(g g,..g,]. Letu =P’ V' 2y where VI2VV12 =]
defines V"2, then the elements of u are independent normal
variables with variance 1 and

M
v =wAu =Y Aul

- el
Let &; be any nonzero eigenvalue of B‘B, then there
exits a nonzero vector z such that B'Bz =21z and
BB'Bz =), Bz. Because Bz#0,}, is an cigenvalue of
B B’. Similarly, any nonzero eigenvalue of BB’ is also
an eigenvalue of B'B. Therefore, the nonzero eigenvalues
of B'B equal the nonzero eigenvalues of BB’ = {g/ Vg j}.

REFERENCES

BELL, R.M., and MCCAFFREY, D.F. (2002). Bias Reduction in
Linearization Standard Errors for Linear Regression with
Mulii-Stage Samples. AT&T Labs-Research, Florham Park, NJ,
TD-4S9HYT, www.rescarch.att.com/~rbell,

BRYK, AS., and RAUDENBUSH, S.W. (1992). Hierarchical
Linear Models: Applications and Data Analysis Methods.
Newberry Park, CA: Sage.

COCHRAN, W.G. (1977). Sampling Technigues. Third Edition, New
York: John Wiley & Sons Inc.

COOK, R.D., and WEISBERG, S. (1982). Residuals and Influence
in Regression, New York: Chapman and Hall,

EFRON, B., and TIBSHIRANI, R.J. {1993), An Introduction to the
Bootstrap. New York: Chapman and Hall.

ELLICKSON, P.L., and MCGUIGAN, K.A. (2000), Early predictors
of adolescent violence. American Journal of Public Health. 90,
566-572.

FULLER, W.A. (1975). Regression analysis for sample surveys.
Sankhya C, 37, 117-32,

GELMAN, A, CARLIN, J.B,, STERN, H.S. and RUBIN, D.B.
(1995). Bayesian Data Analysis. London: Chapman and Hall.

GOLDSTEIN, H. (1991). Multilevel Modeling of Survey Data. The
Statistician. 40, 235.244,

KISH, L. (1965). Survey Sampling, New York: John Wiley & Sons
Inc.

KORN, EL.,, and GRAUBARD, B.I. (1995). Analysis of large health
surveys: Accounting for the sampling design. Journal of the Royal
Statistical Society, Series A, General. 158, 263-295.

KOTT, P.S. (1994). A hypothesis test of linear regression coefficients
with survey data. Survey Methodology. 20, 159-64.

KOTT, P.S. (1996). Linear regression in the face of specification
error:  model-based  exploration of randomization-based
techniques. Proceedings of the Survey Methods Section, Statistical
Society of Canada. 39-47.

LANDIS, JR., LEPKOWSKI, JM., EKLAND, S.A. and
STEHOUWER, S.A. (1982). A statistical methodology for
analyzing data from a complex survey: the first national health and
nutrition examination survey. Vital and Health Statistics, Series
2, 92, Washington, D.C: US Government Printing Office.

MACKINNON, LG, and WHITE, H. (1985). Some
heteroskedasticity consistent covariance matrix estimators with
improved finite sample properties. Journal of Econometrics. 29,
303-325.

MANCL, L.A., and DERQUEN, T.A. (2001}. A covariance estimator

for gee with improved small-sample properties. Biometrics. 57,
126-134.

MCCAFFREY, D.F., and BELL, R.M. (1997). Bias reduction in
standard error estimates for regression analyses from multi-stage
designs with few primary sampling units. Paper presented at the
Joint Statistical Meetings, Anaheim CA.

MCCAFFREY, D.F., BELL, R.M. and BOTTS, C.H. (2001).
Generalizations of bias reduced linearization. Proceeding of the
Survey Research Methods Section, American Statistical
Association.

MCCULLAGH, P., and NELDER, J.A. (1989). Generalized Linear
Models. Second Edition, London: Chapman and Hall.

MURRAY, D. M., HANNAN, P. J., WOLFINGER, R. D., BAKER,
W.L. and DWYER, 1LH. (1998). Analysis of data from
group-randomized trials with repeat observations on the same
groups. Statistics in Medicine. 17, 1581-1600.

RUST, KF., and RAQ, JN.K. (1996). Variance estimation for
complex surveys using replication techniques. Statistical Methods
in Medical Research. 5, 283-310.

SAS INSTITUTE INC. (1999). SAS/STAT* User's Guide, Version 8.
Cary, NC: Author.

SATTERTHWAITE, F. (1946). An approximate distribution of
estimates of variance components. Biometrics. 2, 110-114,

SEARLE, S.R., CASELLA, G. and MCCULLOCH, C.E. (1992).
Variance Components. New York: John Wiley & Sons Inc.

SHAH, B.V., BARNWELL, B.G. and BIELER, G.S. {1997).
SUDAAN User’ Manual, Release 7.5. Research Triangle Park,
NC: Research Triangle Institute.

SHAH, B.V., HOLT, M. M. and FOLSOM, R.E. (1977). Inference
About Regression Models from Survey Data. Bulletin of the


http://www.research.att.com/~rbell

Survey Methodology, December 2002

International Statistical Institute. 41, 43-57.

SHAPIRO, M.F., MORTON, S.C., MCCAFFREY, DF,
SENTERFITT, 1W., FLEISHMAN, J.A., PERLMAN, JF.,
ATHEY,L. A, KEESEY, ] W,, GOLDMAN, D.P.,, BERRY, S. H.
and BOZZETTE, S.A. (1999). Variations in the care of
hiv-infected adults in the United States; results from the hiv cost
and services utilization study. Journal of the American Medical
Association. 281, 2305-2315.

SKINNER, C.J. (1989a). Introduction to Part A, Analysis of Complex
Surveys, (Eds. C.J. Skinner, D. Holt, and TM.F. Smith). New
York: John Wiley & Sons Inc. 23-57.

SKINNER, C.J. (1989b). Domain means, regression and multivariate
analyses. Analysis of Complex Surveys, (Eds. C.J. Skinner, D.
Holt and T.M.F. Smith). New York: John Wiley & Sons Inc.
59-88.

STATACORP. (1999). Stata Statistical Software: Release 6.0.
College Station, TX: Author.

THEIL, H. (1971). Principles of Econometrics. New York: John
Wiley & Sons Inc.

181

WARE, ]1.E., JR., KOSINSKI, M. and KELLER, S.D. (1995). §F-12:
How to Score the SF-12 Physical and Mental Health Summary
Scales. Boston, Mass: The Health Institute, New England Medical
Center.

WELLS, K.B., SHERBOURNE, C., SCHOENBAUM, M., DUAN,
N., MEREDITH, L., UNUTZER, J., MIRANDA, J., CARNEY,
M. and RUBENSTEIN, L.V. (2000). Impact of disseminating
quality improvement programs for depression in managed primary
care: a randomized controlled trial. Journal of the American
Medical Association. 283, 212-220. :

WHITE, H. (1980). A heteroskedasticity-consistent covariance matrix
estimator and a direct test for heteroskedasticity. Econometrica.
48, 817-838.

WU, CJF., HOLT, D. and HOLMES, D.J. (1988). The effect of two
stage sampling on the F statistic. Journal of the American
Statistical Association. 83, 150-9.

ZEGER, 5.L., and LIANG, K.Y. (1986). Longitudinal data analysis
for discrete and continuous outcomes. Biomerrics. 42, 121-130.






Survey Methodology, December 2002
Vol. 28, No. 2, EF 83-190
Statistics Canada

183

Design Effects of Sampling Frames in Establishments Survey

MONROE G. SIRKEN!

ABSTRACT

When stand-alone sampling frames that list all establishments and their measures of size are available, establishment surveys
typically use the Hansen-Hurwitz (HH) pps estimator to estimate the volume of transactions that establishments have with
populations. This paper proposes the network sampling (NS) version of the HH estimator as a potential competitor of the
HH estimator. The NS estimator depends on the population survey-generated establishment frame that lists households and
their selection probabilities in a population sample survey, and the number of transactions, if any, of each household with
cach cstablishment. A statistical model is developed in this paper to compare the efficiencies of the HH and NS estimators
in single-stage and two-stage establishment sample surveys assuming the stand-alone sampling frame and the population
survey-generated frame are flawless in coverage and size measures,

KEY WORDS: Stand-alone establishment frames; Population survey-generated establishment frames; Hansen-Hurwitz

estimator; Network sampling estimator.

1. INTRODUCTION

Listings of establishments that have transactions with
households in population sample surveys serve as sampling
frames of establishment surveys whenever the transactions
reported by households in the population surveys are
matched with the records of their establishments. For
example, the listings of establishments that have trans-
actions with households in the National Medical
Expenditure Panel Survey (MEPS), a national population
sample survey, serve as sampling frames for medical
provider surveys that supplement and verify the medical
expenditures of the transactions reported by MEPS house-
hold respondents (Cohen 1998). However, listings of esta-
blishments that have transactions with households in popu-
lation sample surveys rarely serve as frames of establish-
ment surveys that collect information about the transactions
that establishments have with all households. The Current
Price Index (CPI) produced by the Bureau of Labor
Statistics is a notable and rare exception of a Federal esta-
blishment survey that depends on a population survey-
generated sampling frame. The CPI Pricing Survey, a
national retail establishment survey, that collects prices for
a basket of consumer goods purchased by all customers,
uses as its sampling frame the listings of retail establish-
ments that have transactions with households in the CPI
Continuing Point of Purchase Survey. (Leaver and Valliant
1995).

After reviewing plans of the National Center for Health
Statistics (NCHS) to restructure its family of independent
national surveys of health providers (hospitals, physicians,
clinics, etc.), a Panel of the Committee on National
Statistics proposed (Wunderlich 1992) using listings of
health care providers reported by households in the
National Health Interview Survey (NHIS), an ongoing

1

national household sample survey (Massey, Moote, Parsons
and Tadros 1991) as the sampling frames for national
surveys of health care providers. The Committee thought
that, especially in the current environment of rapid changes
in listings of health care providers due to rapid changes in
the nation’s health care delivery system, the NHIS-gener-
ated health care provider frames would be more accurate
and easier and less expensive to construct and maintain than
the free-standing health care provider frames currently in
use. Soon after the Panel report was issued, NCHS initiated
a research project on population survey-generated sampling
frames that is briefly summarized below.

Initially, the research focused almost exclusively on the
statistical properties of NHIS-generated frames of health
care providers. Judkins, Berk, Edwards, Mohr, Stewart and
Waksberg (1995) studied the quality of the free-standing
health provider frames currently in use or of potential use,
and discussed the kinds of medical providers for which
NHIS-generated frames would seem to have the greatest
potential. Subsequently, Judkins, Marker, Waksberg,
Botman and Massey (1999) made rough comparisons of
the efficiencies of dental surveys using the NHIS-generated
sampling frame and using the free-standing frame, and
concluded that NHIS-generated health care provider frames
deserve serious consideration whenever reasonably
complete free-standing health care provider frames with
reasonably good size measures are unavailable.

In recent years, the research has focused on the statistical
properties of estimators that depend on population-gener-
ated sampling frames and has become more theoretically
focused than formerly. The conceptual difficulties initially
encountered in developing unbiased estimators for the
population survey-generated frame because the same estah-
lishments have transactions with multiple households were
overcome by applying network sampling theory. (Sirken

Monroe G. Sirken, Senior Research Scientist, National Center for Health Statistics, U.S.A.
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1997; Thompson 1992). Sirken, Shimizu and Judkins
(1995) developed the network sampling version of the HH
estimator, referred to in this paper as the NS estimator, and
Sirken and Shimizu (1999) developed the network sampling
version of the Horwitz-Thompson (HT) estimator, This
paper develops a statistical error model that compares the
efficiencies of the NS estimator that depends on the popu-
lation survey-generated frame, and the HH estimator that
depends on the free-standing frame. The error model
assumes both frames are flawless in establishment coverage
and size measures and have equivalent construction and
maintenance costs. Though the model assumes a srs design
for the population survey that generates population survey-
generated sampling frame, the model can be applied to
other kinds of population survey designs that are not
considered in this paper.

This paper is organized as follows. Notation follows in
section 2. Section 3.1 and section 3.2 respectively present
the pps self-weighted HH estimator and variance of the
two-stage establishment sample survey that depends on the
free-standing sampling frame, and the NS estimator and
variance of a two-stage establishment survey that depends
on the population survey-generated frame. The error model
is developed in sections 4.1- 4.4. The difference between
two-stage HH and NS variances of equivalent expected
sample sizes is developed in section 4.1. In section 4.2, the
first stage variance component of the two-stage NS esti-
mator is split into variance components representing effects
of households with and without transactions, and section
4.3 shows the design effects of the NS estimator in single
stage sampling. Second stage variance components of the
NS and HH estimators are compared in section 4.4. In the
concluding section 5, the error model’s major findings
comparing efficiencies of HH and NS estimators in single-
stage and two-stage establishment surveys are briefly sum-
marized, and limitations of the model are briefly discussed.
The appendix presents the proof of a statistical statement
appearing in section 4.2,

2. NOTATION

Let N, = the number of households having transactions
with establishment j(j=1,2,..., R}, N, = the number of
households not having transactions with any establish-
ments, and N~ = the number of distinct households having
transactions with R establishments. Then, N=N*+N_ = the
total number of households.

Let M, = the number of transactions of establishment
J(Jj=1,2,..,R) with household i(i =1, 2, ..., N), where
M,. > 0 when establishment j has transactions with house-
hold: and M, =0 when estabhshment j and household { do
not have transactions. Then, M, = ):, 1 M,; = the number of
transactlons of establishment j with N households, and
M= 2 -1 MJ the number of transactions of M establish-
ments w1th N households, and M = M/N the average
number of transactions per household.

Let X; denote the value of the x-variate for transaction
k(k = 1 M, ) of establishment j(j =1, 2, ..., R). Then,

X = Zk 1 X, = the sum of the x—vanate over the M,
transactmns of establishment j, and X = E i1 X = sum of
the x-variate over the M transactions of R establnshments
Let XJ X. /M, = the average value of the x-variate over the
M. transactions of establishment j, and X =X/M = the

. average value of the x-variate over M transactions.

3. ESTIMATORS AND VARIANCES

3.1 The HH Estimator and Variance

Consider a two-stage self weighted establishment sample
survey using a free-standing establishment sampling frame
that lists all R establishments and their measures of size,
M, (j=1,2,..,R). Establishments are the primary
samplmg umts (psu s), and transactions are the secondary
sampling units. A sample of r establishments is selected
with pps with replacement from the free-standing frame,
and a sample of size ¢, <min (M,, . M - Mp) trans-
actions each, where #,;; is a positive 1nteger is mdepen-
dently selected by simple random sampling without replace-
ment for each sample establishment j(j=1,2,...,r).

The unbiased self-weighted pps HH estimator of X is

X, - ﬂ ): X M

where X ! ):k 1 Kjjltyy 18 the unbiased estimate of

X XJIM (j=1, 2 ., R). Because establishments are

sélected with replacernent the HH estimator counts X, as

many times as establishment j is selected in the sample,
The variance of the Xj,; is (Thompson 1992)

R
TS M-ty 6 @)
Pl j=1

M2
Var(Xy,) = — GHHI +

where the first and second terms respectively on the right
side of (2} are the first and second stage variance com-
ponents, and

R
oy = 5_14 3 M, (X -X/M)? 3)
J=1
is the between establishment population variance, and
. M
2 _ " 2
o; = AR (X, -~ X,/M,) 4)

J

is the within establishment population variance of esta-
blishment j.

3.2 The NS Estimator and Variance

Consider a two-stage establishment sample survey that
depends on a population survey-generated frame. The frame
lists n sample households H/ (i =1,2,..,n) that were
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enumerated in a population sample survey. For each listed
household H ;'» the frame provides x,, its selection probabi-
lity in the household survey, and M,.j, the number of its
transactions  with each  distinct  establishment
J(i=1,2,..,R). (The M,;’s are reported by household
respondents in the populanon sample survey).

Each of the  listed households in the population survey-
generated frame represents a cluster of establishments
ranging in size from 0 to R establishments with whom the
household has transactions. The n clusters of establishments
are the primary sampling units, and the M. (j =1, 2,....9
transactions of the r sampled establishments are secondary
sampling units. The transaction sample for establishment j
j {Jj =1,2, ..., R) is selected as follows: a srs sample of size
tus M < Mln( M, M, .. M) transactions is indepen-
dently selected without replaccment for each sample honse-
hold H; (i=1,2,...,n), where t is a positive integer. The
transaction sample su:e of establishment j(j=1,2,..,R)
is equal to #,; ¥ , M., and the total transaction sample
size is equal to T2, vhere = Y1 Lye a,M;;= the sum of
the transactions over n sample househdlds is a random
variable.

The NS estimator of X is

Xys =3 ”'1"‘2 M }_(_," )

izl W jea,

where A, is the cluster of distinct establishments that have
transactions with sample household H;, and

_ Ing My
X/ (i) = kZ; X /(s M)
is an unbiased estimate X, for a sample of tns M;; trans-
actions of establishment j. Because households are selected
with replacement the NS estimator counts the quanuty
Zje A M ](:) every time household H, (i =1,2,....n) is
selected in the sample, and because the same estabhshment
has transactions with multiple households, the NS estimator
counts the quantity M,; X;(i} every time a sample house-
hold { (i = 1, 2, ..., n} contains establishment j.

Assuming a srs design in the population survey,
7, = n/N, and the network sampling estimator is

X5 =23 ¥ M, X ). G)

n =1 €A,

The NS estimator is an unbiased estimator of X.

Xqs) -Zl EE M, X! (i) -E > M, X,

i=l JeA;
R

Z j=gx=
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The NS estimator in (5) is self-weighted because we have
assumed that the n households are selected by srs. It would
be a self-weighted estimator whenever the sample design of
the population sample survey that generates the
establishment sampling frame is self-weighted. When
N=N*=M, implying that ¥ households each has a
single transaction, and N, =N - N~ households are without
transactions, and when n = r and t,¢ =1,,.. the HH and NS
estimators are equivalent.

NM NN
Xis= —2 LM X ==} 3 X
R o=l jea, R i=1 jea,
M
==Y X = Xy (6)
roj=t

The variance of the NS estimator (5), under srs sampling
with replacement of n households and independent
selections of 7, M,; transaction by srs without replacement
for each establishment j linked to household H,, is (Sirken
etal. 1995)

N2

>3

ﬂth i=1 J=
M; ~Ins Mij 2
Ty % O

where the first and second terms respectively on the right
side of (7) are the first and second stage variance
components, and

X/N) ®)

is the population variance between households, and o7, the
population variance within establishment j as defined in (4).
An unbiased estimate of NS variance is

)3 [Z M, X/ () - 5{*]2 9

Var (X
(n‘l) i=) |jeA

Ns) =

where X' = X/N.

4. THE ERROR MODEL

4.1 HH and NS Variances of Equivalent Expected
Sample Size

Subtracting (2) from (7), the difference between the
variances of the HH and NS estimators of X is
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) _ N? M? 5
Var (Xys) - Var(X,,) = 7 ONs1 T O
ZNj 3 o MMy
Rlyg =1 j=1 v Mj !
(10)
- —_— M -f
i E ;=) @ ]

where the first and second set of bracketed terms respec-
tively on the right side of (10) represent the differences

between the primary and secondary variance components of

the HH and NS estimators of X.

Let myg =11, = the size of the transaction sample in the
establishment survey using the population survey-generated
frame, where #,¢, a positive integer, is the size of the trans-
action sample selected per transaction of the n sample
households,and © =31, ¥ 2, M,;= sum of the transactions
of n sample households.

Clearly, t is a random variable and its expected value
conditional over all samples of n households is E(t|n) =
nM where M = M/N= averagehousehold transaction size.
It follows that E(myg|n) =ty E(t[n) =n Mt is the
expected transaction sample size of the NS estimator condi-
tional over all samples of n households.

Let my, = rty,, = the size of the transaction sample in
the establishment survey using the stand-alone frame, where
r = the establishment sample size, and #,,, = the transaction
sample size per selected establishment. Let r = E(t|n) =
nM and let £, =, =t andit follows the expected trans-
action sample sizes of the NS and HH estimators condi-
tional over all samples of n households are equivalent,
namely, E(myy,|n) = tE@|n) =ntM = E(mNsln)

Calibrating the establishment and transaction sample
sizes in this manner assures that HH and the NS establish-
ment surveys are conducted under roughly the same fiscal
constraints if per establishment and per transaction field
costs are about the same in both surveys. It is noteworthy,
however, that this cost equation does not take into account
the differences in costs between constructing and main-
taining stand-alone establishment frames and population
survey-generated establishment frames.

Substituting r =n M, by =Iys =% and M =N M in
formula (9), the difference between the NS and HH
variances of equivalent expected establishment and trans-
action sample size conditional over all samples of n house-
holds is

Design Effects of Sampling Frames in Establishment Surveys

Var (Xy,) - Var(X,.) = - [ch. - Majgy,)

M(M -M;)

N
- —Ec [(M,-1)- -y

nt j-1 i=1 ] an

The first term and second terms respectively on the right

side of (11) represent the difference between the first stage

and second stage variance components of the NS and HH

estimators of equivalent expected sample sizes conditional
over all samples of n households.

4.2 Decomposition of the Single Stage NS
Population Variance

Typically, some households do not have transactions
with any establishments, and the percentage varies by type
of establishment. For example, medical care utilization by
families in the United States varies greatly by type of health
care provider (Dicker and Sunshine 1987). During a 12
month period, 70 percent of families were not admitted to
hospitals, 7 percent did not have ambulatory physician
visits, and 28 percent did not have dental visits.

Let

= }—Vﬁ: = fraction of N households with one

or more transactions, and

N,
Py=1- PFO = fraction of N households without

any transactions.

We demonstrate in the Appendix that the single stage
population variance of the NS estimator of X, when
expressed as a function of P, decomposes into 2 paris

s, (P) = —E[E ff,—]z

N jeA;
= Po, . +6*(PYE. . 0<P<l  (12)
where
N _ x)?
UNSI = —E[Z TR (13)
=1 | jeA N

1s the single stage population variance of the x-variate over
the truncated population of N* households with one or
more transactions,
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E;sr - £
N'

wE (T

) NSI (14)

is the expected value squared of the x-variate over the
truncated population of N* households and

o (P) = P(1-P) (15)

is the variance of the binomial variable P. For fixed M, the
function gk, (P|M) is maximum when

- -1
P = Pry = =[G 1 EL,) t]s1
2 2 . 2
111}2 cngI zfnsr’ P =1 and if GNSI<ENS]
<

When P =1,6%(P =1) =0 and therefore °N51(P =
I P=M=(M/N)=1, implying that each of N
households has a single transaction,

ons1(P=M=1)=0 (N'=M) =c},, (16)
because
2 1 N _ 2
iE (X——) = By (17)
M 4

and, 6*(P=1)=0. In other words when P=M=1,
implying each of the N households has a single transaction,
the variance of the NS1 estimator which would then depend
on a srs of transactions with replacement is equivalent to the
variance of the HH1 estimator that depends on a pps cluster
sample of equivalent sample size selected with replacement.

4.3 Design Effects in Single Stage Sampling
Let

N _
Xs, = % E Yy M;; X; = the unbiased NS estimator

= the unbiased HH estimator of X

E
>

in single stage sampling.

Define the single stage sampling total design effect of
the NS1 estimator as the ratio of the variances of the NS1
and HH1 estimators of equivalent sample size conditional
over all samples of n households.

187

Var(Xyg,)
Var(X )

_ S (P)

A(P)= b
M oy,

(18)

where A (P) < 1 indicates that the NS1 estimator is more
efficient than the HH]1 estimator, and A(P)> 1 indicates
that the HH1 estimator is more efficient than the NS1
estimator.

We noted in (12) and (135) that O'NSIZ(P) PO‘NS]
P(1-P)}X/N '), and in (16) that GHH, =05, - (N7 =M).
Making these substitutions in (18), the totaf design effect
becomes

A(P)=deftys, + (1 -P) Zy,, O<Psl  (19)
where
PX/N' 2
Zgy == ,) 20)
NSI (N =

is the effect due to the N, households without transactions,
and

Po’ . P o,
deftys) = | =] = "Sl’ @
Mol | |M ol W' =M)

is effect due to the N* households with transactions. In
other words, deftfm] is the design effect of nerwork
sampling a population of N ” household clusters containing
one or more transactions, with equal probability and
replacement, compared to network sampling a population
of M transactions, of equivalent expected sample size, by
srs and replacement. [The reader is referred to Kish (1982)
for the definition of deft?].

The total design effect in (19) depends on deﬁNs and
Zys, and, P, and the values of these parameters, as well as
relationships between them, are likely to vary considerably
between surveys, and between variables and population
domains in the same surveys. Though, in theory, the NS1
estimator could be more efficient than HH1 estimator, in
reality that outcome seems highly unlikely because cluster
sampling is typically less efficient than srs. A necessary
condition for the NS1 estimator to be as efficient or more
efficient than the HHI estimator is that deﬁﬁmsl -
(1-P)Z,, and this condition is unlikely to be met
particularly if P is small, and if the within household trans-
action clustering is mostly due to households having
multiple transactions with the same establishments rather
than households having transactions with multiple esta-
blishments.

4.4 Comparing Efficiencies in Two-stage Sampling

In two stage sampling, the difference between the HH
and NS second stage variance components for equivalent
expected sample size of ntM transactions conditional over
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all samples of n households, the second term on the right
side of equation (11), reduces to

N& N M. (M.-tM.)
Ny @2im-pn- D%y
nt,g; 3 M9 ]2:1 M,

P; o
! (22}

NR
5>
n

J=1

K|z

where p,/M, = 1/M, ¥y M, (M;-1) is the difference
between the IHH and NS second stage finite population
corrections for establishment j. If none of the N households
have multiple transactions with establishment j, the HH and
NS second stage variances of establishment j are equivalent
and p,=0. Otherwise, p;>0 and second stage variance for
establishment J is larger for the HH than the NS estimator.
The value of p; is maximum when establishment j has M,
transactions with a single household.

The second stage variance components of the HH and
NS estimators are equivalent Z}il p; = 0, when, that is,
none of the H households have multiple transactions with
any of the R establishments. Of course, second stage
variances are equivalent if transactions are selected with
replacement or the within establishment variances,
o‘? =0(j=1,2,..,R). Except for these contingencies,
however, the second stage variance is always larger for the
HH estimator than for the NS estimator, and the magnitude
of the difference depends on the extent of within household
clustering of transactions with the same establishments, and
the magnitudes of the within establishment variances.

If none of the N * households have multiple transactions
with the same establishments, the difference between the
variances of the HH and NS estimators are equivalent in
single stage and two stage establishment sample surveys.
Otherwise, the difference between HH and NS variances is
less in two stage than in single stage establishment sample
surveys because whenever households have multiple trans-
actions with the same establishments the second stage
variance is greater for the HH estimator than for the NS
estimator.

5. SUMMARY AND CONCLUDING REMARKS

The error model presented in this paper compares
efficiencies of two estimators of the volume of transactions
between establishments and populations in single-stage and
two-stage establishment sample surveys. The Hansen-
Hurwitz (HH) estimator depends on a stand-alone sampling
frame that lists every establishment and the volume of its
transactions with all households during a specified calendar
period. The network sampling (NS} estimator depends on
a population survey-generated frame that lists the house-
holds and their selection probabilities in a population
sample survey, and for each household, lists the number of

Sirken: Design Effects of Sampling Frames in Establishment Surveys

its transactions with each distinct establishment during the
specified calendar period.

Also, the NS and HH estimators depend on different
establishment survey sample designs. In single-stage
sampling, the HH estimator depends on a design in which
establishments are the selection units and they are selected
with pps with replacement, and the NS estimator depends
on a design in which households are the selection units and
they are selected with their selection probabilities in the
population survey, which the error model assumes is srs
with replacement. In two-stage sampling, transactions are
the second stage sampling units of the HH and NS esti-
mators. The HH estimator depends on fixed-size transaction
samples that are selected by sts independently without
replacement. The NS estimator depends on transaction
sample sizes that are proportional to the number of trans-
actions of each household with each establishment, and are
selected independently by srs without replacement.

The NS and HH estimators are equally efficient, if and
only if, every household in the entire population has one
and only one transaction. Otherwise, neither the NS or the
HH estimator is necessarily more efficient than the other.
Nevertheless, it seems likely that the HH estimator will be
more efficient than the NS estimator in single-stage esta-
blishment survey sampling, and perhaps substantially more
efficient especially when large fractions of households do
not have any transactions, and/or when the within house-
hold clustering of transactions among households with
transactions is principally due to households having
multiple transactions with the same establishments rather
than households having transactions with multiple esta-
blishments. In two-stage sampling, the outcome is not as
transparent as in single stage sampling because the second
stage variance component is larger for the HH estimator
than the NS estimator by an amount that depends on the
extensiveness of within household clustering of transactions
with the same establishments.

Arguably the foremost limitation of the error model
presented in this paper is the presumption that the stand-
alone and population survey-generated sampling frames are
flawless in coverage and size measures. However, compa-
rative costs of constructing and maintaining good quality
stand-alone and population-generated establishment
sampling frames are likely to vary greatly from survey to
survey. Though the model seek to equalize the establish-
ment survey costs based on each kind of sampling frames it
ignores the differential costs of constructing and
maintaining each kinds of frame.

Even in the absence of empirical data about the compa-
rative costs of constructing and maintaining the frames, it
is fair to say that the population survey-generated frame
should be seriously considered as a potential design alter-
native whenever constructing and maintaining good quality
stand-alone frames would be infeasible or exorbitantly
expensive or time consuming, and/or when constructing and
maintaining good quality population survey-generated
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establishment sampling frames would be relatively inexpen-
sive. For example, the population survey-generated frame
would be a particularly attractive as a potential design
alternative to the stand-alone frame when the stand-alone
frame would be difficult to construct and maintain because
it was undergoing rapid changing due to births, deaths, and
establishment mergers, and the population survey-gene-
rated frame costs would be relatively small either because
it could be constructed and maintained as a by-product of
an ongoing population sample survey (Wunderlich 1992)
and/or as a by-product of an ongoing program of matching
transactions of households enumerated in a2 population
survey with their establishment records (Cohen 1998).

Another limitation of the model is the unrealistic
assumption that the population survey that generates the
establishment sampling frame is based on a single stage
sample design in which households are selected with equal
probabilities and with replacement. In fact, population
surveys are virtually always based on multistage sample
designs in which households are selected without replace-
ment in the final sampling stage. Typically, the srs
assumption tends to significantly understate the variance of
the NS estimator, and therefore would have the effect of
exaggerating the relative efficiency of the NS estimator
compared to the. HH estimator. On the other hand, the
household sampling with replacement assumption would
have the opposite effects, but would be modest (Sirken
2001) compared to the srs assumtion. The error model can
be applied, however, to the other population survey sample
designs that are not considered in this paper.

The error model presented in this paper identifies the
critical parameters that determine the relative efficiency of
establishment survey estimators depending on stand-alone
and population survey-generated sampling frames. Values
of these parameters will vary greatly between surveys and
between variables and population domains in the same
surveys. Unfortunately, empirical data are currently
unavailable, and they are sorely needed to estimate the
model’s parameters under a broad range of survey condi-
tions. Hopefully, this paper will stimulate interest in
conducting establishment surveys that depend on popu-
lation survey-generated establishment sampling frames, and
will lead to improvements in designing establishment
surveys that estimate the volume of transactions between
establishments and populations.
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APPENDIX

When expressed as a function of P, the fraction of house-
holds with one or more transactions, the single stage popu-
lation variance of the network sampling (NS) estimator of

decomposes into 2 parts
UZSl-(P) = Pc,’f,m. + 02 (P) ESSI. 0<Pz<1
where
p=N
N

2 1 5 = x)?
o ., = M. X -
NS1 N* § [;%l:,. i N‘]

is the truncated single stage population variance of the NS
estimator exclusive of the Ny =N - N’ households without
transactions with establishments,

6’ (P) = P(1-P)

is the variance of the binomial variable P, and

2 _ 32
EX . = (XIN*)

is the expected value squared of the x-variate distributed
over N* households.

Proof
N 2
2 1 X
Ongy = — M. X
NS1 N ; [,rgf;; [1 el

N R _ % 2 No X
M. X -— LAY el V)
.E [;:El g7 N'J v N (N) (A.1)

Add and subtract X/N * to the first term on the right side of
(A.1).

. 2
1- (&, 5 X
— M.X-Z
N (ng T
Sy g XL X x|
N" =1 jea, YNt N N
2 x x)
Poys (P) P[N' _ﬁ] (A.2)
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Substitute (A.2) for the first term on the right side of ( A.1).

2 2
2 _ p.? X X X
Onsi(P) = Po,. +P(F "N +(1 —P)[XT-]
= Pol,.(P)+ F(PEL. (A3)
where
x)?
o’ (P) = P(1-P), and E . =
N:

REFERENCES

COHEN, S.B. (1998). Sample design of the 1996 medical
expenditure panel survey medical provider component. Journal of
Economic and Social Measurement. 24, 25-53.

DICKER, M., and SUNSHINE, J.H. (1987). Family usec of health

care, United States, 1980. National Health Care Utilization and
Expenditure Survey. Report No. 10. DHHS Pub. 87-20210.

JUDKINS, D., BERK, M., EDWARDS, S., MOHR, P., STEWART, .

K. and WAKSBERG, J. (1993). National Health Care Survey: List
verses Network Sampling, Unpublished report. National Center
for Health Statstics.

JUDKINS, D., MARKER, D., WAKSBERG, J., BOTMAN, S. and
MASSEY, J. (1999). National Health Interview Survey: Research
for the 1995-2004 redesign. National Center for Health Statitics.
Vital and Health Statistics. Washington, DC: Government
Printing Office, Series 2. 126, 76-89.

KISH, L. (1982). Design effect. Encyclopedia of the Statistical
Sciences. John Wiley & Sons, Inc, 2, 347-348.

Sirken: Design Effects of Sampling Frames in Establishment Surveys

LEAVER, 8., and VALLIANT, R, (1995). Statistical problems in
estimating the U.S. consumer price index. In Business Survey
Methods, (Eds. B.G. Cox, D.A. Binder, B.N. Chinnappa, A
Christianson, M.J. Colledge, and P.S. Kott). New York: John
Wiley & Sons, Inc.

MASSEY, L.T., MOORE, T.F., PARSONS, V. and TADRO, W.
(1991). Design and estimation for the National Health Interview
Survey, 1985-94, National Center for Health Statistics, Vital and
Health Statistics. Washington, DC: Government Printing Office,
Series 2, 110.

SIRKEN, M., and SHIMIZU, 1. (1999). Population based
establishment surveys: The Horvitz-Thompson estimator. Survey
Methodology. 25, 187-91.

SIRKEN, M., SHIMIZU, I. and JUDKINS, D. (1995). The
population based establishments surveys, Proceedings of the
Section on Survey Research Methods, American Statistical
Association. 1, 470-473.

SIRKEN, M.G. (1997). Network sampling. Encyclopedia of
Biostatistics. John Wiley & Sons, Inc. 4, 2977-2986.

SIRKEN, M.G. (2001). The Hansen-Hurwitz estimator revisited: PPS
sampling without replacement. Proceedings of the Section on
Survey Research Methods, American Statistical Association. In
print.

THOMPSON, 8. {1992). Sampling. New York: John Wiley & Sons,
Inc. 117-118.

WUNDERLICH, G.S. (Ed.) (1992). Toward a National Health Care
Survey: A Data System for the 21" Century. Washington, DC:
National Academy Press.



Survey Methodology, December 2002
Vol. 28, No. 2, pp. 191-198
Statistics Canada

191

A Generalization of the Lavallée and Hidiroglou Algorithm for
Stratification in Business Surveys

LOUIS-PAUL RIVEST'

ABSTRACT

This paper suggests stratification algorithms that account for a discrepancy between the stratification variable and the study
variable when planning a stratified survey design. Two models are proposed for the change between these two variables.
One is a log-linear regresston model; the other postulates that the study variable and the stratification variable coincide for
most units, and that large discrepancies occur for some units. Then, the Lavallée and Hidiroglou {1988) stratification
atgorithm is modified to incorporate these models in the determination of the optimal sample sizes and of the optimal
stratum boundaries for a stratified sampling design. An example illustrates the performance of the new stratification
algorithm. A discussion of the numerical irmplementation of this algorithm is also presented.

KEY WORDS: Neyman allocation; Power allocation; Stratified random sampling.

1. INTRODUCTION

The construction of stratified sampling designs has a
long history in the statistical sciences. Chapters 5 and 5A in
Cochran (1977) review several techniques for splitting a
population into strata. The construction of strata is a topic
of current interest in the statistical literature. Recent contri-
butions include Hedlin (2000) who revisits Ekman (1959)
rule for stratification, and Dorfman and Valiant (2000} who
compare model-based stratification with balanced sampling.
Model based stratification, is discussed in Godfrey,
Roshwalb, and Wright (1984) and in chapter 12 of Siirndal,
Swensson, and Wretman (1992).

In business surveys, populations have skewed distri-
butions; a small rumber of units accounts for a large share
of the total of the study variable. It is therefore appropriate
to include all large units in the sample (Dalenius 1952;
Glasser 1962). A pgood sampling design has one take-all
stratum for big firms, where the units are all sampled,
together with take-some strata for businesses of medium
and small sizes. Typically the sampling fraction goes down
with the size of the unit; small businesses get large
sampling weights. The Lavallée and Hidiroglou (1988)
stratification algorithm is often used to determine the
stratum boundaries and the stratum sample sizes in this
context (see for instance Slanta and Krenzke 1994, 1996).
This algorithm uses a stratification variable, known for all
the units of the population. It gives the stratum boundaries
and the stratum sample sizes that minimize the total sample
size required to achieve a target level of precision. It uses an
iterative procedure, due to Sethi (1963), to determine the
optimal stratum boundaries. The Lavallée and Hidiroglou
algorithm does not account for a difference between the
stratification and the survey variables. As time goes by, this
difference increases and the sampling design provided by

1

the Lavallée and Hidiroglou algorithm may fail to meet the
precision criterion,

Stratification in situations where the survey variable and
the stratification variable differ is considered in Dalenius
and Gumey (1951), see also Cochran (1977, chapter 5A).
Many authors have studied approximate formulae for
determining stratum boundaries, and for evaluating the gain
in precision resulting from stratification on an auxiliary
variable. Some relevant contributions are Serfling (1968),
Singh and Sukatme (1969), Singh (1971), Singh and
Parkash (1975), Anderson, Kish and Cornell (1976), Oslo
{1976), Wang and Aggarwal (1984) and Yavada and Singh
(1984). Hidiroglou and Srinath (1993) and Hidiroglou
{1994) suggest techniques to update stratum boundaries
using a new stratification variable. However these papers
do not explicitly provide stratification algorithms
accounting for the discrepancy between the stratification
variable and the survey variable. This paper fills this gap by
constructing generalizations of the Lavallée and Hidiroglou
(1988) algorithm that express the difference between these
two variables in terms of a statistical model.

A brief review of stratified sampling and of sample
allocation methods is first given. Models for the difference
between stratification and survey variables are then pro-
posed. The implementation of Sethi’s algorithm, when the
stratification and the survey variable differ, is then
presented. Numerical illustrations are provided.

2. A REVIEW OF STRATIFIED RANDOM
SAMPLING

Some of the standard notation of stratified random
sampling that will be used in this paper is

L = the number of strata;

Louis-Paul Rivest, Département de mathématiques et de statistique, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4.
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W, =N, /N is for h=1,..,L the relative weight of
stratum A, N, is the size of stratum b, and N =} N, is
the total population size;

n,isfor k=1, .., L the sample size in stratum k and
J;, =n, /N, is the sampling fraction;

¥, and y, are the population and sample means of ¥
within stratam h;

Syh is the population standard deviation of ¥ within
stratum A,

In this paper the strata are constructed using X, a stratifi-
cation variable. Stratum £ consists of all units with an
X-value in the interval (b, b,1. where
-w=b<b <. .<b,  <b, = are the stratum boundaries.

The survey estimator for ¥ can be expressed as

, =Y. W, ¥,; its variance is given by:

1 2
s
h

L
Var(y,) =Y Wi| —- @.1)
k=1

In business surveys, all the big firms are sampled; we
choose stratum L as the take-all stratum so that n; = N,. For
h<L,n,, the sample size in take-some stratum A, can be
written as (n-N .)a, where n is the total sample size and
a, depends on the allocation rule. The two allocation rules
that are considered in this paper are

— The power allocation rule
(W, Y,y
ah S —
(2.2)

E( ¥, )P

where p is a positive number in (0, 1];

— The Neyman allocation rule
a = wh Syh
L ’
2.3
S ws 23)
k=1
Solving (2.1) for n leads to
L-1
§ th th la,
n=NW, + o 2.4
Var(y,) + E W,S5IN
The optimal stratum boundaries are the values of b,, .., b, |

that minimize » subject to a requirement on the prec151on of Ve
such as Var(y,) =Y Y2c? where ¢ is the target coefficient
of variation (CV) The range ¢ = 1% to 10% is often used
for business surveys.
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3. SOME MODELS FOR THE DISCREPANCY
BETWEEN THE STRATIFICATION AND
THE SURVEY VARIABLE

In this section {x,,i =1,..,N} denotes the known
stratification variable for the N units in the population.
Many stratification algorithms, including Lavallée and
Hidiroglou, suppose that {x,,i =1,.., N} also represents
the values of the study variable. This section suggests
statistical models to account for a difference between these
two variables.

For the sequel, it is convenient to look at X and Y as
continuous random variables and to let f(x), x€ R denote
the density of X. The data {x,,i =1,.., N} can be viewed
as N independent realizations of the random variable X.
Since stratum h consists of the population units with an
X-value in the interval (b, _,, b,], the stratification process
uses the values of E(Y|b,2X>b,,) and
Var(Y| b,>X>b, ), the conditional mean and variance of
Y given that the unit falls in stratum A, for k=1, .., L-1,
Three models for the difference between X and Y are next
given along with their conditional means and variances for
Y.

31 A Log-linear Model

The first model considers that log(¥Y)=a+
Brog lOg(X) +¢, wherezs is a normal random variable with
mean 0 and variance o,,,, which is independent from X, and
d and |310 are parameters to be determined. When
@ =0,p,, = land clzug 0, one has X = Y; the survey and
the strat1ﬁcat1on variables are the same. In general,
Y=eXP et The conditional moments of ¥ can be
evaluated using the basic properties of the lognormal
distribution (see Johnson and Kotz 1970), that is

2 2 2
E (e®) = e"%” and Var(e® = e os(e 1),

One has

E(Y|b,2X>b, ) =exp(a +0120g/2) E(XB“"|bh 2X>h, |}

while Var(¥|b, > X>b, ) is equal to

Var(E(Y|X) |b,2X>b, )+ E(Var(Y|X)|b, > X>b, )

expQu + op,,) {Var(X™|b, > X>b, )
2
+(e %~ 1)E(X |, > X>b, )}

1
exp(2a + op,p) {e E(X M|, > X>b, )

-~ E(XP|b, > X>b, Y.
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The parameter values ﬁlog and o), can sometimes be
calculated from historical data. Simple ad hoc values are
Bg =1 and oy, = (1-p?) Var(log(X)). Here p is the
assumed correlatlon between log(X) and log(Y). It can be
set equal to predetermined values such as 0.95 or 0.99.

3.2 A Linear Model

In the survey sampling literature, the discrepancy
between ¥ and X 1s often modeled with a heteroscedastic
linear model,

Y =B, X+¢ (3.5)

where the cond1t10nal distribution of £, given X, has mean
0 and variance Uun X7, for some non negative parameter 7.
Straightforward calculatlons leadto E(Y|b, = X>b, ) =B,

E(X|b,2X>b, ) while Var(Y|h,>X>b, ))=B2
{Var(X|b, 2 X>b, ) + (0,,/B;, P E(XT|b, 2X>b, )}

For an arbitrary v = 0, the conditional variance of ¥
depends on three conditional moments of X. The generali-
zation of Sethi’s algorithm presented in section 5 does not
wotk in this situation. Note however that when y =2, the
conditional mean and variance of Y are proportional to
those for the log-linear model with

Bog = 1 and op, = log(l + (0, /B, ));  (3.6)

the propomonahty factors are exp(u +0‘log/ 2)/B,, and
exp(2a+ c,og) /By, for the conditional expectations and the
conditional variances respectively. Thus the two models for
the discrepancy between the stratification and the survey
variable, either the log-linear model of section 3.1 or the
linear model (3.5) with parameter y = 2, lead, in section 5,
to the same stratified design provided that (3.6) holds. In the
later sections, the log-linear model is used to represent the
change between X and Y. It should give good results when
the true relationship between Y and X is modeled by (3.5)
with y = 2. When model (3.5) is assumed to hold with a
smaller value of vy, the algorithm of section 5 can still be
implemented when ¥ is set to either O or 1. This is however
not pursued in this paper.

3.3 A Random Replacement Model

This model assumes that the stratification variable is
equal to the survey variable, i.e., X = ¥, for most units.
There is however a small probability € that a unit changed
drastically; its Y value then has f(x} as density and is distri-
buted independently of its X value. This is the approach
used in Rivest (1999} to model the occurrence of stratum
jumpers for which X is not representative of Y. More
formally, this can be written as,

X with probability 1 -¢

X, with probability &

where X represents a random variable with density f(x)
distributed independently of X. The conditional mean for ¥

under this model is given by

193

E(Y|b,2X>b, ) =(1-¢) E(X|b,2X>b, ) +eE(X),

while its conditional variance is equal to

Var(Y|b,2X>b, )
=(1-6)E(X?|b,zX>b, ) +£E(X?)

- {(1-e)EX|b,2X>b, )+eE(X))%

4. ANEXAMPLE

Before addressing the technical details underlying the
construction of the algorithms, it is convenient to look at an
example. Consider the MU284 population of Sdrndal,
Swensson and Wretman (1992), presenting data on 284
Swedish municipalities.

To build a stratified design for estimating the average of
RMTSS35, the revenues from the 1985 municipal taxation,
REV24, the real estate value according to 1984 assessment,
is used as a stratification variable. One takes L = 5 and set
the target CV at 5%. Two stratified designs obtained with
the Lavallée and Hidiroglou algorithm are given in Table 1,
for the power allocation with p =0.7 and the Neyman
allocation. Both have n =19. When applied on survey
variable RMT8S5, these two designs give estimators of total
revenue with coefficients of variation of 8.3% and 7.3%
respectively. Failing to account for a change between the
survey and the stratification variables yields estimators that
are more variable than expected.

Table 1
Stratified designs obtained with the Lavallée and
Hidiroglou algorithm for the MU284 population using
REV84 as stratification variable and a target CV of 5%

Power allocation with p =0.7

b, mean  variance N, n, 5, R
stramm 1 1,251 874 56,250 8 1 001 19
straium 2 2,352 1,696 100,898 82 2 0.02 19
straum 3 4,603 3,114 351,547 65 3 0.05 19
strainm 4 10,606 6442 2027436 41 3 0.07 19

straturn 5 59,878 19,631 275,502,518 10 10 1 19

Neyman allocation

b, mean variance N, nr, 5, n
straum 1 1,273 878 57,260 87 2 002 19
stratum2 2,336 1,701 99,688 81 2 002 19
straum 3 4,619 3,114 358,547 65 3 005 19
stratum4 11,776 6921 3,724,610 46 7 0.15 19
stratum 5 59,878 28,418 426851844 5 51 1y
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To model the discrepancy between REV84 and RMTSS5,
we use the log-linear model of section 3.1. There are
outliers in the linear regression of log(RMTS85) on
log(REV84); they make the least squares estimates of [3]Dg
and o, , unrepresentative of the relationship between the
two variables. Robust estimates obtained with the Splus
function ImRobMM are used instead. They are given by
ong =11 and &, =0.2116. Table 2 gives the stratified
designs obtained with the generalized Lavallée and
Hidiroglou algorithm for two allocation rules. They both
give estimators of the total of RMT85 having a CV of 5.7%.
This CV is still larger that 5%. Since there are outliers in
the log-linear regression, the assumption of normal errors
made in section 3.1 is not met. This might explain the
failure to reach the target CV exactly. The increase in
sample size for n =19 to n =28 is noteworthy! For both
allocation methods the design obtained using the log-linear
model has smaller take-all strata than Lavallée and
Hidiroglou.

Table 2
Stratified designs obtained with the generalized Lavallée and
Hidiroglou algorithm for the MU284 population using REV84 as
stratification variable, a log-linear with Byg = 1.1 and
Gy, = 0.2116 for the discrepancy between REV84 and RMTS$5,

and a target CV of 5%
Log-linear model stratification algorithm with power allocation
with p =07
b, mean varance N, o»n, 5, R
straivm1 1,558 1,023 97,245 121 4 003 28
stratum 2 3,031 2,219 168204 81 5 006 28
straum3 5,706 4,022 464,471 44 6 0.14 28
stramm4 11,107 7,602 2,659,061 32 7 022 28

stratum 3 59,878 25,536 39,131413 6 6 1 28
Log-linear model stratification algorithm with Neyman

allocation
b, mean  variance N, n, 5 n
stratum 1 1,582 1,023 97,245 121 4 0.03 28
straum 2 3,040 2,219 168204 81 5 006 28
stratum3 5,608 4,022 464471 4 5 011 28
stramm 4 11476 7,709 2952313 33 9 027 28
stramum 5 59,878 28,418 426,851,844 5 5 1 28

An altemative to the generalized Lavallée and
Hidiroglou algorithm for the construction of stratified
designs is to us their original algorithm with a smaller target
CV. This increases the sample size thereby reducing the
variance of the estimator of the total of the survey variable,
When constructing a design for RMT85 using REV84 as a
stratification variable, the standard Lavallée and Hidiroglou
algorithm with power allocation rule ( p = 0.7 ) and a target
CV of 3.6%, yields a stratified design with » = 28. This
design has the same sample size as those presented in Table
2. The CV of the estimator of the total RMTR8S is 5.7%, the

same as the CVs obtained with the designs of Table 2. The
main difference between these designs is the size of the
take-all stratum. The design constructed with the Lavallée
and Hidiroglou algorithm has a take-all stratum of size
N; =13 as compared to N, =35 and N = 6 for the designs
of Table 2. Allowing the stratification and the survey
variables to differ appears to reduce the relative importance
of the take-all stratom in the sampling design. Further
investigations are needed to ascertain this hypothesis.

The stratification algorithm for the random replacement
model of section 3.3 (with Neyman allocation) was also
applied to REV84. Assuming changes in 2% of the units
(& =0.02), the generalized Lavallée and Hidiroglou algo-
rithm yields a stratified design with # = 37 sample units;
the resulting estimator of total RMT85 has a CV of 5.5%.
An interesting property of this stratified design is that the
smallest sampling fraction is min, f, = 9.3%; it is much
larger than min, f, for the designs of Tables 1 and 2.
Despite the presence of outliers, the random replacement
model does not describe the changes between REVE4 and
RMT8S5 as well as the log-linear model. This explains why
a larger sample size, 37 instead of 28, is needed to get an
estimator with a variance comparable to that obtained with
the stratification based on a log-linear model.

5. AMETHOD FOR CONSTRUCTING
STRATIFICATION ALGORITHMS

The aim of a stratification algorithm is to determine the
optimal stratum boundaries and sample sizes for sampling
Y using the known values {x,;i = 1, ..., N} of variable X for
all the units in the population. A model, such as those given
in section 3, characterizes the relationship between X and ¥.
This section extends the stratification algorithm of Lavallée
and Hidiroglou (1988) to situations where X and Y differ. It
uses the log-linear model of section 3.1 to account for the
differences between ¥ and X. Modifications to handle the
random replacement model are easily carried out (see
Rivest 1999).

5.1 A Generalization of Sethi’s (1963) Stratification
Method
It is convenient to consider an infinite population ana-
logue to equation (2.4) for n. Since the random variable X
has a density f (x), the first two conditional moments of ¥
given that b, ;<X <b, can be written in terms of

Ws | :’if(x)dx,m,, -/ ”: of f00dx,

a-
and y, =Lb’*x2pf(x)dx,
f-1

where J is the slope of the log-linear model given in section
3.1 (in this section p and o represent parameters of the
log-linear model of section 3.1, since there is no risk of
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confusion the subscript log is not used anymore). For
stratification purposes, it is useful to rewrite (2.4) in terms
of the conditional means and variances for ¥,

L-1
Y, WiVar(¥|b, 2 X>b, )a,,
n=NW, + 21
L-1

?2c2+§ W, Var(Y|b,>X>b, )/N

» (5.7

where a, , denotes the allocation rule written in terms of
the known X. For instance, under power allocation,
(W, E(Y|b,2X>b, )}P
4 x =15 )
; {W,E(Y|b,2X>b, )}

for h=1,.,L-1. Given a model for the relationship
between Y and X, Var(Y|b,2X>b, ) and
E (Y|b, 2 X>b, ,) canbe written in terms of W,, ¢,, and
V. Thus, the partial derivatives of n with respect to b, can
be evaluated, for A<L -1, using the chain rule,

on _don W, a4 09, an Oy,
—_— e e

3b, oW, b, dg, db, ov, ob,

. on ath N on a(Phq . on a‘l’hq
oW,., 0ob, 0@, b, oy, ob,
Observe that
aw,  aw,,
— = -——— =f(b,)
b, b,
a(ph q)}wl B
= -t _pBey,
ab, ab, wf3)
o, Wi 2B
—_ =b f(b
ab, ab, )

This leads to the following result, for <L -1,
on
— b
%, fb,)

On __on | [On _on ph.| On __on 52
- w Y | % (-
oW, W, 99, @9, A, oy,

Similarly,
on on on ,p on ;2
=fb; ) {-N+ + by, + bty
9b, “ oW, ode,, ! ) o

'The Sethi’s (1963) algorithm is used to solve 6n/db, = 0.
It considers that the partial derivatives are proportional to
quadratic functions in bf. The updated value for b,? is
given by the largest root of the corresponding quadratic
function. When k<L -1, this gives
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bfuew=
_i_&n]/z[_@_:__an]
a‘P}, aq)h»fl 8‘%1 awfnl
3 11
on _ on _4 on _ On on on
. {[ 0P, aq’hl] ( ) a‘l’fwl) ( W, aw}m]}
i <)
oy, O,

while for /2 = L -1 we have
2
_on +[[ an ] I [ an ‘N]
bﬂnlew 99, o0, oy, \ oW,
=
2 on
Oy
The partial derivatives of n with respectto W, ¢,, and v,
depend on moments of order 0, 1, and 2 of xP within
stratum /. These moments are evaluated using the N
x-values in the population. For instance,
i p

¢ = — E Xi
N il <x;sby

Applications of this general method are provided next.

When using Sethi’s algorithm, one typically has L > 3.
Note however that it also works when L = 2, In this case,
the algorithm is searching for the boundary between a
take-all and a take-some stratum. Successive evaluations of b ™
presented above yield an optimal boundary. When one
assumes that the stratification and the siudy variable
coincide, i.e., X = ¥, this boundary is nearly identical to
that obtained with the algorithm presented in Hidiroglou
(1986).

5.2 An Algorithm for Power Allocation

For the log-linear model of section 3.1, the conditional
expectationis E(Y|b, 2 X>b, |)=Co, /W, while the condi-
tional variance is

Var(Y|b, 2 X>b, ) = C*{e% y, /W, - (9,/W, )},

where C = exp (a +62/2). Under the power allocation rule,
a, = 9f /X4 ¢f. and formula (5.7) for n becomes

L-1 L-1
}g cpﬁg ™ W, -0/ ),

n=NW,+

L-1

(X xfivfere X [y, - q:i/Wh)lN.

h=1

The partial derivatives needed to implement the strati-
fication algorithm are easily calculated; for h<L -1,
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an _ Ae7v, /g, AB(g,/W,PIN
ow, F F?

on _ Al-pe(a*W,v,-00)/ql" -2/9] " }+pel ' B
o9, F

o AB9,(n Wy)
F2

on _ eazAWa"Pf e? AB/N
o, F Fl

where

-1 1

A=) ¢,B=% (eczwh% “’\":)/‘Pﬁ'

=1 k=1

Ed

and

F = (E Jr,-ﬂll\')zc2 +y (e"z\ph - tp,zl/Wh)fN.

L-1
h=1

5.3 An algorithm for Neyman allocation

Under Neyman allocation, allocation rule (2.3) written in
terms of W,, @,, and v, is

{eol\l’h W}, - q’:}m

e

4Gx =

=

and the formula for n is

L-1 2
{E %y, W, - mi)”z}
n=NW, + bl

L-1 )
(¥ xPin) ez ; (e™y, - 02 /W,)IN

The partial derivatives needed to implement Sethi’s
(1963) iterative algorithm are,

an _ AeTv, /ey, W,- )" A%, /W,PIN
ow, F F?

o9, F F?

on _ “2A9,/(e” W, vy -9y} 247, /(W,N)

2
on e“zAWhl{e"th\ph-cph}“’- _eUJ'AZIN
ay, F F?

where
4. i-1 (EGZ\IJ}, W,,-CP,Z,)W,
k=1
and
F=(X xf/nfc? 3 v, -92/w,)/N.
h=1

6. NUMERICAL CONSIDERATIONS

Slanta and Krenzke (1994, 1996) encountered numerical
difficulties when using the Lavallée and Hidiroglou algo-
rithm with Neyman allocation: convergence was slow and
sometimes the algorithm did not converge to the true mini-
murm value for n. Indeed Schneeberger (1979) and Slanta
and Krenzke (1994} showed that, for a particular bimodal
population, the problem has a saddle; that is the partial deri-
vatives are all null at boundaries b, which do not give a
true minimum for n.

When using the algorithms constructed in this paper, we
also experienced the numerical difficulties alluded to in
Slanta and Krenzke (1994). The algorithms constructed
under power allocation were generally more stable than
those using Neyman allocation; numerical difficulties were
more frequent when the number L of strata was large.
Furthermore, as the distribution for ¥ moved away from that
of X, i.e., as 6° increases, non convergence of the algorithm
and failure to reach the global minimum for # were more
frequent. In these situations, the stratification algorithm’s
starting values were of paramount importance. For instance,
in Table 2, the design accounting for changes between ¥
and X obtained under Neyman allocation depends heavily
on the starting values. The one presented in Table 2 uses the
boundaries presented in Table 2 for the power allocation as
starting values. Starting the algorithm with the boundaries
obtained in Table 1 for the Lavallée Hidiroglou algorithm
with Neyman allocation yields a different sampling design
having n = 29.

A good numerical strategy is to run the stratification
algorithm for several intermediate designs to get to a final
sampling design, with the stratum boundaries obtained at
one step used as starting values for the algorithm at the next
step. The log-linear algorithm is always run in two steps;
first run the Lavallée and Hidiroglou algorithm, setting
o =0, and use these boundaries as starting value for the
algorithm with a non null ¢. Also use as starting value for
Neyman allocation the corresponding boundaries found
under power allocation with a p value around 0.7.
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7. CONCLUSION

This paper has proposed generalizations of the Lavallée
and Hidiroglou stratification algorithm that account for a
difference between the stratification and the survey
variables. Two statistical models have been introduced for
this purpose. The new class of algorithms uses the Chain
Rule to derive partial derivatives and Sethi's (1963)
technique to find the optimal stratum boundaries.

The log-linear model stratification algorithm proposed in
this paper was used successfully in several surveys designed
at the Statistical Consulting Unit of Université Laval. For
estimating total maple syrup production in a year, the
number of sap producing maples for a producer was a con-
venient size variable. Historical data was used to estimate
the parameters of the log-linear model linking sap pro-
ducing maples and production volume. Another example is
the estimation of the total maintenance deficit of hospital
buildings in Quebec. The value of each building was the
known stratification variable. The maintenance deficit was
estimated to be in the range (20%, 40%}) by experts. Solving
40, = log(40%) - 10g(20%) gives o, = log(2)/4 = 0.17
as a possnble parameter value for the fog-linear model of
section 3.1. In these two examples accounting for changes
between the stratification and the survey variables increased
the sample size 7 by a fair percentage and yielded survey
estimators whose estimated CVs were close to the target
CVs.

Two SAS IML functions implementing the algorithm
presented in this paper, for power and Neyman allocation,
are available on the author’s website at hitp: //www.mat.
ulaval.ca/pages/lpr/. They allow user specified starting
values for the stratum boundaries; they can be used to
implement the numerical strategies presented in section 6.
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Multi-way Stratification by Linear Programming Made Practical

WILSON LU and RANDY R. SITTER'

ABSTRACT

Sitter and Skinner {1994) present a method which applies linear programming to designing surveys with multi-way
stratification, primarily in situations where the desired sample size is less than or only slightly larger than the total number
of stratification cells. The idea in their approach is simple, easily understood and easy to apply. However, the main practical
constraint of their approach is that it rapidly becomes expensive in terms of magnitude of computation as the number of cells
in the multi-way stratification increases, to the extent that it cannot be used in most realistic situations. In this article, we
cxtend this linear programming approach and develop methods to reduce the amount of computation so that very large

problems become feasible.

KEY WORDS: PPS sampling; Proportional allocation; Random grouping; Survey sampling.

1. INTRODUCTION

In many practical survey situations, there are multiple
stratifying variables available and thus the designer has the
option of defining strata as cells formed as cross-classified
categories of these variables. For examples, sece Engle,
Marsden and Pollock (1971), Hess, Riedel and Fitzpatrick
(1976), Vihma (1981) and Skinner, Holmes and Holt
(1994). This multi-way stratification often leads to
situations where the desired sample size is less than or only
slightly larger than the total number of stratification cells
(particularly common when choosing primary sampling
units (psu’s) in stratified multi-stage designs) and hence
conventional methods of sample allocation to strata may not
be applicable.

An illustration, based on a hypothetical example of
Bryant, Hartley and Jessen (1960), is given in Table 1.
‘Communities (psu’s) are classified by two stratifying
factors, type and region, with three and five categories
respectively. The desired sample size of n = 10 is less than
the total number of cells, 15. This example also illustrates
a related problem. The entries in Table 1 are the expected
counts under proportional stratification, i.e., the strata
sample sizes are proportional to the population strata sizes.
Under the sample size restrictions, the expected cell sample
counts will not generally be integers. In cases with very
small expected counts, rounding to integers will not lead to
good choices while causing a serious violation of the
property of proportional allocation. Non-integer margin
totals are also typical and can cause their own difficulties.
Goodman and Kish (1950) was the first to address this
problem under the name of controlled selection, where they
propose a sampling selection procedure which can be
classified as random sytematic sampling (see Hess, Riedel
and Fitzpatrick 1976; Waterton 1983). Bryant ez al. (1960)
presented a very simple method to randomly assign sample

sizes for each cell in two-way stratification and gave two
estimators based on that sampling scheme. However, since
the expected cell sample sizes didn’t include information of
proportion of each cell {i.e., the method is not a proper
controlled selection technique, as only the probabilities of
the marginal distributions are respected), these estimators
may not have satisfactory MSE properties (see Sitter and
Skinner 1994). Jessen (1970) points out that a further
limitation of the method of Bryant et al. (1960) is that it is
not possible to constrain specified cell sizes to be zero,
which may be desired in some situations (see related
methods under the label “lattice sampling”, e.g. Jessen
1973, 1975). He proposes two methods for both two-way
and three-way stratification but both methods are fairly
complicated to implement and, as noted by Causey, Cox
and Ernst (1985}, may not lead to a solution. Inspired by the
idea of Rao and Nigam (1990, 1992) in the context of
aveiding undesirable samples (see also Lahiri and Mukerjee
2000), Sitter and Skinner (1994) proposed a linear pro-
gramming approach which attempts to take advantage of
the power of modern computing. This linear programming
technique is simple in conception, is flexible to different
situations, always has a solution and has better properties of
the MSE. Its main practical constraint is that it becomes
computationally intensive as the number of cells in the
multi-way stratification increases, quickly to the point of
infeasibility. In this paper we will present a simple method
which will allow the linear programming technique to
handle much larger problems. In section 2 we describe the
linear programming method of Sitter and Skinner (19%4) to
introduce notation and briefly discuss its numerical limi-
tations. In section 3.1, we first discuss some simple strate-
gies to reduce the computational intensity of the method as
motivation for the eventual proposal. In sections 3.2 and 3.3
we discuss the proposed method assuming inleger margins

! Wilson Lu, Doctoral Student, Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada V5A 156; Randy R. Sitter,
Professor, Department of Statistics and Actuarial Science, Simon Fraser University, Bumaby, BC, Canada V5A 186,
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and give some examples with from 80 to 300 stratification
cells to illustrate the ability of the new methodology to
handle large problems. In section 3.4, we describe the
simple extention of the method to non-integer margins and
illustrate by applying the method to a real example from the
occupational health literature (Vihma 1981).

Table 1
Example from Bryant et al. (1960). Expected Sample
Cell Counts Under Proportional Stratification (n = 10)

Region Type of Commu-nity

Urban  Rural Metropolitan Total
1 1.0 0.5 0.5 2.0
2 0.2 0.3 0.5 1.0
3 0.2 0.6 1.2 2.0
4 0.6 1.8 0.6 3.0
5 1.0 0.8 02 20
Total 3.0 4.0 3.0 10.0

2. THE LINEAR PROGRAMMING TECHNIQUE

2.1 The Basic Ideas

We introduce the linear programming method of Sitter
and Skinner (1994) by considering the simplest kind of two-
way stratification. Suppose that N units of a finite popu-
lation are arranged in a two-way classification in R rows
formed by categories of one variable and € columns by
categories of another. Let N, denote the number of popu-
lation units in the i-th row and the j-th colurmn (i.e., in the ij-
th cell) of the two-way table and P, = N,.jIN denote the
proportion of the total population in the ij-th cell. Let ¥
denote the mean value of a survey characteristic y for the
population and Y,;denote the mean value of y for the ij-th
cell.

The sample is selected as follows:

i} Sample sizes n,; are randomly determined for each cell
according to a pre-specified procedure. Letting s denote
the Rx C array (n,.j,i =L.,R, j=1,.,C), this
procedure assigns a probability p(s) to each s in the set
5 of possible such arrays and selects a single array, s,
from S. We denote the dependence of n; on s by
writing n,.j(s).

ii) A simple random sample of n, J,.(s) units is then selected
from the ij-th cell and the values of y obtained.

Restrict attention to designs of fixed sample size n > 0,
that is, restrict to arrays s€S  such that
Zfﬂ Zﬁl n(s)=n. We would also like to restrict
attention to ‘proportionate stratification so that

Y n(s)p(sy=nP, for i=1,.,R j=1,.,C (1)

sES,

which implies that the simple unweighted sample mean

7 (s) is an unbiased estimator of ¥. We will refer to (1) as
the expected proportional allocation (EPA) constraint.

The linear programming technique of Sitter and Skinner
(1994) chooses a sampling design p(s) which minimizes the
expected lack of ‘desirability’ of the samples by solving the
linear programming problem:

min wi(s 5

2; (s)p(s) @)
subject to the constraint (1), where w(s) is a loss function
for the sample s, to be specified, and the p(s) are the
unknowns. Sitter and Skinner (1994) were exploiting the
key observation of Rao and Nigam (1990, 1992) in the
context of avoiding undesirable samples, that the objective
function in (2) was linear in the p(s)’s (see also Lahiri and
Mukerjee 2000).

In the objective function (2), the loss function w(s) plays
an important role. With a well defined w(s), we have flexi-
bility to explore the existence of an optimal solution to (2)
within an economically sized S, and, more importantly, to
improve efficiency of estimation. Sitter and Skinner (1994)
suggest choosing

R C

w(s) = 2} (n.(s) -nP)?+ 21: (ni(s) ~nP)%,  (3)
i= j=
where n,(s) = Y. n,(s), n(s) = ,n(s), P = EPy
and P. =}, P,.j. dbviously, the objective function (ﬁ) is
actuallJy E(w(s)) for any given design p(s) and can be
explained as the mean squared error of estimator ¥ under
an analysis of variance model (see Sitter and Skinner 1994).
Then by solving the above linear programming problem,
one can obtain minimized MSE in the sense of ANOVA
while maintaining the EPA property of the n,(s). One
should note that if a design with objective function equal to
zero is obtained, then all margin constraints are met. This
would typically only be the case with integer margins.
Sitter and Skinner (1994) suggest that one simple way to
reduce the size of S, is to restrict the actual values that n,;
can take to be either [nP;; | or [nP, [+ 1, where LnP,..j
is the greatest integer less than or equal to nP,.j. y
denoting 7, =n, -|nP Jand r, =nP, -|nP,|, onecan
then impose
E(R,) =1, 4)

where 7, =0 or 1 and O <r;<1. Then the linear pro-
gramming method can be applied to the 7, and finally
|nP; ]+ #,; canbe used as the actual cell sample sizes.
Therefore, without loss of generality, we will assume that

n; = 0,1 and 0O« r = nPij< 1. (5)

2.2 Higher-way Stratification

The Sitter and Skinner (1994} approach extends straight-
forwardly to more stratifying factors by letting s denote the
corresponding r-way array. The loss function would then
include more terms, for example for three-way stratification
equation (3) could be replaced by
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Rl R2
W) =X () =nP)T Y (n(s)-nP, )
i= 1=

R3
+ Y;ZE (n,(s}-nP,)"

in obvious notation, where v,, ¥, and y, might represent the
relative importance of balancing on the three factors based
on prior information (see Sitter and Skinner 1994).

2.3 Multi-stage Sampling

An important application of multi-way stratification is to
the selection of primary sampling units (psu’s) in multi-
stage sampling, where it is more common to have several
stratifying factors available.

In section 2.1, the inclusion probabiljties of each unit are
E(n, (s)IN J=niN. If psu's are selected with equal
probablhty then the approach extends directly with the
psu’s the units and with the observed values of y replaced
by unbiased estimators of the psu totals. However, if the
psu’s are to be selected with unequal probabilities, say
nz;;, for psu k in stratification cell ij(z ik will typically
equal M/ ):, . M., with M. being some measure of
size of psu k in cel if), then the procedure can be easily
modified by setting P,; equal to z;. /z..., where z,;. = ¥, 2.,
and z.. =}, it Zijie ‘Then, if nj(s5>0 asample of n,(s)
psu’s in cell ij is selected by some probability proportlonal
to z;;, method.

2.4 AnExample

The linear programming approach can be illustrated
using the hypothetical example of Bryant et al. (1960) given
in Table 1. First, this problem is simplified as shown in
Table 2 t0 meet the assumption in (5). Then, a standard
linear programming package is used to solve this reduced
problem (2). Because integer margins of expected sample
cell counts can be exactly matched by marginal totals of
sample sizes a,. and 7., which means that the loss function
w(s) ¢an acheive a minimum value of zero, the objective
function in (2) for this example is also minimized at zero.
The optimal solution of this problem is given in Table 3. It
should be noted that this solution has been converted back
to maich the original example shown in Table 1.

Table 2
Madified Example from Bryant et al.(1960)

Region Type of Communlity

Urban Rural Metropolitan Total
1 0.0 0.5 05 1.0
2 0.2 0.3 0.5 1.0
3 0.2 0.6 0.2 1.0
4 0.6 08 0.6 20
5 0.0 0.8 0.2 1.0
Total 1.0 3.0 2.0 6.0
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Table 3
Linear Programming Solution to Example
from Bryant et al. (1960}
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The linear programming method is simple and easy to
use. Its main drawback is computational. The number of
parameters in the resulting linear programming problem is
the number of samples of size n from the RC>n cells,

(ﬁ ) which becomes infeasibly large quite quickly. In the
next section we will explore ways of improving the
computational efficiency of the linear programming
approach while maintaining all of its good properties.

3. THE LINEAR PROGRAMMING APPROACH
MADE PRACTICAL

The basic idea of the linear programming approach is to
obtain an optimal sampling design in terms of the
(minimum) expected lack of “desirability” of the sample by
directly solving a linear programming problem with p(s),
s€S,, as the unknowns while maintaining the EPA pro-
perty. The only obstacle to this approach is that the number
of elements in §_ is often very large and even with modern
computing power it becomes difficult to carry out linear
programming if the number of unknowns is large.

To reduce the magnitude of the computational task for
this linear programming problem determined by the cardi-
nality of S,, we want to obtain a subset of S, say S,
which is nearly as representative as §, but much smaller,
and thus solve the following linear programming problem
with a much smaller set of p(s), s € §,,, as the unknowns:

min w(s)p(s).
ZS: ©)
Hopefully, in this way we can easily deal with larger

practical problems without losing the good properties of the
linear programming approach.

3.1 Some Motivating Strategies

The above strategy is easy to state, but it turns out not to
be entirely obvicus how to go about it. In fact, there are
several different directions we can explore to determine
such a suvset §,, < §,. In this section, we will describe a
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basic method related to loss functions which was alluded to
in Sitter and Skinner (1994) and describe how it modestly
increases the size of problems that can be handled. We will
then discuss some obvious directions to take which did not
improve things much. By describing these misguided
attempts, we motivate the eventual proposal.

The major flexibility of the linear programming
approach is derived from the choice of loss function w(s).
Thus, it is natural for us to consider the loss function first
when we try to improve the computational efficiency of this
approach. By observing the objective function of the linear
programming problem (2), we suspect that the loss function
w(s) as coefficients of unknowns p(s) will not be very large
when the objective function has been minimized. In other
words, all positive p(s) in an optimal sampling design will
only be assigned to samples having small lack of
“desirability”. Based on this observation, we hypothesize
that the following subset might be a good replacement for
S,

n

R
Su0={s5€8,:w(s) =} (n.(s)-nP)>
i=1

C
5, -n o), O

where w;, is a pre-determined positive constant. In the case
of integer margins, one could even let w;, = 0 and restrict to
samples where the margins are matched. For example, the
solution in Table 3 assigned positive probability to only 6
samples and for each of these the objective function was
zero.

Lu (2000) develops nested linear programming strategies
for solving this problem. For moderately sized problems
such as 8 x 5 arrays (i.e., 40 cells) this approach does well.
However, for larger problems the size of resulting candidate
sets becomes large very quickly, even in the integer margin
case. Thus for large problems the technique faces the same
problem as before-a huge candidate set that results in the
difficulty of solving a linear programming problem with too
many unknowns.

In reality, even a candidate sample set S, , of the form in
(7) is far larger than necessary for us to find an optimal
solution. What we really need is a smaller but fairly
representative subset, where by “small” we mean small
enough to make it possible to solve the resulting linear pro-
gramming problem and by “representative” we mean
containing elements which promise that this linear
programming problem is feasible.

Before going on to describe our eventual proposed solu-
tion to this problem, we would like to introduce some naive
methods of obtaining such a “representative subset” that
turned out not to work well. These are not that useful in
practice, but they did inspire our thinking in proposing a
more sophisticated approach.
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1) Two Stage Optimization: First of all, we could try to
break § , in (7) into many subsets which are small enough
to be handled by linear programming respectively. Hope-
fully, optimal solutions from each of these smaller sets in
the first stage optimization procedure can be combined to
form the desired representative set of samples. Then we can
just collect these optimal solutions together and apply linear
programming once more. We applied this method to some
simulated examples of size 6 x6, 7x 7, 8x8 and 9x9
as a method of preliminary investigation of its potential.
Generally, in the first two cases the method worked very
well and quickly, in the 8 x 8 case the method was time
consuming and was not always able to obtain optimal
solutions, and in the 9x9 case the method became
infeasible.

2) Resampling from §, ,: We could also randomly select
a proportion, say 10%, of the §_, in (7) and hope this
proportion is statistically representative of the complete set.
Unfortunately, simulation results showed that the pro-
portion obtained in this way is not “representative” enough,
and the resulting linear programming problem often does
not have any feasible solution. For example, the method of
nested linear programming discussed previously was able
to obtain matched integer margin solutions for simulated
8 x 5 arrays, however, these solutions were obtained much
quicker by repeatedly sampling 10% of §,; and applying
the Sitter and Skinner (1994) method to this set until a
feasible solution was obtained. However, when slightly
larger cases were considered the method took an inordinate
amount of time before finding a feasible solution, and
quickly became impractical.

There are two problems with both these approaches.
First, the size of §,, becomes huge combinatorically and
even complete enumeration becomes difficult. Having to
first obtain S, and then cutting the problem into pieces
will either quickly outstrip the practical limits on linear
programming due to the size of the pieces or create a huge
number of pieces. Second, both of these strategies are not
in any way attempting to avoid samples which are parti-
cularly bad choices for meeting the EPA constraints. The
question is, is there any way we can generate a fairly
“representative” candidate sample subset without choosing
such “useless” samples or, more generally, can we select
candidate samples in which the frequency of an entry’s
appearance is more or less related to its desired expected
sample counts?, and also can we do so without first having
to enumerate a large S, ,? The general idea revolves around
the fact that if we could randomly select a candidate subset
directly from §, without complete enumeration using an
unequal probability selection procedure which simulta-
neously ensures that the objective function is minimized for
every sample while ensuring that the EPA property is
satisfied we will have solved the problem without resorting
to linear programming at all. We have been working on
finding such a selection procedure, but have yet to succeed.
What we have been able to do is to develop such a proce-
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dure with approximate EPA (AEPA). We can then use it to
randomly generate a candidate subset of samples, S0 and
then apply a linear programming technique to this subset,

3.2 A Sampling Procedure with AEPA Property

In this section we first describe the approach as it applies
to the case of integer margins. That is, tcl:w column totals,
n, = Y r,;» and the row totals, n, = EM r,., are integer
valued. We go on to discuss how it can easily be adapted to
the general case. In the linear programming approach, the
goal is to minimize the expected lack of ‘desirability’ of the
samples while maintaining the EPA property. We propose
to accomplish this in two stages. First, we will develop an
unequal probability selection procedure which selects
samples which exactly match the integer margins and also
have the AEPA property, We will then randomly generate
a moderately sized set of such arrays and then apply a
modified linear programming technique to this subset of all
possible arrays. This will be repeated with larger and larger
such sets. We will describe the sampling procedure and
then we will discuss the modified linear programming
technique.

Here is the basic idea for constructing such a sampling
procedure: for a two-way table (assuming the expected cell
sample sizes have been adjusted to lie between 0 and 1 as
was done in going from Table 1 to 2), first we draw a
sequence of population cells to produce a,,, 4,,, ..., @, in
the first row using an unequal probability without replace-
ment sampling procedure based on the expected counts of
that row, where q;. = 1 if the ij-th cell is selected and = 0
otherwise. Then we W, 4y, ., G Subsequently for i > 1
while keeping all Y, _, 4, ; less than or equal to the
corresponding marginal column totals n .. The details of
this sampling procedure are as follows:

Step 1: Randomly permute the rows and let i = 1. Given the

first row of inclusion probabilities Ti1sPigs e Pyor draw a
sample of n,_ cells out of C in the first row stratum using an
unequal probability without replacement sampling proce-
dure; record the first row of samples in terms of indicator
variables a,,, 4, , ..., @, as defined previously; let A = a;

for j=1,..C.

Step2:Leti=i+]

Step 2.1: For j =1, ..., C, do the following

a)Let R, = Yo T

b)IfRJ.*AjSO let a,.j=0,

c)Iij—Ajz 1 let a;= i,

Stgp 22: Let J= {j:0<R -A;<1} and rtor =
zjclrfj_#{j:afj= 1}. If rot >0 then r,.Jf =
ryx ot/ Y. r, for jeJ. Hthereexistsa jy € J such

that ) > 1 then Iet a,, = 1 and go to Step 2.1. Otherwise

g0 to §tep 3

Step 3: Draw a sample of rtot cells from J using an unequal

probability without replacement sampling procedure and
r; togetagfor jeJ.
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Let A, =Y,. 4, for j=1,..,C.
Step 4: If i = R, then stop; otherwise go to Step 2.

One aspect of this sampling procedure that should be
noticed is that in Step 2, the way of re-calculating the i-th
row of inclusion probabilities is not unique. However, the
general rules that should be followed for this re-calculation
are:

(a) 0« r,.j' <1 and if A, = n_, which means that there are
enough units being selected from the j-th column, r,
should be set to 0; if A,=n_ (R ~i+1), which
means that there will not be enough units to be selected
for this column unless all of the remaining units are
selected, ’.-j' should be set to 1;

® keep 37 1) =X ry=n

The method extends easily to non-integer margins. We
delay detailed discussion, however, to the sequel.

We can now use the above method to generate a
candidate set, §,,, and apply the linear programming
technique to this set. To see why we choose to modify the
linear programming technique, realize that for the integer
margin case every s € S, already attains the minimum in
(2) so that a direct application of linear programming
amounts to determining whether there is a feasible solution
or not. Thus, if we generate say an §,, of size 500 then
1,000 etc, and the linear programming package continues to
find no feasible solution we really do not know if we are
getting closer to a solution or not. Instead we choose to turn
the optimization around and solve a dual problem

We know that w(s) =0 forall s € S, , and we are looking
for a solution which yields a minimum of zero in (8). We
have essentially switched the roles of the objective function
and the EPA constraints in the original problem. The diffi-
culty is that it is more difficult to use linear programming to
handle (8). This can be done as follows. Set up constraints
SEES“O n,.j(s)p(s) —rt d;’j ~€;= 0 for i=1,...R

and j=1,..,C, (9
where
dij >0, €;z2 0, dl.j €; = 0. (10)
Then note that
d;if Y, 5., " SIPLs) —r<0
| Y nops)-ryl = e, if E:ES,,O n(S)P(s) =1,20

s€5.,
=d;+e, (11)
Thus, we can replace (8) by
min 3 (d; +e,), (12)

P dye,is
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subject to

3 n)p(s)-ry+d.-e;=0,d e.,p(s)20,d,e,

s€8,,

=0. (13)

3.3 Some IMNustrating Examples with Integer
Margins

In this section, two examples will be used to illustrate the
sampling procedure. The first with a 10x 8 array is
described in detail to show the whole procedure. The
second with a larger size (20 x 15) is given to demonstrate
the size of problem that this method can handle (this is near
the limit of the problem the proposed method can realisti-
cally handle). Any unequal probability without replacement
sampling procedure can be used within the method. In
Example 1 below, we chose to use the the random grouping
method of Rao, Hartley and Cochran (1962), since it is
simple and we really only need to approximately match the
selection probabilities, which it does. However, the Rao-
Hartley-Cochran method only works well up to problems of
moderate size. In Examples 2 and 3 one should use a
method which exactly matches the selection probabilities.
There are many such available, but we chose to use one
developed in Lu (2000).

Example 1. 10 x 8 array with integer margins: A two-
way stratification problem with expected sample cell counts
and sample size is given in Table 4.

Table 4

Expected Sample Cell Counts Under Proportionate
Stratification (n = 40)

Column No. Marginal
Row o, % 35 6 7 & RowToul
1 041 055 0.58 0.80 0.23 0.61 0.70 0.12 4
2 052 0.15 007 0.90 028 0.0 037 0.61 3
3 072 015 065 0.73 0.39 034 0.85 0.17 4
4 070 055 046 0.10 0.41 0.05 0.24 0.49 3
5 007 0.63 045 081 0.52 0.02 070 0.80 4
6 061 033 079 021 002 0.61 067 0.76 4
7 088 048 073 069 044 0.64 0.86 0.8 5
8 022 0.4 085 037 0.69 0.45 049 0.79 4
9 085 044 0.80 076 031 071 060 053 5
10 0.02 0.58 0.62 0.63 0.71 047 0.52 0.45 4
Marginal o, ¢ 5 4 4 6 5 40

Col Total

The basic steps of our sampling design are illustrated as
follows:

Step 1. Obtain a representative candidate sample subset
S_o by using proposed sampling procedure with AEPA
property to draw, say 500, samples (obtained within 3
minutes). The sample proportion of each cell is shown in
Table 5, which can be compared to Table 4 to see how
close these are to satisfying the EPA property.
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Step 2. Solve the linear programming problem given by
{12) and (13) to obtain

mn Y |} n,(s)p (5) -nP,|. (14)

pls)seSyy ij s

If the objective value of {14) is greater than zero, repeat
Step 1 with a larger set S, ,. If the objective value of (14) is
zero, stop, an optimal sclution has been obtained.

Table 5
Sample Cell Counts Under Prop. Stratification (r = 40)

Row No. Column No. Marginal
1 2 3 4 5 6 7 8 Row Total

1 (0.408 0.554 0.582 0.776 0.250 0.594 0.734 0.102 4

2 0,554 0,150 0.062 0,916 0.280 0.122 0.366 0.550 3

3 0.690 0.144 0.638 0,720 0.402 (.360 0.838 0.208 4

4 0.692 0.542 0.452 0.120 0.416 0.044 0.260 0.474 3

5 0.060 0.602 0.446 0.814 0.568 0.016 0.708 0.786 4

6 0.558 0.348 0.780 0.216 0.012 0.634 0.682 0.770 4

7 0.866 0.480 0,734 0.676 0.470 0.664 0.842 0.268 5

8 0.254 0.158 0.848 0.400 0.654 0.412 0.490 0.784 4

9 0.870 0.418 0.830 0.772 0.292 0.692 0.624 0502 5

10 0.026 0.564 0.636 0.658 0.714 0.416 0.500 0.486 4

Marginal 5, ¢ ¢ 4 4 6 5 @

Col Total

In this example, a candidate subset S, ; with 500 samples
was sufficient to get objective value of 0.

Example 2. 20 x 15 array with integer margins: In this
example, a 20 x 15 array with integer margins is given in
Table 6.

The actual computation steps are given as follows:

First Iteration:

Step 1. Draw 500 samples to form §_,.

Step 2.  The objective value of (14) is 0.1659.

Second Iteration:

Step1. Draw 500 samples to add to S, .

Step2. The objective value of (14) is 0. The final

sampling design is attained.

This procedure took approximately 30-60 seconds using
a Fortran program on a Sun Ultra 10 workstation.

3.4 Extension to Non-Integer Margins

The method extends easily to non-integer margins.
Merely replace n,, throughout the algorithm by »;. which
takes value |7, |+ 1 with probability a =r, -|r, | and
takes value | 7, | with probability 1 - a. The only addi-
tional difficulty is that E[w{s)] cannot attain zero. Thus,
we do not have an obvious lower-bound reference point to
ascertain whether we are close to the best solution or not.
However, the above randomization strategy ensures that for
every obtained AEPA sample we have
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|7.() -7r;]<1 and |n(s) - ril<1

for i=1,..R j=1,..,C. (%
This together with the EPA property, E ["’U(S)] =
Y, n;(s)p(s) =r, implies that the lack of desirability
function w(s) defined in (3) has a constant expectation

Elw©®1 =Y (n.-Lnl)(1+Lnd-n)

T (L) olrd )

The proof of this is given in Appendix 1. Thus, if (14)
attains zerc under the above strategy then the resulting
solution will yield minimum E[w(s) ] as in (16).

Example 3. 27x3 real example with non-integer
margins: We will illustrate the method using a real
example from environmental health (Vihma 1981). This
study was concemned with occupational health of workers in
various industries in Finland. The population chosen for
study consisted of 1,430 small industrial workplaces (5-49
employees) totalling 22,893 employees in Uusimaa, the
southern most and most industrialized province of Finland.
The primary sampling units were the workplaces and a
sample of n=100 such were desired. This was all that could
be afforded given the cost of the eventual survey. The
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workplaces were stratified by two stratification variables:
type of industry (27 categories) and number of employees
(3 categories). The expected sample cell counts under
proportionate stratification are given in Table 7. The actual
sampling scheme used in this study was based on the
method of Bryant et al. (1960) after some grouping strata as
it was the only method available at the time of this study.

We applied our method to this problem. The minimum
achievable E[w(s) ] using our proposed strategy is 5.0418.
The actual computation steps were as follows:

First Iteration:

Stepl. Draw 500 samples to form §,,, randomly
generating the n; independently for each
sample.

Step 2.  The objective value of {14) is 0.45088.

Second Iteration:

Step1. Draw 500 samples to add to ;.

Step2. The objective value of (14) is 0. The final
sampling design is attained and achieved the
minimum value E[w(s)] = 5.0418.

This procedure took approximately 30 seconds using a
Fortran program on a Sun Ultra 10 workstation.

Table 6
Expected Sample Cell Counts Under Proportionate
Stratification ( n =151)

073 058 008 059 069 084 004 0.17
043 039 035 057 035 038 047 0.53
073 025 015 073 048 032 091 0.49
0.13 028 035 060 026 038 037 0.39
032 006 086 047 080 093 096 0.30
012 078 081 034 028 002 089 0.4t
048 051 050 062 035 011 085 0.78
086 041 011 017 075 0.89 048 0.48
081 000 013 093 036 012 0.19 0.86
082 022 054 0382 061 046 074 0.33
095 060 035 033 095 043 006 0.63
096 065 096 083 041 0.58 049 0.27
083 054 005 09 079 070 033 0.81
075 065 063 004 032 036 038 0.80
079 031 055 026 004 005 09 0.11
023 092 081 042 049 010 074 0.56
0.13 077 065 066 005 023 0.58 0.74
031 001 060 038 001 055 070 0.72
063 067 021 002 016 068 014 0.17
099 040 031 026 085 087 077 0.75

12 9 9 10 9 9 11 10

027 080 002 084 079 003 053 7
039 09 052 027 068 040 031 7
003 061 014 061 073 025 087 7
071 001 093 072 030 0.66 091 7
065 072 067 054 051 077 044 9
094 082 037 081 (.85 051 005 8
029 039 069 007 067 078 091 8
051 020 053 067 034 019 0.01 7
033 004 079 069 056 037 082 7
024 053 041 018 030 003 077 7
071 ©.02 055 023 087 021 011 7
0.74 088 093 046 060 0.13 0.11 9
08 045 045 084 029 030 080 9
050 023 037 023 085 069 020 7
043 079 014 064 044 048 006 6
024 047 034 057 060 056 095 8
019 094 02 075 016 071 018 7
020 087 055 082 077 044 007 7
055 078 058 055 094 096 056 8
042 049 076 051 075 053 034 9

10 11 10 11 12 9 9 151
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Table 7
Occupational Health Survey, Vihma (1981) Expected Sample
Cell Counts Under Proportionate Stratification (n = 100)

Type of Industry Number of Personnel
59  10-19 2049 r,

Food products 238 356 378 972
Food 035 014 056 1.05
Beverage 014 007 021 042
Textiles 133 126 146 405
Apparel 315 371 209 895
Leather 056 014 007 077
Footwear 007 007 021 035
Wood Products 237 18 091 517
Furniture 133 084 091 308
Paper Products 042 049 042 133
Printing 720 601 420 1741
Industrial Chemicals 056 035 028 1.19
Chemical Products 182 154 153 4389
Petrolium 0.14 007 000 021
Misc Coal and Petrol. 007 007 014 028
Rubber Products 014 021 007 042
Plastic Products 140 105 1.19 3.64
Glass Products 042 021 021 084
Non-Metal Minerals 1.12 098 084 294
ron & Steel 014 007 035 056
Nonferrous Metal 035 014 028 077
Fabricated Metal 496 406 259 11.61
Machinery 280 196 321 797
Electrical 189 160 133 482
Transport Equipment 084 084 084 2352
Scientific Equipment 0.56 042 049 147
Manufacturing Industries 1.68 091 098 3.57
n 38.19 32.66 29.15 100.00

/i

5. CONCLUDING REMARKS

We propose a method for two-way stratification which
extends the applicability of the linear programming
approach of Sitter and Skinner (1994) to much larger
problems. The method focuses on how to construct a small
“representative” candidate sample set by using an unequal
probability sampling procedure which generates candidate
samples which nearly meet the AEPA constraints of the
linear programming problem and then applying the linear
programming method to this much smaller set.

It should be noted that the linear programming method
extends easily to stratified multi-stage designs. Since there
is no fundamental difference between the original linear
programming approach and the extension proposed here,
this is still true of the proposed method. In the same spirit,
one can view discussion on issues around variance estima-
tion of the resulting estimators in Sitter and Skinner (1994)
as well.

One should also note that once one restricts to bracketing
integers around the "P;j ’s, the problem is related to a

. controlled rounding problem (see Kelly, Golden and Assad

1993, and references therein), though we do not explore this
aspect here.
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APPENDIX 1

Proof of (16): n,(s) - | r, ]~ Bemoulli(r, - |7,.}) and
has variance (7, - | r;.|) (1 +|r. ] - r,.). This implies

Y () -7.)p©) =E(n.(8) - 1,.)2 V(n,.())

= V(nl._ (s) - Lr‘._J)
=(r.-Ln )1 +lnd- )

and by similar argument that ):s(n,j (s)-r ; )?
P(S) = (T_j - Lr.jJ ) (1 * Lrij - r-j)-
Therefore, with w(s} defined in (3),

Ew)]=Y wp(s) =3 { )M XOEA LS NWE: —r.,-)’}p(s)
=Xi: E (n‘,(s) - r. )2 P(S) + E E (n.j(s) - r-j)2 P(S)
=X~ )1 +|-'f-J'r"')+JE- (ryLr )1 +Lryd-ry)
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On the Use of Generalized Inverse Matrices in Sampling Theory

ROBBERT H. RENSSEN and GERARD H. MARTINUS!

ABSTRACT

In theory, it is customary to define general regression estimators in terms of full-rank weighting models, i.e., the design
matrix that corresponds to the weighting model is of full rank. For such weighting models, it is well known that the general
regression weights reproduce the (known) population totals of the auxiliary variables involved. In practice, however, the
weighting model often is not of full rank, especially when the weighting model is for incomplete post-stratification. By
means of the theory of generalized inverse matrices, it is shown under which circumstances this consistency property
remains valid. As a non-trivial example we discuss the consistent weighting between persons and households as proposed
by Lemaitre and Dufour (1987). We then show how the theory is implemented in Bascula.

KEY WORDS: Bascula; General regression estimator; Weighting.

1. INTRODUCTION

Weighting methods that are based on the general
regression estimator are commonly used in sample surveys
to adjust for both sampling error and non-sampling error,
see e.g. Bethlehem and Keller (1987) and Sirndal,
Swensson, and Wretman (1992). One complication in the
use of general regression estimators, however, is that many
weighting models are based on incomplete post-stratifica-
tion, resulting in design matrices that are not of full rank.
Usually, this problem is solved by using a reduced design
matrix. Such a reduced design matrix can be constructed by
deleting redundant columns and properly adjusting the
population totals. Often, the redundancy can be recognized
rather easily beforehand by the specification of the
weighting model. However, for some weighting models
such a redundancy check may be impractical.

For example, suppose that we have a post-stratification
based on the complete crossing between two categorical
variables A and B, with known counts for the population of
each cell. We may obtain small sample counts or no sample
in some cells. Then we may derive new classifications, A’
from A and B’ from B, by merging categories, and define
the following more parsimonious scheme: A + B + A’ X B'.
According to this incomplete post-stratification we simul-
taneously calibrate on three sets of counts, namely the mar-
ginal counts of A, the marginal counts of B, and the cell
counts of A°x B’. Since A and A’ (and also B and B')
appear in different weighting terms, it is difficult to reco-
gnize redundancy by the specification of the weighting
model. This paper gives the theoretical background, which
is based on generalized inverse matrices, of reducing such
a design matrix.

In section 2 we briefly describe some properties of
generalized inverse matrices. In section 3 we define the
general regression estimator for weighting models that need
not be of full rank. Given a regularity condition that can be

1

nicely interpreted in a calibration estimation context (see
Deville and Sdmdal 1992) it is shown that this estimator is
invariant with respect to the choice of the generalized
inverse. At the end of section 3 the fulfillment of this regu-
larity condition is discussed for some well-known
weighting models, such as incomplete post-stratification
and consistent weighting between persons and households.
In section 4 we describe the algorithm, which is imple-
mented in Bascula (see Nieuwenbroek 1997; Renssen,
Nieuwenbroek and Slootbeek 1997) for calculating the
regression weights. Finally, in section 5 we briefly discuss
the weighting model of the Dutch Labour Force Survey.

2. GENERALIZED INVERSE MATRICES

We are mainly interested in the use of generalized
inverses within the framework of the general regression
estimator. Hence, we only give some properties of a gener-
alized inverse of the form X" A X, where A is a diagonal
matrix of order # x n with strictly positive diagonal entries
and X a design matrix of order n x p that results from the
weighting model. For a more extensive discussion on
generalized inverse matrices we refer to Searle (1971) and
Rao (1973).

Before giving these properties, we briefly review the
definition of a generalized inverse. Consider a p x g matrix
A of any rank and let Ax =y be a system of consistent
equations, i.e., any linear relationship existing among the
rows of A also exists among the corresponding elements of
¥. A generalized inverse of A is a ¢ X p matrix A~ such that
x =A”y is a solution of this system of equations. It is easy
to verify that the existence of A~ implies AA™A =4
(choose y as the i-th column of A). Conversely, if A~
satisfies AA"A =A and Ax =y is consistent, then
AAY)=A (A Ax)=Ax=y and hence A"y is a
solution. Thus, as an alternative definition, a generalized

Robbert H. Renssen and Gerard H. Martinus, Department of Statistical Methods, Statistics Netherlands, P.Q. Box 4481, 6401 CZ Heerlen, The Netherlands.
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inverse matrix of A is any matrix A™ such that AA~A = A,

Now, if G denotes a generalized inverse of X’ A X, then
the following properties of G are proven in Searle (1971)
for A=1:

(P1)  G’isalso a generalized inverse of X*A X,

P2) XGX'AX=X ie, GX'A is a generalized
inverse of X,

(P3)  XGX' is invariant to the choice of G,

(P4) XGX' = XG'X' whether G is symmetric or not.

The proofs of (P1) to (P4) for diagonal are almost identical
to those of Searle (1971, chapter 1.5, theorem 7) and there-
fore not repeated here.

3. THE GENERAL REGRESSION ESTIMATOR

Consider a finite population U of N units from which a
sample S of » units is drawn without replacement. Let m,
denote the first order inclusion probability of the k-t# unit,
k=1, .., N. Weassociate with each unit a vector of study
variables y k Then, the data matrix for the sampled units is
givenby Y =(y,, ...y, )" Wedistinguish between study
variables w1th known population totals (auxiliary variables)
and study variables with unknown population totals. The
start in the definition of a general regression estimator
(Sérndal et al. 1992) is the specification of the weighting
model, i.e., the choice of the set of auxiliary variables to be
used in the estimation. Denoting this specific set of p
variables by x, we call the n x p matrix X = (x,, ..., x, )’
the design matrix, which is, by definition, a column subset
of Y. The vector of known populanon totals of x is
denoted byt,.Letx =Y, Snk x, denote the Horvitz-
Thornpson estimator for t ., then, given x, the general
regression estimator of the vector of population totals of the

i-th study variable y k) is defined as
O =y Bt - x) )
with
B = G X A YY.

In terms of regression weights, this general regression
estimator can also be written as

“(!) 0]
g:reg 2 wk Y;: (2)

with

w, = m' + A X, Gt - X )
Here, G ¢ denotes a generalized inverse of X{A X, and
Ag =diag(A,, ..., &) is some diagonal matrix with strictly

positive entries.
Like the weighting model, the diagonal matrix A; has to
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be specified by the user. Often, one takes A I'I.5 Z
where I = diag(m,, ..., m ) and ) ¢ -dlag(ol, G )w1th
o) interpreted as the variance of mdependent random
variables of which some of the study variables are supposed
to be the outcome according to some super—populatmn
model, see Sirndal et al. (1992). It is required that all ck be
known u? to a common scale factor. An important special
case is o = 67, i.e., all the modeled variances are the same.
This results in the regression estimator proposed by
Bethlehem and Keller (1987). If the pnpulatlon units
represent households (of size m, ) and if we take ok 52
we arrive at the estimator proposed by Lemaitre and Dufour
(1987) to obtain consistent weights between person and
households. From a different point of view, Alexander
(1987) derived the GLS-P estimate, which results in
essentially the same estimator.

Below we show that the regression weights are invariant
to the choice of G;. To that purpose we make the fol-
lowing assumption:

(Al) there exists a n-vector w such that X; w=t.
Clearly, this assumption states that X; w =t_isasystem of
consistent equations. It is interesting to note that this system
precisely corresponds to the set of calibrations equations
when considering the general regression estimator as a
special case of the callbratlon estimator (see e.g. Deville
and Sidrndal 1992). If X sW =t_is a system of consistent
equations, then so is X s¥= (tx Xyr ) Thls is easxly seen
by taking v=w-d; with d; (1,.. T, ) The
invariance of the regression weights to the chmce of G,
and hence the invariance of the general regression estimator
can be shown as follows. Let F ¢ be some other generalized
inverse of X A X, dlfferent from G;. Then, we have

X, Gyt -x) =X, G X{v by (Al)
=X, F;Xv by (P3)
=X Fo(t -x,). by (Al)

So, itholdsthat x, G (t, - X ) isinvariantto G ¢ forall ke S,
implying that the regression weights are invariant to the
choice Gy.

The fact that these weights reproduce the population
totals of the anxiliary variables follows from the following
series of equations:

_ I
E WX, = Xy +E X M X, Go(t —Xyp)
kesS ke§

= xHT+(X.'S‘ASXS)GS(tx ~Xyr)
=X+ (XA X )G X5v by (AD)

=Xy + X5V by (P2) and (P4)
=Xyt (X =t By{Al)
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We close this section by having a closer look at the
stated assumption for some well-known weighting models.
In case of post-stratification in which the weighting model
is described by a complete crossing of categorical variables,
(A1) has a simple interpretation. Namely (A1) is satisfied
if and only if empty post-strata in the sample correspond to
empty post-strata in the population. Next, we consider
incomplete post-stratification in which the weighting model
consists of several terms, each term describing a complete
crossing of categorical variables and so each term corre-
sponding to a post-stratification. Then, a necessary condi-
tion for (A1) to be satisfied is that empty post-strata in the
sample correspond to empty post-strata in the population for
each of these terms. Unfortunately, this condition is not
sufficient. For example, inconsistencies may still occur
when we attempt to calibrate on a number of complete
crossings larger than the sample size.

The assumption is less straightforward in case of
consistent weighting between persons and households (see
e.g. Lemaitre and Dufour 1987). This is due to the redef-
inition of the auxiliary variable. For example, if x, is a
variable defined at the person level, and from this variable
a new variable is defined on the household level, say z,,
then (A1} should be defined in terms of Z; =(z,, ...,2,)’
instead of X 5o b€, (Al) is satisfied if there exists an
n-vector w such that Z s W =1_. In many (regular) situa-
tions, the linear manifold spanned by Z ¢ will coincide with
the linear manifold spanned by X . In such situations the
method of Lemaitre and Dufour does not affect the validity
of (Al). However, in specific cases this may not be true.
The following simplified example illustrates this.

Let x, denote sex of the k-th person, say x, = (0, 1)" if
the k-th person is a female and x, = (1,0)" if thek-thisa
male. According to the method of Lemaitre and Dufour
(1987), let z, denote the j-th household mean for x, when-
ever k belongs to the j-th household. Furthermore, let the
population consists of N, males and N, females, from
which a sample of 10 households is drawn. Suppose that
each sampled household consists of two persons, namely
onemaleand one female. Thisgives z, = (1/2, 1/2)" forall ke S.
For this example the linear manifold spanned by Z is a
linear subspace of the linear manifold spanned by X . If
N, =N, then (Al) is satisfied. Otherwise, if N, # N, then
(Al} is not satisfied. Especially, when the method of
Lemaitre and Dufour is applied on a relatively large
weighting model, the linear manifold spanned by Z; may
be a proper subspace of the linear manifold spanned by X ;.
Then, (Al) only is satisfied if t_ accidentally belongs to
this subspace.

4. CALCULATING THE REGRESSION
WEIGHTS IN BASCULA

In the previous section we have shown that the general
regression weights w, =m, sy ka (t,—Xyp) are
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invariant to the choice of G ;. In this section we show how
to compute these weights. To do so, we start with the
Cholesky decomposition of the positive (semi) definite
matrix X AgX 5; See Seber (1977, page 322). If X, is of
full rank, then X AgX is posmve definite and it can be
expressed umquely in the form X A X =U'U, where U
is an upper triangular matrix wnth posuwe diagonal
elements. Let a,; denote the ij-th element of X'S A X, then
U can be computed, row by row, according to

‘ i-1
2 ,
u, = aﬁ—z u, for i=1,.,p
k=1

i-1
a.,'E Uy Uy
u.,:..,._....‘ii._._.._._ for j=i+1,..,p.

Y u;;

and
(3)

If X has rank r < p, then an application of (3) will give r
nen-zero and p - r zero diagonal elements of U. If we find
a zero diagonal element then we put its corresponding row
and column elements at zero. Subsequently, by elementary
row and column interchanges, we obtain the following
upper triangnlar matrix:

U, o

va(29)

Accordingly to the elementary row and column inter-
changes we also interchange the elements of X; and

(t, - %) X B = (X X,) and
(4, — Xpur)
E(tx—xm)=[ (t;—x;::)J’

where, by construction, X, is of full rank and E is a
non-singular matrix of order p x p. But, since

U Uy’ 0]
0 0

(XisAsX, )" 0
0 0

is a generalized inverse of (X (X,() Ag(X(X,.), we

have that Gg=E'GGE is a generalized inverse of
XqA X. Insertmg thlS generalized inverse into w
e+ A X Go(t, - x.) gives

k-

1 C (1 = Xypr)
w, = + M (X X)) G
(ty, = Xppy)

- - -1
=T‘kl *+hy X1 Ull Uy (t), ~Xigp)s

which is computed as follows. First z = (U')_](tu Xr)
is computcd by solving the lower mangular system
U z =(t,, - X,yp). Thereafter u = U z is computed by
solvmg the upper triangular system Uju=z. Once
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- -1 N s ‘.
u=U 1(U:) (t,, — X,y s computed it is a simple matter
to compute w,.

5. THE DUTCH LABOUR FORCE SURVEY

To illustrate some of the issues stated in this paper, we
briefly discuss the weighting model of the Dutch Labour
Force Survey (ILFS) of 1987 up to 2000. The target popu-
lation of this survey consisted of the non-institutional popu-
lation residing in the Netherlands and its sampling design
was based on a stratified three-stage sampling with
households as ultimate sampling units. For details we refer
to Nieuwenbroek and Van der Valk (1996). Five categorical
variables were involved into the weighting model, namely
Sex (2 categories), Age (12 categories), Marital Status (2
categories), Region (15 categories), and Nationality (2
categories). Mainly based on consistency requirements, the
desired weighting model was

Sex x AgexMaritalStatus x Region x Nationality.

However, this weighting model resulted in too many small
cell counts, which gave unstable estimators. Therefore, the
reduced model

(Sexx Age xMaritalStatus x Region)
+ ( Sexx Age*xRegion x Nationality)

was used instead, where Age”* (2 categories) was obtained
by grouping the categories in Age. This reduced weighting
model resulted in a design matrix not of full rank for two
reasons, namely 1) some columns of the design matrix
completely consisted of zeros due to impossible combina-
tions of the categorical variables and 2) there were linear
combinations between the columns of the design matrix.

Now, the first kind of redundancy can be easily traced.
If such columns are found, then their corresponding popu-
lation totals should be zero. Bascula carries out a check on
this condition. The second kind of redundancy is more
difficult to trace. Linear combinations between columns
may arise because one variable is incorporated into several
weighting terms. For example, sex and region appear in
both weighting terms of the LFS weighting model. The
resulting linear combinations can be recognized beforehand
by the name of the variable. For the age-variable, which
also appears in both weighting terms, such a redundancy
check beforehand is less obvious. These latter kinds of
redundancy are traced by means of the Cholesky decompo-
sition. Naturally, if any linear combinations are found,
either by name beforehand or by the Cholesky decompo-
sition, then the same linear combinations should also exists
between the vector of population totals. Bascula also checks
this condition.
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