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In This Issue 

This issue of Survey Methodology contains the third m an annual invited paper series in honour 
of Joseph Waksberg. A brief description of the series and a short biography of Joseph Waksberg 
were given in the June 2001 issue of the joimial. I would like to thank the members of the Award 
Selection Committee, Chris Skinner (Chair), David Binder, Paul Biemer and Mike Brick for having 
chosen Tim Holt, who has had a very distinguished career in both academia and in official statistics, 
as the author of the third paper in the Waksberg Invited Paper Series. 

In his paper entitled "Methodological Issues in the Development and Use of Statistical Indicators 
for International Comparisons", Holt first describes the wide range of national statistical indicators 
suggested by various Uiuted Nations committees to monitor and compare development in such areas 
as demography, healtii, economics and employment, and he considers how these can be prioritized 
for implementation. He then discusses the need for sound statistical infrastmcture in each country, 
and the importance of base population estimates, administrative sources of data, and good meta-data 
for indicators that are produced. Holt goes on to discuss several methodological issues related to the 
unplementation of such indicators, and interpretation of mtemational comparisons. 

The next six papers in this issue form a special section on small area estimation. The first three 
papers present general methodology, while the last three discuss small area estimation methods in 
more specific contexts. 

Meeden presents a new Bayesian approach to small area estimation. Instead of using the usual 
Bayesian approach that implicitiy links one area to another area, Meeden instead uses a 
noninformative or objective Bayesian approach. It applies a Polya posterior idea to obtain model-
based estimates of small area parameters, all without introducing a model or a prior explicitly. One 
advantage of this approach is that population parameters other than means can be estimated with 
sensible estimates of their precision. 

You, Rao and Gambino approach the problem of estimating unemployment in small domains by 
using an extension of the well-known Fay-Herriot model by borrowing strength across both areas 
and time. The authors use the structure of the Canadian Labour Force Survey to produce some 
interesting variations on this model. They use the short period - 6 months - that rotation groups are 
in the sample to produce efficient Hierarchical Bayes estimates which neatly avoids the seasonality 
problem common to designs with longer time periods. The result of this method is large reduction 
of the coefficient of variation especially in the smaller areas. 

In their paper, Lehtonen, Samdal and Veijanen exanune the effect of model choice for different 
types of estimators of domain totals. They point out tiiat earlier literature on small domain estimation 
has not emphasized enough the distinction between the types of estimators and the model choice. 
They show analytically and empirically that model improvement has dilTerent effects on different 
estimator types. One of their main results is that, under some conditions, model improvement leads 
to a larger decrease ui mean squared error in smaller domains for the generalized regression 
estimator. The opposite holds for the synthetic estimator. Also, model unprovement is ui general 
more beneficial to the synthetic estimator than to the generalized regression estimator since the 
former can have a large bias. 

Chung, Lee and Kim consider small area estimation using the Korean Economically Active 
Population Survey. They compare synthetic estimation, a composite estimator that combines the 
synthetic and direct estimators, and a hierarchical Bayes estimation method based on multi-level 
modelling. They describe the estimators and the model selection for the hierarchical Bayesian 
approach. They find that all of these approaches improve significantly over direct estimates for 
unplanned small areas; however, the composite estimator was best overall. 

Di Consiglio, Falorsi, Falorsi and Russo empirically compare several small area estimators using 
data from the Italian Labour Force Survey to estimate numbers of employed, unemployed, and 
persons looking for jobs within Local Labour Market Areas. Auxiliary data and target parameters 
are based on census data. Comparisons are done both conditionally on realized sample sizes within 
a small area and imconditionally. Several types of small area estUnator - expansion, post-stratified 
ratio, synthetic, composite, sample size dependent, and empirical best linear unbiased predictors -
are compared. They conclude that the best estimators overall are a composite estimator and a sample 
size dependent estimator. 
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In the final paper of the special section, Harter, Macaluso and Wolter present a case-study of 
small domain estimation techniques to estimate employment at the county/industry division level 
using data trom the U.S. Current Employment Statistics program and lagged administrative data on 
employment. They discuss such issues as the availability, quality and choice of auxiliary data, 
problems in micro-matching of survey and administi-ative data, and regular monitoring of the entire 
process in order to build in the quality needed to support small area estimation. 

The paper by de Waal deals with the error localization problem: the identification of erroneous 
fields in erroneous data. A well known method to solve this problem in numerical data is based on 
vertex generation, in particular the Chemikova algorithm De Waal extends tills approach to identify 
errors in a mix of categorical and numerical data. The paper shows that many results for numerical 
data also hold tme for a mix of categorical and numerical data. This paper provides a nice readable 
introduction to Error Localization and its implementation. 

Haziza and Rao discuss the problem of unweighted imputation for missing survey data. They 
show that unweighted imputation, imlike weighted imputation, generally leads to biased estimators 
under the design-based approach {i.e., uniform response). They propose a bias-adjusted estimator 
which is simple to obtain and has the desirable property that it is approximately unbiased under both 
the design-based and the model-based approaches. They also derive Imearization variance estimators 
for the proposed estimators. A simulation shows the good performance of the bias-adjusted 
estimator, especially when the correlation between the variable of interest and the inclusion 
probability is high. 

The paper by Johnson and Deely develops optimal and approximately optimal fixed cost sampling 
allocations for simxtitaneous estimation in multiple mdependent Poisson processes based on the 
Bayes risk and the Bayes estimator under two different loss functions. The results fi-om this approach 
are straightforward, interestmg and are connected to the classical stratified random sampling 
allocations. Techniques for finding "representative" conjugate priors, under more general 
hierarchical models for allocation purposes are also presented. 

Ui the last paper of this issue, Tracey, Singh and Amab investigate calibrating to the second order 
moment of a auxiliary variable, when available, to improve the efficiency of estimators. They show 
that this new estimator can be more efficient than the combined regression estimator in stratified 
sampUng and provide a variance estimator for the new estimator. Finally, they extend the method 
to double sampling and conclude with some limited simulation results. 

Finally, we note that a paper from the December 2002 issue of this journal has just won an 
award. The paper by Balgobin Nandram, Geunshik Han, and Jai Won Choi, entitled "A 
Hierarchical Bayesian Nonignorable Nonresponse Model for Multinomial Data from Small Areas ", 
has received the Statistical Science Award as the best paper of the year in applied statistics, 
awarded by the Statistical Awards Ceremony Committee of the Centers for Disease Control and 
Prevention and the Agency for Toxic Substances and Disease Registry. Congratulations to 
Drs. Nandram, Han and Choi! 

M.P. Singh 
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Waksberg Invited Paper Series 

Survey Methodology has established an annual invited paper series in honor of Joseph Waksberg, who has 
made many important contributions to survey methodology. Each year, a prominent survey researcher will 
be chosen to author a paper that will review the development and current state of a significant topic in the 
field of survey methodology. The author receives a cash award, made possible through a grant from Westat 
in recogtution of Joe Waksberg's contributions during his many years of association with Westat. The 
grant is administered financially and managed by the American Statistical Association. The author of the 
paper is selected by a four-person committee appointed by Survey Methodology and the American 
Statistical Association. 

The author of the Waksberg paper is announced at the annual Joint Statistical Meeting during the 
American Statistical Association Presidential Address and Awards session. In this session, recipients of 
awards such as Section, Chapter, Continuing Education-Excellence and other co-sponsored awards are 
congratulated. In particular, the Waksberg Award for outstanding contributions in the theory and practice 
of survey metiiodology is highlighted. Finally, the winner of die Waksberg award appears in the Awards 
program booklet. 

Previous Waksberg Award Winners: 

Gad Nathan (2001) 
Wayne A. Fuller (2002) 

Nominations: 

Nominations of individuals to be considered as authors or suggestions for topics should 
be sent to the chair of the committee, J. Michael Brick at Westat, 1650 Research 
Boulevard, Rockville MD, U.S.A. 20850-3129 by e-mail at brickml(gwestat.com or by 
fax (301)294-2034. Nominations and suggestions for topics must be received by 
December 5, 2003. 

2003 WAKSBERG INVITED PAPER 

Author: Tim Holt 

Tim HoU began his career as a survey methodologist at Statistics Canada fi-om where he moved to the 
University of Southampton where he is currently professor. He has published a number of papers in 
academic journals. He has also been Director of the Office for National Statistics and Head of the UK 
Government Statistical Service. More recently he has undertaken various consultancies including for the 
United Nations, European Union, International Labour Office and International Monetary Fund. 
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MEMBERS OF THE WASKBERG PAPER SELECTION COMMITTEE (2002-2003) 

J. Michael Brick (Chair), Westat, Inc. 
David R. Bellhouse, University of Western, Ontario 
Paul Biemer, Research Triangle Institut, U.S.A. 
Gordon Brackstone, Statistics Canada, Ontario 

Past Chairs: 

Graham Kalton (1999 - 2001) 
Chris Skinner (2001-2002) 
David A. Bmder (2002 - 2003) 
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Methodological Issues in the Development and Use of Statistical 
Indicators for International Comparisons 

DAVID HOLT' 

ABSTRACT 

International comparability of Official Statistics is important for domestic uses within any country. But international 
comparability matters also for the international uses of statistics; in particular the development and monitoring of global 
policies and assessing economic and social development throughout the worid. Additionally statistics are used by 
international agencies and bilateral technical assistance programmes to monitor the impact of technical assistance. 
The first part of this paper describes how statistical indicators are used by the United Nations and other agencies. The 
framework of statistical indicators for these purposes is described and some issues concerning the choice and quality of these 
indicators are identified. 
In the past there has been considerable methodological research in support of Official Statistics particularly by the strongest 
National Statistical Offices and some academics. This has established the basic methodologies for Official Statistics and 
has led to considerable developments and quality improvements over time. Much has been achieved. However the focus 
has, to an extent, been on national uses of Official Statistics. These developments have, of course, benefited the international 
uses, and some specific developments have also occurred. There is however a need to foster more methodological 
development on the international requirements. In the second part of this paper a number of examples illustrate this need. 

K.EY WORDS: Official Statistics; Statistical Indicators; International Comparisons. 

1. INTRODUCTION 

Official Statistics matter in national life. They are used 
to develop and monitor public policies, allocate resources, 
support public administration and decisions made by 
businesses. They are used too by citizens as a window on 
the work of government and to monitor its performance. 

As important are the intemational uses of Official 
Statistics. They are used by national governments to 
monitor the coimtry's performance against comparators; to 
ensure that economic competitiveness is maintained or 
enhanced; to morutor economic and social developments in 
other coimtties and the outcome of alternative economic or 
social policies that other states may adopt. Increasingly in 
some regions they are used for national participation in 
intemational decision-making and resource allocation. For 
these purposes internationally comparable statistics are 
needed. They are required too by intemational agencies to 
monitor national performance and to make comparisons. 
The World Bank, IMF and bilateral funding agencies 
depend heavily on Official Statistics to monitor the impact 
of policies and technical assistance programmes. 

Increasingly statistics and statistical indicators are being 
used to set and monitor global policies. For example a 
review of UN Summits and major conferences during the 
1990's identified over 280 statistical indicators needed to 
monitor UN policies made through conference decisions. 

Hence the need for intemationally comparable statistics 
has never been greater. This paper has two purposes: 

To describe the ciurent need for intemationally 
comparable statistical indicators for UN and related 
agency purposes, and 

To suggest tiiat despite the huge investment in 
methodological research and development to support 
national statistical needs, there has not been as much 
emphasis on methodological research supporting the 
intemational uses. Some examples will illustrate this. 

2. UN STATISTICAL INDICATORS 

What is an indicator? 

The term "statistical indicator" has come into use 
particiUarly in relation to monitoring global policies. One 
might try to establish what characterizes a "statistical 
mdicator" and what distinguishes it from the range of 
statistics published daily by National Statistical Offices. 
There are indicators, such as the Human Development 
Index, that are artificial constmcts that combine disparate 
measures (GDP per capita, life expectancy at birth, literacy 
and educational attainment) into a single composite index 
number. Such indicators are not a statistical estimate of any 
single population characteristic and are intended only as a 
very broad and general measure. But most statistical 
indicators used by the UN, for example, are not of this kind. 
Rather they are simply statistical estimates of population 
characteristics {e.g. fertility rate, life expectation at birth, 

David Holt, Department of Social Statistics, University of Southampton United Kingdom, Fomier Director of the Office for National Statistics and Head of 
the UK Government Statistical Service. 
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GDP per capita). Each of these characteristics can be 
precisely defined even tiiough the concept may be complex 
and the measurement difficult. Such statistics are important 
for both national and intemational purposes. 

Since the statistical indicators are everyday statistics one 
may question the need for a different terminology. The 
reason is not based on the statistical properties but may 
reflect the way that the indicators are used. Indicators are 
meant to be high level (usually outcome) measures that are 
perceived to be related to some aspect of economic or social 
well-being. For example a low life expectancy at birth in a 
country is an indication of unsatisfactory living prospects 
and of healtii problems in particidar. But two countries with 
similar life expectancies may have very different health 
situations and the policies needed to address these may be 
quite different. The statistic used as an indicator points at a 
problem but one would require much greater understanding 
of age-specific mortality rates, causes of death, the quality 
and range of health services and possible differences 
between sections of the population to formulate a policy 
response. That policy may be based on improved medical 
provision, preventative public healtii or social policies, 
greater education for those at risk or a combination of all of 
these. The statistical indicator is a high level monitoring 
instrument but policy development and monitoring require 
a much wider and richer statistical picture. 

The fact that the indicator is used as a general measure 
of economic or social well-being does not imply that the 
methodology and sources used to measure it need not be 
tightly specified. The requirement is to get comparability 
both between countries and within a country at different 
points in time. Loosely specified sources and methods can 
give rise to inconsistencies that would invalidate the 
monitoring requu-ed. Indeed one of the problems of 
indicator use is that small changes that have no statistical or 
substantive significance but cause the ranks of countries to 
change are given far too much prominence particularly by 
national policy makers and commentators. 

UN Statistical Indicators 
In the last decade or so United Nations siunmits and 

major conferences (averaging almost two per year) have 
covered a wide range of economic and social issues. These 
meetings have resulted in declarations related to future 
goals and targets that have been endorsed by member states 
and are intended to improve the well-being of the world's 
population. Goals and targets call for a commitment to 
monitor progress towards them and, consequently indi­
cators have been identified in relation to each goal. The 
intention is to monitor and report on these so that progress 
towards the declared goals and targets can be measured. 
The MiUennium Development Goals, for example, 
subscribed to by 164 Heads of State or their representatives 
have resulted in 8 goals, 18 targets and 48 statistical 
indicators that will be monitored over the coming decades. 
For example there are two indicators for Goal 1, Target 2: 

GOAL I: ERADICATE EXTREME POVERTY AND HUNGER 

Target 2: Halve, between 1990 I. 
and 2015, the proportion of 
people who suffer from hunger 

2. 

Prevalence of underweight 
children under-five years of 
age 
Proportion of population 
below minimum level of 
dietary energy consumption 

In total over 280 indicators had been identified Irom UN 
Summits and major conferences in the last 10 years. 

This process has gone on with too little co-ordination 
between officials concerned with the separate UN summits 
and major conferences in terms of the number and choice of 
indicators to be monitored. The result is a plethora of 
indicators of different levels of importance in policy terms. 
The meetings have varied considerably in terms of the 
number of resulting indicators (ranging from a handful or 
less to as many as 70 being identified from a single UN 
conference). Also there is potential for confusion among 
users because of an apparent inconsistency and lack of 
coherence among the indicators. 

The UN conferences have adopted markedly different 
approaches to identifying the need for indicators. In most 
areas the number of indicators is relatively small and these 
focus on outcomes. In other areas the indicators are detaUed 
and seek to measure many different facets of policy and 
service delivery. For Health for example the death rate for 
a specific disease may be required. Additionally the 
required indicators may include the disease prevalence rate, 
the inoculation rate, the proportion of cases treated under a 
specified treatment regime, public health preventative 
measures and public understanding of the causes of the 
disease. 

The cumulative effect of indicators added at each 
conference has resulted in a large demand for statistical 
information from each member state: a demand that has to 
be set alongside the demands for statistical information for 
national policy purposes. For countries with less well-
developed statistical inlrastiiicture tiiis total demand can be 
disproportionate to the resources available to meet it. 
Indeed some have a concern that the whole global indicator 
movement has gained too much momentum and the 
pressure from the UN and intemational agencies is 
distorting national priorities and reducing the provision of 
statistics to support public policy and sound public 
administration in some developing countries. 

Attempts have been made to distil core sets of indicators 
that might be afforded higher priority. The United Nations 
Statistical Commission (UNSC) identified the Minimum 
National Data Set (MNDS: 15 indicators). The OECD 
Development Assistance Committee - in co-operation with 
the UN, World Bank and IMF - identified tiie Intemational 
Development Goals (IDG: 21 indicators). This set drew 
heavily on international summits up to 1995. The United 
Nations Development Group identified indicators to 
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support Common Country Assessment again based on an 
analysis of the requirements of UN summits (UNDAF-
CCA: 57 indicators). Similarly the need to promote and 
assess sustainable development has resulted in an additional 
set (CSD: 57 indicators). There is also Basic Social 
Services for All (BSSA: 12 indicators). Most recently the 
UN has espoused the Millennium Declaration Goals and 
associated indicators (MDG). These sets have some 
common components and some differences as one might 
expect. Even tiiese attempts illustrate the vagaries of the 
political process. For example the fact that the IDG 
indicators were repackaged and replaced within 5 years by 
the MDG indicators suggests a lack of constancy and 
political purpose. 

In 2002 the UN Statistical Commission (UNSC 2002) 
adopted proposals to create a framework containing three 
levels of priority. The 123 most important indicators are 
allocated to 7 Domains: 

- Demography, 
- Health and Nutrition, 
- Envirormient and Energy, 
- Econortucs and Poverty, 
- Employment and Labour, 
- Education, and 
- Other Social Indicators. 

The Domains represent major divisions of policy 
responsibility that are commonly reflected by separate 
Ministries in many coimtries. Additionally important 
cross-cutting policy areas such as Poverty, Child Welfare or 
Gender that are distributed across these Domains are taken 
into account. Sub-Domains are identified within each 
Domain as being relatively self-contained policy areas. 
Indicators are allocated to the three priority tiers: 
- First tier priority indicators reflected the need to 

monitor policies of the highest global and national 
importance. They represent the indicators that, no 
matter how limited the statistical capacity available, 
countries and intemational agencies would find 
essential for top-level raoiutoring of policy 
effectiveness. There are 2-6 tier 1 indicators per 
Domain. 

- Tier 2 priority indicators mainly covered different 
policy objectives (different subdomains) from those 
covered by the highest priority indicators. These policy 
objectives should be of sufficient importance to merit 
a tier 2 priority indicator. Not all subdomains would 
necessarily do so. There are 0-13 tier 2 indicators per 
Domain with most Domains having much less than 13. 

- Tier 3 priority indicators supported policy needs that 
are, albeit important, either subsidiary or judged to be 
less important than others. There are 2-8 tier 3 
indicators per Domain. 

The Criteria for Allocating Priorities to Indicators 

Allocating priority must be grounded in the policy need 
but mvolves balancing a number of criteria surrounding the 
relevance to policy, the technical properties and current 
availability (or the feasibility, resource and statistical 
capacity implications of achieving an acceptable measure in 
a high proportion of coimtries). While one may aspire to the 
situation in which an indicator fully satisfies all of the 
criteria, in practice this will not be the case. The extent to 
which the indicator meets the criteria needs to be consi­
dered and a judgement made about whether any short­
comings are of such overriding concern as to disqualify a 
particular indicator from use. 

A large number of criteria may be identified but the most 
important are: 

Policy Relevance 

- Indicators must be relevant to the policy requkement. 
- Indicators should measure the real policy objective (or 

provide a proxy measure that is adequate for policy 
monitoring). 

- Indicators should normally have global policy 
relevance. 

- Indicators should be straightforward to interpret: 
changes over time in any direction should not be 
ambiguous in relation to the policy interpretation and 
significant differences between coimtties should be 
meaningful in terms of the policy goal. 

Technical Properties 

- Technical properties of the indicator should be 
adequate for the purpose, recogiusing that change over 
time is often more important than the level of the 
indicator. 

- Indicators that fail to cover the target population fiilly 
should have sufficient coverage to ensure that the 
indicator values are unlikely to mislead policy users 
{i.e., the potential bias as a measure of the true policy 
objective should be small). 

- If possible, where indicators are difficult to measure for 
countiies with less well-developed statistical capacity, 
simplified alternatives should be provided for use until 
the statistical capacity can support the more demanding 
measure. 

- Indicators should be robust to institutional and cultural 
differences between countties and over time. 

- Indicators should exhibit change over time at a rate that 
would support policy monitoring. 

- Indicators should be produced with sufficient 
frequency and timeliness to support policy monitoring. 

- Indicators should conform to intemational standards if 
these exist. 
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In a number of cases the application of these criteria to 
create the proposed framework revealed examples where 
the policy objective suggests allocation to a particular tier, 
but the inherent conceptual or statistical weaknesses of the 
proposed indicator and/or measurement problems cause the 
indicator to be allocated to a lower tier. 

The numbers for each tier reflect the fact that the indi­
cators are not intended to substitute for the mass of detailed 
statistical outputs from national statistical systems that 
support users' needs. They are intended as high level indi­
cators for monitoring purposes. 

3. GENERAL ISSUES 

The process described in the previous section identified 
a number of general issues most of which have a technical 
dimension. 

Choice of Indicators and Targets 
There are two facets: fu-st the precise form and definition 

of the mdicator needs to be decided together with a metho­
dology for measuring it. In practice, both national and inter­
national policy makers are inclined to express their goals 
directiy in terms of a statistical indicator without particular 
concern for the definitional and measurement issues. Too 
often an mdicator is identified with too little thought. The 
reality is that identifying statistical indicators for monitoring 
purposes should be neither a pure policy nor a pure 
statistical issue. The basic expression of the policy goal 
must drive the monitoring requirement but turning that 
expression into a statistical indicator that will be relevant, 
reliable and acceptable to the various stakeholders is a 
statistical fimction. The tension between the policy view of 
what is needed and the statistical view of what is feasible 
and technically sound needs resolution. 

The second facet is the choice of a target. These are 
chosen in relation to the indicator (for example to halve the 
death rate due to a particular disease by a stated year). 
There are two views about such targets. One is that they 
should be based on policy analysis and set to reflect what 
effective policies might be expected to achieve. In this view 
it is unlikely that the same target is achievable or 
demanding enough in every country. The second view is 
that the targets are simply something to aspire to and not 
based on any reasoned analysis. In this view target setting 
is entirely a political process for binding countries into a 
political commitinent. 

From a statistical perspective the danger of aspirational 
targets is that they will not be met (or sometimes even 
approached) and the process of statistical monitoring itself 
may fall mto disrepute as a result. There is also a threat to 
statistical integrity if the political pressure to show progress 
against an unrealistically set target is too sttong. 

Whichever view prevails targets that are framed in terms 
of improvements from a given base year do require that 
indicator values are available at that point. Given the lack 

of statistical capacity in many developing countries this is 
problematic and for a number of the Millennium 
Declaration Goals for example the global statistical picture 
for the baseline year from which progress will be measured 
is seriously inadequate. 

Statistical Capacity 

The ability to produce consistent, reliable statistical 
information requires a sustained statistical capacity. This 
requirement is not a one-off capability but implies the 
ability to produce statistics on a regular basis and with the 
timeliness needed. 

In particular a sound statistical infrastructure is essential. 
By this is meant: 

- Underpinning systems to create and maintain sampling 
frames for business and household surveys. 

- A critical mass of ongoing statistical activities: survey 
design, data collection and analysis in order to nurture 
the basic professional skills. 

- The technical and methodological capacity to maintain 
and develop systems in accordance with intemational 
standards as these are developed over time. 

- A developed analytic capacity. 

- Adequate statistical frameworks and IT infrastructure. 

- Good management to make the most use of the 
resources that are available. 

- All of the above embedded within a wider legal and 
administtative stioicture that recognises the unportance 
of good statistical information and the need to sustain 
the conditions in which it can be produced with high 
professionalism and integrity, consistent with the UN 
Fundamental Principles of Official Statistics. 

Witiiout tills core capacity and the ongoing resources to 
support it, neither the statistical needs of the country nor 
those of the intemational community will be reliably served. 
In many countries adequate ongoing financial support is a 
key issue. Where this core capacity is fragile the sporadic 
provision of additional funds from intemational or bilateral 
funding agencies to satisfy a particular statistical need will 
be much less effective and is no substitute for developing 
what one might term "statistical sustainability". 

In this regard, statistical indicators need to be viewed as 
the end product of often complex statistical infi-astructures 
that are essential if the indicators are to be produced with 
adequate quality. Too much emphasis has been placed on 
the indicators and too little on the statistical sources and 
infrastructure that underpin these. 

Indicators as Rates and Ratios 

Intemational comparisons require that statistics be put on 
a basis that is immediately comparable and for this reason 
almost all of the indicators are presented as rates, 
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proportions or in per capita terms. This places population 
estimates as a cornerstone of most of the statistical indi­
cators. These depend on periodic Censuses to provide 
benchmarks and on systems of vital registration or other 
sources to permit inter-censal population estimates. 
Different statistical indicators call for population estimates 
for various age-sex groups as the appropriate denominator. 

A particular difficulty is that the numerator of such 
indicators and the population denominator are often 
provided from different sources within a country and may 
be inconsistent. Hence the rates, when calculated, may not 
be recognised within the lead policy Ministries and can be 
challenged by them leading to a loss of confidence in the 
statistics. Population estunates from tiie National Statistical 
Institute, a policy Ministry and the UN Population Division 
may all differ. In extteme cases different population 
denominators may be used for different policy areas. This 
is clearly unsatisfactory and when it occurs implies a 
systemic problem of consistency and quality assurance and 
a lack of statistical co-ordination within a country. 

For economic measures indicators are often expressed as 
per capita measures (in which case the comments above 
apply) or as ratios of expenditure {e.g. for healtii or 
education) in relation to GDP. Complex measures such as 
GDP require an extensive framework of business surveys, 
administtative sources and underpinning infrastructure if 
the statistics are to be of adequate quality. 

The pervasive use of GDP and of population estimates 
in this way underlines tiie importance of tiie quality of these 
estimates if other indicators are to be sufficiently reliable. 
Both require a sttong statistical capacity and infrastructure 
if they are to be regularly produced. 

Inadequate Administrative Sources 

There are a large number of indicators that are derived 
from administtative systems in countties where these are 
well established {e.g. mortality rates by cause, fertility rates, 
gross and net enroUnent rates in education and many health 
indicators concerned with health services and provision). 
For some kinds of information often relating to public 
services {e.g. numbers of teachers, doctors or nurses and 
qualifications) the only realistic sources of information are 
administtative and where these are inadequate they need to 
be sttengthened. For other measures a household survey 
may be an altemative although there can be conceptual and 
measurement differences between information obtained 
from administtative and survey sources. 

Nonetheless, in countiies where the administtative 
systems are inadequate survey based measures are widely 
used in which both the numerator and denominator of the 
indicator may be derived consistently from survey 
estimates. In this case a special survey devoted to one 
particular area of interest {e.g. health and fertility history) 
can provide a wide range of statistics. This is a viable 
possibility (at a cost) particularly when countries want a 
more comprehensive picture of a situation. 

However, ad hoc surveys cannot provide the ongoing 
information needed to ttack important indicators. To ensure 
that critical information will be available on an ongoing 
basis it is necessary to invest resources into the statistical 
infrastructure so that surveys can be repeated regularly. 

In general, even when they purport to measure the same 
thing, both administtative sources and surveys have 
sttengths and weaknesses. The administtative source is 
often large and provides the opportunity to provide regional 
or local figures. However the concept contained is often 
not ideal for the statistical purpose. Also the source may not 
cover the whole population or may suffer from various 
inadequacies. Surveys can often measure the concept 
required but sample sizes are often small and there may be 
differences between the surveyed population and that 
intended because of inadequate sampling frames, response 
problems and measurement error. 

The real methodological challenge is not to decide that 
one source is preferred to the other but to use all of the 
information available to produce the highest quality 
estimates possible. This will often require sttong metho­
dological effort if the statistics are to command confidence. 
However these data reconciliation problems often occur in 
countries where the metiiodological expertise is not sttong. 

Measuring Levels 

There are some topics particularly conceming environ­
mental indicators where the very idea of a measure of level 
may be very difficult to frame. It is often not the absolute 
level of the indicator so much as the ttend over time within 
each country that is the key focus of policy. 

For example there is no real meaning in measuring the 
average toxicity in Canada's coastal waters. One would 
need to defme coastal water precisely and the sampling 
methods to achieve a representative sample of coastal water 
together with appropriate methods of statistical inference. 
In particular there would be a methodological question as 
to whether the sample should be weighted to represent the 
distribution of coastal water or that of the adjacent coastal 
population. In practice samples taken on a consistent basis 
from the same locations on repeated occasions will not 
provide a measure of toxicity level but will, under some 
sttong assumptions, allow ttends to be monitored. However 
development (such as new towns and industrial sites) will 
lead to new sources of toxicity over time and the location of 
sample sites may need to be reviewed to reflect this. At the 
same time data analysis will be needed to avoid the 
measured ttends exhibiting discontinuities. The develop­
ment of sample designs and methods of inference for 
populations of people and businesses has been one of the 
great achievements of Official Statistics. But tiiere are some 
substantial unresolved methodological issues in designing 
and analysing samples of physical populations to an 
equivalent rigorous standard. The metiiods applied 
generally in Official Statistics may offer some contribution. 
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Meta-Data 

This is essential if users are to understand any particular 
issues affecting the statistical indicator values for any 
country. Good meta-data (such as is required by the IM's 
SDDS and GDDS) is a general requirement but there are 
specific situations when countries should ensure that 
specific meta-data is provided. 

- When national priorities result in an indicator which is 
not fully comparable with those produced by other 
countries. Failure to provide informative meta-data wiU 
fail those users who seek to use the indicator for 
comparative purposes. 

- Where national standards or targets are adopted (for 
example in setting a national poverty standard) the 
basis of this measure needs to be available to users. 

- Population forecasts (and mter-censal estimates m 
countries where vital registtation systems are unreUable 
or unusable) will depend cmcially on the data sources 
and assumptions made about age-specific fertiUty rates 
for example. A clear specification of the underpinning 
assumptions is essential to users. 

Distributional Measures 

A number of indicators call for separate analyses by sex 
and as a general mle if the data source can support it then 
this should be routinely provided. The same applies to 
analysis by subgroups {e.g. region, age-group, ethnic or 
social classifications). There is a broader issue about 
providing indicators that measure inequality and distti-
bution within each country. There are a rather smaU number 
of indicators that focus on distributional issues {e.g. share 
of consumption by lowest quintile of population) but the 
large majority of indicators are based on national averages. 
This is a significant deficiency in the existing indicator list. 
Much deprivation and inequality in the world will be 
masked by indicators based on national averages. Analyses 
by subgroups {e.g. by gender, region, age group, income 
groups, ethnic or social classifications) where feasible 
would illuminate this issue much more. Siinilarly, 
additional measures of inequality, such as the ratio of 
consumption by the highest 20% of households to tiie 
lowest 20% have much to commend them. 

4. SOME SELECTED METHODOLOGICAL 
ISSUES 

In the second part of this paper a small number of 
methodological issues are discussed specifically in the 
context of intemational comparisons. 

4.1 The Methodological Paradigm 
In general the paradigm adopted by Official Statisticians 

to ensure comparability is based on several components: 

- Conceptual clarity of the item to be measured. 

- Precise definitions of relevant terms that can be applied 
in practice. 

- And precisely defined classification systems. 

- A clear specification of the target population to which 
the estimates apply. 

- Development of appropriate sources and methods, even 
questionnaires, to obtain the data and compile it into 
the estimates required. 

- Often, intemational standards, manuals and descrip­
tions of best practice to cover all or most of the above. 

The basic assumption is tiiat if the measuring instrument 
and related methodology can be defined precisely enough 
then it can be applied independently in different countries 
and the resultmg statistics will be internationally compa­
rable. Hence: conttol the measurement process and the 
outputs wdll be comparable. 

This approach generally yields relatively comparable 
statistics but not absolutely so and not all of the time. 

4.2 Literacy 
It is, of course, well known that the ttanslation of some 

measures from one language and culture to another is 
fraught with difficulty and measuring functional literacy is 
an example. In any one country one can test comprehension 
of a text that is grounded in everyday experiences and the 
requirements of daily life. But the task of ttansferring this 
into another language and culture and getting a precisely 
comparable measure of functional Uliteracy is very difficult. 
Even when great effort has been made to achieve this {e.g. 
the Intemational Adult Literacy Study 1999) it may be that 
only approximate comparability can be achieved especially 
if the same measures are used over time so that within 
country changes may be morutored. In practice literacy 
measures for almost all countries are much cruder; for 
example a self-assessed respons'e to a Census question 
such as "Can the person read a letter? This approach may 
provide a broad estimate of the number of people who can 
read to a certain level in some circumstances but is unlikely 
to provide comparability either between countries or within 
a country over time. Large changes in the level of literacy 
within a country may provide evidence of real change but 
small changes may simply reflect the unreliability of the 
measure. In order to monitor literacy levels for global 
policy emphasis is placed on 15-24 year olds since these 
reflect the flow of newcomers to the adult pool and 
improvements in educational access and attainment will 
show larger changes to literacy levels for this group than for 
the aduh population as a whole. Hence the inherent 
weaknesses in the measure may, to an extent, be mitigated 
by focussing on a group for which large change may be 
expected. Such an approach wiU, however, miss the effect 
of adult literacy programmes. 
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4.3 Interactions Between the State and the Citizen 

Intemational comparability is made more difficult 
whenever we seek to measure something that is affected by 
the interaction between the state and the citizen because the 
way in which the state provides for particular services may 
differ from country to country. In these cases precisely the 
same measuring mstrument applied in different countries 
may give different results. Consider for example the case of 
housing provision for low income families. In some 
countries tiiis is provided free or for very low rent. In others 
the rental cost is at market levels but families get state 
benefits to allow the payments to be covered. Hence the 
mechanisms by which the state interacts with the individual 
wUl affect important economic measures. As a consequence 
the mtemational comparability of statistics collected and 
compiled under precisely the same conceptual framework 
can be impaired. In some circumstances money flows are 
imputed to reduce the discrepancies but this is impractical 
if the provision of cheap housing is very widespread. 

Similar issues can arise for medical provision. In some 
countties medical services are provided by the state, free at 
the point of access and directly funded from taxation. In 
others the system is funded through a system of medical 
insurance which may have elements of both state and 
personal contributions. When medical services are provided 
to an individual the real flow of payments may vary. The 
medical practitioner may make a direct claim (to the state or 
to a medical insurance fund) for the services provided. In 
other systems the individual may be the formal claimant but 
with the payment made directiy to tiie medical practitioner. 
Or the individual may be required to pay the costs and to 
claim these back from the state or insurance fimd as a 
payment back to the individual. To some extent these 
arrangements may be regarded as altemative ways of 
achieving the same end: a state-facilitated system to ensure 
that individuals have good access to medical services. In 
practice money flows are imputed to eliminate most of the 
institutional differences. 

A third example is the estimation of tax revenue which 
has a direct impact on the estimation of public expenditure 
and government deficit. Under SNA93 this assessment is 
made on an accruals basis and in the year in question will 
be based on the tax assessments made to individuals and 
businesses. In countties that use well-established self 
assessment methods and a high level of tax collection 
through employers the difference between the estimate of 
tax to be collected and that which is subsequentiy achieved 
in the foUowmg years may be very small (there will be 
companies that cease to function and default on the tax 
liability and people who may die without leaving an estate 
sufficient to cover the tax due). In other countries with 
different forms of tax assessment and recovery practice 
there may be much larger differences between the tax 
assessed and that which is eventually recovered. Where a 
shortfall occurs this will in due course be written off against 
the financial account. But this write-off will have no impact 

on the estimates of public expenditiire and government 
deficit. Hence a system that "optimistically" estimates the 
level of taxation that wiU finally be recovered will result in 
a lower estimate of government deficit that will never be 
corrected when the tax shortfall is written off against the 
financial account. Given the importance attached by 
intemational bodies to levels of public expenditure and 
government deficit a lack of comparability in these key 
measures matters. In this third example there is no 
universally agreed method to eliminate the differences 
although in the European Union specific (non-SNA) mles 
have been inttoduced in the debt and deficit manual to 
eliminate the discrepancies. 

4.4 Comparing Economic Measures - Purchasing 
Power Parities (PPP) 

For comparative purposes economic measures {e.g. 
GDP, per capita income or expenditure on Health or 
Education, living standards) that are measured in national 
currencies must be converted to a common unit of 
measurement. 

The point at issue is whether conversion from national 
currencies to a common unit (say US$) should be made 
using the comparative exchange rate values of different 
currencies, or should be made on the basis of equalizing the 
purchasing power of the currency. This is an important 
issue tiiat can have a profound effect on international 
comparisons. For example in 1999 the Human 
Development Report (HDR) claimed that "the gap in per 
capita income (GNP) between the countiies with the richest 
fifth of the world's population and those with the poorest 
fifth widened from 30:1 in 1960, to 60: 1 in 1970, to 74:1 in 
1995." These statistics are based on exchange rate 
conversion and yet the corresponding PPP ratios are about 
12:1 in 1960, 18:1 in 1990 and 16:1 in 1997. Not only are 
the ratios much smaller but the clear upward ttend 
presented in the HDR figures is not apparent in the measure 
expressed in PPP. 

The exchange rate conversion values of any currency are 
determined by the intemational financial markets and 
reflect the market forces in those institutions. Indeed, in the 
modem world, exchange rates are little affected by inter­
national ttade and the exchange of goods and services in 
world markets. The second approach uses Purchasing 
Power Parities (PPP) to reflect domestic prices on an 
intemationally comparable basis. The value of national 
income or economic output in any country is equated to 
others on this basis. In this approach, the PPPs provide an 
intemational valuation of what the local currency will buy 
within the country (United Nations 1992). 

Figure 1 shows a plot of the ratio of exchange rate 
conversion to PPP conversion for most of the countties of 
the world. The jc-axis is the 1997 Human Development 
Index (HDI) rank of each country. The most industrialized 
countries occupy the lowest 20 places at the left of the 
graph and the further right one goes the lower the level of 
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development of the country as measured by the HDI. For 
the industrialised countties the ratio of PPP to US$ 
exchange rate conversion factors is fairly close to 1. 
However, for less developed countries the ratio is greater -
in many cases much greater - than 1. The upwards slope of 
the plot shows that the ratio of PPP to US$ exchange rate 
conversion is generally larger, the lower the HDI rank. For 
the least developed countries the ratio can be as much as 4 
or more. Hence, because the ratio is close to 1, a 
comparison of economic measures between the United 
States and a major European country, for example, would 
be fairly similar using either exchange rates or PPP 
conversions. However, a similar comparison between the 
United States, or any of the most industrialized countries, 
and a least developed country would be very different. In 
such a case, the conversion of per capita income, for 
example, using PPP conversion could be as much as 4-6 
times larger than the conversion using exchange rates (an 
exchange rate measure of GDP per capita of $1,000 would 
be $4,000-6,000 in PPP terms). Hence, the choice of 
conversion factor has a significant effect across the 
developed/developing spectrum. 

PFP / Eidungc Rate RaUa 

Powerful reasons exist for using PPP conversion rather 
than US$ exchange rate conversions for real economic 
(rather than purely financial) phenomena such as standard 
of living comparisons (as reflected by per capita GDP) and, 
by extension, for comparisons of economic output (GDP) 
and national income (GDP or per capita GDP). (UNSC 
1998). 

Table 2 
Intemational Comparisons: Ratios of Per Capita Measures of Output or Use of Goods and Services 

Comparison 

Japan/China 

Sing/Indonesia 

Korea/Vietnan 

Mexico/ 
Nicaragua 

SA/Mozbique 

SA/C Airican 
Rep 

Brazil/Ecuador 

T&T/Haiti 

Sey'lls/Sri Lanka 

Sey'lls/lndia 

Kuwait/Jordan 

Lebanon/Jordan 

Egypt/Ethiopia 

MaurVMadag'r 

Daily 
per 

capita 

Daily per 
capita 

supply of 
suply of fat. Total 
calories. 

1996 

1.0 

1.3 

1.3 

1,6 

1.5 

1.1 

1.5 

1.1 

1.0 

1.1 

1.2 

1.8 

1.5 

(grams). 
1996(a) 

1.3 

2.3 

1.8 

2.4 

1.2 

0.8 

2.4 

1.5 

1.6 

1.2 

1.4 

2.6 

2.6 

Daily per 
capita 

GDP 
Index 

supply of 
protein. 

Total 
(grams), 
1996(a) 

1.3 

1.5 

1.6 

2.1 

1.6 

1.3 

1.5 

1.5 

1.3 

1.4 

1.2 

1.5 

1.7 

1.6 

1.6 

1.7 

1.5 

2.2 

1.7 

1.1 

1.7 

1.4 

1.6 

1.6 

1.2 

2.1 

2.1 

TVs, 
per 

1.000 
people. 

1996 

2.8 

1.6 

1.8 

1.1 

41.0 

24.6 

2.0 

63.6 

2.3 

3.0 

31.5 

Carbon 
dioxide 

emissions 

Com'l 
energy use 

(oil 
per capita equiv'nt) per 

(metric 
tons), 
1996 

3.3 

16.3 

0.8 

5.3 

69.0 

69.0 

0.8 

86.0 

5.8 

2.1 

10.1 

1.8 

15.0 

capita 
(kgm), 1996 

4.5 

11.7 

8.0 

2.9 

5.2 

1.4 

22.9 

7.9 

1.1 

2.2 

Per capita Main 
electricity telephone 
consum'n. 

1996 

9.1 

18.8 

23.1 

3.9 

58.9 

125.4 

2.6 

40.2 

7.2 

3.0 

14.2 

1.7 

36.4 

25.3 

lines, per 
1,000 

people, 
1996 

10.9 

24.4 

26.9 

3.7 

33.3 

33.3 

1.3 

21.0 

14.0 

13.1 

3.9 

2.5 

16.7 

54.0 

Intem'l 
tourism 

Personal RcaUiDP Per capita 
computers per capita 

departs per per capita 
1,000 

people. 
1996 

32.6 

111.0 

1.6 

0.8 

11.5 

98.0 

19.0 

41.9 

42.7 

45.2 

39.9 

47.1 

4.7 

10.3 

3.4 

(PPPS). 
1997 

7.7 

8.2 

8.3 

4.2 

10.0 

5.5 

1.3 

5.4 

3.3 

4.9 

7.3 

1.7 

6.0 

10.0 

GDP 
(US$) 
1997 

45.9 

26.8 

29.8 

10.0 

21.9 

11.3 

3.0 

12.6 

6.1 

12,7 

15,6 

4.2 

10,6 

16.7 
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The approach due to Castles (2000) is illusttated using 
a range of bilateral comparisons of countries from the same 
region in Table 2. The ratio of per capita consumption of 
various items in each patt of countiies is presented, together 
with ratios of the per capita GDP for the two countries 
based on PPP conversion and exchange rate conversion. A 
general pattern may be discerned. For items such as food 
consumption, which are price inelastic, the bilateral 
comparisons are relatively close to 1, with countries with 
higher per capita GDP having somewhat higher con­
sumption. The ratios are much larger for items {e.g. tele­
visions or personal computers) that depend on disposable 
income and are much more price elastic. In general, the PPP 
comparison for any pair of countries falls within this 
pattern, having a larger value than the ratios for food 
consumption but smaller than those for the technological 
items. This is what one would expect. The exchange rate 
comparisons, however, are generally much larger and often 
lie outside the range of consumption even for items such as 
PCs and televisions. 

The PPP measure seems more consistent with the other 
measures and more relevant for the purposes intended. 

There are, of course applications for which exchange 
rates are appropriate, such as the expression of a countiy's 
international debt relative to its GDP. 

4.5 Price Indexes for International Market Prices 

For some goods and services (particularly in Uiformation 
and Communication Technologies - ICT) the rapid rate of 
technological change has made it much harder to estimate 
price changes by normal methods. The element of quality 
change in simultaneous price and product changes is 
significant and National Statistical Offices have responded 
to this by greater use of hedonic regression methods to 
adjust for quality changes. Even when these methods are 
applied independently by different countries there can still 
be large differences in the price deflators that are arrived at 
and yet, to a large extent the goods and services are traded 
in an active intemational market. Similarly it is possible for 
producers within the same NSO who compile national 
import and export price indexes to use different price 
deflators for the same type of goods and services. 

These differences matter: within a country they can lead 
to significant impacts on key statistics such as the balance 
of ttade and fixed capital formation. Between countries tiiey 
distort the levels of ICT investment being made and the 
productivity analyses aimed at measuring tiie impact of ICT 
investment on growth and economic performance. 

Wyckoff (1995) observed that, in the case of computer 
price indices in OECD countries, large differences in the 
prices were more likely to reflect methodological differ­
ences than real price differences between countries. 
Lequiller (2001) found significant country differences in the 
attribution of software expenditure between fixed capital 
formation and intermediate consumption. The question is 

whether these differences are due to methodological 
differences and hence distort intemational comparisons. 

If we consider the case of computer software, for 
example. Figure 2 illusttates the range of price indexes 
applied to software by a range of countries. The differences 
in national estimates of the price indices are dramatic and 
will have a significant effect on the international compar­
ability of statistics that depend on the price indices. 

Fig 2: Investment In software. Price Indices from 1995 onwards. 1995^100 
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Source Edwards, Comisari and Johnson (2002) citing Ahmad (2002) 
In a separate analysis Colecchia and Schreyer (2001) 

collate estimates of average annual percentage growth in 
software investment (1990-95) for a range of OECD 
countties. These estimates depend on nationally estimated 
price indices. They also recalculate the values using an 
intemationally harmonised price index. The results are 
given in Figure 3. The latter raises the mean growth from 
6.3 to 8.2. More significantiy in terms of intemational 
comparisons it lowers the standard deviation from 4.8 to 2.9 
making the national estimates more similar. 
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Figure 3 

This is an example where broadly comparable proce­
dures applied independently in different countries give such 
different measures of something that ought to be much the 
same in all countries that one must question the 
intemational comparability of the economic statistics that 
depend on the measure. In this case the methodological 
paradigm breaks down. 
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The basic question is whether it is appropriate for each 
country to independentiy apply somewhat similar methods 
to matters such as price indices for goods and services that 
have a sttong intemational market. Alternatively it could be 
argued that to improve intemational comparability countries 
should cede an element of national statistical sovereignty by 
using intemationally estimated indices. The issues are what 
methodology should be applied; to what data (presumably 
collected on a collaborative basis from a range of countries) 
and what are the consequential issues for economic 
analyses of national data. Using coherent estimates of price 
indices for import and export prices would also need to be 
considered. 

4.6 Imputation and Aggregation 

For the purposes of monitoring intemational policies it 
is not enough to measure statistical indicators at the national 
level. Most of the statistical series comprise rates, ratios or 
proportions. The country level measures need to be aggre­
gated to provide measures at the regional and global level. 
This requirement generates a number of methodological 
problems that need further investigation and development. 

Fig 4: Primary Enrolment Rates: African 
Countries 
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Figure 4 contains the primary level Net enrolment rates 
for some African Countties. Although Education statistics 
have been chosen here tiiese Ulusttate a number of features 
that are common to a wide range of statistical indicators and 
countries: 

- The series are incomplete with missing values in some 
years for all countries and the level of completeness 
varies from one country to another. Indeed there can be 
countries with only one figure in the recent past or, for 
some series, with none at all. 

- The last figures avaUable are for 1998. 

- The data show different ttends with participation rates 
increasing in some countries and decreasing in others. 

- Some countties exhibit sudden changes in the partici­
pation rate from one year to the next {e.g. Botswana 
Malawi). Countties may exhibit erratic series {e.g. 
Rwanda). 

The objective/or inference 

The objective for an aggregate statistic at the Regional or 
Global level needs to be clear. For a regional rate for Africa 
for example one might naturally assume that the objective 
is to estimate 7^ j the rate for the region R at time T: 

YRJ = E ^ . - r ^ - . r / E Wj, 
JeR JeR 

JeR 

(1) 

Y. J. is the corresponding rate for counttyy and year T and 

hT-'^j.T^YjeR'^j.r 
In equation (I) the natural value for Wjj. is the 

population size for the relevant age group in country y at 
year T. Thus for the enroUnent rate data presented above the 
national enrolment rates would be aggregated to produce 
the regional (or global) rate. Corresponding estimates of 
change Aj. j . between years T^ and Tj may be similarly 
defined at the national, regional or global level. For 
example: 

R,r,,T2 - Y -Y 
— J- O T J 1 

'R,T, R,T,- (2) 

T.yj,r,-j,rjY w 
JeR JeR 

J-h •T.^J.r-j,rjT. 
jeR jeR 

""jJd^) 

Similarly annualized change A .̂ j. / ( r j - r , ) may be 
defined. 

The regional statistics defined by equations (1) and (2) 
will be dommated by the national rates (and changes) for 
the larger countties. In a region that contains China or India 
for example smaller countries may have national rates that 
are quite different and these will have little impact on the 
regional rate. The same is true for estimates of change. 
Similarly tiie variance of the regional statistics will tend to 
be dominated by the largest countries because of the impact 
of the weights squared p^ j - . For the regional estimate of tiie 
level for example: 

V{Y,^r) = E nYj^r)HT- (4) 
JeR 

An altemative emphasis may be required if the global 
target is meant to impose a commitinent on each country 
regardless of size. Here the country might be regarded as 
the unit of analysis (rather than the person as is unplicit in 
the aggregate statistics described above). One possibility 
could be to define 7^ j. and A ,̂ j , by setting w. j. equal for 
all coimtries so that all countties contributed equally to the 
summary statistic. Clearly there are other alternatives such 
as summarizing the countries performance at the regional 
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level by reporting on the number of coimtries that 
exceed/fall short of the population weighted regional 
statistic by a threshold amount together with the range of 
country levels (or changes) observed. 

Constant or time-dependant weights for estimates of 
change 

Many of the statistical series call for national statistics 
that incorporate a changing population stmcture over time. 
For example the proportion of people below a poverty 
threshold wUl be changing because of changes to household 
income (expenditure, or consumption) but also because the 
population size itself is changing. Indeed over a period of 
15-20 years fertility rates in many developing countries 
imply very significant population growth. Hence the 
denominator implicit in Y.j. at different years T will 
properly reflect this change. When producing the aggregate 
measure Y^ j. it is natural to use the population weights vv. j . 
and hence the relative proportions p. y. relatmg to year T. 
It is less obvious whether the weights w. j. (and hence u. y.) 
used to produce the aggregate measure of change A^ ̂  j . 
for a region or the whole world should change with time. 
The measure of change A^ j, ^ may be decomposed as 
follows: 

\T„T2 = Y (>;-,r, - Yjj){X\ijj^ + {I-X) Hjj.^) 
JeR 

+ Y {lijr-\^jr)a^)Yjr-{\ -X)Y ) . (5) 
JeR 

The measure of change is thus a composite measure 
involving both the change in 7 over time and the change in 
weights. Since the weights u. j. simply provide the linear 
combination of the country measures it is arguable that 
these should be held constant between T^ and Tj so tiiat the 
second term in equation (5) is made zero. The first term in 
equation (5) is arguably a better measure as an index of 
change smce it represents a linear combination of the 
country changes. 

The same rationale may be applied when the national 
measures are economic and measured in the local currency 
and these have to be converted to a common basis using 
PPP conversion for example. It may be argued that a 
constant value of PPP conversion should be applied to all 
values in local currency whatever the time period to which 
they apply. 

There still remains the choice of X and values of 0 or 1 
would use the weights for one of the reference years only. 

Of course a measure of change based on the first term in 
equation (5) implies that this is not arithmetically equal to 
the difference between the measures of level in the two 
years. 

Missing Values 

Most of the statistical series used for monitormg global 
policy have gaps of various kinds. For some series most 

countries are represented with data for most years. For other 
series data may be available for a smaller subset of UN 
member states, but with perhaps only one or two data points 
for some of the countries represented and these related to 
different years for different countties. If inference is 
required for year T and this is missing then the question of 
unputation method arises. Figure 4 illustrates the situation 
for the primary education enrolment rates. 

Much research and development on missing data in 
Official Statistics has focussed on the raw micro-data and 
causes such as non-response. In calculating aggregate 
measures for statistical mdicators it is the national statistic 
for an entire country in a particular year that is unavailable. 
Common assumptions such as that data are missing at 
random are inapplicable in this case. In general the lack of 
completeness of statistical series for each country may often 
be related to the statistical capacity of the country to 
produce the range of statistics required. This in turn is often 
related to the level of development generally and to some 
extent the size of the country since the per capita statistical 
effort required is generally greater for small countries. This 
has two general consequences: 

- If we consider the regional estimate 7/j j = Yjejf Y, j p, j 
and only a small proportion of country values are 
missing (and if these relate to countries with small 
weights p. J.) then the regional estimate will be 
relatively robust to any reasonable imputed value for 
the missing values. Moreover the weights associated 
with the imputed values and measures such as 

2 2 

V^jT^YjeR^jT ^'^1 provide diagnostic information 
about the extent to which the regional (or global) 
estimate may be dependent on imputed values. 

- It must be recognised however that if many of the 
statistical series are related to economic and social 
development and if countties with missing data are 
generally low in statistical capacity (and by extension 
development generally) then this is a case of 
informative non-response. Hence the term "reasonable 
imputed value" in the previous bullet point needs to 
take account of this. 

In general there are three levels of information that might 
potentially assist with imputation for the missing values in 
a time series. These are (a) values for other years in the 
same series for the same country, (b) associated series from 
the same country that may convey information about the 
series in question and (c) statistical series from other 
countries that might be considered "similar" in some sense 
to the country for which the value needs to be imputed. 

In addition the range and sophistication of available 
methods may vary greatiy (see for example Chatfield 1996). 
The objective is to predict the value 7. j. of the ttend at time 
T for the series in question. The length of the time series 
available are generally short and the series are non-
stationary. Since the series are annual, for many of them 
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seasonal effects may be less important. A simple method 
may involve naive ttend fitting (and then prediction for the 
missing values) using least squares fitting on the values 
available in the series. More sophisticated methods will 
remove the ttend to arrive at a stationary series and then 
apply various approaches such as weighted averages and 
modelling tiie correlation stioicture of the series to arrive at 
predicted values for the missing values of the stationary 
time series. These are then combined with the initially 
removed trend estimates to yield predicted values for the 
missing values in the original series. 

This general problem could benefit from some 
substantial methodological investigation perhaps taking 
account of some of the following: 

- The ultimate objective is not to model the series, nor 
even to predict the missing value for use as an 
inference at the country level. The imputed value will 
be combined with observed values from other countries 
to produce the aggregate measure which is the ultunate 
objective. 

- The time series available are often short. 

- So long as the statistical series is not too noisy the 
highest quality predictive information will lUcely come 
from the values for other years in the same series and 
the same countiy. For many situations, since the 
objective is to predict the trend level at t = T, this may 
imply that simple trend estimation methods such as 
regression using year as an explanatory variable for the 
series in question may be adequate. For example: 

^j,r - «y ^ p,t + e 7.'' (6) 

where V (e. j.) = o .̂ 
The use of data from the same series if it is reasonably 

stable wiU ensure that the informative non-response issue is 
taken into account since the parameter estimates a. and p. 
will relate to the specific country and will be estimated from 
data from that source. 

Consider as an illusttation equation (6) written in matrix 
form for a series of length k{t = 1,..., k) and where impu­
tation is required for t = k-i-l. Prediction for a missing value 
at the end of the series is likely to be less reliable but is also 
likely to be realistic since it will occur in practice. 

y = xp + s, y(^) I'l (7) 

V{Y,^,) = {(l,k^l){X^X)-\l,k*l)^ + l)o' 

2(2A:+1) 

k{k-l) 
o\ (8) 

Fig 5: Variance for OLS prediction of missing value 
at t=k+1 for series of length l(, =1 
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Figure 5 shows the relative variance for predicting 7̂ ^̂ , 
the missing value at ? = /: + 1 for a series of length k under 
OLS assumptions. For a series of infinite length the 
variance vnll be 1. The point of interest is how quickly tiie 
variance drops for a series of 5 or 6 points and how 
relatively gradually fiirther variance reduction occurs. The 
OLS assumptions may be replaced by some more general 
covariance stmcture such as Corr(E.,, e. ^̂ )̂ = p'. For small 
and moderate values of p(p:£0.5) the variance based on 
GLS estimates is very similar to Figure 5. 

Of course the assumptions above are unrealistic since 
most time series prediction methods would take account of 
the correlation stmcture for recent periods by using 
exponential weighting of the most recent observations to 
predict the residual associated with t = k-¥l. However 
depending on the extent to which recent observations are 
correlated with < = ^ +1, estimating the parameters a and ̂ • 
from a very short series will, to some extent, automatically 
take account of the positive correlation of the residuals at 
recent periods. If this is so then the decay shown in Figure 
5 may be a rough approximation to the impact of the length 
of the series used. 

Clearly a more extensive study of the impact of simple 
and more sophisticated methods for imputing the missing 
value would be of considerable benefit. 

- For such methods there will be a ttade off between 
variance and bias related to the length of the series 
used. A relatively short part of the series where the 
local linearity of the prediction model is more likely to 
approximate reality may yield a less biased estimate of P. 
due to model misspecification but provide parameter 
estimates of a. and p. with higher variance and hence 
a more variable predicted value. 

- Altemative methods that take account of the correlation 
stmcture of the time series can be considered and the 
extent to which these provide a significant improve­
ment in the quality of the prediction would be of 
interest. One needs to keep in mind that the ultimate 
objective is to generate the regional (or global) 
summary measure and the imputed value may have 
relatively littie impact on this in terms of variance. 



Survey Methodology, June 2003 17 

- When there are no values at all for the statistical series 
in a particular countiy or when the series is erratic 
and/or has very few values for otiier years the situation 
is much more difficult. There may be greater added 
benefit in using the information contained in other 
series from the same country and from other countries. 
One might conjecture that a regional effect, such as a 
drought for example, may affect other countties in a 
region and that the statistical series may display similar 
characteristics even if the series themselves are at 
different levels. The potential for borrowing sttength 
from other time series in the country of interest and 
others needs to be explored. Hierarchical model-based 
methods developed for small area estimation could be 
investigated in this case although the total volume of 
data even in a region with 30-50 countries will not be 
large. Also the question of establishing which countiies 
might be suitable sources of information in any 
situation may require both expert judgement of the 
similarities and dissimilarities between countries as 
well as formal statistical diagnostics. If the available 
series are short then identifying and fitting suitable 
models will be a challenge. 

When we consider the estimation of change between two 
years J, and Tj the same issues surrounding missing 
values and imputation emerge. As for the regional estimates 
of level, countries with small relative weights p. y. are 
unlikely to have a significant impact on the regional 
estimate of change. However under current intemational 
practice it is quite common for the regional estimates of 
7^ J. to be based on whatever national statistics are 
available for year Tand hence for differences between two 
years to be based on different sets of countries. This is 
clearly unsatisfactory and wUl cause the estimate of change 
to be biased. Imputation for missing values is needed and 
the statistical properties of the resulting estimates of change 
need to be explored. The question of separate or joint 
imputation for missing values from the same series may 
also be considered. 

5. CONCLUSIONS 

A description of the use and importance of statistical 
indicators and the framework in which they are produced is 
provided. 

It is suggested that there has been less focus on 
methodological development for statistics used for 
intemational comparisons than there has been on statistics 
used for national domestic purposes. A number of examples 
have been provided illusttating the need for additional 
methodological work in this field. 
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A Noninformative Bayesian Approacli to Small Area Estimation 
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ABSTRACT 

In small area estimation one uses data from similar domains to estimate the mean in a particular small area. This borrowing 
of strength is justified by assuming a model which relates the small area means. Here we suggest a noninformative or 
objective Bayesian approach to small area estimation. Using this approach one can estimate population parameters other 
than means and find sensible estimates of their precision. 
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1. INTRODUCTION 

In the standard approach to small area estimation the 
parameters of mterest, the small area means, are assumed to 
be related through some type of linear model. Drawing on 
linear model theory one can derive estimators which 
"borrow sttength" by using data from related areas to esti­
mate the mean of interest. Finding a good estimate of the 
precision of the estimator is often difficuU however. Good 
recent summaries of the literature can be found in Rao 
(1999) and Ghosh and Rao (1994). 

The Bayesian approach to statistical inference summa­
rizes information concerning a parameter through its 
posterior distribution, which depends on a model and prior 
distribution and is conditional on the observed data. In 
finite population sampling the unknown parameter is just 
the entire population and the likelihood function for the 
model comes from the sampling design. A Bayesian must 
specify a prior disttibution over all possible values of the 
population. Once the sample is observed the posterior is just 
the conditional distribution of the unobserved units given 
the the values of the observed units computed under the 
prior distribution for the population. For most designs this 
posterior does not depend on the design probability used to 
select the actual sample. The Bayesian approach to finite 
population sampling was very elegantly described in the 
writings of D. Basu. For further discussion see his collec­
tion of essays m Ghosh (1988). 

Assume that given the sample one can simulate values 
for all the unobserved units from the posterior to generate 
a "complete copy"of the population. Then given the simu­
lated and observed values one can compute the value of the 
population mean, ^'^ Yt-iy^ ^^^ ^ ^ sunulated copy of 
the entire population. By generating many independent 
simulated copies of the population and in each case finding 
the mean of the simulated population and then taking the 
average of these simulated means one has an estimate of the 
unknown population mean. This process computes 

approximately the Bayes estimate of the population mean 
under squared error loss for the given prior. More generally 
by simulating many such full copies of the population one 
can compute, approximately, the corresponding Bayes point 
or interval estimates for many population parameters. The 
problem then is to fmd a sensible Bayesian model which 
utilizes the type of prior information available for the small 
area problem at hand. 

The Polya posterior is a noninformative Bayesian 
approach to finite population sampling which uses littie or 
no prior information about the population. It is appropriate 
when a classical survey sampler would be willing to use 
simple random samplmg as their samplmg design. In 
Nelson and Meeden (1998) the authors considered several 
scenarios where it was assumed that information about the 
population quantiles of the auxiliary variable was known a 
priori. They demonsttated that an appropriately consttained 
Polya posterior, i.e., one that used the prior knowledge 
about the quantiles of x, yielded sensible frequentist results. 
Here we will see that this approach can be useful for a 
variant of small area estunation problems. 

We will consider a population that is partitioned into a 
domain D, of interest, and its complement D'. Also we 
suppose that it is partitioned into K areas, say A^,..., A^. 
Let;' be the characteristic of interest and x be an auxiliary 
variable. Suppose, using a random sample from tiie entire 
population, for some k we wish to estimate RQ ^^CJ'), the 
mean of y for the all units that belong to the small area 
DC\ Ai^. Often the number of sampled units that belong to 
DV\ A^is quite small and using just these observations can 
lead to an imprecise estimator. As an example where this 
could arise imagine D is a region of a state which is broken 
up into counties. Each county in D is then paired with a 
similar county that is outside of D. Hence the kxh. county 
and its twin form the /rth area and the collection of "twin" 
counties forms £)'. Then a random sample is taken from 
D U Z ) ' and one wishes to to estimate the means of the 
counties, or small areas, making up D. 
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In order to improve on this naive estimator one needs to 
make some additional assumptions. Here we will assume 
that for each uiut in the sample we leam both its y and x 
values. For units belonging to Aj^ we make two assump­
tions which formalize the idea that the small areas, ^ ^ H D 
and Ai^f\D', are similar. First we assume that the small 
area means of the auxiliary variable, |x^^(x) and 
p.^, ^(x), although unknovwi are not too different. Sec­
ondly we assume that for units belonging to Af^ the 
distribution ofy. depends only on its x. value and not on its 
membership in D or D'. Finally we assume that PQ(:t), 
the mean of x for all the units that belong to D, is knovwi. 
Note that we do not assume that p,^ ^(;ic) and p^, ^( x) are 
known which is often the case in small area estimation. 

Here we will demonsttate that when our assumptions are 
tme a modification of the Polya posterior yields good point 
and interval estimators of p^ ^( j ' ) and of tiie the median of 
y in the small area D fl^^. In section two we will briefly 
review facts about the Polya posterior and in section tiiree 
discuss simulating from a consttained version of it. In 
section four we present some simulation results that 
indicate how it could work in practice. Section five contains 
some concluding remarks. 

2. THE POLYA POSTERIOR 

Consider a finite population consisting of A/̂ imits labeled 
1, 2, ..., Â . The labels are assumed to be known and to 
contain no information. For each unit / let y., a real 
number, be the unknowm value of some characteristic of 
interest. The unknown state of nature, y = {y^, —,7^), is 
assumed to belong to some subset of A^-dimensional 
Euclidean space, 3l'̂ . A sample 5 is a subset of 
{1,2, ...,A^}. We wiU let n{s) denote the number of 
elements in s. A sample point consists of the set of observed 
labels 5 along with the corresponding values for the 
characteristic of mterest. If 5 = {/,,..., j ^ , . } then such a 
sample point can be denoted by {s,y^). 

Given the data the Polya posterior is a predictive joint 
disttibution for the unobserved units in the population 
conditioned on the values in the sample. Given a data point 
{s,y ) we now show how to generate a set of possible 
values for the unobserved units from this distribution. We 
consider an urn that contains n {s) balls, where ball one is 
given the value y,. , ball two the value y^ and so on. We 
begin by choosing a ball at random from the urn and 
assigning its value to the unobserved unit m the population 
with the smallest label. This ball and an additional ball with 
the same value are tiien retijrned to the um. Another ball is 
chosen at random from the urn and we assign its value to 
the unobserved unit in the population with the second 
smallest label. This second ball and another with the same 
value are then returned to the um. This process is continued 
until all N - n{s) unobserved uruts are assigned a value. 
Once this is done we have generated one realization of the 

complete population from the Polya posterior disttibution. 
This simulated, completed copy contains the n{s) observed 
values along with the N - n{s) simulated values for the 
unobserved members of the population. Hence by simple 
Polya sampling we have a predictive distribution for the 
unobserved given the observed. 

One can verify that under this predicted disttibution the 
expected value of the population mean is just the sample 
mean and it's posterior variance is approximately the fre­
quentist variance of the sample mean under simple random 
sampling when n{s) ^ 25. Hence inference for the popula­
tion mean under the Polya posterior agrees with standard 
methods. Although the design probabiUties play no formal 
role in tiie inference based on the Polya posterior for it to be 
appropriate in the judgment of the survey sampler the 
values for the characteristic of interest for the observed and 
unobserved units need to be roughly exchangeable. This is 
usually the case when simple random sampUng is used to 
select the sample. 

It has been shown for a variety of decision problems that 
procedures based on the Polya posterior are admissible 
because they are stepwise Bayes. (See Ghosh and Meeden 
1997). In these stepwise Bayes arguments a finite sequence 
of disjoint subsets of the parameter space is selected, where 
the order is important. A different prior distribution is 
defmed on each of the subsets. First the Bayes procedure is 
found for each sample point that receives positive probabil­
ity under the first prior. Next the Bayes procedure is found 
for each sample point which receives positive probability 
under the second prior and which was not considered under 
the first prior. Then the third prior is considered and so on. 
For a particular sample point the value of the stepwise 
Bayes estimate is the value for the Bayes procedure for that 
sample point for the Bayes procedure identified in the step 
at which the sample point was considered. It is the stepwise 
Bayes nature of the Polya posterior that explains its some­
what paradoxical properties. Given a sample it behaves just 
like a proper Bayesian posterior but the collection of pos­
sible posteriors that arise from all possible samples comes 
from a family of priors not from a single prior. From the 
Bayesian point of view it is appropriate when one's prior 
beliefs about the population is that the units are roughly 
exchange but nothing more about them is known. The 
stepwise Bayesian nature of the Polya posterior also helps 
to explain why it yields 0.95 Bayesian credible intervals 
that in most cases behave approximately like 95% confi­
dence intervals. For more details and discussion on the the­
oretical properties of the Polya posterior see Ghosh and 
Meeden (1997). The Polya posterior is related to the 
Bayesian bootsttap of Rubin (1981). See also Lo (1988). 

3. SIMULATION FROM THE POLYA 
POSTERIOR 

The interval estimate of the population mean and point 
and interval estimates for other population quantities under 
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the Polya posterior usually cannot be found explicitly. One 
must use simulation to find these values approximately. 
This is done by simulating many independent completed 
copies of the entire population and calculating the value of 
the parameter of interest for each copy. One may do this in 
a sttaightforward manner but often a weU known approxi­
mation also works well. For simplicity assume the sample 
values y^ are all distinct and that the sampling fraction 
n{s)lN is smaU. For j = 1,..., n{s) let X. be the proportion 
of units in a complete simulated copy of tiie entire popu­
lation which take on tiie value y.. Then under the Polya 
posterior X = {X^,...,X,.) has approximately a Dirichlet 
distribution with a parameter vector of all ones, i.e., it is 
uniform on the n{s) -1 dimensional simplex where 
^"!fx.=i. 

We now assume that there is an auxiliary characteristic 
associated with each element in the population. For imit / let 
X. be the value of this auxiliary characteristic. The vector of 
these values for the auxiliary characteristic is denoted by x. 
The values of x are unknown but we assume their 
population mean is known. This is a common situation and 
either the regression estimator or the ratio estimator is often 
used in such cases. Let x^ denote the x values of the 
observed units in the sample. Now the Polya posterior can 
be adapted to use this additional information in the 
following way. When creating a simulated copy of the 
entire population using the values {{y^, x.):ies] one only 
uses completed copies whose simulated population mean of 
X is equal to the known mean of x. 

Simulating from a consttained Polya posterior is more 
difficuU than simulating from the unconsti^ed Polya. Let p̂ * 
denote the known population mean of x. Suppose 5 is a 
sample such that x contains values smaller and larger than p^. 
When this is the case an approximate solution to the 
problem of generating simulated copies from the Polya 
posterior distribution which satisfies the mean constraint is 
available. For j = I, ...,n{s) let X. be the proportion of 
units in the simulated copy of the population which have the 
value {y. ,x. ) . (Note the x^, need not be distinct.) If we 
ignore the cbnsttaint for a moment then, as we observed 
earlier, simulation from the Polya posterior is approxi­
mately equivalent to assuming a uniform distribution for 
X = {X., ...,X ,.) on the n(5) - 1 dimensional simplex 
where '£j^{ 's = ̂ - ^" order to satisfy tiie mean consttaint 
we must select A,'s at random from the set which is the 
intersection of the hyperplane y"l7^ x̂ . = p̂ * with the 
simplex for X. In general one cannot generate independent 
random samples from this distribution. One may, however, 
use the Mettopolis-Hasting algorithm to generate dependent 
simulated copies of the population from a convergent 
Markov chain. For more details on this algorithm see 
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller 
(1953) and Hastings (1970). 

Usmg the approximate solution based on the Duichlet 
distribution allows one to finesse a bothersome technical 

problem which has no practical significance. That is given 
the sample it is often impossible to get simulated copies of 
the population which satisfy the mean consttaint exactly. 
For example suppose A'̂  = 5 and our sample of size three 
yielded X values of 0, 0 and 10. Now if we know p = 4.5 
then under the Polya posterior it is impossible to generate 
simulated copies of the population since the only possible 
values for an x value of an unobserved unit is 0 or 10. This 
implies that given this sample under the Polya posterior the 
only possible values of p.̂ . are 2,4 and 6. In general even if 
we have generated a X which satisfies the consttaint the 
X.N's need not be integers and hence their need not be an 
actual copy of the population corresponding to X. But in 
real problems this should not matter very much. For one 
thing the mean consttaint will usually only be known 
approximately. Furthermore for larger sample sizes the 
approximate nature of the simulated copies is just not 
important. 

Recentiy Nelson and Meeden (1998) and Meeden and 
Nelson (2001) have considered a variety of problems where 
a constrained Polya posterior is applicable. When the 
population mean of x is known Meeden and Nelson (2001) 
presented simulations that demonsttated that the point and 
interval estimators of the consttained Polya posterior were 
nearly identical those of the regression estimator. Hence 
just as the regression estimator does, when estimating the 
population mean of y the consttained Polya posterior 
utilizes the information contained in knowing the popu­
lation mean of x. 

4. A SMALL AREA PROBLEM 

Consider again the small area estimation problem 
described in the inttoduction. A population is partitioned in 
two different ways. The first partitions the population into 
a domain of interest, D, and its complement D'. The 
second partitions it into K areas A^, ...,Aj^ where for each 
A: we assume that the smaU areas A i^V\D and /^^flD' are 
nonempty. Figure 1 gives a graphical representation of the 
population. A random sample is taken from the whole 
population and we wish to estimate p^ ^ (>•)> the mean of 
y for all the units belong to the small area Ai^r\D. For such 
problems one often assumes that for the auxiliary variable 
X all the means p^ ^ (x) and p^, ^ (x) are known. Here we 
make the weaker assumptions that p^ ^ (x) and p.^, ^ (x) 
are unknovm but not too different and that ^^(x), the 
mean of x for all the units belonging to D, is known. We 
also assume that for units belonging to ^^riZ) and 
A/^flD' the distribution ofy. depends only on x,. and does 

not depend on whether it belongs to D or D'. In terms of 
Figure 1 we are assuming that the mean of x for all the units 
in the population which belong to the first column is known 
and that within each row the distribution of the units across 
the the two columns is roughly the same. As we will soon 
see this is enough to produce estimators of ^^ ^ (_y) which 
unprove on the naive estimator. 
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D D' 

Figure 1. A population partitioned into a domain 
and its complement along with a second 
partition ofK small areas. 

Before explaining how this is done we need a bit more 
notation. Let Â ^ ^ be the number of imits in the population 
that belong to DCIAI^. We assume that the Â Q ^'s are 
known. For unit ilet t. = {l,k) if i e Dd A^^ and f. '= (0, k) 
if ieD'C\Ai^. Then given a sample 5 we must use 
{{y.,x.,t^):ies} to estimate p^n-Cj')- The consttained 
Polya posterior is now constmcted in two stages. In the first 
stage, using the members of the sample that fall into D and 
their (x^ t.) values, we create a completed copy of D which 
satisfies the known mean consttaint p^ (x). In the second 
stage we first find for the simulated copy of Z) the mean of 
the X values for all the units belonging to D fl .4 .̂ (Remem­
ber that this set contains both observed and simulated 
values.) Let p:^ ^(x) denote this mean. Next using the 
observed sample values from D^ A^. and D'fl A^. we 
create a completed copy of DV\ A^^ which satisfies the 
mean consttaint p^ ^^{x). By repeating this two staged 
process many times one can constmct simulated copies of 
DV\ Af^ which use the similarity of units within the small 
areas -^^flZ) and A^^^D' and the information from 
knowing Pj(x). 

To see how this approach could work in practice we 
present simulation results for some constiiicted populations. 
In all the cases K = 2 so there are just two areas and in 
Figure 1 there are just four cells or four small areas. The 
populations will be constmcted so that there are 250 units 
in each of the four cells. For each cell we first generate 250 
values for the auxiliary variable x by taking a random 
sample from a gamma distribution with some shape para­
meter and scale parameter one. Next within each area 
conditioned on the x values the y values are independent 
observations from normal distributions where the mean of 

y. I x̂ . depends on x. and where the the variance of y. | x. 
may be constant or in some cases depends on x.. 

In the first population, popl, the shape parameter of the 
gamma disttibution was four in both A^V\D and ^ , H D' 
and was six in A2^D and A2 H D ' . For units in A^y.\ x. 
was normal with mean 25 + Zx̂ . and variance 100. For units 
in A2 y^ IX. is normal with mean 25 + 3x. and variance 25. 

Note that popl was generated under a model which is 
consistent with the assumptions underlying the consttained 
Polya posterior described above. In fact our method should 
work very well for popl. This is because for each k the 
average values of the auxiliary variable in >4̂  fl £) and 
Af^^D' wUl be approximately equal. This is not necessary 
for our approach to work but if it does not work in this 
example then it is hard to imagine that it could work in 
practice. In two of the remaining populations for each k we 
wiU take the shape parameters generating the values of x in 
/4^ n £) and ^4^0/)' to be different. This is a more realistic 
assumption. We will also let the mean of y. | x. be a non­
linear function of x. and let the variance of y. | x. depend 
on X.. In all cases the form of the disttibution of y. | x̂ . will 
be tiie same across Aj^^D and A^^D' for each k. This is 
the most cmcial assumption. If this is not satisfied approxi­
mately then our method cannot work. 

In the second population, pop2, the shape parameters of 
the gamma distributions were eight in A^C\D, ten in 
A^ riZ)', six in A2^D and four in A2 H/)'. For units in 
A^y^\ X. was normal with mean 25 + 2x. and variance 9x.. 
For units in A2 y^ \ x^ was normal with mean 25 + lix. and 
variance 4x.. 

In the third population, pop3, the shape parameters of tiie 
gamma distributions were eight in A^^D and A^V\D', 
and six in /^j HZ) and A2^D'. For units in A^ y.\ x. was 
normal with mean 25 + 0.5(Xj. - 8)^ and variance 9Xj. For 
units in A2 j , | x. was normal with mean 25 + | x̂ . - 6 | and 
variance 4x̂ .. 

In the fourth population, pop4, the shape parameters of 
the gamma distributions were four in A^ClD, six in 
^, riD', six in ^2'^-^ ^^'^ eight in A2^D'. For units 
in A^ y.\ x. was normal with mean 25 + 0.5(x. - 4)^ and 
variance 9x.. For units in ^2 -̂ i I "'̂1 ^ ^ normal with mean 
25 + IX. - 6 I and variance 4x.. 

In the fifth population, pop5, the shape parameters for 
the gamma distributions were the same as those in pop2. 
For units in A^ y.\ x. was normal with mean 25 + 
0.5(x. - 9)^ and variance 9x.. For units in A2 y^ \ x. was 
normal with mean 25 + | x̂ . - 5 | '^ and variance 4x,.. 

For each of these five populations we took 500 random 
samples of size 80. For each sample we calculated the 
usual point estimates and 95% confidence uitervals for 
p^ ,, . and Po 2( ) using just the observations that fell into 
the small areas. We also found approximately the point 
estimate and 0.95 credible interval for the consttained Polya 
posterior. The resuUs are given in Table 1. In each case the 
consttained Polya posterior estimates were computed using 
500 simulated copies of the small area. Then our point 
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estimate is just the average of these 500 computed values 
and our 0.95 credible interval ranges from the 0.025 
quantile to the 0.975 quantile of this set. 

We see that the consttained Polya posterior yields 
significantiybetterpoint estimators in evety case but one, p^ 2iy) 
of pop5. Its intervals are also considerable shorter than the 
usual. There is some evidence that their frequency of cover­
age is a bit less than the usual approximate 95% normal 
lheotyintervals.InparticularthisistmeforthesmaUarea Aj^D 
in the fifth population. 

The results in Table 1 are for the small area means. In 
Table 2 we give similar results for the small area medians. 
We compared our estimates to the sample median of the set 
of the sampled observations that fell into the small area and 
the usual confidence interval for tiie median due to 
Woodmff (1952). Compared to the usual estimators the 
performance of the consttained Polya posterior estunators 
for the small area medians is even better than it was for the 
small area means. In every case its point estimators are 
better than the sample median. Its interval estimators are 
always shorter than Woodmffs and for most cases their 
frequency of coverage seems to be quite close to the 
nominal 0.95. 

Table 1 
The average value and the average absolute error for the usual 
naive small area estimator and the constrained Polya posterior 

estimator (cstpp) for the small area means. Also given are the length 
and relative frequency of coverage for their nominal 0.95 intervals 
for 500 random samples of size 80 trom five diiferent populations 

Pop 

popl 

pop2 

pop.3 

pop4 

pop5 

Small 
Area 

AJHD 

A.^r\D 

A^HD 

A^r\D 

A^f^D 

A^HD 

A^^\D 

A^HD 

A^HD 

A^HD 

Method 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

Ave 
value 

33.11 

33.20 

43.03 

43.13 

40.39 

40.29 

42.13 

41.97 

28.57 

28.90 

26.71 

26.83 

27.73 

27.64 

27.03 

27.03 

29.25 

29.30 

27.73 

28.82 

Ave 
aberr 

1.84 

1.30 

1.47 

1.03 

1.79 

1.20 

1.48 

1.16 

1.97 

1.47 

1.01 

0.70 

1.27 

0.81 

0.97 

0.65 

1.74 

1.26 

1.08 

1,28 

Ave 
lenght 

9.10 

6.37 

7.78 

5,15 

8.69 

5,62 

7,50 

5.16 

9.85 

6,66 

5,08 

3.24 

6.57 

4.09 

5.33 

3.32 

9.31 

6.16 

5.85 

4.40 

Freq. of 
coverage 

0.936 

0.934 

0.946 

0,940 

0.932 

0,944 

0,944 

0,912 

0.936 

0.898 

0.940 

0.930 

0.960 

0.940 

0.952 

0.934 

0.942 

0.930 

0.954 

0.850 

Table 2 
The average value and the average absolute error for the usual 

naive small area estimator and the constrained Polya posterior 
estimator for the small area medians. Also given are the length and 
relative fi-equency of coverage for their nominal 0.95 intervals for 500 

random samples of size 80 from five different populations 

Pop Small 
Area Method 

Ave 
value 

Ave 
aberr 

Ave 
lenght 

i'req. of 
coverage 

popl 

pop2 

pop3 

pop4 

pop5 

A^HD 

A^f^D 

A^HD 

A^f\D 

A^HD 

/ ( J O D 

A^riD 

^2 n o 

A^^\D 

A^f\D 

usual 
cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

usual 

cstpp 

33.88 

33.25 

42.84 

42,42 

38,94 

38,53 

40,99 

40,33 

27,64 

27,73 

27,03 

26.59 

27.14 

27.05 

26.84 

26.81 

29.10 

28.89 

27.03 

27.87 

2.01 

1.44 

1.72 

1,35 

1,82 

1,41 

1,77 

1,38 

1,73 

1,24 

1,15 

0,70 

1,27 

0,95 

1.07 

0.78 

2.06 

1.51 

1.14 

0.97 

11.48 

7.81 

9.94 

6.92 

9.81 

7.47 

8.75 

6.36 

9.52 

6.46 

6.26 

3.76 

7.00 

5.37 

5.99 

4,32 

11,01 

8,28 

5,98 

4.46 

0.944 

0.930 

0.950 

0,944 

0.940 

0.936 

0.970 

0,914 

0.952 

0.958 

0.954 

0,938 

0.962 

0,966 

0,960 

0,954 

0.956 

0.944 

0.952 

0,900 

5. CONCLUDING REMARKS 

Here we have presented a new method of "borrowing 
strength" when estimating parameters of a small area of a 
population. It makes weaker assumptions than those made 
by the usual approaches to such problems. It is an objective 
or norunformative Bayesian approach which uses no more 
prior information than is typically assumed by a frequentist. 
Simulations indicate that it should be applicable in a variety 
of situations and should work well especially for some of 
the problems which roughly satisfy the usual linear model 
type assumptions, often assumed in small area estimation. 
It has the advantage of not being restricted to estimating 
small area means but can estimate other parameters as well. 
Here we assumed that a certain mean of an auxiliary 
variable was knovra. This approach can be extended to 
when other parameters of an auxiliary variable are known, 
like the median. Also it should be possible to extend this 
method to situations where prior information is available for 
more than one auxiliary variable. In summary we believe 
that this is flexible approach which can yield point and 
interval estimators with good frequentist properties for a 
variety of problems. 
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Model-Based Unemployment Rate Estimation for the Canadian Labour 
Force Survey: A Hierarchical Bayes Approach 

YONG YOU, J.N.K. RAO and JACK GAMBINO' 

ABSTRACT 

The Canadian Labour Force Survey (LPS) produces monthly direct estimates of the unemployment rate at national and 
provincial levels. The LPS also releases unemployment estimates for sub-provincial areas such as Census Metropolitan 
Areas (CMAs) and Census Agglomerations (CAs). However, for some sub-provincial areas, the direct estimates are not very 
reliable since the sample size in some areas is quite small. In this paper, a cross-sectional and time-series model is used to 
borrow strength across areas and time periods to produce model-based unemployment rate estimates for CMAs and CAs. 
This model is a generalization of a widely used cross-sectional model in small area estimation and includes a random walk 
or AR(I) model for the random time component. Monthly Employment Insurance (EI) beneficiary data at the CM A or CA 
level are used as auxiliary covariates in the model. A hierarchical Bayes (HB) approach is employed and the Gibbs sampler 
is used to generate samples Irom the joint posterior distribution. Rao-BIackwellized estimators are obtained for the posterior 
means and posterior variances of the CMA/CA-level unemployment rates. The HB method smooths the survey estimates 
and leads to substantial reduction in standard errors. Bayesian model fitting is also investigated based on posterior predictive 
distributions. 

KEY WORDS: Gibbs sampling; Hierarchical Bayes; Labour Force Survey; Small area estimation; Unemployment rate. 

1. INTRODUCTION 

The unemployment rate is generally viewed as a key 
indicator of economic performance. In Canada, although 
provincial and national estimates get the most media atten­
tion, subprovmcial estimates of the unemployment rate are 
also very important. They are used by the Employment 
Insurance (EI) program to determine the rules used to 
administer the program. In addition, the unemployment 
rates for Census Meti-opolitan Areas (CMAs, i.e., cities 
with population more than 100,000) and Census Agglom­
erations (CAs, i.e., other urban centres) receive close 
scmtiny at local levels. However, many CAs do not have a 
large enough sample to produce adequate direct estimates. 
Our objective in this paper is to obtain model-based esti­
mators that lead to improvement over the direct estimator 
which is based solely on the sample falling in a given CMA 
or CA in a given month. For conveiuence, since CMAs are 
also CAs, we will refer to both CMAs and CAs as CAs. 

In Canada, unemployment rates are produced by the 
Labour Force Survey (LFS). The LFS is a monthly survey 
of 53,000 households selected using a stratified, multistage 
design. Each month, one-sixth of the sample is replaced. 
Thus five-sixths of the sample is common between two 
consecutive months. This sample overlap induces correla­
tions which can be exploited to produce better estimates by 
any method which borrows strength across time. For a 
detailed description of the LFS design, see Gambino, Singh, 
Dufour, Kennedy and Lindeyer (1998). 

Traditional small area estimators borrow strength either 
from similar small areas or from the same area across time. 

but not both. In recent years, several approaches to 
borrowing sttength simultaneously across both space and 
time have been developed. Estimators based on the 
approach developed by Rao and Yu (1994), such as those 
in Ghosh, Nangia and Kim (1996), Datta, Lahiri, Maiti and 
Lu (1999) and in this paper, successfully exploit the two 
dimensions simultaneously to produce improved estimates 
witii desirable properties for small areas. Datta et al. (1999) 
applied their model to long time series (7= 48 months) data 
across small areas from the U.S. Current Population 
Survey. In this paper, we apply a similar model to the 
Canadian LFS. Unlike Datta et al. (1999), we have used 
short time series data across small areas. Therefore, our 
model does not contain seasonal parameters. This reduces 
substantially the number of parameters that need to be 
estimated; details on modelling and analysis are given in 
section 2 and section 4. Despite this simplification, we 
obtain both an adequate model fit and large reductions in 
the coefficients of variation (CVs) of the small area 
estimators of the unemployment rate. The CV reduction is 
due in part to our approach to computing covariance 
matrices, which uses smoothed CVs and lag correlations to 
obtain smoothed estimates of the sampling covariance 
mattices of the direct LFS estimators. 

In section 2, we present the model, which borrows 
sttength across small areas and time periods. In section 3, 
the model is placed in a hierarchical Bayes (HB) frame­
work. The use of Gibbs sampling to generate samples from 
the joint posterior disttibution is described and the corres­
ponding HB estimators are obtained. The HB method is 
applied to the LFS data in section 4 to produce 

Yong You, Jack Gambino, Household Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, Kl A 0T6; J.N.K. Rao, School of Mathematics 
and Statistics, Carleton University, Ottawa, Ontario, Canada, KIS 5B6. 
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unemployment rates for CAs. Specifically, subsections 4.2 
and 4.3 present model selection and model fit analysis. 
Subsection 4.4 presents model-based estimates for the small 
area (CA) unemployment rates and the CV comparisons. 
Finally some concluding remarks are given m section 5. 

2. CROSS-SECTIONAL AND TIME SERIES 
MODELS 

Let y.^ denote the direct LFS estimate of 0̂ .̂ , the tme un­
employment rate of the i-th CA (smaU area) at tune t, for 
i = l,...,m, t = l, ...,T, where m is tiie total number of CAs 
and r i s the (current) time of interest. We assume that 

= 0„ + e,„ I = l,...,m, t = l,...,T, yu = «,7 + (1) 

where ê .̂ 's are sampUng errors. Let J',-= (j',,, •••,:i',7-)', 
9,. = (e,.j,...,0,.j.)', and e. = {e.^,...,e.j)'. Then e. is a vector 
of sampling errors for tUe i-th CA. In the LFS design, the 
CAs are tteated as sttata. Thus the sampling vectors e. are 
uncorrelated between areas (CAs). Because of the LFS 
sample rotation pattern, there is substantial sample overlap 
over short time periods within each area. As a result, the 
correlation between e., and e^^ft^s) has to be taken uito 
account. It is customary to assume that e. follows a multi­
variate normal distribution with mean vector 0 and 
covariance matiix I,., i.e., e. ~ N{0, E.). Using (1), we have 

y. ~ N{Q.,i:.), i = l,...,m. (2) 

Thus y. is design-unbiased for 6̂ .. The variance- covariance 
mattix Y,. in model (2) is assumed to be known. The 
assumption of normality and known I . in model (2) is the 
customary practice in model-based small area estimation 
(see, for example. Fay and Herriot 1979; Ghosh and Rao 
1994; Datta et al. 1999; Rao 1999). Ui tiiis paper, we follow 
the customary approach and treat Ŝ . as known. Specifica­
tion of S. may not be easy in practice. We use a smoothed 
estimator of I., in the model, and then tteat it as the tme I,.. 
More details on constmcting a smoothed estimator of I., in 
the context of the LFS are given in section 4. Pfeffermann, 
Feder and Signorelli (1998) proposed a simple method of 
estimating tiie autocorrelations of sampling errors for 
rotating-panel designs, such as the Canadian LFS. It would 
be useful to study the feasibility of this approach in our 
context. 

To borrow sttength across small areas and time periods, 
we model the trae unemployment rate Q.^ by a linear 
regression model with random effects through auxiliary 
variables x.^. We assume that 

e., = x/, P + V. + M,.,, / = 1,..., m,t = l,..., T, (3) 

where x.^ = {x.^,..., JĈ , ) ' is the vector of area level auxi­
liary data for the i-th CA at time ;; P is a vector of regres­
sion parameters of length p; v. is a random area effect with 

v.~ iid N{0,o^); u.^ is a random time component. For a 
given area /, Datta et al. (1999) assumed that u.^ follows a 
random walk process over time period t = I,..., T, that is, 

", , , - ! + ^il' ' l,...,m,/ = 2,..., r, (4) 

where e... N{0,al). Then cov(M.,, u.^) = mm{t,s) o^. 
Also {v.}, {e .̂J and {e.} are assumed to be mutually inde­
pendent. The regression parameter P and the variance 
components o,, and o^ are unknown in the model. Rao and 
Yu (1994) used a stationary autoregressive model, AR(1), 
for u.^, that is, u.^ = P",- ,.i + e,„ and | p | < 1 • Datta et al. 
(1999) included month and year effects as seasonal effects 
for 0̂ .̂  in (3) using a long time series ( r = 48 months) m 
their analysis. In our modelling, we intend to study the 
effects of borrowing sttength across areas and over time 
using short time series data mstead of long time series data. 
In particular, based on the Canadian LFS design's six-
month rotation cycle, we used only 6 months of data for 
smoothing; see section 4 for details. Thus the linking model 
(3) is simpler than Datta et al. (1999)'s model. This simpli­
fication is likely to reduce the mstability in the smoothed 
covariance matrix I... 

Arranging the data {y.^} as a vector >' = (>',', —,y^)' with 
y, = (>',i. —'yiT)'' we can write models (2), (3) and (4) in 
matrix form as 

y. = X.^ + lj.v. + u. + e., / = ! , . -,m. (5) 

where X.' ={x.^, ...,x.j.), u.' ={u.^,...,u.j.), and 1^ is a 
T X I vector of 1 's. Model (5) is a special case of a general 
linear mixed effects model. It also extends the well-knovm 
Fay-Herriot model (Fay and Herriot 1979) by borrowing 
sttength across both areas and time. 

For comparison, we also considered die Fay-Herriot 
model for the time points t = 1,..., T in our data analysis. 
The model at time point t is given as 

yu = Q,7 + «,/' i = '^'--'m. 

and 

% = ,̂;P, + v = i. .m. 

(6) 

(7) 

where the sampling errors e.^ ~ ind A^(0, o„) and the area 
random effects v.^ ~ iid A'̂ (0, o ,̂,) for each time point t and 
independent of v.,„ t' * t. The sampling variances o,.. are 
assumed to be known (smoothed estimates) and o^, is 
unknown. The Fay-Herriot model combines cross-sectional 
information at each t for estimating 0,.,, but does not 
borrow sttength over the past time periods. 

We are interested in obtainmg a model-based estimator 
of 0„, in particular, for the current time t = T. Datta, Lahiri 
and'Maiti (2002) and You (1999) obtamed two-stage 
estimators for 0.̂ . and MSE approximations for the estima­
tors through the empirical best linear unbiased prediction 
(EBLUP) approach. Ui tiiis paper, we stiidy both AR(I) and 
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random walk models on M .̂̂ 'S, under a complete HB 
approach using the Gibbs sampling method. 

3. HIERARCHICAL BAYES ANALYSIS 

In this section, we apply the hierarchical Bayes approach 
to the cross-sectional and time series model given by (2), 
(3) and (4) and tiie Fay-Herriot model given by (6) and (7). 
Estimates of the posterior mean and posterior variance of 
the small area means, 0̂ .̂ , are obtained using the Gibbs 
sampling method. 

3.1 The Hierarchical Bayes Model 

We now present the cross-sectional and time series 
model in a hierarchical Bayes framework as follows: 

- Conditional on the parameters 0̂ . = (0.,,..., 0.^.)', 
[y.\Q,]~indN{Q.,i:.); 

- Conditional on the parameters p, u.^ and 
"v. [9„ I P> ",7.0v] ~ ind N{x.', p + pw.,, a j ; 

Conditional on the parameters 
°s' ["/rl "M-I '"el ~ ind A^(P",•,.,, o^); 

«M-i and 

2 2 

Marginally P, â  and ô  are mutually independent with 
priors given as P « 1, o^~/G(a,, b^), and ô  ~ IG{a2, ^j), 
where IG denotes an inverted gamma disttibution and 
a,, 6|, Oj, ̂ 2 are known positive constants and usually set 
to be very small to reflect our vague knowledge about o„ 
and Og. For the random waUc model, we take p = 1 and for 
the AR(1) model, | p | < 1 and p is assumed to be knovwi. 

We are interested in estimating 0., and in particular, the 
current unemployment rate 0.j, In the HB analysis, 0,.̂ . is 
estimated by its posterior mean E (0,.j.|>') and the 
uncertainty associated with the estimator is measured by the 
posterior variance V {Q^j.\y). We use Gibbs sampling 
(Gelfand and Smith 1990; Gelman and Rubin 1992) to 
obtain the posterior mean and the posterior variance of 0̂ .̂ . 

Similarly, tiie Fay-Herriot model (6)-(7) can be 
expressed as: 

- Conditional on the parameters 
9„.[j„|e„]~indAr(0,,„a^,); 

- Conditional on the parameters P,, and 
o',[0,,|P„o^,]~indAr(^.;p,,o^,); 

Marginally p̂  and o ,̂ are mutually independent with 
priors given as P^« 1, o„ ~ /(?(fl,, b^). 

3.2 Gibbs Sampling Method 

The Gibbs sampling method is an iterative Markov chain 
Monte Carlo sampling method to simulate samples from a 
joint disttibution of random variables by sampling from low 

dimensional densities and to make inferences about the 
joint and marginal distributions (Gelfand and Smith 1990). 
The most prominent application is for inference within a 
Bayesian framework. In Bayesian mference one is inter­
ested in the posterior distribution of the parameters. 
Assume that >',.|0 has conditional density /(>',. |0) for 
i = l,...,n and that the prior information about 
0 =(0,,..., 0^)' is summarized by a prior density 7t(0). Let 
71(0 I y) denote the posterior density of 0 given the data 
y = {y^,...,y„)'. It may be difficuU to sample from K{Q\y) 
directiy in practice due to the high dimensional integration 
with respect to 0. However, one can use the Gibbs sampler 
to constiiict a Markov cham {0<«> = {Q^\ ...,Qf^)'} witii 
7i(0 I j ) as the limiting disttibution. For illusttation, let 0 = 
(OpOj)'. Starting with an initial set of values 0̂ ''̂  = 
(0f, o f ) ' , we generate 0*̂ ) = (Of, o f ) ' by sampling 0̂ ,̂^ 
from 7i(0,1 Q'f'^Ky) and 0̂2*''̂  from ^(Ojj {Q\^\y). Under 
certain regularity conditions, 0̂ ^̂  = {6] , Oj)'converges in 
distribution to •K{Q\y) as g-oo. Marginal inferences about 
't(0,|j') can be based on the marginal samples 
{Q]''"^; *=l,2,...}forlargeg. 

For the hierarchical Bayes models in section 3.1, to 
implement the Gibbs sampler we need to generate samples 
from the full conditional disttibutions of the parameters 
P,o^ and Og, u.^ and 0̂ .. These conditional distributions are 
given m Appendix A. 1. All the full conditional distiibutions 
in the Appendix are standard normal or inverted gamma 
disttibutions that can be easily sampled. 

3.3 Posterior Estimation 

To implement Gibbs sampling, we follow the recommen­
dation of Gelman and Rubin (1992) and independently run 
L{L>2) parallel chains, each of length 2d. The first d 
iterations of each chain are deleted. After d iterations, all 
the subsequent iterates are retained for calculating the 
posterior means and posterior variances, as well as for 
monitoring the convergence of the Gibbs sampler. The 
convergence monitoring is discussed in section 4. 

We use the Rao-Blackwellization approach to obtain 
estimators for the posterior mean and the posterior variance 
of interest. The Rao-Blackwellization can substantially 
reduce the simulation errors compared to naive estimates 
based on the simulated samples (Gelfand and Smith 1991; 
You and Rao 2000). For the cross-sectional and time series 
model, the Rao-Blackwellized estimates of E {Q. | y) and 
V{Q. I y) are obtained as 

L Id 

E{^i\y) = Y Y 
l-l k-dA 

(Ikh [(cr*'/,.i:')x(i:V,+0"\^,p("^«r))]/(l<^) 

and 
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L 2d 

Y Y 
l-l k-d*l 

V{%\y) = Y Y {of''lr-Y-i')l{Ld) 

L 2d 

^Y Y 
l-l k=d*l 

-2m T ,v-K-u •\('k)^,M\ [{o-r'ir-i.:v-{Yi'yi,-<"'\^ir'-ur))] 
x[(i:'>;,.o;n^.p(*Ut.r^))' 

-2(/A) , x(or'"/,.z:V]'/(irf) 

Y Y (of''ir^^;Y 
l-l k-d*l 

X 

L 2d 

Y Y i^fX^^-Y 
l-l k-d*l 

/{Ldf, 

v^here {p('*>, o^ '̂*\ M/'* ;̂ k = d^l,.... 2d, 1 = 1, ...,L] ait the 
samples generated from the Gibbs sampler and Ij is the 
identity mattix of order T. Thus by using Gibbs sampling, 
we can estimate the current time small area mean 0.̂ . and 
the small area means 0,., for the past time periods 
/ = 1,..., T-l simultaneously for each area. The posterior 
covariance matrix estimate V {Q. | y) also provides an 
estimate of the posterior covariance of 0̂ ., and 0_.̂, for 
t i= s = 1,..., T. 

Under the Fay-Herriot model, letting y.j. = {y^ j., —,y„T)' 
denote the current time cross-sectional data and using the 
conditional distributions given in Appendix A.2, we can 
similarly obtain the Rao-Blackwellized estimators of 
E{Q.^\yj:)andV{Q.^\y^): 

L 2d 

k^Ayr) = T, Y 
l-l k-d+l 

and 

[(l-rr)yiT-''iT^iTrV(Ld) 

L 2d 

V{^iT\yr) = T. Y [o?,(l-/-,f)]/(LcO 
l-l k-d*l 

/=1 k-d*l 

L 2d 

-{Y Y [(i-.r)>',T-/f-,Tpf^]}^/(^^)^ 
/=] k-d*l 

A"') ,2W> where r>^" = ay{o"j. + K )• Note that E{Q.j.\yj) and 
F(0.j.|>'y.) use only the cross-sectional data at / = T. As a 
resuU, E{Q.j\yj) wiU be less efficient than the HB esti­
mator E{Q.j.\yj) based on all the data; see section 4. 

4. APPLICATION TO THE LFS 

4.1 Data Description and Implementation 

We used tiie 1999 LFS unemployment estimates, y.^, in 
our HB analysis. There are 64 CAs across Canada. 
Employment Insurance (El) beneficiary rates were used as 
auxiliary data, x.^, in tiie model. But the EI beneficiary data 
were available for only 62 CAs. So we included only those 
m = 62 CAs in the model. Within each CA, we considered 
six consecutive monthly estimates y.^ from January 1999 to 
June 1999, so that T = 6 and the parameter of interest 0̂ .̂ . 
is the tme unemployment rate for area / in June, 1999. The 
reason that we only used six months of data is that the LFS 
sample rotation is based on a six-month cycle. Each month, 
one sixth of the LFS sample is replaced. Thus after six 
months, the correlation between estimates is very weak. The 
one-month lag correlation coefficient is about 0.48, and the 
lag correlation coefficients decrease as the lag increases. 
Figure 1 shows the estimated (smoothed) lag correlation 
coefficients for the LFS unemployment rate estimates. It is 
clear that after 6 months tiie lag correlation coefficients are 
aU below 0.1. 

Unemployment Rate Monthly 
Estimate 

Lag Correlation Coefficients 
0.6 

10 11 

Lag-1 to Lag-11 

Figure 1. LFS unemployment rate lag correlation coefficients 

To obtain a smootUed estimate of the sampling cova­
riance matrix S; used in the model, we first computed the 
average coefficient of variation (CV) for each CA over time 
(12 months in this study), denoted as CV, and the average 
lag correlation coefficients over time and all CAs. By using 
these smoothed CVs and lag cprrelation coefficients, we 
obtained a smoothed estimate t. with diagonal elements 
a,.,, = {CV-^y^, and off-diagonal elements equal to 
^its = Pir-s| (^itt^issy^ ^^ tteated t. as the tine E,., where 
p., 1̂ is the average lag correlation coefficient of lag 
\t-s\. Our study found that using the smoothed estimate 
of E. in the model can significantly improve the estimates 
in terms of CV reduction. 

To implement the Gibbs sampling, we considered 1=10 
parallel mns, each of length 2c? = 2,000. The first 
d = 1,000 "bum-in" iterations were deleted. To monitor the 
convergence of the Gibbs sampler, for the parameters of 
interest 0.̂ .(1 = 1,..., m), we followed the method of 
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Gelman and Rubin (1992) involving the following steps: 
For each Q.j, let Qjy denote the k-th simulated value in the 
l-th chain, k = d + l,...,2d,l = l, ...,L. In the first step, 
compute the overall mean 

2d 

s,r = Y Y C'iLd) 
l-l k-d+l 

and the within sequence mean 

5«= Y C/d,l=l,...,L. 
k-d*l 

Then compute B.j.ld, the variance between the L sequence 
means as B.j.ld = ^,^, (0^.^-0^^)^/(1-1). In the second 
step, calculate W.j., the average of the L within sequence 
variances, 5,„, each based on {d-l) degrees of freedom; 
that is, fVjj- = Yi-i^iTi^^- ^ *î ^ diird step, calculate 
4 = (d-l) W.j.ld\B..^ Id and V.^. = 4 + ^,T /(^^)- I" the 
last step, find the potential scale reduction factors 
R..J. = V.jl W.J. (/ = 1,..., m). If these potential scale reduc­
tion factors are near 1 for all of the scalar estimands 0.̂ . of 
interest, then this suggests that the desired convergence is 
achieved by the Gibbs sampler. In our stiady, the Gibbs 
sampler converged very well in terms of the values of R.^.. 

4.2 Model Selection 

In this section, we compare the proposed model with the 
Rao and Yu (1994) AR(1) time component model. A 
number of methods for model comparison in a Bayesian 
framework have been developed, and several are unple-
mented in the well-known BUGS program (see 
Spiegelhalter, Thomas, Best and GiUcs 1996). In practice, 
when there is more than one model of interest, Bayesian 
model selection or model choice can be made on the basis 
of a Bayes factor, which is difficulty to calculate directly. 
Altemative strategies for model selection involve the 
predictive likelihood and predictive log-likelihood. In parti­
cular, Dempster (1974) suggested exanuning the posterior 
distribution of the log-likelihood of the observed data. The 
quantities of the posterior distribution of the log-likelihood 
may be obtained from the predictive posterior distribution 
of the deviance, -21og/(^ 10). The posterior deviance is 
sttaightforward to estimate using tiie Gibbs sampling output 
since it is the expectation of -21og/(j' | 0) over the poste­
rior n{Q\y). For non-hierarchical models, the minimum 
feasible value of -21og/(3^ | 0) is the traditional deviance 
statistic. For hierarchical models, the minimum of the 
deviance is likely to be very poorly estimated by the sample 
minimum, and the mean is a more reasonable measure 
(Karim and Zeger 1992; GiUcs, Wang, Yvonnet and 
Coursagt 1993). For the AR(I) time component model, we 
considered two choices of p: p=0.75 and p =0.5. We 
calculated the log-likelihood at each iteration of the Gibbs 
sampler. Then we obtained the mean of the predictive 
posterior deviance: 1311.5 for the proposed model, 1372.8 
for the AR(1) with p = 0.5 and 1358.3 for the AR(1) with 
p = 0.75. Thus, the deviance measure suggests that the 

random walk model on M.̂ 'S provides a slightiy better fit to 
the data than the AR(1) model. 

For model comparison, we also computed the divergence 
measure of Laud and Ibrahim (1995) based on the posterior 
predictive distribution. Let 0* represent a draw from the 
posterior distribution of 0 given y, and let y * represent a 
draw from f{y\Q*). Then, marginally y' isa sample from 
the posterior predictive distribution f{y\yg^^), where y^^^^ 
represents the observed data. The expected divergence 
measure of Laud and Ibrahim (1995) is given by 
'^(y^'yobs) = E{k-\\y' -Ĵ „b311̂  I y^J, where A:is the dimen­
sion of y^^^. Between two models, we prefer a model tiiat 
yields a smaller value of this measure. As in Datta, Day and 
Maiti (1998) and Datta et al. (1999), we approximated the 
divergence measure ti{y*,y^^) by using the simulated 
samples from the posterior predictive distribution. Using 
the Gibbs sampling output, we obtained a divergence 
measure of 13.36 for the proposed model, 14.62 for the 
AR(1) witii p = 0.5 and 14.52 for tiie AR(1) with p =0.75. 
Thus the divergence measure also suggests a slightiy better 
fit of the random walk model compared to the AR(1) 
model. 

It should be mentioned that the posterior deviance and 
the divergence measure are mtended for comparing two or 
more altemative models. After selecting a model, we need 
to check if the selected model fits the data, which we turn 
to next. 

4.3 Test of Model Fit 

To check the overall fit of the proposed model, we used 
the method of posterior predictive p values (Meng 1994; 
Gelman, Carlin, Stern and Rubin 1995). In this approach, 
simulated values of a suitable discrepancy measure are 
generated from the posterior predictive distribution and 
then compared to the corresponding measure for the 
observed data. More precisely, let T{y,Q) be a discrepancy 
measure depending on the data y and the parameter 0. The 
posterior predictive/? value is defined as 

p =proh{T{y%Q)>T{y^,^,Q)\y^J, 

where y' isa sample from the posterior predictive disttibu­
tion f{y\yg^J^). Note that the probability is with respect to 
the posterior distribution of 0 given the observed data. This 
is a natural extension of the usual p value in a Bayesian 
context. If a model fits the observed data, then the two 
values of the discrepancy measure are similar. In other 
words, if the given model adequately fits the observed data, 
then T(y^^^^, 0), should be near the central part of the histo­
gram of the T{y ',0) values if _v' is generated repeatedly 
from the posterior predictive distribution. Consequentiy, tiie 
posterior predictive/? value is expected to be near 0.5 if the 
model adequately fits the data. Extteme/? values (near 0 or 
1) suggest poor fit. The p value is self-contained in the 
sense that it is computed without regard to an altemative 
model. 

Computing the p value is relatively easy using the 
simulated values of 0* from the Gibbs sampler. For each 
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simulated value 0*, we can simulate y * from the model 
and compute T{y*,Q*) and T{yg^^^,Q*). Then the/? value is 
approximated by tiie proportion of times T{y *, 0') exceeds 
r(_y^^^,0'). For the cross-sectional and time series model, 
the discrepancy measure used for overall fit is given by 
d{y,Q) = fj^^{y.-Q)''L:\y.-Q). Dattaetal. (1999)used 
the same discrepancy measure. We computed thep value by 
combining the simulated 0' and y' from all 10 parallel 
runs. We obtained ap value equal to 0.615. Thus we have 
no indication of lack of overall model fit for the random 
walk time series and cross-sectional model. 

For the Fay-Herriot model that uses only the current 
cross-sectional data, an approximate discrepancy measure 
is given by 

m 

dpH{yr,^r) = E (jt'ff-M^/ofr. 
i-l 

In this case, the estimated where 0^ = (0jy.,..., 0^ .̂)'. m mis case, tne estimated/> 
value is about 0.587, indicating a good fit of the Fay-Herriot 
model for the current cross-sectional data only. However, 
the associated HB estimates are substantially less efficient 
compared to the HB estimates based on the proposed cross-
sectional and time series model that borrows sttength across 
regions and over time simultaneously; see Figures 3 and 4. 

A limitation of tUe posterior predictive/? value is that it 
makes "double use" of the observed data, j ^ ^ ^ , first to 
generate samples from f{y\yg^,^) and then to compute the 
/? value. This double use of the data can induce unnatural 
behaviour, as demonsttated by Bayarri and Berger (2000). 
To avoid double use of the data, Bayarri and Berger (2000) 
proposed two altemative /?-measures, named the partial 
posterior predictive/? value and the conditional predictive 
p value. These measures, however, seem to be more 
difficult to implement than the posterior predictive/? value, 
especially for a complex model like the time series and 
cross-sectional small area model. 

4.4 Estimation 

We now obtain the posterior estimates of the unemploy­
ment rates under the random walk time series and cross-
sectional model given by (3) and (4). We used the Rao-
Blackwellized estimators, given in section 3.3, to obtain 
estimates for the posterior mean and the posterior variance 
of Q.J. We denote these estunates by HBl. To study the 
Unpact of using a smoothed estimate of the sampling covari­
ance matrix I.., we also used the direct survey estimate of "L. 
in the model. We denote the estimates obtained in this case 
by HB2. To study the effect of borrowing strength over 
time, we also obtained the HB estimates of 0̂ .̂ . under the 
Fay-Herriot model based only on the current cross-sectional 
data, denoted by HB3. Figure 2 displays the LFS direct 
estimates and the three HB estimates of the June 1999 
unemployment rates for the 62 CAs across Canada. The 62 
CAs appear in the order of population size with the smallest 
CA (Dawson Creek, BC, population is 10,107) on the left 
and the largest CA (Toronto, Ont., population is 3,746,123) 

on the right. For the point estimates, the Fay-Herriot model 
(HB3) tends to shrink the estimates towards the average of 
the unemployment rates, which leads to estimates that are 
too smooth in general. HB2 has more variation and tends to 
have more extteme values than HBl, since HB2 uses the 
du-ect estimates of Z. subject to sampling errors. HB 1 leads 
to moderate smoothing of the direct LFS estimates. For the 
CAs with large population sizes and therefore large sample 
sizes, the direct estimates and the HB estimates are very 
close to each other; for smaller CAs, the direct and HB esti­
mates differ substantially for some regions. 

Comparison of Estimates (June 1999) 

CMA/CAs By Population Size 

•HBl -HB2 -• -HB3 -Direct 

Figure 2. Comparison of direct and HB estimates 

Figure 3 displays the coefficients of variation (CV) of the 
estimates. The CV of the HB estimate is taken as the ratio 
of the square root of the posterior variance and the posterior 
mean. It is clear from Figure 3 that the direct estimate has 
tiie largest CV and HBl has the smallest CV. HBl has 
smaller CV tiian HB2 for all CAs, and HB2 has smaller CV 
than HB3 for aU CAs except two relatively small CAs. The 
efficiency gain of the HB estimates is obvious, particularly 
for the CAs with smaller population sizes. 

Comparison of CVs (June 1999) 

CMA/CAs By Population Size 

•HBl - H B 2 - » - H B 3 - ^ Direct 

Figure 3. Comparison of CVs 

Figure 4 shows the percent CV reduction over the direct 
survey estimates for HBl, HB2 and HB3. The percent CV 
reduction is defined as the difference of tiie LFS CV and the 
HB CV relative to the LFS CV and is expressed as a 
percentage. It is clear that HBl achieves the largest CV 
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reduction and that HB3 has the smallest reduction. The 
average percent reduction in CVs over the du-ect LFS 
estimates for tiie Fay-Herriot model (HB3) is 21%, for HB2 
is 40%, and for HBl is 62%. Also the CV reduction for 
smaller CAs is more significant than for larger CAs. As 
population size increases, the CV reduction tends to 
decrease. 

Comparison of CV Reduction (June 1999) 

CMA/CAs By Population Size 

•HBl •HB2 •HB3 

Figure 4. Comparison of CV reduction 

In summary, we conclude the following: (1) The 
model-based HB estimates improve the direct LFS esti­
mates. In particular, the cross-sectional and random walk 
time series model (HBl) improves the LFS estimates consi­
derably in terms of CV reduction. (2) The cross- sectional 
and random waUc time series model is more effective than 
the Fay-Herriot model. (3) Use of smootiied estimate of the 
sampling variance-covariance mattix S. is very effective. 

5. CONCLUDING REMARKS 

In this paper we have presented a hierarchical Bayes 
cross-sectional and time series model to obtain model-based 
estimates of unemployment rates for CAs across Canada 
using LFS data. The model borrows sttength across areas 
and over time periods simultaneously. Our analysis has 
shown that this model with a random walk process on the 
random time series components fits the data quite well. The 
hierarchical Bayes estimates, based on tiiis model, improve 
the direct survey estimates significantly in terms of CV, 
especially for CAs with small population. However, these 
CVs are based on the assumption that the sampUng variance 
covariance matrices 1,. in the model are known. As a result, 
the uncertainty associated with the estimation of 1,. is 
ignored. 

We also considered the well-known Fay-Herriot model 
that combines cross-sectional information only, using the 
data at a specific time point, for example, at the current time 
of interest T. We found that the CVs under the Fay-Herriot 
model lie between the CVs for the direct and the model-
based approach presented here. The cross-sectional and 
time series model is uniformly superior to the Fay-Herriot 

model in terms of CV reduction. This is expected since our 
model extends the Fay-Herriot model by borrowing sttength 
over time as well as across space. 

In our application to the LFS, we used simple smoothed 
estimates of the sampling variance-covariance matrices Z. 
and then treated them as the true I... We plan to study the 
sensitivity of the HB estimates of small area parameters 0̂ .̂  
and the associated CVs to different methods of smoothing 
the S.. In particular, it may be more realistic to use 
smootiied estimates of the form d̂ ,, = (CV. )̂  0̂ , and 

= P \t-s\ (̂ i» (̂4-s) instead of the simple smoothed 
estimate's we have used. However, it is more difficult to 
implement the HB method in this case since d.,, and 6̂ .,̂ . 
depend on the unknown parameters 0̂ .̂ . 

In this paper, we used a linear mixed linking model (3) 
for the parameters 0.,, which matches with the sampling 
model (1). Recentiy, You and Rao (2002) developed 
unmatched sampling and linking models for cross-sectional 
data, where the linking model is a non-linear mixed model, 
unlike the sampling model (1). You, Chen and Gambino 
(2002) extended this method to cross-sectional and time 
series data, using a log-linear linking model for 0̂ .̂ . 
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APPENDIX 

A.LLetX=(X/,...,X^),0 = (0,',...,0J,M = (u,',...,t/„;)', 
with 0/ =(0,.,,..., Q.j), u! = (t/.,,..., u^j). In the foUowing, 
we list the full conditional disttibutions for the cross-
sectional and time series model. For the proposed model 
(random walk time component), p = 1; for the altemative 
AR( 1) time component model, | p | < 1. 

- ^\y,ol, ol, u,Q~N{{X'X)-\Q-u),ol(XX)-'); 

- ol\y,P,ol,u,Q~IG{a, + mr/2,6, + ̂ J l ,^ l , 
(0,.,-x;P-«,)V2); 

- ol\y,^,ol,u,Q~IG{a,^m{T-l)l2,b2^Y."i-iYl2 
(",7-P«,-,(-i)^^2); 

- For i = 1, ...,m, 

u.^\y,^,ol,ol,u.2,Q 

~ ^ ( ( ± . P ! ) - . ( ! i l l f H P ^ P ^ _ L , P ! ) - . ) ; 
w 2 i' ^ 2 2 '^^ 2 2' ' 

For / = 1, ...,m, and 2<,t<,T- 1, 
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I/,., |7,p,o',a',M,.,_,,M,.,^,,0 

~ M { { ± + - L ^ ) - ' (-Li i i i l + ^ '•'-' *^ ' • ' " ' ) , 
vv 2 2 ^ ^ 2 2 

For / = 1,... , OT, 

M,.,|};,P,O^,O^,M,.y_,,0 

1 1 , . i . 6 , 7 - - V r P P«,,r-

Ov O, O^ O^ 

- For / = 1,..., m, 

Q.\y,^,ol,ol,u'~N{{ollj^i::')-' 

x{i::'y.^c;\x.^.u.)),{cfij^i::Y). 
A.2. Let y, = {yu,-'yn,i)''^; =ixu'->xj, 0/ = 
(0,^, . . . ,0„„) ' . t = 1,..., r , we list die ftiU conditional distti­
butions for the Fay-Herriot model at time point t as follows: 

- Pj3^,.4>0, ~N((X;XyX;Q,,al,{X;Xy; 
- ol,\y„^„olu,Q~IG{a,^m/2,b,^Yj'^,{Q^,-x;,^f/2); 

- For / = 1, ...,m, 

where r,.,= o^,/(o^, + o^,). 
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The Effect of Model Choice in Estimation for Domains, 
Including Small Domains 

RISTO LEHTONEN, CARL-ERIK SARNDAL and ARI VEIJANEN' 

ABSTRACT 

In this paper we examine the effect of model choice on different types of estimators for totals of domains, including small 
domains (small areas), for a sampled finite population. The paper asks: How do different estimator types compare for a 
common underlying model statement? We argue that estimator type (Synthetic, GREG, Composite, EBLUP, hierarchical 
Bayes, and so on) is one important aspect of domain estimation, and that the choice of the model, including its parameters 
and effects, is a second aspect, conceptually different from the first. Earlier work has not always kept this distinction clear. 
For a given estimator type, one can derive different estimators, depending on the choice of model. A number of estimator 
types have been proposed in the recent literature, but there is relatively little of an impartial comparison between them. In 
this paper we discuss three types: Synthetic, GREG, and, to a limited extent. Composite. We show that model improvement 
(the transition fi-om a weaker to a stronger model) has very different effects on the different estimator types. We also show 
that the difference in accuracy between the different estimator types depends on the choice of model. For a well-specified 
model the difference in accuracy between Synthetic and GREG is negligible, but it can be substantial if the model is 
misspecified. Synthetic then tends to be highly inaccurate. We rely partly on theoretical results (for simple random sampling 
only), partly on empirical results. The empirical results are based on simulations with repeated samples drawn from two 
finite populations, one artificially constructed, the other constructed from real data from the Finnish Labour Force Survey. 

KEY WORDS: Survey sampling; Generalized regression estimator; Synthetic estimator; Composite estimator; Multi-level 
models; Small areas; Small domains. 

1. BACKGROUND 

Most siu^eys require that estimates be made not only for 
the entire population under study but also for a number of 
sub-populations, called domains or domains of interest. 
Estevao and Samdal (1999) give a general outline of 
estimation for domains from a design-based perspective, 
with the use of auxiliary information. The sampling design 
is general, and so is the vector of auxiliary variables. The 
framework is also called model-assisted. Several national 
statistical agencies have in recent years constincted 
software that routinely handles domain estimation within 
the design-based, model-assisted framework. Examples of 
such software include CLAN97 by Statistics Sweden and 
GES by Statistics Canada. In a typical survey, some 
domains of interest are large enough, and the auxiliary 
information sttong enough, so that the design-based 
estimators will be sufficiently accurate. But other domains 
may be so small (contain so few sampled imits) that the 
design-based estimates will be too erratic. The statistical 
agency may then decide to suppress the publication of 
statistics for such domains. 

Model-dependent estimates are less volatile, but an 
unatttactive feature is their xinknown bias, which can be 
substantial. The model-dependent synthetic estimator has 
occupied a prominent place in research on small area 
estimation from around 1970 and on, see for example, 
National Center for Health Statistics (1968), National 
Research Coimcil (1980). Different estimators built on 

nested error regression models (Fuller and Battese 1973), 
random regression coefficients models (Dempster, Rubin 
and Tsutakawa 1981) and simple random effects models 
(Fay and Herriot 1979) provide examples of early propo­
sitions for alternatives to the synthetic estimator. Various 
composite estimators, consttucted as weighted combina­
tions of a model dependent estimator and a design-based 
estimator, were also proposed in the literature (for example 
Holt, Smith and Tomberlin 1979). 

It was in connection with the synthetic estimator that the 
term "borrowing sttength" began to be widely used. Today 
this term is invoked in virtually every one of tiie many 
published articles on small area estimation. Together, these 
articles now provide a rich source of possibilities for small 
area estimation, a majority of them model dependent. They 
draw on a variety of established statistical arguments and 
principles, such as generalized linear mixed models, com­
posite estimation, empirical Bayes estimation, hierarchical 
Bayes, and so on. 

Borrowing sttength (or information) via modeling is a 
recurring theme in recent literatiu-e on small area estimation 
(for example Ghosh and Rao 1994; Pfeffermann 1999; Rao 
1999). Borrowing sttength is generally understood to mean 
that the estimator in use depends on data on the variable of 
mterest, denoted y, from "related areas" or more generally 
from a larger area, in an effort to improve the acciu-acy for 
the small area. The resulting estimator is called indirect, in 
conttast to the one that uses ̂ -data sttictly from the domain 
itself, in which case it is called direct. 

Risto Lehtonen, University of Jyvaskyla, Department of Mathematics and Statistics, P.O. Box 35 (MaD), FlN-40014 U, Jyvaskyla, Finland; Carl-Erik Samdal, 
2115 Embrook #44, Ottawa, Ontario, Kl B 4J5; An Veijanen, Statistics Finland, P.O. Box 4 V, FIN-00022 Statistics Finland, Finland. 
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Underlying models and their features is another 
prominent theme in recent literature (for example Ghosh, 
Natarajan, Sttoud and Carlin 1998; Marker 1999; Moura 
and Holt 1999; Prasad and Rao 1999; Feder, Nathan and 
Pfeffermann 2000). Small area estimates, and domain 
estimates more generally, are intrinsicaUy linked to the idea 
of modeling. Holt and Rao (1995) hint that the use of 
y-information from other areas, although in a sense 
"necessary", should not be carried to an extteme. Instead 
there should be "specific allowance for local variation" 
through a model formulation that includes area-specific 
effects. This raises a certain ambiguity: borrowing sttength 
from other areas is desttable, even necessary, but only 
within limits. It is unclear what these limits should be. 

There is an extensive recent literature on small area 
estimation from a Bayesian point of view, including 
empirical Bayes and hierarchical Bayes techniques (for 
example Datta, Lahiri, Maiti and Lu 1999; Ghosh and 
Natarajan 1999; You and Rao 2000). Some recent 
publications relate frequentist and Bayesian approaches in 
small area estimation (for example Singh, Stukel and 
Pfeffermann 1998). Rao (2003) provides a good overview 
of current literature on model-based small area estimation. 

The discussion in recent literatijre of domain estimation, 
including small area estimation, revolves around three 
crucial concepts: (i) borrowing sttength; (ii) the type of 
(implicit or explicit) model, (iii) the parameters or effects 
admitted in the model statement, that is, whether they 
should be area specific or defined at some higher level of 
aggregation such as a set of "similar areas". We agree that 
these concepts are centtal and we use them in this paper. 

Our starting point for the paper is summarized by (i) to 
(iii) as follows: (i) a number of different estimator types 
have been proposed for domain estimation and small area 
estimation: Synthetic estimator, Generalized Regression 
(GREG) estimator. Composite estimator. Empirical Best 
Linear Unbiased Predictor (EBLUP), empirical Bayes (EB) 
estimator, hierarchical Bayes estimator and so forth; (ii) for 
every estimator type, different estimators result from the 
choice of model; (iii) to borrow or not to borrow sttength 
becomes an issue for some of the model choices. Attempts 
at borrowing sttength takes place when the estimation of the 
parameters and effects in the model requires the use of 
y-values for uiuts outside the domain itself 

2. STATEMENT OF OBJECTIVES 

An objective in this paper is to examme domain 
estimation through a separation of two ideas: estimator type 
on the one hand, the choice of the underlying model on the 
other. We get a two-dimensional arrangement of possible 
estimators: By estimator type, by model choice. This 
distinction has not been emphasized enough in earlier 
literature. 

We study the effect of model choice, and of model 
improvement, on selected estimator types: the Generalized 

Regression (GREG) estimator (which is design-based), the 
Synthetic (SYN) estimator (which is model dependent) and 
the Composite estimator with Empirical Best Linear 
Unbiased Predictor EBLUP as a special case (which also is 
model dependent). By constraction, each type has its own 
particular features. For example the GREG estimator type 
is constructed to be design unbiased, the model dependent 
ones usually are not. The GREG estimator's variance, 
although of order «"', can be very large for a small domain 
if the "effective sample size" is small; GREG is a "sttongly 
design consistent" estimator in that its relative bias (bias 
divided by standard deviation) tends to zero as n ''^. The 
SYN estimator is usually design biased; its bias does not 
approach zero with increasing sample size; its variance is 
usually smaller than that of GREG. The EBLUP is design 
consistent (although not sttongly design consistent in the 
manner of GREG); is design biased for any fixed finite 
sample size; its variance ordinarily falls between that of 
GREG and that of SYN. 

The chosen model specifies a hypothetical relationship 
between the variable of interest, y, and the vector of 
predictor variables, x, and makes assumptions about its 
perhaps complex error stmcture. For every specified model, 
we can derive one GREG estimator, one SYN estimator, 
one composite estimator, by observing the respective 
construction principles. An "improved model" will 
influence all of GREG, SYN and composite, usually so that 
the MSE decreases. In other words, if Model A is better 
than Model B, the SYN estimator for Model A is usually 
better than the SYN estimator for Model B. The same is 
usually the case for GREG. 

Model choice has two aspects: (i) the matiiematical form, 
or the type, of the model, and (ii) the specification of the 
parameters and etfects in the model. For a given variable of 
mterest, some models are more appropriate than others. 
Model improvement can result either from a more 
appropriate model type, or from a better parametization, or 
both. We can distinguish Imear models and nonlinear 
models. Logistic models are a special case of the latter. For 
a binary or polytomous variable of interest y, a 
(multinomial) logistic model type is arguably an 
improvement on a linear model type, because the fitted 
values imder the former will necessary fall in the unit 
interval, which is not always true for a linear model. 
Lehtonen and Veijanen (1998) inttoduced the logistic 
GREG estimator and studied it in the context of the Finnish 
Labour Force survey. Another example is when a Bayesian 
model formulation is preferred to other forms. 

The second aspect of model choice is the specification of 
the parameters and effects in the model. Some of these may 
be defined at the fully aggregated population level, others 
at the level of the domain (area specific parameters), yet 
others at some intermediate level (for a set of "related 
areas"). Using a multi-level model type, we can inttoduce 
stochastic effects that recognize dofnain differences, as in 
Goldstein (1995) for the SYN estimator and by Lehtonen 
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and Veijanen (1999) for the GREG estimator. They found 
improved accuracy in small domains, compared to the 
GREG estimator based on a model with fixed effects at the 
population level. Generally, model improvement occurs 
when more parameters or effects are added to die model, as 
for example when it is formulated to include area specific 
effects reflecting local variation. 

We show in this paper (i) that model improvement will 
generally, for any estimator type considered here, be 
accompanied by a decrease in MSE; (ii) that the effect on 
the MSE of model improvement is very different for 
different estimator types; (iii) that for a well-specified 
model, there are negligible differences only in the accuracy 
(the MSE) achieved by the estimator types under study, but 
under model failure the differences can be substantial. We 
emphasize that a comparison of estimators of different types 
should only take place under "similar conditions". That is, 
the model choice must be the same for all alternatives 
considered. An estimator is shown to be better than another 
estimator only if the MSE of the former is smaller than that 
of the latter, for one and the same model choice. (It is 
difficult to establish that one estimator type is uniformly 
better than another, that is, better imder all model choices.) 

Table 1 shows the estimators to be discussed, in a 
two-way arrangement by estimator type and by model 
choice. This table also shows our notation for the estimators 
to be considered. There are six SYN type estimators and six 
GREG type estimators in the table. Each of the six rows 
corresponds to a different model choice. A population 
model (P-model; rows 1 and 2) is one whose only 
parameters are fixed effects defmed at the population level; 
it contains no domain specific parameters. A domain model 
(D-model) is one having at least some of its parameters or 
effects defined at the domain level. These are fixed effects 
for rows 3 and 4, or mixed with random effects for rows 5 
and 6. "Linear" and "logistic" refer to the mathematical 
form. In this paper we discuss all estimators in Table 1 
except the two in the last row. 

Table 1 
Schematic presentation of the SYN and GREG estimators 

by model choice and estimator type 

Fixed-
effects 
models 

Mixed 
models 
including 
fixed and 
random 
effects 

Model choice 

Population 
models 
Domain 
models 

Domain 
models 

Linear 
Logistic 
Linear 
Logistic 

Linear 

Logistic 

Estimator type 
Model-
dependent 
synthetic 
SYN-P 
LSVN-P 
SYN-D 
LSYN-D 

MSYN-D 

MLSYN-D 

Model-assisted 
generalized 
regression 
GREG-P 
LGREG-P 
GREG-D 
LGREG-D 

MGREG-D 

MLGREG-D 

In addition to the SYN and GREG estimator types listed 
in Table 1, we can consider composite estimators of the 
type Y^GREG + (1 - Y^)SYN, being appropriately 

weighted combinations of the corresponding GREG and 
SYN estunators. In this paper we examine one estimator of 
this type, the EBLUP estimator. 

The paper is organized as follows: Section 3 introduces 
tiiree types of estimators for a domain total. In section 4, we 
describe the models used in the construction of these 
estimators. In section 5 we derive analytically the effect of 
model improvement, in a simple case. (Only simple cases 
can be tteated analytically, because the formulas quickly 
attain a high degree of complexity, depending on the 
sampling design and other factors.) Section 6 is devoted to 
Monte Carlo simulations for two finite populations, 
illustrating the effect of model improvement on the three 
selected estimator types. Summary and discussion is given 
in section 7. 

3. ESTIMATORS OF DOMAIN TOTALS 

The fiiute population is denoted U = {1,2,..., k,..., N}. 
A probability sample s is dravm from {/ by a given 
sampling design such that unit k is given the inclusion 
probability ;t .̂ The sampling weight of unit k is then 
â  = l/ji^. Denote by;^ the variable of interest and by yj^ its 
value for unit k. We consider a set of mutually exhaustive 
and exhaustive domains C/,,..., [/ ,̂..., C/̂ . The target para­
meters are the set of domain totals, 
yd = Yu/k'd=l,-,D. 

Auxiliary information is essential for building accurate 
domain estimators, and increasingly so when domains of 
interest get smaller. Let x be the auxiliary vector of 
dimension / j ; 1 with a known value x^ for every unit 
ke U. In a survey on individuals, x^ may specify known 
data about person k, such as age class, sex and other 
continuous or qualitative variable values. We assume that 
the vector value x^ and domain membership is known and 
specified in the frame for every ke U. (For some 
estimators, it suffices to know the total of x^ for each 
domain of interest.) 

The estimators we consider are constmcted as follows: 
The first step is to estimate the designated model, using the 
sample data {{yi^,Xi^);kes}. Next, using the estimated 
parameter values, the vector value x^ and the domain 
membership of k, we compute the predicted value jp̂^ for 
every ke U, which is possible under our assumptions 
because x^ is knovra for every ke U. The predictions, 
{yi^;keU}, and the observations, {yi^;kes}, provide the 
material for the estimator types considered here. 

Consider a fixed-effects model specification, linear or 
nonlinear, such that E |̂(>'ĵ ) =/(x^;|3), for a given 
function / ( sP) , where P is an unknown parameter vector 
requiring estimation, and E^ refers to the expectation 
under the model. The model fit yields the estimate p. The 
supply of predicted values _v̂  =/( Xj.;P) is computed for 
ke U. Similarly, for a linear mixed model involving 
random effects in addition to the fixed effects, the model 
specification is E^ {y/^ | u^) = x^ (p + u^) where û ^ is a 
vector of random effects defined at the domain level. Using 
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the estimated parameters, predicted values y^ = x^(p + Uj) 
are computed for all keU. The models used in this paper 
are described in more detail in section 4. In more general 
terms, tiie models for tiie construction of GREG and SYN 
type estimators of domain totals are often members of the 
family of generalized linear mixed models (for example 
McCuUogh and Searle 2001). 

The predictions {yi^,ke U] differ from one model 
specification to another. For a given model specification, 
the estimator of the domain total Ĵ ^ = Xt/ .̂ A ^^^ ^^ 
following stmctiore for the three estimator types (Synthetic, 
Generalized Regression, Composite) to be studied: 

" (3.1) 'rfSYN ^Ujk 

• (/GREG = YnJk*Y,a,^{y,-y,) (3.2) 

Ydcom = T.U, h + iiT,s^ ''kiyk- A ) (3.3) 

where a^ = 1 / 7î , s^ = s flt/^ is the part of the fiill sample 
5 that falls in U^, and d = I,..., D. Y^^YN rsli^s heavUy on 
the truth of the model, and is usually biased. On the other 
hand, ^ /̂GREO has a second term that protects against model 
misspecification. The domain-specific weight jj in J^CQMP 

is appropriately constructed to meet certain optimality 
properties, as explained in section 6. The weight y^ 
approaches unity for increasingly large domain sample 
sizes, so that J^COMP approaches J^Q^gQ. At the other 
extreme, when ŷ^ is near zero, i^coMP '^ close to ^^SYN-

We note that for a given model specification, (3.2) and (3.3) 
reduce to (3.1) for a domain ^ with no sample elements in 5 .̂ 

4. MODELS 

4.1 Fixed-Effects Linear Models 

Let Xi^ = {l,x^i^,...,x.i^,...,Xji^)' be a ( J + 1)-dimensional 
vector containing the values of J^ I predictor variables 
x.,J = I, ...,J. This vector is used to create the predicted 
values yj^ in the estimators (3.1), (3.2) and (3.3). 

The estimators SYN-P and GREG-P build on the model 
specification (called the P-model) 

E.(j '*) = x;P (4.1) 

for ke U, where p = (pQ, p,, ...py)' is a vector of fixed 
effects defined for the whole population. If y-data were 
observed for the whole population, we could compute the 
generalized least squares (GLS) estimator of P given by 

B={EyX,x^/cJ-'E^W*/^* (4.2) 

where the c^ are specified positive weights. With no 
significant loss of generality we specify these to be of the 
form Ci^ = X' Xj^ for ke U, where the ( J + 1)-vector X does 
not depend on k. Because (4.2) cannot be computed, the fit 

is carried out in practice on the observed sample data, 
yielding 

B = ( E , a,X,x; / c , y E , «; x , y , / c , (4.3) 

where â  = 1 /TĈ  is the sampling weight of unit k. The 
resulting predicted values are j?̂  = x^ B. They can be 
computed for all ke U. 

The estunators SYN-D and GREG-D are built witii the 
same predictor vector x^, but with an improved model 
specification (called the D-model) allowing a fixed-effects 
vector p^ separately for every domain, so that 

^„,(yk)=H^d (4.4) 

for ke Uj,d = I, ...,D, or equivalently, 

E„(j',) = E8,,x;P, 
d-l 

(4.5) 

for ke U, where 5^^ is the domain indicator of unit k, 
defined by 6̂ .̂ = 1 for all ke Uj, and 5^^ = 0 for all 
k$Uj,d = l,..., D. If the model (4.3) could be fitted to 
data for the whole population, the GLS estimator of p^ 
would be 

B,y=(Et;^ X . X ^ / c . J - ' E y / i J ' i / c , . (4.6) 

In practice, the fit must be based on the observed sample 
data, leading to 

B j = (E ,^ a , x , x ; / c , ) - ' E , , , a^x^y^/c, . (4.7) 

The resulting predicted values are given by j?̂  = x^ B^ 
for ke Uj;d = l,...,D. Because of the specification 
c^ = X'x,^, we have Ĵ ^ a^(j;^-j5^) = 0. Consequently, 
SYN-D and GREG-b are identical, that is. 

' </SYN - D (̂/GREG - D for every sample s. 
The transition from GREG-P to GREG-D, and from 

SYN-P to SYN-D, affects the MSE in a way to be analyzed 
in section 5. SYN-P and GREG-P will be examined 
empirically in section 6. 

4.2 Linear Mixed Models 

The estimators MSYN-D and MGREG-D build on a 
two-level linear model (called the D-model) involving fixed 
as well as random effects recognizing domain differences, 

E„(j ' JUrf) = Po + "o./ 

+ (P, +"irf)jf 'Ik 

(4.8) 

for ke ^j'd = 1. --'D- Each coefficient is the siun of a 
fixed component and a domain specific random component: 
Po * "o</ fo*̂  ^® intercept and p. + u.^, j = I,..., J for the 
slopes. The components of u^ = (MQ^, M,^, ..., M^^)' 
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represent deviations from the coefficients of the fixed-
effects part of the model, 

E„(7i) = Po + Pi ̂ u + - + Pŷ y* = ^l P' (4.9) 

which agrees with (4.1). More generally, we can have that 
only some of the coefficients in (4.8) are tteated as random, 
so that, for some j , Ujj = 0 for every d. One of tiie simplest 
special cases of (4.8), commonly used in practice, is the one 
that includes a domain-specific random intercept u^j as the 
only random term, as in one of the models used in section 
6. Another model used in section 6 is the special case of 
(4.8) for y = 1, with a random slope M,̂  and a random 
intercept u^j. 

We insert the resulting fitted j'-values, >'̂  = x | (P + u^), 
into (3.1) to obtain the two-level MSYN-D estimator. 
Inserting the fitted values, j ; ^ = x^ (P + u^), into (3.2), we 
obtain the two-level MGREG-D estimator, inttoduced by 
Lehtonen and Veijanen (1999). MSYN-D and MGREG-D 
will be examined empirically in section 6. 

For the simulations reported in section 6, we fitted the 
two-level model (4.8) by tiie iterative least squares fitting 
(IGLS) algoritiim of Goldstein (1995). Random effects 
were estimated by equation (2.2.2) in Goldstein (1995). 
This algorithm appeals to an assumption that the random 
effects follow a joint normal disttibution N{0,Q.). Note 
however that this assumption of normality is in no way 
necessary to obtain favorable properties for the resultuig 
MGREG-D estimator. It is nearly unbiased regardless of 
any such assumption. The fitting of a multi-level model is 
more demanding than the fitting of a linear fixed-effects 
model, since estimation of the covariance matrix Q. is 
required. 

4.3 Logistic Models 

The estimators LSYN-P and LGREG-P build on a 
multinomial logistic P-model. Assume an m-class 
polytomous response defined by the class variables y. with 
value y.g^ = 1 if A: belongs to class i and y.̂ . = 0 otherwise, 
/ = 1,..., m, and modeled by 

^m(yik) 

exp(x;p.) 

E exp(x;p^) 
(4.10) 

r=l 

for keU, where x^ = (l,x,^, ...,x .̂̂ , ...,;Cy^)' and 
Pi ~ (P/o' P/i' —^ij)' ^e vectors of fixed effects defined for 
whole population. To avoid identifiability problems, we set 
P, = 0. The LSYN-P and LGREG-P estunators of tiie 
population frequency of class / in domain d, Y.j = ^ ^ y.j^, 
are defined by (3.1) and (3.2), respectively, if we replace y^ 
andy^ by y.,^ and y.^ = exp( x^ p,.)/( 1 + ^ '̂̂ 3 exp( x^ p^)), 
where p_. is the estimate of p. obtained from the fit of 
(4.10). 

LGREG-P was inttoduced and studied in Lehtonen and 
Veijanen (1998). LSYN-P and LGREG-P vrill be examined 

empirically in section 6, where p̂ . is derived as a 
pseudo-maximiun likelihood estimator incorporating the 
sampling weights. 

5. ANALYTIC EXAMINATION OF THE 
EFFECT OF MODEL IMPROVEMENT 

In this section we analyze the ttansition from GREG-P 
to GREG-D, and from SYN-P to SYN-D in the case of 
Simple Random Sampling. For both estimator types, GREG 
and SYN, we find that the acciu-acy is improved when the 
model changes from the weaker P-model (4.1) (with fixed 
effects at the level of the whole population) to the stronger 
D-model (4.5) (admitting fixed effects at the domain level). 
Intuitively, this is to be expected. What is of interest here is 
the pattern of improvement. It is very different for the two 
types. 

Our objective is to measure the effect of model 
improvement on Yj, where Y^ denotes either YJQ^^^Q or 
}̂ 5YN- Eor this purpose, we use the relative improvement 
in MSE, 

RELIMP( Y.) = (MSE ,„ - MSE ,„)/ MSE ^dD (5.1) 

where MSE^^ and MSE^^ denote the MSE of 7, under 
the P-model and under the D-model, respectively. Both 
MSE^p and MSE^^ depend on tiie sampling design and on 
the composition of the x^-vector. The improvement factor 
(5.1) is in general a complex formula. It lends itself to easy 
analytic interpretation only in sunple cases. Therefore, we 
examine here the case of Simple Random Sampling 
Without Replacement (SRS). For other designs and model 
formulations, empirical studies are necessary. One such 
study is reported in section 6. 

We use the improvement factor (5.1) to measure the 
effect of changing from the P-model (4.1) (the weaker 
model) to the D-model (4.5) (the sttonger model). The 
Technical Appendix gives the necessary expressions for 
bias and MSE of GREG and SYN estimators in the case of 
an SRS sample of size n from U. The size, n^, of the 
sample from the domain Uj is random with expected value 
nPj = nNj/N. For GREG, we use (A.5) in Technical 
Appendix, and the two different forms of f̂  presented 
there, to arrive at 

RELIMP(7 dCREG ) = • 

^E,U., 

1 + ( ! - / ' . ) • 
^PU, 

^ElJ, 

(1 -^ . ) -
-PU, 

'EJJ, 

where 

(1 li^d 
\v. - ( l /(^. 1)) Yu.E.k 
^))YuMpk-'^Puf^^PU„ 

(5.2) 

and S£̂ ,ŷ  = 
= YuEp,IN,. 
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(Note tiiat Ej^j = Y^^ ^dk'^d = ^)- Similariy, for SYN, we 
use (A.6) in Technical Appendix, and the two different 
expressions for E^ presented there, to arrive at 

'^{R.E.M nr, ^pu. 
R E L I M P ( 7 , S Y J = ^ ^ - 1 ' 

^d^EJJ, 1- /S . 2 
E„U„ 

nP. PU.< 

1 - / S , 2 (5.3) 

where S^,^,^,^^ = {1/{N- 1)) Yui^dk^Pk)'- The 
approximation in (5.3) is a result of keeping only the term 
proportional to the total sample size n. By comparison, the 
other terms are negligible. The approximation in (5.3) is 
adequate in many cases, although the deleted part is not 
always insignificant. Comparing the improvement factors 
(5.2) and (5.3), we note: 

(i) Improvement factor as a function of the bias. 
Comparing (5.2) and (5.3), we see that the 
improvement of SYN is large compared to that of 
GREG. The main reason is that SYN is handicapped, 
under the P-model, by an often considerable squared 
bias term. As the model improves, this handicap is 
greatly reduced. At the same time the variance term 
may increase moderately, so that, somewhat 
paradoxically, SYN becomes more volatile when the 
model is improved. For GREG, some improvement 
occurs when the model improves, as a result of a 
somewhat reduced variance. The improvement is 
small, compared to the dramatic improvement of 
SYN. 

(ii) Improvement factor as a function of domain size. 
Suppose tiiat Ep^ /S^ y is constant for all domains. 
Then, the presence of the relative domain size Pj in 
(5.3) shows that Yj^y^ improves more in larger 
domains than in small domains (where the need for 
accuracy improvement is relatively greater). For 
r̂fGREG' *he pattern is more natural in that the 

improvement is more pronounced for the smaUer 
domains, due to the factor (1 - P^) in (5.2). But if 
Epu ISg y varies considerably between domains, 
these conclusions would be modified. 

To throw further light on the generally complex 
improvement factors (5.2) and (5.3), consider the simple 
specification x^ = 1 =0̂ ^ foraUA:. Then I^SYN p~^dy<:' 
YdGR^o-p= ^ r f ^ . , - ( ! / / ) ( « . - « ^ . ) y . with/=«/)V 
and i'</sYN-o = r̂fGREG-D=^</.F,̂ - (Ovcrbar ticnotcs the 
arithmetic mean over the set defined by the subscript.) 
Using {Nj-l)/{N-l)^Nj/N,we get 

RELIMP(r (/GREG ) - ( ! - / ' . ) 
(^u.-^uj 

<f2 
(5.4) 

R E L I M P ( 7 , , Y N ) " ^ , 
nPd ^yuryuf 
1 - / <f2 

nPj iyu,-yu) 

1 - / ^yu., (5.5) 

2 2 

where 5^^ and S^y are the variances of >'̂  over Uand Uj, 
respectively. The patterns are now very clear. The term 
{yy -yyf^^yu is present in both expressions. For SYN, 
we see from (5.5) that the improvement factor is 
proportional to the whole sample size n, hence it can be 
very large. For GREG, the unprovement (5.4) is very small 
by comparison. If {yy -yyflSyy is constant over aU 
domains, GREG is improved more m smaller domains than 
in larger ones. The opposite holds for SYN. 

The results in this section are limited by the complexity 
of the analytic expressions. Nevertheless they set the pattern 
for more general situations now to be studied by empirical 
examination. As the model improves, we can expect SYN 
to undergo a very large improvement, in terms of reduced 
MSE, compared to GREG. 

6. EMPIRICAL EXAMINATION OF THE 
EFFECT OF MODEL IMPROVEMENT 
BY MONTE CARLO EXPERIMENTS 

6.1 Experiments and Monte Carlo Summary 
Measures 

The data for Experiment 1, presented in section 6.2, was 
generated entirely from a specified model, so it has no basis 
in any real data. For the 100 domains of this data set we 
compared the SYN estimator type (3.1) and the GREG 
estimator type (3.2) under different choices of model for a 
continuous variable of interest. We fitted a fixed-effects 
linear model (which created SYN-P and GREG-P 
estimators) and compared the results with those obtained 
from the fitting of a two-level linear model (which created 
MSYN-D and MGREG-D estimators). 

In constructing the population for Experiment 2, 
presented in section 6.3, we took real data on ILO 
unemployment from Finland's Labour Force Survey (LFS) 
as a startmg point for creating a larger artificial population 
with 84 regional domains. There, the variable of interest is 
binary (unemployed or not). We fitted, in addition to a 
fixed-effects linear model (which created SYN-P and 
GREG-P estimators) and a two-level linear model (which 
created MSYN-D and MGREG-D estimators), a 
fixed-effects binomial logistic model (which created 
LSYN-P and LGREG-P estimators). For this experiment we 
also constmcted a composite estimator (3.3) as a weighted 
combination of GREG and SYN estimators, creating a 
COMP-D estimator. 

In Experiments 1 and 2, by using estimates Yj{s^) from 
repeated samples 5̂ ,; v = 1,2,..., K, we computed for each 
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domain d = l,...,D the following Monte Carlo summary 
measiu'es of bias, accuracy and relative improvement in 
MSE. We use two measures of accuracy, the relative root 
mean squared error (RRMSE) and the median absolute 
relative error (MdARE). For Experiment 1, where the 
response variable is continuous, these two measures give 
the same message about the accuracy. But for Experiment 
2, where the response variable is binary, there is sometimes 
a difference in the conclusions drawn from the two 
measures. 

(i) Absolute relative bias (ARB), defined as the ratio of 
the absolute value of bias to the ttue value: 

\YUs,)-Y, IY,. (6.1) 

(ii) Relative root mean squared error (RRMSE), defined 
as the ratio of the root MSE to the true value: 

1 ^^YiUO-Y,f JY,. (6.2) 

(iii) Median absolute relative ertor (MdARE), defined as 
follows. For each simulated sample s^,v = 1, 2, ...,K, 
the absolute relative error is calculated and a median 
is taken over the K samples in the simulation: 

Median 

over V = 1,..., ̂
[\uo-y\/yd]- (") 

(iv) RELIMP, the relative improvement in MSE, defined 
in the manner of (5.1). 

6.2 Experiment 1: Data Generated from a Model 

Monte Carlo design 

We used the two-level D-model (4.8) witii 7 = 1 to 
generate an artificial population of one million elements 
disttibuted on 100 domains. The elements were randomly 
allocated to a set of 100 domains with probabilities 
proportional to exp(/)^) where Pj follows a uniform 
disttibution in (-3,3). In the generation of values for the 
x-variable andj'-variable in the dth domain, d = 1,..., 100, 
we operated in the following way. First, the values of the 
x-variable were obtained as independent realizations of 
N{nj, Oj), where tiie domain-specific parameters (p^, o^) 
had first been generated from a bi-variate uniform 
disttibution over (5,15) x (15,35). Then, the response 
variable values y^ were generated as 

>'. = P 0 + "orf + (P i+»id)^k + h (6.4) 

with PQ = 10 and p, = 0.6. In (6.4), the values of Ê  are 
independent realizations of A^(0,1), and the random effects 

UQJ and u^j were realized from a bivariate normal 
disttibution witii UQJ~N{0,4), u^J~ N{0,0.01), 
d = I,..., 100. We report results for two values of the 
correlation of the random effects: (a) Corr(t/Q^, M,^) = 0, 
and (b) Corr(Mp ,̂ «,^) = -0.5. One case of a positive 
cortelation, 0.5, was also studied but the results were 
similar with those in the zero correlation case and are thus 
omitted. 

We examined four estimators: MSYN-D and MGREG-D 
based on the two-level D-model (4.8), ŷ  = 
Po + "od + (Pi + "i</)̂ iA + h' and SYN-P and GREG-P 
based on the fixed-effects P-model (4.9), that is, 
;'^ = Po + P,A:̂  + e .̂ Both sets of SYN and GREG 
estimators were calculated in the zero correlation and 
negative correlation cases. The conditions are thus ideal for 
MSYN-D and MGREG-D in tiie sense that the population 
follows exactiy the model that lies behind these two 
estimators. 

From the generated population we drew K = 1,000 
samples, each of size n = 10,000, with Simple Random 
Sampling Without Replacement (SRS). For each estimator 
and for each domain, we computed the Monte Carlo 
summary measures of bias, accuracy and relative 
improvement in MSE in the manner described in (6.1), 
(6.2), (6.3) and (5.1). The Monte Carlo measures were then 
averaged with respect to a classification of the domains into 
Small (25 domains with average domain sample size <10), 
Medium-sized (50 domains with average domain sample 
size 10 ^ and <50), and Large (25 domains with average 
domain sample size ̂  50). 

Results 

The results for the cases of zero correlation (a) and 
negative correlation (b) are given in Tables 2 and 3. In both 
cases, SYN-P has a large bias (measiu-ed by the average 
ARB) for all the three domain size categories (Table 2). 
The bias is slightiy larger in the zero correlation case. The 
bias in SYN-P is considerably reduced by MSYN-D, but is 
still sigruficant in small domains. In the smallest domains, 
the estimated residuals (the estimates of the random effects) 
were biased towards zero, which created some bias in the 
estimates. The accuracy (measured by the average RRMSE 
and tiie average MdARE) of MSYN-D (based on the "ideal 
model") is much better than that of SYN-P (which is based 
on a population model). Accuracy gains are larger for the 
zero correlation case, and gains are substantial especially in 
larger domains. This result is in line with our theoretical 
results in section 5. 

GREG-P and MGREG-D are essentially unbiased, 
confirming theory. Out of these two, accuracy is clearly 
better for MGREG-D, especially in small domains. In larger 
domains, accuracy gains are much smaller for the GREG 
estimator type than for the SYN estimator type. Bias and 
accuracy of GREG estimators are quite similar in both zero 
correlation and negative correlation cases. 
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Table 2 
Average absolute relative biais (ARB) (%), average relative root mean squared error (RRMSE) (%) and average median absolute relative 

error (MdARE) (%) of total estimators in small, medium-sized and large domains of a synthetic population with (a) random slope and intercept 
independent or (b) random slope and intercept negatively correlated 

(a) Zero correlation 

Model-dependent SYN estimators 

SYN-P 

MSYN-D 

Model-assisted GREG estimators 

GREG-P 

MGREG-D 

(b) Negative correlation (-0.5) 

Model-dependent SYN estimators 

SYN-P 

MSYN-D 

Model-assisted GREG estimators 

GREG-P 

MGREG-D 

Average ARB 

Expected 

Small 
(1-9) 

10.29 

1.32 

0.21 

0.83 

7.92 

1.20 

0.18 

0.67 

(%) 

domain size in sample 

Medium 
(10-49) 

12.37 

0.09 

0.06 

0.03 

9.51 

0.09 

0.05 

0.02 

Large 
(50+) 

10.54 

O.OI 

0.01 

0.01 

8.26 

0.01 

O.OI 

O.OI 

Average RRMSE (%) 

Expected domain size in sample 

Small 
(1-9) 

10.3 

4.7 

7.5 

4.8 

7.9 

4.2 

6.4 

4.4 

Medium 
(10-49) 

12.4 

1.1 

2.5 

1.1 

9.5 

l.I 

2.1 

I.l 

Large 
(50+) 

10.6 

0.4 

0.8 

0.4 

8.3 

0.4 

0.6 

0.4 

Average MdARE (%) 

Expected domain size in 

Small 
(1-9) 

10.3 

2.6 

5.0 

2.7 

7.9 

2.5 

4.2 

2.6 

Medium 
(10-49) 

12.4 

0.7 

1.7 

0.7 

9.5 

0.7 

1.4 

0.7 

sample 

Large 
(50+) 

10.5 

0.2 

0.5 

0.2 

8.3 

0.2 

0.4 

0.2 

As the theoretical discussion in section 5 has also 
suggested, the effect on the SYN estimator type of model 
improvement depends strongly on the size of the domain. 
This is confirmed here: The D-model leads to a consid­
erable MSE improvement (measured by the average 
RELIMP) for SYN. The improvement is striking for the 
large domains (Table 3). By conttast, the effect on the 
GREG estimator type of model improvement is modest, by 
comparison, and essentially independent of the domain size, 
as also suggested by the theoretical results. 

Table 3 
Average relative improvement in MSE (%) of total estimators in 

small, medium-sized and large domains of a synthetic population with 
(a) random slope and intercept independent or (b) random slope 

and intercept negatively correlated 
Average relative improvement 

(a) Zero correlation 

MSYN-D versus SYN-P 

MGREG-D versus GREG-P 

(b) Negative correlation (-0.5) 

MSYN-D versus SYN-P 

MGREG-D versus GREG-P 

Expected 

Small 
(1-9) 

8.3 

1.9 

5.1 

1.3 

: in MSE (%) 

domain size in sample 

Medium 
(10-49) 

332.5 

6.0 

197.0 

3.6 

Large 
(50+) 

1278.3 

3.7 

734.7 

2.3 

The reason for an improved behavior of SYN and GREG 
estimators is that a two-level (or more generally, a 
multi-level) model, because of the presence of domain 

parameters, produces fitted values yj^ that are on the 
average closer to the (unobserved) 7 .̂ than those obtained 
by fitting simply the fixed part of the model. In addition, 
since MSYN-D takes domain differences into account, it is 
expected to be less biased than the SYN-P estimator based 
on the fixed part of the two-level model. Still, we find that 
the MSYN-D estimator has a significant bias, particularly 
in the smallest domains, for which the estimated random 
effects tend to be biased towards zero, which pulls the fitted 
values in the direction of those of the fixed part of the 
model. MSYN-D and MGREG-D estimators do not differ 
considerably in their accuracy, even in small domains. 

6.3 Experiment 2: Data Adapted from Finland's 
Labour Force Survey 

Monte Carlo design 

The empirical data for our Experiment 2 came from the 
Finnish Labour Force Survey (LFS), conducted monthly by 
Statistics Finland. Details on the design and the estimation 
procedure of the LFS are described in Djerf (1997). In this 
experiment, we estimate the number of unemployed in 84 
administtative regions of Finland, based on the NUTS4 
classification (European Union's Nomenclature of 
Territorial Ututs for Statistics). 

To emulate the sampling design of the Finnish LFS, in a 
fairly realistic maimer, we generated a large artificial 
population by expanding a one-quarter sample data set of 
the Finnish LFS. The original data set of 32,564 individuals 
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contained 29,024 respondents. The respondents were 
replicated by Sunple Random Sampling With Replacement 
until we had reached a total of 3 million records approxi­
mating the size of the labour force in Finland. 

The variable of interest, y, was a binary variable 
describing whether a person was unemployed of not. In 
LFS, the definition of imemployment is based on the ILO 
(Intemational Labour Organisation) concept. Our popu­
lation data included four auxiliary variables available from 
administrative registers (and used by Statistics Finland in 
their LFS): age, sex, region (NUTS2 level regional unit) 
and the job-seeker indicator, which is a dichotomous 
indicator showing whether or not a person is registered as 
an unemployed job-seeker in the administtative records of 
Finland's Ministry of Labour. Indicator variables were used 
for 6 age-by-sex classes (3 age groups, 2 sexes). These 
register-based data were merged with tiie survey data at the 
micro level by using personal identification numbers, which 
are unique in both data sources. 

We examined seven estimators. Three model choices 
were used. First, we constructed the estimators (3.1) and 
(3.2), based on the luiear fixed-effects P-model (4.9) 
incorporating the main effects for variables age, sex, region 
and the job-seeker indicator. The model also incorporates 
the two-variable interaction of age with the job-seeker 
indicator. The variables and terms in the model were 
selected in an exploratory data analysis. The resulting 
domain total estimators are SYN-P and GREG-P. 

Secondly, we constructed the estimators (3.1) and (3.2) 
based on a binomial logistic model (4.10) involving the 
same model structure as the P-models for SYN-P and 
GREG-P. The resulting estimators are LSYN-P and 
LGREG-P. 

Thirdly, we consttaicted the estimators (3.1) and (3.2) 
based on the two-level D-model (4.8) again involving the 
same structure in the fixed part as the previous models. The 
random component of the model, recognizing domain 
differences, consisted of random intercepts at the domain 
(NUTS4) level. The resititing estimators are MSYN-D and 
MGREG-D. For this model choice, we also constructed the 
composite estimator (3.3). The resulting estimator is 
denoted by COMP-D. The weight ŷ  in COMP-D was 
computed as 6„/(6„ + 6^//?^), where d„ and d̂  are 
sample based estimates for unknown parameters in the 
model's error structure (Ghosh and Rao 1994). The 
COMP-D estimator is perhaps best described as a pseudo 
EBLUP (Prasad and Rao 1999), by the fact that the 
residuals y^ - y^ are sample weighted. (A more 
conventional EBLUP uses unweighted residuals.) 

We carried out four independent Monte Carlo 
experiments. In each experiment, we drew from the 
generated LFS population K = 1,000 samples, each of size 
n = 12,000 individuals, with SRS. We generated non-
response in each sample using a model for the non-
response. We modeled the non-response by a logistic model 
incorporating the same auxiliary variables as the LGREG-P 

model. The non-response probabilities were estimated from 
each sample, and the sampling weights were adjusted 
accordingly. For each estimator and for each domain, we 
computed the Monte Carlo summary measures defmed in 
section 6.1. These measures were then averaged with 
respect to a classification of the domains into Small (32 
domains with average domain sample size < 60) £ind Large 
(52 domains with average domain sample size ̂  60). We 
finally averaged these figures over the four experiments. 

Results 

Table 4 shows the results for the seven estimators. In this 
experiment based on a real population, the results are far 
less dramatic than in Experiment 1. For all the models, the 
model-dependent SYN estimators SYN-P, LSYN-P and 
MSYN-D had a substantial bias. The bias was smallest, 
even though still substantial, for the multilevel-model based 
estimator MSYN-D. The bias continued to be large even ui 
the large domains. Large bias might be due to the poor fit of 
the models, even if we used the best models available, and 
because the inclusion of random effects in the models was 
quite limited (only a random intercept term was included at 
the domain level). Accuracy in model-dependent estimators 
was best again for MSYN-D. As shown in Table 5, there 
was a slight positive effect of model improvement in MSE. 

Table 4 
Average absolute relative bias (ARB) (%), average relative root 
mean squared error (RRMSE) (%) and average median absolute 
relative error (MdARE) (%) of estimators of the number of ILO 

unemployed in small and large domains (LFS data) 
Average 
ARB (%) 

Expected 
domain size 

in sample 

Small Large 
(1-59) (60+) 

Average 
RRMSE (%) 

Expected 
domain size 

in sample 

Small 
(1-59) 

Model-dependent SYN estimators 

SYN-P 36.5 14.2 

LSYN-P 36.4 14.1 

MSYN-D 27.3 9.1 

37.6 

37.3 

31.8 

Model-assisted GREG estimators 

GREG-P 1.2 0.6 

LGREG-P 1.2 0.6 

MGREG-D 1.2 0.6 

Composite estimators 

COMP-D 26.9 8.8 

46.7 

46.8 

46.4 

31.8 

Large 
(60+) 

16.3 

16.2 

15.9 

24.0 

24.0 

24.0 

16.0 

Average 
MdARE (%) 

Expected 
domain size 

in sample 

Small 
(1-59) 

36.6 

36.5 

29.0 

30.6 

30.7 

30.6 

28.9 

Large 
(60+) 

14.9 

14.8 

I2.I 

16.0 

16.0 

16.0 

12.1 

In model-assisted GREG estimators, the differences in 
bias and accuracy were small between the multilevel-model 
assisted MGREG-D estimator and the GREG-P and 
LGREG-P estimators assisted by population-level fixed 
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effects models. The fixed-effects linear and logistic models 
yielded quite similar results, but the multilevel model 
improved the results slightly, as shown ui Table 5. 

Table 5 
Average relative improvement in MSE (%) of estimators of the 

number of ILO unemployed in small and large domains (LFS data) 

Average relative improvement in MSE (%) 

Expected domain size in sample 
Small (1-59) Large (60+) 

MSYN-D versus SYN-P 

MGREG-D versus GREG-P 

32.4 

0.4 

1.3 

0.2 

As measured by the average MdARE, the difference in 
accuracy between MSYN-D and MGREG-D is small in 
small domains. 

The composite estimates COMP-D were close to the 
synthetic estimates because the estimated variance of the 
random intercept was, in most cases, quite small. 

7. SUMMARY AND DISCUSSION 

In the inttoduction we made a point that, in our opinion, 
has not been emphasized in earlier literature on domain 
estimation, namely that the concept "model choice" must be 
distinguished from the concept "estimator type" when 
estimation methods are compared. To one and the same 
choice of model (same mathematical form, same speci­
fication of parameters or effects in the model) corresponds 
one estimator for each of the ttaditional estimator types 
discussed in the literature, Synthetic, Generalized 
Regression, Composite, EBLUP and so on. A first conse­
quence of this is tiiat one cannot make a fair comparison of 
estimators of different types urtiess all share the same model 
choice. Secondly, a change of model, say from a weaker to 
a sttonger model, may have quite different impact on 
different estimator types. It is this second aspect that is 
highlighted in this paper. 

We have studied the impact of model improvement 
especially for the Synthetic (SYN) type and Generalized 
Regression (GREG) type estimators, and found that the 
impact is very different, and the impact depends heavily of 
the size of the domain concerned, that is, of the number of 
sampled units in a domain. Especially in larger domains, 
the impact of model improvement is very large for SYN 
type estimators, and modest only for GREG type estimators. 
The progression is such that a SYN type estimator goes 
from being highly inaccurate estimator for a weaker model 
to a much improved estimator for a sttonger model. In other 
words, SYN is highly dependent on the sttength of tiie 
model. This is not the case for a GREG type estimator. It is 
slightly more accurate for the stronger model while 
maintaining a high accuracy for both kinds of models. Its 
improvement factor is modest compared to a SYN type 
estimator. We have not carried out our analysis in detail for 

other estimator types. This is an objective for future 
research. 

The possibilities for efficient estimation for domams and 
small areas depend on the available statistical infrastmcture. 
As evidenced in many recent papers on small area 
estimation, one must often start from a set of premises, 
where the data for model fitting are available not at a unit 
level, but at some aggregated level (this situation is typical 
for example in the United Kingdom and in the United 
States). The background for tiie methods described in this 
paper is typical in statistical infrastructures where a good 
supply of administtative registers exists, with data at the 
unit level (this holds for example the Scandinavian 
countties). In such an infrastructure it is often possible to 
use unit keys, such as personal identification numbers, to 
merge two or more administtative files at the micro level in 
building the vector of auxiliary variables. Also, domain 
membership is often specified for all units in the target 
population, as assumed in this paper. We can also assume 
that the collected survey data file can be merged with the 
auxiliary data file using the unit keys. The situation 
described above is increasingly foimd in many countries, 
for example in several member states of the European 
Union, where an increasing emphasis is being put on the 
use of administtative registers for purposes of statistics 
production. 

TECHNICAL APPENDIX 

This technical appendix includes the derivation of bias 
and MSE approximations for GREG and SYN estimators 
needed for the examination of the effect of model 
improvement in the case of Simple Random Sampling 
presented in section 5. 

To measure how the accuracy Y^^^Q and J^SYN 
changes as the model progresses from (4.1) to (4.5), we 
need to evaluate the variance of each estimator, as well as 
the bias of ^^SYN- ^Y conttast, ^^GREG ^̂  nearly unbiased. 
An obstacle in the analysis of J^/QREO and ^</SYN '̂̂  *^^^^ 
nonlinear form. Therefore we work with tiie corresponding 
linearized forms, for which we can easily obtain the bias 
and the variance. The results are then used to approximate 
the corresponding characteristics of J^QREG and J^SYN-
Taylor linearization is a standard technique for these types 
of estimators, as illustrated, for example, in Sarndal, 
Swensson and Wretman (1992), Chapter 6. 

Consider first̂  the GREG estimators, GREG-P and 
GREG-D. Let YJQJ^^Q denote eitiier of tiiose two. Witii 
linear approximation, the estimation error (the estimator's 
deviation from the target parameter Y^) is 

(A.l) YjCREG ~ ^d" Ys "k °dk ^k 1-^U dk ^k 

where ^^ is the population fit residual for k. The difference 
between GREG-P and GREG-D lies in the residuals E^. 
For GREG-P, they are f̂  = Ep,^, where Ep,^ =;;^ - x^ B^ 
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for keU, witii B^ given by (4.2). For GREG-D, they are 
^k = ̂ dk' with Eji^ = >'̂  - x ; B ^ for keUj,d=l,..., D, 
with Bj given by (4.6). 

In (A.l),£^a^8j^£'^ is the Horvitz-Thompson (HT) 
estimator for the variable 5^^ £^. Using basic results for the 
HT estimator we get ^(i^^oREc) -Yj~0, that is, T/GREG 

is nearly unbiased. It is easy to state the variance for a 
general design. We need it here for the special case of 
Simple Random Sampling Without Replacement (SRS). 
The MSE of J^GREG equals the variance of ^^GREC ^° ^̂ ® 
order of approximation used here. 

Next, consider tiie SYN estimators, SYN-P and SYN-D. 
Let Ĵ /sYN denote either of those two. After linearization, 
the estimation error is approximated as 

(A.2) '(/SYN Yd-Ys (^k'-dk^k- ^U °dk^k 

where £ , = E^,, r^, = 5^^ for SYN-D, and E^ = Ep,, r^, = 
Rj^ for SYN-P, witii 

^dk = (Yu„ ^k) u 

Slv = (1 UN, - 1)) Yv, {E, - Eyf ^ with Ey^ = 
( l / ( ^ j ) ) E t / / r If «rfo is small, 7/GREG ^as a poor 
precision (a high variance), except if the model fits 
exttemely well so that the residual Ej^ is small for all units 
in the domain. For GREG-D, Ey = 0, so the second term 
within curly brackets disappears. 

Next, consider the two SYN estimators. We get 

MSE,(4YN)=A^'-^Tr4E,; {r,,E,f 
n N-

^N'Ei (A.6) 

where r^^ and £^ are as specified in (A.2). The first term 
in (A.6) is the variance; the second is the squared bias 
obtained from (A.3). The variance term is often very small 
because the sample size in the denominator is that of the 
entire sample, not the perhaps much smaller size of the 
domain part of tiie sample. The squared bias term is zero for 
SYN-D, but non-zero, perhaps large, and not tending to 
zero for SYN-P. 

The term ^^ a^ r^^. E,^ in (A.2) is tiie HT estimator for the 
variable r^i^Ef^. The quantities 7?̂ ^ vary around a central 
value at or near the relative domain size, Pj = Nj IN. The 
mean (1 IN) Yu^dk equals P^ if x^ contains the constant 
" 1 " for every k. From (4.2) we get 

E(YdSYt^)-Yd--Tu^Ek- (A.3) 

The right hand side of (A.3) is zero for SYN-D, which is 
therefore nearly unbiased, but is different from zero for 
SYN-P, which is therefore biased. 

For the fixed-effects linear model formulations in section 
4.1, we now examine the relative improvement factor (5.1) 
under SRS with a sampUng fraction equal to f=nlN . 

Consider first the two GREG estimators. We get 

MSby.(yjG[^G)°' '̂ 7'(^rfGREG^ 

=N 2 1-./' 1 
n N-l 

E„ 

|5«^,-^(E„ 8„£,)| (^4, 

where the index T indicates the approximations derived via 
the linearized I^QREC and £^ = Epj^ for the P-model and 
Ef^ = Eji^ for the D-model. Developing the square in (A.4) 
and usmg {N^-l) IN^ - I and {Nj - I) l{N - I) ^ N^IN 
we get 

MSE j{ J'jGREG ) " ^ r ( <̂/GRE0 ) 

=A .̂ 
2 l - / 

VO 
'EU„ ( 1 - p r)4j (A.5) 

where n^^ = nP^ = n{NjlN) is the expected size of the 
domain portion of the sample, s. = sr\U,, and 
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Adjustment of Unemployment Estimates Based on 
Small Area Estimation in Korea 

YEON SOO CHUNG, KAY-O LEE and BYUNG CHUN KIM' 

ABSTRACT 

The Korean Economically Active Population Survey (EARS) has been conducted in order to produce unemployment 
statistics for Metropolitan Cities and Provincial levels, which are large areas. Large areas have been designated as planned 
domains, and local self-government areas (LSGA's) as unplanned domains in the EAPS. In this study, we suggest small area 
estimation methods to adjust for the unemployment statistics of LSGA's within large areas estimated directly from current 
EAPS data. We suggest synthetic and composite estimators under the Korean EAPS system, and for the model-based 
estimator we put forward the Hierarchical Bayes (HB) estimator from the general multi-level model. The HB estimator we 
use here has been introduced by You and Rao (2000). The mean square errors of the synthetic and composite estimates are 
derived by the Jackknife method from the EAPS data, and are used as a measure of accuracy for the small area estimates. 
Gibbs sampling is used to obtain the HB estimates and their posterior variances, and we use these posterior variances as a 
measure of precision for small area estimates. The total unemployment figures of the 10 LSGA's within the ChoongBuk 
Province produced by the December 2000 EAPS data have been estimated using the small area estimation methods 
suggested in this study. The reliability of small area estimates is evaluated by the relative standard errors or the relative root 
mean square errors of these estimates. We suggest here that under the current Korean EAPS system, the composite estimates 
are more reliable than other small area estimates. 

KEY WORDS: Synthetic estimator; Composite estimator; Hierarchical Bayes; Multi-level model; Jackknife mean square 
error; Gibbs sampling. 

1. INTRODUCTION 

Sample surveys are a more cost-effective way of 
obtaining information than complete enumerations or 
censuses for most purposes. The surveys are usually 
designed to ensure that reliable estimates of totals and 
means for die population, pre-specified domains of interest, 
or major subpopulations can be derived from the survey 
data. There are also many situations in which it is desirable 
to derive reliable estimates for additional domains of 
interest, especially geographical areas or subpopulations, 
from existing survey data. 

The Korean National Statistical Office conducts tiie 
Economically Active Population Survey (EAPS) in 30,000 
sample households every month. The characteristics of the 
economically active for 16 large areas (7 Metropolitan 
Cities, 9 Provinces) of the country are based on these 
monthly EAPS results. The EAPS is a large city or 
provincial level survey. Many small cities in a large area 
would prefer to obtain the unemployment figures for 
individual cities without conducting their own survey, and 
the most cost-effective way wotdd be to turn to the EAPS 
data. However, small cities belonging to a large area are 
unplanned regions in the EAPS and sample sizes for these 
small cities are typically too small due to the size of small 
cities. Therefore, if we estimate the unemployment statistics 
of small areas from the EAPS framework based on large 

areas, we may be imable to obtain an estimate with 
adequate precision since the sample size in specific small 
areas may not be large enough. The direct estimates for 
specific small areas from the EAPS cannot be sufficiently 
reliable in this situation. It is hence necessary to "borrow 
strength" from related areas to obtain more reliable esti­
mates for a given small area. An example of such would be 
to gather separately published administrative records of 
related small areas. We define related areas as those areas 
with sunilar economic and demographic characteristics as 
the small area we wish to estimate. Our aim is to adjust the 
direct estimates derived from the National Statistical Office 
of Korea through design-based and model-based indirect 
estimators, and hence secure reliable estimates. 

This paper focuses on discussion of the Hierarchical 
Bayes (HB) estimator using multi-level models, and the 
composite estimator that takes the weighted average of the 
direct estimator drawn from the Korean National Statistical 
Office and the synthetic estimator designed under the 
Korean EAPS system. The general multi-level model 
framework for small area estimation has been suggested in 
Moura and Holt (1999), and the HB estimation method 
using this multi-level model has been applied in more detail 
in You and Rao (2000). We use here the HB estimation 
method as in You and Rao (2000). Detailed accounts of 
synthetic and composite estimation are given by Ghosh and 
Rao (1994), Singh, Gambino and Mantel (1994) and 
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Marker (1999). Other references can be found in F.D. 
Falorsi, S. Falorsi and Russo (1994), and Chattopadhyay, 
Lahiri, Larsen and Reimnitz (1999). Falorsi et al. (1994) 
produce level estimates for unplanned small area territorial 
domains from the Italian Labor Force Sample Survey 
whereas Chattopadhyay etal. (1999) give a composite esti­
mation of dmg prevalence for sub-state areas to improve on 
the traditional design-based estimators. It is noted that both 
studies use supplementary information from the original 
survey data. For example, Chattopadhyay et al. (1999) uses 
additional information that relates various groups, counties 
and platming regions to one another. 

In order to "borrow sfrength", we divide the EAPS data 
into two homogenous sub-regional groups (Cities and 
Counties), and each sub-regional group is classified into 
four categories of sex (male, female) and age (15-34, 35 
and over). The imemployment characteristics of each 
category in the given small area are used as supplementary 
information for small area estimation. We also use the 
census of 2000 and the Resident Registration Population of 
2000 as auxiliary information to calculate the small area 
estimates. 

The contents of this paper are as follows. The Korean 
EAPS is described briefly m section 2. Section 3 gives the 
direct estimator drawn from the Korean National Statistical 
Office. Section 4 introduces design-based and model-based 
indirect estimators. We suggest synthetic and composite 
estimators under the current EAPS system, and the mean 
square errors of these estimates are derived using the 
Jackkrufe method. For the model-based mdirect estimator 
we apply the HB multi-level model in estunatrng small 
areas. Section 5 illustrates the methodology, studies model 
selection and presents results employing the EAPS data. 
Finally, some closing comments are made in section 6. 

2. ECONOMICALLY ACTIVE POPULATION 
SURVEY 

The Korean National Statistical Office conducts the 
Economically Active Population Survey (EAPS) on a 
monthly basis. The characteristics of the economically 
active (such as employment and unemployment figures) are 
obtained from the EAPS. The EAPS provides monthly 
information on the employment ti-end, which plays an 
important role in policy making and evaluation for the 7 
Metropolitan Cities and 9 Provinces. The interviewees of 
the EAPS are persons aged 15 and over residing in sample 
enumeration districts. The survey is conducted during the 
week just after the reference period, which is the week 
containing the 15* day of the month. The EAPS is 
conducted by visiting and interviewing each household. 

The sample households for the Korean EAPS are 
selected from the sampled population using stratified 
two-stage sampling. The sampled population consists of 
22,000 enumeration districts that are ten percent of the 1995 

census. According to the classification of major admi­
nistration regions, the countiy is divided into 16 large areas; 
there are 7 Metropolitan Cities and 9 Provinces, and the 
population is divided into 25 sfrata; 7 metropolitan strata, 
and 18 provincial strata consisting of 9 lu-ban strata and 9 
rural strata. The number of enumeration districts, which are 
primary sampling units (PSUs), selected in the 25 sfrata is 
computed using a preassigned relative standard error. Then 
PSUs are systematically selected with a probability pro­
portional to their measure of size within each stratum. Each 
sampled PSU is divided into the same number of segments 
as the measure of size of each PSU, each segment 
contairung 8 households on average. Within each PSU, 3 
contiguous segments, secondary sampling units (SSUs), are 
randomly selected, and all households in each selected 
segment are surveyed. The sample is self-weighting in each 
sfratum while the sampling rates are different from stratum 
to sfratum. The selected sample households are surveyed 
repeatedly for 5 years without rotating. 

The planned domains of the survey design are the 16 
large areas (7 Metropolitan Cities and 9 Provinces), and 
local self-government areas (LSGAs) within those large 
areas are unplanned sub-regional domains. The sample size 
for the current EAPS is approximately 1,200 PSUs, and 
30,000 households. The purpose of this study is to estimate 
unemployment statistics of the LSGAs from the EAPS. 

3. DIRECT ESTIMATION 

The direct estimator Y., representing the total unemploy­
ment figure for small area /, based on data from the EAPS, 
is as follows: 

Y, = YX = YYjiH = YYsMi Ji„ (3.1) 
s-l s-l h-l s-l h-l 

for / = 1, 2,..., /, 5 = 1,2 and h = 1,2,..., n., where s is an 
index of sex (male or female), n. denotes the number of 
sample enumeration districts for small area i from the 
EAPS, and ^7^ is the niunber of unemployed persons by 
sex for the hth sample enumeration disfrict within small 
area i from the EAPS. The multiplier M. = X. IX. is 
calculated under the condition that Y., is an approximately 
imbiased estimator, where ^X, is the estimate of the 
resident population in small area i, and ^X, is the sample 
survey resident population derived from the EAPS. The 
variance of 7.. in the ith small area is estimated using a 
linearization - based variance estimator. 

4. INDIRECT SMALL AREA ESTIMATION 

4.1 Synthetic Estimation 

For the /th small area belonging to a large area, the direct 
estimator Y._ does not provide adequate precision because 
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sample sizes in specific smaU areas are not large enough. 
The synthetic estimator 7.. is a design-based indirect 
estimator that borrows sfrength from related areas through 
implicit modeling of supplementary data along with the 
survey data. Suppose that there are / small areas in a large 
area. We then divide each large area mto several homo-
genous sub-regional groups, in which / = £,^| Ij. Each 
sub-regional group including /̂  small areas is classified into 
J sex-age categories. It is assumed that each small area 
belongs to one of several sub-regional groups and we obtain 
auxiliary information from the sub-regional group. The 
synthetic estimator has a low variance since it is based on 
a larger sample, but it suffers from bias should the 
assumption of homogenous sub-regional groups not hold. 

The following notations are used: Â ., for the number of 
enumeration distiicts in small area i; n., for the number of 
sample enumeration districts allocated to the /th small area; 
jP. 20005 for resident population derived from the census of 
2000 m cell {i,j); ;^,2ooo'fo'' Resident Regisfration 
Population of 2000 m cell {i,j); yî month' f̂"" Resident 
Regisfration Population at survey month in ceU {i,j); X, 
for the direct estimate of resident population in ceU (/, j); .Y.f^, 
for the number of the unemployed m the hth sample 
enumeration district in ceU {i,j). 

We consider the estimation of the total unemployed Y., 
for aU units belonging to small area /. A synthetic estimator 
for small area i within the sub-regional group including /, 
small areas is given by 

J p 
Y^ - Y ^— - Y i = I 2 I 

where 
- ' J""-

J ^ t -

pC pR 
j'1,2000 7 •'/.month 

pR 
j^i,2000 

(4.1) 

A = T;A 
1=1 

jY,, = Y Y jM, j^i 
i-i it-i 

in which . P. denotes the estimate of resident population 
obtained from admirusfrative sources for the f^ sex-age 
category (cell) in small area /, ^X denotes the estimate of 
resident population of they" sex-age category, . Y^^^ denotes 
the direct estimate of the total unemployed of the/'' sex-age 
category in the EAPS, and the multiplier .M is expressed 
by M. =.X.I.X.. Note that .7.. represent approximately 

J ^ ./ J I N 

imbiased estimates of .7 = 5 ,̂1, Ĵ !̂, jY.f^. 
As a measure of accuracy for the synthetic estimator Y. 

it is customary to take 

t'rS 

MSE(7.:^) = Var(7/)+ Bias(7.:^) 

In (4.2), the variance of 7. is readily estimated, but it is 
more difficult to estimate the bias of 7 . Under the 
assumption Cov(7.., 7 , ) = 0, wherê  7.. is a direct estima­
tor of Y.,, the estimator of MSE of 7. is given by 

mse(7,.') . (7,.' (4.3) 

^ys. 

Y.f-Vai{Y.). 

Note that mse {Y.'!) in (4.3) is approximately an unbiased 
estimator, but is potentially unstable should the number of 
sample enumeration districts not be large enough. Another 
measure would be to take the average of these MSE 
estimators over small areas. This average MSE estimator is 
expected to be stable, but it is not an area-specific measure 
of accuracy (Ghosh and Rao 1994). 

The Jackkrufe method is an altemative method that can 
provide a more accurate area-specific measure. For small 
area /, the estimator for the mean square error of the esti­
mate of the total unemployed is given as follows: 

msejN(7,.:̂ ) = VarjN (7,.;̂ ) + BiasjNCi',) 
(4.4) 

where 

n.-l 
VarjN(7/) = -^—Y 

« , h-i 
Y'{h)--Y YUI) 

BiasjN(y,0 = {n.-l) 

n, l-l 

r^s -YY'{h)-t 
« , h-l 

^ys, Here, 7 . {h) denotes the estimate of 7 . obtained when 
district h is removed from the sample. 

4.2 Composite Estimation 

For small area /, the direct estimator 7̂ .. derived from the 
EAPS does not provide adequate precision because sample 
sizes in specific small areas are seldom large enough. Also, 
the synthetic estimator Y., that borrows strength from 
related small areas may be biased. A natural way to balance 
the synthetic estimator Y., against the mstability of tiie 
direct estimator Y., is to take a weighted average of the two 
estunators. The following composite estimator 7 . can be 
considered to gain adequate precision for small area 
estimates: 

9."= = 0). 7 , + (1 - CO.) 7 ^ / = 1, 2,..., / „ (4.5) 

where co,. is the weight having a value between 0 and 1. 
Under tiie assumption of Cov( 7., 7. ) = 0, the optimal 

c 
weight <»,(opt) that minimizes the MSE (Y., ) with respect to 
(i). can be approximated by 

(0 
MSE (7.') 

/(opt) -TrS 
MSE(y,.r) + Var(7..) 

(4.6) 

The optimal weight at.. . in (4.6) may be estimated by 
^^•^) substituting the Jackknife estimator msej^(7.) given in 
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,ys^ (4.4) for MSE(7 ), and replacing Var(7..) by Var(7..), 
the linearization-based estimator typically used by the 
National Statistical Office of Korea. The estimated weight 
"'/(opt) is then given by 

CO 
msejN(7 / ) 

( op t ) » <j — • ^ » • 

msej^(7.')+Var(7,..) 

(4.7) 

Using the estimated weight given in (4.7), we can obtain 
the composite estimator of the total unemployed as foUows: 

«/(opt)>^-.-(l CO /(opt) )Y; , 1 = 1,2,...,/,. (4.8) 

The Jackknife method was used to obtain area-specific 
measures of accuracy. 

4.3 Hierarchical Bayes Estimation Using Multi-level 
Models 

Suppose that there are / small areas. We consider the 
following multi-level model that integrates variations vWthin 
and between the small areas in a single model: 

Yik = 4 P / + e.^' P, = Z.J + v., / = 1, 2,..., /; 

k = 1,2,..., K, (4.9) 

where y.^ are the direct estimates associated with the Mi 
month in the ith small area, which may be adjusted through 
the model (4.9) with the auxiliary variables x./^ = 
(^7i*'^/2i' —'•'^ipk)^ selected from the EAPS, census and 
adminisfrative records; ^. isa p x 1 vector of regression 
coefficients; Z. is a p >( q design mafrix; y is a ^ x 1 
vector of fixed coefficients; and v̂ . = (v,,,v.2,..., v. J''̂  is a 
p X 1 vector ofrandom effects for the rthsmaU area. 

The v.'s are assumed to have a joint distribution 
V. ~ N (0,0) with an unknown variance covariance 
mafrix <I) and the e.j^'s are assumed to be independent 
random error variables with E (ê .̂ ) = 0 and Var(e.^) = o,. v. 
and e.,^ are also assumed to be independent. 

To obtain HB estimates for each small area and posterior 
variances of estunates obtained from (4.9), we apply You 
and Rao's (2000), HB multi-level model framework as 
follows: 

Model 1: HB model with equal error variances. 

(i) [7„|P,-,cj^]'~ Ar(x,[(3,,of), 

/= 1,2,...,/; A: = 1,2, ...,A:, 

ind 

(4.10) 

(ii) [|3,|Y,0]^ii." iV(Z, Y,0), (4.11) 

(iii) Marginal prior distributions are as follows: 
Y~ N^{0, D), T^~G {a, b), and Q. ~ Wp{a,R), where 
T̂  = oj , Q = O"' andD, a, b, a and/? are known and 
G{a, b) denotes a gamma distribution witii its density 
g iven by f{x)={b''IV{a)]x"-^e-'" 
{a>0,b>0,x-tO). Wp{a,R) denotes a Wishart 
distribution. 

Model 2: HB model with unequal error variances 

(i) [yikl^i'olV^ N{x,Xal), 

i = l,2,...,I;k=l,2,...,K, (4.12) 

(ii) [P,|Y,<!>]'- A/,(2.7,(D), (4.13) 

(iii) Marginal prior distributions are as follows: 
y~N^ (0,Z)),̂  x.'^ G{a.,b), and €l~W^ (a,/?), 
where x. = o," , Q = <I>"\ and D, a., b., a and R are 
known. 

We can use the Gibbs sampler to obtain the posterior 
estimates of p̂ .̂  = x,̂ . P,. for the kth month in the rth small 
area using the posterior distribution of ^. given y = 
({j/i}' '= 1>2,...,/; A: = 1,2, ...,/r). Its implementation 
requires generating samples from full concUtional posterior 
(Ustributions. The necessary full conditional posterior distri­
butions under Model 1 are given by: 

For/ = 1,2,...,/, k= l,2,...,K, 

(i) [P,|:v,Y,fi,xJ ^ N/{xXk^ik4-^)-' 

(\ E i Yik^ik + "^/T)> (\ E * x.,Xil + Q)-'), 

(ii) [j\y,^,a,xj~N^{{Yi Z^'QZ.^D-') 

(E,z,'i2p.),(E, Z/QZ. + D - V ) , 

(iii) [a\y,^,y,xj^wia^I,R^p2. (p.-Z.Y)(p.-Z,Y)^j, 

(iv) [x^\y,^,j,Q.]~G «+y.^+-E,Ei (y / i -%P/) ' 

Using initial values y^'^\ Q.^^^ and T̂  , we can generate 
samples iteratively based on (i)-(iv). The M Gibbs samples 
{p|'"\ y^'"\ D.^'"\ x'-f; m = 1,2,..., M} after implementing 
a "bum-in" period are assumed to be iterative samples from 
the joint posterior disttibution of p., Y, ̂  and x̂ . The 
posterior estimates of P̂ . can be calculated using the M 
iterative samples {P- , m = 1,2,...,M}. 

The posterior mean of (î .̂  and posterior variance of 
estimates can be obtained by implementing Markov chain 
Monte Carlo (MCMC) integration techniques from M 
Gibbs samples. It should be noted that should the Gibbs 
samples of the parameters be produced using the 
WinBUGS program (Spiegelhalter, Thomas and Best 
2000), the need to derive the full conditional posterior 
distributions for the parameters mentioned above ceases to 
exist. This is due to the fact that the Gibbs samples would 
be produced by the full concUtional posterior distributions 
of the parameters (inherent in the process of mnning the 
program), provided that the appUcable model, priors and the 
initial values of the parameters are given to the WinBUGS 
program. The full conditional distributions for Gibbs 
sampling under Model 2 are similar to the above Model 1. 
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5. DATA ANALYSIS 

5.1 Description of the Data and HB Model Fitted 

Before we continue, we highlight the point that direct, 
synthetic, composite and HB estimates were all derived 
using the EAPS data of December 2000. However, the HB 
estimates were derived using additional EAPS data of May 
and July 2000 for model fitting. 

The large area ChoongBuk Province in Korea consists of 
10 local self-government areas (LSGAs), which are small 
areas. The number of sample enumeration districts of the 
ChoongBuk Province allocated in the EAPS is 63, and the 
number of sample households is 1,512. Under the EAPS, 
the planned domains are large areas such as the ChoongBuk 
Province, and hence small areas such as the LSGAs fall 
under the category of unplanned domains. This leads to the 
concern that should the estimates of the total unemployed 
of the LSGAs be derived using only the sample enumer­
ation districts allocated under tUe LSGAs, the standard 
errors will become large. To address this problem, we have 
used data of neighboring small areas with similar economic 
and demographic characteristics as the areas considered 
here as complementary information for small area estima­
tion. We have first divided the large area of ChoongBuk 
Province into two sub-regional groups with similar 
economic and demographic characteristics. The two sub-
regional groups mentioned above are Cities and Counties. 
We next divided each sub-regional group into four 
categories of sex (male, female) by age (15-34, 35, and 
over). The unemployment and economically active 
population (EAP) estimates for each of the categories of 
each sub-regional group were derived from the EAPS data. 

Using the above estimates and the estimated resident 
population for each of the four categories of LSGAs 
produced monthly by the Korean National Statistical Office 
as supplementary data, we have estimated the synthetic and 
composite estimates for the unplanned domains (10 
LSGAs) within the ChoongBuk Province based on the 
EAPS data of December 2000. 

Let the direct estimate for the Ath month in small area /' 
be y.j^. The dfrect estimates derived from the EAPS data of 
May, July and December 2000 were used as dependent 
variates in HB multi-level models. The additional auxiliary 
variates for the kth month in small area / are as follows: 

^ik~^-'^ilk'^i2k'-'^i3k'^i'ik) ' ' ~ l,2,...,I;k = 1 ,2 ,3 

^ Y 
- rdir 

\ t ' \ / 

^ Y 
- 2''dir 

.Pi 

\ 3 X 
Y 

Til! 

P 
A'i _ Y 

~ 4-'dir 
V4^ 

The element of x.̂ , {jP I.X)j ^^ {j = 1, 2,3,4), denotes 
the estimate of the total unemployed of the / ' ' sex-age 
category in small area i, which is given in (4.1). We tried to 
adjust the direct estunates, y./^, through the HB multi-level 
model with auxiliary variates, x.̂ . The random regression 
coefficient vector p. = (p^,, p;2, P,̂ , P,4)^ of the /* small 
area in (4.9) was assumed to have the following structure: 

P/1 = Tio -̂  V. , ; p,.2 = Y20 + v,2; P,3 = Y30 + v,.3; P,4 = Y40 + v,.4, 

where the fixed regression parameter vector Y = 
(I'lc T20' '>'30' 4̂0)'̂  is an unknown value, and the random 
effect vector v. = (v,-,,v,-2''̂ /3'̂ /4)'̂  of the rth small area 
follows Â4 (0 ,0 ) . 

Using the vague proper priors for Y, X and Q determined 
by setting D = diag (10\ 10\ 10\ lO"), a = 4, a =b = 
a. = b. =0.001 and R with diagonal elements of 1 and 
olf-diagonal elements of 0.001, we generated 6,000 Gibbs 
samples iteratively. Using the 3,000 samples after the 
"bum-in" period (3,001-6,000), the posterior means of 
unemployed persons of the ith small area and the posterior 
variances of the estimates were calculated. The data 
analysis was conducted using the WinBUGS program. 

5.2 Model Selection 

We considered model checking and comparison using 
MCMC methods under the two assumed HB multi-level 
model frameworks. First, we examined the posterior means 
of standardized residuals, 

v., - £(v-,) 
resid,.̂  = ' i = 1, 2,..., 10; k=l,2, 3, 

Var(>',,) 

which are directly computable in WinBUGS. Here 7,.̂ . are 
the direct estimates obtained from the data of the EAPS, 
and E{y.^ and Var(>'̂ .̂ ) are obtained from the predictive 
disttibution ofy.j^. Figure 1 and Figure 2 give their normal 
Q-Q plots, both revealing a high degree of agreement with 
normality. 

To make a comparison between the assumed HB 
multi-level models, we calculated a negative cross-
validatory log-likelihood, - ;[^,-ilog/(^,^|x,i)), and a 
posterior mean deviance, - 2 ̂ ,.^log/(^.^|9), for each 
model. The two measures are also computable using the 
WinBUGS program, y,.,. denotes all data except y,.̂  and 9 
represents the parameters of the predictive distribution of 
y.j^. Table 1 gives the results for the HB multi-level model 
checks based on a 3,000 iteration BUGS run. Model 2 
yielded a negative cross-validatory log-lUcelihood of 121.52 
and a posterior mean deviance of 243.05, both of which are 
smaller than the corresponding Model 1 values. For our 
data. Model 2 provides a better fit than Model 1. 
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Figure 1. Normal Q-Q Plot (Model I) Figure 2. Normal Q-Q Plot (Model 2) 

Table 1 
Relative Comparison Between HB Multi-level Models 

HB Model Negative Cross-Validatory 
Log-Iikelihood 

Model 1 188.67 

lVIodeI2 121.52 

Deviance 

377.30 

243.05 

In order to stiidy how the direct estimates y.,^ support tiie 
HB multi-level models, we employed concUtional predictive 
ordinate (CPO) values (You and Rao 2000, page 178). The 
CPO values under Model 1 are calculated by 

/ \ H B 
CPO 

ik 

1 

M /(>'/* IP) 
(m) 2(„,)^ 

for i = 1,2,..., 10, A: = 1,2,3, where /(>';^|P,,Og) are the 
conditional normal densities given by (4.10). For model 2, 
the CPO values are calculated wdth a, . Using tiie Gibbs 
sampler, we can calculate the CPO values for all points (see 
Gelfand (1995) for a more detailed discussion). Figure 3 
gives a CPO comparison plot for the two assumed HB 
multi-level models. 

0 : Model 1 
* : Model 2 

+ 
* + 

o o o 

+ 

o 
+ 
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Figure 3. CPO comparison plot 

Model 2 proves to be the better of the two HB 
multi-level models, since its CPO values are sigruficantly 

larger in every small area than those for Model 1. 
Therefore, we conclude that Model 2 with unequal error 
variances is a good model for our data. 

5.3 Estimation Results 

Table 2 shows-the estimates of the total unemployed of 
the 10 LSGAs within the ChoongBuk Province under the 
EAPS data of December 2000. The estimated standard 
errors of the direct and HB estimates are provided together 
with the Jackknife root mean square errors of the synthetic 
and composite estimates. 

In general the dfrect estimates prove to be highly 
luistable. Studying the Jackknife root mean square errors of 
the estimates of the total unemployed in the LSGAs, we 
find that in comparison to the direct estimates, synthetic and 
composite estimates are more stable. Although the esti­
mated standard errors of the HB estimates are clearly 
smaller than those of the dfrect estimates over all the 
LSGAs, they turn out to be highly variable in certain 
LSGAs such as areas 3, 4, and 5. Overall, the composite 
estimates are more stable than other estimates for our data. 

In order to evaluate the reliability of the direct and HB 
estunates of each LSGA, the relative standard errors of 
these estimates were obtained. Similarly, the reliability of 
synthetic and composite estimates was evaluated by the 
relative bias values and the relative root mean square errors 
of these estimates. Denoting 7̂ .' as the estimator of the total 
unemployed in the i"" small area, its relative bias (RB), 
relative standard error (RSE) and relative root mean square 
error (RRMSE) are given by the following respectively: 

RB(7 ; ) = 

RSE (7.*) = 

RRMSE (7,*) = 

Bias ( 7 ) 
X 

\ 

\ 

Var(y,.:) ^ 

yl 

mse (7*) 
' X 

7* 

xlOO, 

100. 
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Under the condition that 7* is an unbiased estimator, the 
RSE and the RRMSE of 7* are identical. 

Table 3 shows the RB, RSE and RRMSE values of the 
estimates of the total unemployed of the 10 LSGAs within 
the ChoongBuk Province. 

When comparing the bias values of synthetic and 
composite estimates, the average relative bias value of the 
composite estimates (^v.RB=10.26%) is somewhat smaller 
than tiiat of the synthetic estimates (^v.RB=12.24%). 
However, both the synthetic and composite estimators show 
large values of bias in most small areas with the exception 
of two areas (areas 3 and 10). 

We evaluate the reliability of these estimates based on 
the RSE (or RRMSE) values of small area estimates. It 

should be noted that since the direct estimates shown in 
Table 3 are unbiased, tiie RSE and RRMSE values of these 
direct estimates are identical. The National Statistical 
Office of Korea expects an approximate maximum RSE (or 
RRMSE) limit of 25% as the standard for reliability of 
small area estimates. With the exception of area 1, the RSE 
values of direct estimates do not satisfy this criterion for 
reliability. It follows that under the current EAPS system, 
direct estimates are unreliable. In conttast, both the RRMSE 
values of synthetic and composite estunates and the RSE 
values of the HB estimates were much smaller than the 
RSE(=RRMSE) values of the direct estimates in all LSGAs 
considered. 

Table 2 
Estimates of the Total Unemployed for Ten Local Self-Govemment Area (LSGA) in ChoongBuk (December, 2000) 

Area 
No. • 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Y. 
t-

8,517 
3,949 

365 
503 
781 

1,275 
1,032 
1,795 
1,023 

512 

Direct 

Est.se 

1,733 
1,445 

390 
373 
676 
577 
646 
893 
602 
384 

Synthf 
y^ 

7,969 
2,823 
1,830 

612 
1,164 
1,230 
1,459 
1,825 
2,888 

872 

;tic 

>sejN 
580 
725 
110 
234 
169 
282 
295 
346 
574 
94 

Composite 

l",'' 

8,023 
3,050 
1,723 

581 
1,140 
1,238 
1,384 
1,821 
2,000 

851 

\/msejN 
493 
607 
101 
196 
158 
233 
252 
306 
270 
92 

Hierarchical Bayes 
(Model 2) 

-HB 
lift 

8,514 
3,773 

399 
440 
567 

1,138 
1,035 
1,790 

970 
511 

Est.se 

358 
474 
152 
106 
261 
270 
117 
69 

200 
63 

"/ 

22 
11 
4 
2 
3 
3 
5 
6 
5 

2 

Table 3 
Relative Standard Errors (RSE) of Direct and HB Estimates for Ten Local Self-Govemment Areas (LSGA). 

Relative Bias (RB) Values and Relative Root Mean Square Errors (RRMSE) of Synthetic and Composite 
Estimates for Ten LSGAs (December, 2000) 

Unit % 

Area 
No. 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Av.RB 
^v.RSE 
^v. RRMSE 

Direct 

RSE, 

20.35 
36.59 

106.91 
74.15 
86.58 
45.23 
62.56 
49.77 
58.83 
74.93 

61.59 

Synthetic 

RB, 

6.92 
23.77 
-2.95 
16.26 
-7.04 
17.56 
14.86 
15.25 
15.01 
-2.75 
12.24 

RRMSE, 

7.27 
25.69 

5.99 
38.30 
14.51 
22.90 
20.25 
18.97 
19.88 
10.79 

18.46 

Composite 

RB, 

5.99 
18.39 
-2.87 
14.37 
-6.67 
14.43 
13.29 
13.49 
10.20 
-2.82 
10.26 

RRMSE, 

6.15 
19.91 
5.89 

33.73 
13.84 
18.80 
18.21 
16.78 
13.50 
10.79 

15.73 

Hierarchical Bayes 
(Model 2) 

RSE, 

4.20 
12.56 
37.97 
24.00 
45.94 
23.69 
11.28 
3.87 

20.65 
12.29 

19.65 

/tv.RB = average absolute relative bias over all LSGAs. 
/(v.RSE = average relative standard error over all LSGAs. 
/IV. RRMSE = average relative root mean square error over all LSGAs. 

http://Est.se
http://Est.se
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It has been noted that both composite and synthetic 
estimators produced reliable estimates for all the LSGAs, 
and also that the estimates were similar to each other. 
However, we stress that tiie composite estimator showed 
higher gains in efficiency against the synthetic estimator in 
all the LSGAs. Despite being efficient and reliable in eight 
of the LSGAs (areas 1, 2, 4, 6, 8, 9, and 10), the HB 
estimates fall below the criterion of reliability in the other 
two LSGAs (areas 3 and 5). 

The RRMSE values of the composite estimates are on 
average 70.66% smaller than the RSE(=RRMSE) values of 
the direct estimates, with tiiis figure ranging from 45.59% 
(area 2) to 94.49% (area 3). In comparing RSE values of the 
direct and HB estimates, HB estimates are on average 
69.44% smaller tiian tUe direct estimates, with this figure 
ranging from 46.94% (area 5) to 92.22% (area 8). ft is 
notable that RSE3 =37.97% and RSE, =45.94% in HB 
estimation, which reflects not only that there are large 
variations within areas 3 and 5, but also possible variations 
of the estimates within each area for different months. For 
such areas as 3 and 5, it is suggested that additional sample 
enumeration districts should be allocated to reduce the 
standard errors of the estimates. Thus we come to the 
conclusion that under the current EAPS system, the compo­
site estimator were more stable and reliable than the other 
estimators, and while the model-based HB estimator can be 
efficient in most areas, it has a major shortcoming in that it 
is highly variable in some areas 

6. CONCLUSION 

The Korean EAPS is a nation-wide sample survey, and 
the only official source producing monthly employment 
and unemployment figures. The monthly-published data 
includes the unemployment rate, employment rate, the 
economically active rate and also the demographic charac­
teristics of the productive population. However, the EAPS 
design focuses on figures for large areas such as 
Metropolitan Cities and Provincial levels, and hence is a 
less than suitable source on its own for obtaining unem­
ployment figures of unplarmed sub-regional domains such 
as the LSGAs, especially since these areas are increasingly 
attracting interest. We have suggested the design-based 
indirect estimators (synthetic and composite estimators) and 
HB multi-level model estimators for deriving unem­
ployment figures for the LSGAs within large areas, using 
only the EAPS data and the official figures of the Korean 
National Statistical Office (supplementary administrative 
information). The Jackknife mean square errors of the 
synthetic and composite estimates were infroduced as 

measures of accuracy for the small area estimates. The 
posterior variances of the HB estimates were also used as 
measures of precision for the small area estimates. 

The results using the EAPS data show that the small area 
estimators (synthetic, composite and HB multi-level model 
estimators) were much more effective ui comparison to 
resuUs obtamed using the direct estimator, and moreover 
most of these estimates had significantly lower standard 
errors (or root mean square errors) than that of the direct 
estimates. In terms of gains in efficiency, the composite 
estimator performed much better than other estimators. 

The Korean EAPS is conducted every month, in addition 
to which an overall review and redesign of the survey is 
carried out every five years. In constructing a new survey, 
a general review of population sfratification, sample allo­
cation and clustering is being considered so that the 
reUability of small area level estimates can be strengtiiened. 
Studies to estimate other relevant domains such as sex, age 
and education in addition to the existing sub-regional 
domains withm large areas are under consideration, based 
on the new survey design. 
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Conditional and Unconditional Analysis of Some Small Area Estimators 
in Complex Sampling 

LOREDANA DI CONSIGLIO, PIERO DEMETRIO FALORSI, STEFANO FALORSI and ALDO RUSSO' 

ABSTRACT 

This work deals with the unconditional and conditional properties of some well known small area estimators: expansion, 
post-stratified ratio, synthetic, composite, sample size dependent and the empirical best linear unbiased predictor. As it is 
commonly used in household surveys conducted by the National Statistics Institute of Italy, a two-stage sampling design 
is considered. An evaluation is carried out through a simulation based on 1991 Italian Census data. The small areas 
considered are the Local Labour Market Areas, which are unplanned domains that cut across the boundaries of the design 
strata. 

KEY WORDS: Relative conditional bias; Relative root conditional MSE; Conditional coverage rate. 

1. INTRODUCTION 

Sampling theorists prefer to plan the sampling strategy 
on the basis of the unconditional sample space U^, i.e., the 
set of all possible samples {unconditional approach). 
However, after data collection, the reliability of an estimate 
obtained by means of an estimator Y, can be evaluated 
either unconditionally or conditionally; i.e., the evaluation 
can be assessed on the conditional sample space U^ 
{conditional approach), where U^ is the set of samples 
with some specific properties. 

The use of conditional arguments in sampling has been 
studied by Holt and Smith (1979) and Royall and 
Cumberland (1985). The use of the conditional approach 
for small area estimation has been studied by Rao (1985) 
and Samdal and Hidiroglou (1989). These papers consider 
the case of simple random sampling. In the context of small 
area estimation, the conditional and unconditional 
properties of some estimators for a two-stage sampling 
design with sfratification of the primary sampling units have 
been stiidied in Russo and Falorsi (1993), Russo and Falorsi 
(1996), Falorsi and Russo (1999) and Falorsi, Falorsi and 
Russo (2000). 

This paper considers a two-stage sampling design with 
stratification of the Primary Sampling Units (PSUs). This 
kind of design is generally used in household surveys 
conducted by the National Statistics Institute, e.g., the 
Labour Force Survey (LFS). The aim of this work is to 
evaluate, on the basis of a simulation study, the conditional 
and unconditional properties of some important small area 
estimators. 

The principal aspects of our investigation are: 

- the simulation study is based on a sample design with 
sttata, cluster delineation and sample size similar to 
those used in the LFS; 

- the small areas considered are the Local Labour 
Market Areas (LLMAs), which are unplanned 
domains that cut across the boundaries of the design 
strata; 

- the conditional analysis is developed using a sample 
space [/(,, as reference set, consisting of all the 
possible samples containing a fixed number of PSUs 
belonging to the LLMA; 

- the estimators examined are expansion, post-
stratified ratio, synthetic, composite, sample size 
dependent and empirical best linear unbiased 
predictor. For a review see Ghosh and Rao (1994), 
Singh, Gambino and Mantel (1994), Pfeffermann 
(1999) and Rao (1999). 

In section 2 the sampling design, the parameters of 
interest and the current estimator used by the LFS are 
described. Section 3 illustrates the small area estimators 
examined in the present work. In section 4 the empirical 
results of the simulation study are shown. Section 5 
contains a short summary with suggestions for extension of 
the analysis. 

2. DESCRIPTION OF THE LFS SAMPLING 
STRATEGY 

2.1 Sample Design 

The LFS is a quarterly sample of about 72,000 
households designed to produce estimates of the labour 
force status of the population at national and regional 
levels. The survey in each quarter is based on a composite 
design. Within a given province (administtative area inside 
the region) the municipalities are divided into two area 

Loredana Di Consiglio, Piero Demetrio Falorsi and Stefano Falorsi, Istituto Nazionale di Statistica, Via Cesare Balbo, 16 - 00184 Roma, ITALY; Aldo Russo 
University di Roma TRE Via C. Segre, 2-00142 Roma, ITALY. 
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types: the Self-Representing Area (SRA) - consisting of the 
larger municipalities - and tiie Non Self-Representing Area 
(NSRA) - consisting of the smaller ones. 

In the SRA a stratified cluster sampling design is 
applied. Each municipality is a single sfratum and the PSUs 
are the households selected by means of systematic 
sampling. AU members of each sampled household are 
interviewed. 

In the NSRA the sample is based on a sfratified two-
stage sample design. The PSUs are the municipalities, while 
the Secondary Sampling Units (SSUs) are the households. 
The PSUs are divided into sttata of the same magnitude in 
terms of population size. Two sample PSUs are selected 
from each sfratum without replacement and with probability 
proportional to the PSU's population size. The SSUs are 
selected by means of systematic sampling in each PSU. All 
members of each sample household are interviewed. 

2.2 Notation and Parameter of Interest 

For sunpUcity's sake we will infroduce notation only for 
the two-stage sampling design of the NSRA. Note that the 
derivation of tiie quantities and expressions for the SRA 
case is a special case of NSRA. 

With reference to the generic geographical region we 
inttoduce the following subscripts: p{p = l,...,L) for 
province; h{h = l,...,H ) for sfratum; / for muiucipality; 
j for household; a{a = I,...,A) for age-sex group. A 
quantity associated to sfratum h, municipality /, and 
householdy will be briefly referred to as a quantity in hij; a 
quantity associated to sfratum h and municipality / will be 
referred to as a quantity in hi. The following notation is 
also used: N^^ for the number of municipalities in h; P^ for 
the number of persons in h; n^ for the number of sample 
municipalities in h; M^̂ . for the number of households in 
hi; Pf^. for the number of persons in hi; m̂ .̂ for the number 
of sample households in hi; Z*̂ /,, for the number of 
persons in group a belonging to hij and P^.. for the number 
of persons in hij. 

Further let 

Y = YYYYY^ 
a-l h-l i-l 7=1 

ahij 

be the total of the characteristic y for the regional popu-
denotes the total of the characteristic of 
^ |̂.. persons in group a in household hij. 

lation, where 7^^. 
interest _v for the P 

2.3 Estimator o f y 

An estimate of total Y is obtained by means of a 
post-sfratified ratio estunator expressed by 

A Y'^ 

Y" = Y -^Pa 
a = l p^ 

(1) 

H "H "'hi 

Ya = 1^ 1^ 2^ ^hij^ahij 
h-l i-l j-l 

and (2) 

H "* '"hi 

Pa - lu 2^ 2^ ^hijPahiJ 
h-l ( = 1 7=1 

represent unbiased estimators of 

Ya = 2^ lu Zu Y^hij 
h-l 1 = 1 7=1 

and 

Pa ^ l u 2u l u PahiJ-
h-l i-l j-l 

The symbol K^^.., that denotes the basic weight, is 
expressed by (Cochran 1977) 

K, 
Ph Ki 

" ~ "hPhi '"hi' 

Note that for tiie SRA 

n^ = 1 and P,„. = P,,, so K^ 
M, hi 

hij 
m hi 

3. SMALL AREA ESTIMATORS 

We now consider the problem of estimatuig the total of 
a y variable for imits belonging to a small area. Let 
d{d = l,...,D) he the generic small area of a given 
geographical region. Since the LLMAs may cut across 
provinces, the total of interest in small area d is defined by 

Yd = t Y,, (3) 

with 

a-l 

_ rf 'dp dh ni 

Yda = 2^ lu lu lu Y^iijj 
p-l h-l ( = 1 7 = 1 

where 

where L^ denotes the provinces including part of the small 
area d, / / , are the sfrata of province p intersecting the 
small area a and N^j^ denotes the municipalities of sfratiim 
h belonging to small area d. 

The choice of an estimation method basically depends on 
available information. In Italy the accessible information at 
the small area level is currently very poor: only total 
persons in age-sex groups can be obtained at the muni­
cipality level; this is why all the small area estimators 
considered here will be based on this information only. In 
the simulation work we have considered the following 
direct estimators: 
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(i) the expansion estimator 
A 

Y 
a-l 

S-E 
da (4) 

where 
J-d ^ "dh "'hi 

Yja = Y Y Y Yf^hiiYah 
p-l h-l i-l J-l 

hij ahij 

is the expansion estimator of Yj^ and n̂ ^ is the number 
of sampled municipalities of sfratum h belonging to 
LLMAc?; 

{ii)thepost-stratified ratio estimator 

;̂ = E 
A Y^ 
'-^ ^da 

nE 
da a-l p 

da (5) 

in which 
'-d ^ "dh "'hi ^ '"'' ^ "''* ""*' 

Yja=lu2u 2LU2U ^hij Yahij ' ^</a = 2u lu lu lu ^hij' 
p-l h-l 1 = 1 7 = 1 /=1 h-l i-l j-l 

ahij • "da~lu lu lu lu "ah 
p-l h-l 1 = 1 7 = 1 

In the simulation work reported here we have considered 
the following design-based indirect estimators: 

(iii) the synthetic estimator 

4, Y' 
y! - E -^p. 

a-l p' 
da (6) 

in which Y^ and P^ are expressed by formulas (2). 
The estimator (6) is based on the underlying 
assumption that, for each post-sfratum a, the small area 
mean equals the mean at the regional level; 

(iv) the composite estimator, considered in two altemative 
forms 

y? = a ,7 ; . ( i -« , )# ; 

YT = a r / . ( l - a ) 7 f 

(7) 

(8) 

where a^(0 ^ a^ ̂  1) is a specific small area weight 
while a ( O ^ a ^ l ) is a common weight for all the 
LLMAs of the region. The methods used to calculate 
weights a^ and a will be described in subsection 4.1. 
Both of the composite estimators equal by definition 
the synthetic estimator when the sample size in the 
small area equals zero; 

(v) the sample size dependent estimator (SSD), expressed 
by 

(9) yr = ^dYf-i^-^d)Y! 

where 

^ < / = 
Pf/i^Pd) 

if P,\XP, 

otherwdse 

where ^ is a given constant, P^ =Ya-i Pda "̂"̂  
Pd "^ Ya-l Pda-

The estimator (9) is based on the result that the 
performance of the post-sfratified ratio estimator depends 
on the proportion of the sample falling in the small area. If 
the proportion of the sample within the small area is 
reasonably large tiien tiie estimator (9) equals the 
post-sfratified ratio estimator. Otherwise it becomes a 
composite estimator with increasmg weight (1 - w )̂ on the 
synthetic estimator, as the size of the sample in tiie small 
area decreases. 

Finally, in the framework of model-based indirect 
predictors, we consider: 
(vi) the empirical best linear unbiased predictor (EBLUP) 

yEP ,yR 
Y.C- ( l -Y . )^ jP (10) 

where 

P = £x^x^/(dt + \|/̂ ) 
d-l 

-I 

Y^jYj /i&\^^^) 
d-l 

yd = oV(^v + v^) (11) 

that is based on the well-known area level linear mixed 
model of Fay and Herriot (1979): 

,R 

Yd = ^d^^^d^^d (12) 

in which: p is the vector of regression parameters, Xj 
is a vector of area-specific auxiliary data, v̂  are 
uncorrelated random area effects with mean zero and 
variance o^, ê  are independent sampling errors with 
mean zero and knovra variance y^, P is the weighted 
least squares estimator of P with weights (o ,̂ + v|/̂ )"' 
and 6 „ is suitable estimator of o„. In this work we 
utilise an asymptotically consistent estimator of o^ that 
can be obtained iteratively by alternating weighted least 
squares estunation for P with the solution of 

Yit'-x'^f 
d-l = D-k 

°v+V</ 

for a^, where ^is the number of elements of vector x^, 
corresponding to the number of auxiliary variables in the 
model (12). The previous description is based on the 
assumption that the variances v|/̂  are known; in practice 
these variances are seldom known. In the present study we 
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have considered two different methods (see subsection 4.1) 
for evaluating sampling variances. From these two methods 
we obtain two alternative empirical best linear unbiased 

J . , {^EPl , ^EP2 

predictors, Y^ and Y^ . 

4. EMPIRICAL STUDY 

4.1 Simulation of the LFS Sample Design 

In order to illustrate the conditional and unconditional 
properties of the estimators discussed in the preceding 
section, we carried out a simulation study involvmg 
repeated draws of a sample design with sfrata and cluster 
delineation and sample size similar to those used in LFS. 
The study can be summarised as follows: 
- the information referring to the auxiliary variables and 

the totals of mterest Yj{d = 1, ...,D) are taken from 
the 1991 General Population Census of Italy; 

- the variables of interest are Employed, Unemployed 
and persons searching for their first job; 

- the auxiliary variables for the post-sfratification of the 
members of the sampluig households are sex and age; 

- the small areas of interest are the 27 LLMAs of the 
Lazio region; 

- for the Monte Carlo simulation R = 2,000 two- stage 
LFS samples were selected for each one of the five 
provinces of the Lazio region; 

- the number of sex-age classes considered in the 
constmction of the syntiietic estimators equals 28; the 
age groups are 0-14,15-19,20-24,25-29,30-34,35-39, 
40-44,45-49, 50-54, 55-59, 60-64, 65-69, 70-74, more 
than 74; 

- the SSD estimator has been evaluated with different 
values for tiie parameter X{X = 2I3,X = 1.5 and X = 2); 
the best performance in terms of mean square error has 
been obtained for ^ = 2, so in this work only the resuUs 
for SSD with X = 2 aie reported; 

^ EPl 

- for the empirical best linear unbiased predictors Yj 
and 7, we have removed from the analysis the 
LLMA of Rome. In fact the LLMA of Rome is very big 
in terms of population and we have verified that it has 
too much uifluence in the model. The model has been 
fitted separately for two groups of small areas (see 
section 5.1 for the definition of groups). The following 
covariates have been chosen: 

1) in the model for Employed and Unemployed, the 
province (administrative area contained in 
region) and the number of persons in age groups 
14-35 and 35-65 by sex; 

2) in the model for persons searching for their first 
job, the province and the number of persons in 
age groups 14-25 and 25-35 by sex. 

The reduction of the number of classes with respect 
to the synthetic case was necessary because the 
number of small areas in this study is not large 
enough; 

- ci 
the weights of composite estimator Yj correspond 
to the optimal weights given by the ratio of the MSE 
of tiie synthetic estimator over the sum of the 
variance of the direct estimator and the MSE of 
synthetic estimator (Schaible 1978). These quantities 
were actually evaluated on the 1991 census data; 
the unique regional weight of composite estimator 
Yj is the estimated optimal one for the average 
MSE of the composUe estimators of all areas (Purcell 
andKish 1979) given by 

D ^ ^ 

Y var 
a = 1 - d-l 

{ff) 

l.{y!-y') 
d-l 

The resulting estimator is sample dependent. We 
have not pursued this method for small area specific 
weights due to the high variability of each area MSE 
and variance estimation. A smoothed model has been 
used to improve the stability of the evaluation of 
variances: the variance for the SRAs is obtained 
applying standard formulas for variance estimation 
on the linearized variables. For the NSRAs the 
variance is obtained applying a common design 
effect evaluated at the regional level to the simple 
random sampling variance estimate; 

- in the predictor 7^ , the sampling error variance \\ij 
has been evaluated using census data; for predictor 
Yj we have considered the altemative case in 
which \ifj has to be evaluated through sample data: 
a regression model based on twelve simulated LFS 
samples was fitted and tiien the value of v|/̂ , predicted 
through the model. 

4.2 Performance Measures 

4.2.1 Overall Unconditional Measures 

The foUovraig unconditional performance measures were 
calculated to assess the bias and the MSE of the estimators 
over the 2,000 replications and over all the D small areas: 
- Percentage Average Absolute Relative Bias (AARB); 
- Percentage Average Relative Root Mean Square Error 

(ARRMSE), expressed respectively by formulas 

AARB{Y^)= — Y 
D J-l 

1 '̂  

J< r-l 

Y (r)-Y, 
100 
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ARRMSE (7 )̂ = —y; 
DT^i \ 

R 

Y 
'" T -

yJ' Y.:{r)-
100 

in which 7^ ( r ) indicates the value of the generic small 
area estunator T (described in section 3) obtained m tiie r-th 
of tiie R=2,000 samples. 

The same measures were also considered averaging only 
on subsets of small areas, with D replaced by the cardinality 
of the subset. For the definition of the subsets see section 
5.1. 

4.2.2 Conditional Measures 

For each small area d, the 2,000 repeated samples were 
distributed over the different values of the realised number n^ 
of sampled municipalities belonging to small area d. For 
each value of n^ and for each small area d, the conditional 
performance measures were computed over that subset of 
the 2,000 samples for which the small area sample PSU 
count was exactiy n^. 

The following conditional performance measures were 
considered: 

- Percentage Relative Conditional Bias (RCB); 

- Percentage Relative Root Conditional MSE 
(RCMSE); 

- Conditional Coverage Rate (CCR). 

These measures were calculated in the following way: 

RCB(7;) = - l E 
Rjr-l 

yI(^)-Yj 
100 

RRCMSE(7^) = 
> 

1 ' ' 

— E 
R ^ 

r=l 

Yl{r) 
100 

C C R ( 7 ; ) = \Ylir) 
Rjr-l 

100 

in which Rj indicates the number of samples for which the 
PSU sample count in the small area d equals the fixed 
number n^; I(r) = I if the r-th confidence interval based 
on 7 , (r) contains the tme value 7^ and I{r) = 0 other­
wise. The nominal value equals 95% and the confidence 
interval is the normal confidence interval where we have 
used as evaluation of variance the value resulting from the 
2,000 replications. 

5. ANALYSIS OF THE RESULTS 

5.1 Unconditional Analysis 

The LLMAs analysed in the simulation with their 
characteristics in terms of population, number of 
municipalities and number of LFS sfrata intersected are 
reported in Table 1. The small areas have been grouped on 
the basis of the ranking of the proportion of LLMA's 
population over the total regional population. The percent 
proportion of the first group ranges from 0.12% to 1.73%; 
the group is composed of 19 LLMAs. The percent pro­
portion of the second group ranges from 1.9% to 5.05%; the 
group is composed of 7 LLMAs. The third group consists 
of the largest LLMA representing a percent proportion 
equal to 64%. The LLMAs are divided into these three 
groups because we expect the MSE to be larger for those 
LLMAs with smaller sample size. 

Table 1 
Local Labour Market Area (LLMA), Population, Percent 

Population, Number of Mimicipalities and Number of LFS 
Strata Intersected by the LLMA 

Number Number 
Municipalities Strata LLMA Population Population% 

398 

396 

407 

393 

414 

406 

395 

411 

394 

408 

392 

416 

402 

401 

400 

412 

409 

399 

405 

397 

410 

404 

415 

6,005 

7,364 

11,392 

12,500 

12,656 

13,051 

16,012 

23,226 

30,193 

45,274 

51,789 

59,512 

71,906 

72,080 

72,235 

78,249 

88,984 

97,680 

114,361 

133,303 

170,945 

198,010 

259,382 

0.12 

0.14 

0.22 
0.24 
0.25 
0.25 
0.31 

KMBiSI 

0.45 
0.59 
0.88 
1.01 
1.16 
1.40 
1.40 
1.41 
1.52 
1.73 
1.90 
2.23 
2.60 

3.33 
3.86 
5.05 

5 

3 

2 

3 

4 

3 

5 

5 

6 
5 

13 
10 

15 
34 

4 
5 

7 
42 

3 
18 

6 
16 
35 

file:///Ylir
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In Table 2 we present the values of the unconditional 
performance measures AARB and ARRMSE for one of the 
three LFS characteristics studied: the number of 
Unemployed. This variable has been chosen since it is one 
of the most important characteristic produced by the LFS. 

Table 2 
Percentage Average Absolute Relative Bias and Percentage 

Average Root Relative Mean Square Error of the 
Estimators of Unemployed 

Estimator AARB ARRMSE 

Expansion 

Post stratified ratio 

Synthetic 

Composite Cl 

Composite C2 

SSD 

EBLUPEBl* 

EBLUP EB2* 

2.67 

26.20 

18.10 

15.52 

8.94 

10.14 

1.3.36 

12.98 

96.07 

58.29 

19.40 

17..34 

31.48 

29.84 

66.57 

74.88 

*The averages for the EBLUPs do not include LLMA=403 

Table 3 reports the same measures for each of the three 
previously defined groups of LLMAs. 

From the analysis of the results in Tables 2 and 3, the 
following conclusions emerge: 

- with the exclusion of the direct estimator, the bias of 
^ C2 

composite estimator 7 is almost always the 
smallest, or among the smaUer ones, and it is very 
close to the bias of the SSD estimator; 

* CI 

- composite estimator 7 is aUnost always the best in 
terms of ARRMSE; its performance is similar to that 
of tiie syntiietic estimator when takmg account of the 
overall measure. This is due to the fact that the 
optimal weights are close to zero on many of the 
small areas considered m the simulation (note that 
many small areas have a percentage population under 
2%). This can be confirmed by examining the results 
for Group 1 where the similarity of the two 
estimators is evident; 

- the overall bias of the post-sfratified ratio estimator 
is very high; this can be explauied by the very high 
bias of the estimator for the areas belonging to Group 
1, where the typical sample size is small; 

- the model used for the empirical best linear unbiased 
predictors does not seem adequate, likely because 
we are far from tiie hypothesis of unbiasedness for 
the direct component (post-sfratified ratio estimator) 
and due to the choice of the auxiliary variables; this 
is true in particular for the variable unemployment 
reported in Tables 3 and 4; it is important to note that 
these predictors have not been considered for Group 
3 since this group includes only LLMA = 403 
(Rome); 

- comparing the SSD estimator and the composite 
estimator 7 , both combining a direct component 
with a synthetic component with sample weights, the 
SSD estimator seems preferable since the perfor­
mance of the two estimators is very close but SSD is 
superior in terms of computational simplicity. Since 
in actual surveys the optimal weights are not knovra, 
the present analysis suggests using the SSD esti­
mator; a drawback is that a specific study has to be 
carried out for the choice of the parameter X. 

Table 3 
Percentage Average Absolute Relative Bias and Percentage 

Average Root Relative Means Square Error of the Estimators 
of Unemployed by Group of Local Labour Market Areas 

Estimator 

Expansion 

Post-stratified 
ratio 

Synthetic 

Composite C1 

Composite C2 

SSD 

EBLUPEBl 

EBLUP EB2 

AARB 

3.52 

36.94 

17.06 

16.52 

9.95 

10.11 

13.84 

14.44 

ARRMSE 

Group 1 

123..30 

72.07 

18.24 

17.85 

35,59 

34.77 

80.14 

91.89 

AARB 

0.71 

0.77 

22.68 

14.71 

6.89 

11.27 

12.06 

9.02 

ARRMSE 

Group 2 

35.01 

28.43 

24.28 

17.66 

23.86 

19.89 

29.75 

28.74 

AARB 

0.11 

0.08 

5.84 

2.19 

3.98 

2.99 

* 

* 

ARRMSE 

Group 3 

6.19 

5.68 

7.33 

5.50 

6.68 

5.70 

* 

* 

5.2 Conditional Analysis 

For the conditional measures we linut ourselves to the 
presentation of the results for the following four LLMAs: 
Bagnoregio (code number = 391) and Civita Castellana 
(code number = 392) in the small group, Cassino (code 
number = 413) in the medium group, and Rome (code 
number = 403) for the large group. The frequency 
disttibutions over the 2,000 replications of the PSUs' 
counts in each selected area are very different as a 
consequence of the LLMAs' different sizes. 

Recall that we could not consider EBLUPs for LLMA 
403 since it is the only one in GROUP 3. 

In Table 4 the resuUs of the study areas are reported for 
the variable number of Unemployed. 
The following points arise: 

- the post-sfratified ratio estimator usually has 
conditional bias near zero when the sample size, n^, 
takes an inner value of its frequency distribution; 

- the post-sfratified ratio estimator usually shows better 
conditional performance, in terms of conditional bias 
and of RRCMSE, than the expansion estimator; 
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Table 4 
Percentage Relative Conditional Bias and Percentage Relative Root Conditional MSE of the Estimators Conditioned 

on the Number of Sampled Municipalities for given LLMAs 
Number of 

sampled 
Municipalities 

0 
1 
2 
3 

0 
1 
2 
3 

0 
1 
2 
3 
4 
5 
6 

0 
1 
2 
3 
4 
5 
6 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0 
1 
2 
3 
4 
5 
6 
7 
8 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Proportion of 
simulations 

% 

72.43 
25.29 

2.24 
0.05 

72.43 
25.29 

2.24 
0.05 

8.79 
27.32 
34.03 
20.57 

7.65 
1.39 
0.25 

8.79 
27.32 
34.03 
20.57 

7.65 
1.39 
0.25 

0.05 
1.29 
7.40 

21.31 
28.96 
25.48 
11.43 
3.68 
0.40 

0.05 
1.29 
7.40 

21.31 
28.96 
25.48 
11.43 
3.68 
0.40 

0.15 
0.20 
1.59 
4.82 

11.38 
20.32 
23.40 
18.68 
12.67 
4.42 
1.84 
0.55 

Expansion 

-100.00 
208.30 
527.40 
637.88 

100.00 
281.18 
588.02 
637.88 

-100.00 
-48,19 

-2,01 
43.54 

108.22 
159.44 
169.30 

100.00 
60.11 
48.50 
70.07 

129.85 
171.38 
173.01 

-100.00 
-74.42 
-49.73 
-26.46 

-4.60 
19.41 
42.48 
66.82 
59.75 

100.00 
76.71 
54.07 
36.86 
32.02 
38.45 
53.61 
77.79 
65.42 

-5.20 
-2.87 
-4.66 
-2.98 
-2.41 
-1.52 
-0.15 
1.01 
2.51 
3,73 
1,86 
6.28 

Post stratified 
Ratio 

Synthetic 

LLMA= 
Percentage Relative 

-100.00 
-4.28 
0.66 

-16.53 

28.69 
28.39 
29.81 
24.68 
LLMA= 

Composite Composite 
Cl C2 

= 391 
Conditional Bias 

=391 

28.69 
28.21 
29.65 
24.45 

Percentage Relative Root Conditional MSE 
100.00 
68.54 

, 45.51 
16.53 

29.33 
29.03 
30.23 
24.68 
LLMA= =392 

29.33 
28.85 
30.07 
24.45 

Percentage Relative Conditional Bias 
-100.00 

1,51 
-3.07 
-2.95 
4,05 
3,80 

-13.82 

10.26 
9.94 

10.30 
10.22 
10.88 
13..33 
10.14 
LLMA= =392 

10.26 
9,85 

10,15 
10.08 
10.81 
13.22 
9.87 

Percentage Relative Root Conditional MSE 
100,00 
74.67 
48.03 
38.01 
35.12 
26.29 
20.23 

11.47 
11.24 
11.50 
11.54 
11.92 
14.09 
11.07 
LLMA= =413 

11.47 
11.19 
11.37 
11.41 
11,87 
13,97 
10,84 

Percentage Relative Conditional Bias 
-100,00 

8.04 
0,92 
0.93 

-1,01 
-0,31 
0,14 
0,86 

-14,54 

2.47 
5.60 
4.56 
5.06 
5.11 
4.92 
4.64 
5.04 
4.74 
LLMA= =413 

2,47 
5,63 
4.52 
5.01 
5.04 
4.86 
4,58 
4.99 
4.51 

Percentage Relative Root Conditional MSE 
100,00 
77,02 
46,04 
36.07 
32.26 
27.51 
22,02 
24,58 
18,76 

2.47 
8.00 
6.69 
7.11 
7.28 
6.97 
6,52 
6,83 
8,19 

LLMA= =403 

2,47 
8,14 
6,69 
7,09 
7.24 
6.94 
6.47 
6.79 
7.96 

Percentage Relative Conditional Bias 
3.17 
3,38 

-0,15 
0,36 

-0,03 
-0,30 
-0,10 
-0,07 
0.20 
0.25 

-2.55 
0,71 

-3.96 
-2.10 
-5.82 
-6.13 
-5.98 
-6.15 
-5.84 
-5.51 
-5.64 
-5,49 
-7,20 
-4.70 

0.56 
1,37 

-2,23 
-2.02 
-2.21 
-2.44 
-2.20 
-2.06 
-1.94 
-1.85 
^.25 
-1.28 

28.69 
7.28 
9.22 
1.41 

29.33 
48.20 
33.49 

1.41 

10.26 
5.31 
1.71 
1.01 
6.58 
6.04 

-5..39 

11.47 
58.36 
34.87 
27.09 
24.80 
18.80 
15.04 

2.47 
8.36 
2.72 
2.37 
1,14 
1.72 
1.91 
1,77 

-7,72 

2.47 
66.06 
36.83 
27.54 
23.93 
20.05 
16.06 
17.86 
12,71 

-1,82 
-0,67 
-3,45 
-3,53 
-3,91 
-4,16 
-4.05 
-3.93 
-3.85 
-3.66 
-6.32 
-3,24 

Sample Size 
Dependent 

28,69 
-4,28 
0,66 

-16,53 

29,33 
68,54 
45,51 
16,53 

10,26 
8.19 
3.85 
0.50 
4.34 
3.80 

-13.82 

11,47 
21,25 
24,39 
27,52 
33,96 
26,29 
20,23 

2.47 
6.08 
3.68 
3.55 
2.26 
1.78 
1.45 
1.58 

-13.37 

2,47 
13,49 
12,75 
14,15 
16,22 
16.99 
15.95 
20.53 
17.42 

-0.71 
0.43 

-3.15 
-3.04 
-3.11 
-3.30 
-3.00 
-2.79 
-2.69 
-2.55 
-4.80 
-1.88 

EBLUP 
EBl 

26.76 
-2.35 
1.21 

85.54 

141.08 
70.44 
84.47 
85.54 

-6.80 
-5.31 
-5.88 
-3.84 
-6.07 
-6.21 

-14.92 

40.38 
33.99 
28.57 
28.41 
29.47 
26,84 
19,06 

-100.00 
-9,08 

-16,72 
-15,33 
-17,29 
-16,93 
-16.70 
-15,11 
-28,08 

100,00 
72,44 
46,44 
39,35 
36,92 
33.58 
29.75 
28.44 
34.65 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

EBLUP 
EB2 

39.68 
-4,21 
0.97 

-12.22 

163.51 
66.58 
47.33 
12.22 

-7.45 
0.80 

-4.18 
-3.64 
0.98 
1.06 

-13,08 

43,91 
65,82 
41,19 
32,86 
30,96 
24,56 
17,92 

-100.00 
4.88 

-2,08 
-1,86 
-3.83 
-3.18 
-2.81 
-1.91 

-17,24 

100,00 
75,79 
45.42 
35.63 
32.12 
27,43 
21,94 
23,81 
21,61 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
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Table 4 (continued) 
Percentage Relative Conditional Bias and Percentage Relative Root Conditional MSE of the Estimators Conditioned 

on the Number of Sampled Municipalities for given LLMAs 

Number of 
sampled 

Municipalities 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Proportion of 
simulations 

% 

0,15 
0,20 
1,59 
4,82 

11,38 
20,32 
23,40 
18,68 
12,67 
4.42 
1,84 
0,55 

Expansion 

6,79 
5,64 
7.81 
6.54 
6.14 
6..34 
5.83 
5.98 
6.02 
7,33 
6,40 
8,38 

Post stratified 
Ratio 

Synthetic 

LLMA= 

Composite 
Cl 

=403 

Composite 
C2 

Percentage Relative Root Conditional MSE 
5,24 
6,06 
6,19 
5,75 
5,56 
6,01 
5.62 
5,58 
5,20 
5,82 
6,38 
5,42 

5,52 
4,79 
6,86 
7.51 
7.34 
7.72 
7,23 
7,10 
7,10 
7,16 
8,76 
6,53 

4,05 
4,81 
5,49 
5,41 
5,37 
5,86 
5,43 
5,42 
5,07 
5,53 
6,90 
5.04 

4.46 
4.69 
6,26 
6,54 
6,61 
7.12 
6.58 
6.51 
6.31 
6,72 
8,56 
5,84 

Sample Size 
Dependent 

4,04 
4,49 
5,54 
5,66 
5,62 
6,09 
5,63 
5,59 
5,28 
5,66 
7,16 
5.12 

EBLUP 
EBl 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

EBLUP 
EB2 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

- syntiietic estimators and the composite estimator The composite estimator 7^ turns out to be the best in 
^yCl , ,,i._ . . . „ c :„ 4. ^c t f-rms r.f A T ? R K 4 « : F anH R R r M . « J F I f wpicrhts arp thniiaVit Yj' show the best performances in terms of 
RRCMSE for LLMAs 391, 392, 413 and 403, 
confirming what was observed in the unconditional 
analysis. The only relevant exception is for LLMA 
403 for the variable Employed (not reported here) 
where the post-sfratified ratio is the best. In fact the 
variances of the different estimators are very low for 
this small area so that the bias is decisive; 

" C2 

- in terms of RRCMSE neither Yj nor SSD seems to 
outperform the other. 

We have not reported here the results for the conditional 
coverage rate (CCR), but we can. summarize them as 
follows: 

- C2 

- the post stratified estimator, the conposite estimator Yj 
and the SSD estimator have CCR close to the 
nominal value apart from exfremes values of the PSU 
counts; 

- the EBLUPs' CCRs are also close to the nominal 
value but we suspect this is due to thefr high 
variances; 

- for the LLMA = 403 and the Employed variable, the 
CCR of all the estunators is far from the nominal 
value. 

5.3 Conclusions 

As we have aUeady observed, the results for the EBLUP 
estimators are unsatisfactory; the model used is not 
adequate, likely because we are far from the hypothesis of 
unbiasedness for the direct component (post-sfratified ratio 
estimator) in many cases and because of the choice of the 
auxiliary variables. One of the mam points we intend to 
address in fiiture work is the improvement of the explicit 
models for EBLUP. 

terms of ARRMSE and RRCMSE. If weights are tiiought 
to be stable they may be evaluated, for example, at a Census 
point and 7 , ' applied. Ifsample dependent weights are to 
be used, then the SSD estimator seems preferable to the 

,yc2 composite estimator Y^'' because of its computational 
simplicity, even if some ad hoc study may be necessary for 
the choice of the parameter X, since the two estimators' 
unconditional and conditional properties do not differ 
greatly. In any case, some improvements can be gamed for 
the composite and SSD estimators through use of a better 
synthetic estimator, in terms of the number and the choice 
of post-sfrata, or in terms of a better choice of the auxiliary 
variables as observed for the EBLUP. 

In this work we have examined conditional and un­
conditional properties of some common estimators; our 
interest in the future will be to examine also the empirical 
properties from the conditional point of view of the 
conditional estimators proposed in the work by Falorsi and 
Russo (1999). 
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Evaluating the Fundamentals of a Small Domain Estimator 
RACHEL BARTER, MICHAEL MACALUSO and KIRK WOLTER' 

ABSTRACT 

The Illinois Department of Employment Security is using small domain estimation techniques to estimate employment at 
the county/industry division level. The estimator is a standard synthetic estimator, based on the ability to match Current 
Employment Statistics sample data to ES202 administrative records and an assumed model relationship between the two. 
This paper is a case study; it reviews the steps taken to evaluate the appropriateness of the model and the difficulties 
encountered in linking the two data sources. 

KEY WORDS: Small domain; Employment; Labor market; Generalized regression model; Auxiliary data. 

1. INTRODUCTION 

The Current Employment Statistics (CES) program of 
the U.S. Bureau of Labor Statistics (BLS) is a federal-state 
cooperative survey of employers used for estimating em­
ployment, women workers, production workers, production 
worker hours, and production worker earnings on a montiily 
basis. The estimates are among America's leading econom­
ic indicators. The sample was designed to support estimates 
at the national, state, and large mefropolitan statistical area 
(MSA) levels. CES is roughly comparable to Statistics 
Canada's monthly Survey of Employment, Payroll and 
Hours (SEPH). 

The Illinois Department of Employment Security 
(IDES), and similar agencies in other states across the 
nation, participates with the BLS in the collection, tabu­
lation, and publication of tiie CES data. The state agencies 
have considerable customer demand for employment esti­
mates at smaller sub-state levels than the CES sample was 
intended to support. In particular, IDES needs monthly 
employment estunates at the county/industry division level, 
and it formed a partnership with the National Opinion Re­
search Center (NORC) to find a solution to this small do­
main estimation problem. 

In a prior paper (Harter, Wolter and Macaluso 1999), we 
discussed some simulations done to test various small do­
main estimators. In this paper, we focus on the practical 
aspects of finding suitable auxiliary data, determining an 
appropriate model, merging the data sources, and moni­
toring the estimation process. 

2. EVALUATING AUXILIARY DATA 

Purcell and Kish (1980), Ghosh and Rao (1994), and 
Singh, Gambino and Mantel (1994) provide excellent 
overviews of many small domain estimators. Most small 

domain estimators improve on direct sample-based esti­
mators by (1) taking advantage of known auxiliary data, and 
(2) assuming and fittmg a model relationship between the 
auxiliary data and the sample data. In this section we de­
scribe the auxiliary data for Illinois' small domain esti­
mation problem and our evaluation of the data for this 
purpose. 

The CES has a sister federal-state cooperative program 
- known as the Covered Employment and Wages (or 
ES202) program - in which employment and wage data are 
collected quarterly from all employers that participate m 
states' unemployment insurance programs. The employ­
ment figures from the ES202 are available approximately 
five months following the reference quarter. The ES202 
records provide the sampling frame for the CES program. 
Furthermore, smce the ES202 data are available for 
essentially all employers in the sampUng frame, ES202 
employment figures are considered "truth" for practical 
purposes. 

CES monthly estimates are regularly benchmarked to 
ES202 figures. While they are revised several times as more 
complete information becomes available, the first release of 
CES data occurs on the first Friday of the montii following 
the reference month. Although the ES202 employment 
figures lag behind the initial CES estimates by several 
months, ES202 employment is an obvious candidate for 
auxiliary data in our small domain estimation project. 

A good auxiliary variable should be highly correlated 
with the estunation variable. In this case, ES202 employ­
ment is measuring the same concept as CES employment, 
except for minor scope and coverage differences, such as 
student workers at colleges and universities. Therefore, we 
expect ES202 employment and CES employment to be 
highly correlated. 

Illinois data for a matched sample of employers from 
1995 and 1996 shows that, indeed, ES202 employment and 
CES employment are highly correlated, regardless of the 
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Security, Economic Information and Analysis, 401 South State Street, 7 North, Chicago, IL 60605; Kirk Wolter, Interdisciplinary Research Institute for Survey 
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time lag between the two. Table 1 shows sunple correlation 
coefficients for various industries and time lags. The corre­
lations are slightiy higher for shorter lags in growing in­
dustries, such as Finance, Insurance, and Real Estate, and 
for 12-month lags in seasonal industries, such as Constmc­
tion. Nevertheless, we conclude from these statistics that 
any recent period of ES202 data is likely to serve 
successfully as auxiliary data for CES estimation. 

Table 1 
Mean Correlations of CES Employment with ES202 EmplojTiient* 

industry Division 

Mining 

Construction 

Manufacturing 

Transportation & 
UtiUties 

Trade 

Finance, Insurance, & 
Real Estate 

Services 

Government Ownership 

ES202 
lagged 12 

months from 
CES 

0.951 

0.936 

0.983 

0.978 

0.979 

0.982 

0.975 

0.996 

Most recent 
March 
ES202 

available for 
CES month 

0.965 

0.909 

0.984 

0.981 

0.979 

0.985 

0.966 

0.995 

Average monthly 
ES202 for most 
recent available 
quarter to CES 

month 

0.980 

0.909 

0.985 

0.982 

0,979 

0.987 

0.966 

0.993 

• Within 2-digit Standard Industrial Classification (SIC) codes, we 
computed correlations for pairs of CES and ES202 months with the 
lagged relationships shown. We averaged the correlations across 
reference months and across SlCs within the industry divisions 
shown. 

We reviewed the scope and coverage differences 
between CES and ES202 to determine where the use of 
ES202 data may require special attention. The student 
worker example cited above was one such difference. 
Railroad workers do not participate in state unemployment 
insurance programs, so this industry is one in which ES202 
data are not likely to be helpful. We reviewed the pro­
cessing schedules for both CES and ES202 to help us 
determine which period of ES202 data would be available 
for estimation on the CES schedule. We reviewed the edits 
applied in both programs to see where differences may af­
fect outcomes. For both of these programs, many anomalies 
in the data are explained through the use of comment vari­
ables contaming standard coded values for various business 
conditions. We reviewed these comment variables to see 
how special cases are handled. All of these background 
checks were necessary to identify potential pitfalls in using 
ES202 data as an auxiliary variable for the small domain 
estimation problem. 

Finally, we needed some indication that CES and ES202 
data could be successfiiUy linked for individual employers. 
To examine this issue, we matched and plotted CES and 
ES202 data. See Figures 1-3 for examples of statewide plots 
by 2-digit SIC (Standard Industtial Classification). The 
plots immediately alert us to potential matching problems 
in individual cases (Points considerably off the sfraight line 
signify potential matching or data problems), but assure us 
that most observations can be successfully matched. We 
discuss this issue in greater detail in section 4. 

200 400 600 800 
ES202 Employees 

1,000 1,200 1,400 

• Sample Data "Model 

Figure 1. CES Versus ES202 Employment for a Sample of 103 Illinois Employers Classified in the Primary 
Metal Manufacturing Industry. 



Survey Methodology, June 2003 65 

50 100 150 200 250 

ES202 Employees 

450 

' Sample Data "Model 

Figure 2. CES Versus ES202 Employment for a Sample of 701 Employers Classified in the Trade Contractors Industry 

250 -\ 

50 100 150 

ES202 Emnlovees 

200 250 

' Sample Data "Model 

Figure 3. CES Versus ES202 Employment for a Sample of 50 Employers Classified in the Apparel Manufacturing Industry' 

3. EVALUATING THE MODEL 

Since the CES and ES202 programs are both measuring 
employment, we expect the relationship between the two to 
be linear with intercept zero and slope close to one. The 
plots in Figures 1-3, and the many other sinular plots we 
produced and reviewed, mdicate that this is generally tme. 
Indusfries with changes over time or differences in scope 

and coverage sometimes display slopes other than one. The 
plots also indicate variability in the linear relationships, and 
some industries exhibit more variability about the linear 
relationship than others. Generally, the residual variance 
about the line increases with employment. 

The standard "ratio" model adequately describes most of 
our data. Let ;;, be the current month CES employment for 
employer y, and let Xj he the ES202 employment for the 
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same employer at some previous time period. Then the 
assumed model relationship is 

y. = x p + e., E^,~NID(0, a^x,). (1) 

The model parameter p can be estimated by generalized 
least squares, resulting in the ratio estimator f> =yIX, 
where y and X are the means of the observed current-
month and auxiliary data, respectively (Sampling weights 
may or may not be employed m the analysis depending on 
many considerations beyond the scope of this article). 

If Model (1) is tme, then the best linear unbiased 
predictor of current month employment for sub-state do­
main D., (industry division k and geographic area / ) is 

Y{D,,) = Y ^,P« 5; (/)«), 
JeU 

(2) 

where ?>j{Di^^) indicates whether unity is in smaU domain Dj^f, 
the summation is over aU employers y within the state (or 
universe U); and P^, is the ratio estimator within D^ .̂ With 
insufficient sample data to estimate the model parameters 
reliably at the small domain level, we instead estimate the 
parameters for model cell m (typically a 2-digit SIC at the 
state level), and apply the estimated model parameters to 
each of the small domains within the state. The resulting 
synthetic estunator is of the form 

Y{D„) = Y Y Xj^K^D,,), 
mek JeU„ (3) 

where the first summation is over all model cells that 
overlap with domain D^, and the second summation is over 
all employers within the model cell. The estimator is a 
simple sum of predicted employment over all employers in 
the universe within the domain. 

We tried an intercept in the model and verified that it 
was not significantly different from zero, in most cases. We 

tested that the slope was sigruficantly different from zero. 
We plotted the residuals to verify that they were suitably 
well behaved. We checked the R ^ values to quickly assess 
the explanatory power of the model. 

To illusfrate this work, Table 2 gives summary statistics 
for models in Trade using January 1996 CES and January 
1995 ES202 data. All of the R^ values in Table 2 are quite 
high, ranging from .87 to .96. Oitiy two of the intercepts are 
significantiy different from zero. Except for Retail Trade, 
Apparel, where the intercept is significantiy different from 
zero, all of the slopes are between .9 and 1.1. 

The largest employers are selected into the sample with 
certainty. Because they are so influential and not necessar­
ily typical, we decided to exclude them from the estimation 
of the model parameters. 

We also tried Estimator (3) corresponding to large sub-
state model cells. This approach loses sample size (and thus 
precision) relative to the statewide model cells, but presum­
ably gains some greater ability to target local economic 
conditions (thus reducing bias, if any). Yet in comparing the 
resulting small domain estimates with "true" values in 
simulations, we found tiie estimators from statewide model 
cells to have the smaller mean squared errors. 

Following the work of Battese, Harter, and Fuller (1988), 
we fit a components-of-variance model of the form 

y.j = x,.,p + V. +e,^, V. ~ NID(0, o^), e,.. ~ NID(0, clx.j) (4) 

and tested the homogeneity of the county-level variance 
components, v^ While there was some indication of hetero­
geneity, the variability in the variance component estimates 
actually increased the mean squared errors of the small do­
main estimates m our simulations. We decided that the vari­
ance components approach was not superior to the simple 
sjmthetic estimator. 

Table 2 
Generalized Regression Models for CES All Employment on ES202 Year-Ago Employment: Trade Industries 

Industries Defined by 2-Digit SIC Code R ' Intercept Slope 

Wholesale trade, durable goods 

Wholesale trade, nondurable goods 

Retail trade, building and garden supplies 

Retail trade, general merchandise 

Retail trade, food stores 

Retail trade, automobiles 

Retail trade, apparel 

Retail trade, fiomiture 

Retail trade, eating & drinking establishments 

Miscellaneous retail trade 

700 

381 

189 

42 

156 

379 

112 

110 

460 

332 

0.96 

0.95 

0.96 

0.95 

0.95 

0.97 

0.90 

0.95 

0.89 

0.87 

-0.061 

-0.032 

0.420 

-1.325 

0.410 

0.130 

1.320 ** 

0.242 

0.382 

0.810 ** 

1.015 

0.978 

0.918 

1.081 

0.934 

0.971 

0.750 

0.931 

0.968 

0.915 

** 
** 

** 

** 

** 

** 

** 

** 

*• 

«* 

* Significant at .05 level ' Significant at .01 level 
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We evaluated the synthetic estimator and other small 
domain estimators in a simulation study using Illinois data. 
The study included the simple unbiased estimator, the link 
relative estimator (Madow and Madow 1978, and West 
1983,1984), raked estimators usmg CES estimates at higher 
aggregations as marginal totals, two variations of general­
ized regression estimators (Samdal and Hidiroglou 1989), 
and three variations of synthetic estunators. For some of the 
simulations, the data were restricted to cases for which the 
CES and ES202 data could be cleanly linked. We tiien drew 
repeated samples from this "universe" and tested the results 
against "tmth." For later simulations, the data files included 
non-matches with mles for special handling based on likely 
causes of the mismatches. The handling of non-matches is 
described m the next section. 

In the simulations, we used all tiie samples and the 
knovm truth to compute bias, relative bias, mean squared 
error, and relative mean squared error of estimated total em­
ployment and month-to-month change m employment. We 
also plotted the 5'", 50*, and 95* percentiles of the distti­
bution of the estimators and examined the distributions in 
relation to the true values. 

Results of the simulation study are reported in Harter 
et al. (1999). In general, we found that estunators that used 
ES202 as auxiliary data performed better than the direct 
sample-based estimator, the link relative estunator, and the 
raked estimators that used only sample data. The estimator 
that performed best overall was a variation of the synthetic 
estimator, derived from the prediction theory approach to 
survey sampling (Royall 1970, 1988, and Royall and 
Cumberland 1981a, 1981b). This estunator 

Y{D,,) = Y Y yj^D,,) 
mek jes 

-Y Y xjK^D,,) 
mek Jss„i 

= Y Y xjK^jiD,,) 
mek jeV„ 

-YYiyj-^jK)^^,,) (5) 
mekjes„ 

is intuitively appealing to non-statisticians because the 
sample data are used directly for sample employers, while 
the model predictions are used only for nonsample em­
ployers. It is the synthetic estimator plus a sample-based 
correction for any lack of fit in the models. 

4. MERGING THE DATA 

The success of the small domain estimator depends, in 
part, on the ability to accurately match the CES and ES202 
data. We can match CES and ES202 records by unem­
ployment insurance number (UI) and establishment or 

reporting unit number (RU). When the CES reporter is an 
aggregate of establishments, such as a multi-site employer 
reporting all employees together without distinguishing 
individual work sites, the correspondmg ES202 records 
must be aggregated to match. Figure 3 demonstrates an 
isolated instance of a bad aggregate match. 

Plots of the kind presented in Figures 1-3 enabled us to 
identify many miscoded observations. For example, an 
aggregate reporter coded in the files as containing all the 
company's work sites, but that actually covers only a single 
work site, should have been coded as a single establish­
ment. The process of checking outliers in all the plots was 
time-consuming, but resuUed in major improvements in the 
micro data, which in tum improved the estimated model 
parameters. 

Several situations make the match process problematic. 
First, the ES202 data contain employers that have gone out 
of business. Conversely, the CES data contain new em­
ployers that were not in existence at the time the ES202 
data were collected, although difficulty in identifymg new 
businesses in a timely fashion makes this scenario less 
common. Births and deaths of businesses, then, cause real 
mismatches in the data. 

Second, nonresponse to either the CES or ES202 causes 
mismatches. Missing or delinquent reporters to the ES202 
are usually imputed for a time. At present, imputation is not 
done for missing CES cases. A key difficulty with botii pro­
grams is distinguishing nonresponse from a death. 

Third, businesses often reorgaruze, merge, acquire other 
businesses, divest divisions, and so on. Any of these status 
changes can cause states to assign new unemployment in­
surance numbers. The predecessor businesses and successor 
businesses are tteated as deaths and births. AUematively, if 
a single predecessor can be linked to a single successor, 
their records could be joined to form one unified record. 
Unfortunately, the Imkages are often not one-to-one. In 
many instances, predecessors are indistinguishable from 
deaths and delinquent CES reporters, and successors are 
indistinguishable from births and trussing ES202 data. 

For the initial implementation of our small domain esti­
mator, we freat missing CES units as nonsample units; that 
is, we use their ES202 data and the model to predict their 
current month values. Since we catmot distinguish deaths 
and predecessors from missing CES data, we predict their 
current month employment using thefr ES202 data and the 
model. We use imputed ES202 data as real observations. 
Because it is relatively rare for a new business to appear in 
the CES sample data before it appears in the ES202, we 
freat CES records without ES202 counterparts as successor 
records. That is, in the small domain estimator, we freat 
them as nonmembers of the CES sample and predict their 
employment from the unmatched predecessor records in the 
ES202 file and tiie model. All of these decisions or judg­
ments were based on IDES' experience. 

Even if the UI and RU numbers match, the CES and 
ES202 records may differ in their industry or geographic 
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codes due to differences in the programs' update cycles. 
Discrepancies might represent errors or legitimate changes. 
Originally, our thought was to use the CES codes in the 
small domain estimator, assuming CES codes were the 
more current. However, as the smaU domain estimator was 
being implemented, more and more of the CES data 
collection operations were being transferred from IHinois' 
confrol to cenfral data collection centers operated by the 
BLS. IDES felt this loss of confrol could compromise the 
quality of the CES codes and thus they decided to use the 
ES202 codes instead. In actual production, we use these 
classification codes for all purposes, including definition of 
model cells, estimation of the slope parameters, and 
calculation of the small domain estimates. 

Sometimes a well-matched sample unit experiences em­
ployment shifts that are not typical of the industry or the 
region as a whole. Both the CES and ES202 systems allow 
for comment codes in the data files so that anomalies and 
thefr reasons can be flagged. We developed an extensive set 
of mles for determining when a matched sample record may 
be used in the estimation of model parameters, and when 
this would be unwise. For example, a drop in employment 
due to weather or climate conditions, such as flooding along 
the Mississippi River, is a situation likely to be common to 
other businesses in the area. A record with a code for this 
type of anomaly should probably be included in the esti­
mation of model parameters. A fire, on the other hand, is 
likely to affect one and only one business, and a drop in 
employment due to the ffre could be very misleadmg if 
applied to nonsample businesses. In this case, the sample 
unit with the fire stands for itself, but it is not part of the 
calculation of the model parameters. 

All the potential data problems and potential mismatches 
led us to modify the estimator slightly. The revised esti­
mator is 

Y{D,,) = Y Y yj^jiD,,) 
mek jes„ 

-YYxjK^D,;).A,„ (6) 
mei JiS„ 

where ^̂ ^ is an additive adjustment for known data defi­
ciencies. This concession to practical realities was original­
ly intended for situations such as the addition of railroad 
workers, where lUinois' CES manager obtains information 
on railroad employment from the Railroad Retirement 
Board because railroad workers are not covered by the state 
unemployment insurance program, and thus are missing 
from the ES202 data file. Clergy and summer youth 
workers are often added the same way. The CES manager 
and affiliated local economists scattered throughout the 
state have found the adjustment option useful for other 
known problems, such as employees that are reported at 
headquarters when they are really located around the state. 
Employees whose location is unknown are usually assigned 
to a nonspecific county "999" for inclusion m statewide 

estimates, but traditionally have been omitted from 
sub-state estunates. With the adjustment option, the CES 
manager can allocate the county 999 employment to 
individual counties in proportion to other employees in the 
same industry. Major births and deaths can be reflected in 
the estunates through the adjustments until the CES and 
ES202 files can catch up. 

The danger of this adjustment capability is that it can be 
used to force small domain estimates to conform to the CES 
manager's or economists' judgments, rather tiian letting the 
data and models speak for themselves. The best possible 
model is useless if it is ignored or "fudged". 

Despite the danger, Estunator (6) is the one that we have 
actually moved into production in Illinois. All matched 
respondent records contribute to the first term. All matched 
records not designated as atypical or certainty contribute to 
the estimated slope in the second term. The summation in 
the second term includes nonmatched ES202 cases and 
missing sample cases - all cases that are treated as 
nonsample cases that month. If we have a CES record that 
does not match anything in ES202, it is dropped altogether. 
At present, all data adjustments. A, are coordinated and 
approved through the CES manager, who operates under 
sfrict guidelines, including a requfrement to maintain 
consistency with the CES estimates published by the BLS. 
Within the guidelines, the manager is granted discretion to 
determine when adjustments are in the best interest of the 
estimation process. 

5. MONITORING THE PROCESS 

It is preferable to discover and fbc data problems prior to 
estimation rather than rely on the adjustment capability in 
estimation. Illinois has developed several tools for moni­
toring the data that feed the monthly estimation process. 
Many of these tools reside in Illinois' software that 
pre-processes and matches the data prior to estimation. 

Matching proceeds as a by-product of CES' daily 
processing activities. The editing and registry maintenance 
of CES records involves review of ES202 records, which 
are available to CES staff through simple "point and click" 
tools. The CES staff designates a match between CES and 
ES202 records by a special code manually applied to the 
CES record and later read by the pre-processing software. 
Those CES records so indicated as matched are subse­
quently checked for ES202 congruence and uniqueness on 
the combination of UI, RU, industry, ownership type, 
county, and delinquency status. The clean matches are 
added to a matched file, which is available for further 
review through special diagnostic or exception reports. We 
developed and knplemented an extensive set of mles for tiie 
staff to follow in resolving the messy matches - the one to 
many and many to one matches. The pre-processing soft­
ware executes the mles and prints all cases of a certain type 
in a table for staff review. After applying all the mles and 
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resolving the match statuses of the cases in the prmted 
tables, we write remaining non-matching records to a sep­
arate nonmatched file for diagnostic reports and additional 
staff review. 

From the matched file, we develop diagnostic or excep­
tion reports for CES staff. For instance, the pre-processing 
software generates a report of sample records whose CES 
and ES202 data differ more than one might expect. The 
basis for this exception report is a statistic derived from 
information tiieory. See Theil (1967), Sfrobel (1982), and 
Harter (1987). The statistic is computed for each sample 
observation as follows: 

{yj^Xj)l2 
(7) 

It is a Taylor series approximation of a measure of 
enfropy and under the null hypothesis has a x̂  disfribution 
with 1 df The statistic provides a way of ranking data 
differences, and balancing absolute differences, dominated 
by larger employers, and relative differences, dominated by 
smaller employers. The CES manager can evaluate the 
cases with the largest values of E, identifying and cor­
recting miscoded data prior to small domain estimation. 

Other exception reports display duplicate CES records 
that were removed from the files. Duplicates are rare but 
can happen, for example, if two respondents from the same 
company each file CES reports. The exception reports 
display for review single establishment records m CES 
incorrectly matched to an aggregation in the ES202 that 
were dropped by the pre-processing software. Also dis­
played for review are unmatched CES records that could 
represent a successor or a birth employer. Other specialized 
diagnostics check the sums of ES202 records at county, 
MSA, and statewide levels for comparison with their re­
spective CES counterparts. 

After going through these exception reports and making 
changes where appropriate, CES staff may decide to rerun 
the pre-processing software using the newly updated data, 
if the production schedule permits. 

The software that computes the small domain estimates 
has a final data check built m. The input data values and the 
estimated model parameters are checked against tables of 
"sanity values" for reasonableness. This is a gross check 
orUy, designed to signal when something very unexpected 
has occurred. 

The estimation system produces tables of matched sam­
ple data and tables of nonsample data at the individual re­
porting unit level. The authorized users of the small domain 
estimation software - the CES manager and the affiliated 
local economists, among others - can review tiie micro data 
as well as the computed estimates. Based on their review, 
they can provide useful guidance regarding specification of 
the adjustment term ̂ 4̂ ,. 

The CES manager and local economists review the 
estimates themselves along with historical estimates to see 

whether the trends and seasonality in the observed time 
series are reasonable. For instance, Construction, Retail 
Trade, and Education Services all have sfrong seasonal 
patterns. Deviation from such patterns would suggest to the 
analyst that further review is needed. Manufacturing em­
ployment is thought to be frending downward over die long 
term, and there is a natural tendency to examine its time 
series in this context. 

Finally, the CES manager and local economists summa­
rize all of the labor market areas into one large entity. The 
larger employment numbers allow sharper delineation of 
seasonal and frend expectancies. They also allow for subse­
quent comparison with statewide estimates. 

6. CONCLUSION 

Many aspects of small domain estimation must be 
checked and rechecked in production on a monthly basis. 
The auxiliary variable must be investigated carefully with 
respect to its correlation with the survey variable and its 
reliability, compatibility, and availability. The record link­
age process is challenging (but highly rewarding) and 
requires vigilance. The models and assumptions underlying 
the estimator must be checked and verified for reason­
ableness. The estimates themselves must be scrutinized 
regularly. Development of the small domam estimator 
forcefully shows that even with the most ideal auxiliary 
variable and a textbook model, practical issues can intrude 
and require that flexibility be built into the estimation 
process. 

REFERENCES 

BATTESE, G.E., HARTER, R.M. and FULLER, W.A. (1988). An 
error-components model for prediction of county crop areas using 
survey and satellite data. Journal of the American Slalistical 
Association. 83, 28-36. 

GHOSH, M., and RAO, J.N.K. (1994). Small area estimation: An 
z.'p'pr&is&l. Slalistical Science. 9, 55-93. 

HARTER, R. (1987). Exception reporting: judging what is 
significant. Nielsen Marketing Trends. January. 20-23. 

HARTER, R., WOLTER, K. and MACALUSO, M. (1999). Small 
domain estimation of employment using CES and ES202 data. In 
Statistical Policy Working Paper 30, 1999 Federal Committee on 
Statistical Methodology Research Conference: Complete 
Proceedings, Part I of 2. Washington DC: Statistical Policy 
Office, Office of Information and Regulatory Affairs, Office of 
Management and Budget. 

MADOW, L., and MADOW, W. (1978). On link relative estimators. 
Proceedings of the Section on Survey Research Methods, 
American Statistical Association. 534-539. 

PURCELL, N.J., and KISH, L. (1980). Postcensal estimates for local 
areas (or domains). International Slalistical Review. 4^, 3-18. 



70 Harter, Macaluso and Wolter: Evaluating the Fundamentals of a Small Domain Estimator 

ROYALL, R.M. (1970). On finite population sampling theory under 
certain linear regression models. Biometrika. 57, 377-387. 

ROYALL, R.M. (1988). The prediction approach to sampling theory. 
In Handbook of Statistics, (Eds. P.R. Krishnaiah and C.R. Rao). 
New York: North Holland. 6, 399-413. 

ROYALL, R.M., and CUMBERLAND, W.G. (1981a). An empirical 
study of the ratio estimator and estimators of its variance. Journal 
of the American Statistical Association. 76, 66-77. 

ROYALL, R.M., and CUMBERLAND, W.G. (1981b). The finite 
population linear regression estimator and estimators of its 
variance - an empirical study. Journal of the American Statistical 
Association. 76,924-930. 

SARNDAL, C.-E., and HIDIROGLOU, M.A. (1989). Small domain 
estimation: A conditional analysis. Journal of the American 
Statistical Association. 84,266-275. 

SINGH, M.P., GAMBINO, J. and MANTEL, H.J. (1994). Issues and 
strategies for small area data (with discussions). Survey 
Methodology. 20, 3-22. 

STROBEL, D. (1982 ). Determining outliers in multivariate surveys 
by decomposition of a measure of information. Proceedings of 
Section on Business and Economic Statistics, American Statistical 
Association. 

THEIL, H. (1967). Economics and Information Theory. Studies in 
Mathematical and Managerial Economics, (Ed. H. Theil). 
Amsterdam: North Holland. 

WEST, S. (1983). A comparison of different ratio and regression type 
estimators for the total of a finite population. Proceedings of the 
Section on Survey Research Methods, American Statistical 
Association. 388-393. 

WEST, S. (1984). A comparison of estimators for the variance of 
regression-type estimators in a finite population. Proceedings of 
the Section on Survey Research Methods, American Statistical 
Association. 170-175. 



Survey Methodology, June 2003 
Vol.29, No. 1, pp. 71-79 
Statistics Canada 

71 

Solving The Error Localization Problem by 
Means of Vertex Generation 

TON DE WAAL' 

ABSTRACT 

To automate the data editing process the so-called error localization problem, i.e., the problem of identifying the erroneous 
fields in an erroneous record, has to be solved. A paradigm for identifying errors automatically has been proposed by Fellegi 
and Holt in 1976. Over the years their paradigm has been generalized to: the data of a record should be made to satisfy all 
edits by changing the values of the variables with the smallest possible sum of reliability weights. A reliability weight of 
a variable is a non-negative number that expresses how reliable one considers the value of this variable to be. Given this 
paradigm the resulting mathematical problem has to be solved. In the present paper we examine how vertex generation 
methods can be used to solve this mathematical problem in mixed data, i.e., a combination of categorical (discrete) and 
numerical (continuous) data. The main aim of this paper is not to present new results, but rather to combine the ideas of 
several other papers in order to give a "complete", self-contained description of the use of vertex generation methods to 
solve the error localization problem in mixed data. In our exposition we will focus on describing how methods for numerical 
data can be adapted to mixed data. 

KEYWORDS: Chemikova's algorithm; Error localization; Fellegi-Holt paradigm; Fourier-Motzkin elimination; 
Mathematical programming; Mixed data editing; Statistical data editing; Vertex generation. 

1. INTRODUCTION 

An important problem that has to be solved in order to 
automate the data editing process is the so-called error 
localization problem, i.e., the problem of identifyuig the 
erroneous fields in an erroneous record. Fellegi and Holt 
(1976) describe a paradigm for identifying errors in a record 
automatically. According to this paradigm the data of a 
record should be made to satisfy all edits by changing the 
values of the fewest possible number of variables. In due 
course the original Fellegi-Holt paradigm has been 
generalized to: the data of a record should be made to 
satisfy all edits by changing the values of the variables with 
the smallest possible sum of reliability weights. A reUability 
weight of a variable is a non-negative number that 
expresses how reliable one considers the value of this 
variable to be. A high reliability weight corresponds to a 
variable of which the values are considered tmstworthy, a 
low reliability weight to a variable of which the values are 
considered not so trustworthy. 

Describing a paradigm for identifying the erroneous 
fields in an erroneous record is oiJy a first step towards 
solving the error localization problem, however. The 
second step consists of actually solving the resulting 
mathematical problem. This mathematical problem can be 
solved in several ways, see e.g. Fellegi and Holt (1976); 
De Waal and Quere (2003), and De Waal (2003). One of 
these ways is by generating vertices of a certain polyhedron. 
Unfortunately, the number of vertices of this polyhedron is 
often too high for this approach to be applicable in practice. 
Instead, one should therefore generate a suitable subset of 

the vertices only. There are a number of vertex generation 
algorithms that efficientiy generate such a suitable subset of 
vertices of a polyhedron. An example of such a vertex 
generation algorithm is an algorithm proposed by 
Chemikova (1964, 1965). Probably most computer systems 
for automatic edit and imputation of numerical data are 
based on adapted versions of this algorithm. The 
best-known example of such a system is GEIS (Kovar and 
Whifridge 1990). Other examples are CherryPi (De Waal 
1996), AGGIES (Todaro 1999), and a SAS program 
developed by the Cenfral Statistical Office of Ireland (see 
Cenfral Statistical Office 2000). The origmal algorithm of 
Chemikova is rather slow for solving the error localization 
problem. It has been accelerated by various modifications 
(see Rubin 1975 and 1977; Sande 1978; Schiopu-Kratina 
and Kovar 1989; Pillion and Schiopu-Kratina 1993). 

Only the last three of these papers focus on the error 
localization problem. Sande (1978) discusses the error 
localization problems for numerical data, categorical data 
and mixed data. The discussion of the error localization 
problem in mixed data is very brief, however. 
Schiopu-Kratina and Kovar (1989) and Pillion and 
Schiopu-Kratina (1993) propose a number of improvements 
on Sande's method for solving the error localization 
problem for numerical data. They do not consider tiie error 
localization problems for categorical or mixed data. 

In the present paper we examine how vertex generation 
methods can be used to solve the error localization problem 
in mixed data, i.e., a combination of categorical (discrete) 
and numerical (continuous) data. The main aim of this 
paper is not to present new results, but rather to combine 
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the ideas of the above-mentioned papers in order to give a 
"complete", self-contained description of the use of vertex 
generation methods to solve the error localization problem 
in mixed data. We will especially describe how modifica­
tions to accelerate Chemikova's algorithm for numerical 
data can also be used for mixed data. 

The remauider of the present paper is organized as 
follows. Section 2 gives a formal definition of the edits that 
we consider as well as a number of examples. Section 3 
formulates die error localization problem as a mixed integer 
programming problem. Section 4 describes how the error 
localization problem can be solved by generating vertices 
of an appropriate polyhedron. We describe how 
ChemUcova's algorithm can be used to generate these 
vertices in sections 5 and 6. In these sections we also 
describe modifications to the algorithm in order to improve 
its performance. Section 7 concludes the paper with a brief 
discussion. In the Appendix we give Rubin's description of 
ChemUcova's algorithm. In this paper proofs are omitted for 
most results. The interested reader is referred to the 
literature for those proofs. 

2. THE EDITS 

2.1 Formal Definition of the Edits 

We denote the categorical variables by v̂ . (/ = l,...,m) 
and the numerical variables by x,. (/ = 1,...,«). For 
categorical data we denote the domain, i.e., the set of 
possible values, of variable i by D.. We assume that every 
edit E^ {j = l,...,J) is written in the following form: edit 
£•' is satisfied by a record (v,,..., v̂ ,̂ x,,..., x^) if and only 
if the following statement holds tme: 

IF v.eFj for / = 1,... m 

THEN (X|,...,x„)6 {x|a,^,jc,+. + %-^' + bj^0},(2.l) 

where f! c D.{j = I,...,J). Numerical variables may 
attain negative values. For non-negative variables an edit of 
type (2.1) needs to be inttoduced in order to ensure 
non-negativity. A numerical equality can be expressed as 
two inequalities. 

All edits have to be satisfied simultaneously. A record 
that satisfies all edits is called a consistent record. The 
condition after the IP-statement, i.e., "v. e Fj for all 
/ = 1,...,/w", is called the IF-condition of edit 
j {j = I,..., J). The condition after the THEN-statement is 
called the THEN-condition. If the IF-condition does not 
hold true, the edit is always satisfied, irrespective of the 
values of the numerical variables. If the set in the 
THEN-condition of (2.1) is the entfre n-dimensional real 
vector space, then the edit is always satisfied and may be 
discarded. If the set in the THEN-condUion of (2.1) is 
empty, then the edit is failed by any record for which the 
IF-condition holds. 

In many practical cases, certain kinds of missing values 
are acceptable, e.g. when the corresponding questions are 
not applicable to a particular respondent. We assume that 
for categorical variables such acceptable missing values are 
coded by special values in their domains. Non-acceptable 
missing values of categorical variables are not coded. The 
optimization problem of section 3 will identify these 
missing values as being erroneous. We also assume that 
numerical THEN-conditions are only be triggered if none 
of the values of the variables involved may be missing. 
Hence, if - in a certam record - a THEN-condition 
involving a numerical variable of which the value is missing 
is friggered by the categorical values, then either the 
missing numerical value is erroneous or at least one of the 
categorical values. 

2.2 Examples of Edits 

Below we illusfrate what kind of edits can be expressed 
in the form (2.1) by means of a number of examples. 

1. Turnover - Profit >0. (2.2) 
This is an example of a numerical edit. For every 
combination of categorical values the edit should be 
satisfied. The edit can be formulated in our standard 
form as: 

IF VIED. for aU / = 1, ...,m 

(2.5) 

THEN (Profit, Turnover) e 
{{Profit, Turnover)\Turnover - Profit tO}. (2.3) 

In the remaining examples we will be slightly less 
formal with our notation. In particular, we will omit the 
terms "v̂ , e £>." from the edits. 

2. IP {Gender = "Male") THEN {Pregnant = 'Wo")(2.4) 

This is an example of a categorical edit. It can be 
formulated in our standard form as: 

IP {Gender = "Male") AND {Pregnant = "Yes") 
THEN 0. 

3. IP {Occupation = "Statistician") 
THEN {Income ^ 1,000 Euro). (2.6) 

This is a typical example of a mixed edit. Given certain 
values for tiie categorical variables, a certain numerical 
consfraint has to be satisfied. 

4. IP {Occupation = "Statistician") 
OR {Education = "University") 
THEN {Income > 1,000 Euro). (2.7) 

This edit can be split into two edits given by (2.6) and 

(2.8) 
IF {Education = "University") 
THEN {Income^ 1,000 Euro). 
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5. IP {Tax on Wages > 0) 
THEN {Number of Employees ^ !)• (2.9) 

Edit (2.9) is not in standard form (2.1), because the 
IP-condition involves a numerical variable. To handle 
such an edit, one can carry out a pre-processing step to 
infroduce an additional categorical variable TaxCond 
with domain {"False", "True"}. Uiitially, TaxCond is 
given the value "True" if Tax on Wages > 0 in the 
unedited record, and the value "False" otherwise. The 
reliability weight TaxCond is set to zero. We can now 
replace (2.9) by the following three edits of type (2.1): 

W {TaxCond = "False") 
THEN {Tax on Wages <, 0), (2.10) 

fF {TaxCond = "True") 
THEN {Tax on Wages ^ e), (2.11) 

W {TaxCond = "True") 
THEH {Number of Employees -^ 1), (2.12) 

where e is a sufficiently small positive number. 

3. THE ERROR LOCALIZATION PROBLEM 
AS A MIXED INTEGER PROGRAMMING 

PROBLEM 

We assume that the values of the numerical variables are 
bounded. That is, we assume that for the i-th numerical 
variable (/ = 1,..., n) constants â . and ^. exist such that 

a,- ^ X. ^ p. (3.1) 

for all consistent records. In practice, such values â . and (3̂, 
always exist although they may be very large, because 
numerical variables that occur in data of statistical offices 
are bounded. The values of â . and p̂ . may be negative. If 
the value of the /-th numerical variable is missing, we code 
this by assigning a value less than a,, or larger than p̂ , to x.. 
Numerical variables for which the value should be missmg, 
e.g. because tiie correspondmg question was non-appli­
cable, will nonetiieless receive a value after the termination 
of the algorithm that is described in subsequent sections, 
but this value may subsequentiy be ignored. 

For the i-th categorical variable, let D. = 
{c.i^,k=l, ...,g|.} (/'= 1,...,m) be its domain. We 

introduce the binary variable ŷ ,̂  

^ik-

I if the value of categorical variable i equals ĉ  

0 otherwise. 

/ * • 

(3.2) 

To the j'-th categorical variable there corresponds a 
vector (y.,, ...,y. ) such that Y,̂  = 1 ifandortiy if the value 
of this categorical variable equals c.^, otherwise 7̂ ,̂ . = 0. 
For each categorical variable i of a consistent record the 
relation 

Y 
k 

yn = I (3.3) 

has to hold, i.e., exactly one categorical value should be 
filled in. The vector (y^.,,..., j . ) will also be denoted by 
Yj. If the value of the i-th categorical variable (J = 1,..., m) 
is missing, we set all •y./^ equal to zero (^ = 1, ...,g). In 
terms of the binary variables Y,J. an edity given by (2.1) can 
be written as 

a^J x^ + % ,̂ + bj>M Y 
i-l 

E lik (3.4) 

where a positive M is chosen so that -M is less than the 
lowest possible value of a..x. + ... + a . ,,X. + b.. If the , . . - _ . IJ I ~nj"n " ; • " 

IP-condition of (2.1) and condition (3.3) hold frue, the 
right-hand side of (3.4) equals zero. Consequently, the 
THEN-condition of (2.1) has to hold true for the numerical 
variables. If the IF-condition of (2.1) does not hold tme, by 
(3.2) the right-hand side of (3.4) equals a large negative 
value. Consequentiy, (3.4) holds tme irrespective of the 
values of numerical variables. 

If(2.1) is not satisfied by a record (v,,..., V^,A:, , ...,jc„), 
or equivalently if (3.4) is not satisfied by 
(y^u-^yL'^i'-'^n)' then we seek values 
e,.f(A:= l,...,g.;i = l,...,m),e.1{k= l,...,g;i = l,...,m), 

P N 

z. (/=!,...,«) and z. (/=!,...,n) that have to satisfy 
P N 

certain conditions mentioned below. The e,.̂  and the e,.̂  
correspond to positive and negative changes, respectively, 
in the value of Y,̂ - Likewise, the z,, and the z, corre­
spond to positive and negative changes, respectively, in the 

0 P P 

value of X,. The vector (e ,,..., e ) will also be denoted 
as Cj and the vector (e, 1,..., e,„) as Cj . 

The objective fimction we consider in this paper is given 
by W ; 

1 = 1 
:yY<(H^i'')^H^i% (3.5) 

where w^"^ is the reUability weight of the i-th categorical 
variable (/=1,..., m),w/^ the reliability weight of the i-th 
real-valued variable (/=1,...,«), 5(x) = l if xviO and 
5(x) = 0 otherwise. The objective function (3.5) is the sum 
of the reliability weights of the variables for which a new 
value must be imputed. Note that minimizing (3.5) is 
equivalent to minimizing 

w 
i-l 

• • ( E ^ , r ) - E w / ( 5 ( z , ' ' ) . 5 ( z , ^ ) ) . (3.6) 

The objective function (3.6) is the sum of the reliability 
weights of the variables of which the original values must 
be modified. The value of the objective function (3.5) is 
equal to the value of the objective function (3.6) plus the 
sum of reliability weights of the categorical variables for 
which the original value was missing. 
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The objective function (3.5) is to be mirumized subject 
to the following consfraints: 

P ^ fA 11 

P N f. 

z,, ,z,. ^0, 
P N . 

^ik + ^ik ^ 1 

Y ea<.l, 
k 

^ik = 0 if lik = 0 

Y (Y°t+^,r-e,r)=i. 
0 P N o 

a.^x. +z,. -z,. ip,. 

{i=h-

(/=1,. 
(/=!,. 

('•=1,. 

(/=1,. 

(/=!,. 

(/=!,. 

-,m) 

-,n) 
..,m) 

-,m) 

-,m) 

-,m) 

..,«) 

(3.7) 

(3.8) 
(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

and 

E . 0 P N^ a.j{xi +z,. -z,. ) 
1=1 

/ 
bji:M t' 

i-l 

(yik^^ik 
P N^ 

-^ik)-

'^ikeE, 

(3.14) 

for all edits J = l,..., K. 
Relation (3.9) expresses that a negative correction and a 

positive one may not be applied to the same reported value 
of a categorical variable. Relation (3.10) expresses that at 
most one value may be imputed, i.e., estimated and sub­
sequently filled in, for a categorical variable, and relation 
(3.11) that a negative correction may not be applied to a 
categorical value that was not filled in. Relation (3.12) 
ensures that a value for each categorical variable is filled in, 
even if the original value was missing. Relation (3.13) 
states that the value of a numerical variable must be 
bounded by the appropriate constants. In particular, relation 
(3.13) also states that the value of a numerical variable may 
not be missing. Finally, relation (3.14) expresses that the 
modified record should satisfy all edits given by (2.1). 

After solving this optimization problem the resulting, 
modified record is given by 

(Y, +e, - e , 0 p 
-.Ym+em 

+ z. 

N 0 

0 0 A'^ 
Z - Z ) . n n ' 

This modified record is consistent, i.e., satisfies all edits. 
A solution to the above mathematical problem corresponds 
to a solution to the error localization problem, which sunply 
consists of a list of variables of which the values have to be 
changed vrithout specifying thefr new values. There may be 
several optimal solutions to the error localization problem. 
Our aim is to find all these optimal solutions. Note that the 
above optimization problem is a franslation of the gene­
ralized Fellegi-Holt paradigm ui mathematical terms. 

We end this section with two remarks. Ffrst, note that in 
practice only one e,̂  -variable for each variable / is needed, 
namely for the index k for which Y,i = 1. The other e,,̂^ 
equal zero. In the present paper we use g,, binary e^^ 
-variables for each variable i to cover all possible cases. 
Second, note that in an optimal solution to the above 
optimization problem either z,- = 0 or z,. = 0, and that, 
similarly, in any feasible solution either e,̂  = 0 or e,,̂  = 0 
(or both). 

4. VERTEX GENERATION METHODS AND 
ERROR LOCALIZATION FOR MIXED DATA 

In this section we explain how vertex generation 
methods can be used to solve the error localization problem 
in mixed data. To this end we show tiiat a minimum of (3.5) 
subject to (3.7) to (3.14) is attained in a vertex of a certain 
polyhedron P described by linear, non-integer consttaints. 
Suppose a miiumum of (3.5) subject to (3.7) to (3.14) is 
attained in a point given by: 

1. e,̂  = 0 for {i, k)ele , ̂ ik = I otherwtise, 
p p p 

2. e,.̂  = 0 for (/, A:)e/(, , e,j. = 1 otherwise, 

3. z, =0 for/e-^2 ,2,. T̂ O otiierwise, 

4. Zj =0 for iel^ , and z,- v̂O otherwise, 
for certain index sets 1^,1^, I^ and /̂  . We now consider 
the problem of minimizing the linear function given by 

Y %+ Y (l-e,r)+ Y ^ik 
o.m'e (i.k)(i: 0,k)e c 

+ Y (i-«,r) 

subject to (3.8) to (3.14) and 

Y p 

z,. + Y 

n N P , 

0 ^ e,i,e,.i ^ 1. 

(4.1) 

(4.2) 

Subject to (3.8) to (3.14) and (4.2), which together form 
our polyhedron P, the function (4.1) is non-negative. 
Moreover, its value equals zero only for the point given by 
1 to 4 above. In other words, our selected minunum of (3.5) 
subject to (3.7) to (3.14) is also the minimum of (4.1) 
subject to (3.8) to (3.14) and (4.2). 

It is well knovwi that a linear function subject to a set of 
linear consfraints attains its minimum, if such a minimum 
exists, in a vertex of the feasible polyhedron described by 
the set of linear consfraints (see e.g. Chvatal 1983). So, the 
minimum of (4.1) subject to (3.8) to (3.14) and (4.2), zero, 
is attained in a vertex of the feasible polyhedron P 
described by (3.8) to (3.14) and (4.2). We conclude that tiie 
point given by 1 to 4 above, i.e., an arbitrary optimum of 
(3.5) subject to (3.7) to (3.14), is a vertex of the polyhedron 
defined by (3.8) to (3.14) and (4.2). 
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The above observation unplies that the minimum of (3.5) 
subject to (3.7) to (3.14) can be found by generating all 
vertices of the polyhedron given by (3.8) to (3.14) and (4.2). 
From these vertices we select the vertices that satisfy (3.7). 
From those latter vertices we subsequently select the 
vertices for which the value of tiie objective function (3.5) 
is minunal. These vertices correspond to the optimal 
solutions to the error localization problem. 

5. CHERNIKOVA'S ALGORITHM AND THE 
ERROR LOCALIZATION PROBLEM 

Chemikova's algorithm (Chemikova 1964 and 1965) 
was designed to generate the edges of a system of linear 
inequalities given by 

Cx ^ 0 

and 

X ^ 0, 

(5.1) 

(5.2) 

where C is a constant n^ x «^-matrix and x an 
n^-dimensional vector of unknowns. The algorithm is 
described m the Appendix. It can be used to find the 
vertices of a system of linear inequalities because of the 
following lemma (see Rubin 1975 and 1977). 

Lemma 5.1. The vector x" is a vertex of the system of 
linear inequalities 

Ax ^ b (5.3) 

and 

x ^ 0 (5.4) 

if and only //" {(A,x" | X)^, X^O} is an edge of the cone 
described by 

and 

( -Alb) 

^ 

X 

0. 

0 (5.5) 

(5.6) 

Here A is an n̂  x n^-matrix, b an n ^-vector, x an 
n ^-vector, and ̂  and X scalar variables. 

For notational convenience we write 

1 (5.7) 

throughout this paper. The matrix in (5.5) is then an 
n^ X «^-mafrix just like in (5.1), so we can use the same 
notation as in Rubin's formulation of Chemikova's 
algorithm. 

If Chemikova's algorithm is used to determine the edges 
of (5.5) and (5.6), then after the termination of the 
algorithm the vertices of (5.3) and (5.4) correspond to those 

columnsj of L "' (see Appendix) for which /„ ' • # 0. The 
entries of such a vertex x' are given by 

^i = W^"r.J "̂"̂  ' 1, (5.8) 

Now, we explain how Chemikova's algorithm can be 
used to solve the error localization problem in mixed data. 
The set of consfraints (3.8) to (3.14) and (4.2) can be 
written in the form (5.3) and (5.4). We can find the vertices 
of the polyhedron correspondmg to this set of constrauits by 
applying Chemikova's algorithm to (5.5) and (5.6). 
Vertices of the polyhedron defined by (3.8) to (3.14) and 
(4.2) are given by columns y^l for which u^J ^ 0 for all / 
and /„ \. > 0, where n^ is the number of rows of the final 
matrix L ' (see Appendix). In our case, n^ equals the total 
number of variables z,- ,z,. ,e,j and e,,ĵ  plus one 
(corresponding to ^ in (5.5) and (5.6)), i.e., n^ = 
2n + 2G + 1, where G = y. g.. The values of the variables 

P N P N ^ 

z, , z, , e,,̂  and e,̂ , in such a vertex are given by the 
corresponding values IjJ11„ ',. 

Two techiucal problems must be overcome when 
Chemikova's algorithm is applied to solve the error 
localization problem for mixed data. First, the algorithm 
must be sufficiently fast. Second, the solution found must 
be feasible for the error localization problem for mixed 

P N 

data, i.e., the values of the variables e,̂  and e,̂  must be 
either 0 or 1. Both problems can be overcome by removing 
certain "undesfrable" columns from tiie current matrix Y ^ 
i.e., by deleting columns that cannot yield an optimal 
solution to the error localization problem. That such 
undesirable columns may indeed be removed from the 
current mafrix Y '' is essentially demonsfrated by Rubin 
(1975 and 1977). We state this resuU as Theorem 5.1. 
Theorem 5.1. Columns that cannot yield an optimal 
solution to the error localization problem because they 
contain too many non-zero entries may be removed from an 
intermediate matrix. 

To accelerate Chenukova's algorithm, we aim to limit 
the number of vertices that are generated as much as 
possible. Once we have found a (possibly suboptimal) 
solution to the error localization problem for which the 
objective value (3.5) equals r\, say, we from then on look 
only for vertices corresponding to solutions with an 
objective value at most equal to T]. A minor technical 
problem is that we cannot use the objective function (3.5) 
directiy when applying Chemikova's algorithm, because the 
values of e,^, e,^, z,. and z, are not known duiing the 
execution of this algorithm. Therefore, we infroduce a new 
objective fimction that associates a value to each column of 
the matrix Y'' (see Appendix). Assume that the first G 
entries of a column l^^ of L"* correspond to the 
e,j -variables, the next G enfries to the e,̂ ^ -variables, tiie 
next n entries to the z,. -variables, and the subsequent n 
enfries to the z, -variables. We define the following 
objective function 



76 De Waal: Solving the Error Localization Problem by Means of Vertex Generation 

m 

Y w-
<=i 

I \ 
SI 

Y 5(C) 
I k-i ) 

E-/x(5(//,,„,).5(//,.„,,,,)), (5.9) 
1=1 

where t =Yli-i Si*'' fo"" ^^'^^ P̂ i"" {'>''} 
(/=1, ...,m;r=l, ...,g,.). Differences between (3.5) and(5.9) 
are that for each e,.̂  or e,̂  in (3.5) several variables /,^ 
occur in (5.9), and that the e,̂  and e,-̂  attain values in 
{0,1} whereas the /, ̂ , can attain any value between zero and 
one. If column j , ^ of Y '' corresponds to a solution to the 
error localization problem, then the value of the objective 
function (5.9) for y^^ equals the value of the objective 
function (3.5) for tiiis solution. This unplies that we can use 
the objective function (5.9) to update the value of T|. 

The computing time of ChemUcova's algorithm can be 
further reduced by noting that in an optimal solution to the 
error localization problem either z, = 0 or z, =0 (or both). 
This implies that in Step 7 of Chemikova's algorithm (see 
Appendix) columns y^^ and y'l, need not be combined if 
one of these columns corresponds to z, ^ 0 and the other to 
z^^*0. Theorem 5.1 implies that not combuiing such 
columns is allowed. 

We now consider the problem of constmcting a feasible 
solution to the error localization problem for mixed data. 
This problem can, of course, be solved by first generating 
vertices without taking into account that values of e^,^ and 
e,f must be either 0 or 1 and then selecting the best vertices 
that possess this property, but this is rather uiefficient so we 
suggest a different approach. It suffices to ensure that for 
each variable /(/ = 1, ...,m) at most one e,̂  differs from 
zero, and that the e,̂  and e,;̂  equal either zero or one after 
the termuiation of the algorithm. We can ensure that for 
each i at most one e,̂ . differs from zero in the following 
way. If in Step 7 of Chemikova's algorithm the entry ofy^, 
corresponding to e^,^ differs from zero and the entry of >'̂ , 
corresponding to e,̂  (̂ 2 * k^ differs from zero as well, 
then columns y^^ and y^, are not combined to generate a 
new column. We can also ensure that the e,̂  equal either 
zero or one after the termuiation of the algorithm. For each 
i this is a problem only for the unique e^j^ for which 
Y". = 1. We infroduce variables e. that can attain values 
between zero and one. These variables have to satisfy 

+ c. I. (5.10) 

Relation (5.10) is tteated as a consfraint for the values of 
the variables e,.. and e.. Because tiie value of e,. has to be 
either zero or one, we demand that either e, j. =0 or e. = 0. 
This can be ensured in the same manner as for the z, and 

\j P 

the z, . Fmally, we have to ensure that the e,̂  equal either 
zero or one after the termination of the algorithm. This is 

automatically the case if for each / at most one e,̂  differs 
from zero, at most one e^^ equals one and the remaining 
e-l equal zero, because relation (3.12) has to hold tioie. We 
have afready ensured that these conditions are satisfied, so 
all ell equal zero or one after the termination of the algo­
rithm. With the adaptations described above Chemikova's 
algorithm can be applied to solve the error localization 
problem in mixed data. Theorem 5.1 again implies that 
these modifications are allowed. 

6. ADAPTING CHERNIKOVA'S ALGORITHM 
TO THE ERROR LOCALIZATION PROBLEM 

6.1 Advanced Adaptations 

In this section we consider more advanced adaptations of 
Chemikova's algorithm in order to make the algorithm 
better suited for solving the error localization problem. 
Sande (1978) notes that when two columns in the imtial 
matrix Y ̂  have exactly the same entries in the upper matrix 
U ", they will be treated exactiy the same m the algorithm. 
The two columns are always combuied wath the same other 
columns, and never •with each other. Keeping both columns 
in the matrix only makes the problem unnecessarily bigger. 
One of the columns may therefore be temporarily deleted. 
After the termination of the algorithm, the solutions to the 
error localization problem involving the temporarily deleted 
column can easily be generated. 

A correction pattern associated with column y^, in an 
intermediate matrix Y' ' , where Y"* can be spUt into an 
upper matrix U'' and lower matrix L'' witii n^ and n^ rows 
respectively (see Appendix), is defined as the 
n -dimensional vector with entries 5(y;.,) for entries 5(v,J 

p , V " n^<j<,n^-^n^. For each z- ,z!\e.i^, and e,.)̂ ' a correction 
partem contains an entty with value ui {0,1}. Sande (1978) 
notes that Theorem 5.1 implies that once a vertex has been 
found, aU columns with correction patterns with ones on the 
same places as in the correction pattern of this vertex can be 
removed. 

The concept of correction pattems has been improved 
upon by Pillion and Schiopu-Kratina (1993), who note that 
it is not knportant how the value of a variable is changed, 
but only whether the value of a variable is changed or not. 
A generalized correction pattern associated with column 
y^, in an intermediate matrix Y' ' is defined as the 
{m + n) -dunensional vector of which they-th entry equals 1 
if and only if an entry corresponding to they'-th variable m 
column y^^ is different from 0, and 0 otherwise. Here m 
denotes the number of categorical variables and n the 
number of numerical variables. For each variable involved 
in the error localization problem, a generalized correction 
pattem contains an entry with value in {0, 1}. Again 
Theorem 5.1 implies that once a vertex has been found, all 
columns with generalized correction pattems with ones on 
the same places as in the generalized correction pattem of 
this vertex can be deleted. 
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Pillion and Schiopu-Kratina (1993) defme a failed row 
as a row that contains at least one negative entry placed on 
a column of which the last entry is non-zero. They note that 
in order to solve the error localization problem we can 
already terminate Chemikova's algorithm as soon as all 
failed rows have been processed. This result is stated as 
Theorem 6.1. 

Theorem 6.1. If an intermediate matrix contains no failed 
rows, then all (generalized) patterns corresponding to 
vertices for which (5.9) is minimal have been found. 

The final adaptation of Pillion and Schiopu-Kratina 
(1993) to Chemikova's algorithm is a method to speed-up 
the algorithm in case of missing values. Suppose the error 
localization problem has to be solved for a record with 
missing values. For each numerical variable of which the 
value is missing we first fill in an arbittary value, say zero. 
Next, only the entties corresponding to variables with 
non-missing values are taken into account when calculating 
the value of function (5.9) for a column. An optimal solu­
tion to the error localization problem is given by the 
variables corresponding to a determined optimal gener­
alized correction pattem plus the variables with missing 
values. In this way, unnecessary generalized correction 
patterns according to which many variables with non-
missing values should be changed are discarded earlier than 
in the standard algorithm. 

6.2 Duffin's Rules 

Chemikova's algorithm does not generate any redundant 
columns, i.e., columns whose information is already 
contained in another column. Its problem is, however, that 
in order to achieve this the algorithm requires a consi­
derable amount of computing time. This is for a substantial 
part caused by its Step 7 where a time- consuming check 
has to be performed to prevent the generation of redundant 
columns. Duffin (1974) demonstrates that this step can be 
split into two parts. In Duffin's version of the algorithm 
Step 7 consists of two parts: 

k k 

- For each pair {s,t) for which J'̂ . ^ }';.,<0 we choose 
\i^,\>.2>^ such that \!i^yi.^+\i2yr,='^ and adjoin the 
column \t^y^^-¥\ji2y,,lo Y'''^'. 

- Delete (some of) the redundant columns of Y'' *'. 

Duffin (1974) gives the following two rules to delete 
redundant columns of Y'"''. 

Refined elimination rule: When t rows have been 
processed, delete any columns that have been generated by 
combining / + 2 or more original columns. 

This first rule allows the generation of redundant 
columns, but is much faster to apply than Step 7 of 
Chemikova's algorithm. The second mle, the dominance 
mle, makes sure that no redundant columns are generated. 
A column >'. „ is called dommated by another column y^ ^ 
if 7,.* = 0 implies ;̂ ,.* = 0. 

k b 

Dominance rule: Delete any column y^^ in Y that is 
dominated by some other column y^ „. 

One could consider using the refined elimination mle 
during most iterations of Chemikova's algorithm and only 
resort to the dominance mle when the number of columns 
becomes too high to be handled efficiently. After all failed 
rows have been processed the dominance mle has to be 
applied to remove redundant columns from the final mafrix 
Y "*. One may hope that this leads to an algorithm that is 
faster than Chenukova's algorithm, but this remains to be 
tested. 

7. DISCUSSION 

At Statistics Netherlands a prototype computer program 
based on the adapted version of Chenukova's algorithm 
described in sections 5 and 6.1 of the present paper has 
been developed. The possibly more efficient mles described 
in section 6.2 have not been implemented in this prototype 
program. For purely numerical data a production version of 
this program has been used for several years in the 
day-to-day routine at Statistics Netherlands in order to 
produce clean data for most of our sfructural business 
statistics. 

For Statistics Netherlands improving the efficiency of the 
data editing process for economic, and hence mainly 
numerical, data is much more important than for social, and 
hence mainly categorical, data. In particular, edits of type 1 
(see e.g (2.2)) mentioned in section 2.2 are the most 
important ones for us, followed by edits of type 5 (see e.g. 
(2.9)). Because improving the efficiency of data editing for 
numerical data is much more important to us than for social 
data, the developed prototype program has only been 
evaluated for purely numerical test data. For these nume­
rical test data, the program has been compared to several 
other prototype programs, namely a program based on a 
standard mixed mteger programming problem formulation 
(see e.g. De Waal 2003), a program based on cutting planes 
(see Garfinkel, Kunnathur and Liepins 1988; Ragsdale and 
McKeown 1996, and De Waal 2003), and a program based 
on a branch-and-bound algorithm (see e.g. De Waal and 
Quere 2003). Our evaluation results show that the 
computing speed of our program based on the adapted 
version of Chemikova's algorithm is acceptable m compa­
rison to other algorithms (for details on our evaluation 
experiments we refer to De Waal 2003). They also show, 
however, that this program is out-performed by the program 
based on the branch-and-bound algorithm. Besides being 
faster than the adapted version of Chemikova's algorithm, 
the branch-and-bound algorithm is less complex, and hence 
easier to maintain. 

Further improvements to the adapted version of 
Chemikova's algorithm may reduce its computing time. 
Examples of such potential improvements are: better 
selection criteria for the row to be processed, and better 
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ways to handle missing values. However, these improve­
ments would at the same time increase the complexity of 
the algorithm, thereby making it virtually impossible for 
software-engineers at Statistics Netherlands to maintam the 
program. For the above reasons, computing time for 
numerical data and complexity of the algorithm, we recently 
decided to switch to the branch-and-bound algorithm 
instead of the adapted version of Chemikova's algorithm 
for our production software. In our latest version of our 
production software, a version of the branch-and-bound 
algorithm suitable for a mix of categorical, continuous, and 
integer data has been implemented. We sincerely hope, 
however, that the present paper wiU inspfre some readers to 
find further improvements to Chemikova's algorithm. 
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APPENDIX: CHERNIKOVA'S ALGORITHM 

Rubin's fonnulation (Rubin 1975 and 1977) of 
Chemikova's algorithm is as foUows: 

fu-1 1. Construct the (n +n )>< n -matrix Y ** = 
L»J where 

U" = C and L" = I : the n^ x n^-identify matrix. 
They-th column of Y , y^^, will also be denoted as 

0 
y*j = 

I 
J / 

2. 

3. 

where U: and / are they-th columns of U " and L ", 
respectively. 

fc=0 
If any row of U "̂  has all components negative, x = 0 is 
the only point satisfying (5.1) and (5.2), and the 
algorithm terminates. 

If all the elements of U "̂  are non-negative, the 
columns of L "* are the edges of the cone described by 
(5.1) and (5.2), and the algorithm terminates. 

If neither 3 nor 4 holds: choose a row of U '', say row 
r, with at least one negative entry. 

6. Let R = {J \ y^j i 0}.Let v be the number of elements 
in R. Then the first v columns of the new mafrix Y ''̂ * 
are all the columns y^j of Y "̂  for j e R-

Examine the matrix Y ''. 

5. 

7. 

a. If Y '' has only two columns and y^^ x^^j *̂  ^' 
then choose n,,|X2>0 such that n,,7ri + 

k k k 

^2 7r 2 = -̂ Adjoin the column H- , y, i + ^2 7,21' ' 
Y"**'. Go to Step 9. 

b. If Y "* has more than two columns then let 5 = 
{{s,t) I y^^ X y^i <0 and t>s}, i.e., let She tiie set 
of all pairs of columns of Y '' whose elements in 
row r have opposite signs. Let /Q be the index set 
of all non-negative rows of Y ** i.e., all rows of 
Y "̂  with only non-negative enfries. For each 
{s, t) e S, find all / e IQ such that y^^. = y^, = 0. 

CaU tiiis set /, (5,0-

- If / | {s, t) = 0, then y^^ and y^, do not 
contribute another column to the new matrix. 

- If / | {s, t) * 0, check to see if there is a v not 
equal to 5 or f such that y.^ = 0 for all 
/ 6 /] (5,0- If such a V exists, then >•, .̂ and 
y,, do not confribute a column to the new 
matrix. If no such v exists, tiien choose 

k k 

HI, H2 > 0 such that ^, ^'^ + V^jYrt = ^- Adjoin 
the column ftj^'.j ^o.2y,, to Y''•"'. 

When all pairs in 5 have been examined, and the 
additional columns (if any) have been added, we say 
that row r has been processed. We then define mafrices 

L"^ 
U''"' andL''^' by Y''^' = where U ""•' is a 

matrix with «, rows and L """* a mafrix with «„ rows. 
They-th column of Y k+l 

y>j 

A+l 

y . j , 
k.i^ 

.k+l 

*J > 

will also be denoted as 

where u *, and I * are the /-th columns of U 
L , respectively. 

k+l and 

9. k:=k+l, and go to Step 3. 

Chemikova's algorithm can be modified in order to handle 
equalities more efficiently than freating them as two 
inequalities. Steps 3, 5 and 6 should be replaced by 

3. If any row of U"* corresponding to an inequality or 
equality has all components negative or if any row of 
U ^ corresponding to an equality has all components 
positive, X = 0 is the only point satisfying (5.1) and 
(5.2), and the algorithm ternunates. 

5. If neither 3 nor 4 holds: choose a row of U "*, say row 
r, with at least one negative entry if the row 
corresponds to an inequality, and with at least one 
non-zero entry if the row corresponds to an equality. 

6. If row r corresponds to an inequality, then apply Step 
6 of the standard algorithm. If row r corresponds to an 
equality then let R = {j\yrj =0}. Let v be the number 
of elements in R. Then the first v columns of tiie new 
matrix Y "̂ *' are all the columns y^j of Y "̂  for j e R. 
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In Step 5 of ChemUcova's algorithm a failed row has to 
be chosen. Rubin (1975) proposes the following simple 
rule. Suppose a failed row has z entries equal to zero, p 
positive entries, and q negative ones. We then calculate for 
each failed row the value N^^^ =z+p +pq if the row 
corresponds to an inequality and the value N^^ = z +pq if 
the row corresponds to an equality, and choose a failed row 
with the lowest value of N„. 
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Inference for Population Means Under Unweighted Imputation 
for Missing Survey Data 
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ABSTRACT 

In the presence of item nonreponse, unweighted imputation methods are often used in practice but they generally lead to 
biased estimators under uniform response within imputation classes. Following Skinner and Rao (2002), we propose a 
bias-adjusted estimator of a population mean under unweighted ratio imputation and random hot-deck imputation and derive 
linearization variance estimators. A small simulation study is conducted to study the performance of the methods in terms 
of bias and mean square error. Relative bias and relative stability of the variance estimators are also studied. 

KEY WORDS: Bias-adjusted estimator; Item nonresponse; Random hot-deck imputation; Ratio imputation. 

1. INTRODUCTION 

Item nonresponse occurs when a sampled unit fails to 
provide information on some variables of interest. Many 
surveys use imputation to handle item nonresponse but one 
should be aware of the difficulties when imputation is used. 
For example, the imputed values are commonly tteated as 
if they are tme values, and the variance estimates are 
computed usmg standard formulas. This can lead to serious 
underestimation of tiie tme variance of tiie estimators when 
the proportion of missing values is not small. The relation­
ships between variables may also be distorted. 

Imputation methods can be classified into two broad 
classes: deterministic and stochastic. Deterministic methods 
include ratio or regression imputation and nearest neigh­
bour imputation, using auxiliary variables observed on all 
the sampled imits. For nearest neighbour imputation, a non-
respondent item is assigned the respondent item value of the 
"nearest" respondent, where "nearest" is usually defmed in 
terms of a distance function based on the auxiliary vari­
ables. Stochastic methods include random hot-deck unputa­
tion where the value assigned for a missing response is 
randomly selected from the set of respondents within an 
imputation cell. 

In the presence of item nonresponse, weighted or 
unweighted imputation may be used. Weighted 
(deterministic or stochastic) imputation uses the sampling 
weights induced by the sampling design to select donors. 
However, weighted imputation is not feasible in practice 
when the sampling weights are not available at the impu­
tation stage. Note that unweighted and weighted imputation 
metiiods lead to identical results for self-weighting designs 
{i.e., designs with equal weights). Also, unweighted impu­
tation methods are appealing to users. 

Unweighted imputation generally leads to biased 
estimators under uniform response within imputation 

classes. Following the approach of Skinner and Rao 
(2002), we propose bias-adjusted estimators of population 
means under unweighted imputation and derive lineariza­
tion variance estimators. 

Let 0 be a finite population parameter and 6, be its 
estimator based on the observed and imputed data 
respectively. Using the ttaditional two-phase approach: 
population -> complete sample -• sample with non-
respondents, we have 

E(V Er(V 

V{Q,-Q) = £ F,(e,-0) + V E 
p >• 

(0,-0) 

(1) 

(2) 

under deterministic imputation, where £,.(.) and F.(.) 
denote respectively the expectation and the variance with 
respect to the response mechanism given the sample, and 
E (.) and V {.) denote respectively the expectation and the 
variance with respect to sampling under the given design. 
In the model-based approach (see section 2), we replace 
E^{) and VX) by E^{)=E^E^{) and KJ.) = £,.F„,(.) + 
V^EJ^.) respectively, where £^(.) and V^{.) denote 
respectively the expectation and the variance with respect 
to the imputation model. 

Fay (1991) proposed a different approach obtained by 
reversing the order of sampling and response: population —> 
census with nonrespondents —* sample with non-
respondents. Fay's approach facilitates variance estimation, 
as explained below. Using this approach, we have 

and 

£(§,) = E\E^{Q,) 

n e , - e ) =E^ K(0,-0) + F £ (0,-0) 

(3) 

(4) 

' David Haziza, Household Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, K.1 A 0T6; J,N,K, Rao, School of Mathematics and Statistics, 
Carleton University, Ottawa, Ontario, Canada, KIS 5B6, 
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see Shao and Steel (1999). Note that the inner expectation 
and variance m (4) are with respect to sampling, conditional 
on the response. An estimator of the overall variance 
V (0, - 0) in (4) is given by v, = v, + v̂ , where v, is an esti­
mator of V (0, - 0) conditional on the response indicators, 
and Vj is an estimator of K £ (0,-0). The estimator v, 
does not depend on the response mechaiusm or the assumed 
model, and hence v, is valid under either the design-based 
approach or the model-based approach (see section 2). 

In the case of stochastic imputation, V (0, - 0) in (4) 
may be written as 

F(0,-0) = i;[£.(0,-0)J + £[F(0,-0) (5) 

where the inner expectation and variance, E^ and F , 
denote respectively the expectation and the variance with 
respect to the imputation scheme given the sample with 
respondents and nonrespondents. An estimator of 
V^{Qj-Q), denoted v,*, is then given by v,' = v, + v̂  wbere Vj 
is an estunator of VE (0,-0) and v an estimator of 
£, F (0̂  - 0). Also, in the case of stochastic imputation we 
replace E (.) by E E^ (.) in (4) and the formula for Vj is 
the same as ui the case of deterministic imputation provided 
E^ (0 )̂ agrees with the imputed estimator for the determi-
nistjc case. Hence, an estimator of the overall variance 
F(0, - 0) is given by v̂  = v, + v̂  + V2. 

We set out our basic framework and assumptions in 
section 2. In section 3, we study both weighted and un­
weighted ratio imputation. We show that the imputed esti­
mator under unweighted imputation is asymptotically 
biased, and propose a bias-adjusted estimator. The esti­
mator under weighted imputation and the bias-adjusted esti­
mator under unweighted imputation are shown to be robust 
in the sense of validity under both the design-based and 
model-based approaches. We also derive Imearization 
variance estimators of the imputed estimators in section 3. 
We consider the case of random hot-deck imputation in 
section 4. A small simulation is conducted in section 5 to 
compare the performances of the imputed estimators in 
terms of bias and mean square error. Relative bias and 
relative stabiUty of the variance estimators are also studied. 

2. FRAMEWORK AND ASSUMPTIONS 

Let P be a finite population of possibly unknown size N. 
The objective is to estimate the population mean F = 
UN Y^pyi when imputation has been used to compensate 
for nonresponse. For brevity, ^^ will be used for £, ^, 
where AQP. Suppose a probability sample, s, of size n is 
selected according to a specified design p{s) from P. Let 5 
be the set of respondents of size r and let s^ he the set of 
nonrespondents of size m;r-i^m=n. 

Imputation is often done by first dividing the population 
mto /nonoverlappmg imputation classes and then imputing 
sample nonrespondents within each imputation class using 

sample respondents within the same class as donors, inde­
pendently across the / imputation classes. For simplicity, 
we assume that J=l; the extension to J> I imputation 
classes is straightforward. 

The usual unputed estimator of the population mean T 
is given by 

yt = 
I 

w. 
w.y. 

I-' I ^tyi (6) 

where w. is the sampling (or design) weight attached to unit 
/ and y* denotes the value imputed for missing y.. We use 
the Horvitz-Thompson weight w. = Hit., where Ji, is the 
probability of including unit / in the sample. 

We consider two approaches: (i) design-based and (ii) 
model-based. Under the design-based approach, we assume 
a uniform response mechaiusm within classes so that the 
following assumption holds: 

Assumption DB: Within an imputation cell, the response 
probability for a given variable of interest is constant and 
the response statuses for different units are independent. 

Under the model-based approach, the following assumption 
holds: 

Assumption MB: Within an imputation cell the response 
mechanism is ignorable or unconfounded in the sense that 
the response status of a urut does not depend on the variable 
being imputed but may depend on covariates used for 
imputation. In this case, an imputation model is assumed. 

The imputation classes are chosen to make the 
assumption DB or MB hold approximately. The response 
mechanism in assumption MB is much weaker than the 
uniform response in assumption DB, but inferences depend 
on the assumed unputation model. Under ratio imputation, 
the imputation model used is the "ratio model" given by 

Emiyi) = Pz/> ^.(3^,) = ^'zpCov J;;.,;..) = 0 if i^J, (7) 

where P and ô  are unknown parameters, z. is an auxiliary 
variable available for all ies. Under random hot-deck 
imputation, the imputation model used is given by 

Emiyi) = l^^Vmiyi) = " ' . Cov J;..,;;.) = 0 if / ^f (8) 

3. RATIO IMPUTATION 

In this section, we study the properties of the imputed 
estimator (6) under both weighted and unweighted ratio 
imputation. We also derive linearization variance esti­
mators. We study pomt estimation in section 3.1 under 
weighted and unweighted ratio imputation, and correspon­
ding variance estimation in section 3.2. 
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3.1 Estimation of a Mean 

3.1.1 Weighted Ratio Imputation 

Weighted ratio imputation uses y* =R^z. for missing 
y., where R^ = yjz^ and (y, ,z , ) = ̂ , w,, (j^pZ,)/!]., w,-
are the weighted means of respondents for variables y and 
z respectively. Using the >>,' 's, the imputed estimator (6) 
reduces to 

:>'iR 
R.z, (9) 

where z = ̂ ,w',z,/£j.w,. It is easy to verify that J,,^ is 
approxunately unbiased for Y under both the design-based 
and the model-based approaches, (Sarndal 1992). Hence 
y^^ is robust in the sense of validity under botii approaches. 

3.1.2 Unweighted Ratio Imputation 

Unweighted ratio imputation uses y* = R^" z. for missing 
y, where R^ ^yr^C and ( j ; " , z ^ - Z, /^ , - , - , ) / ' • are 
the unweighted means of respondents for variables >> and z 
respectively. Using the y^ 's, the imputed estimator (6) 
reduces to 

w.y.^R. yiK = w.z, (10) 

where 7?^" =yTl^T- Under the ratio model (7) and 
assumption MB, the imputed estimator (10) is approxi­
mately unbiased for F, i.e., E^E^EJjy^ ^EJY). How­
ever, it is biased under imiform response (assurnption DB). 
We have E^E^{y,^).pY^{l -p) YJZ^Z, where 

(^n'^J = YphiYph)IYP^r 5̂"̂ = '̂ *^ '•̂ l̂ t̂ ^̂  ^̂ ^̂  
of Pj^, RB(J,^) = {E^E^{y^ -Y) I Y, is given by 

R B ( J , R ) - (1 -P) ll± 1 
2. F 

= {l-p)- C\C 0 c J' 

(11) 

(12) 

where 2 = UN Yp^i' Pjtv and p„^ are the finite population 
correlation coefficients between the variables Ji and y and 
7C and z respectively, C^, C^ and C^ are respectively tiie 
coefficients of variation of Jt, z and y, and p is the 
probability of response to y. The bias is nonzero generally. 
It vanishes in the full response case {i.e., /> = 1) or if 

C \C p - C p 1 = 0, (13) 

which is satisfied when C^ = 0 (the case when the design is 
self-weighting) or when 

P c 
P C 
rnz y 

We further explore the relative bias (11) for three cases. 
First, we consider unweighted mean imputation, y* = y™, 
which is a special case of unweighted ratio imputation with 
z, = 1. Assume that a size variable x is available for all the 

units in the population and that the sample s is selected 
according to a probability proportional to size (PPS) 
sampling without replacement design, using x as the size, 
such that 71. = nx.lX, where X = Y,p ^,- For example, one 
may use the well-known Sampford method (Sampford 
1967). Noting that p„^ = p̂ „̂ 212^=1 and C„ = C,., the 
expression (12) for the relative bias may be written as 

RB{y,^). (l-/^)q,C^,p,^,. (15) 

Two particular cases of (15) are of interest. First, if x and^ 
are uncorrelated, the bias of the imputed estimator vanishes. 
The case of weakly correlated x and y {i.e., p̂ .̂  = 0) may 
occur in surveys with multiple characteristics;y (Rao 1966). 
Second, ify.ccx., the relative bias (15) reduces to (1 -p) C^ 
which decreases with C^. Note that, since C^ = C^, the 
sampUng design approaches a self-weighting design as C^ 
decreases. 

Consider next tiie more general case of unweighted ratio 
imputation based on z., i e s, and PPS sampling based on 
x.,ies. In this case, the relative bias (11) is zero if and 
only if 

P., 

provided p < 1 and C^ * 0. If C =C^, then the relative bias 
(11) is zero if and only if p̂ .̂  = p ,̂̂ . 

Finally, we consider the case of sttatified random 
sampling. In this case, the population P is partitioned into 
H sttata P,j with Â^ sampling units m the h-th sttatum; 
P = ̂ "^^P^,N = Y^"^^N^.We then independently select a 
simple random sample without replacement 5,̂  of size «,| 
from each stratum; s=D^^^S|^ and n=Yjl,,in,^. Two 
situations may occur in practice: (1) Imputation is done 
independently in each stratum {i.e., the imputation classes 
coincide with the strata). In this case, under unweighted 
ratio imputation, the imputed estimator is approximately 
unbiased under uniform response within sttata. (2) The 
imputation is done across strata. In this case, we note from 
(11) that tiie unputed estimator is approxunately imbiased 
if and only if «,, =« {N^^ /?^) (proportional allocation). 

A bias-adjusted estimator of F under unweighted ratio 
imputation is given by 

yiR P'' yiR [l-p-)^ 
z"" 

_ u n 

yiK' (16) 

where p ={Y,s ^t^Ys'^t) *̂  a consistent estimator of the 
response probability/», z""= l/nZ,vZ,- and J,™ is the 
unweighted mean of the observed values y. and the imputed 
values y* = R™z.. This estimator may be derived from the 
method of moments, following Skinner and Rao (2002), by 
solving 

E{y,^) =PTA^-P)^^, 

for Y and replacing E {y^g) by its estimator y^^^, [Y^ 12j2 
by its estimator 
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R' z = 
_un 
yiR' (17) 

and /J by its estimator p'\ Note that the estimator z of 
Z makes use of the full sample z-values, uiJike z .If z is 
used to estimate Z, then the bias-adjusted estimator requires 
response identifiers, unlike (16). 

We now show that the bias-adjusted estimator (16) is 
approximately unbiased under both the design-based and 
the model-based approaches. Hence, unlike the unadjusted 
estimator (10), the adjusted estimator is robust in the sense 
of validity under both approaches. First, noting that J,^ 
may be expressed as py^.-t-R^" (z -pz^) and usmg (17), the 
bias-adjusted estimator (16) reduces to 

-a _ „un ,_ _ . 
>'|R = y^^ ^r (^ - ^r)-

(18) 

Comparing (9) and (18), we see that J,^ under weighted 
ratio imputation is not equal to tiie bias-adjusted estimator J,^ 
under unweighted ratio imputation, unless z. = 1 for all /. In 
the latter case, both estimators reduce to y . However, the 
form (16) for J,^ does not require response identifiers, 
provided p is available. 

Since £„,(7,R) = |3Z and £^„,(F) = p z under the ratio 
model (7), we have E^E^^ {y^^ - F) =: 0; that is, tiie adjusted 
estimator is approximately unbiased under tiie model-based 
approach. On the other hand, since E E^ {y^) = F and 
E^{z -z^) = 0 under miiform response, it follows that 
E^E^{y^l) K F so that the adjusted estunator is approxima­
tely design-unbiased under uniform response. 

We note several points here: (1) The survey analyst can 
easily implement the adjusted estimator 7,^, given by (16), 
from the unputed data file without response identifiers, i.e., 
(vf,-,j',-,z,-,'6.y), where y. =y. if ies^ and y. =y. if ies^. 
Note that the response identifiers are not needed on the data 
file, but the response rate p should be available to the 
analyst, which we assume to be the case here. In the case of 
multiple imputation classes, response rates within classes 
and imputation class identifiers need to be provided with 
the file. (2) The bias-adjusted estimator coincides with the 
unadjusted estimator y^, given by (10), under a self-
weighting design w, = w. (3) The adjusted estimator Ji^ in 
(18) has the form of a regression estimator in two-phase 
sampling. (4) Under mean imputation, (18) reduces to the 
weighted mean of respondents y^, so the correction made 
to the unadjusted estimator eliminates the effect of using 
unweighted mean imputation. 

Another approach to getting a bias-adjusted estimator, 
JiR, is to subttact an estimator, b{y^J^), of the bias of y^^, 
from y„ ,̂ i.e., 

y^ = îR - b{yis). (19) 

It follows from (11) that an estimator of the bias of y^^ is 
given by 

(20) b^'HyJ = (i-P)(Rrz-y^). 

But the resulting bias-adjusted estimator is not identical to 
(16), and it depends on response identifiers, unlike (16). On 
the other hand, if one uses 

b^ny^) = {l-p)(Rrz^-y^), (21) 

it is easy to verify that the resulting bias-adjusted estimator 
is identical to (16). 

3.2 Variance estimation 

We study variance estimation under uniform response in 
this section. We assume that response identifiers are 
available with the variance estimation file. If imputation 
classes are used, their identifiers are also needed. 

3.2.1 Variance Estimation under Weighted Ratio 
Imputation 

In this subsection, we obtain a linearization variance 
estimator of the unputed estimator (9) based on weighted 
ratio imputation, using the reverse approach of Fay (1991). 
First, express (9) as 

E , w.a.y. _ 
ym= v^ ^ . 

Y, ^i^iZi 
where a. is a response indicator to itemy such that a. = 1 
if ies^. and a. = 0, otherwise. It follows from (4) that the 
variance V{y^.^ of J,^ can be estimated by v, = v, +V2, 
where v, is an estimator of VSy^^-Y) conditional on the 
a,'s, and V2 is an estimator of V^E (7,^- F). Denote the 
estunator of the variance of the estimated total F = Y^i'^iYi 
based on the full sample as v{y.). Then, using the delta 
method, a linearization variance estimator, 
operator notation v(.), is given by 

V, = v ( | ) . 

V|, in the 

(22) 

where the value of | for ies is given by 

T.. w. 
'^li-yiK 

with 

ti, = a,-7,- + (1 - ai)Rrh + ^^i[yi - K^), 

where 

c = 
Y,w.{l-a,)z. 

E, w«,-̂ , 
Note that v, is valid regardless of the response mechanism 
and the imputation model. The derivation of (22) is given in 
Appendix A. Shao and Steel (1999) derived a linearization 
variance estimator of the imputed estimator F = 
£^w,a,y .̂ +j;,w,,(l -a.)R^z. of the total Y. They first 
expressed F as 

Y = Y ^il^iyi + (1 -a,)Pa'i -̂  <?E w,,a,, {y^-R,z.), 
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where R, = YJZ^ with (F„,Z,) = X„a,(.V,,2.) and tiien 
replaced c by c = J^^(l -a.)z.lY^pa.z^ to get a linear 
approximation for Y~Y^^w.r\., where 

11. = a.y. + (1 -a.;)R^z. + ca.(y.-/?„z,). 

Now replacing 7?̂  by R^ and c by c in the above 
expression for ri, we get f\. = a^y. + {l -a.)R^.z.-¥ 
ca.{y.-R^z.) which leads to the linearization variance 
estimator V, = v(fj). The delta method in Appendix A may 
be used to obtain this result in a sttaightforward manner. 

Next, using the delta method, 

^E^iyiR-Y) ~~P{\-P) 
^^ sl 

I ^.(^«)j Â  
(23) 

Under asswumption DB where Z = £pZ., and 5̂ , = 1 IN 
Yp(yi~E,.(Ra)^i)^- The component V2 is then obtained by 
substituting estimators for the unknown quantities in (23). 
We obtain 

2̂ =P0-P) 

( 4 ) 2 2 
Z^ 

z. N' 
(24) 

where Z = ̂ ^.w.z,, Z„ = E,w,.a,z,,,iV = Ĵ .̂w,, and 

E ^iai{yi-K^!f-
E , >̂ ,«,- .V 

The sum of (22) and (24) gives v ,̂ the estimator of the 
overall variance of y^^. 

3.2.2 Variance Estimation under Unweighted Ratio 
Imputation 

We now give a linearization estimator of variance of the 
imputed estimator (10) based on unweighted ratio impu­
tation. Using the delta method, see Appendix A, we obtain 

V, = v ( t ) , (25) 

where 

^ i - ^li - yiR 

with 

^1, = a,>', + ( l -« , ) - ' ? r ^ , + '=' ̂ U R' 

and d = Y,^w.{l -a)z.lY,s"i^i- The component Vj is given 
by (B.2) in Appendix B. 

3.2.3 Variance Estimation for the Bias-Adjusted 
Estimator 

In this subsection, we give a linearization variance esti­
mator of the bias-adjusted estimator (18). Using the delta 
method, we obtain 

V, = v ( | ) , (26) 

where 

^i- E w.a. '• 
.V / I 

+ ( Z - Z^) 

R 
(y,-7.)-^r(^,-?) - ^ ( z , - z ) 

^ N 

I «, 

E, «,-̂ ,- "^i 'i^t-^4 
see Appendix A. The component V2 is given by (C.2) in 
Appendix C. 

4. RANDOM HOT-DECK IMPUTATION 

In this section, we study the properties of the imputed 
estimator (6) under weighted and unweighted random 
hot-deck imputation. We also derive linearization variance 
estimators under uniform response. 

4.1 Estimation of a Mean 

In section 4.1 we study point estimators under weighted 
and unweighted random hot-deck imputation. 

4.1.1 Weighted Random Hot-Deck Imputation 

Under weighted random hot-deck imputation, we select 
the donors jes^ with replacement with selection proba­
bilities w / ^ ^ w. and use y^ =y ies^^. The imputed 
estimator, y^^, is given by (6) with the above imputed 
values. It is approximately unbiased for the population 
mean F under both the design-based and the model-based 
approaches. The latter uses the mean model (8). 

4.1.2 Unweighted Random Hot-Deck Imputation 

Under unweighted random hot-deck imputation, we 
select the donors jes^. with replacement with equal 
probabUities llr and use y* =y ies^^. The imputed 
estimator, y,j^, is given by (6) with the above imputed 
values. It is approximately unbiased for F under the mean 
model (8), but biased under uniform response. The bias of 
7,jj is given by 

B(y,H) = ( 1 - P ) ( F „ - F ) . (27) 

A bias-adjusted estimator of F under unweighted random 
hot-deck imputation is given by 

' - ' y , H - ( l - ^ - ' ) J ' m - (28) 
_ a 

ym 
where p = (^^, M',/£J,W.) is a consistent estimator of the 
response probability p and y^^ is the unweighted mean of 
the observed values y. and the imputed values v,*. The 
estimator (28) may be derived from the method of moments, 
following Skinner and Rao (2002), by solving 

^ ( 7 I H ) = ; ' F + ( 1 - ; . ) F „ 

for F replacing by E (y,^) its estimator 7|H.5^„ by its 
estimator y^^ and /?" ' by its estimator ^ "'. The adjusted 
estimator is approximately unbiased for F under both the 
design-based and the model-based approaches. As in 
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section 3.1.2, note that the survey analyst can easily 
implement the adjusted estunator y^^ from the imputed data 
file withoutresponseidentifiers, i.e., {w.,y.,z., ies), where 
y. =y. if ies^ and y. =>»,* if ies^, provided the response 
rate, p, is available. 

Note that the method of subttacting an estimator of the 
bias of J, from J,, usmg (27), will lead to a bias-adjusted 
estimator that depends on response identifiers, unlike (28). 
It is not possible to obtain the bias-adjusted estimator (28) 
by this approach, unlike in the case of determirustic ratio 
imputation studied in subsection 3.1.2. 

4.2 Variance Estimation 
We study variance estimation under uruform response in 

this section. We assume that response identifiers are 
available with the variance estimation file. If imputation 
classes are used, their identifiers are also needed. 

4.2.1 Variance Estimation under Weighted Random 
Hot-Deck Imputation 

We now obtain a linearization variance estimator of tiie 
imputed estimator y^^^ under weighted random hot-deck 
imputation. First, note that under weighted random hot-deck 
imputation, £^(J'JH) = J,.. This is a particular case of (9) 
with z. = I for all /. Hence, using (22), v^ is given by 

V, = v ( | ) , (29) 

where 

^i L-yrl 
E, w. 

i. = a.y.i- {l-a.)y^*ca.(y.-y^.), 

with c = Y^ w.{l-a.)IY^^w.a.. Straightforward algebra 
shows that \ simplifies to I,-= «,(>',•->'̂ )/Xs*^i^(- Now, 
notmgthat F ( j,*) = (1 /L>v,«,) Ys^i^iiyi'^r f = V ' 
we have 

V. = yAyin-Y) = 
E,^/(i-^,) 

(30) 

As noted in section 1, V2 is the same as for the 
deterministic case. Hence, under weighted random hot-deck 
imputation, Vj is given by (24) with z. = 1 for all /', which 
leads to 

v, = H'l-P) 
N 

Y ^i^i 

•^yr 

N 
\ -s 

(31) 

The sum of (29), (30) and (31) gives v,, the estimator of 
overall variance. 

4.2.2 Variance Estimation under Unweighted 
Random Hot-Deck Imputation 

We now obtain a linearization estimator of variance of 
the imputed estimator (6) under unweighted random 

hot-deck imputation. First, note that E^ (J'IH) reduces to 
(10) with z. = 1 for aU /. Hence, Vj is given by 

V, = v ( | ) . (32) 

where 

^i 
w. 

,ki-E,(yiu) 

? , , .. _ un J I / _ un \ 

wdth ^ = £sW,(l-a,,)/^^,a,,. Now, notiiing that V^{y*) 

1 /'• L^/(>'/ -y^y V""' "^^ 1̂^̂® 

V = 
E,H'/(l-a,) 

(Ev w,) 
2un 

2 V ' (33) 

As noted in section 1, Vj is tiie same as for the deterministic 
case. Hence, under unweighted random hot-deck impu­
tation, V2 is given by (B.2) witii z. = I for all /'. The sum of 
(32), (33) and (B.2) gives V,. 

4.2.3 Variance Estimation for the Bias-Adjusted 
Estimator 

We now obtain a linearization variance estimator of the 
bias-adjusted estimator given by (28). First, note that, 
E^{y^) reduces to y^, the mean of the y-values 
respondent. Hence, v, is given by (29) and V2 is given by 
(31). Now, noting that V^{y*)=s^"" and 
Cov^ {y *, yj') =0 for i^'J, one can show that 
^AYIH-Y) is given by 

P-' 

P.--) 
.Ewf(l-a.)-(l-^-')^ r + n j2un ( 3 4 ) 

The sum of (29), (31) and (34) gives v,. Note that even 
though v̂  given by (34) is expressed as the difference 
between two terms, it is always nonegative, as shown in 
Appendix D. 

5. SIMULATION STUDY 

As a complement to the theory, we present some results 
from a limited sunulation study. We generated a population 
of N = 800 values (j',,Z;) according to the ratio model 
J' = pz + 8, where z and e were generated from a normal 
distribution such that the correlation, p^ ,̂ between y and z 
equaled 0.05, 0.30, 0.70 and 0.90. The objective is to 
estunate the population total F = V >'.. We drew 
R = 10,000 PPS samples, each of size n = 75, according to 
Sampford's pps sampling method, using item z as the 
measure of size. Nonresponse to item_v was then generated 
from each PPS sample according to a uniform response 
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mechanism with a response rate of 0.7; item z was observed 
for all unhs in the sample. We used weighted and 
unweighted random hot-deck imputation to compensate for 
nonresponse to item y. 

The estimator of the first component in the variance 
formula (4) was computed using the well known 
Sen-Yates-Grundy estimator. Let v(^) denote the variance 
estimator of Y.i'^i^i- ^^ Sen-Yates-Grundy estimator of 
variance is then given by 

Ka-lEE^^i:^ '5 C 
27 es jes 

(35) 
J/ 

where n.. =P{ies and jes) is the joint probabUity of 
inclusion of units / andy in the sample. Sampford's metiiod 
ensures •K. n. - n.j ^ 0 for all /, j so that the variance esti­
mator in (35) is always nonnegative. 

As a measure of the bias of an imputed estimator F, of 
F, we used the bias ratio B^{Y,) = Bias (F,) / s.e. (F,), where 
s.e. (F,) denotes the standard error of 7,. To compare the 
efficiencies, we used the coefficient of variation of F, 

/' denoted CV(F,) and given by CV(F^) = (^MSE/F). The 
variance estimators were compared m terms of their relative 
bias and CV. The relative bias of a variance estunator, v̂ , 
is measured by 5̂ ,̂ (v,) = (£(v) -MSE(F,))/MSE(F,) and 
its CV is given by CV(vj = v/MSE(v,)/ MSE(F,). Values 

of the above measures were calculated from the simulated 
PPS samples. 

Table 1 reports the simulation results on the bias ratio 
{B ) of the three imputed estimators of F, denoted B 
(weighted), B^ (unweighted) and B^ (adjusted) and the CVs 
of the estunators, denoted CV (weighted), CV (unweighted) 
and CV (adjusted). It is clear from Table 1 that the bias 
ratio of the estimator under unweighted imputation is large 
(^ 30%) if p ^ 0.5, while the bias ratios of the estimator 
under weighted imputation and the adjusted estimator are 
small (<4%) for all values of p . Due to large bias, the CV 
of the unweighted estimator is larger than the CV of the 
weighted estimator if p^ > 0.5 and also larger than the CV 
of the adjusted estimator if p ^ 0.7, but the increase ui CV 
is not large. Also, CV (weighted) is slightly smaller than 
CV (adjusted) for all values of p̂  . 

xy 

Table 2 reports the relative bias (5^ ,̂) and the CV ratios 
of the variance estimators. As expected, the variance 
estimator v̂  (unweighted) leads to serious underestimation 
of MSE of the estimator for large p (s:0.7), while the 
absolute relative bias of the variance estimators v̂  
(weighted) and v, (adjusted) is small {<. 6%) for all values 
of p . Tuming to tiie CV ratios of the variance estimators, 
Table 2 shows that v̂  (unweighted) has the smallest CV 
followed by v, (weighted) and v, (adjusted) for p ^ 0.3. 

Table 1 
Bias Ratio (%) and CV (%) of the Imputed Estimators 

5^ (weighted) 

5^(unweighted) 

5^(adjusted) 

CV (weighted) 

CV (unweighted) 

CV (adjusted) 

P.. = 005 

-0.78 

1.82 

-1.12 

18.80 

18.00 

20.90 

P.. = 0.30 

1.99 

18.60 

1.47 

15.30 

15.20 

16.80 

P.vy=0-50 

-0.79 

30.50 

0.01 

11.60 

12.50 

13.50 

P.rv=0.70 

0.40 

49.20 

0.61 

5.87 

6.83 

6.10 

P., = 0.90 

3.27 

64.20 

2.94 

4.69 

5.93 

4.78 

Table 2 
Relative Bias (%) of the Variance Estimators and Comparisons of the CV 

ratios of the Variance Estimators 

*rci(^,)(weigiited) 

fl„|(v,)(un weighted) 

5„,(w,)(adjusted) 

CV (V|) (unweighted) 

CV(v,) (weighted) 

C V (Vj) (unweighted) 

CV(v,) (adjusted) 

CV(v,) (weighted) 

CV(v,) (adjusted) 

P., = 0.05 

-2.43 

-1.03 

-5.42 

1.016 

1.032 

1.016 

P., = 0.30 

-4.78 

-3.47 

-1.06 

0.984 

0.829 

0.843 

P., = 0.50 

-4.28 

-11.80 

-4.21 

0.931 

0.701 

0.751 

P.. = 0.70 

3.96 

-18.50 

1.61 

0.875 

0.819 

0.935 

P,. = 0.90 

-1.95 

-29.30 

0.07 

0.781 

0.692 

0.886 
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6. CONCLUDING REMARKS 

Unweighted imputation methods are often used in 
practice to compensate for item nonresponse when the 
survey weights are not available at the imputation stage. 
Also, unweighted imputation is appealing to users even 
when the weights are available at the imputation stage. But 
it leads to biased estunators under uniform response within 
imputation classes. We have proposed bias-adjusted esti­
mators under ratio unputation and random hot-deck impu­
tation. These estimators can be implemented from the 
imputed data file, even if the imputation flags within classes 
are not given, provided estimates of response rates within 
classes are reported. We have shown that the bias-adjusted 
estimator performs better than the unadjusted estimator 
under unweighted imputation, and is robust in the sense of 
validity under both the frequentist and model-based 
approaches. 

We have obtained linearization variance estimators for 
the bias-adjusted estimators. For variance estimation, impu­
tation flags should be provided in the variance estimation 
file. 

If the imputation flags are available in the data file and 
imputation is deterministic, the imputed values can be 
replaced by those under weighted imputation. For example, 
in the case of unweighted ratio imputation, y* =y^"lz""z., 
one could either multiply each imputed value by 
z""ly"" X y^lz^ to reproduce the values y^lz^ z. under 
weighted ratio imputation, provided edits are not applied 
after imputation. Alternatively, one could reimpute values 
using the sampling weights w.. In both cases, the adjusted 
estimator does not present advantages over the imputed 
estimator based on weighted imputation other than assuring 
that the imputed values in the data file are not changed. 

In the case ofrandom hot-deck imputation, however, the 
only way to implement weighted random hot-deck impu­
tation is to reimpute using a weighted hot-deck scheme. We 
believe that analysts do not like to change the imputed 
values on the data file produced by the edU and imputation 
system. 

The imputed estimator (10) can use poststtatification (or 
calibration) weights, w.{s), based on known population 
auxiliary information, instead of design weights w.. Note 
that tiie calibration weights, w.(5), depend on the whole 
sample 5 imlike the design weights w.. If the calibration 
weights are used for ratio imputation, then we simply 
replace w. by w.{s) in section 3.1.1 and the resulting linear­
ization variance estimator, v,, uses | in (22) with w. 
changed to w.{s). However, v(.) in (22) now refers to the 
linearization variance estimator of the full sample 
post-sttatified estimator ^^ 1̂ .(5)3̂ ,. 

Under unweighted imputation, linearization variance 
estimation becomes more complex because the bias-
adjusted estimator based on the calibration weights will 
involve both design weights and caUbration weights. If the 
design weights, w., are avaUable at the imputation stage but 

not the calibration weights, w.{s), the design weights can 
be used for unputation and the calibration weights for 
estimation. The resulting imputed estimator (6) based on 
calibration weights remains asymptotically unbiased under 
uniform response (wtithin classes), but linearization 
variance estimation becomes more complex because both 
sets of weights are involved in the imputed estimator. We 
propose to study poststtatification and some other 
extensions in a separate paper, and derive corresponding 
linearization variance estimators. 
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APPENDIX 

A. Derivation of Vj 

Suppose that an estimator 0 is expressed as 

0 = -L 
F, 

^(v^J =: g{Y), (A.l) 

where Yj = Y^^w.yj.,j = l,...,6 and Y = (F,,..., F^)'. 
Letting Q=g\Y)!' R,, = Y,IY,,Yj = Yj{l-.8Yj) witii 
5 Yj = (F. - Yj)IYj and Yj = E^(Yj), we have 

0 - 0 = - ^ - * {72(1.5F2) 
F,(l .5F,)^ 

- ^ 3 4 f ^ [ ^ 5 ( i -5^5)- ^5(1 - s ^ J -e 

l{(572-5F,)F2.i?3,F3(5F3-5F,.5F3-6F,)-
^i 

J ? 3 , F 4 5 F 3 - 5 F , . 5 F , - 5 F J ) , 
(A.2) 

neglectmg higher order terms in 5F.'s. The expression 
(A.2) reduces to 

e-0.i-k-/?3^(f3-7^).ii^(73-i?3^7j-07, 

= E w,̂ ,, 
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where 

^t-Hii-^) (A.3) 

with 
7 - 7 

^ 1 / =y2i^ ^Ysi -Yei) + ^ T T ^ (j^3, - ^343'4,)-

Hence, the variance estimator of 0 from the delta method 
may be expressed as v(^). Now, replacing unknown 
quantities in (A.3) by their estimators, we get 

estvar(0) = v ( | ) , 

where 

5, = ̂ (5,,-e) 

with 

L=y2i^My5i-y6i)^ ^(> '3 / -4> '4 j -

Note that the delta method avoids evaluation of partial 
derivatives of g(Y) with respect to its components 7., 
unlike the usual Taylor linearization method. 

Letting 7, = X,w,,, Y2 = Y^= Lw,,^,,^,,^4 = 6̂ = Y.s'^i^i'i 
and Fj = ̂ .̂ w.z. in (A. 1), we get tiie variance estimator (22) 
of y^p^ based on weighted ratio imputation. Also, letting 

Yi - Ys^r Y2 = Ys^i^iyr Y3 = Ys^i^i(yi'^i), t -
X,.w,,a,(z./w.), 75 = Y^^w.z. and 7̂  =X,w,a,z,, in(A.l), we 
get the variance estimator (25) of _y,̂  based on unweighted 
imputation. Finally, we note that the bias-adjusted estimator 
(16) written in the form (18) can be expressed as the sum of 
three components: y^,R^"z and -R™z^. Each of these 
components is a special case of (A.l). Indeed, the com­
ponent y^ is a special case of (A.l) with 7j =^j,w.a,, 
72 = Yi"^i'^iyi ^^^^ 5̂ ~ -̂ 6- ^^^ component i?™ z is a 
special case of (A.l) with 1̂ =l̂ j*^> F2 = Fj = 
£,,w,,a,(j;,,/w,), Y, = Y, = Y^^w.a.{zJw.) and Y, =lw.z.. 
The component /?"" z is a special case of (A. 1) with F, = 
Ys^i^.i> y2-A=Ys^i<^i^yii^i)J. = Ye =Y.^i^i('i'^i) 
and Fj =Ys^i''i^i- ^^ apply the delta method to each 
component separately to obtain v, = v(^) given by (26). 

B. Derivation of v̂  for the estimator J,^ under 
unweighted imputation 

Using the delta method, it can be shown that V^E (J/R - F) 
under unweighted ratio imputation is given by 

KMyiR-Y)-pi^-p)j^ 

Vi)-^ 
. ^r(ZJ , 

\ ' (2)+' 
Z-Er(Za) 

^e(3) 

where 

sl,i) = ^Y(yi-EAR,,)z;f, 

5i) = ̂ E#,-£.(^„.Kf, 

<3, = ^ E ",(;',-£. (̂ „>,f, 

with/?^=F^/Z^ and (F^,Z^) = X,7i,a,(j,,z,,). The 
component V2 is obtained by estimating unknovwi quantities 
in (B. 1). It is given by 
V 2 = ^ ( l - ^ ) 

( - - \2 
Z-Z^ 

•^er(l) + 

V ™ / 
^er(2) + 2 

z-z 
\r (3) 

(B.2) 

where 

Y.w.a. s 
E w,.a,.(j',.-i?;"z,[, 

V(2) = ê̂ -*̂ —E <'«,(.y,-^rzj' 

1 
\'r(3) E , ^,0. ., 

Ya^i^^-RTzl 

and Ẑ  = y a.z.. 
na L^s I 1 

C. Derivation of Vj for the estimator y"^ 
Using the delta method, it can be shown that V,.Ep{y\^ - F) 
for the bias-adjusted estimator is given by 

VrEp{yil-Y)^p{i-p)- ^ 

[^p^n 
xfi-^X^.l)^^2£,(/?„J5 .£, 

ay 

+ 2£^ 

where 

hYa, 's! e(2) 

hYci](S,ey-E,{R,a)sA, (Cl) 

sly-]^Y(yi-EAY^))\ 

si-]^Y{^i-E^{2:f, 

5,^ = ^E(3^,-^.(F))(z,-£,(2j), 

Sl,2, = ]^Y^][yi-EriKa)^:f, 

S.ey = \T,n{y,-E,{7:))(yrE,{R^)z), 
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iYa,2:) = Yp^i^i''i)lYp^i ^ d A = (Z-Z„)/Z„„. The 
component V2 is obtained by estimating unknown quantities 
in(C.l). It is given by 

V2^p{l-p)-
E, ^a,-

hY^iOX 

^2[/?E-,-,.) k . - ^ ^ ^ , (C.2) 

-{sl.[Rr]sl-2R:''s^4hYwA\' 

where 

yr 

2 
S,.. = 

yzr 

E, w,a,-
Ew,,a,(>;,-3;^)2, 

V̂  E w,a,(z,-^,f, 

^F^ E ^i^iiyi - yr)(h - ^r)' 

V(2) = v ^ — E w.' a. (7,, -.«;" z.[, 
E, w,.a, ,s-

eyr E, ^a, Ea(3^,-j.)t',-^r4 

*ez. = V ^ ^ E a,- {^i ' ^r) (yi - ^ r ^/ ' 

and A = (z -z^)/^^^,^,- . 

D. Nonegativity of V^ {y^^ - F) 

We show that the variance formula in (34) is always 
nonnegative. First, note that this expression can be 
expressed as 

n^Ys ^f-i.'' +")(E, w,,f 
V (ym-Y) = — ^ ^ — ; " ' ^ 0 

«^(E.,-,f 

^n^Y^i-ir.n)(Y^y^(i 
•'«, { 'm ) 

(E vv,f 
•«=>• « ^ E w^-m{r^n)-^—'"' '' ^ 0. 

On one hand, n^^m{r->-n) .t=t.n^m which is always tme. 
On the other hand, using Cauchy-Schwarz mequality, it is 
easily seen that ^ ,̂ w, ^{Ys w,)^/w. The resuU follows. 
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Minimum Risk, Fixed Cost Sampling Designs for Independent 
Poisson Processes 

BRAD C. JOHNSON and JOHN DEELY' 

ABSTRACT 

Optimal and approximately optimal fixed cost Bayesian sampling designs are considered for simultaneous estimation in 
independent homogeneous Poisson processes. We develop general allocation formulae for a basic Poisson-Gamma model 
and compare these with more traditional allocation methods. We then discuss techniques for finding representative gamma 
priors under more general hierarchical models and show that, in many practical situations, these provide reasonable 
approximations to the hierarchical prior and Bayes risk. The methods developed are general enough to apply to a wide 
variety of models and are not limited to Poisson Processes. 

KEY WORDS: Optimal sampling allocations; Poisson processes; Poisson-Gamma hierarchy. 

1. INTRODUCTION 

The topic of Bayesian survey sampling techniques is 
well represented in the literature. A number of articles 
focus on sampling from finite populations and most make 
use of normality or a "posterior linearity" property {cf 
Godambe 1955; Ericson 1988; Ericson 1969; Scott and 
Smitii 1971; Tiwari and Lahiri 1989). An excellent review 
of recent Bayesian methods for sampling finite populations 
is contamed in (Ghosh and Meeden 1997) as well as some 
interesting new approaches. Lindley and Deely (1993) 
discuss optimal allocation in stratified sampling under a 
normal model when only partial information is available. In 
terms of Poisson models, Clevenson and Zidek (1975) 
discuss the simultaneous estimation of means in inde­
pendent Poisson processes and Leite, Rodrigues and Milan 
(2000) discuss a Bayesian analysis when estunating the 
number of species in a population using a non-
homogeneous Poisson process. Little work has been done 
on model specific sampling designs fi-om a Bayesian 
perspective. 

In the present paper we take a model based approach to 
develop optimal and approximately optimal fixed cost 
sampling allocations for simultaneous estimation in mul­
tiple mdependent Poisson processes. Section 2 introduces 
the model and some notation. Section 3 presents the general 
allocation problem and gives the mmimum Bayes risk 
allocations when independent conjugate gamma priors are 
assumed for each process. Comparisons are made with 
classical sttatified random sampling allocations. In section 
4 we describe techniques for finding "representative" 
conjugate priors under more general hierarchical models 
thus allowing (at least approximately) optunal sampling 
allocations to be determined for this larger class of models. 
In many situations, these representative conjugate priors 
can be used to reduce the hierarchical model for the 

purposes of posterior analysis as well, 
example is presented in section 5. 

A full numerical 

2. MODEL AND NOTATION 

To avoid the necessity for subscripting, we first present 
the model and notation in terms of a single homogeneous 
Poisson process. Let (Q, f , v ) be a measure space, let 
{N{A): A e f^] be a homogeneous Poisson process on 
(fi, f, v) with unknown intensity O e © = (0, oo) and, for 
any Aef, let X = {X,m) = {N{A),v{A))denote a 
complete sufficient statistic with realization x = {x, m). 
Less formally, x is the realization of a Poisson count from 
a sample of "size" m. The p.m.f of Xis given by 

Ax\Q) 
{mQY -mO 

| 0 , 1,2, {x), 0e(O,co). (1) 
r ( x + 1) 

We express our prior beliefs about the parameter 6 by a 
conjugate gamma distribution with shape parameter a and 
scale parameter |3, denoted Gamma (a, P), with density 

7:(e|; i) 
p«r(a) 

/ , „ , ( e ) , >. = (a ,P)6(0 ,co) l (2) 

We presently restrict our attention to the case when X can 
be specified; the addition of hyper-priors on X is 
considered in section 4. 

For an arbittary action a ui the action space A = 0 , we 
consider the loss functions 

i , (0 , a ) = - ^ ^ ^ . A: = 0,1. (3) 
" Qk 

I Q is the ordinary squared error loss and Z, is the relative 
squared error loss. For i , we require that a > 1 which 
implies the gamma prior is imimodal. 
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Under the loss fimctions Z,̂  the above model is 
exttemely well understood. To simplify notation somewhat, 
let Jt'" = 7t (9 IX) and let 5̂ . denote the Bayes procedure for T^ 
under the loss function i^. We recall that the posterior 
distribution of 6 given jc is 

0 I A; ~ Gamma a + x, — - — 
' [ m p + l 

The Bayes procedure for loss function Ẑ  is given by 
^x, , 6(a +x -k) ^ , 

mp + I (4) 

The posterior expected loss in using 5̂  under the loss 
function Ẑ^ is 

\2-k 

p(;r^,5U,)= — L {a^x-ky-", a>k; {5) 
/«P + 1 

with Bayes risk 
, „l-kr(I-k 

A-(7t",5^,I,)=" P , a>k. wp + 1 
(6) 

It is interesting to note that under L^, (4) and (5) imply 
that the Bayes procedure 5j (JC) is the mode of the posterior 
and that p(7i'', 5[,i,) does not depend on the observed 
count X and hence is constant. 

It is often more convenient, in terms of the elicUation 
process, to allow the shape parameter a of the gamma prior 
for 0 to depend on the scale parameter p. In particular, the 
following altemate parameterizations are used throughout: 

0|;t~Ganima(n/p,P), 3i = (^,P), £(0 | X) = n; (7) 

0|3i~Gamma(ri/p + l,P), X, = (T|, P), Mode(9 | X) =TI. (8) 

Unless specified otherwise, results and formulae for these 
altemate parameterizations can be obtained by simply 
substituting the proper value for a. For X, as m (7) or (8) we 
substitute a = n /por r | /p + l respectively. 

3. OPTIMAL ALLOCATION 

We now discuss the allocation of sampling effort when 
{A'̂ .(̂ ) :Aerj, for 5 = 1,..., S are independent homo­
geneous Poisson processes on corresponding measure 
spaces (^,,f^.,vj with unknown intensities 0 .̂ The 
realization of a sample is now denoted x = (x,, ...,Xg) 
where the x^ = {x^,m^) have the same meanings as 
JC = {x, m) in section 2. For each process, 5 = 1,..., S, we 
assume that 

A-J 0̂  ~ Poisson(w^0^); 

0̂  I X^ ~ Ganima(a , p j , X^ = (a ,̂ p̂ .). 

Notice that we have not assumed that the 0̂  are exchange­
able so that prior information about one process is not 
influenced by the others. 

Let 6^ = 6^(x) = (5^' {x),..., di^Xx^)) he the component­
wise vector of Bayes procedures for estimating 0 = 
(0,,..., 0 )̂ under the loss function Z,̂  and let T& denote the 
overall prior specification. We assume that the overall loss 
for estimating some (possibly vector valued) function g{Q) 
with g(8^) can be expressed as 

L,{g{Q), g(6')) = Y ^M^s' ^lX\.))' (9) 
s-l 

where the w are known arbittary non-negative weights. In 
particular this covers the case when we are interested in the 
simultaneous estimation of WQ where fV = {w.) is a / x 5 
mattix and the loss stmcture is of the form 

L,{ m, m]) = Y Y L,{wjA, w.X") 
j-l .s = l 

S ( J ^ 
2-k 

^t(9s' 5*')- (10) = Y Y wj, 
.v=l \J-1 

J 2 k 

The weights in (9) become w^ = Yj-i ^js '̂̂ '̂ ' ^Y ^^ 
linearity of the expectation operator, the overall Bayes risk 
is given by 

r{K\ mi L,) = Y w / ( / ' , 5^, L,). 
s 

Let ^ = (^,,..., ̂ ^) denote the full specification where 
^̂  = (a ,̂ p ,̂ w^, cJ denotes the specification for process s 
and c^ is the per unit sampling cost within that process. The 
general allocation problem involves finding an 
ffi = (Wj,..., m^) that minimizes the total risk 
r{T^,g{di^),Li^) of g{8i^) subject to the consttaint 

s 
C = Y c,,w2,,; 

. • i - l 

where C is the fixed total sampling budget. The proof of the 
following resitit is routine and deferred to the appendix. 

Result 1. Let ^ = (^j,..., ^g) be given. The allocation 
m = (m,,..., m^) that minimizes r{n^, g{8Q), LQ) for fixed 
total cost C is 

( \ 
"2 , vf^^EK. 

Y,^f^JJJ..; P.J P.; (11) 

The allocation that minimizes r{T^,g{d^), L^) is 

m. Y^ 
P. 

(12) 

Equations (11) and (12) can result in one or more m^<,0 
{i.e., we take no samples from the offending processes) in 
which case we would remove these processes and re­
allocate C among the remaining processes. Of course, for 
the removed processes, our posterior mean and variance are 
equivalent to the prior mean and variance of 0̂ .. 
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We also comment that the allocation which minimizes 
r{Tt^,8^,L^) in (12) also minimizes p(7i:*', 8,,Z,j) since tiiis 
latter quantity is free of the observed counts x^. 

3.1 Comparisons with Traditional Frequentist 
Sampling Allocations 

A special case of the above result is when the 
{ A^ ,̂(^): ^ 6 f 5} can be thought of as a stratification of a 
single non-homogeneous Poisson process {N{A): ^ e f } 
and we are interested in estimating the overall population 
mean, say 0. To this end, let W^ denote the relative size of 
each Q.^, (which is assumed to be finite) and consider 
estimating the overall population mean 0 = W9, where 
W = {W^,...,Wg), with tiie decision mle W5Q. The 
weights in this case are w^. = W,. and, substituting into (11), 
we obtain 

m.. 
^sfJJ^s 

E, ^ , V ^ 
^ c] 

p.; 

Letting P^-oo and a^.-0 such that a^,p^.-^^ 
simultaneously for each process is equivalent to letting 
£(0^)- \i^, and Var(0^)- oo for all 5 and we obtain 

m.. (13) 

This expression, up to the finite population correction 
factor, is the ttaditional frequentist allocation under the 
paramettic model X,. = {X^., I) ~ Poisson(n^.) where \i^. 
represents our "best guess" for the mean (and hence 
variance) of X^. {cf Cochran 1977). When ĉ  = 1 for all s, 
this becomes the Neyman allocation when the finite 
population correction factor is ignored. 

Assuming that all of the \i^. are the same in (13) yields 

m. = (14) 

and, when ĉ  = 1 for all 5, we obtain the usual proportional 
allocation for fixed total sample size C-N. 

In this sense, we see that the ttaditional frequentist 
solutions to the allocation problem can be obtained as the 
appropriate limit of Bayes solutions just as the ttaditional 
frequentist estimates can be obtained as a limit of Bayes 
procedures. 

4. REPRESENTATIVE CONJUGATE PRIORS 
UNDER HIERARCHICAL MODELS 

Up until now we have assumed that the X^ were knowoi. 
Retuming to the notation of section 2 we now consider a 
more general hierarchical model 

X\Q~ Poisson(mO); 

Q \X~ Gamma (a, P); 

X~ h{X) Xe-K. (15) 

We restrict our attention to choices of h {X) where the 
Bayes risk is finite and this precludes, among other things, 
the use of improper h {X). The unconditional prior for 0 
under this model can, at least in principle, be obtained as 

7t(0)=£' 'W;i(0|X). 

In practice however, there is little to be gamed since the 
resulting 7t(0) will usually not be expressible in closed 
form. Indeed, it is usually the case that numeric integration 
and/or simulation is required to obtain the required 
posterior quantities and the Bayes risk. 

We propose two methods for finding a "representative" 
single conjugate prior which, in most cases, can be 
substituted for 7c(0) for the purposes of allocation. Indeed, 
for many practical situations, we find that these 
"representative" conjugate priors can replace the hierar­
chical model completely, greatly simplifying the posterior 
analysis. 

We assiune that it is relatively easy to simulate a 
sequence of random variables, {X } ^ , from h{X} and, as 

such, a sequence of random variables, {0„} , can be 

obtained easily from 7t(0) by taking 0. ~ 7t(0 | X.). 
We now discuss the two techniques for finding the 

representative conjugate prior. 

4.1 The Minimum L^ Conjugate Prior. 

Let F(0) and F(0 | X) denote the distribution fiinctions 
of 7i;(0) and n{Q \X) respectively. The L^ conjugate prior, 
or L^_C prior, is defmed to be the prior n" = 7c(0 | X") 
where X" is chosen such that 

II F{Q) - F(01 r ) l [ = inf iF{Q) - F{Q IX) L 
i-e-K 

That is, the L^_C prior is the prior 7i(0 | X.) 
minimizes the L^ distance between F{Q) and F{Q | 

In order to estimate such a 7i(0 | X°°) let {0.}^ 
simulated values from the imconditional prior 7r(0); let 0̂ ,.̂  
denote the /"" ordered value of the {Q.}; and define the 
function 

E(Qi.J^) ' " - ^ 

which 
X). 
heN 

df^{X) = max 
N 

(16) 

It is usually a routine matter to numerically find an (at least 
approximate) minimizing X, for (16) and our L^.C prior is 
71(0 I X") where X" satisfies 

J^(r)= infd^{X). 
> . £ « 

Note that we are essentially minimizing the 
Kolmogorov-Smimov statistic and the obvious appeal of 
estimating ;i(0) in this manner is that dj^^X") can be 
directiy interpreted as the estimated maximum difference of 
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ciunulative probabiUties under 7t(0) and Ji(0 | X"). In the 
sequel, we wUl denote the Bayes procedure under the prior 
n°° and loss function L^^ as 5^ (x). 

4.2 The M L Conjugate Prior 

Let 0p ..., 9^ be A'^simulated values from 7t(0). The M L 
conjugate prior, or ML-C prior, when it exists, is defined to 
be the prior 7i(9 | X™') where X,*"' satisfies 

N 

71(0 I X."') = sup i (3 i I 9) = sup n 7 (̂0,. I X); 
J.6M >,eM 1 = 1 

or, equivalently, 
N 

In n{Q I X"̂ ') = sup /(X | 9) = sup Y In M^i \ ^)-
XeM XeM / = 1 

That is, X.™' is the usual maximiun likelihood estimator of X, 
if 0,,..., 0^ were i.i.d. from 7t(9 | X.). Again, it is usually a 
simple matter to obtain X""' by numerical or simulation 
techniques. As in the L^ method, we will let 7i"' and 8" 
denote the estimated prior and the Bayes procedure under Tt™' 
and loss function i^ . 

Examples. The foUowing four examples give an indication 
of how tiiese procedures perform for a few different choices 
of h{X). In all of the examples we consider the general fist 
stage setup to be 

A" I 0 ~ Poisson (m9) 

9 I X~ Gamma(ri/p + l ,p) X = {^, p) 

Furthermore, we assume T| and p are independent so that 
h(X) may be written as /7,(r|)/i2(P)- Adopting the 
notational conventions 

Y~Beta^^,^{(,„i:,2)-*f{y)^{y-af^-\b-yf^-'l^^,p); 

Y~ UivGamraa {a, b)=>f{y)o.y <"*% -""l^o^^y); 

the four examples considered are 

Example r\ p 

(a) UnifonTi(4, 6) Beta,„5 2,(2, 5) 

(b) Gamma (6.25,0.8) InvGamma (11,1 / 30) 

(c) 

(d) 

Uniform (2,18) 

Beta(3 13,(2, 1) 

Uniform (0.2, 0.5) 

Beta(o,,,o,3)(l,2) 

Table 1 gives tiie estimated X.~ and X,"' with df^{X"') and, 
for comparison, (i^(X,'"') for each of these examples where 
all of the estimates are based on N = 100,000 simulated 
values from ji(0). In examples (a) and (b) both methods 
give very similar results and provide very good fits to n{Q) 
as indicated by the small values of rf^. Examples (c) and (d) 
were chosen to Ulusttate what happens when 7i(0) deviates 
noticeably from a gamma distribution. Example (c) has a 
"plateau" distribution and example (d) is skewed in the 

WTong direction. As expected, the fits are less convincing 
in these examples. Figure 1 shows the simulated 7t(0) 
along with K" and JI""' for each of these examples. 

Table 1 
Estimated >." and X,'"' for examples (a) - (d) 

Example d^{X') ^^(X"") 

(a) (4.94,0.98) 0.003 

(b) (4.42,3.53) 0.003 

(c) (7.72,2.92) 0.043 

(4.93,1.00) 0.006 

(4.35,3.63) 0.006 

(7.38,2.93) 0.065 

(d) (10.44,1.01) 0.040 (10.12,1.10) 0.068 

A more important consideration, for the purposes of the 
allocations discussed in section 3, is how well the Bayes 
risks are approxunated underTf" and TI*"'. Table 2 gives the 
Bayes risk, r{it, 5", Lj^) under the hierarchical model and 
the values for r^{n°') and r/(ji'"') where 

''k^i^') 
r(n,8^,Z^) -A-(ji*,5^I^) 

r(rt,5",Z,^) 
(17) 

and where • = «> or ml for each of the examples. The 
values /-(TCJS^JZ^) in this table were obtamed by 
simulation and are subject to a certain amount of variation. 
Repeated simulations produced similar results, hi examples 
(a) and (b) the correspondence between the Bayes risk 
under the full hierarchical model and the Bayes risk under 
the representative priors is very close, especially for the 
ML-C priors. In examples (c) and (d) the correspondence 
is stUl quite good considering these relatively small sample 
sizes. Overall, the ML-C prior appears to perform slightly 
better in the sense that the Bayes risks r(7r™', 8̂  , Z,̂ ) tend 
to be closer to r{n, 8", i^) with the exception of example 
(c) under the loss function L^ where the L^-C prior is 
slightly better. 

In examples (a) and (b) one may ask why a hierarchical 
model would be considered ui the first place. The answer 
lies in the relative ease of eliciting absolute or probabilistic 
bounds on the hyper-parameters involved and taking h{X) 
to represent this uncertainty. The methods above can then, 
in many practical situations, be used to determine a 
representative single conjugate gamma prior for 9 thus 
greatly simplifying the posterior analysis. The next section 
illusttates tUis with an example. 

We also point out that it is relatively easy to constmct 
examples where the methods described in this section will 
fail miserably at not only approximatmg n but also the 
Bayes risk. The method is best suited to cases where h (X,) 
is chosen to represent uncertainty about X,. In situations 
when h{X) is being used to change the fundamental 
behavior of the first stage gamma prior (to create a bimodal 
prior for example) the representative priors Ji" and TC""' 
would normally not be used as a replacement for jt in the 
posterior analysis but may still give suitable approximations 
of the Bayes risk for the purposes of allocation. 
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Figure 1. Simulated prior 71(6) (histogram) and the representative priors iC and n"^ for examples (a) - (d). 

Table 2 
Bayes risks for examples (a) - (d) 

m 
1 
5 
10 

m 
1 
5 
10 

m 
1 
5 
10 

m 
1 
5 
10 

/•(TI, 6') 
2.997 
0.986 
0.540 

'•(Jt, 8") 
6.320 
1.524 
0.779 

'-(Tt, 8") 
6.861 
1.836 
0.968 

/•(It, 8") 
5.251 
1,778 
0.986 

^ 
' •o( t ' ) 
-0,018 
-0,004 
-0.006 

^0 

'-o'(t") 
-0.021 
-0.014 
-0.008 

^ 
'•o'C't'") 
0.154 
0.084 
0.062 

'-o 

'•o'C"") 
0.096 
0.075 
0.057 

Example 

ro'i^) 
-0,006 
0,001 

-0.002 

Example 

r„-(7t"") 
-0.009 
-0.007 
-0,002 

Example 

'"o'Ct"') 
0,121 
0,052 
0.031 

Example 

r;(7i"") 
0.121 
0.068 
0.043 

(a) 

(b) 

(c) 

(d) 

Ki ,6") 
0.500 
0,167 
0,091 

r(jt, 6') 
0.791 
0.190 
0.097 

r(7t, 8') 
0.725 
0.183 
0,095 

'•('1,6') 
0.523 
0.165 
0.090 

h 
Ki^n 
-0,006 
-0,003 
-0.002 

^1 

r,-(n-) 
-0.015 
-0.003 
-0.002 

''I 

r;(^') 
0.027 
0,023 
0,015 

^, 
r;{^') 
-0,040 
0,013 
0.013 

'-.•(JT-') 

-0.002 
0,000 
0,000 

r,-(7i"") 
-0,008 
-0,002 
-0,001 

'-,'(""") 
0.028 
0.024 
0.015 

'"I'Ct"") 
0.002 
0.027 
0.021 
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5. NUMERIC EXAMPLE 

We now present a numerical example based on data in 
Lindley and Deely (1993). The data consists of ttaffic 
counts between the hours of 7 a.m. and 6 p.m. over a 341 
day period (3,751 hoiu-s) for a particular stteet in Auckland, 
New Zealand. The hoiu-s are sttatified into Mj = 2,673 
weekday hours and M^ = 1,078 weekend hours and we 
assume that the number of vehicles per hour can be 
modeled by two independent Poisson processes. For the 
purposes of this example we assume a total budget of 
$1,500 is to be allocated and that per hour sampling costs 
are Cj = $10 and Cj = $5 for weekdays and weekends 
respectively. The relative strata sizes in this case are 
Wj =0.71261 and IT̂  =0.28739 for weekdays and week­
ends respectively. 

The prior belief is that the weekend ttaffic rate is 40 
vehicles per hour and that weekend ttaffic accounts for 5% 
of the total weekly ttaffic which yields a weekday ttaffic 
rate of 304 vehicles per hour. Suppose also that, for 
weekday traffic, we have elicited that the number of 
vehicles per hour will rarely exceed 400 and that, for 
weekend days, the number of vehicles per hour will rarely 
exceed 60, that is, say 

Pr(A', i 400) ^ .95 and Pr(X2 ^ 600) = 0.95. 

Making use of the fact that the marginal distribution of x^ 
given X.J. is a "number of failure" negative binomial 
distribution of "size" a = T|/p + 1 and success probabUity 
1 /(mP + 1) we find that, when r|j = 304 and i\2 = 40, the 
P̂  's that come closest to satisfying these elicited probabili­
ties are p, = 7.51 and Pj = 1.74 respectively. 

We now assume that the modes of the ttaffic rates for 
weekdays and weekends are equally likely to be within 
approximately 10% of the elicited ttaffic rates of 304 and 
40 respectively and take 

ili~Uniform(274,334) and iij ~ Uniform(36,44). 

To represent our uncertainty about the P̂  we take 

p,~UivGamma(l 1,0.0136) 

and 
p2 ~ hivGamma( 14.25,0.043); 

which yields £'(P|)=7.5 with Pr(4<p, ^ 13.4)^0.95 
and £(p2) = 1.75 with Pr(1.03 ^ p2 ̂  2.97) ^ 0.95. 

Using the ML-C technique in section 4 with 
A'̂  = 100,000, the specifications for weekday (5 = 1) and 
weekend (5=2) hourly ttaffic rates along with tiie values 
d^{K"'') are 

W. ml P : dJn'^') 
10 0.71261 
5 0.28739 

302.98 
39.876 

8.303 
1.889 

0.0055 
0.0060 

For the remainder of this section we will dispense with the 
superscript "ml" and simply refer tiie prior specification as t^ 
and let 8*'(A:) =(5,,..., 5 )̂ denote the component-wise 
vector of Bayes procedures for estimating 6 = (0,,..., 0 )̂ 
under the prior specification n^ and loss function L^. 

We consider three different allocations based on esti­
mating WjG, W2e and WO where 

W, 
1 0 

0 1 
W2=[ir, W2] and W 

W, 

w. 
With W, we are primarily interested in estimating the 
weekday and weekend ttaffic rates 0, and Oj mdividually; 
with W2 we are only interested in estimating the overall 
ttaffic rate 0 = IFjOj + IF2O2; and, with W, we are 
interested in estimating all of these. In the sequel, we will 
refer to the allocations as »t(W,),/«(W2) and m(W) 
respectively. 

Table 3 gives the allocations and corresponding weights w^, 
for these examples based on (11) and table 4 shows the 
Bayes risks in estimating 0,, 92, W,9, W20 and W6 under 
these 3 allocations. While allocation ffi('W2) is optimal for 
estimating the overall ttaffic rate 0, it results in large 
increases in the Bayes risks when estimates for the weekday 
and weekend ttaffic rates are also desired - the Bayes risk 
for estimating 92 under m (W2) is almost double compared 
to the Bayes risk under »i (W). 

Table 3 
Weights and allocations for W,, 

/ i i (W,) 

5 w, m^ 

1 1 119.33 
2 1 61.35 

m{W^) 

^.. "'s 
0.5078 136.04 
0.0826 27.92 

Table 4 
Bayes risks under allocations /w (W,) , iw 

Wj and W. 

»»(W) 

v*'.. 
1.5078 
1.0826 

(W|) and m 

f^s 

123.20 
53.60 

(W,). 

Estimand 

m Oj 

iw(W,) 2.61 

/«(W2) 2.29 

/n(W) 2.52 

82 w,e 
0.68 3.28 

1.47 3.75 

0.77 3.29 

WjO 

1.38 

1.28 

1.35 

we 
4.66 

5.04 

4.64 

6. CONCLUDING COMMENTS 

The techniques employed in the present paper are 
general enough to apply to a wide variety of Bayesian 
models. Optimal allocation equations for other Bayesian 
models in which the prior beliefs can, at least approxi­
mately, be modeled by conjugate priors are usually easy to 
obtain. The idea of finding "representative" conjugate 
priors, as discussed in section 4, is also applicable to a wide 
variety of hierarchical models with fu-st stage conjugate 
priors. Areas of additional research in this area include 
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allocations under loss functions other that L^ and Z, as 
well as more complicated cost functions. 
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/ l - * o l - * ; 

" p . ; 
m 

sjX 
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^fX 
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.9 5 s-l 
Y^ ti p. 
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/X = 
V / l-k r,l-k 

c-^,c,,/p,, 
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Note on Calibration in Stratified and Double Sampling 
D.S. TRACY, SARJINDER SINGH and RAGHUNATH ARNAB' 

ABSTRACT 

In the present investigation, new calibration equations making use of second order moments of the auxiliary character are 
introduced for estimating the population mean in stratified simple random sampling. Ways for estimating the variance of 
the proposed estimator are suggested, as well. The resultant new estimator can be more efficient than the combined 
regression estimator is in stratified sampling. The idea has been extended to double sampling in a stratified population and 
some simulation results studied. 

KEY WORDS: Calibration; Stratified Sampling; Double Sampling. 

1. INTRODUCTION 

Calibration estimation (Deville and Samdal 1992) has 
been much studied and practitioners have already offered 
many useful approaches {e.g., Dupont 1995, Hidiroglou and 
Samdal 1998, Sitter and Wu 2002). Still more seems to 
remain to be done, as the use of tiiis powerful technique 
expands further among practitioners. 

This paper offers a modest extension of calibration 
estimation in the stratified and double sampling settings. 
We begin in this inttoduction by describing a new cali­
bration estimator for the conventional stratified sample 
setting. Section 2 derives the variance of the proposed new 
estimator, followed by the derivation of a variance 
estimator. Section 3 extends these results to the important 
special case of double sampling. To explore the perfor­
mance characteristics of the new estimator, some simulation 
results are presented in section 4 which concludes this brief 
note. 

1.1 Standard Stratified Sampling Estimator 

Suppose we have a population of N imits that is first 
subdivided into L homogeneous subgroups called sttata, 
such that the h-th sttatiun consists of Â^̂  imits, where 
h = l,2,...,L and Yh-i^h^^- Suppose fiirther that a 
sample of size /i^ is dravwi by Simple Random Sampling 
Without Replacement ( SRSWOR) from tiie h-th popula­
tion sttatum such that Yh=i''h~'^' ^ ^ required sample size. 
Finally, suppose the value of the i-th unit of the study 
variable selected from the h-th sttatum is denoted by y^., 
where / = 1,2,..., n^ and W^^ = N,^ IN is the known proportion 
of population ututs falling in the h-th sttatum. 

In this standard set up (Cochran 1977), it can be shown 
that an unbiased estimator of population mean F is given 
by 

y, •'si - E w, 
h-l 

i,yh (1.1) 

where y/^ = n^ Y,i=i yhi denotes the h-th sttatum sample 
mean. Under SRSWOR sampling, the variance of the 
estimator y^^ is given by 

yiy.s,) = Y wt 
h-l 

^-h 
'hy (1.2) 

where S, Hy - (A /̂, - 1 ) - ' Yi-i ( 5 , - ^hf /enotes tiie h-fh 
sttatum population variance, 7^ = JV̂  ^ .̂J', Y^. denotes the 
h-th sttatum population mean and ff,=nf^ INj^. 

1.2 Proposed New Calibration Estimator 

Let Xi^.,i = l,2,...,Nf^;h = l,2,...,L denote the value of 
the i-th unit of the auxiUary variable in the h-th sttatum 
about which information may be knovwi at the unit level or 
at the stratum level. Consider a new altemative (calibration) 
estimator for sttatified sampling of the form 

>'.,(new) =Y^Hy 
h-l 

yh (1.3) 

where the weights Q^ are chosen such that the chi-square 
distance function 

( " . Wh)' 

h-l W^Q^ 

where Qj^ denotes suitable weights to form different forms 
of estimators such as combined ratio and combined 
regression type estimators, is minimized subject to the 
following two calibration consttaints 

Y^h^h=Yw,X, (1.5) 
h-l h-l 

and 
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Y ^hsl - Y WA, (1.6) ^^2Atw,Q,sly\Y ^h(sL-sL)Y^hQh^i 
" " U = l '•h-l h-l 

-Yw,{X,-x,)Yw,Q,x^sl \ I 
h-l h-l J J ' 

where A:̂ ^ / = 1,2,...,«^; h = 1,2,...,L denotes the value of 
sampled z-th unit from the h-th stratum such that x̂  = 
"h Yi-i ^hi denotes the h-ih sttatum sample mean estimator 
of the known h-th stratum population mean X̂  = 

^h'Yi--i^hi' and 4 = («/ , - i r 'E"=i(%-^; , ) ' denotes 
the h-th sttatum sample variance estimator of the known 
h-th sttatum population variance S^^ = {Nf^-l)'^Y,ili 
{Xf^. - Xi^)^ of the auxiliary variable. 

Now it can be shown that minimization of (1.4) subject 
to (1.5) and (1.6) leads to new calibrated weights given by 

€l,= W,. 

w.QhH 
L 

Yw,{X,-x,)Yw,Q,sl 
'•h-l h-l 

-Yw,{Sl-sl)Yw,Q,s! 
h-l h-l 

"hx 

L 

Y W,Q,xlY W,Q,sl-\ Y W,Q,s, 
h-l h-l \ h-l 

Yw,Q,xlYw,Q,s, 
h-l h-l h-l 

WhQhh. 

Smce the ratio ^.f^lW^^ -.1 in probability, as the sample 
size in each stratum tends to infinity, the proposed estimator 
of the population mean is consistent. 

Note that we are calibrating the estimates of the sample 
mean and the sample variance from each sfratum, instead of 
each value of x., to the corresponding population para­
meters. Further note that if the population variance for each 
stratum is unknown, but the population means ^^, 
h = 1,2,...,/, are known ( or X is known ), then it is 
advised to use only the single consttaint (1.5). 

2. VARIANCE AND VARIANCE ESTIMATION 

L 
h~l 
Y W,{S'^-sl)Y iV,Q,x 

L 

c 
h-l 

_ 2 
"^h 

•Yw,{X,-x,)Yw,Q,x,sl 
h-l 

L 

L 

Y 
h-l 

Y W,Q,xlY W,Q, si- Y W,Q,s, 
\h-i h-l h-l (1.7) 

On substituting (1.7) in (1.3), we get 

Jjnew) = Y W, [y, . ^.(X,-^,)^^!^^. -^,'J] (1-8) 
h-l 

where 

'^,AYw„Q,x,y, 
h-l 

Yw,{X,-x,)Yw,Q,sl 
h-l h-l 

-Yw,[sl-sl)Yw,Q,x,s, 
h-l h-l 

Y W,Q,xlY W,Q,sl- Y W,Q,sl 
h-l h-l 

^2 

h-l 

and 

While the new estimator y .̂,(new) has been shown 
above to have acceptable asymptotic properties, what about 
the variance of the estimator and how does one go about 
estimating the variance? These questions are addressed in 
this section. We begin by looking (in subsection 2.1) at the 
variance of j .̂̂ (new) and then go on to show how that 
variance can be estimated (in subsection 2.2). 

2.1 Variance of New Estimator 
The variance of the estimator J?̂ .,(new) is given by 

V{y,,{ne^)) 
I 

Ywl 
h-l 

^-fh 
Shy' 

, ^2 (\ll\03~\i2) 
^ -'^All 2 

(2.1) 

r/2 5/2 
where X^^^ = \i^J\ih2ol^02 and [i^^.^ = {N^ - 1)" ,̂.̂ , 

(Yhi-nn^hi-^hr-
The expression (2.1) shows that the proposed estimator 

is always at least as efficient as the combined regression 
estimator in stratified sampling defined as 

(2.2) ys,(^) = E w, 
h-l 

yh-kx,-x,) 

with variance 

L 

v(yjc)) = Y wl 
h-l 

'^-fh] sl['-^ 

The variance V (̂ .̂̂ (new)) can be written as 

file:///ll/03~/i2
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I . .\ 

K(y,,(new)) = Y W, 
h-l 

^-fh 

\ "* ) 

I 

N,-\7ri 
Yei (2.4) 

where 

e., = ( y , , - n ) - P , ( ^ , , - X , ) - P , { ( J r , , - X j ^ - a L ) ( 2 . 5 ) 

withoL=^;'ES(^„-^,)^ 
2.2 Estimation of the Variance 

An estimator for estimating the variance 1^(7,,(new)) is 
given by 

V^{y^,{ne^)) = Y W, 
I 

h-l 

^-fh ^ Y e l (2.6) 

where 

hi = iyhi-yh) - Pi(^A,--^A) - P2 [i^hi-^hf-h!] (2-7) 

-1 v^"» witii 5;,̂ * = «̂ " Y,i-i (^hi~^h) being the maximum likeli­
hood estimator of o ,̂̂ . 

We also consider a calibrated estimator of the variance 
defined as 

V, (P„(new)), = Y "; 
A = l 

1- /A 
\ 

V "" 

I 

n,-3 i-l 
Cu.. (2.8) 

The estimator proposed by Wu (1985) is a special case of 
this estimator. 

3. DOUBLE SAMPLING 

In this section we extend our stratified sampling results 
to the sttatified double sampling case. In particular, suppose 
the population of Â  units consists of Z, sttata such that the 
/i-th stratum consists of Â^ units and ^;,, | A'̂ ,̂  = Â . From the 
/i-th sttatum of Â^ units, draw a preliminary large sample 
of AM̂  units by SRSWOR sampling and measure the 
auxiliary character x^^^ only. Select a sub-sample of n^ units 
from the given preliminary large sample of m^ units by 
SRSWOR sampling and measure both the study variable 
_V̂ . and auxiliary variable x^^. Let x^ = m^ ,̂,̂ * x^^ and 

^hx = ( ' " A ~ ^ ) ' ' Yi^i^hi~^h^ denote the first phase 
sample mean and variance. Also let x^ = n^ ^ ; *, x^.^, 5̂ .̂ = 

("A - 1)"' Z M (^hi -h)^ and y^ = « ; ' ^":, y^., s^^ = 
(«^ - 1)"' ̂ ,, *, {y^^. - 7^ )^ denote the second phase sample 

mean and variances for the auxiliary and study characters, 
respectively. We are considering an estimator of the 
population mean in sttatified double sampling as 

y..M) = E < J A (3.1) 
A = l 

where W/^ are the calibrated weights such that the 
chi-square distance 

^ (w; - w, f 
h-l ^hQ, 

(3.2) 
h ^h 

where g^ are predefmed weights used to obtain to different 
types of estimators, is minimized subject to the consttaints 

A = l A = l 

(3.3) 

and 

YfV,:sl = Y ^hhx (3.4) 
h-l h-l 

where IF^ = A'̂  IN are known sfratum weights. We then get 
the calibrated weights, for stratified double sampUng, as 

YWh(^:-x,)YfV„Q,s:, 
'•h-l h--

Yw,i^h1-hx)Y^hQhVh 

h-l 
Y W,Q,xl Y W,Q,sl\ - Y W„Q,x,s, 

h-l 

-i^hQh^hx 

h~l 

L 

I 
h-l 

Ywls:^-sl)Yw,Q„x, 
h-l h-l 

-Yw,{x;-x,)Yw,Q,x,sl\\ I 
h-l h-l J J ' 

( L \( L \ { L 
Y W,Q,xl Y W„Q,sl - Y W.QT^^ 

\h-i )\h-i ) \h-i 

\2\ 

'hx 
(3.5) 

Substitution of (3.5) in (3.1) leads to a new estimator of the 
population mean in stratified random sampling. Thus a 
calibrated estimator of the population mean in sttatified 
double sampling is given by 

L 

1 
h = l 

y..,id) = YWhyh-^: 
L 

r 
A = l 

L 

Yw,[x,rK) 

-p; Y w^[sl-s;;'^] 
h-l 

(3.6) 

where p,* and Pj have tiieir usual meanings. It is to be 
noted tiiat the estimator (3.6) makes the use of the estimated 
first phase variance of the auxiliary character while esti­
mating the population mean. Thus the estimator (3.6) is 
different than the usual separate regression type estimator 
available in the literature. 

Since the ratio W^^ IWg^ - 1 in probability, as the second-
phase sample size in each sttatum tends to infinity, the 
proposed estimator is a consistent estunator of the 
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population mean. The conditional variance of the sttatified 
double sampling estimator, y..,{d) = Y,h-i ^hYh > '^ 

Ud) I w;] = Y K 
h-l 

,2 „,r ,N-i v-^» rv V 2̂ 

(3.7) 

where s , ; = (AT,-i)-'x,;,(J',,-5^Ar 
A conditionally unbiased estimator of V[y^.^{d) | W^] 

is 

y,M) I ÂI = E < 
A=l 

J 1_ 
«A " ^h) 

"hy (3.8) 

where 5,'_, = ( " A - I ) " ' Z i = . (>'A,-3^A)'-

It may be noted that in tiie proposed sttategy, there is no 
need to go for higher order calibration for estimating the 
variance, because the calibrated weights W,^ already make 
use of the estimated first phase variance of the auxiliary 
character. The minimum variance of the sttatified double 
sampling estimator y..,{d), to the first order of approxi­
mation, is given by 

viyjd)) = Y wl 

^hx = "A Yi=i ̂ •"•hi "•'^h )^ denotes tiie maxunum lUcelihood 

hx-estimator of a 
We suggest here a new estimator of the variance in 

sttatified double sampling as 

m.id)) = Y K' 
h-l 

J_ 
m^ N, 

hy^ 
h) I fl (3.13) 

A = l 

Clearly lun V{y^i{d)) = F(;'^^(new)) because 
n i l - Afj 

lun W^--Qy Note that in two-phase sampling, an 
"'h^^h 

estimate of population parameter of the auxiliary character 
based on first-phase sample information (large sample) will 
always be better than the corresponding estimate based on 
only second-phase sample information. One can refer to 
Hidiroglou and Sarndal (1998) to see that calibration to an 
estimate of such an unknown quantity works well. 

4. EARLY SIMULATION RESULTS AND SOME 
CONCLUSIONS 

1 1 

'"h ^h 
< -

1 1 

( « A ' " A ; 

^hy 

1-x; 
(^AIl^AO.3 ^A12) 

• A l l 

^A04~ ^ ~^A03 
(3.9) 

To begin our study of the operating performance of the 
proposed estimator with respect to the usual combined 
regression estunator m sttatified sampling, we performed a 
few simulation experiments. These are described below and 
then some overall observations are made to conclude the 
paper. 

The variance of the sfratified double sampling estimator 
y,^.i{d) can also be written as 

V{yjd)) == Y W, 
h-l 

y'"h ^h) 
Shy + 

\ «A '"h 

1 

^ A - I (3.10) 

where 

eA, = (>'Ar^A)-P.(^Ar^A)-P2K-^AF-c'L)-(3-ll) 

An estimator of variance V{y^^{d)) is given by 

hyjd)) = Y w, 
h-l 

' " A ^ A 

hy^ 
_ n Y 4 

« A ' = > (3.12) 

where ê ,, = {y^.-y^) - p , {x^ . -x J - p2 {(x„, -xj''-s^^} 
denotes the estimate of the residual term and 

4.1 Simulation Results 

The following procedure for doing the simulation 
experiment was adopted. We assumed that the population 
consists of three sttata and within each stratum the 
population followed the distributions shown in Table 1. 

In each sttatum different ttansformations on x^^ and j ^ , * 
were made by examining all possible combinations of the 
correlation coefficients p^ = 0.5,0.7 and 0.9 and sample 
sizes «;, = 5,10, and 15. The quantities S, ^ =4.5, Sj^, = 6.2, 
^ix ~ ^-^ and S^ =4.8 were fixed in each sfratum. 

We generated 50,000 populations each of size 75 uiuts 
and having 25 units in each sfratum. From each sfratum, 
SRSWOR samples were drawn and an average of the 
empirical mean squared error of the combined regression 
estunator was computed as: 

MSE(>^,,,(c)) 
1 50000 

50,000 Jfi 

h-l 

w,(y,^kx,-x,)) 
(4.1) 
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Table 1 
Characteristics of the Population 

Population Stratum 1 Stratum 2 Stratum 3 

J ' , ,=15+y(r^>' i> p,--î x,";. 

>'i,=50+X|* 

y^^ = 200^^{l-pl)y,)^p,^x;, 

yii = 1 5 0 + A:J* .^3,- ^loo+xj;. 

/(zw) = Yr-C*' 'e"" . a„ = 0.3; for z,* =x^y, â  = 1.5 for ẑ* =j;;,;;;i = 1,2,3 

Ay^'i) = - i - n ? '«"^«A = 0.3;/(x,;) ~ e ' ^ ; /, = 1,2,3 
r„. 72^ 

>•« 

/(%) = 7 ! -%"" ' ^ "^ «/, = 0.3;/(J.,-) = - L e ^ ; A = 1,2.3 

Ahi) = -=e ^ for z« = %, ẑ* = y^r, h = 1,2,3 
fhi 

where Y = 
25X15+25 X 100 + 25x200 

75 
100.5. 

Similarly the empirical mean squared error of the 
proposed estimator is given by 

MSE(J^.,(;.) 
1 50000 

50,000 ~t 

( 3 "> 

E^A(VPI(^A-^A) + P 2 ( 4 - 4 ) ) 
\h-l 

-Y 
(4.2) 

The percent relative efficiency of the proposed estimator 
with respect to combined regression estimator is given by 

MSE(v ,{c)) 
RE = )^jl^Jf_ X 100. 

MSE(7^.,(;;)) 
(4.3) 

The resuUs so obtamed demonsttated a modest improve­
ment over aU combinations studied for all four populations. 
The range of improvements was about 4.46% to 13.08% 
with the median being 5.19%. 

Several empirical studies were also carried out similar in 
structure to those presented above. In particular we were 
able to Ulusttate the extent to which our approach was more 
efficient than that considered by Singh, Hom and Yu 
(1998) in sttatified sampling. Quite similar results were 
observed for the double sampling setting. Using the 

simulation program with w^ =20,h = 1,2,3, with the same 
four populations as described earlier, the median 
improvement was observed as 3.17%), 7.20%, 5.28%, and 
3.12%, respectively. 

4.2 Some OveraU Observations 

We are comfortable that our new calibration estimator 
will perform well in many settings. Our simulation results 
demonsttate this in several special cases. As with other 
calibration estimators, however, there has been an appeal at 
various points to asymptotic results. Such appeals raise 
concerns in small samples. For example in section 3 we 
stated tiiat the ratio W^ I W/^^l in probability. This allowed 
us to conclude that our new double sampling estimator was 
asymptotically unbiased. We recommend that such appeals 
be checked before our estimator is used in an application, 
possibly by employing simulation studies similar to those in 
this paper but for situations like those that are to be sampled 
m the practitioner's particular setting. 
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