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In This Issue

This issue of Survey Methodology contains the third in an annual invited paper series in honour
of Joseph Waksberg. A brief description of the series and a short biography of Joseph Waksberg
were given in the June 2001 issue of the journal. I would like to thank the members of the Award
Selection Committee, Chris Skinner (Chair), David Binder, Paul Biemer and Mike Brick for having
chosen Tim Holt, who has had a very distinguished career in both academia and in official statistics,
as the author of the third paper in the Waksberg Invited Paper Series.

In his paper entitled “Methodological Issues in the Development and Use of Statistical Indicators
for International Comparisons”, Holt first describes the wide range of national statistical indicators
suggested by various United Nations committees to monitor and compare development in such areas
as demography, health, economics and employment, and he considers how these can be prioritized
for implementation. He then discusses the need for sound statistical infrastructure in each country,
and the importance of base pepulation estimates, administrative sources of data, and good meta-data
for indicators that are produced. Holt goes on to discuss several methodological issues related to the
implementation of such indicators, and interpretation of international comparisons.

The next six papets in this issue form a special section on small area estimation. The first three
papers present general methodology, while the last three discuss small area estimation methods in
more specific contexts.

Meeden presents a new Bayesian approach to small area estimation. Instead of using the usual
Bayesian approach that implicitly links one area to another area, Meeden instead uses a
noninformative or objective Bayesian approach. It applies a Polya posterior idea to obtain model-
based estimates of small area parameters, all without introducing a model or a prior explicitly. One
advantage of this approach is that population parameters other than means can be estimated with
sensible estimates of their precision.

You, Rao and Gambino approach the problem of estimating unemployment in small domains by
using an extension of the well-known Fay-Herriot model by borrowing strength across both areas
and time. The authors use the structure of the Canadian Labour Force Survey to produce some
interesting variations on this model. They use the short period - 6 months — that rotation groups are
in the sample to produce efficient Hierarchical Bayes estimates which neatly avoids the seasonality
problem common to designs with longer time periods. The result of this method is large reduction
of the coefficient of variation especially in the smaller areas.

In their paper, Lehtonen, Simdal and Veijanen examine the effect of model choice for different
types of estimators of domain totals. They point out that earlier literature on small domain estimation
has not emphasized enough the distinction between the types of estimators and the model choice.
They show analytically and empirically that model improvement has different effects on different
estimator types. One of their main results is that, under some conditions, model improvement leads
to a larger decrease in mean squared error in smaller domains for the generalized regression
estimator. The opposite holds for the synthetic estimator. Also, model improvement is in general
more beneficial to the synthetic estimator than to the generalized regression estimator since the
former can have a large bias.

Chung, Lee and Kim consider small area estimation using the Korean Economically Active
Population Survey. They compare synthetic estimation, a composite estimator that combines the
synthetic and direct estimators, and a hierarchical Bayes estimation method based on multi-level
modelling. They describe the estimators and the model selection for the hierarchical Bayesian
approach. They find that all of these approaches improve significantly over direct estimates for
unplanned small areas; however, the composite estimator was best overall.

I>i Consiglio, Falorsi, Falorsi and Russo empirically compare several small area estimators using
data from the Ttalian Labour Force Survey to estimate numbers of employed, unemployed, and
persons looking for jobs within Local Labour Market Areas. Auxiliary data and target parameters
are based on census data. Comparisons are done both conditionally on realized sample sizes within
a small area and unconditionally. Several types of small area estimator — expansion, post-stratified
ratio, synthetic, composite, sample size dependent, and empirical best linear unbiased predictors ~
are compared. They conclude that the best estimators overall are a composite estimator and a sample
size dependent estimator.
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In the final paper of the special section, Harter, Macaluso and Wolter present a case-study of
small domain estimation techniques to estimate employment at the county/industry division level
using data from the U.S. Current Employment Statistics program and lagged administrative data on
employment. They discuss such issues as the availability, quality and choice of auxiliary data,
problems in micro-matching of survey and administrative data, and regular monitoring of the entire
process in order to build in the quality needed to support small area estimation.

The paper by de Waal deals with the error localization problem: the identification of erroneous
fields in erroneous data. A well known method to solve this problem in numerical data is based on
vertex generation, in particular the Chernikova algorithm. De Waal extends this approach to identify
errors in a mix of categorical and numerical data. The paper shows that many results for numerical
data also hold true for a mix of categorical and numerical data. This paper provides a nice readable
introduction to Error Localization and its implementation.

Haziza and Rao discuss the problem of unweighted imputation for missing survey data. They
show that unweighted imputation, unlike weighted imputation, generally leads to biased estimators
under the design-based approach (i.e., uniform response). They propose a bias-adjusted estimator
which is simple to obtain and has the desirable property that it is approximately unbiased under both
the design-based and the model-based approaches. They also derive linearization variance estimators
for the proposed estimators. A simulation shows the good performance of the bias-adjusted
estimator, especially when the correlation between the variable of interest and the inclusion
probability is high. ‘

The paper by Johnson and Deely develops optimal and approximately optimal fixed cost sampling
allocations for simultaneous estimation in multiple independent Poisson processes based on the
Bayes risk and the Bayes estimator under two different loss functions. The results from this approach
are straightforward, interesting and are connected to the classical stratified random sampling
allocations. Technigues for finding “representative” conjugate priors, under more general
hierarchical models for allocation purposes are also presented.

In the last paper of this issue, Tracey, Singh and Arnab investigate calibrating to the second order
moment of a auxiliary variable, when available, to improve the efficiency of estimators. They show
that this new estimator can be more efficient than the combined regression estimator in stratified
sampling and provide a variance estimator for the new estimator. Finally, they extend the method
to double sampling and conclude with some limited simulation results.

Finally, we note that a paper from the December 2002 issue of this journal has just won an
award. The paper by Balgobin Nandram, Geunshik Han, and Jai Won Choi, entitled “A
Hierarchical Bayesian Nonignorable Nonresponse Model for Multinomial Data from Small Areas”,
has received the Statistical Science Award as the best paper of the year in applied statistics,
awarded by the Statistical Awards Ceremony Committee of the Centers for Disease Control and
Prevention and the Agency for Toxic Substances and Disease Registrv. Congratulations to
Drs. Nandram, Han and Choi!

M.P. Singh
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Waksberg Invited Paper Series

Survey Methodology has established an annual invited paper scries in honor of Joseph Waksberg, who has
made many important contributions to survey methodology. Each year, a prominent survey researcher will
be chosen to author a paper that will review the development and current state of a significant topic in the
field of survey methodology. The author receives a cash award, made possible through a grant from Westat
in recognition of Joe Waksberg’s contributions during his many years of association with Westat. The
grant is administered financially and managed by the American Statistical Association. The author of the
paper is selected by a four-person committee appointed by Survey Methodology and the American
Statistical Association.

The author of the Waksberg paper is announced at the annual Joint Statistical Meeting during the
American Statistical Association Presidential Address and Awards session. In this session, recipients of
awards such as Section, Chapter, Continuing Education-Excellence and other co-sponsored awards are
congratulated. In particular, the Waksberg Award for outstanding contributions in the theory and practice
of survey methodology is highlighted. Finally, the winner of the Waksherg award appears in the Awards
program booklet.

Previous Waksberg Award Winners:

Gad Nathan (2001)
Wayne A, Fuller (2002)

Nominations:

Nominations of individuals to be considered as authors or suggestions for topics should
be sent to the chair of the committee, J. Michael Brick at Westat, 1650 Research
Boulevard, Rockville MD, U.S.A. 20850-3129 by ¢-mail at brickml@westat.com or by
fax (301)294-2034. Nominations and suggestions for topics must be received by
December 5, 2003.

2003 WAKSBERG INVITED PAPER
Author: Tim Holt

Tim Holt began his career as a survey methodologist at Statistics Canada from where he moved to the
University of Southampton where he is currently professor. He has published a number of papers in
academic journals. He has also been Director of the Office for National Statistics and Head of the UK
Government Statistical Service. More recently he has undertaken various consultancies including for the
United Nations, European Union, International Labour Office and International Monetary Fund.



4 Waskberg Invited Paper Series

MEMBERS OF THE WASKBERG PAPER SELECTION COMMITTEE (2002-2003)

J. Michael Brick (Chair), Westat, Inc.

David R. Bellhouse, University of Western, Ontario
Paul Biemer, Research Triangle Institut, U.S.A.
Gordon Brackstone, Statistics Canada, Ontario

Past Chairs:
Graham Katton (1999 - 2001)

i Chris Skinner (2001 - 2002)
David A. Binder (2002 - 2003)




Surveg

Vol 2

Methodology. June 2003

No, 1,

Statlstncs Canada

Methodological Issues in the Development and Use of Statistical
Indicators for International Comparisons

DAVID HOLT'

ABSTRACT

International comparability of Official Statistics is important for domestic uses within any country. But international
cotnparability matters also for the international uses of statistics; in particular the development and monitoring of global
policies and assessing economic and social development throughout the world. Additionally statistics are used by
international agencies and bilateral technical assistance programmes to monitor the impact of technical assistance.

The first part of this paper describes how statistical indicators are used by the United Nations and other agencies, The
framework of statistical indicators for these purposes is described and some issues concerning the choice and quality of these
indicators are identified.

In the past there has been considerable methodological research in support of Official Statistics particularly by the strongest
National Statistical Offices and some academics. This has established the basic methodologies for Official Statistics and
has led to considerable developments and quality improvements over time. Much has been achieved. However the focus
has, to an extent, been on national uses of Official Statistics. These developments have, of course, benefited the international
uses, and some specific developments have also occurred. There is however a need to foster more methodological
development on the internatienal requirements. In the second part of this paper a number of examples illustrate this need.

KEY WORDS: Official Statistics; Statistical Indicators; International Comparisons,

1. INTRODUCTION

Official Statistics matter in national life. They are used
to develop and monitor public policies, allocate resources,
support public administration and decisions made by
businesses. They are used too by citizens as a window on
the work of government and to monitor its performance.

As important are the international uses of Official
Statistics. They are used by national governments to
monitor the country’s performance against comparators; to
ensure that economic competitiveness is maintained or
enhanced; to monitor economic and social developments in
other countries and the outcome of alternative economic or
social policies that other states may adopt. Increasingly in
some regions they are used for national participation in
international decision-making and resource allocation. For
these purposes internationally comparable statistics are
needed. They are required too by international agencies to
monitor national performance and to make comparisons.
The World Bank, IMF and bilateral funding agencies
depend heavily on Official Statistics to monitor the impact
of policies and technical assistance programmes.

Increasingly statistics and statistical indicators are being
used to set and monitor global policies. For example a
review of UN Summits and major conferences during the
1990’5 identified over 280 statistical indicators needed to
monitor UN policies made through conference decisions.

Hence the need for internationally comparable statistics
has never been greater. This paper has two purposes:

1
the UK Government Statistical Service.

— To describe the current need for internationally
comparable statistical indicators for UN and related
agency purposes, and

~ To suggest that despite the huge investment in
methodological research and development to support
national statistical needs, there has not been as much
emphasis on methodological research supporting the
international uses. Some examples will illustrate this.

2. UNSTATISTICAL INDICATORS

What is an indicator?

The term “statistical indicator” has come into use
particularly in relation to monitoring global policies. One
might try to establish what characterizes a “statistical
indicator” and what distinguishes it from the range of
statistics published daily by National Statistical Offices.
There are indicators, such as the Human Development
Index, that are artificial constructs that combine disparate
measures (GDP per capita, life expectancy at birth, literacy
and educational attainment) into a single composite index
number. Such indicators are not a statistical estimate of any
single population characteristic and are intended only as a
very broad and general measure. But most statistical
indicators used by the UN, for example, are not of this kind.
Rather they are simply statistical estimates of population
characteristics (e.g. fertility rate, life expectation at birth,

David Helt, Department of Social Statistics, University of Southampton United Kingdom. Former Director of the Qffice for National Statistics and Head of
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GDP per capita). Each of these characteristics can be
precisely defined even though the concept may be complex
and the measurement difficult. Such statistics are important
for both national and international purposes.

Since the statistical indicators are everyday statistics one
may question the need for a different terminology. The
reason is not based on the statistical properties but may
reflect the way that the indicators are used. Indicators are
meant to be high level (usually outcome) measures that are
perceived to be related to some aspect of economic or social
well-being. For example a low life expectancy at birth in a
country is an indication of unsatisfactory living prospects
and of health problems in particular. But two countries with
similar life expectancies may have very different health
situations and the policies needed to address these may be
quite different. The statistic used as an indicator points at a
problem but one would require much greater understanding
of age-specific mortality rates, causes of death, the quality
and range of health services and possible differences
between sections of the population to formulate a policy
response. That policy may be based on improved medical
provision, preventative public health or social policies,
greater education for those at risk or a combination of all of
these. The statistical indicator is a high level monitoring
instrument but policy development and monitoring require
amuch wider and richer statistical picture.

The fact that the indicator is used as a general measure
of economic or social well-being does not imply that the
methodology and sources used to measure it need not be
tightly specified. The requirement is to get comparability
both between countries and within a country at different
points in time. Loosely specified sources and methods can
give rise to inconsistencies that would invalidate the
monitoring required. Indeed one of the problems of
indicator use is that small changes that have no statistical or
substantive significance but cause the ranks of countries to
change are given far too much prominence particularly by
national policy makers and commentators.

UN Statistical Indicators

In the last decade or so United Nations summits and
major conferences (averaging almost two per year) have
covered a wide range of economic and social issues. These
meetings have resulted in declarations related to future
goals and targets that have been endorsed by member states
and are intended to improve the well-being of the world's
population. Goals and targets call for a commitment to
monitor progress towards them and, consequently indi-
cators have been identified in relation to each goal. The
intention is to monitor and report on these so that progress
towards the declared goals and targets can be measured.
The Millennium Development Goals, for example,
subscribed to by 164 Heads of State or their representatives
have resulted in 8 goals, 18 targets and 48 statistical
indicators that will be monitored over the coming decades.
For example there are two indicators for Goal 1, Target 2.

GOAL 1: ERADICATE EXTREME POVERTY AND HUNGER

Target 2: Halve, between 1990 1. Prevalence of underweight

and 2015, the proportion of children under-five years of
peopie who suffer from hunger age

2. Proportion of population

below minimum level of

dictary energy consumption

In total over 280 indicators had been identified from UN
Summits and major conferences in the last 10 years.

This process has gone on with too little co-ordination
between officials concemned with the separate UN summits
and major conferences in terms of the number and choice of
indicators 1o be monitored. The result is a plethora of
indicators of different levels of importance in policy terms.
The meetings have varied considerably in terms of the
number of resulting indicators (ranging from a handful or
less to as many as 70 being identified from a single UN
conference). Also there is potential for confusion among
users because of an apparent inconsistency and lack of
coherence among the indicators.

The UN conferences have adopted markedly different
approaches to identifying the need for indicators. In most
areas the number of indicators is relatively small and these
focus on outcomes. In other areas the indicators are detailed
and seek to measure many different facets of policy and
service delivery. For Health for example the death rate for
a specific disease may be required. Additionally the
required indicators may include the disease prevalence rate,
the inoculation rate, the proportion of cases treated under a
specified treatment regime, public health preventative
measures and public understanding of the causes of the
disease.

The cumulative effect of indicators added at each
conference has resulted in a large demand for statistical
information from each member state: a demand that has to
be set alongside the demands for statistical information for
national policy purposes. For countries with less well-
developed statistical infrastructure this total demand can be
disproportionate to the resources available to meet it.
Indeed some have a concern that the whole global indicator
movement has gained too much momentum and the
pressure from the UN and interational agencies is
distorting national priorities and reducing the provision of
statistics to support public policy and sound public
administration in some developing countries.

Attempts have been made to distil core sets of indicators
that might be afforded higher priority. The United Nations
Statistical Commission (UNSC) identified the Minimum
National Data Set (MNDS: 15 indicators). The OECD
Development Assistance Committee — in co-operation with
the UN, World Bank and IMF — identified the International
Development Goals (IDG: 21 indicators). This set drew
heavily on international summits up to 1995. The United
Nations Development Group identified indicators to
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support Common Country Assessment again based on an
analysis of the requirements of UN summits (UNDAF-
CCA: 57 indicators). Similarly the need to promote and
assess sustainable development has resulted in an additional
set (CSD: 57 indicators). There is also Basic Social
Services for All (BSSA: 12 indicators). Most recently the
UN has espoused the Millennium Declaration Goals and
associated indicators (MDG). These sets have some
common components and some differences as one might
expect. Even these attemnpts illustrate the vagaries of the
political process. For example the fact that the IDG
indicators were repackaged and replaced within 5 years by
the MDG indicators suggests a lack of constancy and
political purpose.

In 2002 the UN Statistical Commission (UNSC 2002)
adopted proposals to create a framework containing three
levels of priority. The 123 most important indicators are
allocated to 7 Domains:

- Demography,

— Health and Nutrition,

— Environment and Energy,
-~ Economics and Poverty,
— Employment and Labour,
— Education, and

—  Other Social Indicators.

The Domains represent major divisions of policy
responsibility that are commonly reflected by separate
Ministries in many countries. Additionally important
cross-cutting policy arcas such as Poverty, Child Welfare or
Gender that are distributed across these Domaing are taken
into account. Sub-Domains are identified within each
Domain as being relatively self-contained policy areas.
Indicators are allocated to the three priority tiers:
~ First tier priority indicators reflected the need to

monitor policies of the highest global and national
importance. They represent the indicators that, no
matter how limited the statistical capacity available,
countries and international agencies would find
essential for top-level monitoring of policy
effectiveness. There are 2-6 tier 1 indicators per
Domain.

— Tier 2 priority indicators mainly covered different
policy objectives (different subdomains) from those
covered by the highest priotity indicators. These policy
objectives should be of sufficient importance to merit
a tier 2 priority indicator. Not all subdomains would
necessarily do so. There are 0-13 tier 2 indicators per
Domain with most Domains having much less than 13.

— Tier 3 priority indicators supported policy needs that
are, albeit important, either subsidiary or judged to be
less important than others. There are 2-8 tier 3
indicators per Domain.

The Criteria for Allocating Priorities to Indicators

Allocating priority must be grounded in the policy need
but involves balancing a number of criteria surrounding the
relevance to policy, the technical properties and current
availability (or the feasibility, resource and statistical
capacity implications of achieving an acceptable measure in
a high proportion of countries). While one may aspire to the
situation in which an indicator fully satisfies all of the
criteria, in practice this will not be the case. The extent to
which the indicator meets the criteria needs to be consi-
dered and a judgement made about whether any short-
comings are of such overriding concern as to disqualify a
particular indicator from use.

A large number of criteria may be identified but the most
important are:

Policy Relevance

— Indicators must be relevant to the policy requirement.

— Indicators should measure the real policy objective (or
provide a proxy measure that is adequate for policy
monitoring).

— Indicators should normally have global policy
relevance.

— Indicators should be straightforward to interpret:
changes over time in any direction should not be
ambiguous in relation to the policy interpretation and
significant differences between countries should be
meaningful in terms of the policy goal.

Technical Properties

— Technical properties of the indicator should be
adequate for the purpose, recognising that change over
time is often more important than the level of the
indicator.

— Indicators that fail to cover the target population fully
should have sufficient coverage to ensure that the
indicator values are unlikely to mislead policy users
(i.e., the potential bias as a measure of the true policy
objective should be small}.

— Ifpossible, where indicators are difficult to measure for
countries with less well-developed statistical capacity,
simplified alternatives should be provided for use uatil
the statistical capacity can support the more demanding
measure.

— Indicators should be robust to institutional and cultural
differences between countries and over time,

— Indicators should exhibit change over time at a rate that
would support policy monitoring.

— Indicaters should be produced with sufficient
frequency and timeliness to support policy monitoring.

— Indicators should conform to international standards if
these exist.
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In a number of cases the application of these criteria to
create the proposed framework revealed examples where
the policy objective suggests allocation to a particular tier,
but the inherent conceptual or statistical weaknesses of the
proposed indicator and/or measurement problems cause the
indicator to be allocated to a lower tier.

The numbers for each tier reflect the fact that the indi-
cators are not intended to substitute for the mass of detailed
statistical outputs from national statistical systemns that
support users’ needs. They are intended as high level indi-
cators for monitoring purposes.

3. GENERAL ISSUES

The process described in the previous section identified
a number of general issues most of which have a technical
dimension.

Choice of Indicators and Targets

There are two facets: first the precise form and definition
of the indicator needs to be decided together with a metho-
dology for measuring it. In practice, both national and inter-
national policy makers are inclined to express their goals
directly in terms of a statistical indicator without particular
concern for the definitional and measurement issues. Too
often an indicator is identified with too little thought. The
reality is that identifying statistical indicators for monitoring
purposes should be neither a pure policy nor a pure
statistical issue. The basic expression of the policy goal
must drive the monitoring requirement but turning that
expression into a statistical indicator that will be relevant,
reliable and acceptable to the various stakeholders is a
statistical function. The tension between the policy view of
what is needed and the statistical view of what is feasible
and technically sound needs resolution.

The second facet is the choice of a target. These are
chosen in relation to the indicator (for example to halve the
death rate due to a particular disease by a stated year).
There are two views about such targets. One is that they
should be based on policy analysis and set to reflect what
effective policies might be expected to achieve. In this view
it is unlikely that the same target is achievable or
demanding enough in every country. The second view is
that the targets are simply something to aspire to and not
based on any reasoned analysis. In this view target setting
is entirely a political process for binding countries into a
political commitment.

From a statistical perspective the danger of aspirational
targets is that they will not be met (or sometimes even
approached) and the process of statistical monitoring itself
may fall into disrepute as a result. There is also a threat to
statistical integrity if the political pressure to show progress
against an unrealistically set target is too strong.

Whichever view prevails targets that are framed in terms
of improvements from a given base year do require that
indicator values are available at that point. Given the lack

of statistical capacity in many developing countries this is
problematic and for a number of the Millennium
Declaration Goals for example the global statistical picture
for the baseline year from which progress wiil be measured
is seriously inadequate.

Statistical Capacity

The ability to produce consistent, reliable statistical
information requires a sustained statistical capacity. This
requirement is not a one-off capability but implies the
ability to produce statistics on a regular basis and with the
timeliness needed.

In particular a sound statistical infrastructure is essential.
By this is meant:

—  Underpinning systems to create and maintain sampling
frames for business and household surveys.

— A critical mass of ongoing statistical activities: survey
design, data collection and analysis in order to nurture
the basic professional skills.

—  The technical and methodological capacity to maintain
and develop systems in accordance with international
standards as these are developed over time.

— A developed analytic capacity.
—  Adequate statistical frameworks and IT infrastructure.

— Good management to make the most use of the
resources that are available.

—  All of the above embedded within a wider legal and
administrative structure that recognises the importance
of good statistical information and the need to sustain
the conditions in which it can be produced with high
professionalism and integrity, consistent with the UN
Fundamental Principles of Official Statistics.

Without this core capacity and the ongoing resources to
support it, neither the statistical needs of the country nor
those of the international community will be reliably served.
In many countries adequate ongoing financial support is a
key issue. Where this core capacity is fragile the sporadic
provision of additional funds from international or bilateral
funding agencies to satisfy a particular statistical need will
be much less effective and is no substitute for developing
what one might term “statistical sustainability”.

In this regard, statistical indicators need to be viewed as
the end product of often complex statistical infrastructures
that are essential if the indicators are to be produced with
adequate quality. Too much emphasis has been placed on
the indicators and too little on the statistical sources and
infrastructure that underpin these.

Indicators as Rates and Ratios

International comparisons require that statistics be put on
a basis that is immediately comparable and for this reason
almost all of the indicators are presented as rates,
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proportions or in per capita terms. This places population
estimates as a comerstone of most of the statistical indi-
cators. These depend on periodic Censuses to provide
benchmarks and on systems of vital registration or other
sources to permit inter-censal population estimates.
Different statistical indicators call for population estimates
for various age-sex groups as the appropriate denominator.

A particular difficulty is that the numerator of such
indicators and the population denominator are often
provided from different sources within a country and may
be inconsistent. Hence the rates, when calculated, may not
be recognised within the lead policy Ministries and can be
challenged by them leading to a loss of confidence in the
statistics. Population estimates from the National Statistical
Institute, a policy Ministry and the UN Population Division
may all differ. In extreme cases different population
denominators may be used for different policy areas. This
is clearly unsatisfactory and when it occurs implies a
systemic problem of consistency and quality assurance and
a lack of statistical co-ordination within a country.

For economic measures indicators are often expressed as
per capita measures (in which case the comments above
apply) or as ratios of expenditure (e.g. for health or
education} in relation to GDP. Complex measures such as
GDP require an extensive framework of business surveys,
administrative sources and underpinning infrastructure if
the statistics are to be of adequate quality.

The pervasive use of GDP and of population estimates
in this way underlines the importance of the quality of these
estimates if other indicators are to be sufficiently reliable.
Both require a strong statistical capacity and infrastructure
if they are to be regularly produced.

Inadequate Administrative Sources

There are a large number of indicators that are derived
from administrative systems in countries where these are
well established (e.g. mortality rates by cause, fertility rates,
gross and net enrolment rates in education and many health
indicators concerned with health services and provision).
For some kinds of information often relating to public
services (e.g. numbers of teachers, doctors or nurses and
qualifications) the only realistic sources of information are
administrative and where these are inadequate they need to
be strengthened. For other measures a household survey
may be an alternative although there can be conceptual and
measurement differences between information obtained
from administrative and survey sources.

Nonetheless, in countries where the administrative
systems are inadequate survey based measures are widely
used in which both the numerator and denominator of the
indicator may be derived consistently from survey
estimates. In this case a special survey devoted to one
particular area of interest (e.g. health and fertility history)
can provide a wide range of statistics. This is a viable
possibility {at a cost} particularly when countries want a
more comprehensive picture of a situation.

However, ad hoc surveys cannot provide the ongoing
information needed to track important indicators. To ensure
that critical information will be available on an ongoing
basis it is necessary to invest resources into the statistical
infrastructure so that surveys can be repeated regularly.

In general, even when they purport to measure the same
thing, both administrative sources and surveys have
strengths and weaknesses. The administrative source is
often large and provides the opportunity to provide regional
or local figures, However the concept contained is often
not ideal for the statistical purpose. Also the source may not
cover the whole population or may suffer from various
inadequacies. Surveys can often measure the concept
required but sample sizes are often small and there may be
differences between the surveyed population and that
intended because of inadequate sampling frames, response
problems and measurement error.

The real methodological challenge is not to decide that
one source is preferred to the other but to use all of the
information available to produce the highest quality
estimates possible. This will often require strong metho-
dological effort if the statistics are to command confidence.
However these data reconciliation problems often occur in
countries where the methodological expertise is not strong.

Measuring Levels

There are some topics particularly concerning environ-
mental indicators where the very idea of a measure of level
may be very difficult to frame. It is often not the absolute
level of the indicator so much as the trend over time within
each country that is the key focus of policy.

For example there is no real meaning in measuring the
average toxicity in Canada’s coastal waters. One would
need to define coastal water precisely and the sampling
methods to achieve a representative sample of coastal water
together with appropriate methods of statistical inference.
In particular there would be a methodological question as
to whether the sample should be weighted to represent the
distribution of coastal water or that of the adjacent coastal
population. In practice samples taken on a consistent basis
from the same locations on repeated occasions will not
provide a measure of toxicity level but will, under some
strong assumptions, allow trends to be monitored. However
development (such as new towns and industrial sites) will
lead to new sources of toxicity over time and the location of
sample sites may need to be reviewed to reflect this. At the
same time data analysis will be needed to avoid the
measured trends exhibiting discontinuities. The develop-
ment of sample designs and methods of inference for
papulations of people and businesses has been one of the
great achievements of Official Statistics. But there are some
substantial unresolved methodological issues in designing
and analysing samples of physical populations to an
equivalent rigorous standard. The methods applied
generally in Official Statistics may offer some contribution.
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Meta-Data

This is essential if users are to understand any particular
issues affecting the statistical indicator values for any
country. Good meta-data (such as is required by the IM’s
SDDS and GDDS) is a general requirement but there are
specific situations when countries should ensure that
specific meta-data is provided.

—  When national priorities result in an indicator which is
not fully comparable with those produced by other
countries. Failure to provide informative meta-data will
fail those users who seek to use the indicator for
comparative purposes.

—  Where national standards or targets are adopted (for
example in setting a national poverty standard) the
basis of this measure needs to be available to users.

—  Population forecasts {and inter-censal estimates in
countries where vital registration systems are unreliable
or unusable) will depend crucially on the data sources
and assumptions made about age-specific fertility rates
for example. A clear specification of the underpinning
assumptions is essential to users.

Distributional Measures

A number of indicators call for separate analyses by sex
and as a general rule if the data source can support it then
this should be routinely provided. The same applies to
analysis by subgroups (e.g. region, age-group, ethnic or
social classifications). There is a broader issue about
providing indicators that measure inequality and distri-
bution within each country. There are a rather small number
of indicators that focus on distributional issues (e.g. share
of consumption by lowest quintile of population) but the
large majority of indicators are based on national averages.
This is a significant deficiency in the existing indicator list.
Much deprivation and inequality in the world will be
masked by indicators based on national averages. Analyses
by subgroups (e.g. by gender, region, age group, income
groups, ethnic or social classifications) where feasible
would illuminate this issue much more. Similarly,
additional measures of inequality, such as the ratio of
consumption by the highest 20% of households to the
lowest 20% have much to commend them.

4. SOME SELECTED METHODOLOGICAL
ISSUES

In the second part of this paper a small number of
methodological issues are discussed specifically in the
context of international comparisons.

4.1 The Methodelogical Paradigm

In general the paradigm adopted by Official Statisticians
to ensure comparability is based on several components:

— Conceptual clarity of the item to be measured.

—~  Precise definitions of relevant terms that can be applied
in practice.

— And precisely defined classification systems.

— A clear specification of the target population to which
the estimates apply.

— Development of appropriate sources and methods, even
questionnaires, to obtain the data and compile it into
the estimates required.

— Often, international standards, manuals and descrip-
tions of best practice to cover all or most of the above.

The basic assumption is that if the measuring instrument
and related methodology can be defined precisely enough
then it can be applied independently in different countries
and the resulting statistics will be internationally compa-
rable. Hence: control the measurement process and the
ouiputs will be comparable.

This approach generally yields relatively comparable
statistics but not absolutely so and not all of the time.

4.2 Literacy

It is, of course, well known that the translation of some
measures from one language and culture to another is
fraught with difficulty and measuring functional literacy is
an example. In any one country one can test comprehension
of a text that is grounded in everyday experiences and the
requirements of daily life. But the task of transferring this
into another language and culture and getting a precisely
comparable measure of functional illiteracy is very difficult.
Even when great effort has been made 1o achieve this (e.g.
the International Adult Literacy Study 1999) it may be that
only approximate comparability can be achieved especially
if the same measures are used over time so that within
country changes may be monitored. In practice literacy
measures for almost all countries are much cruder; for

- example a self-assessed respons’e to a Census question
1y q

such as “Can the person read a letter? This approach may
provide a broad estimate of the number of people who can
read to a certain level in some circumstances but is unlikely
to provide comparability either between countries or within
a country over time. Large changes in the level of literacy
within a country may provide evidence of real change but
small changes may simply reflect the unreliability of the
measure. In order to monitor literacy levels for global
policy emphasis is placed on 15-24 year olds since these
reflect the flow of newcomers to the adult pool and
improvements in educational access and attainment will
show larger changes to literacy levels for this group than for
the adult population as a whole. Hence the inherent
weaknesses in the measure may, 10 an extent, be mitigated
by focussing on a group for which large change may be
expected. Such an approach will, however, miss the effect
of adult literacy programmes.
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4.3 Interactions Between the State and the Citizen

International comparability is made more difficult
whenever we seek to measure something that is affected by
the interaction between the state and the citizen because the
way in which the state provides for particular services may
differ from country to country. In these cases precisely the
same measuring instrument applied in different countries
may give different results. Consider for example the case of
housing provision for low income families. In some
countries this is provided free or for very low rent. In others
the rental cost is at market levels but families get state
benefits to allow the payments to be covered. Hence the
mechanisms by which the state interacts with the individual
will affect important economic measures. As a consequence
the intgrnational comparability of statistics collected and
compiled under precisely the same conceptual framework
can be impaired. In some circumstances money flows are
imputed to reduce the discrepancies but this is impractical
if the provision of cheap housing is very widespread.

Similar issues can arise for medical provision. In some
countries medical services are provided by the state, free at
the point of access and directly funded from taxation. In
others the system is funded through a system of medical
insurance which may have elements of both state and
personal contributions. When medical services are provided
to an individual the real flow of payments may vary. The
medical practitioner may make a direct claim (to the state or
to a medical insurance fund) for the services provided. In
other systems the individual may be the formal claimant but
with the payment made directly to the medical practitioner.
Or the individual may be required to pay the costs and to
claim these back from the state or insurance fund as a
payment back to the individual. To some extent these
arrangements may be regarded as alternative ways of
achieving the same end: a state-facilitated system to ensure
that individuals have good access to medical services. In
practice money flows are imputed to eliminate most of the
institutional differences.

A third example is the estimation of tax revenue which
has a direct impact on the estimation of public expenditure
and government deficit. Under SNA93 this assessment 1s
made on an accruals basis and in the year in question will
be based on the tax assessments made to individuals and
businesses. In countries that use well-gstablished self
assessment methods and a high level of tax collection
through employers the difference between the estimate of
tax to be collected and that which is subsequently achieved
in the following years may be very small (there will be
companies that cease to function and default on the tax
liability and people who may die without leaving an estate
sufficient to cover the tax due). In other countries with
different forms of tax assessment and recovery practice
there may be much larger differences between the tax
assessed and that which is eventually recovered. Where a
shortfall occurs this will in due course be written off against
the financial account. But this write-off will have no impact
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on the estimates of public expenditure and government
deficit. Hence a system that “optimistically” estimates the
level of taxation that will finally be recovered will resuli in
a lower estimate of government deficit that will never be
corrected when the tax shortfall is written off against the
financial account. Given the importance attached by
international bodies to levels of public expenditure and
government deficit a lack of comparability in these key
measures matters. In this third example there is no
universally agreed method to eliminate the differences
although in the European Union specific (non-SNA) rules
have been introduced in the debt and deficit manual to
eliminate the discrepancies.

4.4 Comparing Economic Measures — Purchasing
Power Parities (PPP)

For comparative purposes economic measures (e.g.
GDP, per capita income or expenditure on Health or
Education, living standards} that are measured in national
currencies must be converted to a common unit of
measurement.

The point at issue is whether conversion from national
currencies to a common unit (say US$) should be made
using the comparative exchange rate values of different
currencies, or should be made on the basis of equalizing the
purchasing power of the currency. This is an important
issue that can have a profound effect on international
comparisons. For example in 1999 the Human
Development Report (HDR) claimed that “the gap in per
capita incomne (GNP) between the countries with the richest
fifth of the world’s population and those with the poorest
fifth widened from 30:1 in 1960, to 60: 1in 1970, to 74:1 in
1995.” These statistics are based on exchange rate
conversion and yet the corresponding PPP ratios are about
12:11n 1960, 18:1 in 1990 and 16:1 in 1997. Not only are
the ratios much smaller but the clear upward trend
presented in the HDR figures is not apparent in the measure
expressed in PPP.

The exchange rate conversion values of any currency are
determined by the international financial markets and
reflect the market forces in those institutions. Indeed, in the
modern world, exchange rates are little affected by inter-
national trade and the exchange of goods and services in
world markets. The second approach uses Purchasing
Power Parities (PPP) to reflect domestic prices on an
internationally comparable basis. The value of national
income or econotnic output in any country is equated to
others on this basis. In this approach, the PPPs provide an
international valuation of what the local currency will buy
within the country (United Nations 1992),

Figure 1 shows a plot of the ratio of exchange rate
conversion to PPP conversion for most of the countries of
the world. The x-axis is the 1997 Human Development
Index (HDI) rank of each country. The most industrialized
countries occupy the lowest 20 places at the left of the
graph and the further right one goes the lower the level of
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development of the country as measured by the HDI. For
the industrialised countries the ratio of PPP to US$
exchange rate conversion factors is fairly close to 1.
However, for less developed countries the ratio is greater —
in many cases much greater — than 1. The upwards slope of
the plot shows that the ratio of PPP to US$ exchange rate
conversion is generally larger, the lower the HDI rank. For
the least developed countries the ratio can be as much as 4
or more. Hence, because the ratio is close to 1, a
comparison of economic measures between the United
States and a major European country, for example, would
be fairly similar using either exchange rates or PPP
conversions. However, a similar comparison between the
United States, or any of the most industrialized countries,
and a least developed country would be very different. In
such a case, the conversion of per capita income, for
example, using PPP conversion could be as much as 4-6
times larger than the conversion using exchange rates (an
exchange rate measure of GDP per capita of $1,000 would
be $4,000-6,000 in PPP terms). Hence, the choice of
conversion factor has a significant effect across the
developed/developing spectrum.

0 2 40 B0 80 100 120 0 L] 180
1997 WD Rank

Sowve: UNSC (2001)

Powerful reasons exist for using PPP conversion rather
than US$ exchange rate conversions for real economic
(rather than purely financial) phenomena such as standard
of living comparisons (as reflected by per capita GDP) and,
by extension, for comparisons of economic output (GDP)
and national income (GDP or per capita GDP). (UNSC
1998).

Table 2
International Comparisons: Ratios of Per Capita Measures of Output or Use of Goods and Services

Comparison Daily Daily per Daily per GDP TVs, Carbon Com'l  Percapita Main Intern’l  Personal Real GDP Per capita
per capita  capita Index per dioxide energyuse electricity telephone tourism computers per capita GDP

capita supply of supply of 1,000 emissions (oil consum’n, lines, per departs per per capita (PPP$), (USS)

suply of fat, Total protein, people, per capita equiv'nt) per 1996 1,000 1,000 1997 1997

calories, (grams), Total 1996 (metric capita people,  people,

1996 1996 (a) (grams), tons), (kgm), 1996 1996 1996
1996 (a) 1996

Japan/China 1.0 i3 13 14 28 33 4.5 9.1 10.9 32,6 42.7 7.3 459
Sing/Indonesia 1.6 1.6 16.3 1.7 18.8 244 111.0 45.2 8.2 26.8
Korea/Vietnan 13 23 . G G WY = | 0.8 8.0 23.1 26.9 399 8.3 29.8
Mexico/ 1.5 1.8 I 1.1 53 29 39 %7 1.6 42 10.0
Nicaragua
SA/Mozbique 1.6 24 21522 810 69.0 52 58.9 333 47.1 10.0 219
SA/C African 1.5 1.2 16 17 246 69.0 1254 333 0.8 55 113
Rep
Brazil/Ecuador 1.1 0.8 e R 2.0 0.8 1.4 2.6 1.3 4.7 3.3 3.0
T&T/Haiti 1.5 24 15 LuLesas 86.0 229 40.2 21.0 11 54 12,6
Sey'lls/Sri Lanka 1.1 1.9 .14 23 58 1.2 14.0 98.0 33 6.1
Sey'lls/India 1.0 1.6 1.3 k6 3.0 2.1 3.0 13.1 10.3 49 127
Kuwait/Jordan 1.1 1.2 14" 16 10.1 79 142 39 34 73 15.6
Lebanon/Jordan 1.2 1.4 3.2 il 1.8 1. LT 5 19.0 Py 4.2
Egypt/Ethiopia 1.8 2.6 1:5 525k .. 3E5 22 364 16.7 41.9 6.0 10.6
Maur's/Madag’r 1.5 26 & e 4 | 15.0 293 54.0 10.0 16.7
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The approach due to Castles (2000} is illustrated using
a range of bilateral comparisons of countries from the same
region in Table 2. The ratio of per capita consumption of
various items in each pair of countries is presented, together
with ratios of the per capita GDP for the two countries
based on PPP conversion and exchange rate conversion. A
general pattern may be discerned. For items such as food
consumption, which are price inelastic, the bilateral
comparisons are relatively close to 1, with countries with
higher per capita GDP having somewhat higher con-
sumption, The ratios are much larger for items (e.g. tele-
visions or personal computers) that depend on disposable
income and are much more price elastic. In general, the PPP
comparison for any pair of countries falls within this
pattern, having a larger value than the ratios for food
consumption but smaller than those for the technological
items. This is what one would expect. The exchange rate
comparisons, however, are generally much larger and often
lie outside the range of consumption even for items such as
PCs and televisions.

The PPP measure seems more consistent with the other
measures and more relevant for the purposes intended.

There are, of course applications for which exchange
rates are appropriate, such as the expression of a country’s
international debt relative to its GDP.

4.5 Price Indexes for International Market Prices

For some goods and services (particularly in Information
and Communication Technologies —~ ICT) the rapid rate of
technological change has made it much harder to estimate
price changes by normal methods. The element of quality
change in simultaneous price and product changes is
significant and National Statistical Offices have responded
to this by greater use of hedonic regression methods to
adjust for quality changes. Even when these methods are
applied independently by different countries there can still
be large differences in the price deflators that are arrived at
and yet, to a large extent the goods and services are traded
in an active international market. Similarly it is possible for
producers within the same NSO who compile national
import and export price indexes to use different price
deflators for the same type of goods and services.

These differences matter: within a country they can lead
to significant impacts on key statistics such as the balance
of trade and fixed capital formation. Between countries they
distort the levels of ICT investment being made and the
productivity analyses aimed at measuring the impact of ICT
investment on growth and economic performance.

Wyckoff (1995) observed that, in the case of computer
price indices in OECD countries, large differences in the
prices were more likely to reflect methodological differ-
ences than real price differences between countries.
Lequiller (2001} found significant country differences in the
attribution of software expenditure between fixed capital
formation and intermediate consumption. The question is
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whether these differences are due to methodological
differences and hence distort international comparisons.
If we consider the case of computer software, for
example, Figure 2 illustrates the range of price indexes
applied to software by a range of countries. The differences
in national estimates of the price indices are dramatic and
will have a significant effect on the intemational compar-
ability of statistics that depend on the price indices.

Fig 2: Investment in software. Price Indices from 1995 onwards. 19952100

1985 1896 1987 1958 1899 2000

Source Edwards, Comisari and Johnson (2002) citing Ahmad (2602)

In a separate analysis Colecchia and Schreyer (2001)
collate estimates of average annual percentage growth in
software investment (1990-95) for a range of OECD
countries. These estimates depend on nationally estimated
price indices. They also recalculate the values using an
internationally harmonised price index. The results are
given in Figure 3. The latter raises the mean growth from
6.3 to 8.2. More significantly in terms of international
comparisons it lowers the standard deviation from 4.8 t0 2.9
making the national estimates more similar.

Average annual percentage growth
of software investment 1990-95
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Figure 3

This is an example where broadly comparable proce-
dures applied independently in different countries give such
different measures of something that ought to be much the
same in all countries that one must question the
international comparability of the economic statistics that
depend on the measure. In this case the methodological
paradigm breaks down.
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The basic question is whether it is appropriate for each
country to independently apply somewhat similar methods
to matters such as price indices for goods and services that
have a strong international market. Alternatively it could be
argued that to improve international comparability countries
should cede an element of national statistical sovereignty by
using internationally estimated indices. The issues are what
methodology should be applied; to what data (presumably
collected on a collaborative basis from a range of countries)
and what are the consequential issues for economic
analyses of national data. Using coherent estimates of price
indices for import and export prices would also need to be
considered.

4.6 Imputation and Aggregation

For the purposes of monitoring international policies it
is not enough to measure statistical indicators at the national
level. Most of the statistical series comprise rates, ratios or
proportions. The country level measures need to be aggre-
gated to provide measures at the regional and global level.
This requirement generates a number of methodological
problems that need further investigation and development.

Fig 4: Primary Enrolment Rates: African

Countries
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Source: UN Millennium Indicator Database

Figure 4 contains the primary level Net enrolment rates
for some African Countries. Although Education statistics
have been chosen here these illustrate a number of features
that are common to a wide range of statistical indicators and
countries:

—  The series are incomplete with missing values in some
years for all countries and the level of completeness
varies from one country to another. Indeed there can be
countries with only one figure in the recent past or, for
some series, with none at all.

—  The last figures available are for 1998.

—  The data show different trends with participation rates
increasing in some countries and decreasing in others.

— Some countries exhibit sudden changes in the partici-
pation rate from one year to the next (e.g. Botswana
Malawi). Countries may exhibit erratic series (e.g.
Rwanda).

The objective for inference

The objective for an aggregate statistic at the Regional or
Global level needs 10 be clear. For a regional rate for Africa
for example one might naturally assume that the objective
is to estimate Y, ;. the rate for the region R at time 7

Wiy / Z Wir
JjeR

2y ®
= . P,.
o LTTLT

}: risthe corresponchng rate for country j and year I’ and
=W r! Tjer ¥

In equatxon (l) the natural value for w,, is the
population size for the relevant age group in country ; at
year 7. Thus for the enrolment rate data presented above the
national enrolment rates would be aggregated to produce
the regional (or global) rate. Corresponding estimates of
change ﬁ'ﬂ»Tz between years T, and T, may be similarly
defined at the national, regional or global level. For
example:

AR,TI,TZ = YR,T2 - YR, T (2)
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Similarly annualized change Ar 7 /(T,-T,) may be
defined.

The regional statistics defined by equations (1) and (2)
will be dominated by the national rates (and changes) for
the larger countries. In a region that contains China or India
for example smaller countries may have national rates that
are quite different and these will have little impact on the
regional rate. The same is true for estimates of change.
Similarly the variance of the regional statistics will tend to
be dominated by the largest countries because of the impact
of the weights squared y 7 For the regional estimate of the
level for example:

Yor) = 2 VY, Dl @)
JeR
An alternative emphasis may be required if the global
target is meant to impose a commitment on each country
regardless of size. Here the country might be regarded as
the unit of analysis (rather than the person as is implicit in
the aggregate statistics described above). One possibility
could be to define ¥, , and Ar m by setting w, . equal for
[

all countries so that ail countries contributed egually to the
summary statistic., Clearly there are other alternatives such
as summarizing the countries performance at the regional
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- level by reporting on the number of countries that
exceed/fall short of the population weighted regional
statistic by a threshold amount together with the range of
country levels (or changes) observed.

Constant or time-dependant weights for estimates of
change

Many of the statistical series call for national statistics
that incorporate a changing population structure over time.
For example the proportion of people below a poverty
threshold will be changing because of changes to household
income (expenditure, or consumption) but also because the
population size itself is changing. Indeed over a period of
15-20 years fertility rates in many developing countries
imply very signiﬁcant population growth. Hence the
denominator implicit in Y at different years T will
properly reflect this change. When producing the aggregate
measure ¥, ;- itis natural to use the population weights w,
and hence the relative proportions p T relating to year T.
It is less obvious whether the weights Wz {and hence M T)
used to produce the aggregate measure of change A, 7.1,
for a region or the whole world should change with time.
The measure of change 4, ; , may be decomposed as
follows:

=2 (,
T Tz jEk S

+ g(u,,rz-uj,r,)((xm +(1-0)Y, 7). (5)
Je

T, ‘};"rl)(x Wir, * I-2) uj’rl)

The measure of change is thus a composite measure
involving both the change in ¥ over time and the change in
weights. Since the weights Wr simply provade the linear
combination of the country measures it is arguable that
these should be held constant between T, and T, so that the
second term in equation (5) is made zero. The ﬁrst term in
equation (5) is arguably a better measure as an index of
change since it represents a linear combination of the
country changes.

The same rationale may be applied when the national
measures are economic and measured in the local currency
and these have to be converted to a common basis using
PPP conversion for example. It may be argued that a
constant value of PPP conversion should be applied to all
values in local currency whatever the time period to which
they apply.

There still remains the choice of A and values of 0 or 1
would use the weights for one of the reference years only.

Of course a measure of change based on the first term in
equation (5) implies that this is not arithmetically equal to
the difference between the measures of level in the two
years.

Missing Values

Most of the statistical series used for monitoring global
policy have gaps of various kinds. For some series most
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countries are represented with data for most years. For other
series data may be available for a smaller subset of UN
member states, but with perhaps only one or two data points
for some of the countries represented and these related to
different years for different countries. If inference is
required for year T and this is missing then the question of
imputation method arises. Figure 4 illustrates the situation
for the primary education enrolment rates.

Much research and development on missing data in
Official Statistics has focussed on the raw micro-data and
causes such as non-response. In calculating apgregate
measures for statistical indicators it is the national statistic
for an entire country in a particular year that is unavailable.
Common assumptions such as that data are missing at
random are inapplicable in this case. In general the lack of
completeness of statistical series for each country may often
be related to the statistical capacity of the country to
produce the range of statistics required. This in turn is often
related to the level of development generally and to some
extent the size of the country since the per capita statistical
effort required is generally greater for small countries. This
has two general consequences:

— Ifwe consider the regional estimate Y, ):;eR T T
and only a small proportion of country values are
missing (and if these relate to countries with small
weights n r) then the regional estimate will be
relatlvely robust to any reasonable imputed value for
the missing values. Moreover the weights associated
wlth the 1mputed values and measures such as
Hj T/Z;ex p”- will provide diagnostic information
about the extent to which the regional (or global)
estimate may be dependent on imputed values.

— It must be recognised however that if many of the
statistical series are related to economic and social
development and if countries with missing data are
generally low in statistical capacity (and by extension
development generally) then this is a case of
informative non-response. Hence the term “reasonable
imputed value” in the previous bullet point needs to
take account of this.

In general there are three levels of information that might
potentially assist with imputation for the missing values in
a time series. These are (a) values for other years in the
same series for the same country, (b) associated series from
the same country that may convey information about the
series in question and (c) statistical series from other
countries that might be considered “similar” in some sense
to the country for which the value needs to be imputed.

In addition the range and sophistication of available
methods may vary greatly (see for example Chatfield 1996).
The ob_]ectlve is to predict the value ¥, . of the trend at time
T for the series in question. The length of the time series
available are generally short and the series are non-
stationary. Since the series are annual, for many of them
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seasonal effects may be less important. A simple method
may involve naive trend fitting (and then prediction for the
missing values) using least squares fitting on the values
available in the series. More sophisticated methods will
remove the trend to arrive at a stationary series and then
apply various approaches such as weighted averages and
modelling the correlation structure of the series to arrive at
predicted values for the missing values of the stationary
time series. These are then combined with the initially
removed trend estimates to yield predicted values for the
missing values in the original series.

This general problem could benefit from some
substantial methodological investigation perhaps taking
account of some of the following:

—  The ultimate objective is not to model the series, nor
even to predict the missing value for use as an
inference at the country level. The imputed value will
be combined with observed values from other countries
to produce the aggregate measure which is the ultimate
objective.

—  The time series available are ofien short.

— So long as the statistical series is not too noisy the
highest quality predictive information will likely come
from the values for other years in the same series and
the same country. For many situations, since the
objective is to predict the trend level at ¢ = 7, this may
imply that simple trend estimation methods such as
regression using year as an explanatory variable for the
series in question may be adequate. For example:

Yj,, = a}.+[3jt+sj’f, (6)

where V (s} ) = 6.

The use of data from the same series if it is reasonably
stable will ensure that the informative non-response issue is
taken into account since the parameter estimates ¢ and B,

. . . : J
will relate to the specific country and will be estimated from
data from that source.

Consider as an illustration equation (6) written in matrix
form for a series of length k(t = 1, ..., k) and where impu-
tation is required for ¢ = k+1. Prediction for a missing value
at the end of the series is likely to be less reliable but is also
likely to be realistic since it will occur in practice.

Y =XB-+Z, V(E) = 61 (7)
V() = (L k1) (X7 XY (1, k+1)T + 1)o?

_ 2@ g (8)
k(k-1)

Fig 5: Varlance for OLS prediction of missing value
att=k+1 for series of length k, =1

[N R X NS I - JCN |

length of series

Figure 5 shows the relative variance for predicting ¥, |
the missing value at ¢ = k+ | for a series of length £ under
OLS assumptions. For a series of infinite length the
variance will be 1. The point of interest is how quickly the
variance drops for a series of 5 or 6 points and how
relatively gradually further variance reduction occurs. The
OLS assumptions may be replaced by some more general
covariance structure such as Corr(s & rr) = p’- For small
and moderate values of p(p<0. 5) "the variance based on
GLS estimates is very similar to Figure 5.

Of course the assumptions above are unrealistic since
most time seties prediction methods would take account of
the correlation structure for recent periods by using
exponential weighting of the most recent observations to
predict the residual associated with ¢ =k+1. However
depending on the extent to which recent observations are
correlated with £ = &+ 1, estimating the parameters a; and B,
from a very short series will, to some extent, automatlcally
take account of the positive correlation of the residuals at
recent periods. If this is so then the decay shown in Figure
5 may be a rough approximation to the impact of the length
of the series used.

Clearly a more extensive study of the impact of simple
and more sophisticated methods for imputing the missing
value would be of considerable benefit.

— For such methods there will be a trade off between
variance and bias related to the length of the series
used. A relatively short part of the series where the
local linearity of the prediction model is more likely to
approximate reality may yield a less biased estimate of ﬁ
due to mode! misspecification but provide parameter
estimates of _and B, with higher variance and hence
a more variable predicted value.

—  Alternative methods that take account of the correlation
structure of the time series can be considered and the
extent to which these provide a significant improve-
ment in the quality of the prediction would be of
interest. One needs to keep in mind that the ultimate
objective is to generate the regional (or global)
summary measure and the imputed value may have
relatively little impact on this in terms of variance.
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—  When there are no values at all for the statistical series
in a particular country or when the series is erratic
and/or has very few values for other years the situation
is much more difficult. There may be greater added
benefit in using the information contained in other
series from the same country and from other countries.
One might conjecture that a regional effect, such as a
drought for example, may affect other countries in a
region and that the statistical series may display similar
characteristics even if the series themselves are at
different levels. The potential for borrowing strength
from other time series in the country of interest and
others needs to be explored. Hierarchical model-based
methods developed for small area estimation could be
investigated in this case although the total volume of
data even in a region with 30-50 countries will not be
large. Also the question of establishing which countries
might be suitable sources of information in any
situation may require both expert judgement of the
similarities and dissimilarities between countries as
well as formal statistical diagnostics. If the available
series are short then identifying and fitting suitable
models will be a challenge.

When we consider the estimation of change between two
years T, and T, the same issues surrounding missing
values and imputation emerge. As for the regional estimates
of level, countries with small relative weights B, p are
unlikely to have a significant impact on the regional
estimate of change. However under current international
practice it is quite common for the regional estimates of
Y, to be based on whatever national statistics are
available for year T and hence for differences between two
years to be based on different sets of countries. This is
clearly unsatisfactory and will cause the estimate of change
to be biased. Imputation for missing values is needed and
the statistical properties of the resulting estimates of change
need to be explored. The question of separate or joint
imputation for missing values from the same scries may
also be considered.
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5. CONCLUSIONS

A description of the use and importance of statistical
indicators and the framework in which they are produced is
provided.

It is suggested that there has been less focus on
methodological development for statistics used for
international comparisons than there has been on statistics
used for national domestic purposes. A number of examples
have been provided illustrating the need for additional
methodological work in this field.

REFERENCES

AHMAD, N. (2002). Proposals on measuring software transactions,
Paper presented to the 22-23 April meeting of the OECD Software
Task Force, Paris.

CASTLES, 1. (2000). Comments on use of PPP and exchange rate
conversion in 1999 Human Development Report.
Correspondence to Friends of the Chair Review Group.

CHATFIELD, C. (1996). The Analysis of Time Series (5th edition).
London: Chapman and Hall.

COLECCHIA, A., and SCHREYER, P. (2001). [CT Investment and
Economic Growth in the 1990°s: Is the USA a Unique Case.
OECD

EDWARDS, R., COMISARI, P. and JOHNSON, T. (2002). Beyond
1993: The system of national accounts and the new economy.
Proceedings at [AOS Conference on Official Statistics and the
New Economy, London.

UNITED NATIONS (1992). Handbook cof the International
comparisons programme. United Nations, New York,

UNSC (1998). Evaluation of the International Comparison Projec!.
UN Statistical Commission, New York.

UNSC (2001). An assessment of the criticisms made of the human
development report, 1999, UN Statistical Commission, New
York.

UNSC (2002). An assessment of the statistical indicators derived
from United Nations summit meetings. UN Statistical
Commission, New York,

WYCKOFF, ANDREW W. (1995). The impact of computer prices
on international comparisons of labour productivity. Economics
of Innovation and New Technology. 3, 2, 277-293.






Surve Methodology, June 2003
Vol. 25 No. 1, pp. 1
Statistics Canada

19

A Noninformative Bayesian Approach to Small Area Estimation

GLEN MEEDEN'

ABSTRACT

In small area estimation one uses data from similar domains to estimate the mean in a particular small area, This borrowing
of strength is justified by assuming a model which relates the small area means. Here we suggest a noninformative or
objective Bayesian approach to small area estimation. Using this approach one can estimate population parameters other

than means and find sensible estimates of their precision,
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1. INTRODUCTION

In the standard approach to small area estimation the
parameters of interest, the small area means, are assumed to
be related through some type of linear model. Drawing on
linear model theory one can derive estimators which
“borrow strength” by using data from related areas to esti-
mate the mean of interest. Finding a good estimate of the
precision of the estimator is often difficult however. Good
recent summaries of the literature can be found in Rao
(1999) and Ghosh and Rao (1994).

The Bayesian approach to statistical inference summa-
rizes information concerning a parameter through its
posterior distribution, which depends on a model and prior
distribution and is conditional on the observed data. In
finite population sampling the unknown parameter is just
the entire population and the likelihood function for the
model comes from the sampling design. A Bayesian must
specify a prior distribution over all possible values of the
population. Once the sample is observed the posterior is just
the conditional distribution of the unobserved units given
the the values of the observed units computed under the
prior distribution for the population. For most designs this
posterior does not depend on the design probability used to
select the actual sample. The Bayesian approach to finite
population sampling was very elegantly described in the
writings of D. Basu. For further discussion see his collec-
tion of essays in Ghosh (1988).

Assume that given the sample one can simulate values
for all the unobserved units from the posterior to generate

a “complete copy”of the population. Then given the simu-
lated and observed values one can compute the value of the
population mean, N -! z, 1 ¥;» for this simulated copy of
the entire population. By generating many independent
simulated copies of the population and in each case finding
the mean of the simulated population and then taking the
average of these simulated means one has an estimate of the
unknown population mean. This process computes

approximately the Bayes estimate of the population mean
under squared error loss for the given prior. More generally
by simulating many such full copies of the population one
can compute, approximately, the corresponding Bayes point
or interval estimates for many population parameters. The
problem then is to find a sensible Bayesian model which
utilizes the type of prior information available for the small
area problem at hand.

The Polya posterior is a noninformative Bayesian
approach to finite population sampling which uses little or
no prior information about the population. It is appropriate
when a classical survey sampler would be willing to use
simple random sampling as their sampling design. In
Nelson and Meeden (1998) the authors considered several
scenarios where it was assumed that information about the
population quantiles of the auxiliary variable was known a
priori. They demonstrated that an appropriately constrained
Polya posterior, i.e., one that used the prior knowledge
about the quantiles of x, yielded sensible frequentist results.
Here we will see that this approach can be useful for a
variant of small area estimation problems.

We will consider a population that is partitioned into a
domain D, of interest, and its complement D’ Also we
suppose that it is partitioned into X areas, say 4, ..., 4.
Let y be the characteristic of interest and x be an auxiliary
variable. Suppose, using a random sample from the entire
population, for some & we wish to estimate y D, (), the
mean of y for the all units that belong to the small area
DN A,. Often the number of sampled units that belong to
DN A is quite small and using just these observations can
lead to an imprecise estimator. As an example where this
could arise imagine [ is a region of a state which is broken
up into counties. Each county in D is then paired with a
similar county that is outside of D. Hence the kth county
and its twin form the kth area and the collection of “twin”
counties forms D’. Then a random sample is taken from
DUD‘ and one wishes to to estimate the means of the
counties, or small areas, making up D.
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In order to improve on this naive estimator one needs to
make some additional assumptions. Here we will assume
that for each unit in the sample we learn both its y and x
values. For units belonging to A, we make two assump-
tions which formalize the idea that the small areas, 4,(1D
and A4, N D, are similar, First we assume that the small
area means of the auxiliary variable, p,, (x) and
1, (x), although unknown are not too different. Sec-
ondly we assume that for units belonging to A4, the
distribution of y, depends only oniits x; value and not on its
membership in D or D’. Finally we assume that p,(x),
the mean of x for all the units that belong to D, is known.
Note that we do not assume that p, . (x) and R, k(x) are
known which is often the case in small area estimation.

Here we will demonstrate that when our assumptions are
true a modification of the Polya posterior yields good point
and interval estimators of p,, (v) and of the the median of
yin the small area D ﬂA In section two we will briefly
review facts about the Polya posterior and in section three
discuss simulating from a constrained version of it. In
section four we present some simulation results that
indicate how it could work in practice. Section five contains
some concluding remarks.

2. THE POLYA POSTERIOR

Consider a finite population conststing of NV units labeled
1, 2, ..., N. The labels are assumed to be known and to
contain no information. For each unit / let y,, a real
number, be the unknown value of some characteristic of
interest. The unknown state of nature, y = (y,, ..., ¥y), is
assumed to belong to some subset of N-dimensional
Euclidean space, ;Y. A sample s is a subset of
{1,2,..,N}. We will let n(s) denote the number of
elements in 5. A sample point consists of the set of observed
labels s along with the corresponding values for the
characteristic of interest. If s = {i,...,i, 4} then such a
sample point can be denoted by (s, yT

Given the data the Polya posterior is a predictive joint
distribution for the unobserved units in the population
conditioned on the values in the sample. Given a data point
(s,y,) we now show how to generate a set of possible
values for the unobserved units from this distribution. We
consider an urn that contains #(s) balls, where ball one is
given the value y_, ball two the value y, and so on. We
begm by choosmig a ball at random frdm the um and
assigning its value to the unobserved unit in the population
with the smallest label. This ball and an additional ball with
the same value are then returned to the um. Another ball is
chosen at random from the urn and we assign its value to
the unobserved unit in the population with the second
smallest label. This second ball and another with the same
value are then returned to the urn. This process is continued
until all ¥ - n(s} unobserved units are assigned a value.
Once this is done we have generated one realization of the

complete population from the Polya posterior distribution.
This simulated, completed copy contains the n(s) observed
values along with the N - n(s) simulated values for the
unobserved members of the population. Hence by simple
Polya sampling we have a predictive distribution for the
unobserved given the observed.

One can verify that under this predicted distribution the
expected value of the population mean is just the sample
mean and it's posterior variance is approXimately the fre-
quentist variance of the sample mean under simple random
sampling when #(s) » 25. Hence inference for the popula-
tion mean under the Polya posterior agrees with standard
methods. Although the design probabilities play no formal
role in the inference based on the Polya posterior for it to be
appropriate in the judgment of the survey sampler the
values for the characteristic of interest for the observed and
unobserved units need to be roughly exchangeable. This is
usually the case when simple random sampling is used to
select the sample.,

It has been shown for a variety of decision problems that
procedures based on the Polya posterior are admissible
because they are stepwise Bayes. (See Ghosh and Meeden
1997). In these stepwise Bayes arguments a finite sequence
of disjoint subsets of the parameter space is selected, where
the order is important. A different prior distribution is
defined on each of the subsets. First the Bayes procedure is
found for each sample point that receives positive probabil-
ity under the first prior. Next the Bayes procedure is found
for each sample point which receives positive probability
under the second prior and which was not considered under
the first prior. Then the third prior is considered and so on.
For a particular sample point the value of the siepwise
Bayes estimate is the value for the Bayes procedure for that
sample point for the Bayes procedure identified in the step
at which the sample point was considered. It is the stepwise
Bayes nature of the Polya posterior that explains its some-
what paradoxical properties. Given a sample it behaves just
like a proper Bayesian posterior but the collection of pos-
sible posteriors that arise from all possible samples comes
from a family of priors not from a single prior. From the
Bayesian point of view it is appropriate when one’s prior
beliefs about the population is that the units are roughly
exchange but nothing more about them is known. The
stepwise Bayesian nature of the Polya posterior also helps
to explain why it yields 0.95 Bayesian credible intervals
that in most cases behave approximately like 95% confi-
dence intervals. For more details and discussion on the the-
oretical properties of the Polya posterior see Ghosh and
Meeden (1997). The Polya posterior is related to the
Bayesian bootstrap of Rubin (1981). See also Lo (1988).

3. SIMULATION FROM THE POLYA
POSTERIOR

The interval estimate of the population mean and point
and interval estimates for other population quantities under
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the Polya posterior usually cannot be found explicitly. One
must use simulation to find these values approximately.
This is done by simulating many independent completed
copies of the entire population and calculating the value of
the parameter of interest for each copy. One may do this in
a straightforward manner but often a well known approxi-
mation also works well. For simplicity assume the sample
values y_ are all distinct and that the sampling fraction
n(s)/ N is small. For j=1, ..., n(s) let &, be the proportion
of units in a complete simulated copy of the entire popu-
lation which take on the value y,. Then under the Polya
posterior ?L:(ll,...,ln(s)) has apiaroximately a Dirichlet
distribution with a parameter vector of all ones, i.e, it is
uniform on the n(s)-1 dimensional simplex where
yr=1.

We"now assume that there is an auxiliary characteristic
associated with each element in the population. For unit / let
x; be the value of this auxiliary characteristic. The vector of
these values for the auxiliary characteristic is denoted by x.
The values of x are unknown but we assume their
population mean is known, This is a common situation and
either the regression estimator or the ratio estimator is often
used in such cases. Let x_ denote the x values of the
observed units in the sample. Now the Polya posterior can
be adapted to use this additional information in the
following way. When creating a simulated copy of the
entire population using the values {(y,,x,):ies} one only
uses completed copies whose simulated population mean of
x 15 equal to the known mean of x.

Simulating from a constrained Polya posterior is more
difficult than simulating from the unconstrained Polya. Let .|
denote the known population mean of x. Suppose s is a
sample such that x_ contains values smaller and larger than p ;.
When this is the case an approximate solution to the
problem of generating simulated copies from the Polya
posterior distribution which satisfies the mean constraint is
available. For j =1, .., n(s) let &, be the proportion of
units in the simulated copy of the population which have the
value (y,,x, ). (Note the x_ need not be distinct.) If we
ignore the constraint for a moment then, as we observed
earlier, simulation from the Polya posterior is approxi-
mately equivalent to assuming a uniform distribution for
=R, l"(s)) on the n(s) -1 dimensional simplex
where L"f,) A, = 1. In order to satisfy the mean constraint
we must select A’s at random from the set which is the
intersection of the hyperplane Z‘;i? 7ij1.‘ =y, with the
simplex for A. In general one cannot generate independent
random samples from this distribution. One may, however,
use the Metropolis-Hasting algorithm to generate dependent
simulated copies of the population from a convergent
Markov chain. For more details on this algorithm see
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(1953) and Hastings (1970).

Using the approximate solution based on the Dirichlet
distribution allows one to finesse a bothersome technical
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problem which has no practical significance. That is given
the sample it is often impossible to get simulated copies of
the population which satisfy the mean constraint exactly.
For example suppose N = 5 and our sample of size three
yielded x values of 0, 0 and 10. Now if we know p_=4.5
then under the Polya postenior it is impossible to generate
simulated copies of the population since the only possible
values for an x value of an unobserved unit is 0 or 10. This
implies that given this sample under the Polya posterior the
only possible values of u_are 2,4 and 6. In general even if
we have generated a A which satisfies the constraint the
A, N’s need not be integers and hence their need not be an
actual copy of the population corresponding to A. But in
real problems this should not matter very much. For one
thing the mean constraint will usually only be known
approximately. Furthermore for larger sample sizes the
approximate nature of the simulated copies is just not
important.

Recently Nelson and Meeden (1998) and Meeden and
Nelson {2001} have considered a variety of problems where
a constrained Polya posterior is applicable. When the
population mean of x is known Meeden and Nelson (2001)
presented simulations that demonstrated that the point and
interval estimators of the constrained Polya posterior were
nearly identical those of the regresston estimator. Hence
Jjust as the regression estimator does, when estimating the
population mean of y the constrained Polya posterior
utilizes the information contained in knowing the popu-
lation mean of x.

4. ASMALL AREA PROBLEM

Consider again the small area estimation problem
described in the introduction. A population is partitioned in
two different ways. The first partitions the population into
a domain of interest, D, and its complement D’. The
second partitions it into K areas A, ..., 4, where for each
k we assume that the small areas 4, ND and 4 i ND’ are
nonempty. Figure 1 gives a graphical representation of the
population. A random sample is taken from the whole
population and we wish to estimate p,, , (v}, the mean of
y for all the units belong to the small area A4, N D. For such
problems one often assumes that for the auxiliary variable
x all the means p, , (x) and p, |, (x) are known. Here we
make the weaker assumptions that p,, , (x) and p,. , (x)
are unknown but not too different and that (x), the
mean of x for all the units belonging to D, is known. We
also assume that for units belonging to 4, ND and

A, N D the distribution of y, depends only on x, and does
not depend on whether it belongs to D or D', In terms of
Figure 1 we are assumning that the mean of x for all the units
in the population which belong to the first column is known
and that within each row the distribution of the units across
the the two columns is roughly the same. As we will soon
see this is enough to produce estimators of p,, , () which
improve on the naive estimator.
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Figure 1. A population partitioned into a domain
and its complement along with a second
partition of X small areas.

Before explaining how this is done we need a bit more
notation. Let N, | be the number of units in the population
that belong to DN4 « We assume that the N, . ’s are
known. Forunitilet = (1,k) ifie DM A, and ¢, = (0, k)
if ieD'(14,. Then given a sample s we must use
{(y;,x;,¢):ies} to estimate u, ,(y). The constrained
Polya posterior is now constructed in two stages. In the first
stage, using the members of the sample that fall into D and
their (x,, ¢;) values, we create a completed copy of D which
satisfies the known mean constraint p, (x). In the second
stage we first find for the simulated copy of D the mean of
the x values for all the units belonging to D A4,. (Remem-
ber that this set contains both observed and simulated
values.) Let §, ,(x) denote this mean. Next using the
observed sample values from D] 4 ; and D’ N4 § We
create a completed copy of DM A4, which satisfies the
mean constraint {,, ,(x). By repeating this two staged
process many times one can construct simulated copies of
DN A ; Which use the similarity of units within the small
areas A kﬂD and 4, ND’ and the information from
knowing p,(x).

To see how this approach could work in practice we
present simulation results for some constructed populations.
In all the cases K = 2 so there are just two areas and in
Figure 1 there are just four cells or four small areas. The
populations will be constructed so that there are 250 units
in each of the four cells. For each cell we first generate 250
values for the auxiliary variable x by taking a random
sample from a gamma distribution with some shape para-
meter and scale parameter one. Next within each area
conditioned on the x values the y values are independent
observations from normal distributions where the mean of

¥;|%; depends on x, and where the the variance of y, |,
may be constant or in some cases depends on x,.

In the first population, pop1, the shape parameter of the
gamma distribution was four in both 4,MD and 4,ND"
and was six in 4,(1D and 4,N.D". For units in 4, y,|x,
was normal with mean 25 + 2x; and variance 100. For units
in 4, y,|x, is normal with mean 25 + 3x; and variance 25.

Note that popl was generated under a model which is
consistent with the assumptions underlying the constrained
Polya posterior described above. In fact our method should
work very well for popl. This is because for each & the
average values of the auxiliary variable in 4,(1D and
A,N D will be approximately equal. This is not necessary
for our approach to work but if it does not work in this
example then it is hard to imagine that it could work in
practice. In two of the remaining populations for each k we
will take the shape parameters generating the values of x in
A,ND and 4,1 D" to be different. This is a more realistic
assumption. We will also let the mean of y,|x; be a non-
linear function of x; and let the variance of y,|x; depend
on x,. In all cases the form of the distribution of y, | x, will
be the same across 4, D and 4,(1.D* for each &. This is
the most crucial assumption. If this is not satisfied approxi-
mately then our method cannot work.

In the second population, pop2, the shape parameters of
the gamma distributions were eight in 4, D, ten in
4,ND, sixin 4,0D and four in 4,ND’. For units in
A, y;|x; was normal with mean 25 + 2x, and variance 9x;.
For units in 4, y,|x, was normal with mean 25 + 3x, and
variance 4x;.

In the third population, pop3, the shape parameters of the
gamma distributions were eight in 4,ND and 4,ND,
and six in 4, D and 4,ND’. For units in 4, y,|x, was
normal with mean 25 + 0.5(x, - 8)* and variance 9x,. For
units in 4, y,|x, was normal with mean 25 + |x, - 6| and
variance 4x,.

In the fourth population, pop4, the shape parameters of
the gamma distributions were four in A,(1D, six in
A,ND’, sixin 4,ND and eightin 4,ND*. For units
in 4, y,|x, was normal with mean 25 + 0.5(x, - 4)* and
variance 9x,. Forunitsin A4, y,|x; was normal with mean
25 + {x, - 6| and variance 4x,.

In the fifth population, pop5, the shape parameters for
the gamma distributions were the same as those in pop2.
For units in A, y,|x, was normal with mean 25 +
0.5(x, - 9)* and variance 9x;. For units in A, y,x, was
normal with mean 25 + |x, - 5|® and variance 4x,.

For each of these five populations we took 500 random
samples of size 80. For each sample we calculated the
usual point estimates and 95% confidence intervals for
Kp,1(y A0 Wy 5, USIng just the observations that fell into
the small areas. («/e also found approximately the point
estimate and 0.95 credible interval for the constrained Polya
posterior. The results are given in Table 1. In each case the
constrained Polya posterior estimates were computed using
500 simulated copies of the smail area. Then our peint
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estimate is just the average of these 500 computed values
and our 0.95 credible interval ranges from the 0.025
quantile to the 0.975 quantile of this set.

We see that the constrained Polya posterior yields
significantly better pomt estimators in every casebutone, p, 5
of pop5. Its intervals are also considerable shorter than the
usual. There is some evidence that their frequency of cover-
age is a bit less than the usual approximate 95% normal
theoty intervals. In particular this is true for the small area 4,1 D
in the fifth population.

The results in Table 1 are for the small area means. In
Table 2 we give similar results for the smatl area medians.
We compared our estimates to the sample median of the set
of the sampled observations that fell into the small area and
the usual confidence interval for the median due to
Woodruff (1952). Compared to the usual estimators the
performance of the constrained Polya posterior estimators
for the small area medians is even better than it was for the
small area means. In every case its point estimators are
better than the sample median. Its interval estimators are
always shorter than Woodruff's and for most cases their
frequency of coverage seems to be quite close to the
nominat 0.95.

Table 1
The average value and the average absolute error for the usual
naive small area estimator and the constrained Polya posterior
estimator (cstpp) for the small area means. Also given are the length
and relative frequency of coverage for their nominal 0.95 intervals
for 500 random samples of size 80 from five different populations

Pop  ama  Menod U her lenght coverage
popl  A4,ND usual 3311 184 910 0.936
cstpp 3320 1.30 6.37 0.934

A,ND  usual 4303 1.47 7.78 0.946

cstpp 4313 1.03 515 0.940

pop2 A,ND  uvsual 4039 1LT9 8.69 0.932
cstpp  40.29 120 5.62 0.944

AzﬂD usual 42,13 .48 7.50 0.944

cstpp 4197  1.16 5.16 0.912

pop3 AlﬂD usual 2857 1.97 9.85 0.936
cstpp 2890 147 6.66 0.898

4,ND  usual 2671 1.01 5.08 0.940

cstpp 2683 0.70 3.24 0.930

pop4 AlﬂD wsual  27.73  1.27 6.57 0.960
cstpp 27.64 081 4.09 0.940

A,ND  usual 2703 097 5.33 0.952

cstpp  27.03  0.65 332 0.934

pops AlﬂD usual 2925  L.74 9.31 0.942
cstpp 2930 1.26 6.16 0.930

A4,ND  usual 2773 1.08 5.85 0.954

cstpp  28.82 128 4.40 0.850
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Table 2
The average value and the average absolute error for the usual
naive small area estimator and the constrained Polya posterior
estimator for the small arca medians. Also given are the length and
relative frequency of coverage for their nominal 0.95 intervals for 500
random samples of size 80 from five different populations

PP ara  Method D Roer lenght coverage
Cpopl A,ND  usual 3388 200 1148 0944
cstpp 33.25 144 781 0.930
4, ND  usual 4284 172 9.94 0.950
cstpp 4242 135 692 0944
pop2 A, ND usual 3894 182 9.81 0.940
cstpp 38.53 1.41 7.47 0.936
A,ND  usual 4099 177 875 0.970
cstpp 4033 138 636 0914
pop3 A,ND usual 2764 LT3 952 0952
cstpp 2773 124 646 0958
A,ND  usual 2703 115 626 0.954
cstpp 2659 070 3.76 0.938
popd  A,ND  usual  27.14 127 700 0.962
estpp 27.05 095 537 0966
A, ND  usual 26.84 1.07 599 0.960
cstpp 26.81 0.78 432 0.954
pops A, ND  wswal 2930 206 11.01 0.956
cstpp 28.89 1.51 8.28 0.944
A2 ND  usual 27.03 1.14 5.98 0.952
cstpp 2787 097 4,40 0.900

5. CONCLUDING REMARKS

Here we have presented a new method of “borrowing
strength” when estimating parameters of a small area of a
population. It makes weaker assumptions than those made
by the usual approaches to such problems. It is an objective
or noninformative Bayesian approach which uses no more
prior information than is typically assumed by a frequentist.
Simulations indicate that it should be applicable in a variety
of situations and should work well especially for some of
the problems which roughly satisfy the usual linear model
type assumptions, often assumed in small area estimation.
It has the advantage of not being restricted to estimating
small area means but can estimate other parameters as well.
Here we assumed that a certain mean of an auxiliary
variable was known. This approach can be extended to
when other parameters of an auxiliary variable are known,
like the median. Also it should be possible to extend this
method to situations where prior information is available for
more than one auxiliary variable. In summary we believe
that this is flexible approach which can yield point and
interval estimators with good frequentist properties for a
variety of problems.
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Model-Based Unemployment Rate Estimation for the Canadian Labour

Force Survey: A Hierarchical Bayes Approach

YONG YOU, I.N.K. RAO and JACK GAMBINO'

ABSTRACT

The Canadian Labour Force Survey (LFS) produces monthly direct estimates of the unemployment rate at national and
provincial levels. The LFS also releases unemployment estimates for sub-provincial areas such as Census Metropolitan
Areas (CMAs) and Census Agglomerations (CAs). However, for some sub-provincial areas, the direct estimates are not very
reliable since the sample size in some areas is quite small. In this paper, a cross-sectional and time-series model is used to
borrow strength across areas and time periods to produce model-based unemployment rate estimates for CMAs and CAs.
This model is a generalization of a widely used cross-sectionat model in small area estimation and includes a random walk
or AR(1) model for the random time component, Monthly Employment Insurance (EI) beneficiary data at the CMA or CA
level are used as auxiliary covariates in the model. A hierarchical Bayes (HB) approach is emploved and the Gibbs sampler
is used to generate samples from the joint posterior distribution. Rao-Blackwellized estimators are obtained for the posterior
means and postetior variances of the CMA/CA-level unemployment rates. The HB method smooths the survey estimates
and leads to substantial reduction in standard errors. Bayesian model fitting is also investigated based on posterior predictive
distributions.

KEY WORDS: Gibbs sampling; Hierarchical Bayes; Labour Force Survey; Small area estimation; Unemployment rate.

1. INTRODUCTION

but not both. In recent years, several approaches to

The unemployment rate is generally viewed as a key
indicator of economic performance. In Canada, although
provincial and national estimates get the most media atten-
tion, subprovingial estimates of the unemployment rate are
also very important. They are used by the Employment
Insurance (EI) program to determine the rules used to
administer the program. In addition, the unemployment
rates for Census Metropolitan Areas (CMAs, i.e., cities
with population more than 100,000} and Census Agglom-
erations (CAs, ie., other urban centres) receive close
scrutiny at local levels. However, many CAs do not have a
large enough sample to produce adequate direct estimates.
Our objective in this paper is to obtain model-based esti-
mators that lead to improvement over the direct estimator
which is based solely on the sample falling in a given CMA
or CA in a given month. For convenience, since CMAs are
also CAs, we will refer to both CMAs and CAs as CAs.

In Canada, unemployment rates are produced by the
Labour Force Survey (LFS). The LFS is a monthly survey
of 53,000 households selected using a stratified, multistage
design. Each month, one-sixth of the sample is replaced.
Thus five-sixths of the sample is common between two
consecutive months. This sample overlap induces correla-
tions which can be exploited to produce better estimates by
any method which borrows strength across time. For a
detailed description of the LFS design, see Gambino, Singh,
Dufour, Kennedy and Lindeyer (1998).

Traditional small area estimators borrow strength either
from similar small areas or from the same area across time,

|
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borrowing strength simultaneously across both space and
time have been developed. Estimators based on the
approach developed by Rao and Yu (1994), such as those
in Ghosh, Nangia and Kim (1996), Datta, Lahiri, Maiti and
Lu (1999) and in this paper, successfully exploit the two
dimensions simultaneously to produce improved estimates
with desirable properties for small areas. Datta et al. (1999)
applied their model to long time series (T'= 48 months) data
across small areas from the U.S. Current Population
Survey. In this paper, we apply a similar model to the
Canadian LFS. Unlike Datta er al. (1999), we have used
short time series data across small areas. Therefore, our
model does net contain seasonal parameters. This reduces
substantially the number of parameters that need to be
estimated; details on modelling and analysis are given in
section 2 and section 4. Despite this simplification, we
obtain both an adequate model fit and large reductions in
the coefficients of variation {CVs) of the small area
estimators of the unemployment rate. The CV reduction is
due in part to our approach to computing covariance
matrices, which uses smoothed CVs and lag correlations to
obtain smoothed estimates of the sampling covariance
matrices of the direct LFS estimators.

In section 2, we present the model, which borrows
strength across small areas and time periods. In section 3,
the model is placed in a hierarchical Bayes (HB) frame-
work. The use of Gibbs sampling to generate samples from
the joint posterior distribution is described and the corres-
ponding HB estimators are obtained. The HB method 1s
applied to the LFS data in section 4 to produce

Yong You, Jack Gambing, Household Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, K1A 0Té6; J.N.K. Rao, School of Mathematics
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unemployment rates for CAs. Specifically, subsections 4.2
and 4.3 present model selection and model fit analysis.
Subsection 4.4 presents model-based estimates for the small
area (CA) unemployment rates and the CV comparisons.
Finally some concluding remarks are given in section 5.

2. CROSS-SECTIONAL AND TIME SERIES
MODELS

Let y,, denote the direct LFS estimate of 8,,, the true un-
employment rate of the i-th CA (small area) at time ¢, for
i=1,..,.m, t=1, .., T, where m is the total number of CAs
and T is the (current) time of interest. We assume that

Y = G

it

i=1l,.,mt=1,..,T, (1)

where e,’s are sampling errors. Let y, = (¥, - ¥;p)'s
0, =(8,,...9,)", and ¢, = (g;,....&;;)". Then e, is a vector
of sampling errors for the i-th CA. In the LFS design, the
CAs are treated as strata. Thus the sampling vectors e, are
uncorrelated between areas {CAs). Because of the LFS
sample rotation pattern, there is substantial sample overlap
over short time periods within each area. As a result, the
correlation between ¢, and e, (¢=5) has to be taken into
account. It is customary to assume that ¢, follows a multi-
variate normal distribution with mean vector 0 and
covariance matrix I, i.e., €, ~ N(0, Z,). Using (1), we have

yi ~ N(e,-,zr.), i= l,..., m. (2)

Thus y, is design-unbiased for 6, The variance- covariance
matrix Z, in model (2) is assumed to be known. The
assumption of normality and known I, in model (2) is the
customary practice in model-based small area estimation
(see, for example, Fay and Herriot 1979; Ghosh and Rao
1994; Datta et al. 1999; Rao 1999). In this paper, we follow
the customary approach and treat Z; as known. Specifica-
tion of I, may not be easy in practice. We use a smoothed
estimator of X, in the model, and then treat it as the true Z.
More details on constructing a smoothed estimator of X, in
the context of the LFS are given in section 4. Pfeffermann,
Feder and Signorelli (1998) proposed a simple method of
estimating the autocorrelations of sampling errors for
rotating-pane! designs, such as the Canadian LFS. It would
be useful to study the feasibility of this approach in our
context,

To borrow strength across small areas and time periods,
we model the true unemployment rate 6, by a linear
regression model with random effects through auxiliary
variables x,,. We assume that

0, =x B+v,+u,i=1.,mt=1_,T, 3)

where x;, = (x;,, ., X;,,)’ is the vector of area level auxi-
liary data for the i-th CA at time t; P is a vector of regres-
sion parameters of length p; v, is a random area effect with

v,~ iid N (0, 03); u, is a random time component. For a
given area i, Datta et al. (1999) assumed that »,, follows a
random walk process over time period ¢ = 1, ..., T, that is,

Ujp = Ui +E

pi=la,mt=2,.,T, 4)
where g, ~ N(O, 05). Then cov(u,,u,}=min(t,s) 02.
Also {v}, {€,} and {e,} are assumed to be mutually inde-
pendent. The regression parameter § and the variance
components o, and cﬁ are unknown in the model. Rao and
Yu (1994) used a stationary autoregressive model, AR(1),
for u,, thatis, u, = pu, | +¢,, and |p|<l. Datta et al.
(1999) included month and year effects as seasonal effects
for ,, in (3) using a long time series (7 = 48 months) in
their analysis. In our modelling, we intend to study the
effects of borrowing strength across areas and over time
using short time series data instead of long time series data.
In particular, based on the Canadian LFS design’s six-
month rotation cycle, we used only 6 months of data for
smoothing; sec section 4 for details. Thus the linking model
(3) is simpler than Datta et al. (1999)’s model. This simpli-
fication is likely to reduce the instability in the smoothed
covariance matrix .

Arranging the data {y, } asavector y =(¥, ...y, )’ with
Y= (¥4 -0¥;p)’» We can write models (2), (3) and (4) in
matrix form as

v, =X B+lpv,+u+e,i=1.,m, )
where X = (x,), s X;p)s 8] = (8, s i), and 1,05 2
T x 1 vector of 1’s. Model (5) is a special case of a general
linear mixed effects model. It also extends the well-known
Fay-Herriot model (Fay and Herriot 1979) by borrowing
strength across both areas and time.
For comparison, we also considered the Fay-Herriot
model for the time points £ = 1, ..., T in our data analysis.
The model at time point ¢ is given as

Vi = Qb€ =Ly (6)
and
0, = x; B+ i=lowm ()

where the sampling errors e, ~ ind N(0, Uf,) and the area
random effects v, ~ iid N(0, 03,) for each time point ¢ and
independent of v,,, #’ # . The sampling variances o;, are
assumed to be known (smoothed estimates) and o, is
unknown, The Fay-Herriot model combines cross-sectional
information at each ¢ for estimating 8,,, but does not
borrow strength over the past time periods.

We are interested in obtaining a model-based estimator
of 8,,, in particular, for the current time ¢ = T. Datta, Lahiri
and Maiti (2002) and You (1999) obtained two-stage
estimators for 6,,, and MSE approximations for the estima-
tors through the empirical best linear unbiased prediction
(EBLUP) approach. In this paper, we study both AR(1) and
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random walk models on w,’s, under a complete HB
approach using the Gibbs sampling method.

3. HIERARCHICAL BAYES ANALYSIS

In this section, we apply the hierarchical Bayes approach
to the cross-sectional and time series model given by (2),
(3) and (4) and the Fay-Herriot model given by {6} and (7).
Estimates of the posterior mean and posterior variance of
the small area means, ,,, are obtained using the Gibbs
sampling method.

3.1 The Hierarchical Bayes Model
We now present the cross-sectional and time series
model in a hierarchical Bayes framework as follows:

— Conditional on the parameters 6,=(8,,,...,6,,),
[v;,|6]~ind N(8,Z);

- Condmonal on the parameters B5 u, and
¢, 16,8, 4,,0,1~ ind N(x;B - pu,,, , )

- Condltlonal
0'5, [u‘ U

on the parameters u,, and
o ]~ ind N(pu,, 0, )

i,¢-17 it-1?

Marginally B, cv and oi are mutually independent with
priors given as P 1, csi~IG (a;, b)), and ci ~ 1G{a,, b,),
where /G denotes an inverted gamma distribution and
a,, b, a,, b, are known positive constants and usually set
to be very small to reflect our vague knowledge about ¢
and oi. For the random walk model, we take p =1 and for
the AR(1) model, |p|<1 and p is assumed to be known,

We are interested in estimating 0,, and in particular, the
current unemployment rate §,,. In the HB analysis, 0, is
estimated by its posterior mean £ (0,;|y) and the
uncertainty associated with the estimator is measured by the
posterior variance ¥ (6,,|»). We use Gibbs sampling
(Gelfand and Smith 1990; Gelman and Rubin 1992) to
obtain the posterior mean and the posterior variance of 9.

Similarly, the Fay-Herriot model (6)-(7) can be
expressed as:

— Conditional on the parameters
85 [yit | B“] ~ ind N(er‘r’ ie);
- Condmonal on the parameters B,, and

cv,[Gui r,u:r‘,,]f-md N(x” !,ow)

Marginally B, and cf, are mutually independent with
priors given as B, 1, 03{ ~ 1G(a,,b,).

3.2 Gibbs Sampling Mecthod

The Gibbs sampling method is an iterative Markov chain
Monte Carlo sampling method to simulate samples from a
Jjoint distribution of random variables by sampling from low
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dimensional densities and to make inferences about the
joint and marginal distributions (Gelfand and Smith 1990).
The most prominent application is for inference within a
Bayesian framework. In Bayesian inference one is inter-
ested in the posterior distribution of the parameters.
Assume that ;|0 has conditional density f{y,;}0) for
i=1,..,n and that the prior information about
8 =(8,, ...,8,) is summarized by a prior density m(8). Let
n(8 | y)denote the posterior density of & given the data
¥ = (5 -s ¥,)"- It may be difficult to sample from = (9 | y)
directly in practice due to the high dimensional integration
with respect to 8. However, one ¢an use the GlbbS sampler
to construct a Markov chain {6 = (9 . 9,‘ '} with
7(8 | y) as the limiting distribution. For 1llustratmn let @ =
(6,,8,). Starting with an initial set of values 6 =
(6%, 6y, we generate 8% = (6%, 0¥y by sampling o'¥
from (8, |9[g " ) and 6% from n(e J((-) ,»). Under
certain regularity conditions, 9(3) = (8%, 88)’ converges in
distributionto 7(0|y) as g- co. Margmal inferences about
=9, | ky) can be based on the marginal samples
{B(g" k=1,2,..} forlarge g.

For the hlerarchlcal Bayes models in section 3.1, 1o
implement the Gibbs sampler we need to generate samples
from the full conditional distributions of the parameters
|3,0 and o u;, and 0,. These conditional distributions are
givenin Appendlx A.1. Al the full conditional distributions
in the Appendix are standard normal or inverted gamma
distributions that can be easily sampled.

3.3 Posterior Estimation

To implement Gibbs sampling, we follow the recommen-
dation of Gelman and Rubin (1992} and independently run
L(L>2) parallel chains, each of length 24. The first J
iterations of each chain are deleted. After d iterations, all
the subsequent iterates are retained for calculating the
posterior means and posterior variances, as well as for
monitoring the convergence of the Gibbs sampler. The
convergence monitoring is discussed in section 4.

We use the Rao-Blackwellization approach to obtain
estimators for the posterior mean and the posterior variance
of interest. The Rao-Blackwellization can substantially
reduce the simulation errors compared to naive estimates
based on the simulated samples (Gelfand and Smith 199t
You and Rao 2000). For the cross-sectional and time series
model, the Rao-Blackwellized estimates of £ (6, |y) and
¥(8,|y) are obtained as

R 1
E8,|y) = X E

i=l k=d+l
(0,71, + 27y %(Z, y,+0.2 0 (X B+ u )1 (L)

and
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L 2d
7@, =2 X (03" y(Ld)
f=1 k=d+l
L 2d

+
I=l k:d‘fl

(o A e A
X[ y;40;, OB ru Py
x (0,2 1Y (Ld)
L

558>

I=1 k=d+l

x (2{ e 052(”‘)(’4 B0 +u,.“”))]
L 2 2 i
x E E (0, " I+E )

I=1 k=d+1

(7 'y Mt B0 a(’“))] fay,

(0,7 1zl

where (B, 62 w0 k_d 41,.,2d,1=1,..,L} arethe
samples generated from the Gibbs sampler and I, is the
identity matrix of order T. Thus by using Gibbs sampling,
we can estimate the current time small area mean 0, and
the small area means 0, for the past time periods
t=1,..,T-1 simultanecusly for each area. The posterior
covariance matrix estimate ¥ (8,|y) also provides an
estimate of the posterior covariance of €, and 6, for
tes=1,..,T
Under the Fay-Herriot model, letting y, = (v, 7, ... ,ymT)

denote the current time cross-sectional data and using the
conditional distributions given in Appendix A.2, we can
similarly obtain the Rao-Blackwellized estimators of

E@®,7|yp) and V(6,7 |y

. L2
E8, v =2 X
i=1 k=d+l

[ -rg")pyeriy 5z By i (L)

and

V(8,7 |y = E )3 [677(1 -r3 /(Ld)

L

2d

1k 1k

w3 X -y, erdx
=+

=1 k

By ML)

L
{Z [0 -ryy e P B LAY,

t=1 k=d+]
where r,(}k) = :r" (ofr a2™). Note that E 6,7 ¥, and
V(0,7| ¥p) use only the cross-sectional dataat 1 =T. Asa

result, £(0,,|y,) will be less efficient than the HB esti-
mator £(0,, | yT) based on all the data; see section 4.

4. APPLICATION TO THE LFS

4.1 Data Description and Implementation

We used the 1999 LFS unemployment estimates, y,,, in
our HB analysis. There are 64 CAs across Canada.
Employment Insurance (EI) beneficiary rates were used as
auxiliary data, x,,, in the model. But the EI beneficiary data
were available for only 62 CAs. So we included only those
m = 62 CAs in the model. Within each CA, we considered
six consecutive monthly estimates y;, from January 1999 to
June 1999, so that T = 6 and the parameter of interest 9,
is the true unemployment rate for area i in June, 1999. The
reason that we only used six months of data is that the LFS
sample rotation is based on a six-month cycle. Each month,
one sixth of the LFS sample is replaced. Thus after six
months, the correlation between estimates is very weak. The
one-month lag correlation coefficient is about 0.48, and the
lag correlation coefficients decrease as the lag increases.
Figure 1 shows the estimated (smoothed) lag correlation
coefficients for the LFS unemployment rate estimates. It is
clear that after 6 months the lag correlation coefficients are
all below 0.1.

Unemployment Rate Monthly
Estimate
Lag Correlation Coefficients

1 2 3 4 5 6 7 8 9

Lag-1 to Lag-11

10 1

Figure 1. LFS unemployment rate lag correlation coefficients

To obtain a smoothed estimate of the sampling cova-
riance matrix X, used in the model, we first computed the
average coefficient of variation (CV) for each CA over time
(12 months in this study), denoted as CV,, and the average
lag correlation coefficients over time and all CAs. By using
these smoothed CVs and lag correlation coefficients, we
obtamed a smoothed estimate E with diagonal elements

.= (CV, ) y” and off- dlagonal elements equal to

=Py G 8,,,)" and treated %, as the true X, where

p! rs 1s the average lag correlation coefﬁment of lag

[2-5]. Our study found that using the smoothed estimate

of I, in the model can significantly improve the estimates
in terms of CV reduction.

To implement the Gibbs sampling, we considered L=10
parallel runs, each of length 24 =2,000. The first
d = 1,000 “bum-in” iterations were deleted. To monitor the
convergence of the Gibbs sampler, for the parameters of
interest 8.(i=1,...,m), we followed the method of
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Gelman and Rubin (1992) involving the following steps:
For each 8, let Bfr denote the k-th simulated value in the
[-th cham k=d+1,.,2d,1=1,.,L. In the first step,
compute the overall mean

L 2d
g:'T=E Z

I=] k=d+]

P 1ad)
and the within sequencc mean

8% - ): 8%/d, 1 = Ly L.
k=do |

Then compute B, /d, the vanance between the L sequence
means as B, /d Yi @, -89 /(L-1). In the second
step, calculate W.,, the average of the L within sequence
variances, s,zﬂ, each based on (d-1) degrees of freedom;
that is, W, = z, ) s i fL. In the th;rd step, calculate

,T =(d-1) W, /d+B pldand Vo = s5+ B, /(Ld). Inthe
last step, ﬁnd the potentlal scale reducnon factors
R =V, /W (i=1, .., m). If these potential scale reduc-
tion factors are near 1 for all of the scalar estimands 9, of
interest, then this suggests that the desired convergence is
achieved by the Gibbs sampler. In our study, the Gibbs
sampler converged very well in terms of the values of R, ;.

4.2 Model Selection

In this section, we compare the proposed model with the
Rao and Yu (1994) AR(1) time component model. A
number of methods for model comparison in a Bayesian
framework have been developed, and several are imple-
mented in the well-known BUGS program (see
Spiegelhalter, Thomas, Best and Gilks 1996). In practice,
when there is more than one model of interest, Bayesian
model selection or model choice can be made on the basis
of a Bayes factor, which is difficulty to calculate directly.
Alternative strategies for model selection involve the
predictive likelihood and predictive log-likelihood. In parti-
cular, Dempster (1974) suggested examining the posterior
distribution of the log-likelihood of the observed data. The
quantities of the posterior distribution of the log-likelihood
may be obtained from the predictive posterior distribution
of the deviance, -2log f(y|9). The posterior deviance is
straightforward to estimate using the Gibbs sampling output
since it is the expectation of -2log f(y|0) over the poste-
rior n(9|y). For non-hierarchical models, the minimum
feasible value of -2log f(y|#9) is the traditional deviance
statistic. For hierarchical models, the minimum of the
deviance is likely to be very poorly estimated by the sample
minimum, and the mean is a more reasonable measure
(Karim and Zeger 1992; Gilks, Wang, Yvonnet and
Coursagt 1993). For the AR(1) time component model, we
considered two choices of p: p=0.75 and p =0.5. We
calculated the log-likelihood at each iteration of the Gibbs
sampler. Then we obtained the mean of the predictive
posterior deviance: 1311.5 for the proposed model, 1372.8
for the AR(1) with p = 0.5 and 1358.3 for the AR(1) with
p=0.75. Thus, the deviance measure suggests that the
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random walk model on u,,’s provides a slightly better fit to
the data than the AR(1) model.

For model comparison, we also computed the divergence
measure of Laud and Tbrahim (1995) based on the posterior
predictive distribution. Let 0* represent a draw from the
posterior distribution of & given y, and let y* represent a
draw from f{y|0"). Then, marginally y * is a sample from
the posterior predictive distribution f(y|y ), where y
represents the observed data. The expected divergence
measure of Laud and Ibrahim (1995) is given by

A", Vops) = Gy v | ¥obs )» Where k is the dimen-

sion of y,, . Between two models, we prefer a model that
yields a smaller value of this measure. As in Datta, Day and
Maiti (1998) and Datta et al. (1999), we approximated the
divergence measure d(y*,y,.) by using the simulated
samples from the posterior predictive distribution. Using
the Gibbs sampling output, we obtained a divergence
measure of 13.36 for the proposed model, 14.62 for the
AR(1} with p = 0.5 and 14.52 for the AR(1) with p =0.75.
Thus the divergence measure also suggests a slightly better
fit of the random waik model compared to the AR(l)
model.

It should be mentioned that the posterior deviance and
the divergence measure are intended for comparing two or
more alternative models. After selecting a model, we need
to check if the selected model fits the data, which we turn
to next.

4.3 Test of Model Fit

To check the overall fit of the proposed model, we used
the method of posterior predictive p values (Meng 1994;
Gelman, Carlin, Stern and Rubin 1995). In this approach,
simulated values of a suitable discrepancy measure are
generated from the posterior predictive distribution and
then compared to the corresponding measure for the
observed data. More precisely, let T(y,0) be a discrepancy
measure depending on the data y and the parameter 8. The
posterior predictive p value is defined as

p =prob(T(y*,0)>T(y,.,0)| Yy

where y * is a sample from the posterior predictive distribu-
tion f{y|y,,) Note that the probability is with respect to
the posterior distribution of 0 given the observed data. This
is a natural extension of the usual p value in a Bayesian
context, If a model fits the observed data, then the two
values of the discrepancy measure are similar. In other
words, if the given model adequately fits the observed data,
then T'(y,,..98), should be near the central part of the histo-
gram of the T(y*,0) values if ¥ * is generated repeatedly
from the posterior predictive distribution. Consequently, the
posterior predictive p value is expected to be near 0.5 if the
maodel adequately fits the data. Extreme p values (near 0 or
1) suggest poor fit. The p value is self-contained in the
sense that it is computed without regard to an alternative
model.

Computing the p value is relatively easy using the
simulated values of 8 from the Gibbs sampler. For each



30 You, Rao and Gambino: Model-Based Unemployment Rate Estimation for the Canadian Labour Force Survey

simulated value 87, we can simulate y* from the model
and compute T(y *,8*) and T(y,,,6"). Then the p value is
approximated by the proportion of times T'(y ",8") exceeds
T(y,9°)- For the cross-sectional and time series model,
the discrepancy measure used for overall fit is given by
d(»,0) = Y1, (v,-8)'Z; ' (3,-6). Datta et al. (1999) used
the same discrepancy measure. We computed the p value by
combining the simulated 8 and y* from all 10 parallel
runs. We obtained a p value equal to 0.615. Thus we have
no indication of lack of overall model fit for the random
walk time series and cross-sectional model.

For the Fay-Herriot model that uses only the current
cross-sectional data, an approximate discrepancy measure
is given by

dey(rps 8p) = EI (-8 G?T’
i=

where 0, =(0,,,...0 ). In this case, the estimated p
value is about 0.587, indicating a good fit of the Fay-Herriot
model for the current cross-sectional data only. However,
the associated HB estimates are substantially less efficient
compared to the HB estimates based on the proposed cross-
sectional and time series model that borrows strength across
regions and over time simultaneously; see Figures 3 and 4.

A limitation of the posterior predictive p value is that it
makes “double use” of the observed data, y , first to
generate samples from f(y|y, ) and then to compute the
p valug, This double use of the data can induce unnatural
behaviour, as detnonstrated by Bayarri and Berger (2000).
To avoid double use of the data, Bayarri and Berger (2000}
proposed two alternative p-measures, named the partial
posterior predictive p value and the conditional predictive
p value. These measures, however, seem to be more
difficult to implement than the posterior predictive p value,
especially for a complex model like the time series and
cross-sectional small area model.

4.4 Estimation

We now obtain the posterior estimates of the unemploy-
ment rates under the random walk time series and cross-
sectional model given by (3) and (4). We used the Rao-
Blackwellized estimators, given in section 3.3, to obtain
estimates for the posterior mean and the posterior variance
of 0,,. We denote these estimates by HB1. To study the
impact of using a smoothed estimate of the sampling covari-
ance matrix I, we also used the direct survey estimate of X,
in the model. We denote the estimates obtained in this case
by HB2. To study the effect of borrowing strength over
time, we also obtained the HB estimates of 0,; under the
Fay-Herriot model based only on the current cross-sectional
data, denoted by HB3. Figure 2 displays the LFS direct
estimates and the three HB estimates of the June 1999
unemployment rates for the 62 CAs across Canada. The 62
CAs appear in the order of population size with the smallest
CA (Dawson Creek, BC, population is 10,107) on the left
and the largest CA (Toronto, Ont., population is 3,746,123)

on the right. For the point estimates, the Fay-Herriot model
(HB3) tends to shrink the estimates towards the average of
the unemployment rates, which leads to estimates that are
too smooth in general. HB2 has more variation and tends to
have more extreme values than HB1, since HB2 uses the
direct estimates of Z, subject to sampling errors. HB1 leads
to moderate smoothing of the direct LFS estimates. For the
CAs with large population sizes and therefore large sample
sizes, the direct estimates and the HB estimates are very
close to each other; for smaller CAs, the direct and HB esti-
mates differ substantially for some regions.

Comparison of Estimates (June 1999}
20

15

10

Unemployment rate %

CMA/CAs By Population Size

[-+—HB1 ——HB2 -+— HB3 —=—Direct ]

Figure 2. Comparison of direct and HB estimates

Figure 3 displays the coefficients of variation (CV) of the
estimates. The CV of the HB estimate is taken as the ratio
of the square root of the posterior variance and the posterior
mean. It is clear from Figure 3 that the direct estimate has
the largest CV and HB1 has the smallest CV. HB1 has
smaller CV than HB2 for all CAs, and HB2 has smaller CV
than HB3 for all CAs except two relatively small CAs. The
efficiency gain of the HB estimates is obvious, particularly
for the CAs with smaller population sizes.

Comparison of CVs (June 1993)

Coefficient of vanation

CMA/CAs By Population Size

|——HB1 —+~HB2 ~~—HB3 —= Direct|

Figure 3. Comparison of CVs

Figure 4 shows the percent CV reduction over the direct
survey estimates for HB1, HB2 and HB3. The percent CV
reduction is defined as the difference of the LFS CV and the
HB CV relative to the LFS CV and is expressed as a
percentage. It is clear that HB1 achieves the largest CV
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reduction and that HB3 has the smallest reduction. The
average percent reduction in CVs over the direct LFS
estimates for the Fay-Herriot model (HB3) is 21%, for HB2
is 40%, and for HB1 is 62%. Also the CV reduction for
smaller CAs is more significant than for larger CAs. As
population size increases, the CV reduction tends to
decrease.

Comparison of CV Reduction (June 1999)
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Figure 4. Comparison of CV reduction

In summary, we conclude the following: (1) The
model-based HB estimates improve the direct LFS esti-
mates. In particular, the cross-sectional and random walk
time series model (HB1) improves the LFS estimates consi-
derably in terms of CV reduction. (2) The cross- sectional
and random walk time series model is more effective than
the Fay-Herriot model. (3) Use of smoothed estimate of the
sampling variance-covariance matrix Z, is very effective.

5. CONCLUDING REMARKS

In this paper we have presented a hierarchical Bayes
¢ross-sectional and time series model to obtain model-based
estimates of unemployment rates for CAs across Canada
using LFS data. The model borrows strength across areas
and over time periods simultanecusly. Qur analysis has
shown that this model with a random walk process on the
random time series components fits the data quite well. The
hierarchical Bayes estimates, based on this model, improve
the direct survey estimates significantly in terms of CV,
especially for CAs with small population. However, these
CVs are based on the assumption that the sampling variance
covariance matrices Z, in the model are known. As a result,
the uncertainty associated with the estimation of Z, is
ignored.

We also considered the well-known Fay-Herriot model
that combines cross-sectional information only, using the
data at a specific time point, for example, at the current time
of interest T. We found that the CV's under the Fay-Herriot
model lie between the CVs for the direct and the model-
based approach presented here. The cross-sectional and
time series model is uniformly superior to the Fay-Herriot
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model in terms of CV reduction. This is expected since our
model extends the Fay-Herriot model by borrowing strength
over time as well as across space.

In our application to the LFS, we used simple smoothed
estimates of the sampling variance-covariance matrices Z,
and then treated them as the true £. We plan to study the
sensitivity of the HB estimates of small area parameters 0,
and the associated CVs to different methods of smoothing
the 2. In particular, it may be more realistic to use
smoothed estimates of the form g, = (CV, CV,)!@}, and

Sy = Plr_y Gin 5, )" instead of the simple smoothed
estlmates we have used. However, it is more difficult to
implement the HB method in this case since §,, and &,,
depend on the unknown parameters 0,,.

In this paper, we used a linear mixed linking model (3)
for the parameters 0, , which matches with the sampling
model (1). Recently, You and Rao (2002) developed
unmatched sampling and linking models for cross-sectional
data, where the linking model is a non-linear mixed model,
unlike the sampling model (1). You, Chen and Gambino
(2002) extended this method to cross-sectional and time
series data, using a log-linear linking model for 8,
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APPENDIX

ALLet X=(X{,..,X),0=(8/,..,0 ), u=(u/, ., u’),
with 8/ =(90;,...0,.), 4/ = (u,,, ..., ;7). In the following,
we list the full conditional distributions for the cross-
sectional and time series model. For the proposed model
(random walk time component), p = 1; for the altemnative
AR(1) time component model, [p|<l.
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The Effect of Model Choice in Estimation for Domains,
Including Small Domains
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ABSTRACT

In this paper we examine the effect of model choice on different types of estimators for totals of domains, including small
domains (small areas), for a sampled finite population. The paper asks: How do different estimator types compare for a
common underlying model statement? We argue that estimator type (Synthetic, GREG, Composite, EBLUP, hierarchical
Bayes, and so on) is one important aspect of domain estimation, and that the choice of the model, including its parameters
and effects, is a second aspect, conceptually different from the first. Earlier work has not always kept this distinction clear.
For a given estimator type, one can derive different estimators, depending on the choice of model. A number of estimator
types have been proposed in the recent literature, but there is relatively little of an impartial comparison between them. In
this paper we discuss three types: Synthetic, GREG, and, to a limited extent, Composite. We show that model improvement
{the transition from a weaker to a stronger model) has very different effects on the different estimator types. We also show
that the difference in accuracy between the different estimator types depends on the choice of model. For a well-specified
mode! the difference in accuracy between Synthetic and GREG is negligible, but it can be substantial if the model is
misspecified. Synthetic then tends to be highly inaccurate. We rely partly on theoretical results (for simple random sampling
only), partly on empirical results. The empirical results are based on simulations with repeated samples drawn from twe
finite populations, one artificially constructed, the other constructed from real data from the Finnish Labour Force Survey.

KEY WORDS: Survey sampling; Generalized regression estimator; Synthetic estimator; Composite estimator; Multi-level

33

models; Small areas; Small domains.

1. BACKGROUND

Most surveys require that estimates be made not only for
the entire population under study but also for a number of
sub-populations, called domains or domains of interest.
Estevao and Sarmdal (1999) give a general outline of
estimation for domains from a design-based perspective,
with the use of auxiliary information. The sampling design
is general, and so is the vector of auxiliary variables. The
framework is also called model-assisted. Several national
statistical agencies have in recent years constructed
software that routinely handles domain estimation within
the design-based, model-assisted framework. Examples of
such software include CLAN97 by Statistics Sweden and
GES by Statistics Canada. In a typical survey, some
domains of interest are large enough, and the auxiliary
information strong enough, so that the design-based
estimators will be sufficiently accurate. But other domains
may be so small (contain so few sampled units) that the
design-based estimates will be too erratic. The statistical
agency may then decide to suppress the publication of
statistics for such domains.

Model-dependent estimates are less volatile, but an
unattractive feature is their unknown bias, which can be
substantial, The model-dependent synthetic estimator has
occupied a prominent place in research on small area
estimation from around 1970 and on, see for example,
National Center for Health Statistics (1968), National
Research Council (1980). Different estimators built on
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nested error regression models (Fuller and Battese 1973),
random regression coefficients models (Dempster, Rubin
and Tsutakawa 1981) and simple random effects models
(Fay and Herriot 1979) provide examples of early propo-
sitions for alternatives to the synthetic estimator. Various
composite estimators, constructed as weighted combina-
tions of a model dependent estimator and a design-based
estimator, were also proposed in the literature (for example
Holt, Smith and Tomberlin 1979).

It was in connection with the synthetic estimator that the
term “borrowing strength” began to be widely used. Today
this term is invoked in virtually every one of the many
published articles on small area estimation. Together, these
articles now provide a rich source of possibilities for small
area estimation, a majority of them model dependent. They
draw on a variety of established statistical arguments and
principles, such as generalized linear mixed models, com-
posite estimation, empirical Bayes estimation, hierarchical
Bayes, and so on.

Borrowing strength (or information) via modeling is a
recurring theme in recent literature on small area estimation
(for example Ghosh and Rao 1994; Pfeffermann 1999; Rao
1999). Borrowing strength is generally understood to mean
that the estimator in use depends on data on the variable of
interest, denoted y, from “related areas” or more generally
from a larger area, in an effort to improve the accuracy for
the small area. The resulting estimator is called indirect, in
contrast to the one that uses y-data strictly from the domain
itself, in which case it is called direct.

Risto Lehtonen, University of Jyviiskyld, Department of Mathematics and Statistics, P.O. Box 35 (MaD), FIN-40014 U. Jyvaskyld, Finland; Carl-Erik Sérmdal,
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Underlying models and their features is another
prominent theme in recent literature (for example Ghosh,
Natarajan, Stroud and Carlin 1998; Marker 1999; Moura
and Holt 1999; Prasad and Rao 1999; Feder, Nathan and
Pfeffermann 2000). Small area estimates, and domain
estimates more generally, are intrinsically linked to the idea
of modeling. Helt and Rao (1995) hint that the use of
y-information from other areas, although in a sense
“necessary”, should not be carried to an extreme. Instead
there should be “specific allowance for local variation”
through a model formulation that includes area-specific
effects. This raises a certain ambiguity: borrowing strength
from other areas is desirable, even necessary, but only
within limits. It is unclear what these limits should be.

There is an extensive recent literature on small area
estimation from a Bayesian point of view, including
empirical Bayes and hierarchical Bayes techniques (for
example Datta, Lahiri, Maiti and Lu 1999; Ghosh and
Natarajan 1999; You and Rao 2000). Some recent
publications relate frequentist and Bayesian approaches in
small area estimation (for example Singh, Stukel and
Pfeffermann 1998). Rao (2003) provides a good overview
of current literature on model-based small area estimation.

The discussion in recent literature of domain estimation,
including small area estimation, revolves around three
crucial concepts: (i) borrowing strength; (ii) the type of
{implicit or explicit) model, (iii) the parameters or effects
admitted in the model statement, that is, whether they
should be area specific or defined at some higher level of
agprepation such as a set of “similar areas”. We agree that
these concepts are central and we use them in this paper.

Qur starting point for the paper is summarized by (i) to
(iii) as follows: (i) a number of different estimator types
have been proposed for domain estimation and small area
estimation: Synthetic estimator, Generalized Regression
{GREG) estimator, Composite estimator, Empirical Best
Linear Unbiased Predictor (EBLUP), empirical Bayes (EB)
estimator, hierarchical Bayes estimator and so forth; (ii) for
every estimator type, ditferent estimators result from the
choice of model; (iii) to borrow or not to borrow strength
becomes an issue for some of the model choices. Attempts
at borrowing strength takes place when the estimation of the
parameters and effects in the model requires the use of
y-values for units outside the domain itself. '

2. STATEMENT OF OBJECTIVES

An objective in this paper is to examine domain
estimation through a separation of two ideas: estimator type
on the one hand, the choice of the underlying model on the
other. We get a two-dimensional arrangement of possible
estimators: By estimator type, by model choice. This
distinction has not been emphasized enough in earlier
literature.

We study the effect of model choice, and of model
improvement, on selected estimator types: the Generalized

Regression (GREG) estimator (which is design-based), the
Synthetic (SYN) estimator (which is model dependent) and
the Composite estimator with Empirical Best Linear
Unbiased Predictor EBLUP as a special case (which also is
model dependent). By construction, each type has its own
particular features. For example the GREG estimator type
is constructed to be design unbiased, the model dependent
ones usually are not. The GREG estimator’s variance,
although of order # ~', can be very large for a small domain
if the “effective sample size” is small; GREG is a “strongly
design consistent” estimator in that its relative bias (bias
divided by standard deviation) tends to zero as # . The
SYN estimator is usually design biased; its bias does not
approach zero with increasing sample size; its variance is
usually smaller than that of GREG. The EBLUP is design
consistent (although not strongly design consistent in the
manner of GREG); is design biased for any fixed finite
sample size; its variance ordinarily falls between that of
GREG and that of SYN.

The chosen model specifies a hypothetical relationship
between the variable of interest, y, and the vector of
predictor variables, X, and makes assumptions about its
perhaps complex error structure. For every specified model,
we can derive one GREG estimator, one SYN estimator,
one composite estimator, by observing the respective
construction principles. An “improved model” will
influence all of GREG, SYN and composite, usually so that
the MSE decreases. In other words, if Model A is better
than Model B, the SYN estimator for Model A is usually
better than the SYN estimator for Model B. The same is
usually the case for GREG.

Model choice has two aspects: (i) the mathematical form,
or the type, of the model, and (ii) the specification of the
parameters and effects in the model, For a given variable of
interest, some models are more appropriate than others.
Model improvement can result either from a more
appropriate model type, or from a better parametization, or
both. We can distinguish linear models and nonlinear
models. Logistic models are a special case of the latter. For
a binary or polytomous variable of interest y, a
(multinomial} logistic model type is arguably an
improvement on a linear model type, because the fitted
values under the former will necessary fall in the unit
interval, which is not always true for a linear model.
Lehtonen and Veijanen (1998) introduced the logistic
GREG estimator and studied it in the context of the Finnish
Labour Force survey. Another example is when a Bayesian
model formulation is preferred to other forms.

The second aspect of model choice is the specification of
the parameters and effects in the model. Some of these may
be defined at the fully aggregated population level, others
at the level of the domain (area specific parameters), yet
others at some intermediate level (for a set of “related
areas”). Using a multi-level model type, we can introduce
stochastic effects that recognize domain differences, as in
Goldstein (1995) for the SYN estimator and by Lehtonen
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and Veijanen (1999) for the GREG estimator. They found
improved accuracy in small domains, compared to the
GREG estimator based on a model with fixed effects at the
population level. Generally, model improvement occurs
when more parameters or effects are added to the model, as
for example when it is formulated to include area specific
effects reflecting local variation.

We show in this paper (i) that model improvement will
generally, for any estimator type considered here, be
accompanied by a decrease in MSE; (ii) that the effect on
the MSE of model improvement is very different for
different estimator types; (iii) that for a well-specified
model, there are negligible differences only in the accuracy
(the MSE) achieved by the estimator types under study, but
under model failure the differences can be substantial. We
emphasize that a comparison of estimators of different types
should only take place under “similar conditions”. That is,
the model choice must be the same for all alternatives
considered. An estimator is shown to be better than another
estimator only if the MSE of the former is smaller than that
of the latter, for one and the same model choice. (It is
difficult to establish that one estimator type is uniformly
better than another, that is, better under all model choices.)

Table 1 shows the estimators to be discussed, in a
two-way arrangement by estimator type and by model
choice. This table also shows our notation for the estimators
to be considered. There are six SYN type estimators and six
GREG type estimators in the table. Each of the six rows
corresponds to a different model choice. A population
model (P-model; rows 1 and 2) is one whose only
parameters are fixed effects defined at the population level;
it contains no domain specific parameters. A domain model
(D-model} is one having at least some of its parameters or
effects defined at the domain level. These are fixed effects
for rows 3 and 4, or mixed with random effects for rows 5
and 6. “Linear™ and “logistic” refer to the mathematical
form. In this paper we discuss all estimators in Table 1
except the two in the last row.

Table 1

Schematic presentation of the SYN and GREG estimators
by model choice and estimator type

Estimator type

Model choice Model- Mudel—flssisted
dependent generalized
synthetic regression

) Population  Linear SYN-P GREG-P
g;’f‘:c‘:; models Logistic  LSYN-P LGREG-P
models Domain Linear SYN-D GREG-D

models Logistic LSYN-D LGREG-D
Mixed
models Linear MSYN-D MGREG-D
including  Domain
fixed and models
random Logistic ~ MLSYN-D  MLGREG-D
effects

In addition to the SYN and GREG estimator types listed
in Table 1, we can consider composite estimators of the
type ¥,GREG +(1-7,)SYN, being appropriately

35

weighted combinations of the corresponding GREG and
SYN estimators. In this paper we examine one estimator of
this type, the EBLUP estimator.

The paper is organized as follows: Section 3 introduces
three types of estimators for a domain total. In section 4, we
describe the models used in the construction of these
estimators. In section 5 we derive analytically the effect of
model improvement, in a simple case. (Only simple cases
can be treated analytically, because the formulas quickly
attain a high degree of complexity, depending on the
sampling design and other factors.) Section 6 is devoted to
Monte Carlo simulations for two finite populations,
illustrating the effect of model improvement on the three
selected estimator types. Surnmary and discussion is given
in section 7.

3. ESTIMATORS OF DOMAIN TOTALS

The finite population is denoted U = {1,2, ..., &, .., N}.
A probability sample s is drawn from U by a given
sampling design such that unit & is given the inclusion
probability m,. The sampling weight of unit £ is then
a, = 1/m,. Denote by y the variable of interest and by y, its
value for unit k. We consider a set of mutually exhaustive
and exhaustive domains U,,...,U,,...,U,. The target para-
meters are the set of domain totals,
Y, = ):Udyk,d =1,..,D.

Auxiliary information is essential for building accurate
domain estimators, and increasingly so when domains of
interest get smaller. Let x be the auxiliary vector of
dimension J > 1 with a known value x, for every unit
k¢ U. In a survey on individuals, x, may specify known
data about person k, such as age class, sex and other
continuous or qualitative variable values. We assume that
the vector value x, and domain membership is known and
specified in the frame for every ke U. (For some
estimators, it suffices to know the fotal of x, for each
domain of interest.)

The estimators we consider are constructed as follows:
The first step is to estimate the designated model, using the
sample data {{y,,X,);kecs}. Next, using the estimated
parameter values, the vector value x, and the domain
membership of £, we compute the predicted value y, for
every ke U, which is possible under our assumptions
because x, is known for every ke U. The predictions,
{Jske U}, and the observations, {y,;ke s}, provide the
material for the estimator types considered here.

Consider a fixed-effects model specification, linear or
nontinear, such that E_ (y,)=f(x;B), for a given
function f(-; ), where §§ is an unknown parameter vector
requiring estimation, and E, refers to the expectation
under the model. The model fit yields the estimate . The
supply of predicted values y, = f(x,;B) is computed for
ke U. Similarly, for a linear mixed model involving
random effects in addition to the fixed effects, the model
specificationis E_ (y, | u,) =x; (P +u,) where u, isa
vector of random effects defined at the domain level. Using
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the estimated parameters, predicted values y, = x [ (B +a 2
are computed for all k¢ U. The models used in this paper
are described in more detail in section 4. In more general
terms, the models for the construction of GREG and SYN
type estimators of domain totals are often members of the
family of generalized linear mixed models {for example
McCullogh and Searle 2001).

The predictions {y, ke U} differ from one model
specification to another. For a given model specification,
the estimator of the domain total ¥, =% v,V has the
following structure for the three estlmator types (Synthetic,
Generalized Regressmn Composite) to be studied:

Yosvn = 2og, T G.1)
Yiorec = 2oy, Fi+ Doy, @Y =) (3.2)
YdCOMP = ZUJ yAk + Ad Efa ak(yk 'ﬁk) (3.3)

where a, = 1/m,,s, = sN Ud is the part of the full sample
sthatfallsin U, and d = 1, ..., D. Y, relies heavily on
the truth of the model and is usually biased. On the other
hand, ¥, ... has a second term that protects against model
misspecification. The domain-specific weight ¥, in ¥ cove
is appropnately constructed to meet certain optimality
properties, as explained in section 6. The weight ¥,
approaches unity for increasingly large domain sample
sizes, so that ¥ "4COMP approaches Y, . ... At the other
extreme, when ¥, is near zero, ¥, qp i close to ¥

We note that for a given model specification, (3.2) and (3.3)
reduce to (3.1) for a domain & with no sample elements in s ,.

4. MODELS
4.1 Fixed-Effects Linear Models
Let x, =(1, Xy eersKpo e »X,. ) bea (J+1)-dimensional
vector containing the values of J» 1 predictor variables
Xpi=1, ., This vector is used to create the predicted
values yk in the estimators (3.1), (3.2) and (3.3).

The estimators SYN-P and GREG-P build on the model
specification (called the P-model)

E, (y)=x;B 4.1

for ke U, where B = (B, B,,...B,) 1is a vector of fixed
effects defined for the whole population. If y-data were
observed for the whole population, we could compute the
generalized least squares (GLS) estimator of B given by

B =(Eu xkxifck)-l Luxle

where the ¢, are specified positive weights. With no
significant loss of generality we specify these to be of the
form ¢, = A’ x, for k¢ U, where the (.J + 1)-vector A does
not depend on 4. Because (4.2) cannot be computed, the fit

(4.2)

is carried out in practice on the observed sample data,
yielding
N (Zs akxkx,;/ck)" Y. axple

where a, = 1/n, is the sampling weight of unit £. The
resulting predicted values are y, =x; B. They can be
computed for all ke UL

The estimators SYN-D and GREG-D are built with the
same predictor vector x,, but with an improved model
specification (called the D-model) allowing a fixed-effects
vector P, separately for every domain, so that

(4.3)

E.(y)=xBy (4.4)
for ke U,,d =1, ..., D, or equivalently,
D
E,(y) = 2 8,%;B, (4.5)

for ke U, where §,, is the domain indicator of unit &,
defined by &, =1 for all k¢ U,, and §,, =0 for all
ke U, d=1,..,D. If the model (4.3) could be fitted to
data for the whole population, the GLS estimator of B,
would be

B, =(ZUd xkx,;/ck)‘l Zudxkyk/ck.

In practice, the fit must be based on the observed sample
data, leading to

B,- (st B Xy xiifck)_‘ st G ) €

The resulting predicted values are given by y, =x, B 4
for keU,d=1,..,D. Because of the specification
¢, = x,, we have ¥ a,(y,-5,)=0. Consequently,
SYN-D and GREG- are identical, that s,
Yovn.p = =Y IGREG - p fOr every sample s.

The transition from GREG-P to GREG-D, and from
SYN-P to SYN-D, affects the MSE in a way to be analyzed
in section 5. SYN-P and GREG-P will be examined
empirically in section 6.

(4.6)

(4.7)

4.2 Linear Mixed Models

The estimators MSYN-D and MGREG-D build on a
two-level linear model (called the D-model) involving fixed
as well as random effects recognizing domain differences,

E (| u,) =By +uy,
+(By ) ¥,
oo+ (Bj+ujd)x”

=x; (B +u,)

for ke U,,d = 1,...,D. Each coefficient is the sum of a
fixed component and a domain specific random component:
By + uy, for the intercept and B, ~u,, j=1,...,J for the
slopes. The components of w = (1, & .0 ty,)

(4.8)
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represent deviations from the coefficients of the fixed-
effects part of the model,

E,(3) =By + Brx+ 4.9

which agrees with (4.1). More generally, we can have that
only some of the coefficients in (4.8) are treated as random,

so that, for some J, u, it = 0 for every d. One of the simplest
special cases of (4. 8) commonly used in practice, is the one
that includes a domain-specific random intercept u,, as the
only random term, as in one of the models used in section
6. Another model used in section 6 is the special case of
(4.8) for J =1, with a random slope u,, and a random
intercept Uy

We insert the resulting fitted y-values, y, = x; (B +1 ),
into (3.1) to obtain the two-level MSYN-D estimator.
Inserting the fitted values, y, =x; (B +1,), into (3.2), we
obtain the two-level MGREG-D estimator, introduced by
Lehtonen and Veijanen (1999). MSYN-D and MGREG-D
will be examined empirically in section 6.

For the simulations reported in section 6, we fitted the
two-level model (4.8) by the iterative least squares fitting
(IGLS) algorithm of Goldstein (1995). Random effects
were estimated by equation (2.2.2) in Goldstein (1995).
This algorithm appeals to an assumption that the random
effects follow a joint normal distribution N{0, ). Note
however that this assumption of normality is in no way
necessary to obtain favorable properties for the resulting
MGREG-D estimator. It is nearly unbiased regardless of
any such assumption. The fitting of a multi-level modet is
more demanding than the fitting of a linear fixed-effects
model, since estimation of the covariance matrix Q is
required.

v+ Byx, =x; B,

4.3 Logistic Models

The estimators LSYN-P and LGREG-P build on a
multinomial logistic P-model. Assume an m-class
polytomous response defined by the class variables y, with
value y, =1 if kbelongs to class i and y,, = 0 otherwise,
i=1,...,m, and modeled by

R e L 10

Y. exp(x}B,)

rsl

(4.10)

for keU, where x,=(l,x,.., Xigs e x,) and
B; = (B,g> B> .--B;,) are vectors of fixed effects defined for
whole population. To avoid identifiability problems, we set
B, =0. The LSYN-P and LGREG-P estimators of the
population frequency of class 7 in domaind, Y, = ¥, v
are defined by (3. 1) and (3.2), respectlvely, if we replace Ve
and j, by y,, and j, = exp(x; BI(1 + ¥ exp(x; B ),
where B, is the estimate of B, obtained from the fit of
4.10).
( L(%REG-P was introduced and studied in Lehtonen and
Veijanen (1998). LSYN-P and LGREG-P will be examined
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empirically in section 6, where E’; is derived as a
pseudo-maximum likelihood estimator incorporating the
sampling weights.

5. ANALYTIC EXAMINATION OF THE
EFFECT OF MODEL IMPROVEMENT

In this section we analyze the transition from GREG-P
to GREG-D, and from SYN-P to SYN-D in the case of
Simple Random Sampling. For both estimator types, GREG
and SYN, we find that the accuracy is improved when the
model changes from the weaker P-model (4.1) (with fixed
effects at the level of the whole population) to the stronger
D-model (4.5) (admitting fixed effects at the domain level).
Intuitively, this is to be expected. What is of interest here is
the pattern of improvement. It is very different for the two
types.

Our objective is to measure the effect of model
improvement on Y where Y denotes either ¥ 1orEG OF
Y oyn- For this purpose we use the relative improvement
in MSE,

RELIMP( ¥,) = (MSE,, - MSE,,)/MSE,,,  (5.1)

where MSE;, and MSE, , denote the MSE of f" ; under
the P-model and under the D-model, respectively. Both
MSE,, and MSE , depend on the sampling design and on
the composmon of the x,-vector. The improvement factor
(5.1) is in general a complex formula. It lends itself to easy
analytic interpretation only in simple cases. Therefore, we
examine here the case of Simple Random Sampling
Without Replacement (SRS). For other designs and model
formulations, empirical studies are necessary. One such
study is reported in section 6.

We use the improvement factor (5.1) to measure the
effect of changing from the P-model (4.1) (the weaker
model) to the D-model (4.5) (the stronger model). The
Technical Appendix gives the necessary expressions for
bias and MSE of GREG and SYN estimators in the case of
an SRS sample of size n from U. The size, n,, of the
sample from the domain U is random with expected value
nP,=nN,/N. For GREG we use (A.5) in Technical
Appendlx and the two different forms of E , bresented
there, to arrive at

) S E
RELIMP(¥,pe0) = Ez”U“ Sla(l-P)
E Uy Edly
B
Ud
- (l—Pd)S (5.2)
E,
where Ssu = (1/(N, - 1)) ZU Edk and Sé,,ud=

(1 /(Nd‘ l)) ZUd {EPk PU, } mePU - ZU E k/Nd‘
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(Note that E ZU E, /N, =0). Similarly, for SYN, we
use (A. 6) in 'fechmcal Appendtx and the two different
expressions for E, presented there, to arrive at

52 E
(R ENU nP PU
RELIMP (Y.} = —— - 7 L
P‘" SEd'Ud' B SEdU,r
nP, Eivd
T 1-fg? (5.3)

Ely

where S(R £ = T/N-1)Y, (deEPk)z The
approximation in (5.3) is a result of keeping only the term
proportional to the total sample size n. By comparison, the
other terms are negligible. The approximation in (5.3) is
adequate in many cases, although the deleted part is not
always insignificant. Comparing the improvement factors
(5.2) and (5.3), we note:

(i) Improvement factor as a function of the bias.
Comparing (5.2) and (5.3), we see that the
improvement of SYN is large compared to that of
GREG. The main reason is that SYN is handicapped,
under the P-model, by an often considerable squared
bias term. As the model improves, this handicap is
greatly reduced. At the same time the variance term
may increase moderately, so that, somewhat
paradoxically, SYN becomes more volatile when the
model is improved. For GREG, some improvement
occurs when the model improves, as a result of a
somewhat reduced variance. The improvement is
small, compared to the dramatic improvement of
SYN.

(i) Improvement factor as a function of domain size.
Suppose that Ef,u / SE v, is constant for all domains.
Then, the presence of the relative domain size P, in
(5.3) shows that )4 Jsyn improves more in larger
domains than in small domains (where the need for
agceuracy improvement is relatively greater) For
YdGREG, the pattern is more natural in that the
improvement is more pronounced for the smaller
domams due to the factor (1 - P,) in (5.2). But if
Eiu /SE varies considerably between domains,
these concfusmns would be modified.

To throw further light on the generally complex
improvement factors (5.2) and (5.3), consider the simple
spec:lﬁcanon xk _l =¢, forallx. Then Y syn_p =Ny P s
YioreG - P = (l/f)(nd -nP)y, w1th f n."N
and Y,con. p= YdGREG . (Overbar denotes the
arithmetic mean over the set deﬁned by the subscript.)

Using (N, -1)/(N -1)= N,/ N, we get

. Yo, ¥
RELIMP (¥, gs) = (! —Pn(”;—z”)z (54)

YUy

. 52 P, (Fy -PyY
RELIMP (7,) & Py 2L -1 4 L Y0 77
s, 1-f 82
nPd (J? Uy _yu)z
-1 5, (55)

where Syzu and SJ,‘F‘!U'f are the variances of y, over Uand U,
reSpectively The patterns are now very clear. The term
(y v, )2/ v, 1s present in both expressions. For SYN,
we see from (5.5) that the improvement factor is
proportional to the whole sample size », hence it can be
very large. For GREG, the improvement (5.4) is very small
by comparison. If (3, -7 S, 2U is constant over all
domains, GREG is lmproved more in‘smaller domains than
in larger ones. The opposite holds for SYN.,

The results in this section are limited by the complexity
of the analytic expressions. Nevertheless they set the pattern
for more general situations now to be studied by empirical
examination. As the model improves, we can expect SYN
to undergo a very large improvement, in terms of reduced
MSE, compared to GREG.

6. EMPIRICAL EXAMINATTON OF THE
EFFECT OF MODEL IMPROVEMENT
BY MONTE CARLO EXPERIMENTS

6.1 Experiments and Monte Carlo Summary
Measures

The data for Experiment 1, presented in section 6.2, was
generated entirely from a specified model, so it has no basis
in any real data. For the 100 domains of this data set we
compared the SYN estimator type (3.1) and the GREG
estimator type (3.2) under different choices of model for a
continuous variable of interest. We fitted a fixed-effects
linear model (which created SYN-P and GREG-P
estimators) and compared the results with those obtained
from the fitting of a two-level linear mode! (which created
MSYN-D and MGREG-D estimators).

In constructing the population for Experiment 2,
presented in section 6.3, we took real data on ILO
unemployment from Finland’s Labour Force Survey (LFS)
as a starting point for creating a larger artificial population
with 84 regional domains. There, the variable of interest is
binary (unemploved or not). We fitted, in addition to a
fixed-effects linear model (which created SYN-P and
GREG-P estimators) and a two-level linear model (which
created MSYN-D and MGREG-D estimators), a
fixed-effects binomial logistic model (which created
LSYN-P and LGREG-P eslimators). For this experiment we
also constructed a composite estimator (3.3) as a weighted
combination of GREG and SYN estimators, creating a
COMP-D estimator. X

In Experiments 1 and 2, by using estimates ¥ (s ) from
repeated samples s ;v = 1, 2, ..., K, we computed for each
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domain 4 = 1, ..., D the following Monte Carlo summary
measures of bias, accuracy and relative improvement in
MSE. We use two measures of accuracy, the relative root
mean squared error (RRMSE) and the median absolute
relative error (MdARE). For Experiment 1, where the
response variable is continuous, these two measures give
the same message about the accuracy. But for Experiment
2, where the response variable is binary, there 1s sometimes
a difference in the conclusions drawn from the two
measures.

(i)  Absolute relative bias (ARB), defined as the ratio of
the absolute value of bias to the true value:

1%
’EZ. 7,(s,) - Y‘,‘ /Yd. (6.1)

(i) Relative root mean squared error (RRMSE), defined
as the ratio of the root MSE to the true value:

J Ly, -ry /Yd.

Kv:l

(6.2)

(iii) Median absolute relative error (MdARE), defined as
follows. For each simulated sample 5 ; v = 1,2, ..., X,
the absolute relative error is calculated and a median
is taken over the K samples in the simulation:

Median ) {’)}d(sv) - Yd'/Yd }

overv=1,..,

(6.3)

(iv) RELIMP, the relative improvement in MSE, defined
in the manner of (5.1).

6.2 Experiment 1: Data Generated from a Model

Monte Carlo design

We used the two-level D-model (4.8) with J =1 to
generate an artificial population of one million elements
distributed on 100 domains, The elements were randomly
allocated to a set of 100 domains with probabilitics
proportional to exp(p,) where p, follows a uniform
distribution in (-3,3). In the generation of values for the
x-variable and y-variable in the dth domain, & = 1, ..., 100,
we operated in the following way. First, the values of the
x-variable were obtained as independent realizations of
N(p,, oj), where the domain-specific parameters (. ,, oj)
had first been generated from a bi-variate uniform
distribution over (5,15) % (15,35). Then, the response
variable values y, were generated as

Vi =By + gy + (B +u )x, + 8 (6.4)

with B, = 10 and B, = 0.6. In (6.4), the values of &, are
independent realizations of N(0, 1), and the random effects
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u,, and u , were realized from a bivariate normal
distribution with  u,, ~ N(0,4), u ,~N(0,0.01),
d=1,.. 100, We report results for two values of the
correlation of the random effects: (a) Corr(u,,u ) =0,
and (b) Corr(u,,,u,,) = -0.5. One case of a positive
correlation, 0.5, was also studied but the results were
similar with those in the zero correlation case and are thus
omitted.

We examined four estimators: MSYN-D and MGREG-D
based on the two-level D-model (4.8), y,=
By + tyy + (By +4,,)x, +€,, and SYN-P and GREG-P
based on the fixed-effects P-model (4.9), that is,
¥, =By +B,x, +¢,. Both sets of SYN and GREG
estimators were calculated in the zero correlation and
negative correlation cases. The conditions are thus ideal for
MSYN-D and MGREG-D in the sense that the population
follows exactly the model that lies behind these two
estimators.

From the generated population we drew X = 1,000
samples, each of size » = 10,000, with Simple Random
Sampling Without Replacement (SRS). For each estimator
and for each domain, we computed the Monte Carlo
summary measures of bias, accuracy and relative
improvement in MSE in the manner described in (6.1),
{6.2), (6.3) and (5.1). The Monte Carlo measures were then
averaged with respect to a classification of the domains into
Small (25 domains with average domain sample size <10),
Medium-sized (50 domains with average domain sample
size 10> and <50), and Large (25 domains with average
domain sample size » 50).

Results

The results for the cases of zero correlation (a) and
negative correlation (b) are given in Tables 2 and 3. In both
cases, SYN-P has a large bias (measured by the average
ARB) for all the three domain size categories (Table 2).
The bias is slightly larger in the zero correlation case. The
bias in SYN-P is considerably reduced by MSYN-D, but is
still significant in small domains. In the smallest domains,
the estimated residuals (the estimates of the random effects)
were biased towards zero, which created some bias in the
estimates, The accuracy {measured by the average RRMSE
and the average MAARE) of MSYN-D (based on the “ideal
model™) is much better than that of SYN-P (which is based
on a population model). Accuracy gains are larger for the
zero correlation case, and gains are substantial especially in
larger domains. This result is in line with our theoretical
results in section 5.

GREG-P and MGREG-D are essentially unbiased,
confirming theory. Out of these two, accuracy is clearly
beiter for MGREG-D, especially in small domains. In larger
domains, accuracy gains are much smaller for the GREG
estimator type than for the SYN estimator type. Bias and
accuracy of GREG estimators are quite similar in both zero
correlation and negative correlation cases.
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Table 2 ‘
Average absolute relative biais (ARB) (%), average relative root mean squared error (RRMSE) (%) and average median absolute relative
error (MAARE) (%) of total estimators in small, medium-sized and large domains of a synthetic population with (a) random slope and intercept
independent or (b) random slope and intercept negatively correlated

Average ARB (%) Average RRMSE (%) Average MdARE (%)
Expected domain size in sample  Expected domain size in sample  Expected domain size in sample
Small  Medium Large Small Medium Large Small Medium Large
(1-9) (10-49) (50+) (19  (10-49) (50+) (1-9y  (10-49) (50+)
(a) Zero correlation
Model-dependent SYN estimataors ‘
SYN-P 10.29 12,37 10.54 10.3 12.4 10.6 10.3 12.4 10.5
MSYN-D 1.32 0.09 0.01 4.7 1.1 04 26 0.7 0.2
Model-assisted GREG estimators
GREG-P 0.21 0.06 0.01 1.5 25 0.8 5.0 1.7 0.5
MGREG-D (.83 0.03 0.01 48 1.1 04 2.7 0.7 0.2
(b) Negative correlation (-0.5)
Model-dependent SYN estimators
SYN-P 7.92 9.51 8.26 7.9 9.5 83 7.9 9.5 8.3
MSYN-D 1.20 0.09 0.01 42 1.1 0.4 2.5 0.7 0.2
Model-assisted GREG estimators
GREG-P 0.18 0.05 0.0l 6.4 2.1 0.6 42 1.4 0.4
MGREG-D 0.67 0.02 0.01 44 1.1 0.4 26 0.7 02

As the theoretical discussion in section 5 has also
suggested, the effect on the SYN estimator type of model
improvement depends strongly on the size of the domain.
This is confirmed here: The D-model leads to a consid-
erable MSE improvement (measured by the average
RELIMP) for SYN. The improvement is striking for the
large domains (Table 3). By contrast, the effect on the
GREG estimator type of model improvement is modest, by
comparison, and essentially independent of the domain size,
as also suggested by the theoretical results.

Table 3
Average relative improvement in MSE (%) of total estimators in
small, medium-sized and large domains of a synthetic population with
(2) random slope and intercept independent or (b) random slope
and intercept negatively correlated

Average relative improvement in MSE (%)
Expected domain size in sample

Small  Medium Large
(1-9)  (10-49) (50+)
(a) Zero correlation
MSYN-D versus SYN-P 83 3325 1278.3
MGREG-D versus GREG-P 1.9 6.0 3.7
(b) Negative correlation (-0.5)
MSYN-D versus SYN-P 5.1 197.0 734.7
MGREG-D versus GREG-P 1.3 3.6 2.3

The reason for an improved behavior of SYN and GREG
estimators is that a two-level (or more generally, a
multi-level) model, because of the presence of domain

parameters, produces fitted values y, that are on the
average closer to the (unobserved) y, than those obtained
by fitting simply the fixed part of the model. In addition,
since MSYN-D takes domain differences into account, it is
expected to be less biased than the SYN-P estimator based
on the fixed part of the two-level model. Still, we find that
the MSYN-D estimator has a significant bias, particularly
in the smallest domains, for which the estimated random
effects tend to be biased towards zero, which pulls the fitted
values in the direction of those of the fixed part of the
model. MSYN-D and MGREG-D estimators do not differ
considerably in their accuracy, even in small domains.

6.3 Experiment 2: Data Adapted from Finland’s
Labour Force Survey

Monte Carlo design

The empirical data for our Experiment 2 came from the
Finnish Labour Force Survey (LFS), conducted monthly by
Statistics Finland. Details on the design and the estimation
procedure of the LFS are described in Djerf (1997). In this
experiment, we estimate the number of unemployed in 84
administrative regions of Finland, based on the NUTS4
classification (European Union’s Nomenclature of
Territorial Units for Statistics).

To emulate the sampling design of the Finnish LFS, in a
fairly realistic manner, we generated a large artificial
population by expanding a one-quarter sample data set of
the Finnish LFS. The original data set of 32,564 individuals
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contained 29,024 respondents. The respondents were
replicated by Simple Random Sampling With Replacement
until we had reached a total of 3 million records approxi-
mating the size of the labour force in Finland.

The varable of interest, y, was a binary variable
describing whether a person was unemployed of not. In
LFS, the definition of unemployment is based on the ILO
(International Labour Organisation) concept. Our popu-
lation data included four auxiliary variables available from
administrative registers (and used by Statistics Finland in
their LFS): age, sex, region (NUTS2 level regional unit)
and the job-seeker indicator, which is a dichotomous
indicator showing whether or not a person is registered as
an unemployed job-seeker in the administrative records of
Finland’s Ministry of Labour. Indicator variables were used
for 6 age-by-sex classes (3 age groups, 2 sexes). These
register-based data were merged with the survey data at the
micro level by using personal identification numbers, which
are unique in both data sources.

We examined seven estimators. Three model choices
were used. First, we constructed the estimators (3.1) and
(3.2), based on the lincar fixed-effects P-model (4.9)
incorporating the main effects for variables age, sex, region
and the job-seeker indicator. The model also incorporates
the two-variable interaction of age with the job-seeker
indicator. The variables and terms in the model were
selected in an exploratory data analysis. The resulting
domain total estimators are SYN-P and GREG-P.

Secondly, we constructed the estimators (3.1) and (3.2)
based on a binomial logistic model (4.10) involving the
same model structure as the P-models for SYN-P and
GREG-P. The resulting estimators are LSYN-P and
LGREG-P.

Thirdly, we constructed the estimators (3.1) and (3.2)
based on the two-level D-model (4.8) again involving the
same structure in the fixed part as the previous models. The
random component of the model, recognizing domain
differences, consisted of random intercepts at the domain
(NUTS4) level. The resulting estimators are MSYN-D and
MGREG-D. For this model choice, we also constructed the
composite estimator (3.3). The resulting estimator is
denoted by COMP-D The weight ¥, in COMP D was
computed as G, /(G +G /nd), where c and c are
sample based esnmates for unknown parameters in the
model’s error structure (Ghosh and Rao 1994). The
COMP-D estimator is perhaps best described as a pseudo
EBLUP (Prasad and Rao 1999), by the fact that the
residuals y, -y, are sample weighted. (A more
conventional EBLUP uses unweighted residuals.)

We carried out four independent Monte Carlo
experiments. In each experiment, we drew from the
generated LFS population X = 1,000 samples, each of size
r = 12,000 individuals, with SRS. We generated non-
response in each sample using a2 model for the non-
response. We modeled the non-response by a logistic model
incorporating the same auxiliary variables as the LGREG-P
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maodel. The non-response probabilities were estimated from
each sample, and the sampling weights were adjusted
accordingly. For each estimator and for each domain, we
computed the Monte Carlo summary measures defined in
section 6.1. These measures were then averaged with
respect to a classification of the domains into Small (32
domains with average domain sample size < 60) and Large
(52 domains with average domain sample size » 60). We
finally averaged these figures over the four experiments.

Results

Table 4 shows the results for the seven estimators. In this
experiment based on a real population, the results are far
less dramatic than in Experiment 1. For all the models, the
model-dependent SYN estimators SYN-P, LSYN-P and
MSYN-D had a substantial bias. The bias was smallest,
even though still substantial, for the multilevel-model based
estimator MSYN-D. The bias continued to be large even in
the large domains. Large bias might be due to the poor fit of
the models, even if we used the best models available, and
because the inclusion of random effects in the models was
quite limited (only a random intercept term was included at
the domain level). Accuracy in model-dependent estimators
was best again for MSYN-D. As shown in Table 5, there
was a slight positive effect of model improvement in MSE.

Table 4
Average absolute relative bias (ARB) (%), average relative root
mean squared error (RRMSE) (%) and average median absolute
relative error (MAARE) (%) of estimators of the number of ILO
unemployed in small and large domains {LFS data)

Average Average Average
ARB (%) RRMSE (%) MJARE (%)
Expected Expected Expected
domain size domain size domain size
in sample in sample in sample
Small Large Small Large Small Large
(1-39)  (60+) (1-59) (60+) (1-39) (60+)

Model-dependent SYN estimators

SYN-P 36.5 142 376 16.3 366 14.9
LSYN-P 364 14.1 37.3 162 365 14.8
MSYN-D 273 9.1 31.8 159  29.0 12.1
Model-assisted GREG estimators ’
GREG-P 1.2 0.6 467 240 306 16.0
LGREG-P 1.2 0.6 468 240 307 16.0
MGREG-D 1.2 06 464 240 306 16.0
Composite estimators

COMP-D = 269 88 318 16.0 289 12.1

In model-assisted GREG estimators, the differences in
bias and accuracy were small between the multilevel-model
assisted MGREG-D estimator and the GREG-P and
LGREG-P estimators assisted by population-level fixed
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effects models. The fixed-effects linear and logistic models
yielded quite similar results, but the multilevel model
improved the results slightly, as shown in Table 5.

Table 5
Average relative improvement in MSE (%) of estimators of the
number of ILO unemployed in small and large domains (LFS data)

Average relative improvement in MSE (%)
Expected domain size in sample

Small {1-59) Large (60+)
MSYN-D versus SYN-P 324 1.3
MGREG-D versus GREG-P 0.4 0.2

As measured by the average MdARE, the difference in
accuracy between MSYN-D and MGREG-D is small in
small domains.

The composite estimates COMP-D were close to the
synthetic estimates because the estimated variance of the
random intercept was, in most cases, quite small.

7. SUMMARY AND DISCUSSION

In the introduction we made a point that, in our opinion,
has not been emphasized in earlier literature on domain
estimation, namely that the concept “model choice™ must be
distinguished from the concept “estimator type” when
estimation methods are compared. To one and the same
choice of model (same mathematical form, same speci-
fication of parameters or effects in the model) corresponds
one estimator for each of the traditional estimator types
discussed in the literature, Synthetic, Generalized
Regression, Composite, EBLUP and so on. A first conse-
quence of this is that one cannot make a fair comparison of
estimators of different types unless all share the same model
choice. Secondly, a change of model, say from a weaker to
a stronger model, may have quite different impact on
different estimator types. It is this second aspect that is
highlighted in this paper.

We have studied the impact of model improvement
especially for the Synthetic (SYN) type and Generalized
Regression (GREG) type estimators, and found that the
impact is very different, and the impact depends heavily of
the size of the domain concerned, that is, of the number of
sampled units in a domain. Especially in larger domains,
the impact of model improvement is very large for SYN
type estimators, and modest only for GREG type estimators.
The progression is such that a SYN type estimator goes
from being highly inaccurate estimator for a weaker model
to a much improved estimator for a stronger model. In other
words, SYN is highly dependent on the strength of the
model. This is not the case for a GREG type estimator. It is
slightly more accurate for the stronger model while
maintaining a high accuracy for both kinds of models. Its
improvement factor is modest compared to a SYN type
estimator, We have not carried out our analysis in detail for

other estimator types. This is an objective for future
research.

The possibilities for efficient estimation for domains and
small areas depend on the available statistical infrastructure.
As evidenced in many recent papers on small area
estimation, one must often start from a set of premises,
where the data for model fitting are available not at a unit
level, but at some aggregated level (this situation is typical
for example in the United Kingdom and in the United
States). The background for the methods described in this
paper is typical in statistical infrastructures where a good
supply of administrative registers exists, with data at the
unit level (this holds for example the Scandinavian
countries). In such an infrastructure it is often possible to
use unit keys, such as personal identification numbers, to
merge two or more administrative files at the micro level in
building the vector of auxiliary variables. Also, domain
membership is often specified for all units in the target
population, as assumed in this paper. We can also assume
that the collected survey data file can be merged with the
auxiliary data file using the unit keys. The situation
described above is increasingly found in many countries,
for example in several member states of the European
Union, where an increasing emphasis is being put on the
use of administrative registers for purposes of statistics
production.

TECHNICAL APPENDIX

This technical appendix includes the derivation of bias
and MSE approximations for GREG and SYN estimators
nceded for the examination of the effect of model
improvement in the case of Simple Random Sampling
presented in section 5. ) N

To measure how the accuracy Y, and Yeun
changes as the model progresses from (4.1) to (4.5), we
need to evaluate the variance of each estimator, as wetll as
the bias of ¥,. By contrast, ¥, - is nearly unbiased.
An obstacle in the analysis of Y., and Y, is their
nonlinear form. Therefore we work with the corresponding
linearized forms, for which we can easily obtain the bias
and the variance. The results are then used to approximate
the corresponding characteristics of ¥, o0 and ¥ i
Taylor linearization is a standard technique for these types
of estimators, as illustrated, for example, in Séirndal,
Swensson and Wretman (1992), Chapter 6.

Consider first the GREG estimators, GREG-P and
GREG-D. Let Y, . denote either of those two. With
linear approximation, the estimation error (the estimator’s
deviation from the target parameter Y,) is

~

Y ioreg = ¥y = E.\' a8, E, - EU N

where E, is the population fit residual for 4. The difference
between GREG-P and GREG-D lies in the residuals E,.
For GREG-P, they are £, =E,,, where E,, =y, -x/B,

(A.1)
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for k¢ U, with B, given by (4.2). For GREG-D, they are
E =E, withE, =y -x/B, for keU,d=1,..,D,
with B, given by (4 6)

In (A1),Y q,8, E is the Horvitz-Thompson (HT)
estimator for the vanable 8, E, . Using basic results for the
HT estimator we get E(Y,qpp0) - ¥, = 0, that is, Y JGREG
is nearly unbiased. It is easy to state the variance for a
general design. We need it here for the special case of
Simple Random Sampling Without Replacement (SRS).
The MSE of ¥ JCREG equals the variance of )4 Joree O the
order of approximation used here.

Next, consider the SYN estimators, SYN-P and SYN-D
Let ¥ denote either of those two. After linearization,

dSYN
the estimation error is approximated as

Yioon - Yy Es a,ryE, - Eu 8.4 By (A2)

where £, =E,,r, =0, for SYN-D, and E, =E,,,r,
R, for SYN-P w1th

Riw= (EU, k) ZU

-1
X

!
X

Cr Cy

X

Theterm ¥ a, r,, £, in(A.2) is the HT estimator for the
variable r,, E,. The quantities R, vary around a ceniral
value at or near the relative domain size, P, = N,/N. The
mean (1/N)¥ R, equals P, if x, contains the constant
“1” for every Ic From (4.2) we get

E(Fygn) - ¥, = -2y, E,. (A3)

The right hand side of (A.3} is zero for SYN-D, which is
therefore nearly unbiased, but is different from zero for
SYN-P, which is therefore biased.

For the fixed-effects linear model] formulations in section
4.1, we now examine the relative improvement factor (5.1)
under SRS with a sampling fraction equat to f=n/N .

Consider first the two GREG estimators. We get

MSE ( I}JGREG)E v (};JGREG)
L-f 1
=N
n N- IE

2
{SdkEk"Al, (ZU SdkEk)} (A4)

where the index T indicates the approximations derived via
the linearized Y reg» and £, = E,, for the P-model and
E, = E,, for the D-model. Developing the square in (A.4)
andusing (N,-1)/N,=land (N, -1)/(N-1)=« NN
we get

MSET( aorea) = VrlY, GREG)

21 f Nz
o {SEU (1 d)E’} (A.5)

where n,, =nP,=n(N,/N) is the expected size of the

domain portion of the sample, s, _sﬂU and
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Spy = (1IN, - MLy E-E, Y  with By =
(1/(N ))):U 2 I nyy s smal YJGREG has a poor
precision (a hlgh variance), except if the model fits
extremely well so that the residual £, is small for all units
in the domain, For GREG-D, Eu _0 so the second term
within curly brackets disappears.

Next, consider the two SYN estimators. We get

I-f |
MSE 1(¥ sy} = NzTR}"’:"i'ZU e Br)

+N3E§;d

where r, and E, are as specified in (A.2). The first term
in (A.6) is the variance; the second is the squared bias
obtained from (A.3), The variance term is often very small
because the sample size in the denominator is that of the
entire sample, not the perhaps much smaller size of the
domain part of the sample. The squared bias term is zero for
SYN-D, but non-zero, perhaps large, and not tending to
zero for SYN-P.

(A6)
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Adjustment of Unemployment Estimates Based on
- Small Area Estimation in Korea

YEON SO0 CHUNG, KAY-O LEE and BYUNG CHUN KIM'

ABSTRACT

The Korean Economicaily Active Population Survey (EAPS) has been conducted in order to produce unemptoyment
statistics for Metropolitan Cities and Provincial levels, which are large areas. Large areas have been designated as planned
domains, and local self-govemnment areas (LSGA’s) as unplanned domains in the EAPS. In this study, we suggest small area
estimation metheds to adjust for the unemployment statistics of LSGA’s within large areas estimated directly from current
EAPS data. We suggest synthetic and composite estimators under the Korean EAPS system, and for the model-based
estimator we put forward the Hierarchical Bayes (HB) estimator from the general multi-level model. The HB estimator we
use here has been introduced by You and Rao (2000). The mean square errors of the synthetic and composite estimates are
derived by the Jackknife method from the EAPS data, and are used as a measure of accuracy for the small area estimates.
Gibbs sampling is used to obtain the HB estimates and their posterior variances, and we use these posterior variances as a
measure of precision for small area estimates. The total unemployment figures of the 10 LSGA’s within the ChoongBuk
Province produced by the December 2000 EAPS data have been estimated using the small area estimation methods
suggested in this study. The reliability of small area estimates is evaluated by the relative standard errors or the relative root
mean square errors of these estimates. We suggest here that under the current Korean EAPS system, the composite estimates
are more reliable than other small area estimates.

KEY WORDS: Synthetic estimator; Composite estimator; Hicrarchical Bayes; Multi-level model; Jackknife mean square
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error; Gibbs sampling,.

1. INTRODUCTION

Sample surveys are a more cost-effective way of
obtaining information than complete enumerations or
censuses for most purposes. The surveys are usually
designed to ensure that reliable estimates of totals and
means for the population, pre-specified domains of interest,
or major subpopulations can be derived from the survey
data. There are also many situations in which it is desirable
to derive reliable estimates for additional domains of
interest, especially geographical areas or subpopulations,
from existing survey data.

The Korean National Statistical Office conducts the
Economically Active Population Survey (EAPS) in 30,000
sample households every month. The characteristics of the
economically active for 16 large areas (7 Metropolitan
Cities, 9 Provinces) of the country are based on these
monthly EAPS results. The EAPS is a large city or
provincial level survey. Many small cities in a large area
would prefer to obtain the unemployment figures for
individual cities without conducting their own survey, and
the most cost-effective way would be to turn to the EAPS
data. However, small cities belonging to a large area are
unpianned regions in the EAPS and sample sizes for these
small cities are typically too small due to the size of small
cities. Therefore, if we estimate the unemployment statistics
of small areas from the EAPS framework based on large

arcas, we may be unable to obtain an estimate with
adequate precision since the sample size in specific small
areas may not be large enough. The direct estimates for
specific small areas from the EAPS cannot be sufficiently
reliable in this situation, It is hence necessary to “borrow
strength™ from related areas to obtain more reliable esti-
mates for a given small area. An example of such would be
to gather separately published administrative records of
related small areas. We define related areas as those areas
with similar economic and demographic characteristics as
the small area we wish to estimate. Our aim is to adjust the
direct estimates derived from the National Statistical Office
of Korea through design-based and model-based indirect
estimators, and hence secure reliable estimates.

This paper focuses on discussion of the Hierarchical
Bayes (HB) estimator using multi-level models, and the
composite estimator that takes the weighted average of the
direct estimator drawn from the Korean National Statistical
Office and the synthetic estimator designed under the
Korean EAPS system. The general multi-level model
framework for small area estimation has been suggested in
Moura and Holt (1999), and the HB estimation method
using this multi-level model has been applied in more detail
in You and Rao (2000). We use here the HB estimation
method as in You and Rao (2000). Detailed accounts of
synthetic and composite estimation are given by Ghosh and
Rao (1994), Singh, Gambino and Mantel (1994) and
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Marker (1999). Other references can be found in P.D.
Falorsi, S. Falorsi and Russo (1994), and Chattopadhyay,
Lahiri, Larsen and Reimnitz (1999). Falorsi et al. (1994)
produce level estimates for unplanned small area territorial
domains from the Italian Labor Force Sample Survey
whereas Chattopadhyay et al. (1999) give a composite esti-
mation of drug prevalence for sub-state areas to improve on
the traditional design-based estimators. It is noted that both
studies use supplementary information from the original
survey data. For example, Chattopadhyay et al. (1999) uses
additional information that relates various groups, counties
and planning regions to one another.

In order to “borrow strength”, we divide the EAPS data
into two homogenous sub-regional groups (Cities and
Counties), and each sub-regional group is classified into
four categories of sex (male, female) and age (15-34, 35
and over). The unemployment characteristics of each
category in the given small area are used as supplementary
information for small area estimation. We also use the
census of 2000 and the Resident Registration Population of
2000 as auxiliary information to calculate the small area
estimates.

The contents of this paper are as follows. The Korean
EAPS is described briefly in section 2. Section 3 gives the
direct estimator drawn from the Korean National Statistical
Office. Section 4 introduces design-based and model-based
indirect estimators. We suggest synthetic and composite
estimators under the current EAPS system, and the mean
square errors of these estimates are derived using the
Jackknife method. For the model-based indirect estimator
we apply the HB multi-level model in estimating small
areas. Section 5 illustrates the methodology, studies model
selection and presents results employing the EAPS data.
Finally, some closing comments are made in section 6.

2. ECONOMICALLY ACTIVE POPULATION
SURVEY

The Korean National Statistical Office conducts the
Economically Active Population Survey (EAPS) on a

monthly basis. The characteristics of the economically

active (such as employment and unemployment figures) are
obtained from the EAPS. The EAPS provides monthly
information on the employment trend, which plays an
important role in policy making and evaluation for the 7
Metropolitan Cities and 9 Provinces. The interviewees of
the EAPS are persons aged 15 and over residing in sample
enumeration districts. The survey is conducted during the
week just after the reference period, which is the week
containing the 15" day of the month. The EAPS is
conducted by visiting and interviewing each household.
The sample households for the Korean EAPS are
selected from the sampled population using stratified
two-stage sampling. The sampled population consists of
22,000 enumeration districts that are ten percent of the 1995

census. According to the classification of major admi-
nistration regions, the country is divided into 16 large areas;
there are 7 Metropolitan Cities and 9 Provinces, and the
population is divided into 25 strata; 7 metropolitan strata,
and 18 provincial strata consisting of 9 urban strata and 9
rural strata. The number of enumeration districts, which are
primary sampling units (PSUs), selected in the 25 strata is
computed using a preassigned relative standard error. Then
PSUs are systematically selected with a probability pro-
portional to their measure of size within each stratum. Each
sampled PSU is divided into the same number of segments
as the measure of size of each PSU, each segment
containing 8 households on average. Within each PSU, 3
contiguous segments, secondary sampling units (S5Us), are
randomly selected, and all households in each selected
segment are surveyed. The sample is self-weighting in each
stratum while the sampling rates are different from stratum
to stratum. The selected sample households are surveyed
repeatedly for 5 years without rotating.

The planned domains of the survey design are the 16
large areas (7 Metropolitan Cities and 9 Provinces), and
local self-government areas (LSGAs) within those large
areas are unplanned sub-regional domains. The sample size
for the current EAPS is approximately 1,200 PSUs, and
30,000 households. The purpose of this study is to estimate
unemployment statistics of the LSGAs from the EAPS.

3. BDIRECT ESTIMATION

The direct estimator YI representing the total unemploy-
ment figure for small area {, based on data from the EAPS,
is as follows:

(3.1)

fori=1,2,..,1,s=1,2and h=1,2,..,n, where sis an
index of sex (male or female), n; denotes the number of
sample enumeration districts for small area i from the
EAPS, and ¥, is the number of unemployed persons by
sex for the Ath sample enumeration district within small
area i from the EAPS. The muitiplier M = X /X is
calculated under the condition that ¥, is an approximately
unbiased estimator, where X, is the estimate of the
restdent population in small area /, and X is the sample
survey resident population derived from the EAPS. The
variance of ¥, in the ith small area is estimated using a
linearization — based variance estimator.

4. INDIRECT SMALL AREA ESTIMATION

4.1 Synthetic Estimation

For the ith small area belonging to a large area, the direct
estimator Y, does not provide adequate precision because
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sample sizes in specific small areas are not large enough.
The synthetic estimator Yl. is a design-based indirect
estimator that borrows strength from related areas through
implicit modeling of supplementary data along with the
survey data. Suppose that there are 7 small areas in a large
area. We then divide each large area into several homo-
genous sub-regional groups, in which /= Z, 1 I, Each
sub-regional group including /; small areas is clas.51ﬁed into
J sex-age categories. It is assumed that each small area
belongs to one of several sub-regional groups and we obtain
auxiliary information from the sub-regional group. The
synthetic estimator has a low variance since it is based on
a larger sample, but it suffers from bias should the
assumption of homogenous sub-regional groups not hold.

The following notations are used: N,, for the number of
enumeration districts in small area i; #,, for the number of
sample enumeration districts allocated to the ith small area;

},2000» for resident populatlon derived from the census of
ﬁOOO in cell (i,/); ; 2Cm,for Resident Registration
Population of 2000 in cell 1) ‘fmmh, for Res1dent
Registration Population at survey month in cell (i, j); X
for the direct estimate 0fres1dentp0pulat10nmcell G ) Xy,
for the number of the unemployed in the Ath sample
enumeration district in cell (%, ).

We consider the estimation of the total unemployed ¥,
for all units belonging to small area i. A synthetic estimator
for small area i within the sub-regional group including 7
small areas is given by

(4.1)

where
c R
}5 _ jF:',ZOUU j}:',month
i pR >
45,2000
~ ll -~
;X = i,

n
ijir = z Z;M j}ilh’

in which P, denotes the estimate of resident population
obtained from administrative sources for the /" sex-age
category (cell) in small area i, | X denotes the estimate of
resident population of the /" sex-age category, Y . denotes
the direct estimate of the total unemployed of the _] sex-age
category in the EAPS, and the multiplier ;M is expressed
by M = X f X.. Note that Y;hr represent apprommately

unblased estlmates of Y = Z, th iV

As ameasure of accuracy for the synthetic estimator Y
it is customary to take

MSE(F?) = Var(?’)+ [Bias (1?,.,3)]2. (4.2)
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In (4.2), the variance of Y. is readily estlmated but it is
more difficult to_ estlmate the bias of Y Under the
assumption Cov(Y,, ¥, S) 0, where_ Y 1sad1rect estima-
torof ¥, the estlmator of MSE of Y 18 given by

~ ” Iy i TN

mse(F") = (7 - 1,2 - Var(7,). 43
Note that mse (ﬁ,s) in (4.3) is approximately an unbiased
estimator, but is potentially unstable should the number of
sample enumeration districts not be large enough. Another
measure would be to take the average of these MSE
estimators over small areas. This average MSE estimator is
expected to be stable, but it is not an area-specific measure
of accuracy (Ghosh and Rao 1994).

The Jackknife method is an alternative method that can
provide a more accurate area-specific measure. For small
area {, the estimator for the mean square error of the esti-
mate of the total unemployed is given as follows:

~ - - P ~
msey(77) = Vatpe (7% + [Blasn (7], 49
where
SR -1 i s L o]
Vary (77) = Yom-— 3 5,

o~ . Ao .
Biasyy (1;.) = (n, - I)PE INOES AL
n" ’n‘=l

Here, I;',.,S(h) denotes the estimate of Y, obtained when
district 4 is removed from the sample.

4.2 Composite Estimation

For small area i, the direct estimator Yr derived from the
EAPS does not provide adequate precision because sample
sizes in specific small areas are seldom large enough. Also,
the synthetic estimator Y. that borrows strength from
related small areas may be biased. A natural way to balance
the synthetic estimator Y, § against the instability of the

]
direct estimator Y, is to take a weighted average of the two
. X ; . ~C
estimators. The following composite estimator ¥,” can be
considered to gain adequate precision for small area

estimates:
7w v (1-0)F i=1,2,.,1, (45

Y,
i
where o, is the weight having a value between 0and 1.
Under the assurnption of Cov( Y Y ) 0, the optimal

weight @, ., that minimizes the MSE( Y €y with respect to
o, can be approxnmated by
MSE(Y,)
Diopyy = " —. (4.6)

MSE(¥%) + Var(¥,)

The optimal weight &, iopt) in (4.6) may be estlmated by
substituting the Jackknife estimator msem(Y ) given in
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- - Eatin Y
(4.4} for MSE(I’ifS), and replacing Var(Y, ) by Var(Y,),
the linearization-based estimator typically used by the
National Statistical Office of Korea. The estimated weight
@,y 15 then given by
58
msep (¥,)

(R (4.7)
msem(}"’l._s) + Var (I}‘._)

o, (opt) =

Using the estimated weight given in (4.7), we can obtain
the composite estimator of the total unemployed as follows:
7€ - 6

i t(npl)

Y. +(1 - t(upl))Y yi=12,.,1. (4.8)
The Jackknife method was used to obtain area-specific

measures of accuracy.

4.3 Hierarchical Bayes Estimation Using Multi-level
Models

Suppose that there are 7 small areas. We consider the
following multi-level model that integrates vartations within
and between the small areas in a single model:

Y = :'.:Bf"eik’ai = Zy+v,i=12.,1
k=1,2.,K (49)

where y,, are the direct estimates associated with the &th
month in the ith small area, which may be adjusted through
the model (4 9) with the auxiliary variables x,, =
%, 5> Xigr s X, k) selected from the EAPS, census and
administrative records B, isa p x I vector of regression
coefficients; Z; is a p * ¢ design matrix; yisa ¢ x1
vector of fixed coefficients; and v, = (v,, ;3. V; )T isa
p % 1 vector of random effects for the ith small area.

The v,’s are assumed to have a joint distribution
v, ind N, (0, @) with an unknown variance covariance
matrix @ and the ¢, ’s are assumed to be independent
randomem)rvanablesmthE (e,) =0and Var(e,,) = 02 \/
and ¢;, are also assumed to be independent.

To obtain HB estimates for each small area and posterior
variances of estimates obtained from (4.9), we apply You
and Rao’s (2000), HB multi-level model framework as
follows:

Model 1: HB model with equal error variances.
. ind
@ [yulBsoil™ NGB, o)),

i=1,2,..,0k=12,.,K, (4.10)
(ii) [I3.-|%‘1>]n~le N, (Z v, ®), (4.11)
(i1i) Marginal prior distributions are as follows:

yv~N (10 D),t,~G(a,b),and Q~ W (a R), where
1,=0,,8= lD andD,a,b,a andRareknownand
G(a, b) denotes a gamma distribution with its density
given by flx) = [T (@)]x " e-b*
(@>0,5>0,x>0). W, (a,R) denotes a Wishart
dlsmbutlon

Model 2: HB model with unequal error variances
ind

(1) [ygklﬁpo-] o~ N( kB,aG)
i=1,2,.,0k=12,...K, (4.12)

G 18], ®1" N,z v, ), @.13)

(iii) Marginal pnor distributions are as follows:
Y~N, ©,D), 1.} dG(ab)andQ ~W, (o, R),
wheret-o Q o' andD a;, b, aandRare
known.

We can use the GlbbS sampler to obtain the posterior
estimates of p, = x,, B for the kth month in the ith small
area using the posterior distribution of B, given y =
(y, k} i=1,2,.., L k=1,2,..,K). Its implementation
requires generatmg samples from full conditional posterior
distributions. The necessary full conditional posterior distri-
butions under Model 1 are given by:

Fori=1,2,..,1, k=1,2,..,K,

@ Byl ind N (%, 2, Xy %0 + Q)"

(te Ek yr'k'xik + QZI'T)’ (te Zk xjkxik:': + Q)~1))
(H) [’Yly’BsQaTe] NNP((E' Z‘vTQZ'.+D'I)

(X, z"ep) (X, 70z~ DY,
(lll) [Q |}", Bs ¥ Te]"" WP[ G+I,R+%Zi (B;_Z,Y)(B, _ZiY)T] 3

(IV) [Tely’ BaY’Q]NG(a+%’ b+%z,' Ek (yik—xi:Bi)Z] :

Using initial values ¥, Q@ and I ). we can generate

nges 1terat1vely based on (1)-(iv). The M Gibbs samples

" Qe I m=1,2,..,M} after implementing

“bum -in’ penod are assumed to be iterative samples from

the joint posterior distribution of B,y,Q and t,. The

posterior estimates of ]3 can be calculated using ‘the M
iterative samples {B =1,2, .., M}

The posterior mean of L and posterior variance of
estimates can be obtained by implementing Markov chain
Monte Carlo (MCMC) integration techniques from M
Gibbs samples. It should be noted that should the Gibbs
samples of the parameters be produced using the
WinBUGS program (Spiegelhalter, Thomas and Best
2000), the need to derive the full conditional posterior
distributions for the parameters mentioned above ceases to
exist. This is due to the fact that the Gibbs samples would
be produced by the full conditional posterior distributions
of the parameters (inherent in the process of running the
program), provided that the applicable model, priors and the
initial values of the parameters are given to the WinBUGS
program. The full conditional distributions for Gibbs
sampling under Model 2 are similar to the above Model 1.
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5. DATA ANALYSIS

5.1 Description of the Data and HB Model Fitted

Before we continue, we highlight the point that direct,
synthetic, composite and HB estimates were all derived
using the EAPS data of December 2000. However, the HB
estimates were derived using additional EAPS data of May
and Juiy 2000 for model fitting.

The large area ChoongBuk Province in Korea consists of
10 local self-government areas (LSGAs), which are small
areas. The number of sample enumeration districts of the
ChoongBuk Province allocated in the EAPS is 63, and the
number of sample households is 1,512. Under the EAPS,
the planned domains are large areas such as the ChoongBuk
Province, and hence small areas such as the LSGAs fall
under the category of unplanned domains. This leads to the
concern that should the estimates of the total unemployed
of the LSGAs be derived using only the sample enumer-
ation districts allocated under the LSGAs, the standard
errors will become large. To address this problem, we have
used data of neighboring smatl areas with similar economic
and demographic characteristics as the areas considered
here as complementary information for small area estima-
tion. We have first divided the large area of ChoongBuk
Province into two sub-regional groups with similar
economic and demographic characteristics. The two sub-
regional groups mentioned above are Cities and Counties.
We next divided each sub-regional group into four
categories of sex (male, female) by age (15-34, 35, and
over). The unemployment and economically active
population (EAP) estimates for each of the categories of
each sub-regional group were derived from the EAPS data.

Using the above estimates and the estimated resident
population for each of the four categories of LSGAs
produced monthly by the Korcan National Statistical Office
as supplementary data, we have estimated the synthetic and
composite estimates for the unplanned domains (10
LSGAs) within the ChoongBuk Province based on the
EAPS data of December 2000.

Let the direct estimate for the kth month in small area i
be y,,. The direct estimates derived from the EAPS data of
May, July and December 2000 were used as dependent
variates in HB multi-level models. The additional auxiliary
variates for the 4&th month in small area i are as follows:

T .
X=Xy X Xigpe Xian) 0 6= 1,250, 5k =1,2,3
. . . . T
RS N E A N A
- 1"dir | ? ~ 2°dir | * Idir] ° 4 dir
X X 3X X
k ‘ k ' k : k
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The element of xtk,( Pl X) e (F=1,2,3, 4) denotes
the estimate of the totaf unemployed of the j* sex-age
category in small area ¢, which is given in (4.1). We tried to
adjust the direct estimates, y,,, through the HB multi-level
model with auxiliary variates, x,,. The random regression
coefficient vector B, = (B‘],ﬁjz,ﬁﬁ, B,y of the i small
area in (4.9) was assumed to have the following structure:

Bt = Y10+ Vi3 Big = Y20+ Viai Biz = Va0 * Vizs By = Yag + Via»

where the fixed regression parameter vector v =
(Y100 Y20 Yo 740) is an unknown value, and the random
effect vector v, = (v,,V,5, V;5: V, 4) of the ith small area
follows N, (0, (D)

Using the vague proper priors for v, T and € determined
by setting D =diag (10% 10% 10%,10*),a=4,a =b =
a,=b, =0.001 and R with diagonal elements of 1 and
off-diagonal elements of 0.001, we generated 6,000 Gibbs
samples iteratively. Using the 3,000 samples after the
“burn-in” period (3,001-6,000), the posterior means of
unemployed persons of the ith small area and the posterior
variances of the estimates were calculated. The data
analysis was conducted using the WinBUGS program.

5.2 Model Selection

We considered model checking and comparison using
MCMC methods under the two assumed HB multi-level
mode] frameworks. First, we examined the posterior means
of standardized residuals,

E(}’,k)
m(yik)

which are directly computable in WinBUGS. Here y,, are
the direct estimates obtained from the data of the EAPS,
and E(y,) and Var(y,) are obtained from the predictive
distribution of y, . Figure 1 and Figure 2 give their normal
Q-Q plots, both revealing a high degree of agreement with
normality.

To make a comparison between the assumed HB
multi-level models, we calculated a negative cross-
validatory log-likelihood, - ¥, 1og f(¥;|¥ ). and a
posterior mean deviance, -2Y,, log f(y, k\é), for each
model. The two measures are also computable using the
WinBUGS program. y,) denotes all data except y;, and 0
represents the parameters of the predictive distribution of
;- Table 1 gives the results for the HB multi-level model
checks based on a 3,000 iteration BUGS run, Madel 2
yielded a negative cross-validatory log-likelihood of 121.52
and a posterior mean deviance of 243.05, both of which are
smaller than the corresponding Model 1 values. For our
data, Model 2 provides a better fit than Model 1.

resid;, = =1,2,..,10;k=1,2,3,
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Figure 1. Normal Q-Q Plot {(Model 1)

Table 1
Relative Comparison Between HB Multi-level Models

HB Model

Negative Cross-Validatory ~ Deviance

Log-likelihood
Model ! 188.67 371.30
Model 2 121.52 243.05

In order to study how the direct estimates y,, support the
HB multi-level models, we employed conditional predictive
ordinate (CPO) values (You and Rao 2000, page 178). The
CPO values under Model 1 are calculated by

ik

/" \HB 1
CPO

1 ¢ 3

Yy m=1 ”

M L OulB™, 0 ™)

for i=1,2,..,10,k=1,2,3, where f(yr.klﬁ,.,of) are the
conditional normal densities given by (4.10). For model 2,
the CPO valucs are calculated with o>, Using the Gibbs
sampler, we can calculate the CPO values for all points (see
Gelfand (1995) for a more detailed discussion). Figure 3

gives a CPO comparison plot for the two assumed HB
multi-level models.
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Figure 3. CPO comparison plot

Model 2 proves to be the better of the two HB
multi-level models, since its CPO values are significantly

Figure 2. Normal Q-Q Plot (Model 2)

larger in every small area than those for Model 1.
Therefore, we conclude that Model 2 with unequal error
variances is a good model for our data.

5.3 Estimation Results

Table 2 shows.the estimates of the total unemployed of
the 10 LSGAs within the ChoongBuk Province under the
EAPS data of December 2000, The estimated standard
errors of the direct and HB estimates are provided together
with the Jackknife root mean square errots of the synthetic
and composite estimates.

In general the direct estimates prove to be highly
unstable. Studying the Jackknife root mean square errors of
the estimates of the total unemployed in the LSGAs, we
find that in comparison to the direct estimates, synthetic and
composite estimates are more stable. Although the esti-
mated standard errors of the HB estimates are clearly
smaller than those of the direct estimates over all the
LSGAs, they turn out to be highly variable in certain
LSGAs such as areas 3, 4, and 5. Overall, the composite
estimates are more stable than other estimates for our data.

In order to evaluate the reliability of the direct and HB
estimates of each LSGA, the relative standard errors of
these estimates were obtained. Similarly, the reliability of
synthetic and composite estimates was evaluated by the
relative bias values and the relative root mean square errors
of these estimates. Denoting Y, as the estimator of the total
unemployed in the ™ small area, its relative bias (RB),
relative standard error (RSE) and relative root mean square
errot (RRMSE) are given by the following respectively:

/.\ 5 *
n Bias (Y,)

RB(F,) = — %~ x 100,
7;
~
.. A Var(®)
RSE(F) = L—"£2 x 100,
7
O % mse(l;‘)
RRMSE(Y,)) = % 100.
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Under the condition that fjf is an unbiased estimator, the
RSE and the RRMSE of Y,  are identical.

Table 3 shows the RB, RSE and RRMSE values of the
estimates of the total unemployed of the 10 LSGAs within
the ChoongBuk Province.

When comparing the bias values of synthetic and
composite estimates, the average relative bias value of the
composite estimates (4v.RB=10.26%) is somewhat smaller
than that of the synthetic estimates (4v.RB=12.24%).
However, both the synthetic and composite estimators show
large values of bias in most small areas with the exception
of two areas (areas 3 and 10).

We evaluate the reliability of these estimates based on
the RSE (or RRMSE} values of small area estimates. It
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should be noted that since the direct estimates shown in
Table 3 are unbiased, the RSE and RRMSE values of these
direct estimates are identical. The National Statistical
Office of Korea expects an approximate maximum RSE (or
RRMSE) limit of 25% as the standard for reliability of
small area estimates, With the exception of area 1, the RSE
values of direct estimates do not satisfy this criterion for
reliability. It follows that under the current EAPS system,
direct estimates are unreliable. In contrast, both the RRMSE
values of synthetic and composite estimates and the RSE
values of the HB estimates were much smaller than the
RSE(=RRMSE) values of the direct estimates in all LSGAs
considered.

Table 2
Estimates of the Total Unemployed for Ten Local Self-Government Area (LSGA) in ChoongBuk (December, 2000)

Hierarchical Bayes

‘;}f ca Direct Synthetic Composite (Model 2) ",
° Y, Est.se A Jmse, A Jmse [ Est.se
1 8,517 1,733 7,969 580 8,023 493 8,514 358 22
2 3,949 1,445 2,823 725 3,050 607 3,773 474 11
3 365 350 1,830 110 1,723 101 3199 152 4
4 503 373 612 234 581 196 440 106 2
5 781 676 1,164 169 1,140 158 567 261 3
6 1,275 577 1,230 282 1,238 233 1,138 270 3
7 1,032 646 1,459 295 1,384 252 1,035 13 5
8 1,795 893 1,825 346 1,821 306 1,790 69 6
9 1,023 602 2,888 574 2,000 270 970 200 3
10 512 384 872 94 851 92 511 63 2

Table 3
Relative Standard Errors (RSE) of Direct and HB Estimates for Ten Local Self-Government Areas (LSGA).
Relative Bias (RB) Values and Relative Root Mean Square Ervors (RRMSE) of Synthetic and Composite
Estimates for Ten LSGAs {December, 2000)

Unit %
Hierarchical Bayes
‘;‘_‘ ¢ Direct Synthetic Compasite {(Model 2)

© RSE, RB,  RRMSE,  RB,  RRMSE, RSE,

1 20.35 6.92 7.27 5.99 6.15 4.20

2 36.59 2377 25.69 18.39 19.9) 12.56

3 106.91 -2.95 5.99 -2.87 5.89 3797

4 74.15 16.26 38.30 14.37 33.73 24.00

5 86.58 -7.04 14.51 -6.67 13.84 4594

6 45.23 17.56 22,90 14.43 18.80 23.69

7 62.56 14.86 20.25 13.29 18.21 11.28

8 4677 15.25 18.97 13.49 16,78 1.87

9 58.83 15.01 19.88 10.20 13,50 20.65

10 74.93 -2.75 10.79 -2.82 10.79 12.29
Av.RB 12.24 10.26
Av.RSE 61.59 19.65
Av.RRMSE 18.46 15.73

Av.RB = average absolute relative bias over all LSGAs.

Av.RSE = average relative standard error over all LSGAs.
Av.RRMSE = average relative root mean square error over all LSGAs.
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It has been noted that both composite and synthetic
estimators produced reliable estimates for all the LSGAs,
and also that the estimates were similar to each other.
However, we stress that the composite estimator showed
higher gains in efficiency against the synthetic estimator in
all the LSGAs. Despite being efficient and reliable in eight
of the LSGAs (areas 1, 2, 4, 6, 8, 9, and 10), the HB
estimates fall below the criterion of reliability in the other
two LSGAs (arcas 3 and 5).

The RRMSE values of the composite estimates are on
average 70.66% smaller than the RSE(=RRMSE} values of
the direct estimates, with this figure ranging from 45.59%
(area 2) to 94.49% (area 3). In comparing RSE values of the
direct and HB estimates, HB estimates are on average
69.44% smaller than the direct estimates, with this figure
ranging from 46.94% (area 5) to 92.22% (area 8). It is
notable that RSE, =37.97% and RSE;=4594% in HB
estimation, which reflects not only that there are large
variations within areas 3 and 5, but also possible variations
of the estimates within each area for different months. For
such areas as 3 and 5, it is suggested that additional sample
enumeration districts should be allocated to reduce the
standard errors of the estimates. Thus we come to the
conclusion that under the current EAPS system, the compo-
site estimator were more stable and reliable than the other
estimators, and while the model-based HB estimator can be
efficient in most areas, it has a major shortcoming in that it
is highly variable in some areas

6. CONCLUSION

The Korean EAPS is a nation-wide sample survey, and
the only official source producing monthly employment
and unemployment figures. The monthly-published data
includes the unemployment rate, employment rate, the
economically active rate and also the demographic charac-
teristics of the productive population. However, the EAPS
design focuses on figures for large areas such as
Metropolitan Cities and Provincial levels, and hence is a
less than suitable source on its own for obtaining unem-
ployment figures of unplanned sub-regional domains such
as the LSGAs, especially since these areas are increasingly
attracting interest. We have suggested the design-based
indirect estimators (synthetic and composite estimators) and
HB multi-level model estimators for deriving unem-
ployment figures for the LSGAs within large areas, using
only the EAPS data and the official figures of the Korean
National Statistical Office (supplementary administrative
information). The Jackknife mean square errors of the
synthetic and composite estimates were introduced as

measures of accuracy for the small area estimates. The
posterior variances of the HB estimates were also used as
measures of precision for the small area estimates.

The results using the EAPS data show that the small area
estimators (synthetic, composite and HB multi-level model
estimators) were much more effective in companison to
results obtained using the direct estimator, and moreover
most of these estimates had significantly lower standard
errors (or root mean square errors) than that of the direct
estimates. In terms of gains in efficiency, the composite
estimator performed much better than other estimators.

The Korean EAPS is conducted every month, in addition
to which an overall review and redesign of the survey is
carried out every five years. In constructing a new survey,
a general review of population stratification, sample allo-
cation and clustering is being considered so that the
reliability of small area level estimates can be strengthened.
Studies to estimate other relevant domains such as sex, age
and education in addition to the existing sub-regional
domains within large areas are under consideration, based
on the new survey design.
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Conditional and Unconditional Analysis of Some Small Area Estimators
in Complex Sampling

LOREDANA DI CONSIGLIQ, PIERO DEMETRIO FALORSI, STEFANO FALORSI and ALDQ RUSSO'

ABSTRACT

This work decals with the unconditional and conditional properties of some well known small area estimators: expansion,
post-siratified ratio, synthetic, composite, sample size dependent and the empirical best linear unbiased predictor. As it is
commonly used in household surveys conducted by the National Statistics Institute of Italy, a two-stage sampling design
is considered. An evaluation is carried out through a simulation based on 1991 Italian Census data. The small areas
considered are the Local Labour Market Areas, which are unplanned domains that cut across the boundaries of the design

strata.

KEY WORDS: Relative conditional bias; Relative root conditional MSE; Conditional coverage rate.

1. INTRODUCTION

Sampling theorists prefer to plan the sampling strategy
on the basis of the unconditional sample space U, i.e., the
set of all possible samples (unconditional approach).
However, after data collection, the reliability of an estimate
obtained by means of an estimator ¥, can be evaluated
either unconditionally or conditionally; i.e., the evaluation
can be assessed on the conditional sample space U
(conditional approach), where U, is the set of samples
with some specific properties.

The use of conditional arguments in sampling has been
studied by Holt and Smith (1979) and Royall and
Cumberland (1985). The use of the conditional approach
for small area estimation has been studied by Rao (1985)
and Samdal and Hidiroglou (1989). These papers consider
the case of simple random sampling. In the context of small
area estimation, the conditional and unconditional
properties of some estimators for a two-stage sampling
desigm with stratification of the primary sampling units have
been studied in Russo and Falorsi (1993), Russo and Falorsi
(1996), Falorsi and Russo (1999) and Falorsi, Falorsi and
Russo (2000).

This paper considers a two-stage sampling design with
stratification of the Primary Sampling Units (PSUs). This
kind of design is generally used in houschold surveys
conducted by the National Statistics Institute, e.g., the
Labour Force Survey (LFS). The aim of this work is to
evaluate, on the basis of a simulation study, the conditional
and unconditional properties of some imporiant small arca
estimators.

The principal aspects of our investigation are:

— the simulation study is based on a sample design with
strata, ciuster delineation and sample size similar to
those used in the LFS;

1
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— the small areas considered are the Local Labour
Market Areas (LLMAs), which are unplanned
domains that cut across the boundaries of the design
strata;

— the conditional analysis is developed using a sample
space U, as reference set, consisting of all the
possible samples containing a fixed number of PSUs
belonging to the LLMA;

— the estimators examined are expansion, post-
stratified ratio, synthetic, composite, sample size
dependent and empirical best linear unbiased
predictor. For a review see Ghosh and Rao (1994),
Singh, Gambino and Mantel (1994), Pfeffermann
(1999) and Rao (1999).

In section 2 the sampling design, the parameters of
interest and the current estimator used by the LFS are
described. Section 3 illustrates the small area estimators
examined in the present work. In section 4 the empirical
results of the simulation study are shown. Section 5
contains a short summary with suggestions for extension of
the analysis.

2. DESCRIPTION OF THE LFS SAMPLING
STRATEGY

2.1 Sample Design

The LFS is a quarterly sample of about 72,000
households designed to produce estimates of the labour
force status of the population at national and regional
levels. The survey in each quarter is based on a composite
design, Within a given province (administrative area inside
the region) the municipalities are divided into two area

Loredana Di Consiglio, Piero Demetrio Falorsi and Stefano Falorsi, Istituto Nazionale di Statistica, Via Cesare Balbo, 16 - 00184 Roma, ITALY; Aldo Russo
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types: the Self-Representing Area (SRA) — consisting of the
larger municipalities — and the Non Self-Representing Area
(NSRA) — consisting of the smaller ones.

In the SRA a stratified cluster sampling design is
applied. Each municipality is a single stratum and the PSUs
are the households selected by means of systematic
sampling. All members of each sampled household are
interviewed.

In the NSRA the sample is based on a stratified two-
stage sample design. The PSUs are the municipalities, while
the Secondary Sampling Units (88Us) are the households.
The PSUs are divided into strata of the same magnitude in
terms of population size. Two sample PSUs are selected
from each stratum without replacement and with probability
proportional to the PSU"s population size. The SSUs are
selected by means of systematic sampling in each PSU. All
members of each sample household are interviewed.

2.2 Notation and Parameter of Interest _

For simplicity’s sake we will introduce notation only for
the two-stage sampling design of the NSRA. Note that the
derivation of the quantities and expressions for the SRA
case is a special case of NSRA.

With reference to the generic geographical region we
introduce the following subscripts: p(p=1,..,L) for
province; A (A =1, .., H ) for stratum; i for municipality;
j for household; a(a=1,...,4) for age-sex group. A
quantity associated to stratum 4, municipality {, and
household j will be briefly referred to as a quantity in Ajj; a
quantity associated to stratum A and municipality i will be
referred to as a quantity in hi. The following notation is
also used: N, for the number of municipalities in #; P, for
the number of persons in &; n, for the number of sample
municipalities in &; M, for the number of households in
hi; P, for the number of persons in Ai; m, ; for the number
of sample households in  Ai; P ... for the number of
persons in groupa belonging to hij and P, . for the number
of persons in Aij.

Further let
Ny My
rfErEn,
a 1 J =1

be the total of the characteristic y for the regional popu-
lation, where Y, .. denotes the total of the characteristic of

interest y for the Ié’a pij PETSONS in group a in houschold Ajj.

2.3 Estimatorof ¥

An estimate of total ¥ is obtained by means of a
post-stratified ratio estimator expressed by

-5

a=1

)

where

" g H o Ry My,
Ya = E Kku Yahu
h=1 =1 j=I
and 2)
.- H Ty My
Pa = Z 2 KhuPahu
h=l =l j=1
represent unbiased estimators of
H N M,
Ya = Z E Yahu
k=l izl jsl
and
H Ny My,
Pa = E Z Z Pajn’;
=l izl j=I

The symbol Ky that denotes the basic weight, is
expressed by (Cochran 1977)

P, M,
h” = —
Yo Py my,
Note that for the SRA
M,
=1land P, = P,, s0 K,”J = —

m,,;

3. SMALL AREA ESTIMATORS

We now consider the problem of estimating the total of
a y variable for units belonging to a small area. Let
d{d=1,..,D) be the generic small area of a given
geographical region. Since the LLMAs may cut across
provinces, the total of interest in small area d is defined by

A
Y, = Zl Y, (3)

with

=

d‘

Z

where L, denotes the provinces mcluchng part of the small
area d, H, are the strata of province p intersecting the
small area d and N, denotes the municipalities of stratum
A belonging to small area d.

The choice of an estimation method basically depends on
available information. In Italy the accessible information at
the small area level is currently very poor: only total
persons in age-sex groups can be obtained at the muni-
cipality level; this is why all the small area estimators
considered here will be based on this information only. In
the simulation work we have considered the following
direct estimators:

P’Jz~
M
_'M
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(i) the expansion estimator
4
5 E 5 E
Y) =3 ¥ CY
a=1
where

. Ly Hyy gy My
Ydfr = Z i Z EKmyYan

p=1 h=1 j=1 j=1

.

is the expansion estimator of ¥, and #,, is the number
of sampled municipalities of stratum s belonging to
LLMA 4,

(ii)the post-stratified ratio estimator

" R Y,
DI 2 Lia (5}
a=1 P
da
in which
.- Ly gff fgn Py g Ly %rf fap My
Yda= th Yahij 4 Pﬂ'a= E EK}H;’
p=l b=l i=1 j=1 =1 kel i=l j=l

In the simulation work reported here we have considered
the following design-based indirect estimators:

(iii) the synthetic estimator

o & FE
&
=X 5P ©)

in which ¥ aE and }5“5 are expressed by formulas (2).
The estimator (6) is based on the underlying
assumption that, for each post-stratum a, the small area

mean equals the mean at the regional level;

(iv) the composite estimator, considered in two alternative

forms
~C1 5 R 58
Y, =0,Y, +(1-a,)¥, 7
P2 saffe(-0)f,) (8)

where a,(0 < e, < 1) is a specific small area weight
while o {0 ca < 1) is a common weight for all the
LLMAs of the region. The methods used to calculate
weights a, and a will be described in subsection 4.1.
Both of the composite estimators equal by definition
the synthetic estimator when the sample size in the
small area equals zero;

(v) the sample size dependent estimator (SSD), expressed
by
Y3 = w, ¥ (1 -w) ¥} ©)
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where
1 if BfsapP,
Wa =1 5E .
P, /('.\.Pd) otherwise
where A is a given constant, I-;dE = EL] }sdi and
Pd’ = Zﬂ=| Pd'a "

The estimator (9) is based on the result that the
performance of the post-stratified ratio estimator depends
on the proportion of the sample falling in the small area. If
the proportion of the sample within the small area is
reasonably large then the estimator (9) equals the
post-stratified ratio estimator. Otherwise it becomes a
composite estimator with increasing weight (1 - w ) onthe
synthetic estimator, as the size of the sample in the small
area decreases.

Finally, in the framework of model-based indirect
predictors, we consider:

(vi) the empirical best linear unbiased predictor (EBLUP)

f’fp =7d};f+(l—7d)x(;§ (10)
where
2 2 ! > SR 2
B=§x,,x;/(6v+wd> gxm/(sww),
1, = 60/ (6% vy, (11)

that is based on the well-known area level linear mixed
model of Fay and Herriot (1979):

R
Yy =x;Brvyre,

(12)

in which: [} is the vector of regression parameters, x,
is a vector of area-specific auxiliary data, v, are
uncorrelated random area effects with mean zero and
variance 03 , €, are independent sampling errors with
mean zero and known variance y, § is the weighted

. . . 2 1
least squares estimator of B with weights (o, + y,)
and &, is suitable estimator of o>. In this work we
utilise an asympiotically consistent estimator of Uﬁ that
can be obtained iteratively by alternating weighted least
squares estimation for f with the solution of

Do )
Y () -xB)
d=1 =D"‘k

2
o, + W,

for crf, where & is the number of elements of vector x,,
corresponding to the number of auxiliary variables in the
model (12). The previous description is based on the
assumption that the variances y, are known; in practice
these variances are seldom known. In the present study we
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have considered two different methods (see subsection 4.1)
for evaluating sampling variances. From these two methods
we obtain two a]ternatlve empmcal best linear unbiased
predictors, Y, Pl and Y

4. EMPIRICAL STUDY

4.1 Simulation of the LFS Sample Design

In order to illustrate the conditional and unconditional
properties of the estimators discussed in the preceding
section, we carried out a simulation study involving
repeated draws of a sample design with strata and cluster
delineation and sample size similar to those used in LFS.
The study can be summarised as follows:

— the information referring to the auxiliary variables and
the totals of interest ¥,(d = 1, ..., D) are taken from
the 1991 General Population Census of Italy;

— the variables of interest are Employed, Unemployed
and persons searching for their first job;

— the auxiliary variables for the post-stratification of the
members of the sampling households are sex and age;

— the small areas of interest are the 27 LLMAs of the
Lazio region;

— for the Monte Carlo simulation R = 2,000 two- stage
LFS samples were selected for each one of the five
provinces of the Lazio region;

— the number of sex-age classes considered in the
" construction of the synthetic estimators equals 28; the
age groups are 0-14, 15-19, 20-24, 25-29, 30-34, 35-39,
40-44, 45-49, 50-54, 55-39, 60-64, 65-69, 70-74, more
than 74;

- the SSD estimator has been evaluated with different
values for the parameter A (A = 2/3,A=1.5and A =2);
the best performance in terms of mean square error has
been obtained for A = 2, so in this work only the results
for SSD with A = 2 are reported,

- forthe empmcal best linear unbiased predictors Y
and Y we have removed from the analysis the
LLMA of Rome. In fact the LLMA of Rome is very big
in terms of population and we have verified that it has
too much influence in the model. The model has been
fitted separately for two groups of small areas (see
section 5.1 for the definition of groups). The following
covariates have been chosen:

1) in the model for Employed and Unemployed, the
province (adminisirative arca contained in
region) and the number of persons in age groups
14-35 and 35-65 by sex;

2} in the model for persons searching for their first
job, the province and the number of persons in
age groups 14-25 and 25-35 by sex.

The reduction of the number of classes with respect
to the synthetic case was necessary because the
number of small areas in this study is not large
enough;

— the weights of composite estimator Y dc ! correspond
to the optimal weights given by the ratio of the MSE
of the synthetic estimator over the sum of the
variance of the direct estimator and the MSE of
synthetic estimator (Schaible 1978). These quantities
were actually evaluated on the 1991 census data;

- the unique regional weight of composite estimator
Y f 2 is the estimated optimal one for the average
MSE of the composite estimators of all areas (Purcell
and Kish 1979) given by

The resulting estimator is sample dependent. We
have not pursued this method for small area specific
weights due to the high variability of each area MSE
and variance estimation. A smoothed model has been
used to improve the stability of the evaluation of
vartances: the variance for the SRAs is obtained
applying standard formulas for variance estimation
on the linearized variables. For the NSRAs the
variance is obtained applying a common design
effect evaluated at the regional level to the simple
random sampling variance estimate;

— inthe predictor I;'EP', the sampling error variance vy,
has been evaluated using census data; for predictor
Y f "2 we have considered the alternative case in
which y, has to be evaluated through sample data:
a regression model based on twelve simulated LFS
samples was fitted and then the value of v, predicted
through the model.

4.2 Performance Measures
4.2.1 Overall Unconditional Measures

The following unconditional performance measures were
calculated to assess the bias and the MSE of the estimators
over the 2,000 replications and over alt the I small areas:

— Percentage Average Absolute Relative Bias (AARB);
— Percentage Average Relative Root Mean Square Error
(ARRMSE), expressed respectively by formulas

—i 7 -v,

r=1

1 2]
AARB(FH=-=Y 100

D 4

d
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ARRMSE(7 )=

in which f’f(r) indicates the value of the generic small
area estimator T (described in section 3) obtained in the r-th
of the R=2,000 samples.

The same measures were also considered averaging only
on subsets of small areas, with D replaced by the cardinality
of the subset. For the definition of the subsets see section
5.1.

4.2.2 Conditional Measures

For each small area d, the 2,000 repeated samples were
distributed over the different values of the realised number »,
of sampled municipalities belonging to small area d. For
each value of n; and for each small area d, the conditional
performance measures were computed over that subset of
the 2,000 samples for which the small area sample PSU
count was exactly n .

The following conditional performance measures were
considered:

— Percentage Relative Conditional Bias (RCB);
Relative Root  Conditional

— Percentage MSE

(RCMSE);
— Conditional Coverage Rate (CCR).

These measures were calculated in the following way:

n R 1Py -7
RCB(YJ):lE L-Y, 100
d r= Y,
. B PTGy -v, [
RRCMSE(F[)= [ LY RSO P
Rd r=1 Y,

Ry
CCR(F)) =[Riz; I(r)] 100
4=

in which R indicates the number of samples for which the
PSU sample count in the small area d equals the fixed
number n,; I(r) =1 if the r-th confidence interval based
on Y, (r) contains the true value ¥, and /(r) = 0 other-
wise. The nominal value equals 5% and the confidence
interval is the normal confidence interval where we have
used as evaluation of variance the value resulting from the
2,000 replications.
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5. ANALYSIS OF THE RESULTS

5.1 Unconditional Analysis

The LLMAs analysed in the simulation with their
characteristics in terms of population, number of
municipalities and number of LFS strata intersected are
reported in Table 1. The small areas have been grouped on
the basis of the ranking of the proportion of LLMA’s
population over the total regional population. The percent
proportion of the first group ranges from 0.12% to 1.73%;
the group is composed of 19 LLMAs. The percent pro-
portion of the second group ranges from 1.9% 10 5.05%; the
group is composed af 7 LLMAs. The third group consists
of the largest LLMA representing a percent proportion
equal to 64%. The LLMAs are divided into these three
groups bhecause we expect the MSE to be larger for those
LLMAs with smaller sample size.

Table 1
Locat Labour Market Area (LLMA}, Population, Percent
Population, Number of Municipalities and Number of LF§
Strata Intersected by the LLMA

Number Number

LLMA  Population Population%

Municipalities Strata

398 6,005 0.12 5 2
396 7,364 0.14 3 2
&.200 1 2

407 11,392 0.22 2 2
393 12,500 0.24 3 3
414 12,656 0.25 4 2
406 13,051 0.25 3 2
5 3

395 16,012 0.31

Jem

411 23,226 0.45 3

2
394 30,193 0.59 3
408 45274 0.88 5 2
392 51,789 1.01 13 5
416 59,512 1.16 10 4
402 71,906 1.40 15 5
401 72,080 1.40 34 8
400 72,235 1.41 3
412 78,249 1.52 5 3
409 88,984 1.73 4
399 97,680 1.90 42 5
405 114,361 2.23 3 2

5

397 133,303 2.60 18

146,133 :
410 170,945 6

404 198,010 3.86 16

415 259,382 5.05 35

7,"| all
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In Table 2 we present the values of the unconditional
performance measures AARB and ARRMSE for one of the
three LFS characteristics studied: the number of
Unemployed. This variable has been chosen since it is one
of the most important characteristic produced by the LFS.

Table 2
Percentage Average Absolute Relative Bias and Percentage
Average Root Relative Mean Square Error of the
Estimators of Unemployed

Estimator AARB ARRMSE
Expansion 2.67 96.07
Post stratified ratio 26.20 58.29
Synthetic 18.10 19.40
Composite C1 15.52 17.34
Composite C2 8.4 3148
SSD 10.14 29.84
EBLUP EB1* 13.36 66,57
EBLUP EB2* 12.98 74.88

*The averages for the EBLUPs do not include LLMA=403

Table 3 reports the same measures for each of the three
previously defined groups of LLMAs.

From the analysis of the results in Tables 2 and 3, the
following conclusions emerge:

— with the exclusion of the direct estimator, the bias of
composite estimator Y~ is almost always the
smallest, or among the smaller ones, and it is very
close to the bias of the SSD estimator;

— composite estimator 7€' is almost always the best in
terms of ARRMSE; its performance is similar to that
of the synthetic estimator when taking account of the
overall measure. This is due to the fact that the
optimal weights are close to zero on many of the
small areas considered in the simulation (note that
many small areas have a percentage population under
2%). This can be confirmed by examining the results
for Group 1 where the similarity of the two
estimators is evident;

— the overall bias of the post-stratified ratio estimator
is very high; this can be explained by the very high
bias of the estimator for the areas belonging to Group
1, where the typical sample size is small;

~ the model used for the empirical best linear unbiased
predictors does not seem adequate, likely because
we are far from the hypothesis of unbiasedness for
the direct component (post-stratified ratio estimator)
and due to the choice of the auxiliary variables; this
is true in particular for the variable unemployment
reported in Tables 3 and 4; it is important to note that
these predictors have not been considered for Group
3 since this group includes only LLMA =403
(Rome);

— comparing the SSD estimator and the composite
estimator ¥ cz’ both combining a direct component
with a synthetic component with sample weights, the
SSD estimator seems preferable since the perfor-
mance of the two estimators is very close but 88D is
superior in tetrms of computational simplicity. Since
in actual surveys the optimal weights are not known,
the present analysis suggests using the SSD esti-
mator; a drawback is that a specific study has to be
carried out for the choice of the parameter A.

Table 3
Percentage Average Absolute Relative Bias and Percentage
Average Root Relative Means Square Error of the Estimators
of Unemployed by Group of Local Labour Market Areas

Estimator AARB ARRMSE AARB ARRMSE AARB ARRMSE
Group 1 Group 2 Group 3

Expansion 352 12330 071 35.01 0.0 6.19
Post-stratified
ratio 36.94 72,07 077 2843 0.8 5.68
Synthetic 17.06 18.24 2268 2428 5384 7.33
Composite C1  16.52 17.85 147} 17.66 219 5.50
Composite C2 995 3559 689 2386 398 6.68
SSD 10.11 3477 11.27 1989 299 570
EBLUP EBI 13.84 80.14  12.06 29.75 * *
EBLUPEBZ 1444 91.89 9.02 28.74 * *

5.2 Conditional Analysis

For the conditional measures we limit ourselves to the
presentation of the results for the following four LLMAs:
Bagnoregio (code number =391) and Civita Castellana
(code number =392) in the small group, Cassino (code
number =413) in the medium group, and Rome (code
number =403) for the large group. The frequency
distributions over the 2,000 replications of the PSUs’
counts in each selected area are very different as a
consequence of the LLMAs’ different sizes.

Recall that we could not consider EBLUPs for LLMA
403 since it is the only one in GROUP 3.

In Table 4 the results of the study areas are reported for
the variable number of Unemployed.

The following points arise:

- the post-stratified ratio estimator usually has
conditional bias near zero when the sample size, n,,
takes an inner value of its frequency distribution;

— the post-stratified ratio estimator usually shows better
conditional performance, in terms of conditional bias
and of RRCMSE, than the expansion estimator;
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Table 4
Percentage Relative Conditional Bias and Percentage Relative Root Conditional MSE of the Estimators Conditioned
on the Number of Sampled Municipalities for given LLMAs
Numberof  Proportion of  Expansion  Poststraiified  Synthetic Composite Composite  Sample Size EBLUP EBLUP
sampled simulations Ratio Ci c2 Dependent EBI EB2
Municipalities Yo
LLMA= 391
Percentage Relative Conditional Bias
0 72.43 -100.00 -100.00 28.69 28.69 28.69 28.69 26.76 39.68
| 25.29 208.30 4.28 28.39% 28.21 7.28 -4.28 -2.35 -4.21
2 2.24 527.40 0.66 26.81 29.65 9.22 0.66 1.21 0.97
3 0.05 637.88 -16.53 24.68 2445 1.41 -16.53 85.54 -12.22
LLMA=391
Percentage Relative Root Conditional MSE
0 72.43 100.00 100.00 2933 29.33 29.33 29.33 141.08 163.51
1 2529 281.18 68.54 2%.03 28.85 48.20 68.54 70.44 66.58
2 2.24 588.02 . 45.51 30.23 30.07 3349 45.51 84.47 47.33
3 0.05 637.88 16.53 24.68 2443 1.41 16.53 85.54 12.22
LIMA=392
Percentage Relative Conditional Bias
0 8.79 -100.00 -100.00 10.26 10.26 10.26 10.26 -6.80 -7.45
1 27.32 -48.19 1.51 9.94 9.85 5.31 8.19 -5.3t 0.80
2 34.03 -2.01 -3.07 10.30 10.15 1.71 3.85 -5.88 -4.18
3 20.57 43.54 -2.95 10.22 10.08 1.01 6.50 -3.84 -3.64
4 7.65 108.22 4.05 10.88 10.81 6.58 4.34 -6.07 0.98
5 1,39 159.44 3.80 13.33 13.22 6.04 3.80 6.2t 1.06
[ 0.25 169.30 -13.32 10.14 9.87 -5.39 -13.82 -14.92 -13.08
LLMA=392
Percentage Relative Root Conditional MSE
0 8.79 100.00 100.00 11.47 11.47 11.47 11.47 40.38 43.91
1 2732 60.11 74.67 11.24 11.19 58.36 21.25 33.99 65.82
2 34.03 48,50 48.03 11.50 11.37 34.87 24.39 28.57 41.19
3 20.57 70.07 38.01 11.54 1141 27.09 2152 28.41 32.86
4 7.65 129.85 35.12 11.92 11.87 24.80 33.96 29.47 30.96
5 1.39 171.38 26.29 14.09 13.97 18.80 26.29 26.84 24.56
6 0.25 173.01 20.23 11.07 10.84 15.04 20.23 19.06 17.82
LLMA=413
Percentage Relative Conditional Bias
0 0.05 -100.00 -100.00 2.47 247 247 247 -100.00 -100.00
I 1.29 -74.42 8.04 5.60 5.63 8.36 6.08 -9.08 4.88
2 7.40 -49.73 0.92 4.56 4,52 272 3.68 -16.72 -2.08
3 21.31 -26.46 0.93 5.06 5.01 2,37 3.55 -15.33 -1.86
4 28.96 -4.60 -1.01 51 5.04 1.14 2.26 -17.29 -3.83
5 25.48 19.41 -0.31 492 4.86 1.72 1.78 -16.93 -3.18
6 11.43 42.48 0.14 4.64 4,58 1.91 1.45 -16.70 -2.81
7 368 66.82 0.86 5.04 4.99 1.77 1.58 -15.11 -1.91
8 0.40 59.75 -14.54 474 4.51 -1.72 -13.37 -28.08 -17.24
LLMA=413
Percentage Relative Root Conditional MSE
0 0.05 100.00 100.00 2.47 247 247 247 100.00 100.00
1 1.29 76.71 77.02 8.00 8.14 66.06 13.49 72.44 75.79
2 7.40 54.07 46.04 6.69 6.69 36.83 12.75 46.44 45.42
3 21.31 36.86 36.07 7.1 7.09 27.54 14.15 3935 35.63
4 28.96 32.02 312.26 7.28 7.24 2393 16.22 36.92 3202
5 2548 38.45 27.51 6.97 6.94 20.05 16.99 33.58 2743
6 11.43 53.61 22,02 6.52 6.47 16.06 15.95 29.75 21,94
7 3.68 77.79 24.58 6.83 6.79 17.86 20.53 28.44 23.81
8 0.40 65.42 18.76 8.19 7.96 12.71 17.42 34.65 21.61
LLMA=403
Percentage Relative Conditional Bias
8 0.15 -5.20 307 -3.96 0.56 -1.32 0.7 * *
9 0.20 -2.87 3.38 -2.10 1.37 -0.67 0.43 * *
10 .59 -4.66 -0.15 -5.82 -2.23 -3.45 -3.15 * *
11 482 -2.98 0.36 -6.13 -2.02 -3.53 -3.04 * *
12 11.38 -2.41 -0.03 -5.98 -2.21 -39 -3.11 * *
13 20.32 -1.52 -0.30 -6.15 -2.44 <4.16 -3.30 * *
14 23.40 -0.15 -0.10 -5.84 -2.20 4.05 -3.00 * *
15 18.68 1.01 -0.07 -5.51 -2.06 -3.93 -2.79 * *
16 12.67 2.51 0.20 -5.64 -1.94 -3.85 -2.69 * 3
1?7 4.42 373 0.25 -5.49 -1.85 -3.66 -2.55 * *
18 1.84 1.86 -2.55 -7.20 4.25 -6.32 -4.30 * *
19 0.55 6.28 0.71 -4.70 -1.28 -3.24 -1.88 * *
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Table 4 (continued)
Percentage Relative Conditional Bias and Percentage Relative Root Conditional MSE of the Estimators Conditioned
on the Number of Sampled Municipalities for given LLMAs

Number of Proportion of  Expansion  Post stratified  Synthetic Composiie Composite  Sample Size EBLUP EBLUP
sampled simulations Ratio C1 c2 Dependent EB1 EB2
Municipalities %
LLMA=403
Percentage Relative Root Conditional MSE

8 0.15 6.79 5.24 5.52 4.05 4.46 4.04 * *

9 0.20 5.64 6.06 4.79 4.81 4.69 4.49 * *
10 1.59 7.81 6.19 6.86 5.49 6.26 5.54 * *
1 4.82 6.54 5.75 7.51 541 6.54 5.66 * *
12 11,38 6.14 5.56 7.34 5.37 6.61 5.62 * *
13 20.32 6.34 6.01 7.72 5.86 7.12 6.0 * *
14 23.40 5.83 5.62 7.23 5.43 6.58 5.63 * *
15 18.68 5.98 5.58 7.10 542 6.51 5.59 * *
16 12.67 6.02 5.20 7.10 5.07 6.31 5.28 * *
17 4.42 7.33 5.82 7.16 5.53 6.72 5.66 * *
18 1.84 6.40 6.38 8.76 6.90 8.56 7.16 * *
19 0.55 8.38 5.42 6.53 5.04 5.84 5.12 * *

- S)‘TclfheﬁC estimators and the composite estimator
Y,  show the best performances in terms of
RRCMSE for LLMAs 391, 392, 413 and 403,
confirming what was observed in the unconditional
analysis. The only relevant exception is for LLMA
403 for the variable Employed (not reported here)
where the post-stratified ratio is the best. In fact the
variances of the different estimators are very low for
this small area so that the bias is decisive;

— interms of RRCMSE neither f’fz nor 88D seems to
outperform the other.

We have not reported here the results for the conditional
coverage rate (CCR), but we can. summarize them as
follows:

— thepoststratified estimator, the composite estimator )}fz
and the SSD estimator have CCR close to the
nominal value apart from extremes values of the PSU
counts;

— the EBLUPs’ CCRs are also close to the nominal
value but we suspect this is due to their high
variances;

— for the LLMA = 403 and the Employed variable, the
CCR of all the estimators is far from the nomnal
value.

5.3 Conclusions

As we have already observed, the results for the EBLUP
estimators are unsatisfactory; the model used is not
adequate, likely because we are far from the hypothesis of
unbiasedness for the direct component (post-stratified ratio
estimator) in many cases and because of the choice of the
auxiliary variables. One of the main points we intend to
address in future work is the improvement of the explicit
models for EBLUP,

The composite estimator Y dC' turns out to be the best in
terms of ARRMSE and RRCMSE. If weights are thought
to be stable they may be evaluated, for example, at a Census
point and Yfl applied. If sample dependent weights are to
be used, then the SSD estimator seems preferable to the
composite estimator ch because of its computational
simplicity, even if some ad hoc study may be necessary for
the choice of the parameter A, since the two estimators’
unconditional and conditional properties do not differ
greatly. In any case, some improvements can be gained for
the composite and SSD estimators through use of a better
synthetic estimator, in terms of the number and the choice
of post-strata, or in terms of a better choice of the auxiliary
variables as observed for the EBLUP.

In this work we have examined conditional and un-
conditional properties of some common estimators; our
interest in the future will be to examine also the empirical
properties from the conditional point of view of the
conditional estimators proposed in the work by Falorsi and
Russo (1999).
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Evaluating the Fundamentals of a Small Domain Estimator

RACHEL HARTER, MICHAEL MACALUSO and KIRK WOLTER!'

ABSTRACT

The lllinois Department of Employment Security is using small domain estimation techniques to estimate employment at
the countyfindustry division level, The estimator is a standard synthetic estimator, based on the ability to match Current
Employment Statistics sample data to ES202 administrative records and an assumed medel relationship between the two.
This paper is a case study; it reviews the steps taken to evaluate the appropriateness of the model and the difficulties

encountered in linking the two data sources,

KEY WORDS: Small domain; Employment; Labor market; Generalized regression model; Auxiliary data.

1. INTRODUCTION

The Current Employment Statistics (CES) program of
the U.S. Bureau of Labor Statistics (BLS) is a federal-state
cooperative survey of employers used for estimating em-
ployment, women workers, production workers, production
worker hours, and production worker earnings on a monthly
basis. The estimates are among America’s leading econom-
ic indicators. The sample was designed to support estimates
at the national, state, and large metropolitan statistical area
(MSA) levels. CES is roughly comparable to Statistics
Canada’s monthly Survey of Employment, Payroll and
Hours (SEPH).

The Illinois Department of Employment Security
(IDES), and similar agencies in other states across the
nation, participates with the BLS in the collection, tabu-
lation, and publication of the CES data. The state agencies
have considerable customer demand for employment esti-
mates at smaller sub-state levels than the CES sample was
intended to support. In particular, IDES needs monthly
employment estimates at the county/industry division level,
and it formed a partnership with the National Opinion Re-
search Center (NORC) to find a solution to this small do-
main estimation problem.

In a prior paper (Harter, Wolter and Macaluso 1999), we
discussed some simulations done to test various small do-
main estimators. In this paper, we focus on the practical
aspects of finding suitable auxiliary data, determining an
appropriate model, merging the data sources, and moni-
toring the estimation process.

2. EVALUATING AUXILIARY DATA
Purcell and Kish (1980), Ghosh and Rao (1994), and
Singh, Gambino and Mantel (1994) provide excellent
overviews of many small domain estimators. Most small

domain estimators improve on direct sample-based esti-
mators by (1) taking advantage of known auxiliary data, and
(2) assuming and fitting a model relationship between the
auxiliary data and the sample data. In this section we de-
scribe the auxiliary data for Illinois” small domain esti-
mation problem and our evaluation of the data for this
purpose.

The CES has a sister federal-state cooperative program
~ known as the Covered Employment and Wages (or
ES202) program — in which employment and wage data are
collected quarterly from all employers that participate in
states’ unemployment insurance programs. The employ-
ment figures from the ES202 are available approximately
five months following the reference quarter. The ES202
records provide the sampling frame for the CES program.
Furthermore, since the ES202 data are available for
essentially all employers in the sampling frame, ES202
employment figures are considered “truth” for practical
pUIposes.

CES monthly estimates are regularly benchmarked to
ES202 figures. While they are revised several times as more
complete information becomes available, the first release of
CES data occurs on the first Friday of the month following
the reference month. Although the ES202 employment
figures. lag behind the initial CES estimates by several
months, ES202 employment is an obvious candidate for
auxiliary data in our small domain estimation project.

A good auxiliary variable should be highly correlated
with the estimation variable. In this case, ES202 employ-
ment is measuring the same concept as CES employment,
except for minor scope and coverage differences, such as
student workers at colleges and universities. Therefore, we
expect ES202 employment and CES employment to be
highly correlated.

Illinois data for a matched sample of employers from
1995 and 1996 shows that, indeed, ES202 employment and
CES employment are highly correlated, regardless of the
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time lag between the two. Table 1 shows simpie correlation
coefficients for various industries and time lags. The corre-
lations are slightly higher for shorter lags in growing in-
dustries, such as Finance, Insurance, and Real Estate, and
for 12-month lags in seasonal industries, such as Construc-
tton. Nevertheless, we conclude from these statistics that
any recent period of ES202 data is likely to serve
successfully as auxiliary data for CES estimation.

Table 1
Mean Correlations of CES Employment with ES202 Employment*
Industry Division ES202 Mosi recent  Average monthly
lagged 12 March ES202 for most
months from ES202 recent available
CES available for  quarter to CES
CES month month
Mining 0.951 0.965 0.980
Construction 0.936 0.909 0.909
Manufacturing 0.983 0.984 0.985
Transportation & 0.978 0.981 0.982
Utilities
Trade 0.979 0.979 0.979
Finance, Insurance, & 0.982 0.985 0.987
Real Estate
Services 0.975 0.966 0.966
Government Ownership 0.996 0.995 0.993

* Within 2-digit Standard Industrial Classification (SIC) codes, we
computed correlations for pairs of CES and ES202 months with the
tagged relationships shown. We averaged the correlations across
reference months and across SICs within the industry divisions
shown.
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We reviewed the scope and coverage differences
between CES and ES202 to determine where the use of
ES202 data may require special attention. The student
worker example cited above was one such difference.
Railroad workers do not participate in state unemployment
insurance programs, so this industry is one in which ES202
data are not likely to be helpful. We reviewed the pro-
cessing schedules for both CES and ES202 to help us
determine which period of ES202 data would be available
for estirnation on the CES schedule. We reviewed the edits
applied in both programs to see where differences may af-
fect outcomes. For both of these programs, many anomalies
in the data are explained through the use of comment vari-
ables containing standard coded values for various business
conditions. We reviewed these comment variables to see
how special cases are handled. All of these background
checks were necessary to identify potential pitfalls in using
ES202 data as an auxiliary variable for the small domain
estimation problem,

Finally, we needed some indication that CES and ES202
data could be successfully linked for individual employers.
To examine this issue, we matched and plotted CES and
E8202 data. See Figures 1-3 for examples of statewide plots
by 2-digit SIC (Standard Industrial Classification). The
plots immediately alert us to potential matching problems
in individual cases (Points considerably off the straight line
signify potential matching or data problems), but assure us
that most observations can be successfully matched. We
discuss this issue in greater detail in section 4.
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Figure 1. CES Versus ES202 Employment for a Sampte of 103 Illinois Employers Classified in the Primary

Metal Manufacturing Industry.
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Figure 2, CES Versus ES202 Employment for a Sample of 701 Employers Classified in the Trade Contractors Industry
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Figure 3. CES Versus ES202 Employment for a Sample of 50 Employers Classified in the Apparel Manufacturing Industry

3. EVALUATING THE MODEL

Since the CES and ES202 proprams are both measuring
employment, we expect the relationship between the two to
be linear with intercept zero and slope close to one. The
plots in Figures 1-3, and the many other similar plots we
produced and reviewed, indicate that this is generally true.
Industries with changes over time or differences in scope

and coverage sometimes display stopes other than one. The
plots also indicate variability in the linear relationships, and
some industries exhibit more variability about the linear
relationship than others. Generally, the residual variance
about the line increases with employment.

The standard “ratio” model adequately describes most of
our data. Let y, be the current month CES employment for
employer /, and let X; be the ES202 employment for the
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same employer at some previous time period. Then the
assumed model relationship is

¥y, = %B+¢, €~ NID(0, o’ x). (1)

The model parameter B can be estimated by generalized
least squares, resulting in the ratio estimator B =7 /x,
where y and x are the means of the observed current-
month and auxiliary data, respectively (Sampling weights
may or may not be employed in the analysis depending on
many considerations beyond the scope of this article).

If Model (1) is true, then the best linear unbiased
predictor of current month employment for sub-state do-
main D,, (industry division k and geographic arca / ) is

¥(D,) = X %; By 8 (D), @)
jel

where 8,(D,,} indicates whether unit j is in smalt domain D, ;
the summation is over all employers j within the state (or
universe U); and P, is the ratio estimator within D, With
insufficient sample data to estimate the model parameters
reliably at the small domain level, we instead estimate the
parameters for model cell m (typically a 2-digit SIC at the
state level), and apply the estimated model parameters to
each of the small domains within the state. The resulting
synthetic estimator is of the form

Y(Dk,r) = Z E xj Bm Sj(D“), (3)
mek jel,

where the first summation is over all model cells that
overlap with domain D,, and the second summation is over
all employers within the model cell. The estimator is a
simple sum of predicted employment over all employers in

the universe within the domain.
We tried an intercept in the model and verified that it
was not significantly different from zero, in most cases. We

tested that the slope was significantly different from zero.
We plotted the residuals to verify that they were suitably
well behaved. We checked the R ? values to quickly assess
the explanatory power of the model.

To illustrate this work, Table 2 gives summary statistics
for models in Trade using January 1996 CES and January
1995 ES202 data. All of the R? values in Table 2 are quite
high, ranging from .87 to .96. Only two of the intercepts are
significantly different from zero. Except for Retail Trade,
Apparel, where the intercept is significantly different from
zero, all of the slopes are between .9 and 1.1.

The largest employers are sclected into the sample with
certainty. Because they are so influential and not necessar-
ily typical, we decided to exclude them from the estimation
of the model parameters.

We also tried Estimator (3) corresponding to large sub-
state model cells. This approach loses sample size (and thus
precision) relative to the statewide modet cells, but presum-
ably gains some greater ability to target local economic
conditions (thus reducing bias, if any). Yet in comparing the
resulting small domain estimates with “true” values in
simulations, we found the estimators from statewide mode!
cells to have the smaller mean squared errors.

Following the work of Battese, Harter, and Fuller (1988),
we fit a components-of-variance model of the form

¥y = %;B+v;+&,,v, - NID(0,62), &, - NID(0, 6} x, ) (4)

i i

and tested the homogeneity of the county-level variance
components, v,. While there was some indication of hetero-
geneity, the variability in the variance component estimates
actually increased the mean squared errors of the small do-
main estimates in our simulations. We decided that the vari-
ance components approach was not superior to the simple
synthetic estimator.

Table 2
Generalized Regression Models for CES All Employment on ES202 Year-Ago Employment: Trade Industrics

Industries Defined by 2-Digit SIC Code n R? Intercept Slope

Wholesale trade, durable goods 700 0.56 -0.061 1.015 **
Wholesale trade, nondurable goods 381 0.95 -0.032 0978 ==
Retail trade, building and garden supplies 189 0.96 0.420 0918 ==
Retail trade, general merchandise 42 0.95 -1.325 1.081 »=*
Retail trade, food stores 156 0.95 0.410 0.934 *=
Retail trade, automabiles 379 0.97 0.130 0.97] *=
Retail trade, apparel 112 0.90 1.320 ** 0.750 **
Retail trade, furniture 110 0.95 0.242 0.931 **
Retail trade, eating & drinking establishments 460 0.89 0.382 0.968 **
Miscellaneous retail trade 332 0.87 0810 ** 0.915 **

* Significant at .05 level ** Significant at .01 level
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We evaluated the synthetic estimator and other small
domain estimators in a simulation study using Illinois data.
The study included the simple unbiased estimator, the link
relative estimator (Madow and Madow 1978, and West
1983,1984), raked estimators using CES estimates at higher
aggregations as marginal totals, two variations of general-
ized regression estimators (Sirndal and Hidiroglou 1989),
and three variations of synthetic estimators. For some of the
simulations, the data were restricted to cases for which the
CES and ES202 data could be cleanly linked. We then drew
repeated samples from this “universe” and tested the results
against “truth.” For later simulations, the data files included
non-matches with rules for special handling based on likely
causes of the mismatches. The handling of non-matches is
described in the next section.

In the simulations, we used all the samples and the
known truth to compute bias, relative bias, mean squared
error, and relative mean squared error of estimated total em-
ployment and month-to-month change in employment. We
also plotted the 5%, 50", and 95™ percentiles of the distri-
bution of the estimators and examined the distributions in
relation to the true values.

Results of the simulation study are reported in Harter
et al. (1999). In general, we found that estimators that used
ES202 as auxiliary data performed better than the direct
sample-based estimator, the link relative estimator, and the
raked estimators that used only sample data. The estimator
that performed best overall was a variation of the synthetic
estimator, derived from the prediction theory approach to
survey sampling (Royall 1970, 1988, and Royall and
Cumberland 1981a, 1981b). This estimator

(D) = X X v3,D)

mek jes,

+ Z E X; ﬁm SJ(D”)

mek jes,

=X X xB,8(0)

mek jell,

+2 3 (0-%,B,)8,D,) %)
mek jes,
is intuitively appealing to non-statisticians because the
sample data are used directly for sample employers, while
the model predictions are used only for nonsample em-
ployers. It is the synthetic estimator plus a sample-based
correction for any lack of fit in the models.

4. MERGING THE DATA

The success of the small domain estimator depends, in
part, on the ability to accurately match the CES and ES202
data. We can match CES and ES202 records by unem-
ployment insurance number (UI) and establishment or
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reporting unit number (RU). When the CES reporter is an
aggregate of establishments, such as a multi-site employer
reporting all employees together without distinguishing
individual work sites, the corresponding ES202 records
must be aggregated to match. Figure 3 demonstrates an
isolated instance of a bad aggregate match.

Plots of the kind presented in Figures 1-3 enabled us to
identify many miscoded observations. For example, an
aggregate reporter coded in the files as containing all the
company’s work sites, but that actually covers only a single
work site, should have been coded as a single establish-
ment. The process of checking outliers in all the plots was
time-consuming, but resulted in major improvements in the
micro data, which in turn improved the estimated model
pararmneters.

Several situations make the match process problematic.
First, the ES202 data contain employers that have gone out
of business. Conversely, the CES data contain new em-
ployers that were not in existence at the time the ES202
data were collected, although difficulty in identifying new
businesses in a timely fashion makes this scenario less
common. Births and deaths of businesses, then, cause real
mismatches in the data.

Second, nonresponse to either the CES or ES202 causes
mismatches. Missing or delinquent reporters to the ES202
are usually imputed for a time. At present, imputation is not
done for missing CES cases. A key difficulty with both pro-
grams is distinguishing nonresponse from a death.

Third, businesses often reorganize, merge, acquire other
businesses, divest divisions, and so on. Any of these status
changes can cause states to assign new unemployment in-
surance numbers. The predecessor businesses and successor
businesses are treated as deaths and births. Altematively, if
a single predecessor can be linked to a single successor,
their records could be joined to form one unified record.
Unfortunately, the linkages are often not one-to-one. In
many instances, predecessors are indistinguishable from
deaths and delinquent CES reporters, and successors are
indistinguishable from births and missing ES202 data.

For the initial implementation of our small domain esti-
mator, we treat missing CES units as nonsample units; that
is, we use their ES202 data and the model 10 predict their
current month values. Since we cannot distinguish deaths
and predecessors from missing CES data, we predict their
current month employment using their ES202 data and the
model. We use imputed ES202 data as real observations.
Because it is relatively rare for a new business to appear in
the CES sample data before it appears in the ES202, we
treat CES records without ES202 counterparts as successor
records. That is, in the small domain estimator, we treat
them as nonmembers of the CES sample and predict their
employment from the unmatched predecessor records in the
ES202 file and the model. All of these decisions or judg-
ments were based on IDES’ experience.

Even if the Ul and RU numbers match, the CES and
ES202 records may differ in their industry or geographic
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codes due to differences in the programs’ update cycles.
Discrepancies might represent errors or legitimate changes.
Originally, our thought was to use the CES codes in the
small domain estimator, assuming CES codes were the
more current. However, as the small domain estimator was
being implemented, more and more of the CES data
collection operations were being transferred from Ilinois’
control to central data collection centers operated by the
BLS. IDES felt this loss of control could compromise the
quality of the CES codes and thus they decided to use the
ES202 codes instead. In actual production, we use these
classification codes for all purposes, including definition of
model cells, estimation of the slope parameters, and
calculation of the small domain estimates.

Sometimes a well-matched sample unit experiences em-
ployment shifts that are not typical of the industry or the
region as a whole. Both the CES and ES202 systems allow
for comment codes in the data files so that anomalies and
their reasons can be flagged. We developed an extensive set
of rules for determining when a matched sample record may
be used in the estimation of modei parameters, and when
this would be unwise. For example, a drop in employment
due to weather or climate conditions, such as flooding along
the Mississippi River, is a situation likely to be common to
other businesses in the area. A record with a code for this
type of anomaly should probably be included in the esti-
mation of model parameters. A fire, on the other hand, is
likely to affect one and only one business, and a drop in
employment due to the fire could be very misleading if
applied to nonsample businesses. In this case, the sample
unit with the fire stands for itself, but it is not part of the
calculation of the model parameters.

All the potential data problems and potential mismatches
led us to modify the estimator slightly. The revised esti-
mator is

f}(D,u) = Z E yjﬁj(Du)
mek JES g

+2 Y 5B, 8(D) 4,  ©

mei jgs,

where A4, is an additive adjustment for known data defi-
ciencies. This concession to practical realities was original-
ly intended for situations such as the addition of railroad
workers, where Illinois” CES manager obtains information
on railroad employment from the Railroad Retirement
Board because railroad workers are not covered by the state
unemployment insurance program, and thus are missing
from the ES202 data file. Clergy and summer youth
workers are often added the same way. The CES manager
and affiliated local economists scattered throughout the
state have found the adjustment option useful for other
known problems, such as employees that are reported at
headquarters when they are really located around the state.
Employees whose location is unknown are usually assigned
to a nonspecific county “999” for inclusion in statewide

estimates, but traditionally have been omitted from
sub-state estimates. With the adjustment option, the CES
manager can allocate the county 999 employment to
individual counties in proportion to other employees in the
same industry. Major births and deaths can be reflected in
the estimates through the adjustments until the CES and
ES202 files can catch up.

The danger of this adjustment capability is that it can be
used to force small domain estimates to conform to the CES
manager’s or economists’ judgments, rather than letting the
data and models speak for themselves. The best possible
model is useless if it is ignored or “fudged”.

Despite the danger, Estimator (6) is the one that we have
actually moved into production in Illinois. All matched
respondent records contribute to the first term. All matched
records not designated as atypical or certainty contribute to
the estimated slope in the second term. The summation in
the second term includes nonmatched ES202 cases and
missing sample cases — all cases that are treated as
nonsample cases that month. If we have a CES record that
does not match anything in ES202, it is dropped altogether.
At present, ali data adjustments, A, are coordinated and
approved through the CES manager, who operates under
strict guidelings, including a requirement to maintain
consistency with the CES estimates published by the BLS.
Within the guidelines, the manager is granted discretion to
determine when adjustments are in the best interest of the
estimation process.

5. MONITORING THE PROCESS

It is preferable to discover and fix data problems prior to
estimation rather than rely on the adjustment capability in
estimation. [llinois has developed several tools for moni-
toring the data that feed the monthly estimation process.
Many of these tools reside in Illinois’ software that
pre-processes and matches the data prior to estimation.

Matching proceeds as a by-product of CES’ daily
processing activities. The editing and registry maintenance
of CES records involves review of ES202 records, which
are available to CES staff through simple “point and click”
tools. The CES staff designates a match between CES and
ES202 records by a special code manually applied to the
CES record and later read by the pre-processing software,
Those CES records so indicated as matched are subse-
quently checked for ES202 congruence and uniqueness on
the combination of UI, RU, industry, ownership type,
county, and delinquency status. The clean matches are
added to a marched file, which is available for further
review through special diagnostic or exception reports. We
developed and implemented an extensive set of rules for the
staff to follow in resolving the messy matches — the one to
many and many to one matches. The pre-processing soft-
ware executes the rules and prints all cases of a certain type
in a table for staff review. After applying all the rules and
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resolving the match statuses of the cases in the printed
tables, we write remaining non-matching records to a sep-
arate nonmatched file for diagnostic reports and additional
staff review.

From the matched file, we develop diagnostic or excep-
tion reports for CES staff. For instance, the pre-processing
software generates a report of sample records whose CES
and ES202 data differ more than one might expect. The
basis for this exception report is a statistic derived from
information theory. See Theil (1967), Strobel (1982), and
Harter (1987). The statistic is computed for each sample
observation as follows:

_ ()’j-xj)2
T (yea)l2

It is a Taylor series approximation of a measure of
entropy and under the null hypothesis has a x* distribution
with 1 df. The statistic provides a way of ranking data
differences, and balancing absolute differences, deminated
by larger employers, and relative differences, dominated by
smaller employers, The CES manager can evaluate the
cases with the largest values of E, identifying and cor-
recting miscoded data prior to small domain estimation.

Other exception reports display duplicate CES records
that were removed from the files. Duplicates are rare but
can happen, for example, if two respondents from the same
company each file CES reports. The exception reports
display for review single establishment records in CES
incorrectly matched to an aggregation in the ES202 that
were dropped by the pre-processing software. Also dis-
played for review are unmatched CES records that could
represent a successor or a birth employer. Other specialized
diagnostics check the sums of ES202 records at county,
MSA, and statewide levels for comparison with their re-
spective CES counterparts.

After going through these exception reports and making
changes where appropriate, CES staff may decide to rerun
the pre-processing software using the newly updated data,
if the production schedule permits.

The software that computes the small domain estimates
has a final data check built in. The input data values and the
estimated model parameters are checked against tables of
“sanity values™ for reasonableness. This is a gross check
only, designed to signal when something very unexpected
has occurred.

The estimation system produces tables of matched sam-
ple data and tables of nonsample data at the individual re-
porting unit level. The authorized users of the small domain
estimation software — the CES manager and the affiliated
local economists, among others — can review the micro data
as well as the computed estimates. Based on their review,
they can provide useful guidance regarding specification of
the adjustment term 4, .

The CES manager and lecal economists review the
estimates themselves along with historical estimates to see

)
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whether the trends and seasconality in the observed time
series are reasonable. For instance, Construction, Retail
Trade, and Education Services all have strong seasonal
patterns. Deviation from such patterns would suggest to the
analyst that further review is needed. Manufacturing em-
ployment is thought to be trending downward over the long
term, and there is a natural tendency to examine its time
series in this context.

Finally, the CES manager and local economists sumima-
rize all of the labor market areas into one large entity. The
larger employment numbers allow sharper delineation of
seasonat and trend expectancies. They also allow for subse-
quent comparison with statewide estimates.

6. CONCLUSION

Many aspects of small domain estimation must be
checked and rechecked in production on a monthly basis.
The auxiliary variable must be investigated carefully with
respect to its correlation with the survey variable and its
reliability, compatibility, and availability. The record link-
age process is challenging (but highly rewarding) and
requires vigilance. The models and assumptions underlying
the estimator must be checked and verified for reason-
ableness. The estimates themselves must be scrutinized
regularly. Development of the small domain estimator
forcefully shows that even with the most ideal auxiliary
variable and a textbook model, practical issues can intrude
and require that flexibility be built into the estimation
Process.
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Solving The Error Localization Problem by
Means of Vertex Generation

TON DE WAAL'

ABSTRACT

To automate the data editing process the so-called error localization problem, i.e., the problem of identifying the erroneous
fields in an erroneous record, has to be solved. A paradigm for identifying errors automatically has been proposed by Fellegi
and Helt in 1976. Over the years their paradigm has been generalized to: the data of a record should be made to satisfy all
edits by changing the vaiues of the variables with the smallest possible sum of reliability weights. A reliability weight of
a variable is a non-negative number that expresses how reliable one considers the value of this variable to be. Given this
paradigm the resulting mathematical problem has to be solved. In the present paper we examine how vertex generation
methods can be used to solve this mathematical problem in mixed data, i.e., a combination of categorical (discrete) and
numerical (continuous} data. The main aim of this paper is not to present new results, but rather to combine the ideas of
several other papers in order to give a “complete”, self-contained description of the use of vertex generation methods to
solve the error localization problem in mixed data. In our exposition we will focus on describing how metheds for numerical

data can be adapted to mixed data.

KEY WORDS: Chemikova’s algorithm; Error localization; Fellegi-Holt paradigm; Fourier-Motzkin elimination;
Mathematical programming; Mixed data editing; Statistical data editing; Vertex generation.

1. INTRODUCTION

An important problem that has to be solved in order to
automate the data editing process is the so-called error
localization problem, i.e., the problem of identifying the
erroneous fields in an erroneous record. Fellegi and Holt
(1976) describe a paradigm for identifying errors in a record
automatically. According to this paradigm the data of a
record should be made to satisfy all edits by changing the
values of the fewest possible number of variables. In due
course the original Fellegi-Holt paradigm has been
generalized to: the data of a record should be made to
satisfy all edits by changing the values of the variables with
the smallest possible sum of reliability weights. A reliability
weight of a variable is a non-negative number that
expresses how reliable one considers the value of this
variable to be. A high reliability weight corresponds to a
variable of which the values are considered trustworthy, a
low reliability weight to a variable of which the values are
considered not so trustworthy.

Describing a paradigm for identifying the erroneous
fields in an erroneous record is only a first step towards
solving the error localization problem, however. The
second step consists of actually solving the resulting
mathematical problem. This mathematical problem can be
solved in several ways, see e.g. Fellegi and Holt (1976);
De Waal and Quere (2003}, and De Waal (2003). One of
these ways is by generating vertices of a certain polyhedron.
Unfortunately, the number of vertices of this polyhedron is
often too high for this approach to be applicable in practice.
Instead, one should therefore generate a suitable subset of

the vertices only. There are a number of vertex generation
algorithms that effictently generate such a suitable subset of
vertices of a polyhedron. An example of such a vertex
generation algorithm is an algorithm proposed by
Chernikova (1964, 1965). Probably most computer systems
for automatic edit and imputation of numerical data are
based on adapted versions of this algorithm. The
best-known example of such a system is GEIS (Kovar and
Whitridge 1990). Other examples are CherryPi (De Waal
1996), AGGIES (Todaro 1999), and a SAS program
developed by the Central Statistical Office of Ireland (see
Central Statistical Office 2000). The original algorithm of
Chernikova is rather slow for solving the error localization
problem. It has been accelerated by various modifications
(see Rubin 1975 and 1977; Sande 1978; Schiopu-Kratina
and Kovar 1989; Fillion and Schiopu-Kratina 1993).

Only the last three of these papers focus on the error
localization problem. Sande (1978) discusses the error
localization problems for numerical data, categorical data
and mixed data, The discussion of the error localization
problem in mixed data is very brief, however,
Schiopu-Kratina and Kovar (1989) and Fillion and
Schiopu-Kratina (1993) propose a number of improvements
on Sande’s method for solving the error localization
problem for numerical data. They do not consider the error
localization problems for categorical or mixed data.

In the present paper we examine how vertex generation
methaods can be used 1o solve the error localization problem
in mixed data, i.e., a combination of categorical (discrete)
and numerical (continuous) data. The main aim of this
paper is not to present new results, but rather to combine
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the ideas of the above-mentioned papers in order to give a
“complete”, self-contained description of the use of vertex
generation methods to solve the error localization problem
in mixed data. We will especially describe how modifica-
tions to accelerate Chernikova’s algorithm for numerical
data can also be used for mixed data.

The remainder of the present paper is organized as
follows. Section 2 gives a formal definition of the edits that
we consider as well as a number of examples. Section 3
formulates the error localization problem as a mixed integer
programming problem. Section 4 describes how the error
localization problem can be solved by generating vertices
of an appropriate polyhedron. We describe how
Chernikova’s algorithm can be used to generate these
vertices in sections 5 and 6. In these sections we also
describe modifications to the algorithm in order to improve
its performance. Section 7 concludes the paper with a brief
discussion. In the Appendix we give Rubin’s description of
Chernikova’s algorithm. In this paper proofs are omitted for
most results. The interested reader is referred to the
literature for those proofs.

2. THE EDITS

2.1 Formal Definition of the Edits

We denote the categorical variables by v, (i = 1,..., m)
and the numerical variables by x,(i=1,..,n). For
categorical data we denote the domain, i.e., the set of
possible values, of variable i by D,. We assume that every
edit E/(j = 1,...,J) is written in the following form: edit
E/ is satisfied by a record (Vys s Vyp Xy - X, ) 1f and only
if the following statement holds true:

IF v,.eFij for i=1,.,m

THEN (x),...x) e {x|a;x; +.. +a,.x, +b;> 0} (2.1)

where F! ¢ D,(j=1,..,J). Numerical variables may
attain negative values. For non-negative variables an edit of
type (2.1) needs to be introduced in order to ensure
non-negativity. A numerical equality can be expressed as
two inequalities.

All edits have to be satisfied simuitaneously. A record
that satisfies all edits is called a consistent record. The
condition after the IF-statement, ie., “v, ¢ F; for all
i=1,.,m", is called the I[F-condition of edit
F(j=1, .., J). The condition after the THEN-statemnent is
called the THEN-condition. If the IF-condition does not
hold true, the edit is always satisfied, irrespective of the
values of the numerical variables. If the set in the
THEN-condition of (2.1) is the entire #-dimensional real
vector space, then the edit is always satisfied and may be
discarded. If the set in the THEN-condition of (2.1) is
empty, then the edit is failed by any record for which the
IF-condition holds.

In many practical cases, certain kinds of missing values
are acceptable, e.g. when the corresponding questions are
not applicable to a particular respondent. We assume that
for categorical variables such acceptable missing values are
coded by special values in their domains. Non-acceptabie
missing values of categorical variables are not coded. The
optimization problem of section 3 will identify these
missing values as being erroneous. We also assume that
numerical THEN-conditions are only be triggered if none
of the values of the variables involved may be missing.
Hence, if — in a certain record — a THEN-condition
involving a numerical variable of which the value is missing
is triggered by the categorical values, then either the
missing numerical value is erroneous or at least one of the
categorical values.

2.2 Examples of Edits

Below we illustrate what kind of edits can be expressed
in the form (2.1) by means of a number of examples.

1. Turnover — Profit » 0. (2.2}
This is an example of a numerical edit. For every
combination of categorical values the edit should be
satisfied. The edit can be formulated in our standard
form as:

IF v,eD, forall i=1,...m

THEN (Profit, Turnover) ¢

{(Profit, Turnover)|Turnover — Profit »0}. (2.3)

In the remaining examples we will be slightly less
formal with our notation. In particular, we will omit the
terms “v;, ¢ D,” from the edits.

2. IF (Gender = “Male”) THEN (Pregnant = “No"){(2.4)

This is an example of a categorical edit. It can be
formulated in our standard form as:

IF (Gender = “Male”y AND (Pregnant = “Yes™)

THEN g. (2.5
3. TF (Occupation = “Statistician™)
THEN (Income > 1,000 Euro). (2.6)

This is a typical example of a mixed edit. Given certain
values for the categorical variables, a certain numerical
constraint has to be satisfied.

4, [F (Qccupation = “Statistician™)
OR (Education = “*University”)
THEN (fncome » 1,000 Euro). (2.7

This edit can be split into two edits given by (2.6) and

IF (Education = “University™")

THEN (Income » 1,000 Euro). (2.8)
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5. IF (Tax on Wages > 0)
THEN (Number of Employees > 1). (2.9)

Edit (2.9) is not in standard form (2.1), because the
IF-condition involves a numerical variable. To handle
such an edit, one can carry out a pre-processing step to
introduce an additional categorical variable TaxCond
with domain {*False”, “True”}. Initially, TexCond is
given the value “True” if Tax on Wages > 0 in the
unedited record, and the value “False” otherwise. The
reliability weight TaxCond is set to zero. We can now
replace (2.9) by the following three edits of type (2.1):

IF (TaxCond = “False™)

THEN (Tax on Wages < 0), (2.10)
IF (TaxCond = “True™)
THEN (Tax on Wages > &), (2.11)
IF (TaxCond = “True™)
THEN (Number of Employees » 1), (2.12)

where £ is a sufficiently small positive number.

3. THE ERROR LOCALIZATION PROBLEM
AS A MIXED INTEGER PROGRAMMING
PROBLEM

We assume that the values of the numerical variables are
bounded. That is, we assume that for the {-th numerical
variable (i = 1,...,n) constants ¢, and B, exist such that

a < x < B (3.1)
for all consistent records. In practice, such values o, and 8,
always exist although they may be very large, because
numerical variables that occur in data of statistical offices
are bounded. The values of a; and B, may be negative. If
the value of the i-th numerical variable is missing, we code
this by assigning a value less than ¢, or larger than B, to x.
Numerical variables for which the value should be missing,
e.g. because the corresponding gquestion was non-appli-
cable, will nonetheless receive a value afier the termination
of the algorithm that is described in subsequent sections,
but this value may subsequently be ignored. _
For the ith categorical variable, let D, =
fcark=1, .,g}(i=1,..,m) be its domain. We
introduce the binary variable v,,

1 if the value of categorical variable / equals c;,
Yik = (3.2)

0 otherwise.

To the i-th categorical variable there corresponds a
vector (¥, - Tig ) suchthat v, = 1 ifand only if the value
of this categoricaﬁ variable equals c,,, otherwise v, =0.
For each categorical variable ¢ of a consistent record the
relation
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>; Yie = 1 (3.3)

has to hold, i.e., exactly one categorical value should be
filled in. The vector (¥, .... ¥, J;,,) will also be denoted by
¥, If the value of the i-th categorical variable (i = 1, ..., m)
is missing, we set all y,, equal to zero (k=1,..,g). In
terms of the binary variables v,, an editj given by (2.1) can
be written as

m

a); X, +...+anjxn+bj>M[E[ E 'Yik'I]}s (3.4)

i=1 /
' cue

where a positive M is chosen so that -M is less than the
lowest possible value of a,x, +.. +a, x +&. If the
[F-condition of (2.1) and condition (3.35 hold true, the
right-hand side of (3.4) equals zero. Consequently, the
THEN-condition of (2.1) has to hold true for the numerical
variables. If the [F-condition of (2.1) does not hold true, by
(3.2) the right-hand side of (3.4) equals a large negative
value. Consequently, (3.4) holds true irrespective of the
values of numerical variables.

If(2.1) is not satisfied by a record (v,o, ey v:,xlo, vy x,?),
or equivalently if (3.4) is not satisfied by
(7[,), vers 'yfn,xl , ...,x,?), then we  seek  values
e,,f(k: L, gi= 1,...,m),e,.f(k =l,..850=1..,m),
zi'p(i=l, ...} and z,-N(i=1 , ... ) that have to satisfy
certain conditions mentioned below. The e,-f and the e,-f
correspond to positive and negative changes, respectively,
in the value of yfk. Likewise, the z,.P and the z,” corre-
spond to positive and negative chan[ges, respectively, in the
value of xio. The vector (e,.f, s € ) Will also be denoted

P N N
as ¢, and the vector (g;, ..., &;, ) as e; .

The objective function we consider in this paper is given

by

(3.5)

'21: wf( ; e‘.f) + z] w, (8 (zl.P) +8(z‘.N)),
i= i=

where w," is the reliability weight of the i-th categorical
variable (i=1, ..., m),w,” the reliability weight of the i-th
real-valued variable (i=1,..,n),8(x)=1 if x+0 and
8(x) = 0 otherwise. The objective function (3.5) is the sum
of the reliability weights of the variables for which a new
value must be imputed. Note that minimizing (3.5) is
equivalent to minimizing

i w,."( ; e,-f] + i w, (B(ZEP) +8 (z‘.N)).

i=1 i=1

(3.6)

The objective function (3.6) is the sum of the reliability
weights of the variables of which the original values must
be modified. The value of the objective function (3.5) is
equal to the value of the objective function (3.6) plus the
sum of reliability weights of the categorical variables for
which the original value was missing,.
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The objective function (3.5) is to be minimized subject
to the following constraints:

en eref01}, (i=1, ... m) 3.7
2”250, (i=1, ..., ) (3.8)
e ren <l (i=1, .. m) (3.9)
ij ersl, (i=1, ...,m) (3.10)
ep =0 if 75, =0 (i=1,...,m) (3.11)
ij(yf.’we,.f_ =1, (i=1,.,m)  (3.12)
o <x; +z -z <B, (i=1,....,n) (3.13)

and
n

0 _P _N
Za‘j(x,. +2; -z;)

i=1

it}
o £ T at-e1]| 019
i=] CpE p;‘

foralledits j=1,..., K.

Relation (3.9) expresses that a negative correction and a
positive one may not be applied to the same reported value
of a categorical variable. Relation (3.10} expresses that at
most one value may be imputed, i.e., estimated and sub-
sequently filled in, for a categorical variable, and relation
(3.11) that a negative correction may not be applied to a
categorical value that was not filled in. Relation (3.12)
ensures that a value for each categorical variable is filled in,
even if the original value was missing. Relation (3.13)
states that the value of a numerical variable must be
bounded by the appropriate constants, In particular, relation
(3.13) also states that the value of a numerical variable may
not be missing. Finally, relation (3.14) expresses that the
modified record should satisfy all edits given by (2.1).

After solving this optimization problem the resulting,
modified record is given by

o P N o _P _N _0
(Y +€ —€ »eu¥y + €y — o s X

PN 0.0 N

tZ) ~Zy X, +Z, —Z, ).

This modified record is consistent, i.e., satisfies all edits.
A solution to the above mathematical problem corresponds
to a solution to the error localization problem, which simply
consists of a list of variables of which the values have to be
changed without specifying their new values. There may be
several optimal solutions to the error localization problem.
Qur aim is to find all these optimal solutions. Note that the
above optimization problem is a translation of the gene-
ralized Fellegi-Holt paradigm in mathematical terms.

We end this section with two remarks. First, note that in
practice only one e f -variable for each variable i is needed
namely for the index & for which v}, = 1. The other e
equal zero. In the present paper we use g; binary e, X
-variables for each variable i to cover all possible cases.
Second, note that in an optimal solutmn to the above
optimization problem either z; P20 or z =0, and that,
similarly, in any feasible solutlon either e;) .y =0 or e, =0
(or both).

4. VERTEX GENERATION METHODS AND
ERROR LOCALIZATION FOR MIXED DATA

In this section we explain how vertex generation
methods can be used to solve the error localization problem
in mixed data. To this end we show that a minimum of (3.5)
subject to (3.7) to {3.14) is attained in a vertex of a certain
polyhedron P described by linear, non-integer constraints.
Suppose a minimum of (3.5) subject to (3.7) to (3.14) is
attained in a point given by:

I |.]kv= 0 for (i, k)EIN, e,-f:l otherwise,
2. ,k—Ofor {, k)e
3.z =0foriel,z F £ 0 otherwise,
4. zN=0forieL”,

P .
e;, =1 otherwise,

and z; Ns0 otherwise,

for certain index sets IEN, I:, IZN and I We now consider

the problem of minimizing the linear function given by

Yoeir X -+ X e

@, k)ef (i k)ei (i,k)e f
P ETORD DEARD DE AR VR)
{, k)ff aeI :ei
subject to (3.8) to (3.14) and
0<er e <l (4.2)

Subject to (3.8) to (3.14) and (4.2), which together form
our polyhedron P, the function (4.1) is non-negative.
Moreover, its value equals zero only for the point given by
1 to 4 above. In other words, our selected minimum of (3.5)
subject to (3.7) to (3.14) is also the minimum of {(4.1)
subject to (3.8) to (3.14) and (4.2).

It is well known that a linear function subject to a set of
linear constraints attains its minimum, if such a minimum
exists, in a vertex of the feasible polyhedron described by
the set of linear constraints (see e.g. Chvatal 1983). So, the
minimum of (4.1) subject to (3.8) to (3.14) and (4.2), zero,
is attained in a vertex of the feasible polyhedron P
described by (3.8) to (3.14) and (4.2). We conclude that the
point given by 1 10 4 above, i.e., an arbitrary optimum of
(3.5) subject to (3.7) to (3.14), is a vertex of the polyhedron
defined by (3.8) to (3.14) and (4.2).
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The above observation implies that the minimum of (3.5)
subject to (3.7) to (3.14) can be found by generating all
vertices of the polyhedron given by (3.8) to (3.14) and (4.2).
From these vertices we select the vertices that satisfy (3.7).
From those latter vertices we subsequently select the
vertices for which the value of the objective function (3.5)
is minimal. These vertices correspond to the optimal
solutions to the error localization problem.

S. CHERNIKOVA’S ALGORITHM AND THE
ERROR LOCALIZATION PROBLEM

Chernikova’s algorithm (Chernikova 1964 and 1965)
was designed to generate the edges of a system of linear
inequalities given by

Cx >0 (5.1)
and

x>0, (5.2)
where C is a constant n, xn_-matrix and x an

n -dimensional vector of unknowns. The algorithm is
described in the Appendix. It can be used to find the
vertices of a system of linear inequalities because of the
following lemma (see Rubin 1975 and 1977).

Lemma 5.1. The vector x°

linear inequalities

is a vertex of the system of

Ax < b (5.3)

and
x>0 5.4

if and only if {(Ax® | M), %20} is an edge of the cone
described by

(-Alb)(z] >0 (5.5)
and
(i)

Here A is an n, xn_-matrix, b an « -vector, x an
n ~vector, and { and A scalar variables.
For notational convenience we write

n,=n,+1

(5.7

throughout this paper. The matrix in (5.5) is then an
n, % n_-matrix just like in (5.1), so we can use the same
notation as in Rubin’s formulation of Chemnikova’s
algorithm.

If Chernikova’s algorithm is used to determine the edges
of (5.5) and (5.6), then after the termination of the

algorithm the vertices of (5.3) and (5.4) correspond to those
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columns j of L™ (see Appendix) for which l,," . ;#0. The
entries of such a vertex x’ are given by )
x/ = B for i=1,.,n, (5.8)

Now, we explain how Chernikova’s algorithm can be
used to solve the error localization problem in mixed data.
The set of constraints (3.8) to (3.14) and (4.2) can be
written in the form (5.3) and (5.4). We can find the vertices
of the polyhedron corresponding to this set of constraints by
applying Chemikova’s algorithm to (5.5) and (5.6).
Vertices of the polyhedron defined by (3.8) to (3.14) and
(4.2) are given by columns y, [ for which «, "> 0 forall i
and lnﬂ'a. >0, where n, is the number of rows of the final
matrix L™ (see Appendix). In our case, n_ eq71v1als the total
number of variables z;,z, eif and ¢, plus one
(corresponding to & in (5.5) and (5.6)), ie, n, =
2n +2G + 1, where G =Y, g,. The values of the variables
z' 2" el and e in such a vertex are given by the
corresponding values /, "/ 1, "

Two technical problems must be overcome when
Chemnikova’s algorithm is applied to solve the error
localization problem for mixed data. First, the algorithm
must be sufficiently fast. Second, the solution found must
be feasible for the error localization problem for mixed
data, i.e., the values of the variables e,-f and e,-kN must be
either 0 or 1. Both problems can be overcome by removing
certain “undesirable” columns from the current matrix Y ¥,
i.e., by deleting columns that cannot yield an optimal
solution to the error localization problem. That such
undesirable columns may indeed be removed from the
current matrix Y * is essentially demonstrated by Rubin
(1975 and 1977). We state this result as Theorem 5.1.

Theorem 5.1. Columns that cannot yield an optimal
solution to the error localization problem because they
contain too many non-zero entries may be removed from an
intermediate maltrix.

To accelerate Chernikova’s algorithm, we aim to limit
the number of vertices that are generated as much as
possible. Once we have found a (possibly suboptimal)
solution to the error localization problem for which the
objective value (3.5) equals n, say, we from then on look
only for vertices corresponding to solutions with an
objective value at most equal to 1. A minor technical
problem is that we cannot use the objective function (3.5)
directly when applying Chernikova’s algorithm, because the
values of e‘.f, e,.f, z;" and z; are not known during the
execution of this algorithm. Therefore, we introduce a new
objective function that associates a value to each column of
the matrix Y* (see Appendix). Assume that the first G
entries of a column /f of L* correspond to the
e, -variables, the next G entries to the e,-,':'-variables, the
next n entries to the z,” -variables, and the subsequent 7
entries to the z,N-variables. We define the following
objective function
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n 1]
Y ow, [ 5(1,,*5.)]
izl k=1

+ E WIJ'X(S(IZ’E}‘H',A') +8(12’27+n+r',s))’ (59)

i=l
where  #=Y,0) g+ for each pair {i,r}
(i=1,..,m;r=1,.., ) Differences between (3.5) and (5. 9)

are that for each e, 4 Of e}?r in (3.5) several variables l‘
occur in (5.9), and that the e,f and e’: attain values in
{0,1} whereas the l . can attam any value between zero and
one. If column y |, y of Y ¥ corresponds to a solution to the
error localization problem then the value of the objective
function (5.9) for y equals the value of the objective
function (3.5} for this solution. This implies that we can use
the objective function (5.9) to update the value of .

The computing time of Chernikova’s algorithm can be
further reduced by noting that in an opt1ma1 solution to the
error localization problem either z, P_oor z = 0 (or both).
This implies that in Ste ep 7 of Chermkova s algorithm (see
Appendix) columns y__ and y need not be combined if
ore of these columns corresponds to z +0 and the other to
z; ¥+0. Theorem 5.1 implies that not combining such

columns is allowed.

We now consider the problem of constructing a feasible
solution to the error localization problem for mixed data.
This problem can, of course, be solved by first generating
vertices without taking into account that values of e;, and
eif must be either 0 or 1 and then selecting the best vertices
that possess this property, but this is rather inefficient so we
suggest a different approach. It suffices to ensure that for
each variable i(i=1,...,m) at most one e,.f differs from
zero, and that the ¢;, and e,-f equal either zero or one after
the termination of the algorithm. We can ensure that for
each i at most one e,f differs from zero in the followmg
way. If in Step 7 of Chermkova s algorithm the entry of y* s
corresponding to el y, differs from zero and the entry of yf .

corresponding to et‘: (k, = k,) differs from zero as well,
then columns y and y:‘, are not combmed to generate a
new column. We can also ensure that the e, ~ equal either
zero or one after the termination of the al gorlthm For each
i this is a problem only for the unique e} x, for which
'y?k = 1. We introduce variables €; that can attain values
befween zero and one. These variables have to satisfy

e + & = L. (5.10)
Relation (5.10) is treated as a constraint for the values of
the variables e ,(N and ;. Because the value of e, + hastobe
either zero or one, we demand that either e, 2’ =0'or eﬁ =0.
This can be ensured in the same manner as for the z; and

the z,". Finally, we have to ensure that the e,f equal cither
zero or one after the termination of the algorithm. This is

automatically the case if for each i at most one ¢, differs
from zero, at most one ¢;; + equals one and the remaining

e equal zero, because relation (3.12) has to hold true. We
have a]ready ensured that these conditions are satisfied, so
all e; equal zero or one after the termination of the algo-
rithm. With the adaptations described above Chernikova’s
algorithm can be applied to solve the error localization
problem in mixed data. Theorem 5.1 again implies that
these modifications are allowed.

6. ADAPTING CHERNIKOVA’S ALGORITHM
TO THE ERROR LOCALIZATION PROBLEM

6.1 Advanced Adaptations

In this section we consider more advanced adaptations of
Chernikova’s algorithm in order to make the algorithm
better suited for solving the error localization problem.
Sande (1978) notes that when two columns in the initial
matrix Y ? have exactly the same entries in the upper matrix
U?, they will be treated exactly the same in the algorithm.
The two columns are always combined with the same other
columns, and never with each other. Keeping both columns
in the matrix only makes the problem unnecessarily bigger.
One of the columns may therefore be temporarily deleted.
After the termination of the algorithm, the solutions to the
error localization problem involving the temporarily deleted
column can easily be generated.

A correction pattem associated with column y _in an
intermediate matrix Y*, where Y* can be split mto an
upper matrix U* and lower matrix L* with n, and n_ rows
respectively (see  Appendix), is defined as the
n_-dimensional vector with entries 8()5:) for

. PN P N .
n<jsn +n_. For each z,z",¢,, and ¢, a correction
pattern contains an entry with value in {0,1}. Sande (1978)
notes that Theorem 5.1 implies that once a vertex has been
found, all columns with correction patterns with ones on the
same places as in the correction pattern of this vertex can be
removed.

The concept of correction patterns has been improved
upon by Fillion and Schiopu-Kratina (1993), who note that
it is not important how the value of a variable is changed,
but only whether the value of a variable is changed or not.
A Egenerahzed correction pattern associated with column
y.. in an intermediate matrix Y * is defined as the
(m + n)-dimensional vector of which the j-th entry equals 1
if and only if an entry corresponding to the j-th variable in
column y is different from 0, and 0 otherwise. Here m
denotes the number of categorical variables and n the
number of numerical variables. For each variable involved
in the error localization problem, a generalized correction
pattern contains an entry with value in {0, 1}. Again
Theorem 5.1 implies that once a vertex has been found, all
columns with generalized correction patterns with ones on
the same places as in the generalized correction pattern of
this vertex can be deleted.
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Fillion and Schiopu-Kratina (1993) define a failed row
as a row that contains at least one negative entry placed on
a column of which the last entry is non-zero. They note that
in order to solve the error localization problem we can
already terminate Chernikova’s algorithm as soon as all
failed rows have been processed. This result is stated as
Theorem 6.1.

Theorem 6.1. If an intermediate matrix contains no failed
rows, then all (generalized) patterns corresponding to
vertices for which (5.9) is minimal have been found.

The final adaptation of Fillion and Schiopu-Kratina
(1993) to Chernikova’s algorithm is a method to speed-up
the algorithm in case of missing values. Suppose the error
localization problem has to be solved for a record with
missing values. For each numerical variable of which the
value is missing we first fill in an arbitrary value, say zero.
Next, only the entries corresponding to variables with
non-missing values are taken into account when calculating
the value of function (5.9) for a column. An optimal solu-
tion to the error localization problem is given by the
vatiables corresponding to a determined optimal gener-
alized correction pattern plus the variables with missing
values. In this way, unnecessary generalized correction
patterns according to which many variables with non-
missing values should be changed are discarded earlier than
in the standard algorithm,

6.2 Duffin’s Rules

Chemikova’s algorithm does not generate any redundant
columns, ie., columns whose information is already
contained in another column. Its problem is, however, that
in order to achieve this the algorithm requires a consi-
derable amount of computing time. This is for a substantial
part caused by its Step 7 where a time- consuming check
has to be performed to prevent the generation of redundant
columns. Duffin (1974) demonstrates that this step can be
split into two parts. In Duffin’s version of the algorithm
Step 7 consists of two parts:

~  For each pair (5,#) for which y,*xy*<0 we choose
Ky 1,>0 such that p.ly,:»ruzyﬂ =0 and adjoin the
column uly‘ks+p.2y to YL

— Delete (some of) the redundant columns of Y **1,

Duffin (1974) gives the following two rules to delete
redundant columns of Y ¥+,

Refined elimination rule: When ¢ rows have been
processed, delete any columns that have been generated by
combining ¢ + 2 or more original columns.

This first rule allows the generation of redundant
columns, but is much faster to apply than Step 7 of
Chemikova’s algorithm. The second rule, the dominance
rule, makes sure that no redundant columns are generated.
A column y is called dominated by another column y :‘ v
if yw 0 unphes y,f:-O
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Dominance rule: Delcte any column » ¥, in Y* that is
dominated by some other column y,

One could consider using the refined elimination rule
during most iterations of Chernikova’s algorithm and only
resort to the dominance rule when the number of columns
becomes too high to be handled efficiently. Afier all failed
rows have been processed the dominance rule has to be
applied to remove redundant columns from the final matrix
Y ¥, One may hope that this leads to an algorithm that is
faster than Chemnikova’s algorithm, but this remains to be
tested.

7. DISCUSSION

At Statistics Netherlands a prototype computer program
based on the adapted version of Chemikova’s algorithm
described in sections 5 and 6.1 of the present paper has
been developed. The possibly more efficient rules described
in section 6.2 have not been implemented in this prototype
program. For purely numerical data a production version of
this program has been used for several years in the
day-to-day routine at Statistics Netherlands in order to
produce clean data for most of our structural business
statistics.

For Statistics Netherlands improving the efficiency of the
data editing process for economic, and hence mainly
numerical, data is much more important than for social, and
hence mainly categorical, data. In particular, edits of type 1
(see e.g (2.2)) mentioned in section 2.2 are the most
important ones for us, followed by edits of type 5 (see e.g.
(2.9)). Because improving the efficiency of data editing for
numerical data is much more important to us than for social
data, the developed prototype program has only been
evaluated for purely numerical test data. For these nume-
rical test data, the program has been compared to several
other prototype programs, namely a program based on a
standard mixed integer programming problem formulation
(see e.g. De Waal 2003), a program based on cutting planes
(see Garfinkel, Kunnathur and Liepins 1988; Ragsdale and
McKeown 1996, and De Waal 2003), and a program based
on a branch-and-bound algorithm (see e.g. De Waal and
Quere 2003). Our evaluation results show that the
computing speed of our program based on the adapted
version of Chernikova’s algorithm is acceptable in compa-
rison to other algorithms (for details on our evaluation
experiments we refer to De Waal 2003). They also show,
however, that this program is out-performed by the program
based on the branch-and-bound algorithm. Besides being
faster than the adapted version of Chernikova’s algorithm,
the branch-and-bound algorithm is less complex, and hence
easier to maintain.

Further improvemenis to the adapted version of
Chernikova’s algorithm may reduce its computing time.
Examples of such potential improvements are: better
selection criteria for the row to be processed, and better
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ways to handle missing values. However, these improve-
ments would at the same time increase the complexity of
the algorithm, thereby making it virtually impossible for
software-engineers at Statistics Netherlands to maintain the
program. For the above reasons, computing time for
numerical data and complexity of the algorithm, we recently
decided to switch to the branch-and-bound algorithm
instead of the adapted version of Chernikova’s algorithm
for our production software. In our latest version of our
production software, a version of the branch-and-bound
algorithm suitable for a mix of categorical, continuous, and
integer data has been implemented. We sincerely hope,
however, that the present paper will inspire some readers to
find further improvements to Chernikova’s algorithm.
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APPENDIX: CHERNIKOVA’S ALGORITHM

Rubin’s formulation (Rubin 1975 and 1977) of
Chernikova’s algorithm is as follows:

0
1. Constructthe (n_+n_)x n_-matrix Y = [E"] , where

U%= Cand L= I : the n, x n_-identity matrix.
The j-th column of YEF, y?j, will also be denoted as
0

o _| ¥
ytj - Io ’
«J
where u ?j and l?j are the j-th columns of U® and L®,
respectively.
k=0

3. Hany row of U ¥ has all components negative, x =0 is
the only point satisfying (5.1) and (5.2), and the
algorithm terminates.

4. If all the elements of U¥ are non-negative, the
columns of L ¥ are the edges of the cone described by
(5.1) and (5.2), and the algorithm terminates.

5. Ifneither 3 nor 4 holds: choose a row of U X, say row
r, with at least one negative entry.

6. LetR={j]| y,ﬁ > 0}.Let v be the number of elements
in R. Then the first v columns of the new matrix Y !
are all the columns y:} of Y ¥ for je R.

7. Examine the matrix Y *.

a. If Y* has only two columns and y,} % y%5 <0,
then choose w,,pn,>0 such that p,»,| +

Ka Y, = 0. Adjointhecolmn g,y + kp.'3 to
Y *1. Goto Step 9.

b. If Y ¥ has more than two columns then let § =
{(5,6) | 3 x 3% <0 and £>s}, iee, let S'be the set
of all pairs of columns of Y ¥ whose elements in
row » have opposite signs. Let [, be the index set
of all non-negative rows of Y 4 ie., all rows of
Y ¥ with only non-negative entries. For each

(5,1) S, find all i/, such that y! =y, =0.
Call this set 1, (s, 7).

- If I, (s,8) =, then yi_ and yf, do not
contribute another column to the new matrix.

- If I, (5,%) # @, check to see if there is a v not
equal to s or ¢ such that yl.f =0 for all
iel (s,2). If such a v exists, then yf_\. and
v., do not contribute a column to the new
matrix. If no such v exists, then choose
It,» 4, > 0 such that p]y,,;(+ pzyrf = 0. Adjoin
the column p, L + @,y to Y,

8. When all pairs in S have been examined, and the
additional columns (if any) have been added, we say
that row » has been processed. We then define matrices

k+1
U and L¥! by Y**! = [ U where U*! isa

Lk-c-l »
matrix with 7, rows and L**! a matrix with n_rows.
The j-th column of Y **1, }’ff-i, will also be denoted as

k+1
k1 _ uvj
LY [f+l )
r

K+ kel

where u, " and lf}' are the j-th columns of U**" and
L%, respectively.

9. k:=k+1,and goto Step 3.

Chernikova’s algorithm can be modified in order to handle
equalities more efficiently than treating them as two
inequalities. Steps 3, 5 and 6 should be replaced by

3. If any row of U¥ corresponding to an inequality or
equality has all components negative or if any row of
U corresponding to an equality has all components
positive, x = 0 is the only point satisfying (5.1) and
(5.2), and the algorithm terminates.

5. I neither 3 nor 4 holds: choose a row of Uk, say row
r, with at least one negative entry if the row
corresponds to an inequality, and with at least one
non-zero entry if the row corresponds to an equality.

6. Ifrow r corresponds to an inequality, then apply Step
6 of the standard algorithm. If row r corresponds to an
equality then let R={ | yrj =0}. Let v be the number
of elements in R. Then the first v columns of the new
matrix Y**! are all the columns yf} of Y for je R.
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In Step 5 of Chernikova’s algerithm a failed row has to
be chosen. Rubin (1975) proposes the following simple
rule. Suppose a failed row has z entries equal to zero, p
positive entries, and g negative ones. We then calculate for
each failed row the value N =z+p+pg if the row
corresponds to an inequality and the value N =z +pgq if
the row corresponds to an equality, and choose a failed row
with the lowest value of N .
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Inference for Population Means Under Unweighted Imputation
for Missing Survey Data

DAVID HAZIZA and J.N.K. RAO!

ABSTRACT

In the presence of item nonreponse, unweighted imputation methods are often used in practice but they generally lead to
biased estimators under uniform response within imputation classes. Following Skinner and Rao (2002), we propose a
bias-adjusted estimator of a population mean under unweighted ratio imputation and random hot-deck imputation and derive
linearization variance estimators. A small simulation study is conducted to study the performance of the methods in terms
of bias and mean square error. Relative bias and relative stability of the variance estimators are also studied.

KEY WORDS: Bias-adjusted estimator; [tem nonresponse; Random hot-deck imputation; Ratio imputation.

1. INTRODUCTION

Item nonresponse occurs when a sampled unit fails to
provide information on some variables of interest. Many
surveys use imputation to handle item nonresponse but one
should be aware of the difficulties when imputation is used.
For example, the imputed values are commonly treated as
if they are true values, and the variance estimates are
computed using standard formulas. This can lead to serious
underestimation of the true variance of the estimators when
the proportion of missing values is not small. The relation-
ships between variables may also be distorted.

Imputation methods can be classified into two broad
classes: deterministic and stochastic. Deterministic methods
include ratio or regression imputation and nearest neigh-
bour imputation, using auxiliary variables observed on all
the sampled units. For nearest neighbour imputation, a non-
respondent item is assigned the respondent item value of the
“nearest” respondent, where “nearest” is usually defined in
terms of a distance function based on the auxiliary vari-
ables. Stochastic methods include random hot-deck imputa-
tion where the value assigned for a missing response is
randomly selected from the set of respondents within an
imputation cell.

In the presence of item nonresponse, weighted or
unweighted imputation may be used. Weighted
(deterministic or stochastic) imputation uses the sampling
weights induced by the sampling design to select donors.
However, weighted imputation is not feasible in practice
when the sampling weights are not available at the impu-
tation stage. Note that unweighted and weighted imputation
methods lead to identical results for self-weighting designs
(i.e., designs with equal weights). Also, unweighted impu-
tation methods are appealing 1o users.

Unweighted imputation generally leads to biased
estimators under uniform response within imputation

classes. Following the approach of Skinner and Rao
(2002), we propose bias-adjusted estimatars of population
means under unweighted imputation and derive lineariza-
tion variance estimators. i

Let 8 be a finite population parameter and 8, be its
estimator based on the observed and imputed data
respectively. Using the traditional two-phase approach:
population — complete sample — sample with non-
respondents, we have

E@) = E,[E,®)), )
r@,-0) - £ [v,6,-0]+ v E[6,-0] @

under deterministic imputation, where E () and V ()
denote respectively the expectation and the variance with
respect to the response mechanism given the sample, and
£, () and v, (.) denote respectively the expectation and the
variance with respect to sampling under the given design.
In the model-based approach (see section 2), we replace
E()and V() by E ()=E E ()and ¥V, (}=EV ()+
V_E () respectively, where E, (.) and V_(.) denote
respectively the expectation and the variance with respect
to the imputation model.

Fay (1991) proposed a different approach obtained by
reversing the order of sampling and response: population —
census with nonrespondents — sample with non-
respondents. Fay’s approach facilitates variance estimation,
as explained below. Using this approach, we have

E@®) - E[E,@))], 3)
and

V(éf_e) = Er[Vp(éI_e)] + Vr[Ep (éf_e)]3 4)

' David Haziza, Household Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, K1A 0T6; J.N.K. Rap, School of Mathematics and Statistics,

Carleton University, Ottawa, Ontario, Canada, K18 5B6.
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see Shao and Steel (1999). Note that the inner expectation
and variance in (4) are with respect to sampling, conditional
on the response. An estimator of the overall variance
V (6 -8) in(4) is given by v, =v, +v,, where v, is an esti-
mator of v, (9 )] cond1t10na1 on the response 1nd1cators
and v, is an estimator of ¥ E (9 -8). The estimator v,
does not depend on the response mechamsm or the assumed
model, and hence v, is valid under either the design-based
approach or the model-based approach (see s¢ction 2)

In the case of stochastic imputation, v, (9 -0) in4)

may be written as

v,6,-0) - V,[E.6,-0)+E[V,.6,-0,
where the inner expectation and variance, £ and ¥V,
denote respectively the expectation and the variance with
respect to the imputation scheme given the sample with
respondents and nonrespondents An estimator of
V (9 -0), denoted v/’, isthengivenby v," = v, +v_ where v,
is an estimator of V E (9 -0) and v an estimator of
E V (9 -6). Also, in the case of stochastic imputation we
replace E {-) by EE ,(-) in (4) and the formula for v, is
the same as in the case of deterministic imputation provided
E (8 ;) agrees with the imputed estimator for the determi-
mst}c case. Hence, an estimator of the overall variance
V(0,-0) isgivenby v, = v, +v_+v,

We set out our basic framework and assumptions in
section 2. In section 3, we study both weighted and un-
weighted ratio imputation. We show that the imputed esti-
mator under unweighted imputation is asymptotically
biased, and propose a bias-adjusted estimator. The esti-
mator under weighted imputation and the bias-adjusted esti-
mator under unweighted imputation are shown to be robust
in the sense of validity under both the design-based and
model-based approaches. We also derive linearization
variance estimators of the imputed estimators in section 3.
We consider the case of random hot-deck imputation in
section 4. A small simulation is conducted in section 5 to
compare the performances of the imputed estimators in
terms of bias and mean square error. Relative bias and
relative stability of the variance estimators are also studied.

2. FRAMEWORK AND ASSUMPTIONS

Let P be a finite population of possibly unknown size N.
The objective is to estimate the population mean ¥ =
I/N Y ,y; when imputation has been used to compensate
for nonresponse. For brevity, ¥ will be used for Z.
where 4 ¢ P. Suppose a probability sample, s, of size n is
selected according to a specified design p(s) from P. Let s,
be the set of respondents of size r and let s,, be the set of
nonrespondents of size m;r+m=n.

Imputation is ofien done by first dividing the population
into J nonoverlapping imputation classes and then imputing
sample nonrespondents within each imputation class using

sample respondents within the same class as donors, inde-
pendently across the ./ imputation classes. For simplicity,
we assume that J=1; the extension to J> 1 imputation
classes is straightforward.

The usual imputed estimator of the population mean ¥
is given by

- 1

¢ Es w;

where w, is the sampling (or design) weight attached to unit
iand y," denotes the value imputed for missing ¥;» We use
the Horvitz-Thompson weight w, = 1/x, where x, is the
probability of including unit J in the sample.

We consider two approaches: (i) design-based and (ii)
modei-based. Under the design-based approach, we assume
a uniform response mechanism within classes so that the
following assumption holds:

> w +Z Wiyi‘]’ (6)

5

Assumption DB: Within an imputation cell, the response
probability for a given variable of interest is constant and
the response statuses for different units are independent.

Under the model-based approach, the following assumption
holds:

Assumption MB: Within an imputation cell the response
mechanism is ignorable or unconfounded in the sense that
the response status of a unit does not depend on the variable
being imputed but may depend on covariates used for
imputation. In this case, an imputation model is assumed.

The imputation classes are chosen to make the
assumption DB or MB hold approximately. The response
mechanism in assumption MB is much weaker than the
uniform response in assumption DB, but inferences depend
on the assumed imputation model. Under ratio immputation,
the imputation mode! used is the “ratio model” given by

E (y)=Bz,V, (¥)= ozz,.,Covm(yj,yj) =0 if ixj, (7)

where B and o” are unknown parameters, z, is an auxiliary
variable available for all ies. Under random hot-deck
imputation, the imputation model used is given by

Em(yj) =W, Vm(y,') = Gza Covm(y,.,yj) =0 if i#J. (8)

3. RATIOIMPUTATION

In this section, we study the properties of the imputed
estimator (6) under both weighted and unweighted ratio
imputation. We also derive lincarization variance esti-
mators. We study point estimation in section 3.1 under
weighted and unweighted ratio imputation, and correspon-
ding variance estimation in section 3.2.
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3.1 Estimation of a Mean

3.1.1 Weighted Ratio Imputation

Weighted ratio imputation uses y;" = R, z, for missing
Yis where JRr = )_;r /Er and ()—)-r’ fr) = Es,_w:' (yi’ Z‘.) /ES,WI'
are the weighted means of respondents for variables y and
z respectively. Using the y,"’s, the imputed estimator (6)
reduces to

Fu=R7Z, @)

where z =Y w,z, /¥, w,. It is easy to verify that Jg is
approximately unbiased for ¥ under both the design-based
and the model-based approaches, (Sirndal 1992). Hence

¥ i§ robust in the sense of validity under both approaches.

3.1.2 Unweighted Ratio Imputation

Unweighted ratio imputationuses y; = R, z, for missing
y,where R\" =3,"/2" and (3,",2,") = ¥, (.2} /r are
the unweighted means of respondents for variables y and z
respectively. Using the y;"’s, the imputed estimator (6)
reduces to

(10)

_ 1 -
YR = W Z w, ¥, +R:m E Wiz ls
{ m
.

. un

where R =y"/z,". Under the ratio model (7) and
assumption MB, the imputed estimator (10} is approxi-
mately unbiased for ¥, ie, E.EE (P) = E, (¥). How-
ever, it is biased under uniform response (assumption DB).
We  have EpEr(?[R)zp Y+(-p) ¥ /2 Z, . wh'?re
(Y,Z)= Ypm(y,z) /Y. Hence, the relative bias
of P RB(Fp) = (E,E (F) -¥) /7Y, is givenby

¥
RB(3) = (i -p) 32—?"-1 an

T

=(1-p) g— Cn[Cy Poy - C, p”], (12)
where Z = /N Yz, p,, and p,_, are the finite population
correlation coefficients between the variables 7 and yand
m and z respectively, C_, C, and Cy are respectively the
coefficients of variation of n, z and y, and p is the
probability of response to y. The bias is nonzero generally.
It vanishes in the full response'case (i.e., p=1) orif

Cn[cyp:ty B Czpnz] =0, (13)

which is satisfied when C, =0 (the case when the design is
self-weighting) or when

p C
Iny _ Tz (13)
Prz G

We further explore the relative bias (11) for three cases.
First, we consider unweighted mean imputation, y,” = 5,",
which is a special case of unweighted ratio imputation with

z; = 1. Assume that a size variable x is available for all the
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units in the population and that the sample s is selected
according to a probability proportional to size (PPS)
sampling without replacement design, using x as the size,
such that m = nx /X, where X = ¥, x,. For example, one
may use the well-known Sampford method (Sampford
1967). Noting that p,, =p,, Z/Z=1and C = C,, the
expression (12) for the relative bias may be written as

RB(¥g) = (1 -p) C,Cpp,,- (15)

Two particular cases of (15) are of interest. First, if x and y
are uncorrelated, the bias of the imputed estimator vanishes.
The case of weakly correlated x and y (ie., p,, =0) may
oceur in surveys with multiple characteristics y (I{ao 1966).
Second, if y, « x,, the reiative bias (15) reduces to (1 -p) C_f
which decreases with C . Note that, since C =C,, the
sampling design approaches a self-weighting design as C,
decreascs.

Consider next the more general case of unweighted ratio
itputation based on z,, i ¢ 5, and PPS sampling based on
x;,i e 5. In this case, the relative bias (11} is zero if and
only if

Py _ G
P G

provided p<land C + 0. If C = C,, thentherelative bias
(11)iszeroifand onlyif p,, = p_,.

Finally, we consider the case of stratified random
sampling. In this case, the population P is partitioned into
H strata P, with }]}’k sampling units in the A-th stratum;
pP=U; P,,N=¥, N,.We then independently select a
simple random sample without replacement s, of size n,
from cach stratum; s=Uj s, and n=Y§ n,. Two
situations may occur in practice: (1) Imputation is done
independently in each stratum (i.e., the imputation classes
coincide with the strata). In this case, under unweighted
ratio imputation, the imputed estimator is approximately
unbiased under uniform response within strata. (2) The
imputation is done across strata. In this case, we note from
(11) that the imputed estimator is approximately unbiased
if and only if n, =n (¥, /N}(proportional allocation).

A bias-adjusted estimator of ¥ under unweighted ratio
imputation is given by

—a P

~.N\ 2 _un
=57 P +(1-57) = RS (16)

[

where p =(Y, w,/Y w,) is a consistent estimator of the
response probability p, z2*"=1/nY z, and py is the
unweighted mean of the observed values y, and the imputed
values y,” = R!"z,. This estimator may be derived from the
method of moments, following Skinner and Rao (2002), by
solving

¥
E()—)[R) = p?+(1 “P) ?ﬂ 2’

for ¥ and replacing E (¥;) by its estimator V(T 12,)2
by its estimator
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(17)

and p ! by its estimator 5 -'. Note that the estimator z of
Z makes use of the full sample z-values, unlike z. If 2, is
used to estimate Z, then the bias-adjusted estimator requlres
response identifiers, unlike (16).

We now show that the bias-adjusted estimator (16) is
approximately unbiased under both the design-based and
the model-based approaches. Hence, unlike the unadjusted
estimator (10), the adjusted estimator is robust in the sense
of validity under both approaches First, noting that ¥,
may be expressedas p 7, + R "(z -pz ) andusing (17), the
bias-adjusted estimator (16) reduces to

Fr=5+ R"(z-2). (18)

Comparing (9) and (18), we see that ¥, under welghted
ratio imputation is not equal to the bias-adjusted estimator 7,
under unweighted ratio imputation, unless z, = 1for all i. In
the latter case, both estimators reduce to y_. However, the
form (16) for y does not require response identifiers,
provided p is available,

Since E, (¥ig) =Bz and E, (¥) =P Z under the ratio
model (7), we have £ E, (5 P - §72 ) = 0; that is, the adjusted
estimator is approxmmtely unbiased under the model-basad
approach. On the other hand, since EE (3)= Y and
E (Z-2,)=0 under yniform response it follows that
EpEr (Fir) = ¥ sothat the adjusted estimator is approxima-
tely design-unbiased under uniform response.

We note several points here: (1) The survey analyst can
easily implement the adjusted estimator ¥, given by (16),
from the imputed data file without response identifiers, i.e.,
(W, 7,,2;,i€s), where J, =y, if ics, and y, =y if ies, .
Note that the response identifiers are not needed on the data
file, but the response rate § should be available 10 the
analyst, which we assume to be the case here. In the case of
multiple imputation classes, response rates within classes
and imputation class identifiers need to be provided with
the file. (2) The bias-adjusted estimator coincides with the
unadjusted estimator ¥y, given by (10), under a self-
weighting design w, = w. (3) The adjusted estimator 7, in
(18) has the form of a regression estimator in two-phase
sampling. (4) Under mean imputation, (18) reduces to the
weighted mean of respondents ¥, so the correction made
to the unadjusted estimator eliminates the effect of using
unweighted mean imputation.

Another approach to getting a bias-adjusted estimator,
Fi» 18 0 subtract an estimator, 5(F,), of the bias of 3,
from ¥, ie.,

yL‘ll{ = J7[R - b(.l_’]R)- (19)
It follows from (11} that an estimator of the bias of ¥, is
given by

b (7 = (1-p) (R™ 2 -3,). (20)

But the resulting bias-adjusted estimator is not identical to
(16), and it depends on response identifiers, unlike (16). On
the other hand, if one uses

b (5 = (1-5) (R z,-7,), @1
it is easy to verify that the resulting bias-adjusted estimator
is identical to (16).

3.2 Variance estimation

We study variance estimation under uniform response in
this section. We assume that response identifiers are
available with the variance estimation file. If imputation
classes are used, their identifiers are also needed.

3.2.1 Variance Estimation under Weighted Ratio
Imputation

In this subsection, we obtain a linearization variance
estimator of the imputed estimator (9) based on weighted
ratio imputation, using the reverse approach of Fay {1991),

First, express (9) as
z w£ alyf _

YR
Z w;

where a; is a response indicator to item y such that @, = 1
if ies, and a, = 0, otherwise. It follows from (4) that the
variance V(7,) of yjp can be estimated by v, = v, +v,,
where v, is an estimator of Vp(ym— Y') conditional on the
a,’s, and v, is an estimator of ¥ Ep (Fir - Y ). Denote the
estimator of the variance of the estimated total ¥ =¥ w,y,
based on the full sample as v(y,). Then, using the delta
method, a linearization variance estimator, v,, in the
operator notation v(.), is given by

v = vig),

where the value of € for ies is given by

‘E; = El " [‘%n‘?m]’

(22)

with
Sy =ay;+(1-a)R,z + 6ai(yi _eri)’

where
E\\- w;(l-a;)z,

Y waz

s Fau ]

Note that v, is valid regardless of the response mechanism
and the imputation model. The derivation of (22) is given in
Appendix A. Shao and Steel (1999) derived a linearization
variance estimator of the imputed estimator Y=
Yoway, + Y wi(l-a)R,z of the total Y. They first
expressed ¥ as

r=-3 wi[a‘.yi +(1 —a‘.)Raz‘.]+ ey, w,a; (}',-—Raz,-),
¥ £
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where R =Y /Z with (Y ,Z )= Y, a(y,z,) and then
replaced ¢ by €= ¥ ,(1-4,)z,/¥pa,z, to get a linear
approximation for ¥ =Y w.n,, where
N = ay +(1-a)Rz +2a,(y,-R,z).

Now replacing R, by R, and ¢ by ¢ in the above
expression for m, we get f, =a,y,+(l-a)R z+
¢a,(y;-R,z;) which leads to the linearization variance
estimator v, = v(f}). The delta method in Appendix A may

be used to obtain this result in a straightforward manner.
Next, using the delta method,

2 5%
V,E,(Fp-¥) = p(l —p)[ Z ] @)

E(Z)Y N

Under asswumption DB where Z =Y ,z,, and S_ = 1/N
Yo(yi-E, (Ra)zl.)l. The component v, is then obtained by
substituting estimators for the unknown quantities in (23).

We obtain
o[ 2) s
v, = p(l-p) | —| —, (24)
Z N

a

where Z = y.owz,, Z"a = Z,w.a.zi,}\ﬂr =Y. w, and

LI R

2 y w,a, (yi —Iérzi)z.

_ 1
er
E.\' wia; s

The sum of (22) and (24) gives v,, the estimator of the
overall variance of ..

5

3.2.2 Variance Estimation under Unweighted Ratio
Imputation

We now give a linearization estimator of variance of the
imputed estimator (10) based on unweighted ratio impu-
tation. Using the delta method, see Appendix A, we obtain

v, = v(E), (25)

where

with

. . . 4, .
&, =ay +(1-a)R"z +d ;’ (yl. —Rr"“z,.)
i
and d = Y. w.(1-a)z,/Y a,z,. The component v, is given
by (B.2) in Appendix B.
3.2.3 Variance Estimation for the Bias-Adjusted
Estimator

In: this subsection, we give a linearization variance esti-
mator of the bias-adjusted estimator (18). Using the delta
method, we obtain

v, = v(8), (26)

where
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-

un
a

g - e |(-7) + RO, -7, + %
N

E.-.' w4,

(zf _E)

a

= = i ny Un
(z-z) =ty - R z)
i

1
Es a,z;

see Appendix A. The component v, is given by (C.2) in
Appendix C.

4. RANDOM HOT-DECK IMPUTATION

In this section, we study the properties of the imputed
estimator (6) under weighted and unweighted random
hot-deck imputation. We also derive linearization variance
estimators under uniform response.

4,1 Estimation of a Mean

In section 4.1 we study point estimators under weighted
and unweighted random hot-deck imputation.

4.1.1 Weighted Random Hot-Deck Imputation

Under weighted random hot-deck imputation, we select
the donors j¢s, with replacement with selection proba-
bilities w; /Y w; and use Vi =y.ies,. The imputed
estimator, ¥,,, is given by (6) with the above imputed
values. It is approximately unbiased for the population
mean Y under both the design-based and the model-based
approaches. The latter uses the mean model (8).

4.1.2 Unweighted Random Hot-Deck Imputation

Under unweighted random hot-deck imputation, we
select the donors jes, with replacement with equal
probabilities 1/7 and use y," = ¥pies,. The imputed
estimator, 7,,, is given by (6) with the above imputed
values. It is approximately unbiased for ¥ under the mean
model (8), but biased under uniform response. The bias of
Py 18 given by

B, = (1-p)(F,- Y). (27)
A bias-adjusted estimator of ¥ under unweighted random
hot-deck imputation is given by

}7’“‘; = ﬁ-i}_’m +{1 ‘ﬁ_l)7|l:, (28)

where p = (Esrw,./ ¥, w,) is a consistent estimator of the
response probability p and 7, is the unweighted mean of
the observed values y, and the imputed values y;”. The
estimator (28} may be derived from the method of moments,

following Skinner and Rao (2002), by solving

E(}_"[H) = pY+ (1-p) Yn
for ¥ replacing by E (,,) its estimator y,, ¥, by its
estimator %, and p ! by its estimator p ~'. The adjusted
estimator is approximately unbiased for ¥ under both the
design-based and the model-based approaches. As in
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section 3.1.2, note that the survey analyst can easily
implement the adjusted estimator ¥,z from the imputed data
file without response identifiers, i.e., (w, J;, z;, i€ 5), where
J,=y,if ies, and y, = y; if ies, , provided the response
rate, p, is available.

Note that the method of subtracting an estimator of the
bias of 3, from 7,, using (27), will lead to a bias-adjusted
estimator that depends on response identifiers, unlike (28).
It is not possible to obtain the bias-adjusted estimator (28)
by this approach, unlike in the case of deterministic ratio
imputation studied in subsection 3.1.2.

4.2 Variance Estimation

We study variance estimation under uniform response in
this section. We assume that response identifiers are
available with the variance estimation file. If imputation
classes are used, their identifiers are also needed.

4.2.1 Variance Estimation under Weighted Random
Hot-Deck Imputation

We now obtain a linearization variance estimator of the
imputed estimator ¥, under weighted random hot-deck
imputation, First, note that under weighted random hot-deck
imputation, £ (¥,,)=7,. This is a particular case of (3}
with z, =1 for all i . Hence, using (22), v, is given by

v = v(E), (29)

where
- 1 - _
bey bl
E = ay,+ (1-a) 3, +¢a,(y,-3,),

with ¢=Y w(l-a)/y wa,. Straightforward algebra
shows that £, simplifies to £ =a,(y;-7,)/}Y ,w;a,. Now,
noting that ¥, ( ;") = (1/y, w,a,) Y wa,(y,-¥,) =s,,
we have

2
_ W, l—a'.
v, =V, (waPMSZ

. yr-
(E.v Wi)2
As noted in section 1, v, is the same as for the
deterministic case. Hence, under weighted random hot-deck
imputation, v, is given by (24) with z, = 1 for all {, which
leads to

(30)

- 2
N )*s

=z,

Z w,a, A} (31)
The sum of (29), (30) and (31) gives v,, the estimator of
overall variance.

v, = p(1-p)

4.2.2 Variance Estimation under Unweighted
Random Hot-Deck Imputation

We now obtain a linearization estimator of variance of
the imputed estimator (6) under unweighted random

hot-deck imputation. First, note that £ (¥,,) reduces to

(10) with z, = 1 for all i. Hence, v, is given by
v = viE), (32)

where

~ 1 a _
§ = Es W [gu'E.(J’m )],
£ . ai —un
§, =ay,+(1-a)7y, *d: (ys‘.Vru )’
with d = Y, w(l1-a)/Y a, Now, nothing that ¥V, ') =

Vry,a,(y,-7"Ps,", wehave

2
Zy W‘- (1 _ar') 2un
v, = —-——ZSyT .
(3, w)

As noted in section 1, v, is the same as for the deterministic
case. Hence, under unweighted random hot-deck impu-
tation, v, is given by (B.2) with z, = 1 for all i. The sum of
(32), (33) and (B.2) gives v,.

4.2.3 Variance Estimation for the Bias-Adjusted
Estimator

(33)

We now obtain a linearization variance estimator of the
bias-adjusted estimator given by (28). First, note that,
E (#y) reduces to y,, the mean of the p-values
respondent. Hence, v, is given by (29) and v, ils given by
(31). Now, noting that ¥ (y)=s," and
Cov, (¥, y)=0 for ixj, one can show that
V, (7 - Y) is givenby

Vv =
-2

P 2 ' A _1 r+n 2un
WZ lid} ( _ai)"(l -P )2( —n—z]lsyr - (34)

The sum of (29}, (31) and (34) gives v,. Note that even
though v_ given by (34) is expressed as the difference
between two terms, it is always nonegative, as shown in
Appendix D.

5. SIMULATION STUDY

As a complement to the theory, we present some results
from a limited simulation study. We generated a population
of N = 800 values (y,,z,) according to the ratio model
¥ = Pz +€, where z and € were generated from a normal
distribution such that the correlation, p_, between y and z
equaled 0.05, 0.30, 0.70 and 0.90. The objective is to
estimate the population total Y=Y y,. We drew
R = 10,000 PPS samples, each of size n = 75, according to
Sampford's pps sampling method, using item z as the
measure of size. Nonresponse to item y was then generated
from each PPS sample according to a uniform response
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mechanism with a response rate of 0.7; item z was observed
for all units in the sample. We used weighted and
unweighted random hot~deck imputation to compensate for
nonresponse to item y.

The estimator of the first component in the variance
formula (4) was computed using the well known
Sen-Yates-Grundy estimator. Let v(£) denote the variance
estimator of ¥ w,E.. The Sen-Yates-Grundy estimator of
variance is then given by

NGEEL D) PR

2ies jes LT

2
Ly o

i i

where @ =P(ies and jes) is the joint probability of
inclusion of units ¢ and J in the sample. Sampford’s method
ensures M, 7, ~ T > 0 for all i, j so that the variance esti-
mator in (35) is always nonnegative, N

As a measure of the bias of an imputed estimator Y, of
Y, we :used the biasratio B (¥,) = Bias()’:,) /s.e.(Y,), where
s.e.(Y,) denotes the standard emror of ¥,. To compare the
efficiencies, we used the coefficient of variation of ¥,,
denoted CV(Y,) and givenby CV(Y,) = (yMSE/Y). The
variance estimators were compared in terms of their relative
bias and CV. The relative bias of a variance estimator, v,,
is measured by B, (v,) = (E(v) - MSE(Y,))/MSE(Y,) and
its CV is given by CV(v,) = yMSE(v,)/ MSE(Y),). Values
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of the above measures were calculated from the simulated
PPS samples.

Table 1 reports the simulation results on the bias ratio
(8,) of the three imputed estimators of ¥, denoted B,
(weighted), B, (unweighted) and B, (adjusted) and the CVs
of the estimators, denoted CV (weighted), CV (unweighted)
and CV (adjusted). It is clear from Table 1 that the bias
ratio of the estimator under unweighted imputation is large
(> 30%) if Py 0.5, while the bias ratios of the estimator
under weighted imputation and the adjusted estimator are
small (<4%) for all values of P,y Ducto large bias, the CV
of the unweighted estimator 1s larger than the CV of the
weighted estimator if p, , > 0.5 and also larger than the CV
of the adjusted estimator if p, ,2 0.7, but the increase in CV
is not large. Also, CV (weighted) is slightly smaller than
CV (adjusted) for all values of Pyyr

Table 2 reports the relative bias (B,,)) and the CV ratios
of the variance estimators. As expected, the variance
estimator v, (unweighted) leads to serious underestimation
of MSE of the estimator for large p_,(>0.7), while the
absolute relative bias of the variance estimators v,
(weighted) and v, (adjusted) is small (< 6%) for all values
of p_ . Turning to the CV ratios of the variance estimators,
Table 2 shows that v, (unweighted) has the smallest CV
followed by v, (weighted) and v, (adjusted) for Pry 2 0.3.

Table 1
Bias Ratio (%) and CV (%) of the Imputed Estimators

P,=005 p =030 p =050 p,=070 p =090

B (weighted) -0.78 1.99 -0.79 0.40 3.27

B (unweighted) 1.82 18.60 30.50 49.20 64.20

B (adjusted) -1.12 1.47 0.01 0.61 294

CV (weighted) 18.80 15.30 11.60 5.87 4.69

CV (unweighted) 18.00 15.20 12.50 6.83 5.93

CV (adjusted) 20.90 16.80 13.50 6.10 478
Table 2

Relative Bias (%) of the Variance Estimators and Comparisons of the CV
ratios of the Variance Estimators

p,,=005 p, =030 p =050 p =070 p =090

B__ (v )(weighted) 2.43 478 228 3.96 21,95
B_(v)(unweighted)  -1.03 347 <1180 -18.50  -29.30
B, (v )(adjusted) 542 -1.06 421 161 0.07
cvV ighted
lunweighted) 6 oosa 0931 0875 0781
CV (v }(weighted)
CV{v)(unweighted)
1032 0829 0701 0819 0692
CV (v) (adjusted)
cv ighted
CV ) (weiglted) 1016 0843 0751 0935 0886

CV(v)(adjusted)
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6. CONCLUDING REMARKS

Unweighted imputation methods are often used in
practice to compensate for item nonresponse when the
survey weights are not available at the imputation stage.
Also, unweighted imputation is appealing to users even
when the weights are available at the imputation stage. But
it leads to biased estimators under uniform response within
imputation classes. We have proposed bias-adjusted esti-
mators under ratio imputation and random hot-deck impu-
tation, These estimators can be implemented from the
imputed data file, even if the imputation flags within classes
are not given, provided estimates of response rates within
classes are reported. We have shown that the bias-adjusted
estimator performs better than the unadjusted estimator
under unweighted imputation, and is robust in the sense of
validity under both the frequentist and model-based
approaches.

We have obtained linearization variance estimators for
the bias-adjusted estimators. For variance estimation, impu-
tation flags should be provided in the variance estimation
file.

If the imputation flags are available in the data file and
imputation is deterministic, the imputed values can be
replaced by those under weighted imputation. For example,
in the case of unweighted ratio imputation, y;" =3,"/Z2," z,,
one could either multiply each imputed value by
z,/y," x 3,/2, to reproduce the values y,/z, z, under
welghted ratio 1mputatlon provided edits are not applled
after imputation. Alternatively, one could reimpute values
using the sampling weights w,. In both cases, the adjusted
estimator does not present advantages over the imputed
estimator based on weighted imputation other than assuring
that the imputed values in the data file are not changed.

In the case of random hot-deck imputation, however, the
only way to implement weighted random hot-deck impu-
tation is to reimpute using a weighted hot-deck scheme. We
believe that analysts do not like to change the imputed
values on the data file produced by the edit and imputation
system.

The imputed estimator {10) can use poststratification (or
calibration) weights, w,(s), based on known population
auxiliary information, instead of design weights w,. Note
that the calibration weights, w,(s), depend on the whole
sample s unlike the design weights w,. If the calibration
weights are used for ratio imputation, then we simply
replace w, by W, (s) in section 3.1.1 and the resulting linear-
ization variance estimator, v,, uses & in (22) with w,
changed to w,(s). However, v(.) in (22) now refers to the
linearization variance estimator of the full sample
post-stratified estimator }" w,(s)y;.

Under unweighted imputation, linearization variance
estimation becomes more complex because the bias-
adjusted estimator based on the calibration weights will
involve both design weights and calibration weights. If the
design weights, w,, are available at the imputation stage but

not the calibration weights, w,(s), the design weights can
be used for imputation and the calibration weights for
estimation. The resulting imputed estimator (6) based on
calibration weights remains asymptotically unbiased under
uniform response (within classes), but linearization
variance estimation becomes more complex because both
sets of weights are involved in the imputed estimator. We
propose to study poststratification and some other
extensions in a separate paper, and derive corresponding
linearization variance estimators.
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APPENDIX

A.  Derivation of v,

Suppose that an estimator 0 is expressed as

~

. 1l 0 A
§ - 2f-7,)| = gD, (A1)
Y, Y4
where }i Ewy,,j 1,..,6 and Y- (Y. A)
Letting 9=g(Y), R4_Y/ Y Y(l+6Y) with
8)3.:(1’ Y,}/Y; andY, = E (Y) we have
é-@ = ;‘\{Yz(l+8i}2)
¥,(1+87))
(l+8l;3)

o )[Ys(l +87;)- v[1 -87)]} -0
{87,-87)v,+ R, v,(67, -87,+87, 57 )-

R, Y(87,- 87, + 87, -87,)}, A2)

neglecting higher order terms in SY s. The expression
(A.2) reduces to
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where

I
& = ?( 1~ 8) (A3)

with
Y -Y

5 76
i =Vu+ R34(y5i-y6i) Ty (y3i —R34y4,.).
4
Hence, the variance estimator of 8 from the delta method
may be expressed as v(£). Now, replacing unknown

quantities in (A.3) by their estimators, we get
estvar (B) = v (&),

where

1
Yl
with

. ) v.-F .
Ei=Vy R34(ys:' 'yﬁi) ¥ _?:...E ()’34' - R34y4‘.).
4

Note that the delta method avoids evaluation of partial
derivatives of g(Y) with respect to its components Y
unlike the usual Taylor linearization method.

Letting Y ani,Y Y =y, wlaly,, 4= Y =y .wa.z,
and Y, =Y w;z, in(A.1), we get the variance estlmatOr (22)
of 7 based Aon weighted ratio imputation. Also, letting
Yi=¥Yw, X s ¥oway, Y = Yoway,/w) Y, =
Yowalz/w)Y, =Y wzad Y, =Y waz in(Al),we
get the variance estimator (25) of y,, based on unweighted
imputation. Finally, we note that the bias-adjusted estimator
{(16) written in the form (l 8) can be expressed as the sum of
three components: ¥,, R "z and -R" Z.. Each of these
components is a specnal case of (A. ]) I.ndeed the com-
ponent y isa specml case of (A.1) with Y E j a;,

=Y, way, with Y Y The component R "z isa
spec:al case of (A l) with Y =¥ W, Y Y
Yowa,(v/w), Y Y =Y. wa,(z,/w, ) and Y, Z‘sz
The component R isa specxal case of (A. 1) with ¥, =
Ywa,Y,= Y E wa(ylf'w) Y, = Y =y . wa(z /w)
and Y =Y . w.a.z,. We apply the delta method to each

N [l a3

component separately to obtain v, = v(£) given by (26).
B.  Derivation of v, for the estimator y,, under
unweighted imputation

Using the delta method, it can be shown that ¥, E, (y“)— Y)
under unweighted ratio imputation is given by

- 1
VrEp(le_ V)= p(l-p) I
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where
2y = %ij (v,-E, R,z
Sy = %ZP: 2(y,-E, Ry)z )
S = 3 e Rz,

with R =Y /Z and (Y, ,Z )=Y,.mal(y,z;). The
component v, is obtained by estimating unknown quantities
in (B.1). It is given by

vy = p(l-p)
-2\ 7-2
1]z - -
X— Ser(l)+ - er(2)"'2 - er (3) |2
N ra w (B.2)
where
2 1 S un
Sery = E w.a E wiai(yl'_Rr zr)z’
O

s S w'la(y —ﬁunz)2
er(2) E‘. wa, S i iV I

T wa
and Z =% az,.
C.  Derivation of v, for the estimator y;

Using the delta method, it can be shown that ¥ _E,(Fjg - ¥)
for the bias-adjusted estimator is given by

V,E,(Fa-F) = p(l -p) i
p y!R P p Er[(zp a‘_)z]

{s +E(R2)S2-2E (R )Sm+E[

b(z)
+2E [hE 8,0~ E,(R,)S, )}, )
where

S = 3 2 0 BOIP,

2 - %,%3 (2,- E(Z,)%

S = %gj ;- EF))z,- E,(2,),

Sy = ‘]1\7; m (v,-E, (R, )z, ],

S,y = Klr ZP: 1(y, - E, (7)) - E, Ry, )2,

5. - Air ij n(z, - EAZ)) ;- E,(R,,)z),
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(¥,,Z)=Ypa,(y,2)/Ypa, and h=(Z-Z)/Z . The
component v, is obtained by estimating unknown quantities
in (C.1). It is given by

PP N
V= p(l-p) =
: Y wa,
x {s;+(1€:“)2s,i-21€,”“ s (HE i) sl
+2[kz wa](seyr ﬁ:“sw)}, €2

where

LY wa, (vi-7),

d Z.\' wial' s

2 512
s, = E wai(z‘.-zr) ;

Zwas

1 _ _
yer = E—w‘a‘g W:“s(ys‘yr)(zrzr)a

Se2r(2) = E w.a, Z W a(y zi)zs

ty
1]

2]
}

s

1 _ A
Seyr = mzs: ai(yf_yr)(yi_R:nzi}’

-2}
!

1
ezr Zs Wiﬂi .
and ki = (Z - )Y, az,.
D. Nonegativity of ¥ (7, - ¥)

We show that the variance formula in (34) is always
nonnegative. First, note that this expression can be
expressed as

n Zzsm W.'Z -(r +n) (Es,,, w‘.)2
B Z(Es, W, )z >

PN nzz wf—(r +n)(z w‘.]2 >0

2
DRI

On one hand, 72 » m(r +n) « n>m which is always true.
On the other hand, using Cauchy-Schwarz inequality, it is
casily seen that ¥ wls (Y, w,)*/m. The result follows.

V.0m-T) =

= n2y wi-m(ren)

Sm
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Minimum Risk, Fixed Cost Sampling Designs for Independent
Poisson Processes

BRAD C. JOHNSON and JOHN DEELY!

ABSTRACT

Optimal and approximately optimal fixed cost Bayesian sampling designs ar¢ considered for simultaneous estimation in
independent homogeneous Poisson processes. We develop general ailocation formulae for a basic Poisson-Gamma model
and compare these with more traditional allocation methods. We then discuss techniques for finding representative gamma
priors under more general hierarchical models and show that, in many practical situations, these provide reasonable
approximations to the hierarchical prior and Bayes risk. The methods developed are general enough to apply to 2 wide

variety of models and are not limited to Poisson Processes.

KEY WORDS: Optimal sampling allocations; Poisson processes; Poisson-Gamma hierarchy.

1. INTRODUCTION

The topic of Bayesian survey sampling techniques is
well represented in the literature. A number of articles
focus on sampling from finite populations and most make
use of normality or a “posterior linearity” property {(cf.
Godambe 1955; Ericson 1988; Ericson 1969; Scott and
Smith 1971; Tiwan and Lahiri 1989). An excellent review
of recent Bayesian methods for sampling finite populations
is contained in (Ghosh and Meeden 1997) as well as some
mnteresting new approaches. Lindley and Deely (1993)
discuss optimat allocation in stratified sampling under a
normal model when only partial information is available. In
terms of Poisson models, Clevenson and Zidek (1975)
discuss the simultaneous estimation of means in inde-
pendent Poisson processes and Leite, Rodrigues and Milan
(2000) discuss a Bayesian analysis when estimating the
number of species in a population using a non-
homogeneous Poisson process. Little work has been done
on model specific sampling designs from a Bayesian
perspective.

In the present paper we take a model based approach to
develop optimal and approximately optimal fixed cost
sampling allocations for simultaneous estirnation in mul-
tiple independent Poisson processes. Section 2 introduces
the model and some notation. Section 3 presents the general
allocation problem and gives the minimum Bayes risk
allocations when independent conjugate gamma priors are
assumed for each process. Comparisons are made with
classical stratified random sampling allocations. In section
4 we describe techniques for finding “representative”
conjugate priors under more general hierarchical models
thus allowing (at least approximately) optimal sampling
allocations to be determined for this larger class of models.
In many situations, these representative conjugate priors
can be used to reduce the hierarchical model for the

1
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purposes of posterior analysis as well. A full numerical
example is presented in section 5.

2. MODEL AND NOTATION

To avoid the necessity for subscripting, we first present
the model and notation in terms of a single homogeneous
Poisson process. Let (£, F,v) be a measure space, let
{N(4): A F} be a homogeneous Poisson process on
(€, F, v) with unknown intensity 0 ¢ ® = (0, ») and, for
any AeF, let X=(X,m)= (N(),v(A))denote a
complete sufficient statistic with realization x = (x, m}).
Less formally, x is the realization of a Poisson count from
a sample of “size” m. The p.m.f. of X is given by

) (me).tenmﬂ
Jx]6) = T(x+1)

We express our prior beliefs about the parameter 0 by a
conjugate gamma distribution with shape parameter o and
scale parameter B, denoted Gamma (o, p), with density

Lo, 1,2, @) 0e(0,). (1)

a-1, -8/p
n(8|A) B

CRNCY

We presently restrict our attention to the case when A can
be specified; the addition of hyper-priors on A is
considered in section 4.

For an arbitrary action a in the action space 4 = @, we
consider the loss functions

Ip®  2=(@Pe® =’ (2)

Lk(B,a):(B(;—ka)Z, k=01. 3)

L, is the ordinary squared error loss and L, is the relative
squared error loss. For L, we require that a>1 which
implies the gamma prior is unimodal.
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Under the loss functions L, the above model is
extremely well understood To su’npllfy notation somewhat,
let o = m( | ) and et 5 denote the Bayes procedure for u"\
under the loss functlon L,. We recall that the posterior
distribution of 0 given x is

0] x ~ Gammaj o +x, B .
mpB+1

The Bayes procedure for loss function L, is given by

Sz(x) = E@:;fﬁ-x:——l—ﬁ, a>k 4)

The posterior expected loss in using 5:‘ under the loss
function L, is

2-k
p(n*,a:,L,,)=(_-E__] @sx-B'h a>k (5)
mp + 1

with Bayes risk

r, &, L,) = umB —

It is interesting to note that under L, (4) and (5) imply
that the Bayes procedure 5 1 (x) is the mode of the posterior
and that p(x*, 31: L) does not depend on the observed
count x and hence is constant

It is often more convenient, in terms of the elicitation
process, to allow the shape parameter o of the gamma prior
for 8 to depend on the scale parameter (. In particular, the
following alternate parameterizations are used throughout:

8|A ~ Gamma(u/B,B), A=(,B), E(8|X)=p; (7)

1 -k BZ-k’ us k. (6)

8|3~ Gammam/p + 1, B), A = (m, B), Mode(8 | 4) =1. (8)

Unless specified otherwise, results and formulae for these
alternate parameterizations can be obtained by simply
substituting the proper value for a. For & as in (7) or (8) we
substitute o = u /P or n/p + 1 respectively.

3. OPTIMAL ALLOCATION

We now discuss the allocation of sampling effort when
{N(4):4eF}, for s=1,...,S are independent homo-
geneous Poisson processes on corresponding measure
spaces (., F.,v,) with unknown intensities 8_. The
realization of 2 sample is now denoted x = (xl, v Xg)
where the x_=(x_,m ) have the same meanings as
x = (x, m) in section 2. For each process, s =1, ..., §, we
assume that

X_| 6, ~ Poisson(m 0_);

8 A, ~Gamma(a, B), A, =(e,B)

Notice that we have not assumed that the 8_ are exchange-
able so that prior information about one process is not
influenced by the others.

Let 61 = ﬁi(x) = (6:’ (x), .oy 6:’(x s5)) be the component-
wise vector of Bayes procedures for estimating 6 =
(9,, ..., 85) under the loss function £, and let 7 denote the
overall prior specification. We assume that the overall loss
for esnmatlng some (possibly vector vaiued) function g(8)
with g(& k) can be expressed as

e@@gwm=§u@geium, ©)

where the w_are known arbitrary non-negative weights. In
particular this covers the case when we are interested in the
simultancous estimation of W8 where W = (w Jisa Jx S
matrix and the loss structure i of the form

(%%»ZZuﬂu)

J=1 s=1

2@ ]@ﬁlam

The weights in (9) become w_= Ej_l er2 ¥ and, by the
lmeanty of the expectation operator the overall Bayes risk
is given by

PG, Wok, L) = 3 w r(n™, 8, L,).

Let £=(§,...&;) denote the full specification where
€. =(a,p,w,c,) denotes the specification for process s
and c_ is the per unit sampling cost within that process. The
general allocation problem involves finding an
m=(m,.,mg) that minimizes the total risk
r(w*, (8%, L,) of g(8*) subject to the constraint

s
C = Z} cm;
y=

where C is the fixed total sampling budget. The proof of the
following result is routine and deferred to the appendix.

Result 1. Let &= (él,. wé S) be given. The allocation
m =(m,,....mg) that minimizes r(n, g(80),L ) for fixed
total cost C is

J#eB)
. Yeble, (C+Z i] —El-. (i1)

E; w.\'u’.vﬂscs ¢ B“'

The allocation that minimizes r(i, g(82),L,) is
.'/w fe, Z ¢, 1
Y e 5,

« B,

Equations (11) and (12) can result in one or more m_ < 0
(i.e., we take no samples from the offending processes) in
which case we would remove these processes and re-
allocate C among the remaining processes. Of course, for
the removed processes, our posterior mean and variance are
equivalent to the prior mean and variance of 0.

(12)
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We also comment that the allocation which minimizes
r{m, 6;:', L)) in(12) also minimizes p (", 81', L)) since this
latter quantity is free of the observed counts x_.

3.1 Comparisons with Traditional Frequentist
Sampling Allocations

A special case of the above result is when the
{NA): A€ F,} canbe thought of as a stratification of a
single non-homogeneous Poisson process { N(A4): 4 e F}
and we are interested in estimating the overall population
mean, say 0. To this end, let #_denote the relative size of
gach Q (which is assumed to be finite) and consider
estlmatmg the overall population mean 0 = W0, where

(W], W), with the dec151on rule W&, The
welghts in thls case are w, W and, substituting mto {(11),
we obtain

) W joB. /e E < _i_
z W joB.e, = B, By
Letting B+~ and a -0 such that aB - p,

sxmultaneously for each process is equivalent to lettlng
E(8)-p, and Var(8 )~ for all s and we obtain

CWyn /e,
m o= —4t =" (13)
E.s' W.s\“‘l .s'cs

This expression, up to the finite population correction
factor, is the traditional frequentist allocation under the
parametric model X = (Xs, 1) ~ Poisson(y,) where p_
represents our “best guess” for the mean (and hence
variance) of X (¢f. Cochran 1977). When ¢, =1 forall s,
this becomes the Neyman allocation when the finite
population correction factor is ignored.

Assuming that all of the p_ are the same in (13) yields

m_ = —CWS/\/C_J;
S X W,

and, when ¢, = 1 for all 5, we obtain the usual proportional
allocation for fixed total sample size C= N.

In this sense, we see that the traditional frequentist
solutions to the allocation problem can be obtained as the
appropriate limit of Bayes solutions just as the traditional
frequentist estimates can be obtained as a limit of Bayes
procedures.

(14)

4. REPRESENTATIVE CONJUGATE PRIORS
UNDER HIERARCHICAL MODELS

Up until now we have assumed that the A were known.
Returning to the notation of section 2 we now consider a
more general hierarchical model
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X | 0 ~ Poisson(mB),
8|4~ Gamma(o, B);
A~ h(Q) reH. (15)

We restrict our attention to choices of A(A) where the
Bayes risk is finite and this precludes, among other things,
the use of improper A(i). The unconditional prior for 6
under this model can, at least in principle, be obtained as

n(0) = E" V(0 | 1)

In practice however, there is little to be gained since the
resulting w(0) will usually not be expressible in closed
form. Indeed, it is usually the case that numeric integration
andf/or simulation is required to obtain the required
posterior quantities and the Bayes risk.

We propose two methods for finding a “representative™
single conjugate prior which, in most cases, can be
substituted for m(8) for the purposes of allocation. Indeed,
for many practical situations, we find that these
“representative” conjugate priors can replace the hierar-
chical model completely, greatly simplifying the posterior
analysis.

We assume that it is relatively easy to simulate a
sequence of random variables, {A }N from A {ki} and, as

such, a sequence of random varlables {0, }N ;» can be
obtained easily from n(8) by taking 6, ~ m(9 | l )
We now discuss the two techniques for ﬁnding the
representative conjugate prior.

4.1 The Minimum L_ Conjugate Prior.

Let F(0) and F(8 | 1) denote the distribution functions
of n(9) and n(@ | 1) respectively. The L_ conjugate prior,
or L _C prior, is defined to be the prior n” = x(0 | &%)
where A is chosen such that

lF@) - Fola)l, = inflFree) - Feolnl.
heH

That is, the L _C prior is the prior m(0 | &) which
minimizes the L distance between F (6) and F(0 | ).

In order to estimate such a w(9 | 27) let {8}¥ be N
simulated values from the unconditional prior n(e) }et 0.,
denote the i™ ordered value of the {8;}; and define the
function
i-.5

d(A) =max | F (6, (16)
i

It is usually a routine matter to numerically find an {at least

approximate) minimizing A for (16) and our L__C prior is

(0 | &) where i~ satisfies

d,0°) = inf d\ (A,
heH

Note that we are essentially minimizing the
Kolmogorov-Smimov statistic and the obvious appeal of
estimating 7{(0) in this manner is that d,(A"} can be
directly interpreted as the estimated maximurm difference of
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cumulative probabilities under 7(6) and =(6 | 1°). In the
sequel, we will denote the Bayes procedure under the prior
7~ and loss function L, as &; (x).

4.2 The ML Conjugate Prior

Let 0,, ..., 0, be N simulated values from 7(6). The ML
conjugate prior, or ML-C prior, when it exists, is defined to
be the prior &(® | A™) where 4™ satisfies

N
70 | 27y = sup LM | 8) = sup H (0, | 1);
heH hedH i=1

or, equivalently,

N

In {0 | A = sup I(A | 0) = sup E In n(0, | »).
heH heH i=1
Thatis, A™ is the usual maximum likelihood estimator of A
if 8, ..., 8, wereiid. from m(8 | 2). Again, it is usually a
simple matter to obtain A™ by numerical or simulation
techniques. As in the L_ method, we will let #™ and 8;"]
denote the estimated prior and the Bayes procedure under ™
and loss function L.

Examples. The following four examples give an indication
of how these procedures perform for a few different choices
of A(2). In all of the examples we consider the general fist
stage setup to be

X | 0 ~ Poisson(m®)
0| %~ Gamma(n/p +1,B) A=(,B)

Furthermore, we assume 7 and B are independent so that
h(h) may be written as & (n)h,(B). Adopting the
notational conventions

¥-Beta, ) (4, ) =AM« (y-af " G- I ()
Y- InvGamma (a, 6) =f () =y “ Ve 100 1 ((y);

the four examples considered are

Example n B
(a) Uniform (4, 6) Bf’ta(o.s,z)(z’ 5)
{b) Gamma (6.25, 0.8) InvGamma (11, 1/ 30)
(c) Uniform (2, 18) Uniform (0.2, 0.5)
) Beta,; (2, 1) Betay | 45(1,2)

Table 1 gives the estimated A* and A™ with d (37} and,
for comparison, dN(l'“') for each of these examples where
all of the estimates are based on N = 100,000 simulated
values from n(6). In examples (a) and (b) both methods
give very similar results and provide very good fits to x(0)
as indicated by the small values of &, Examples (c) and (d)
were chosen to illustrate what happens when n(08) deviates
naticeably from a gamma distribution. Example (c) has a
“plateau” distribution and example (d) is skewed in the

wrong direction. As expected, the fits are less convincing
in these examples. Figure 1 shows the simulated n{0)
along with n* and 7™ for each of these examples.

Table 1
Estimated 2~ and A™ for examples (a)— (d)
Example A d,(W) am d, (™)

(a) (4.94,098)  0.003
(®) (4.42,3.53)  0.003  (4.35,363)  0.006
() (1.72,2.92) 0043  (7.38,2.93)  0.065
(&  (1044,1.01) 0040 (10.12,1.10)  0.068

(4.93,1.00)  0.006

A more important consideration, for the purposes of the
allocations discussed in section 3, is how well the Bayes
risks are approximated undern™ and n™'. Table 2 gives the
Bayes risk, r(m, Sf, L.} under the hierarchical model and
the values for », (n=) and r, (™) where

ey - [ERDTTER)
rin,8,L,)

and where ¢ =« or ml for each of the examples. The
values r(r,8,L,) in this table were obtained by
simulation and are subject to a certain amount of variation.
Repeated simulations produced similar results. In examples
(a) and (b) the correspondence between the Bayes risk
under the full hierarchical model and the Bayes risk under
the representative priors is very close, especially for the
ML-C priors. In examples (c) and (d) the correspondence
is still quite good considering these relatively small sample
sizes. Overall, the ML-C prior appears to perform slightly
better in the sense that the Bayes risks r(n™, &', L, ) tend
to be closer to r(n, 8, L,) with the exception of example
(c) under the loss function L, where the L_-C prior is
slightly better.

In examples (a) and (b) one may ask why a hierarchical
model would be considered in the first place. The answer
lies in the relative ease of eliciting absolute or probabilistic
bounds on the hyper-parameters involved and taking A(})
to represent this uncertainty. The methods above can then,
in many practical situations, be used to determine a
representative single conjugate gamma prior for 6 thus
greatly simplifying the posterior analysis. The next section
illustrates this with an example.

We also point out that it is relatively easy to construct
examples where the methods described in this section will
fail miserably at not only approximating ® but also the
Bayes risk. The method is best suited to cases where (L)
is chosen to represent uncertainty about A. In situations
when A(L) is being used to change the fundamental
behavior of the first stage gamuma prior (to create a bimodal
prior for example) the representative priors n~ and x™
would normally not be used as a replacement for n in the
posterior analysis but may still give suitable approximations
of the Bayes risk for the purposes of allocation.
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Figure 1. Simulated prior =(8) (histogram) and the representative priors n= and &™ for examples {a} - (d).

. Fable 2
Bayes risks for examples (a) - (d)

Example (a)

L, L
m r{m, &) ry(m) ro (a™) r(m, ) ro{n) r(x)
1 2.997 -0.018 -0.006 0.500 -.006 -0.002
5 0.986 -0.004 {.001 0.167 -0.003 0.000
10 0.540 -0.006 -0.002 0.091 -0.002 0.000
Example (b}
L, L,
m r{m, &%) rg () 7o (™) r{m, &%) r (@) r (z™)
1 6.320 -0.021 -0.009 0.791 -0.015 -0.008
5 1.524 -0.014 -0.007 0.190 -0.003 -0.002
10 0.779 -0.008 -0.002 0.097 -0.002 -0.001
Example ()
Ly, Ly
m r{n, &) ro (@) r, (x™) rm, &%) 7 (T} r(m™)
| 6.861 0.154 0.121 0.72% 0.027 0.028
5 1.836 0.084 0.052 0,183 0.023 0.024
10 0.968 0.062 0.031 0.095 0.015 0.015
Example (d}
L, L,
m r{m, 5%) o (1) re (2™) r(m, &%) () r(a™)
1 5.251 0.0%6 0.121 0.523 -0.040 0.002
5 1.778 0.075 0.068 0.165 G.013 0.027
10 0.986 0.057 0.043 0.090 0,013 0.021
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5. NUMERIC EXAMPLE

We now present a numerical example based on data in
Lindley and Deely (1993). The data consists of traffic
counts between the hours of 7 am. and 6 p.m. over a 341
day period (3,751 hours) for a particular street in Auckland,
New Zealand. The hours are stratified into M| = 2,673
weekday hours and M, = 1,078 weekend hours and we
assume that the number of vehicles per hour can be
modeled by two independent Poisson processes. For the
purposes of this example we assume a total budget of
$1,500 is to be allocated and that per hour sampling caosts
are ¢, =310 and ¢, =85 for weekdays and weekends
respectively. The relative strata sizes in this case are
W, =0.71261 and W, = 0.28739 for weekdays and week-
ends respectively.

The prior belief is that the weekend traffic rate is 40
vehicles per hour and that weekend traffic accounts for 5%
of the total weekly traffic which vields a weekday traffic
rate of 304 vehicles per hour. Suppose also that, for
weekday traffic, we have elicited that the number of
vehicles per hour will rarely exceed 400 and that, for
weckend days, the number of vehicles per hour will rarely
exceed 60, that is, say

Pr(X, s400)~ .95 and Pr(X, s 600) =~ 0.95.

Making use of the fact that the marginal distribution of x
given A_ is a “number of failure” negative binomial
distribution of “size” @ =n/B + 1 and success probability
ll(mﬁ + 1) we find that, when 0, = 304 and 1, = 40, the
B, ’s that come closest to satisfying these elicited probabili-
ties are B, = 7.51 and B, = 1.74 respectively.

We now assume that the modes of the traffic rates for
weekdays and weekends are equalty likely to be within
approximately 10% of the elicited traffic rates of 304 and
40 respectively and take

M, ~ Uniform(274,334) and n, ~ Uniform(36, 44).

To represent our uncertainty about the p_ we take
B, ~ InvGamma(il,0.0136)

and
B, ~ InvGamma( 14.25, 0.043);

which yields E(B,) =7.5 with Pr(4<pB, < 13.4) = 0.95
and E(B,) = 1.75 with Pr(1.03 < B, < 2.97) = 0.95.

Using the ML-C technique in section 4 with
N =100,000, the specifications for weekday (s = 1) and
weekend (s = 2) hourly traffic rates along with the values
dy(n™) are

s e, W, " B dy (™)
1 10 0.71261 302.98 8.303 0.0055
2 5 0.28739 39876 1.889 0.0060

For the rematnder of this section we will dispense with the
superscript “ml” and snmply refer the prior specification as ©
and let &*(x) = (61, e 65) denote the component-wise
vector of Bayes procedures for estimating 0 = (8,, ..., 6;)
under the prior specification 7* and loss function Ly
We consider three different allocations based on esti-
mating W, 0, W,0 and W0 where
10 W,
W, = , Wy =[W, W] and W=|—
01 W,

With W, we are primarily interested in estimating the
weekday and weekend traffic rates 8, and 0, individually;
with W, we are only interested in estimating the overall
traffic rate 6= W0, + W,0,; and, with W, we are
interested in estimating all of these. In the sequel, we will
refer to the allocations as m(W ), m(W,) and m(W)
respectively.

Table 3 gives the allocations and corresponding weights w,
for these examples based on (11) and table 4 shows the
Bayes risks in estimating 8,,6,, W 8, W.0 and W8 under
these 3 allocations. While allocation m (Wz) is optimal for
estimating the overall traffic rate 8, it results in larpe
increases in the Bayes risks when estimates for the weekday
and weekend traffic rates are also desired — the Bayes risk
for estimating 8, under m (W, ) is almost double compared
to the Bayes risk under m{W).

Table 3
Weights and allocations for W , W, and W,
m(W ) m(W,} m(W)
s W mn, w m, W m
i 1 11933 05078 136.04 1.5078 123.20
2 | 61.35 00826 2792 1.0826 53.60
Table 4
Bayes risks under allocations m(W,), m(W ) and m(W,).
Estimand
m 8, 8, w0 w0 wo
m(W,) 2.61 0.68 3.28 1.38 4.66
m(W,) 2.29 1.47 3.75 1.28 5.04
m(wW) 232 0.77 3.29 1.35 4.64

6. CONCLUDING COMMENTS

The techniques employed in the present paper are
general enough to apply to a wide variety of Bayesian
models. Optimal allocation equations for other Bayesian
models in which the prior beliefs can, at least approxi-
mately, be modeled by conjugate priors are usually easy to
obtain. The idea of finding “representative” conjugate
priors, as discussed in section 4, is also applicable to a wide
variety of hierarchical models with first stage conjugate
priors. Areas of additional research in this area include
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allocations under loss functions other that L, and L, as
well as more complicated cost functions.
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APPENDIX A. PROOF OF RESULT 1

Proof of Result 1. Introducing the Lagrange multiplier X,
we wish to minimize, for loss function L,

zs:walkﬁzk+l(zmc— )

g=1 m B +1
Differentiating with respect to m_,
solving for m_ yields

sctting equal to 0 and

[-kplk
wo B e,
m:—-—-——

1
I ﬁ BS
Therefore, to minimize the risk for fixed cost, we take

s l-kﬂl-k s c
C=) me =3 12— =3 =
s s=1 ﬁ s=1 B.v
or
al *B:_ka

C+Ec/l3

/i

Substituting this back into the equation for m_ yields

l-k

. w B /c E— )

1
s Tkl -k '
Eﬂ/ woa, B, B, B,

Taking & =0 or 1 gives the desired result.
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Note on Calibration in Stratified and Double Sampling

D.S. TRACY, SARJINDER SINGH and RAGHUNATH ARNAB!

ABSTRACT

In the present investigation, new calibration equations making use of second order moments of the auxiliary character are
introduced for estimating the population mean in stratified simple random sampling.- Ways for estimating the variance of

the proposed estimator are suggested, as well.

The resultant new estimator can be more efficient than the combined

tegression estimator is in stratified sampling. The idea has been extended to double sampling in a stratified population and

some simulation results studied.

KEY WORDS: Calibration; Stratified Sampling; Double Sampling.

1. INTRODUCTION

Calibration estimation (Deville and Sirndal 1992) has
been much studied and practitioners have already offered
many usefu] approaches (e.g., Dupont 1995, Hidiroglou and
Samndal 1998, Sitter and Wu 2002). Still more seems to
remain to be done, as the use of this powerful technique
expands further among practitioners,

This paper offers a modest extension of calibration
estimation in the stratified and double sampling settings.
We begin in this introduction by describing a new cali-
bration estimator for the conventional stratified sample
setting. Section 2 derives the variance of the proposed new
estimator, followed by the derivation of a variance
estimator. Section 3 extends these results to the important
special case of double sampling. To explore the perfor-
mance characteristics of the new estimator, some simulation
results are presented in section 4 which concludes this brief
note.

1.1 Standard Stratified Sampling Estimator

Suppose we have a population of ¥ units that is first
subdivided into L homogeneous subgroups called strata,
such that the /-th strarum consists of N, units, where
h=12,.,L and Z,, NV, =N. Suppose further that a
sample of size n, is drawn by Simple Random Sampling
Without Replacement { SRSWOR ) from the A-th popula-
tion stratum such that ‘,';:[ n, =n, the required sample size.
Finally, suppose the value of the i-th unit of the study
variable selected from the A-th stratum is denoted by y,.,
where i=1,2,...,n, and W, =N, /N is the known proportion
of population units falling in the -th stratum.

In this standard set up (Cochran 1977), it can be shown
that an unbiased estimator of population mean ¥ is given

by

1

L
. = > W, ¥ (1.1)
h=1

where y, = ”;;l E?*l ¥,; denotes the A-th stratum sample
mean. Under SRSWOR sampling, the variance of the
estimator ¥, is given by

1-1,
Ry,

where S} , = (N, - 1) E, (Y, -¥, )2 denotes the #A-th

stratum populatlon variance, ¥, = N,, ):‘Nl Y,; denotes the
A-th stratum population mean and fi=n, N

S, (1.2)

I
— 2
v, = 2 W,
h=t

1.2 Proposed New Calibration Estimator

Let X,,,i=1,2,..,N,; h=1,2,...,L denote the value of
the i-th unit of the auxiliary variable in the A-th stratum
about which information may be known at the unit level or
at the stratum level. Consider a new alternative (calibration)
estimator for stratified sampling of the form

L
7., (new) = ,E, Q, 7, (1.3)

where the weights Q, are chosen such that the chi-square
distance function

> @1y (1.4)

e W0, '
where @, denotes suitable weights to form different forms
of estimators such as combined ratio and combined

regression type estimators, is minimized subject to the
following two calibration constraints

I L
Yoszx-)Y wx (1.5)
b=l h=1

and
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L L
2 2
h{; Q, s, = ;1 W, Sy, (1.6)

where x,,i=1,2,..,n,; A=1,2,...,L denotes the value of
samplecl i-th unit from the A-th stratum such that X, =
n, z, 1 X,,; denotes the A-th stratum sample mean estimator
of thc known A-th stratum populatlon mean X, =
N, ):, ' X,., and s/ =(n, - l)"zl L (- %) denotes
the h-th stratum sample variance estlmator of the known
h-th stratum population variance S,l = (N, - 1) zl 1
(X,, - X,) of the auxiliary variable.

Now it can be shown that minimization of (1.4) subject
to (1.5) and (1.6) leads to new calibrated weights given by

Qh = Wh +
{Wth’_‘h
L 1
DWACIER WA
N h=1
L L L 2
{ .0, _.&2; W, 0, S:x_[ ; WthSirzx] }

h=1

L £
; W,(X,- x—k)g W, 0, S

L L
+ {W thkzx Z W;.(S;.i—sfi)z Wthfhz

maac)

2
_hzhz W, Qh Sfu [Z WQhth] }(1.7)

W (X, x,,)E W,0,%, 5.

Mr— ot S

—_———
v

On substituting (1.7) in (1.3), we get
3 0 0 z 2
Fulnew) = 3 W, [, + By (-5 + B, (57 - s2)] (18)
h=1

where

L L L
B, ={§ W,0,%, ; W, (X, ‘fh)g W, 0, S:x
& 2 2\ ¥ 2
_§ Wk(th ~Shs ) }g Wth Ty Sk.r] }/

L I3 2
{h_ WQ;.":;E WQkth [Zl WthSiszx] }

and

L L L
S mousin| 5 mbsi-s2)E wos
L _ L 2
_g Wh(X,,x-k); W,,th,,s,u] }/

L L L 2
_2
{hz W,Q, xh}? Wka;S:x'[g WJ.Q;,S:::] }
=1 = =

Since the ratio Q_ /W, - 1 in probability, as the sample
size in each stratum tends to infinity, the proposed estimator
of the population mean is consistent.

Note that we are calibrating the estimates of the sample
mean and the sample variance from each stratwm, instead of
each value of x,, to the corresponding population para-
meters. Further note that if the population variance for each
stratum is unknown, but the population means X,
h=1,2,.,L are known ( or X is known ), then it is
advised to use only the single constraint (1.5).

2. VARIANCE AND VARIANCE ESTIMATION

While the new estimator y_(new) has been shown
above to have acceptable asymptotic properties, what about
the variance of the estimator and how does one go about
estimating the variance? These questions are addressed in
this section. We begin by looking (in subsection 2.1} at the
variance of y_(new) and then go on to show how that
variance can be estimated ( in subsection 2.2).

2.1 Variance of New Estimator
The variance of the estimator _{(new) is given by

V(7 (new)) =
ZL: w [ ] f;:] 1oa2, - Pyt s =M 1)

2
"y Myoa =1 — Ao

where A’hr.s Wi /,’l:gﬂ ug’g and o = (Nh - ])-] Z?}l
(Y, -F) X, -X,7.

The expression (2. 1) shows that the proposed estimator
is always at least as efficient as the combined regression
estimator in stratified sampling defined as

L A
CED) w,[7, + B(X,- 3,)] 22)

with variance

Y, (c) = ZW[ ]S,,y{l Malo @3)

ny,

The variance ¥ (¥,,(new)) can be written as


file:///ll/03~/i2
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I, Ny
- 1
(7, (new)) = Y W, Y& 4
h=1 nh Nh -1 i=1
where

eu = (Y= Y,) - B (X, -X,) - B, {(th -X, ) - Gix}(Z.S)
with o}, = N;' Tt (X,,- B,
2.2 KEstimation of the Variance

An estimator for estimating the variance ¥(y_ (new)) is

given by
By, ] n, -
where

€y = (Vi =F) - Bl(xh: x,) - Bz{(xm‘x}r)z‘sm} (2.7)

Vy (3, (new)) = Z W[ E er  (26)

with 57 = n,”' E:’:i (x,;-%,)" being the maximum likeli-
hood estimator of o ..

We also consider a calibrated estimator of the variance
defined as

V, (5, (new)), (2.8)

& 2
=2
h=1 n, R,=J =]

l‘ﬁ, 1 L 2
] 32%-

The estimator proposed by Wu (1985) is a special case of
this estimator.

3. DOUBLE SAMPLING

In this section we extend our stratified sampling results
to the stratified double sampling case. In particular, suppose
the population of N units consists of L strata such that the
h-th stratum consists of N, units and Z,, N, = N. Fromthe
h-th stratum of N, units, draw a prehmmary large sample
of m, units by SRSWOR sampling and measure the
auxiliary character x, ; only. Sclect a sub-sample of #, units
from the given preliminary large sample of m, units by
SRSWOR sampling and measure both the study variable

¥,; and auxiliary vanable x,,- Let X, =m, ):, '\ x;, and
St =(m, 1) YA, —x,, )2 denote the first phase
sample mean and variance. Alsolet X, = n, E: | X sfa
(”h‘l) }:m (%, _xh) and y, =n, ):,: kar’shzy
(nh—l) El 1 W yh) denote the second phase sample
mean and variances for the auxiliary and study characters,

respectively. We are considering an estimator of the
population mean in stratified double sampling as

L
y.,(d) = g W, 3, (3.1)
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where W," are the calibrated weights such that the
chi-square distance
LW, -Ww, )
Y @i - W 7 (3.2)
h=l W, 0,

where @, are predefined weights used to obtain to different
types of estimators, is minimized subject to the constraints
L L
;.ZI\ W, %, = § W, %, (3.3)

and

L L
2 2
h):; Wy Sy = ; Wy Shs (3.4)

where W, = N, /N are known stratum weights. We then get
the calibrated weights, for stratified double sampling, as

)E W, 0, Sin

il

fE W, th,,sfu]zl

L L
+ { W, Q;.SEYLZ_I: Wh(sl:xz -Sflzx)kZ_; w0, fi?
L L
—E Wh(fk*'xk)z Wthjhshzx}} /

{(Z ek ][E g Q”S'”] [JXL; W"Q"_*'“s"z”]z}'(s.s)

Substitution of (3.5) in (3.1) leads to a new estimator of the
population mean in stratified random sampling. Thus a
calibrated estimator of the population mean in stratified
double sampling is given by

> s
- Wh(shf ‘Shzx)i

W; =W, + {Wh 4%,

X

L

.| &
Fo(d) = Y W3y + By LZ; 7, (J_ch‘ f;-)

o+ L 2 2
+ B, [§ W, (th - Spe )l (3.6)

where [3I and ﬁ; have their usual meanings. It is to be
noted that the estimator (3.6) makes the use of the estimated
first phase variance of the auxiliary character while esti-
mating the population mean. Thus the estimator (3.6) is
different than the usual separate regression type estimator
available in the literature.

Since the ratio W,' /W, - in probability, as the second-
phase sample size in each stratum tends to infinity, the
proposed estimator 15 a consistent estimator of the



102 Tracy, Singh and Arnab: Note on Calibration in Stratified and Double Sampling

population mean. The conditional vanance of the stratified
double sampling estimator, 7 (d) = Zh W, ¥, is

. 2 1 1 2
Vg @y w =Y wi = -=|s :
[ys,( )i }.} § h [”;, N};] hy (37)
where S,,Zy = ,-D7! 2‘1”1 (%~ ).

A conditionally unbiased estimator of ¥[7,,(d) | W]
is

. 1

V[J‘Gf(dJ | W»] Z (— - —N——] Y (3.8)
n, ]

where s,,zy = {n,-17" 2,.:] (3, -7,)%

It may be noted that in the proposed strategy, there is no
need to go for higher order calibration for estimating the
vaniance, because the calibrated weights #, already make
use of the estimated first phase variance of the auxiliary
character. The minimum variance of the stratified double
samplmg estimator ¥_(d), to the first order of approxi-
mation, is given by

(3, ) = ; W,

O"h 1t ?"}lOS - l’h I2)2

2
l—l}l” -

2
Mos =1 ~Ryo3 3.9)

The variance of the stratified double sampling estimator
7..(d) can also be written as

L
V(p, @) = th w}
11 1 1)1
LS S B N [ B T [ .
(’”h Nh] " ("h mh] Nhfgl:eml (3.10)

~oL ). 3.11)

where

< (1, F) By (X, - XD - B{ (X, - X

An estimator of variance V(¥ (d)) is given by

- L
P, (d)) = ; w,

"
1 1 11 12“ 2
m, Nh n, om, | n

_ A — 3 — 2
= (¥ =) - B (%, -%) - By {(x,, - %, Y-S }
the estimate of the residual term and

(3.12)

where ¢,
denotes

2 =ny Z, * (x,,-%,)* denotes the maximum likelihood

estimator of o} .
We supggest here a new estimator of the variance in
stratified double sampling as

. L
V(5.(d)) = }; W,

n
1 1 | 1 1 © 2
Lotz gLl L Y. ell.
m, N, n, m,} n -1 (3.13)

lim 7(7,(d)) = V(3,,(new))
11m W, -Q, "Note that in two-phase sampling, an

Clearly because

esurnate of population parameter of the auxiliary character
based on first-phase sample information (large sample) will
always be better than the corresponding estimate based on
only second-phase sample information. One can refer to
Hidiroglou and Sirndal (1998) to see that calibration to an
estimate of such an unknown quantity works well.

4. EARLY SIMULATION RESULTS AND SOME
CONCLUSIONS

To begin our study of the operating performance of the
proposed estimator with respect to the usual combined
regression estimator in stratified sampling, we performed a
few simulation experiments. These are described below and
then some overall observations are made to conclude the

paper.
4.1 Simulation Results

The following procedure for doing the simulation
experiment was adopted. We assumed that the population
consists of three strata and within each stratum the
population followed the distributions shown in Table 1.

In each stratum different transformations on x,, and y,;
were made by examining all possible combinations of the
correlation coefficients p, =0.5,0.7 and 0.9 and sample
sizes n, =5, 10, and 15. The quantities S, ,=4.5,5, =62,
S5, =84 and §, =4.8 were fixed in each stratum.

We generated 50,000 populations each of size 75 units
and having 25 units in each stratum. From each straturmn,
SRSWOR samples were drawn and an average of the
empirical mean squared error of the combined regression
estimator was computed as:

MSE(y,,(c)) =

(a.1)
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Table 1
Characteristics of the Population
Population Stratum 1 Stratum 2 Stratum 3
oo S oo Sy . .8,
»i=15+¢(1 _phyli"'pls—lxxli J’zFIOOW(l‘Pi)J’u*pzS—hxh y3r.=200+v(1—pi)y3,+p_1s—”—x“
Ly Ty Iy
Vi =50+x; ¥y = 150 + x5, V3= 100 + 2y

! iz = I_Lz,,:-u'fie 'z".‘, a,=0.3; for z,; =x,:; @, = 1.5 for z,; =y1 =123

@y
2 anl

T = 2y le Mg, = 03 f(5) = ——e %3 h=123
rﬂt ﬁ;

3 et

- 1 bl By . 1 e

flx) = —x, " e ™a =03 flyy) = —e s ho= 1,23
F Vo
4 : z
Mgty =—e ? forz; =x4, 25 =y b = 1,23
V2
simulation program with m, = 20, & = 1,2,3, with the same
where Y = 25%15 +25x 100+25x200 _ 100.5. four populations as described earlier, the median

75

Similarly the empirical mean squared error of the
proposed estimator is given by

50,000

)3

50,000

MSE(y,(p) =

2
- ¥

3 . .
[..;1 Wh(ﬂ*ﬁ] (X~ %) +B, (Sie = S5z )]

j (4.2)
The percent relative efficiency of the proposed estimator
with respect to combined regression estimator is given by

_ MSE(,()
MSE(7,,(p))

The results so obtained demonstrated a modest improve-
ment over all combinations studied for all four populations.
The range of improvements was about 4.46% to 13.08%
with the median being 5.19%.

Several empirical studies were also carried out similar in
structure to those presented above. In particular we were
able to illustrate the extent to which our approach was more
efficient than that considered by Singh, Hom and Yu
(1998) in stratified sampling. Quite similar results were
observed for the double sampling setting. Using the

100. (4.3)

improvement was observed as 3.17%, 7.20%, 5.28%, and
3.12%, respectively.

4,2 Some Overall Observations

We are comfortable that our new calibration estimator
will perform well in many settings, Our simulation results
demonstrate this in several special cases. As with other
calibration estimators, however, there has been an appeal at
various points to asymptotic results. Such appeals raise
concerns in small samples. For example in section 3 we
stated that the ratio W, / W, - 1 in probability. This allowed
us to conclude that our new double sampling estimator was
asymptotically unbiased. We recommend that such appeals
be checked before our estimator is used in an application,
possibly by employing simulation studies similar to those in
this paper but for situations like those that are to be sampled
in the practitioner’s particular setting.
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