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In This Issue 

This issue of Survey Methodology includes a special section on Census Coverage Error which 
presents four papers, including two papers on the coverage survey used in the United States, one 
from Turkey, and one from Italy. The special section is preceded by a discussed paper, and followed 
by four papers on various topics. 

In the first paper of this issue, Rao, Scott and Benhin study the repeated inverse sampUng method 
proposed by Hinkins, Oh and Scheuren. In this approach, random subsamples are drawn from a 
complex sample in such a way that each subsample is unconditionally a simple random sample from 
the population. Rao, Scott and Benhin present some theoretical results for the expectation and 
variance of the repeated inverse sampling estimator. They then explore some conditions under which 
the repeated inverse sampling estimator converges to the original full sample estimator. They finally 
propose an approach based on estimating equations that avoids some of the potential bias of the 
repeated inverse sampling estimator for nonlinear parameters. The paper is followed by two 
fascinating discussions by Eltinge and Hinkins, and a rejoinder by the authors. 

Hogan, in the first paper of the special section on Census Coverage Errors, presents a concise 
overview of the survey used to provide estimates for net undercoverage in the 2000 Census. He 
presents the Accuracy and Coverage Evaluation (ACE) study in the context of general post 
enumeration surveys and dual system estimators. He also presents tiie assumptions needed for these 
types of surveys to produce unbiased estimates and a detailed discussion where these assumptions 
failed in the 2000 ACE. The results are very interesting. 

The next paper is also concerned with the 2000 ACE. Cantwell and Ikeda examine the crucial 
assumptions made when some data is missing. One of the points die autiiors note is that when a rare 
characteristic - persons missed by the Census in this case - is being estimated the methods used to 
adjust for missing data are very important. The authors point out the changes made from the methods 
used in previous post enumeration surveys for the 2000 ACE. 

Ayhan and Ekni present the coverage procedures used in a different census context. While the 
basic post enumeration survey design is used in Turkey, there are some interesting differences 
between their experiences and tiiose of the United States. Since Turkey uses a de facto approach to 
Census residence as opposed to the de jure approach used in the United States, there are some 
operational differences in the post enumeration surveys. These are clearly pointed out by the authors. 

The final paper in the special section on Census Coverage Errors, by Cocchi, Fabrizi and 
Trivisano, describes tiie 1991 ItaUan Population Census and the tiie Post Enumeration Survey (PES) 
used to measure undercount. Since the census is administered by municipalities, data on the 
statistical quality of municipaUties are used as auxUiary information for PES modelling and 
estimation. Poisson regression ttees and hierarchical Poisson models are used to analyze the data. 
Results are summarized and discussed, and some recommendations are given. 

Skinner and Carter extend estimation for Skinner and Elliot's measure of disclosure risk for 
survey microdata from tiie equal probability sampling case to the unequal probability sampling case 
under an assumption of Poisson sampling. Effects of possible departures from Poisson sampling are 
also considered. 

The problem of inference for partially synthetic microdata sets is considered by Reiter. Statistical 
agencies may release microdata sets with completely synthetic data in order to protect respondent 
confidentiality. Methods for inference when the complete dataset is synthetic have been developed 
but most agencies release only partially synthetic datasets, that is, datasets for which only sensitive 
variables are imputed. There has been littie reported in the literature under this situation. Reiter's 
proposed metiiod is shown to be valid under a Bayesian framework and under a design-based 
framework and is illusttated by simulation studies. 
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In Brewer and Donadio, a variance estimator for the Horvitz-Thompson estimator that does not 
require the calculation of the second-order inclusions probabilities is obtained under high enttopy 
situations. High entropy situations occur when there is the absence of any detectable pattern or 
ordering in the selected sample units. Under high entropy situations, an approximate variance 
formula is derived and verified through a model-assisted approach. A sample estimator for this 
approximate design-variance of the Horvitz-Thompson estimator is then developed. Finally, the 
proposed estimator is empirically compared with several other estimators using several populations. 

Finally, Chow and Thompson present a Bayesian approach to designs where social links are 
exploited to obtain a sample of hidden or hard-to-access human populations. The authors provide 
an accessible inttoduction to the Bayesian approach in which the social links from one person to 
another are used to create the prior distribution. It is easy to adjust these priors when information is 
vague. The result is that from the resulting posterior distribution a large number of questions can be 
answered. 

M.P. Singh 



Sun/ey Methodology, December 2003 
Vol. 29, No. 2, pp. 107-128 
Statistics Canada 

107 

Undoing Complex Survey Data Structures: Some Theory and 
Applications of Inverse Sampling 

J.N.K. RAO, A.J. SCOTT and E. BENHIN' 

ABSTRACT 

Application of classical statistical methods to data from complex sample surveys without making allowance for the survey 
design features can lead to erroneous inferences. Methods have been developed that account for the survey design, but these 
methods require additional information such as survey weights, design effects or cluster identification for microdata. 
Inverse sampling (Hinkins, Oh and Scheuren 1997) provides an alternative approach by undoing the complex survey data 
structures so that standard methods can be applied. Repeated subsamples with unconditional simple random sampling 
structure are drawn and each subsample analysed by standard methods and then combined to increase the efficiency. This 
method has the potential to preserve confidentiality of microdata, although computer-intensive. We present some theory 
of inverse sampling and explore its limitations. A combined estimating equations approach is proposed for handling 
complex parameters such as ratios and "census" linear regression and logistic regression parameters. The method is applied 
to a cluster correlated data set reported in Battese, Harter and Fuller (1988). 

KEY WORDS: Combined estimating equations; Confidentiality; Repeated subsampling. 

1. INTRODUCTION 

There is a fairly clear distinction between the focus of 
ttaditional sample survey methodology and that of the rest 
of applied statistics. Survey samplers have concenttated on 
developing efficient (but complicated) ways of drawing 
samples to estimate rather simple quantities (population 
means, proportions, totals, etc.). Most otiier appUed statisti­
cians, by conttast, have concenttated on developing 
sophisticated methods for fitting very compUcated models, 
but assuming a rather simple sampling stiiicture (often that 
the observations are independent). 

In reality, data from complicated surveys are often used 
to fit complicated models. For example, people may want to 
use data from a Labour Force Survey to characterize the 
association between education and unemployment levels. 
They might want to use data from health surveys to study 
the association between housing conditions or poverty and 
morbidity, and so on. Extending the range of application of 
standard methods so that they can be applied to data from 
complicated sample surveys, involving multi-stage 
sampling and variable selection probabilities, is difficult 
and cumbersome; see e.g., Skinner, HoU and Smith (1989). 

How do practitioners deal with the complexity of survey 
data structures? Adapting a quote from Hinkins, Oh and 
Scheuren (1997) (abbreviated HOS hereafter): "If your only 
tool is a hammer, every problem looks like a nail!"; the 
hammer available to most people is one of the big statistical 
packages (SAS, Splus, SPSS, etc.). Most people stUl just 
push their data through a standard program and ignore the 
survey design features. This is in spite of the fact that a 

great deal of effort over the last two decades has been spent 
on developing methods to analyze survey data that take 
account of design features, and specialized programs such 
as SUDAAN or WesVar are now available to implement 
some of these methods. 

An alternative to developing complex new tools (which 
may rarely be used in practice anyway!) is to work 
backwards: instead of tailoring the methods to fit the data, 
tailor the data to fit the methods. One approach along these 
lines was developed in Rao and Scott (1992; 1999). 
Another approach has been suggested in HOS. Their basic 
idea is to avoid the pain caused by a compUcated sample by 
choosing a subsample (inverse-sample) that has a simple 
random sample structure unconditionally (or at least has a 
structure that is considerably simpler to handle than the 
original sample). Obviously this involves some loss in 
efficiency, especially if tiie subsample is very much smaller 
than the original sample, as often turns out to be necessary. 
However, we can increase the efficiency by repeating the 
process independentiy many times and averaging the 
results. 

Is it possible to produce subsamples with the desired 
properties? The answer is often "yes", although the re­
sulting subsample size, m, nught have to be small (in fact, 
no more than m = 2 for some standard sttatified multistage 
designs). HOS give algorithms for producing simple 
random inverse-samples for a number of standard designs. 
We summarize the inverse sampling schemes in section 2 
for ready reference. These schemes include both exact and 
approximate methods in terms of matching simple random 
sampling. In this paper we look at some of the properties of 

J.N.K. Rao, School of Mathematics and Stadstics, Carleton University, Ottawa, Canada, KIS 5B6. E-mail: jrao@math.carleton.ca; A.J. Scott, Department 
of Statistics, University of Auckland, Auckland, New Zealand. E-mail: scott@stat.auckland.ac.nz; E. Benhin, Household Survey Methods Division, Statistics 
Canada, Ottawa, Canada, Kl A 0T6. E-mail: emmanuel.benhin@statcan.ca. 
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the repeated inverse sampling procedures given in 
section 2. In particular, we develop some basic theory of 
inverse sampling in section 3, and illusttate some of the 
sttengths and weaknesses of tiie procedure. In section 4, we 
study the special case of a population total. We propose a 
combined estimating equations (CEE) approach in section 
5 for handling complex parameters such as ratios and 
"census" regression parameters. Finally, some concluding 
remarks are given in section 6. Proofs of theorems are given 
in the appendix. 

2. INVERSE SAMPLING ALGORITHMS 

In this section we summarize the inverse sampling 
schemes, proposed by Hinkins et al. (1997), for ready 
reference. These schemes include both exact and approxi­
mate methods in terms of matching simple random 
sampling (SRS) unconditionally. 

Suppose we have a sample s^ of observations drawn 
from the finite population of size N according to a specified 
complex design. We wish to draw a subsample s * of size 
m from ^̂  such that the unconditional probability of 
s\ p{s*), matches simple random sampling with 
p{s') = 11 (^), either exactiy or approximately. We have 

P{s*)= Y Po'<^o)P^^*\^o)^ (2.1) 

where PQ{S^ is the probability of selecting s^ and p{s*\s^ 
is the conditional probabiUty of choosing s*.\f p{s*\sif) 
does not depend on s^, then it follows from (2.1) that 

p{s*) 

Ys..s-Po(^o)' ^'-'^ 
P{S*\SQ) = P2{S*) 

Denote the first-order and second-order inclusion prob­
abilities corresponding to s* and s^ as (TI,*, 7i,*,) and 
(7t,.,7t;,) respectively, where ii*=mlN and re *; = 
m{m - I)IN{N -l),i* I. Similarly, denote the condi­

tional inclusion probabiUties as (^^(SQ), ft^., (ig)). If the 
conditional inclusion probabilities do not depend on s^, 
then we write them as (ii:̂ ., n.^). It is readily seen that 

K = Y Po(^o)^i(^o)'^ K = Y Po(^o)^ii(^o)- (2.3) 
SQ 3 1 SQ3 i, I 

If n.{sQ) = Tt. and ^.^{SQ) = n.^, then it foUows from (2.3) 
tiiat 

7t,. =7t,.;i,., ni,='K.,n.,. (2.4) 

In section 4 we use (2.4) to study the properties of inverse 
sampling for estimating a population total. Note that 
(7t*, •K*i) may correspond to some other simpler sampUng 
design if it is not feasible to match simple random sampUng 
(SRS), e.g., sttatified simple random sampling. 

2.1 Stratifled Simple Random SampUng 

Suppose that the original sample s^ is a sttatified simple 
random sample, i.e., 

Po(^o)=n 
h-l 

^ u.v 
K'^HJ (2.5) 

where Nf^{nf^) denotes the number of population (sample) 
units in sttatum h{=l, ...,L). We wish to draw a 
subsample s * of size m such that p{s*) = I / (^ ) , where 
N = Yh-i^h- Clearly, m cannot be larger than min (n^). Let 
m = (Wj,..., m^y denote the (random) number of units in 
each sttatum that belong to 5' , 0 ^ m,j ̂  m, £^„j m̂  =m. 
Noting that the number of terms in X̂  -,̂ . equals 
n^ = 1 Pf'" - m'')' it foUows from (2.2) tiiat 

/'(•s^l^o) = 
IL^ i\ m. 

\m) \.\}i-i\m^ 

(2.6) 

The subsampling scheme readily follows from (2.6): (i) 
Generate m .ftom the hypergeometric distribution 
f{m) = n^=, irn'') l\mf (") Draw a simple random sample 
of size m^, without replacement, from the n̂  sample units 
in sttatum h, independently across stiatah{=l,...,L). 
HOS specify /7(5' "I^Q) first and then verify that it gives 
p{s*)=\^\ . Our approach provides the subsampUng 
scheme from the specification of PQ{SQ) and p{s*). 

2.2 One-stage Cluster Sampling 

HOS studied the case of one-stage cluster sampUng in 
detail. Three sampling designs for s^ were investigated: (1) 
Equal cluster sizes, M, and simple random sampling of 
clusters; (2) Unequal cluster sizes, M., and simple random 
sampling of clusters; (3) Unequal cluster sizes, M., and 
clusters sampled with probability proportional to size M. 
and with replacement. 

Case 1. Exact matching with SRS is difficult to implement 
in the case of equal cluster sizes, M, and simple random 
sampUng of clusters. Suppose s^ contains k clusters drawn 
from K clusters in the population (Â  = KM). A simple 
approximate method of subsampUng selects one element at 
random from each sample cluster so that the size of 5 ' is 
k. Hoffman, Sen and Weinberg (2001) used a similar 
method for biostatistical appUcations. HOS used systematic 
sampUng to select one case from each sample cluster. 

Case 2. Hoffman et al. (2001) selected one unit at random 
from each cluster in tiie case of unequal cluster sizes, under 
a model-based framework for clustered data. For sampling 
appUcations, this method does not work in the sense that it 
is not possible to obtain SRS of fixed sizes by subsampUng, 
even approximately. HOS proposed an alternative method 
that artificially enlarges the population to equal cluster size 
case and then appUes subsampling used in Case 1. We first 
force all clusters to have the same size by adding an 
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appropriate number of pseudo-unit to bring them up to the 
size of the largest sample cluster. Then we take one unit at 
random fi^om each sample cluster, and discard any pseudo-
units to obtain the final sample. This approximate method 
makes P(5*|5Q) depend on s^ because the conditional 
probability depends on M{SQ), the size of the largest 
sample cluster. 

Case 3. For the case of unequal cluster sizes M. and 
probability proportional to size (PPS) sampling with 
replacement, HOS proposed a simple method of 
subsampUng which gives p{s*) =(I/A^)*, where s * now 
denotes an ordered simple random sample drawn with 
replacement from the Â  = ^, = i M., units in the population, 
i.e., s' = {i.,..., i.,..., i.), where i. denotes the unit drawn 

I J K J 

in the j-th draw ( ; = 1,..., k). Viewing the sample clusters 
as ordered, we select one unit at random from each sample 
cluster. Note that the same cluster might appear more than 
once in the ordered sample. Denote the size of the cluster 
drawn in the i-th PPS draw by M.', then 

p{s*) 
k n 

1=1 N n 1 (2.7) 

where n,.,|(M//A^) is the probability of drawing the 
ordered cluster sample. Note that SQ is the ordered PPS 
sample and we have only one term in the summation in 
(2.1). 

If the clusters are drawn with inclusion probabilities 
n. = kM. IN and without replacement, then it is not possible 
to match SRS. However, we can tteat the clusters as if they 
were drawn with replacement, as done in practice, and then 
apply the scheme for Case 3. This will lead to 
overestimation of variance if the variance of the estimator 
is smaller than the variance of the estimator under PPS 
sampling with replacement (see e.g., Wolter 1985, page 
45). However, the overestimation is not serious if the 
sampling fraction kIK is small (see Section 4.3). 

2.3 Two-stage Cluster Sampling 

HOS also studied two-stage sampUng for the following 
cases: (1) Equal cluster sizes, M, and k clusters sampled 
with equal probability in the first stage; simple random 
subsample of equal size, m, drawn independently within 
each sampled cluster (PSU). (2) Unequal cluster sizes, M., 
and k clusters sampled with PPS and with replacement; 
simple random subsamples of unequal sizes, m., drawn 
independentiy witiiin each cluster in the with replacement 
sample. 

Case 1. As in the case of one-stage cluster sampling, exact 
method of inverse sampling is difficult to implement. A 
simple approximate method of inverse sampling selects one 
unit at random from each of the k subsamples. 

Case 2. As in Case 3 of uni-stage cluster sampling, we 
simply select one unit at random from each of the ordered 
subsamples. HOS suggested a different method: Take a 
simple random sample with replacement of k clusters first 
and then with each selected cluster take one unit at random 
from the corresponding subsample. It appears that the first 
stage inverse sampUng of clusters is not necessary. To see 
this, we note that 

•fM.'l 
I 

1 

f " ; l 
m! 

\ 1 ) 

where m.' is the subsample size associated with the cluster 
selected in the i-t\i draw {i=l, ...,k). We wish to draw a 
subsample s * of size k such that p{s*) ={IIN)'', where 

equals Â  = yf-i M.. Also the number of terms in Y 

l ) - ' ^ n M, ' -
m.. 

E Po(̂ o)=n 
{M.'\ 

[ ^ 1 

f 
M.' -

m: -

[M. ' I 
m.' 

I 

n 
( = 1 

m. 
Â  

It follows from (2.2) that P{S*\SQ) = U''.^y{llm'.) and 
hence the subsampling scheme readily follows. 

2.4 Stratifled Two-stage Sampling 

Suppose we have a two-stage sample from each sttatum, 
where the clusters are sampled with PPS with replacement 
and subsampling is done independentiy within each 
sampled cluster. Using the inverse sampling procedure of 
Case 2, section 2.3, we get simple random samples from 
each sttatum. We can then apply the method of section 2.1, 
tteating the inverse-samples as if drawn without replace­
ment to get an inverse-sample of size Q̂ = min ̂  (A:̂ ), where 
kf^ is the number of sampled clusters in stratum h. In the 
important case of fc^ = 2 psu's sampled from each sttatum, 
the inverse-sample size, k^, is only two. 

3. BASIC PROPERTIES 

The results in this section are quite general and apply 
equaUy to sample surveys and the type of clustered situation 
considered by Hoffman et al. (2001). Suppose that we are 
interested in estimating some population parameter, 0, and 
we have a sample, SQ, of observations drawn from the 
population according to some complex design. We assume 
that we have a subsampling algorithm that can produce 
samples from some simpler design. This design will often 
be simple random sampUng, but we can extend the range of 
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applications considerably by allowing for the possibility of 
more general (sub-)designs; for example, sttatified SRS 
when the original sample is a stratified two-stage sample. 
Our only requirement for the simpler design is that we can 
produce an estimator of the quantity of interest, 0, together 
with an estimator of its variance. Let 0* and V* denote 
the estimator and variance estimator produced from they-th 
subsample when we generate a sequence of g conditionaUy 
independent subsamples s*{j = l,...,g). Note that the 
0*'s are not unconditionally independent when averaged 
over the distribution of the initial sample, s^. A "separate" 
inverse-sampUng estimator of 0 based on the g subsamples 
is given by 

1 « 

0 =-YQ*- (3.1) 

We denote the estimator based on s^ as 0. Theorem 1 
below gives basic results on 0 and its variance. 

Theorem 1 

1. Conditional on the original sample, s^, 0 converges 
almost surely to ^(O* | JQ) = 0„ say, as g • 

2. £ ( 0 J = £ ( § : ) . 

I 
3. V a r ( 0 J = V a r ( 0 ) + -^£[Var(0, |5„)]. 

S 
Var(0J r,-l 

4. If r = 
8 Var(0„) 

, then r = 1 + 
8 8 

Result 4 of Theorem 1 demonstrates that increasing the 
number of subsamples, g, does indeed increase the 
efficiency of 0 . More precisely, the variance ratio r has 
the form a -t- b I g. If the subsample estimator, 0, , is 
unbiased for 0, then so is the inverse-sampling estimator, 0 . 
However, if 0* has bias of order m"', where m denotes the 
subsample size, then 0 has exactiy the same bias. Since m 
wiU usually be very much smaller than the original sample 
size, this bias can be appreciable. This is a serious 
limitation of 0 in die nonlinear cases, such as ratios and 
regression coefficients. In section 5, we propose an 
alternative estimator of 0 based on the estimating equations 
(EE) approach. This estimator is asymptotically unbiased 
for any m as the size of s^ increases, unlike 0 . 

Result 4 of Theorem 1 can be used to determine the 
number of subsamples, g needed to obtain reasonable 
efficiency. For example, HOS give an example in which 
Tj = 29.3. The original sample was a very efficient 
stratified random sample with n = 15,618 observations 
taken fi-om the Statistics of Income corporate survey, while 
the subsample was a simple random sample of m = 2,224 
observations. A single subsample is relatively inefficient. 
However, in this case, repeated inverse sampling recovers 
all the information in the original sample in the limit. 
Applying Result 4 of Theorem 1 leads immediately to the 
following table: 

g 

r 
g 

1 

29.3 

10 

3.83 

100 

1.28 

1000 

1.03 

(HOS produced these same resuUs by simulation but this is 
unnecessary in view of Result 4 of Theorem I.) We see 
that ^ = 100 subsamples would be adequate for many 
purposes and tiiat we obtain almost full efficiency with 
g = hooo. 

The fact that 0*,..., 0* are not unconditionally 
independent means that estimating Var(0 ) is not 
completely sttaightforward. However, a relatively simple 
variance estimator may be obtained using Theorem 2 
below. 

Theorem 2 

The variance of 0 may be expressed as 

Var(0 ) = V a r ( 0 ' ) - ^ ^ — - E 
^ 8 

Var (e.'Uo) (3.2) 

We can estimate the first term of (3.2) by V* for 

j = I, ..., g, and hence by their average g "' Yj 
addition, the quantity 

• Vj - In 

2 
Sa„ = 

I j = i 
6J 

gives an unbiased estimator of £'[Var(0[* \SQ)] because 
0,,..., 0 are conditionally independent given the initial 
sample, SQ. This leads to an estimator of Var(0 ) of the 
form 

1 « 1 « T 

V = I v v ; - l v (§*-§)'. 
^ gk ' 8M ' ' 

(3.3) 

The properties of the variance estimator V depend on the 
properties of tiie subsample estUnator V.*. ForexamplCjU" V* 
is unbiased, then V is also unbiased. 

For the special case of a population total Q = Y and 
sUnple random subsampling, J.e., p{s*) = l / ( ^ ) , we have 
0* = y.* = Â y • and Y* is unbiased for Y witn unbiased 

J J J '^ *J r. . _ I * 2 — * 

variance estimator V. = N {m' - N )s.,, where y, is 
the mean and Sj^ is the variance of thej-th subsample. The 
variance estimator V of 0=Y=g "' £J , , {Ny'), given 
by (3.3), is unbiased, and it reduces to 

V 
1 * 

8j = i 

N 2 8 

-Y yj-y I (3.4) 

-1 VS ,T where yg=8''Yj 
by first expressing Var(F ) as 

[ yj. HOS derived a variance estimator 

V„(fJ.W^fLli.,'.iEVar(^-) 
m j-i 

•N' 
mg - 1 

mg ic\ (3.5) 
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2 *2 

where 5 is the population variance and s^ is the sample 
variance using all gm subsample units. In the second step, 
they remarked that we can generate an approximately 
unbiased estimator of Var( y ) from (3.5) by replacing Ŝ  
and Var(y.*) with unbiased estimators and replacing 
E{sly) by sly. We now follow this recipe and obtain an 
explicit form for the HOS variance estimator, denoted 

'̂  *2 2 

V (p,Q5j. Noting tiiat each Sj^ is unbiased for Sy, a pooled 

unbiased estimator of Sy is obtained as S^Yj-i^jy-

Further, s' may be decomposed as {mg-l)s* = 
'y*2 

im-^)YU^]y + "lE^i ^y] -yg) - Hence, 

*^g(HOS) '^ 
m-l 

m 

1 ^ .2 l ^ 
-Y^jy ^-Y 

*2 
- 'jy "- -

8j-i 8j-i 

- l ^ l l ^ ^ l l f c ^ 
y . (3.6) 

It follows from (3.6) that the variance estimator of HOS is 
in fact identical to our variance estimator (3.4) and also 
exactiy unbiased. 

4. ESTIMATION OF A TOTAL 

4.1 Exact Matching 
As shown in section 3, repeated subsampling increases 

the efficiency of an estimator, but this does not necessarily 
mean that the inverse-sampUng estimator, 0 , converges to 
the original full sample estimator, 0, as ^ - <», even when 
we start with an unbiased estimator for the subsample. In 
this section, we study the special case of a total 0 = y and 
consider the Horvitz-Thompson (H-T) unbiased estimator, 
y = Yii^s yi^^i' based on the original fuU-sample. Theorem 
3 below establishes conditions under which the 
corresponding inverse-sampling estimator 

Y^-YY; (4.1) 
^ 8j-i 

converges to the H-T estimator, Y, for tiie original design 
as ^ - <», where 

Yi y ; = ^ ^ 
z e j / 7t,. 

and %* is the unconditional inclusion probabiUty for the i-th 
unit. If the subsample Sj is a simple random sample 
unconditionally, then TĈ  = mIN, where m is the subsample 

size. 

Theorem 3 

Suppose that Q* = Y* is the H-T estimator of a total 0 = y 
for the^-th subsample. Then the Umiting inverse-sampling 
estimator, 0^ = y„, will be the H-T estimator, Y, for the 
original design if and only if the conditional inclusion 
probabiUties ii,(5Q) are constant for all SQ containing the i-
th unit, i.e., ^/{SQ) = n. for all s^^i. 

The condition ^^{SQ) = n. is a fairly natural one for most 
sampling designs for which the H-T estimator is used. If 
the subsamples are all simple random samples of fixed size 
m, then the estimator for a subsample is simply Ny'j, which 
is the natural estimator under simple random sampling. 

Theorem 4 below establishes conditions under which the 
inverse-sampling variance estimator, V̂  ̂ .p, of Y 
converges to V^„, the H-T variance estimator of the full-
sample estimator Y, as g^ °°. We have 

I, lesn 

n-i-ii.it, 

7t,.7r,7t„ 
•yiYi (4.2) 

(see Cochran 1977, page 261) and 

' g .HT 
8j-l 

(Y 
'^ 2 

8j = i 

with 
71,., - Tt; 7t, 

Vj,Kr = YY , , . )',•>';• 
i.les. 7t,. 71, 7t„ (4.3) 

where TT*, is die unconditional joint inclusion probabiUty for 
the j-th and l-th units. If the subsample Sj' is a simple 
random subsample unconditionally, then TT,, = 
m{m - l)/[N{N - 1)], i * I. Note that 
variance estimator of Y* and Tt* = Jt,*, Tt.. = 7t.. 

Theorem 4 

is the Horvitz-Thompson (H-T) variance estimator 

V. HT is d ie H - T 
; , M l 

If j . HT 

al l JQ=> 

of y. for the j-th subsample, then conditional on JQ , V ^^, 
converges to the Horvitz-Thompson (H-T) vanance 
estimator of Y for the original design, as ^ ^ <», if the 
conditional joint Uiclusion probabUities are constant for all JQ 
containing a given pair (i, /) of units, i.e., it.,,{s^ = ft,., for 

i,l\-
In Theorem 4 we considered the H-T variance estimator. 

But the Sen-Yates-Grundy(S-Y-G) variance estimator, 
VgYG' ^̂  often preferred over the H-T variance estimator, 
Vpj.p, because it is more stable and several designs for 
which it is always nonnegative are known, while V^^ 
frequentiy takes negative values (Cochran 1977, page 261). 
The S-Y-G variance estimator of Y exists for fixed sample 
size designs and it is given by 

I \ 2 

'SYG -YY 
Tt. Tt, - Tt,, 

i< / e j „ 

y_i 

Tt.. 

Yi 

(4.4) 

Let ft, (5Q) be the conditional probability that the i-th unit 
is selected in the subsample for a given initial sample, s^. for the full-sample design. Similarly, the S-Y-G variance 

estimator of Y' is 

http://-ii.it
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V. j. SYG YY 
i<les. 

Tt, Tt, y^ 

Tt; 

Yi V 

(4.5) 

defined as above. It is easy to verify that Y =Y and 
^ ,> -' -' ~ pps 

V^ = V . Thus, inverse sampling preserves both the 
estimator and the variance estimator. 

The inverse-sampling variance estimator is given by 

V g.SYG 
1 . ^ <- * 1 x^ '-* "2 

= - E Vj^sYo--Y(Yj -Y). (4.6) 
8j-l r, . . J 8 j=\ 

Theorem 5 below shows that V gyo '^^^^ "ot converge to 

• SYO as g-oc, i.e., V^ SYG * ŜYG- I^ ̂ ^^ subsample is 
a simple random sample unconditionally, i.e., n*. =mlN 
and nl=m{m-l)l{N{N-I)]; i*l, then 

^j.m^^j.SYd^^ 
estimator of Y. 

' " , SYG V HT ^ ^HT' ^ ^ H-T variance 

Theorem 5 

The inverse-sampling variance estimator (4.6) does not 
converge to tiie S-Y-G variance estimator (4.4) as ^ - °o. 

4.2 Exact Matching: PPS Estimates 

(i) Unistage cluster sampling 

For the case of PPS sampling with replacement of 
clusters with unequal sizes M,, we have exact matching 
with SRS with replacement. The estimates of Y is given by 

p̂ps = i^/l^) Yl-i Y;, where Â  is the total number of 
population elements and Y! is the mean of the cluster 
selected on the i-th draw. The estimator Y is not equal to 
the H-T estimator of Y. The variance estimator of Y is 
given by 

v.. pps k k-lh 
Y'. 

k i-y 
Y'. 

The inverse-sampUng estimator corresponding to y ^ is 
given by Y^= g~^ 0 ^ , Yj, where Y* denotes tiie estimator 
of y from the j-th inverse sample. It is easy to verify that 

t = V , and t = V ' "°^"g th^t V = ̂ ^'^) Les;y'i 
where y! denotes the value of the element of an inverse-
sample selected from the cluster in the «-th draw. Thus, 
inverse sampling preserves both the estimator and the 
variance estimator. 

(ii) Two-stage cluster sampling 

Turning to the case of unequal cluster sizes, M,, we 
select the clusters with PPS and with replacement, and then 
draw simple random subsampling of equal size, m, 
independently within each cluster in the with-replacement 
sample. The estimator of Y is Y^^^ = {Nik) Y\- i y- where 
y'. is the sample mean of the cluster selected in the i-th 

draw. The variance estimator of Y is given by 
T k I it ^ 2 

V - ^ ^ 

pp̂  k k-i i-l 
Yi k i-\ 

The 
y = 

inverse-sampling estimator is given 

8-'rj- .V where y, ={Nlk)Yi^,;y'i, and y 

by 

' is 

4.3 Approximate Matching 

In section 2 we noted that exact matching with SRS is 
difficult to implement when the original sampling design 
involves clusters. We proposed several approximate 
matching methods to overcome this difficulty. In this 
subsection we study the properties of the approximate 
matching methods. 

4.3.1 Unistage Cluster Sampling 

In section 2.2, Case 1, we considered the case of equal 
cluster sizes, M, and simple random sampling of clusters. 
The estimator of a total Y is given by y = {KIk) Y]-\ Y., 
where Y, is the i-th sample cluster total and K is the number 
of population clusters. The variance estimator of Y is 

K^i, k\ I -' ^ " ^' 
V = . 1 - — 

K k-l i-i 
Y, 

k i-i 

For inverse sampling, we proposed approximate 
matching by selecting one unit at random from each sample 
cluster, i{=l,...,k). The inverse-sampling estimator is 
given by y =^"'L;=i ^J "^^^ Y* =Ny*j denoting the 
estimator of total Y from the j-th inverse-sample. The 
inverse-sampUng variance estimator, V , is given by (3.4). 

It is easy to verify that Y^ = Y so that approximate 
matching preserves the original estimator Y in the limit. On 
the other hand, it can be shown that 

VIV^ = l-klK. (4.7) 

It now foUows from (4.7) that V^ leads to overestimation of 
the variance if the sampling fraction kIK is not small. 

4.3.2 Two-stage Cluster Sampling 

In section 2.3, Case 1, we considered the case of two-
stage cluster sampling with equal cluster sizes, M, and SRS 
without replacement in both stages. The H-T estimator of 
the total y is given by f = {KIk) Y'^-I Y-, where Y. = My^ 
and y^ is the sample mean of the i-th sample cluster. The 
variance estimator of Y is given by 

V = N^- I 1 
K 

2 1 m 

M 

I 

km '2y 

1),4 = E'= 

(4.8) 

^2,./^ with ^2, where Sly = Yi-i(yi-y)^'ik 
denoting the sample variance in the i-th cluster, y. is the 
i-th cluster sample mean and y = Z/=i y , / ^ is the overall 
sample mean (see Cochran 1977, pages 276-278). 

For inverse sampling, we proposed approximate 
matching by selecting one element at random from the m 
sample elements in each sample cluster i{= I, ...,k). 
Denote the values of the elements by y,', ...,y^'. The 
inverse-sampling estimator of the total is given by 
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Yg=8'^ Yj-1 Yj , where YJ = {Nik) Y''. . y-- The Uiverse-
sampUng variance estimator, V ,̂ is given by (3.4). 

It is easy to verify that Y^ = Y so that approximate 
matching preserves die original estimator Y in the Umit. On 
the other hand, it can be shown that V tends to 

;2 1 , 2 
N"-- S (4.9) 

as g - °°. It follows from (4.8) and (4.9) tiiat 
2 

t ry, \ t ^ 

M ] km 
^=1 A 

K 

1 • ^ 2 ^ 

'!> 

- ! • 
(4.10) 

because the neglected term in (4.10) is of order (m X")"'. It 
follows that V„ again leads to overestimation of the 
variance if the sampling fraction kIK is not small. 

COMBINED ESTIMATING EQUATIONS 
APPROACH 

Denote the estimator of R based on the y'-tii inverse-
sample as ^* = Y*IX*. The separate inverse-sampUng 
estimator of R is then given by R = g'^ Yj-i ^j- HOS 
noted that the bias of R can be large when the subsample 
size is small. They proposed to estimate the numerator and 
denominator of/? separately, using the g subsamples. This 
leads to the "combined" inverse-sample estimator 

y 
^c = -r^ (5.1) 

where Y^=g-'Yj-iYj and X^-g-'Y]-iXj. Now, 
assuming that the final size of the "combined" sample is 
sufficientiy large, it follows from (5.1) that 

E{Y^) _ Y 

E{X) ^ 
(̂ V ~~ R 

under the conditions of Theorem 3. That is, R is 
approximately unbiased for R, regardless of the subsample 
size, provided g is sufficientiy large. 

Similarly, using the Taylor linearization approximation, 
we obtain the variance of /?„̂  as 

In this section, we study an estimating equations 
approach to inverse sampling. This approach permits valid 
inferences on nonlinear parameters such as ratios and 
"census" linear regression and logistic regression 
parameters. As noted in section 3, the inverse-sampling 
estimator 0 , given by (3.1), has exactiy the same bias as 
the subsample estimator 0*, and the bias of 0j* is of order 
m"', where m is the subsample size. As a result, the bias of 
0 can be appreciable because m is usually very much 
smaller than the original sample size n. In fact, m could be 
as small as 2 for sttatified two-stage cluster sampling 
designs with two sample clusters in each stratum. 
Moreover, for logistic regression and other cases, the 
calculation of 0* and 0 involves iterative solutions. As a 
result, the implementation of 0^, and the inverse-sampling 
variance estimator V , given by (3.3), could become 
computationally very cumbersome when the number of 
inverse-samples, g, is large. We avoid these difficulties 
using a combined estimating equations (CEE) approach. 

In section 5.1, we consider the special case of a ratio of 
totals, R = Y IX, and spell out the "combined approach" 
suggested by HOS towards the end of section 3.1 of their 
paper. Section 5.2 gives tiie general theory and discusses 
special cases. The results of section 5.2 are applied in 
section 5.3 to a cluster correlated data set reported in 
Battese, Harter and Fuller (1988). 

5.1 Ratio of Totals 

HOS suggested a "combined approach" to estimate the 
ratio, R, of totals Y and X. We now explain this approach 
and relate it to the CEE approach in section 5.2. 

v ( v ~~ Y2 ^(^P' (5.2) 

where U = g"' Xlf=i U] is the inverse-sampling estimator 
of the total U of the residuals u. = y. - Rx.,i = I,..., N. 
Noting that U is the inverse-sampling estimator of a total, 
it follows from (3.3) that an inverse-sampling estimator of 
V{U ) is given by 

su 'sPj'"-lP:-''^'' (5.3) 

where V'y is the variance estimator produced from the^-th 
subsample. Since R is unknown, we replace R by R^^ in 
(5.3) to get the variance estimator V y. Now, replacing X 
by its estimator X and V{U^) by V^^ in (5.2), we get die 
inverse-sampUng linearization variance estimator of R as 

^L(^C) - ^ y, 

x: 
8tJ- (5.4) 

Under the conditions of Theorem 4, V^{R ) converges to 
the customary linearization variance estimator of the full-
sample estimator R = YIX. 

5.2 Nonlinear Parameters 

(i) Full-sample estimating equations 

A finite population parameter vector 0,̂  may be 
regarded as the solution to "census" estimating equations 
(EE's): 
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U{Q) Y u,(e) = o, 
keU 

(5.5) 

where Ykeu denotes the summation over the finite 
population U of size Â , and the estimatUig functions u^ (0) 
are suitably chosen (BUider 1983; Godambe and Thompson 
1986). For example, consider tiie scalar case of (5.5) and let 
M (̂0)_=)'j. - 0 in (5.5). This gives the population mean 
Qfj = Y. Similarly, letting M^(0) = ŷ  - Qx^, we get tiie ratio 
of totals: % = R = YIX. The choice u^(e) = x^(y^ - p^(e)) 
with p^(0)=x^6 gives the census linear regression 
parameters 

^N= Y^k^^ 
keU keU 

• yk-

The choice u^ (0) = x^ ( ŷ  - p^ (0)) witii 
log[p^(e)/(l -p^(0))] =x^0 gives tiie census logistic 
regression parameters 8,^. Kovacevic and Binder (1997) 
give estimating functions, u^(0), that lead to various 
measures of income inequality, such as the Gini index and 
the polarization index. 

The full-sample estimating equations are given by 

u(e) = E w,u,(e)=o. 
kesn 

(5.6) 

where w^, is tiie survey weight attached to kes^; in 
particular, w^, = I /7t̂  if the H-T estimator of U(9) is used. 
The solution to (5.6) gives the full-sample estimator 6 
which, in general, is nonlinear and hence biased. We 
assume that the size of the original sample, s^, is large 
enough to neglect the bias of 6. For logistic regression and 
other complex cases, U is necessary to solve (5.6) iteratively 
to obtain the fiiU-sample estimator 0. The Newton-Raphson 
(N-R) algorithm is commonly used to solve (5.6). The r-th 
step of the N-R algorithm is given by 

(5.7) r = e(^-'^j-'(8'^"'')U(e<^-'^), 

where 6 ' is the value of G obtained at the (r - 1 )-th 
iteration, and U(e'''"'^) and j(e^''"") are tiie values of 
U(e) and j(0) = -au(e)/ae^=-E,,, Vu,(e)/a0^ 
evaluated at G = 6 Iterating the N-R algorithm to 
convergence produces the estimator 9 as well as the 
observed information matrix J(G). 

Under regularity conditions. Binder (1983) obtained a 
Taylor linearization estimator of the covariance matrix, 
V(G), of G as 

V^(e)=[j(G)l"'v[u(G)][j(G)]'', (5.8) 

where y[U(G)] is a variance estimator of the estimated 
total, U(G), of tiie u^(G)'s evaluated at G=8. For 
example, if M,(9)=y,-0x, then ^^ ^Ykes^^ky^Ykes, 
ŵ  J:̂  = YIX = 7? is the ratio estimator, and (5.8) reduces to 
the customary linearization variance estimator 

V (̂0) = ^ V 
X 

Y >v,«,(e) 
kes. 

(5.9) 

noting tiiat 7(0) = Ykes ^k^k = ^• 

(ii) Separate estimating equations 
The separate inverse-sampling estimators »., j = l,...,g 

are obtained by solving the separate estimating equations 
(SEE) 

U (G) - Y u,(G)=0;7 = l,...,^. 
m ,. . 

kes. 
(5.10) 

In general, we require g iterative solutions to get G,*,..., G*. 
The inverse-sampling estimator of 0 is then given by 

e, = -Ee,- (5.11) 
8j'i 

It f̂oUowŝ  from (5.11) that 0„=£(0,'|5o) and 
£(§„) =£(§*). Assuming first moment matching with 
SRS, it follows from (5.10) tiiat tiie bias £(§*) - G is of 
order m"', where m is the subsample size. The inverse-
sampUng estimator of F(G ) is given by 

8 I'l 8 j'l 

where V' is given by 

tf;(G;)][j;(G;)]"', (5.13) v; J, (6,) 
- 1 >-

V 

V[U .̂J;6 .̂ )] is the variance estimator of they'-th subsample 
total U*(G), denoted V*y (see equation (5.19) below), 
evaluated at 0 = G* and J*(9*) is j*(G) = -aU*(G)/aG^ 

" * J y y J 

evaluated at G = 6.. 

(iii) Combined estimating equations 

We now obtain a combined estimating equations (CEE) 
estimator G that leads to valid inference regardless of the 
subsample size m. We simply combine the g equations in 
(5.10) before solving for G. This leads to combined 
estimating equations 

U,.(e) = 1 1 tJ* (6) = - t ^ E u,(G) = 0. (5.14) 
8j'i = 1 m kes. 

In general, we solve (5.14) using the N-R iterations (5.7) 
with U(G*'';")^changed to Uj^(G^'"") and J(G^'''^) 
changed to J„,(0 '̂̂  ") , where 

dV (G) 
J„.(e) = — ^ ^ 'gc^ dQ' 

-^Y^Y 
SJ-^ "'ke 

N V- ^"^(^) 

aG' 
(5.15) 

At convergence, we obtain the CEE estimator G ̂  as well 
as the observed information matrix J (̂G ^). Note that we 
solve the combined estimating equations (5.14) only once 
to get G , unUke the separate estimating equations method 
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that solves the g equations (5.10) to get G,,..., G and 
e,=i;=,G;/g. 

To illusttate the proposed CEE method, consider the 
special case of ratio 0,̂  = 7?, in which case M^(0) =yi^- Qjĉ . 
The combined estimating equations (5.14) reduce to 
y - 0X =0 and the solution 0 is identical to the 
combined inverse-sampling estimator R given by (5.1). 

Assuming first moment matching with SRS, it follows 
from (5.14) that 0 is a solution of 

U„,(G)=£ U,(G)|*. U(6) = 0. (5.16) 

As a result, G^ = G regardless of the subsample size m. 
Thus, the bias of G is of the same order as the bias of G 
for sufficientiy large g, regardless of the subsample size, m. 

We now apply Binder'(1983) metiiod to U ^ J G ) to get a 
linearization inverse-sampling estimator of V(§g^). It 
follows from (5.8) that 

v.(e.c) 

where V 

Jgc(V) u,.(V) J.c(V) (5.17) 

V gc^ 

U (G ) is the variance estimator of the 
estimated total, U„ (̂G), of die u^(0)'s evaluated at 8 = Ĝ .̂ 

8C 

Note that J (̂G ) is obtained at the convergence of the N-
R algorithm applied to (5.14). 

Since U (G) is the inverse-sampling estimator of the 
total U (G), it foUows that the inverse-sampUng estimator of 
V[U^,(G)]isgivenby 

'xf/ 
8j=i 

- 1 E [U;(G)-U^^(G)][U;(G)-U^^(G) 
8j-i 

,(5.18) 

where \ju is the SRS variance estimator from the j-th 
subsample, assuming second moment matching. If the 
matching is with respect to SRS without replacement, then 

"^Ju-
N' 

m 
1 

Y 

1 

kes, 

m-l 

^k(^)--Y " (̂6) 
m kes: 

" * ( 9 ) - - E "*(e) 
"^ kes- (5.19) 

In the case of matching to SRS with replacement, we 
replace 1 - m/A^ by 1 in (5.19). Now substituting G for 9 
in (5.18) we get 

*̂  r /v /v "1 1 w»-> ^ * 

8j'i 

8 

4^u;(v)u;(v)^=V, (5 20) 

where V.y is obtained from (5.19) by substituting G for 
9. Note that U„ (§ ) = 9. 

gC ^ gC^ 

Under second moment matching with SRS, as g - °°, it 
is easy to verify that V^(9 ) converges to Binder's 
estimator V^(9) ^iven by (5.8). This follows by noting tiiat 
K = e. ij^) = J(0) and V„j, = V[U(9)] under second 
moment matching with SRS. Thus, the covariance estimator 
V^(9 )̂ provides vaUd inferences on 9 for large number of 
subsamples, g, regardless of the subsample size, m. 

To illusttate the calculation of the linearization inverse-
sampUng estimator V^(9 ), given by (5.17), consider die 
special case of a ratio ^^-R with u,.{%) = ŷ^ ~ ^^k- ^^ 
have 

v ; = ^ | i "" 'ju 
m 

I 
Â  m 

- E [u,{Q)-u]{Q)\, (5.21) 
kes' 

where M*(0) =y*-0;c* and {y^x'j) are the j-th 
subsample means. Further, 

(5.22) 

and 

Uj'{Q)=N{y]-Qx'j). (5.23) 

It now follows from (5.21) - (5.23) tiiat tiie CEE-based 
Unearization estimator (5.17) is identical to the inverse-
sampUng Unearization variance estimator (5.4). 

Turning to linear regression with u^(9) = x^ (y^ - x̂^ 9), 
we have 

~. Â ^ V = —— 
jtJ 

m 
I m 1 

N ) m-l 

x E [u,(9)-G;(9)][u,(9)-a;(9) 
kes. (5.24) 

where uj(9) =m'^Ykes:^k^^)- ^^^°' 

J«cW = - E - Y ^k^k 
SJ-^ "'kes; 

and 

u;(9) = ^ E x,(y,-x[9). 
"» kes; 

Finally, consider the case of logistic regression with 
u^(G) = x^ (y^ - p ̂  (G)). hi this case, V^̂  is given by (5.24) 
witii U;̂ (G) =x^(y^-p^(G)). Also, 

J,.(e) = - E - E M,(e)(i - ii,(e))x,x[, 
SJ-^ "'kes; 

and 
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A' 
u;(e) = ^ E ^kiyk-i^ki^))-

m kes. 

It is important to note again tiiat the estimator 9 and the 
. ^ r^ gc 

associated covariance estimator V^(9 ) can be 
implemented from a microdata with data from g 
subsamples, each of size m. Neither the survey weights ŵ  
nor the cluster identifiers are needed so tiiat confidentiality 
of microdata may be preserved. 
5.3 An Example 

We now use a data set reported in Battese, Harter and 
Fuller (1988) to illusttate how the separate and combined 
estimating equations methods perform. The data were 
collected from k= 12 counties in north-central Iowa. The 
counties were divided into area segments and a sample of 
area segments was selected from each county. Here 
counties represent clusters and sample area segments witiun 
a county represent elements. The number of sample area 
segments {m.) ranged from 1 to 5 giving a total of 
n =Yi-i "^i - 37 sample elements. For each sample element 
(/, ;•), Battese et al. (1988) gave tiie number of reported 
hectares of com (y..) obtained by interviewing farm 
operators and die number of pixels classified as com (x,,.) 
and soybeans (X21J) obtained from remote sensing satellite 
readings {j = 1,..., m,; i = 1,..., k). Data from one of the 
sample area segments were suspected to be erroneous and 
hence excluded from the analysis. Thus we have « = 36 
observations {y,., x.). 

For iUustration, we tteat the sample as if it was selected 
by tiie following two stage cluster sampling: (i) In the first 
stage, counties were selected with replacement and with 
probabilities proportional to the number of area segments 

M. in the counties, (ii) In the second stage, sample area 
segments were selected by simple random sampUng without 
replacement from each selected county. We consider two 
parameters: (i) population ratio Q = R = YIX, where y and 
X are the population totals of y and x; (ii) census regression 
coefficient of y on J:, 9 = B = (^,^j/X,x,^)-'(^,^j^x,y,), 
where x, = (I, x,,, .̂ 2,)̂  and / denotes a population element. 

For selected values of ̂ , we generated g inverse-samples 
independentiy using the procedure for Case 2 in section 2.3. 
We then used the g subsamples to estimate R using the 
separate estimating equations (SEE) method and the 
combined estimating equations (CEE) method given in 
section 5. The corresponding variance estimates and the 
Unearization variance estimates of tiie full-sample estimates 9 
were computed. 

Table 1 reports the full-sample estimate R, the SEE 
estimate R , the CEE estimate R ^ and the corresponding 
variance estimates. It is clear from Table 1 that both CEE 
and SEE perform well in ttacking the full-sample estimate R 
and the corresponding linearization full-sample variance 
estimate even for g = 500. 

Table 2 reports the results for the regression coefficients 
B = (BQ, B,, ^2)^. As g increases, both SEE and CEE seem 
to track the full-sample estimates B, and B2, while SEE 
leads to slightiy larger value for B^. However, the SEE 
variance estimates perform poorly, even for very large 
g = 10,000 in ttacking tiie Unearization full-sample variance 
estimates, with SEE value about one-half of the 
corresponding full-sample value for B^ and B,. On the 
other hand, the CEE variance estimates perform very well 
in tracking the full-sample variance estimates, confirming 
the theory. 

Estimate 

Variance Estimate x lO""* 

Full-sample 

0.4096 

1.9513 

Table 1 
Estimation of Population Ratio R 

g = 500 

CEE SEE 

0.4101 0.41 

1.8769 1.8508 

^=1,000 

CEE SEE 

0.4096 0.4095 

1.8482 1.8302 

g = 5,000 

CEE SEE 

0.4095 0.4094 

1.932 1.9178 

Table 2 
Estimation of Census Regression Parameters, S j ,B | and B^ 

Est. of Bg 

Est. of B| 

Est. of Bj 

B^: Var. Est. 

B,: Var. Est. 

B.^: Var. Est. 

xlO"^ 

xlO"^ 

Full-sample 

53.3588 

0.3176 

-0.1326 

416.1609 

2.1153 

2.7369 

8 = 
CEE 

49.9532 

0.3251 

-0.1258 

457.5178 

2.2925 

3.0352 

500 

SEE 

52.6649 

0.318 

-0.1302 

293.8789 

1.164 

2.4811 

8 = 
CEE 

53.5876 

0.3171 

-0.133 

407.3107 

1.9127 

2.7226 

1,000 

SEE 

56.7143 

0.3086 

-0.1378 

224.0846 

0.5354 

2.3174 

g = 10,000 

CEE 

53.2401 

0.3179 

-0.1324 

437.961 

2.2366 

2.8028 

SEE 

56.3196 

0.31 

-0.1377 

251.395 

0.8882 

2.3229 
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6. CONCLUDING REMARKS 

In this paper we have presented some theory of inverse 
sampling. Efficiency of inverse sampling is increased by 
drawing repeated subsamples and then combining the 
results from the subsamples. 

For estimating a total, we obtained conditions for tiie 
Umiting inverse-sampling estimator to approach the full-
sample estimator (Theorem 3) and for the limiting inverse-
sampling variance estimator to approach the full-sample 
variance estimator (Theorem 4). For estimating complex 
parameters, we proposed a combined estimating equations 
(CEE) approach and demonsttated its advantages over 
separate estimating equations (SEE) approach (section 5). 

We have studied inverse sampling algoritiims for some 
sampling designs in section 2. But further work is needed 
to cover other sampling designs and also to avoid the 
limitations noted in section 2. 

We are studying various extensions to include post-
stratified full-sample estimators, analysis of categorical 
survey data, clustered survival data (Binder 1992) and 
longitudinal survey data. 
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APPENDIX 

Proofs of Theorems 

Proof of theorem 1 

Result 1 follows directiy from (3.1) on noting that 
conditional on ^Q, §*,..., 0* are independent identically 
distributed (i.i.d.) bounded random variables. 

Result 2 follows from the standard relationship between 
conditional and unconditional expectations: 

£ (0J=£ 'E{%\S,\ £101 1*0 =4;). 
Result 3 follows from the corresponding result for 
variances, and the conditional independence of the 0. 's 
given Sf^: 

Var(0j = Var[E(0^ | s,)] + £[var(0^ | s,) 

= Var(0 j + l £ [ v a r ( 0 ; | . o ) 

Result 4 follows directiy from Result 3. 

Proof of theorem 2 

Theorem 2 follows from applying Results 3 of Theorem 1 
with ^ = 1 to obtain 

Var(0„) = Var (0 ; ) -£ [va r (0 ; | 5 ( , ) ] , 

and then substituting this expression for Var(0„) in Result 
3 of Theorem 1 for general g. 

Proof of theorem 3 

We have 

J ^-^ * ~~^ * 
ies/ Tt, '6*0 Tt, 

where ly {s^) takes die value 1 if the i-th unit is included in 
the J-th subsample Sj' and 0 otherwise, and Tt,* is the 
corresponding (unconditional) inclusion probability. Thus 

yi^i('o) 
Y =E I'. 1̂ 0 -Y 

This is equal to y = Yies (>'i ^'^i)' *^ ^'^ estimator for tiie 
original design, if and only if ^/{SQ) = it, = ;t*/Tt,. 

Proof of theorem 4 
Conditional on SQ, it follows from (3.3) tiiat V̂  ̂ ^ 
converges almost surely to 

^»,HT = M^>;HTUo)-Var(y;Uo) (A-1) 

as g - ~. Now, noting that TI„(SQ) = it,, = Tt*,/Tt„, we get 

E[Vi,m\ ô) = L E —r:— '̂ </>'.>'/ 
•-'^^0 Tt, Tt, Tt„ 

I 

YY 
i.lesn 

n ii 

It: It 
/ " • / 

YiYr 
(A.2) 

Further, 

Var(y ; | .o ) = E E ( S , v - ^ , - . ) 4 4 
i.lesn 

-YY 
i.lesn 

Tt, Tt, 

Tt, Tt, '^ / '^ ; 
yiVr 

(A.3) 

It now follows from (A.I) - (A.3) that V„ ^ = V^^j. 

Proof of theorem 5 

Conditional on SQ, U follows from (3.3) that 

^~,sYG = # . ; s Y G l ^ o ) - V a r ( y ; | . o ) (A.4) 

where 

Var (y ;ko) = E E ( f t , f t / - S v ) 
i<lesn 

I yi y,^' 

Tt,. Tt, 
(4.5) 
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provided the subsample size is also fixed (Cochran 1977, 
page 260). Further, 

iK SYG I •^oj 1^ 2^ 
i<les„ 

y^i ^l - ' t , / / yi Yi 

Tt; Tt •' ) (A.6) 

It now follows that 

V ',SYG = EE Tt,Tt, -Tt„ 

i<les„ 
• Tt, Tt, 

Yi 

V ^i ^i h ^i (A.7) 

Comparing (A.7) and (A.4) we see tiiat V„ gŷ , * V^YG-
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Comment 
JOHN L. ELTINGE' 

1. OVERVIEW 

Rao, Scott and Benhin (henceforth RSB), in conjunction 
witii Hinkins, Oh and Scheuren (1997) (henceforth HOS), 
have produced a fascinating set of ideas and methods for 
inverse sampling. This discussion will highlight several 
related ideas and practical issues tiiat the survey community 
is likely to encounter as it considers practical applications 
of inverse sampling. Section 2 notes some relationships 
between standard probability weights and the random 
weights implicitiy constructed through repeated inverse 
sampUng. Section 3 discusses two types of approximations 
that may arise in variance estimation from inverse sample 
data. Section 4 considers the practical operational simplifi­
cations that may result from inverse sampling in some 
cases. Section 5 discusses the use of inverse sample data 
with standard (simple random sample-based) graphical 
methods. Section 6 explores the potential benefits and 
limitations of inverse sampling in attempts to reduce 
identification risk in public-use datasets. 

2. POINT ESTIMATION: INVERSE SAMPLING 
AS A FORM OF FILTERING 

Borrowing some ideas from the sampling, signal 
processing and confidentiality literature {e.g., Duncan and 
Pearson 1991), we can think of a point estimator as the 
result of multiple steps of "filtering" of observations from 
a population. For example, in constmction of a standard 
Horvitz-Thompson estimator of a population total, a set of 
population values can be viewed as passing tiirough two 
stages of filters corresponding, respectively, to the selection 
of sample units and to the inverse-probability weighting of 
those unUs. Similarly, tiie point estimator (4.1) in RSB may 
be viewed as the resuU of two stages of filtering, where the 
second stage now corresponds to weighting by a random 
factor determined by the number of times a given sample 
unit appears in the g repeated inverse samples. Under 
conditions, the filter weights in (4.1) converge to the 
inverse-probabiUty weights in the Horvitz-Thompson point 
estimator as g increases. In this sense, we can view the 
point estimator (4.1) as an approximation to the Horvitz-
Thompson estimator. Similar comments apply to the 
general nonlinear point estimators and general inverse 
samples considered in RSB. 

In addition, single inverse sampling can be viewed as a 
special type of two-phase sampling in which the second-
phase selection rates are proportional to the inverses of the 
first-phase sampling rates. This leads naturally to the 
question of whether standard ideas from two-phase 
sampling can lead to efficiency gains in either single or 
multiple inverse sampling. For example, recall that in 
standard two-phase sampling, one can often improve 
efficiency by using ratio or regression-based adjustments in 
conjunction with auxiliary variables X observed for all 
first-phase sampUng units. See e.g., Samdal, Swensson and 
Wretman (1992, Chapter 9). Similarly here, one could 
constmct a public-use dataset consisting of a single or 
multiple inverse sample dataset accompanied by estimated 
totals (based on the full complex sample) for a vector of 
auxiliary variables X. Also, some additional auxiliary 
information would be required for consistent variance 
estimation. Given sufficientiy strong auxiliary variables X, 
the resulting ratio or regression-based adjusted point 
estimators could help to improve the precision of 
inverse-sample-based analyses. This in turn could reduce 
the number of inverse subsamples required to ensure that 
the regression-adjusted multiple-inverse-sample point 
estimator has a variance that is sufficientiy small. 

More generally, in many complex-survey cases (outside 
of two-phase designs), standard weighted point estimators 
also go beyond direct use of inverse-probability weights to 
incorporate auxiliary information through, e.g., ratio or 
regression adjustments. Also, in some cases, one reduces 
the numerical values of certain extteme probability weights, 
in an attempt to avoid problems with variance inflation 
induced by influential observations. See, e.g., Zaslavsky, 
Schenker and BeUn (2001). A natural question is whether 
one could modify the inverse sampUng algorithm so that tiie 
inverse design is "tuned" to the adjusted weights rather tiian 
the direct inverse-probability weights. This would be of 
serious interest for cases in which adjusted-weight point 
estimators are expected to have a substantially smaller mean 
squared error than inverse-probability-weight point 
estimators. For cases in which this modified approach is 
advisable, it would be of interest to study corresponding 
ways in which to extend the RSB approach to variance 
estimation. 

John L. Eltinge, Office of Survey Methods Research, U.S. Bureau of Labor Statistics. E-mail: Eltinge_J@bls.gov. 

mailto:Eltinge_J@bls.gov
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3. APPROXIMATIONS EMPLOYED IN 
VARIANCE ESTIMATION AND INFERENCE 

For some complex designs, HOS and RSB noted tiiat 
exact exttaction of a simple random sample may be 
impossible, or may lead to a very small inverse sample, 
which in tum requires compensation through the use of a 
very large g. Consequentiy, sections 2 and 4.3 of RSB 
consider approximate matching methods, and section 4.1 
considers inverse sampUng that may produce a design that 
is simpler than the original complex design, but is more 
complex than a simple random design. 

In parallel with this, recall that some of the sampling 
literature considers variance estimators that are based on 
approximations to the tme sample design. One example is 
variance estimation based on stratum collapse. See, e.g.. 
Rust and Kalton (1987) and references cited therein. In 
addition, Kom and Graubard (1995, sections 4.2 and 4.3) 
consider variance estimators that ignore the original 
primary-sample-unit-level clustering and tteat secondary 
sample units as if they were primary sample units. 

In some cases, these approaches may be problematic, 
while in other cases they may produce satisfactory variance 
estimators. For the latter cases, one could consider 
development of an inverse sample procedure based on the 
approximate "variance estimation design" rather than on the 
true sample design. Under that approach, it would be of 
special interest to consider the relative magnitudes of errors 
associated with, respectively, sampling under the original 
design, the approximation error in the "variance estimation 
design," and the additional error induced through use of a 
finite number of inverse samples. 

4. OPERATIONAL SIMPLICITY 

In principle, most point estimation, variance estimation 
and inference methods that have been developed for simple 
random sample data can be extended to handle complex 
sample data. However, the work required for such 
extensions is often nontrivial, and may discourage many 
potential analysts from making efficient use of the available 
data. In an informal sense, data analysts often appear to 
choose their analytic approaches based on a rough cost-
benefit evaluation, in which tiiey will focus on analyses tiiat 
they believe will offer them most or all of the scientific 
insights available from the data, while not requiring an 
investment in analytic effort that they consider dispro­
portionate to the potential scientific benefit. Statisticians 
and subject-area data analysts may often have different 
views regarding the relative costs and scientific benefits of 
a given analytic effort. In some cases, inverse sampling may 
help to ameliorate the effects of these differing views. 

In particular, as indicated by RSB and HOS, an 
investment by a statistical agency in constmction of inverse 
samples may lead to some reduction in the burden 

encountered by a given analyst. This investment may be 
especially wortUwhile if both of the following conditions 
are satisfied. 

(a) An analyst intends to carry out a large number of 
different analyses on a single survey dataset; lacks 
appropriate complex-survey software for many (or 
all) of the intended analyses; and perceives the 
programming of complex-survey procedures to 
require a major investment of effort. 

(b) The additional computational steps required for 
point estimation {e.g., the averaging carried out in 
the point estimators (3.1) or (4.1), or the combined 
estimating equation (5.14)) or variance estimation 
{e.g., the variance estimators (3.3), (3.4), (5.18) or 
(5.20)) impose a relatively low incremental burden 
on die analyst, or can be absorbed into the analytic 
software in a form tiiat is ttansparent to tiie analyst. 

5. GRAPHICAL DISPLAYS 

Hinkins etal. (1997, page 19) and Scheuren (1997) have 
noted the potential for application of inverse sampling to 
statistical graphics for complex survey data. For example, 
Scheuren (1997) noted that many methods of statistical 
graphics {e.g., scatterplots) have been developed primarily 
for sets of independent and identically distributed obser­
vations. Direct application of these methods to complex 
survey data may produce misleading graphs, due to the 
effects of, e.g., differential sampling rates or inttacluster 
correlation. Since a given inverse sample is a simple 
random sample from the original population, the above 
mentioned problems would not arise when standard 
graphical methods were applied to data from a single 
inverse sample. 

However, for inverse samples witii small or moderate m, 
a scatterplot from a single inverse sample may not suffice 
for many purposes. An alternative approach would be to use 
several inverse samples in conjunction with local smoothing 
methods, e.g., bivariate density estimation. For purposes of 
optimization, it may be useful to consider adjustment of 
some features of standard (simple random sample based) 
bivariate density estimators {e.g., bandwidth) to account for 
unconditional correlation across the multiple inverse 
samples. Within this context, note that at a given point on 
the plane, a customary (simple random sample based) 
density estimator can be viewed as a solution to an 
estimating equation. Consequentiy, it would be of interest 
to study specific ways in which the RSB results on 
estimating equation methods may shed light on efficient 
approaches to bivariate density estimation based on inverse 
samples. 
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6. IDENTIFICATION RISK 

As noted by RSB and HOS, a major potential atttaction 
of inverse sampling is that it allows the computation of 
approximately design unbiased point estimators and 
variance estimators without explicit use of weights, sttatum 
labels or cluster labels. This is of considerable practical 
interest in the preparation of public-use datasets because 
release of tiiese types of design information can increase the 
risk that a sample unU can be identified by a data user. This 
in tum may constitute a violation of statistical agency 
pledges of respondent confidentiality. See, for example, 
de Waal and Willenborg (1997) and Chen and 
Keller-McNulty (1998) for detailed discussion of confi­
dentiality issues associated with the release of weights. 

In addition, in many household surveys in North 
America, sttata and primary sample units are defined 
largely through geographical factors. For example, a 
primary sample unit in the U.S. is often a county or a group 
of contiguous counties. Release of nominally uninformative 
primary sample unit labels, accompanied by demographic 
and household-level observations Y, can lead to identi­
fication of the primary sample unit if the PSU-level 
aggregates of the observations Y vary in distinctive patterns 
that are publicly known. For example, a given county may 
have an unusual demographic profile, or may have a 
distinctive pattern of expenditures, e.g., for natural gas or 
elecUicity. 

For this reason, it would be of interest to evaluate the 
extent to which public release of multiple inverse samples 
may provide information that would allow a data user to 
reconstt-uct weights or PSU-level groupings that are 
informative. For instance, in keeping with comments by 
Mantel (2002), suppose that a given measured variable Y 
is reported on a continuous scale, and that for many 
responding units, the numerical value of Y is unique. Then 
(in keeping with the comments in section 2) matching of the 
reported Y values across a very large number g of multiple 
inverse samples would allow a data user to estimate the 
probability weights associated with a given respondent i. 
This in tum could lead back to the abovementioned identi­
fication problems considered by de Waal and Willenborg 
(1997) and Chen and Keller-McNuIty (1998). For certain 
extreme cases, similar problems may arise with the 

identifiabiUty of primary sample units. The extent to which 
these issues are of practical concem depend on the relative 
empkical magnitudes of various error sources (including 
error induced by the use of finite g), and would be of 
interest to study for specific agency cases. 
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Comment 
SUSAN HINKINS' 

Rao, Scott, and Benhin (RSB) have done an excellent 
job of summarizing our results on inverting complex 
samples and tUey have moved the subject substantially 
further with an impressive body of theoretical results. Their 
paper develops valuable new insight for statisticians who 
wish to consider, at the design stage, the option of using 
resampling techniques in the analysis. In this way, 
invertible designs can be used. As the authors point out, 
there are still many interesting problems to be considered. 
We discuss here some specific points from the paper and 
also some of the open problems raised in our applied 
research into the employment of inverse sampling. 

How to Use the Resulting Samples - The estimation of 
totals or means has the advantage that the combined and 
separate estimates are identical. Once one moves beyond 
"simple" estimation problems, tiiere are many open 
questions as to the best use of the resulting samples, but 
combining the samples is a most reasonable approach. For 
a parameter such as a ratio, that is a function of totals, it 
would seem intuitive to calculate the best estimate of each 
total, and apply the function to the estimates and this is 
what we would recommend. In fact, because the ratio 
estimator is used in many situations, we did comment 
briefly on tiUs in die 1997 HOS paper. However, RSB have 
made this point explicitiy and in addition they have 
provided a coherent methodology for the estimation of 
variance from combined samples. This provides researchers 
with valuable tools for applying the inverse sampling 
techniques to a wider range of problems. 

In Hinkins, Oh and Scheuren (1995), we considered the 
use of inverse sampUng for the problem of calculating tests 
of independence from a 2x2 contingency table when the 
data come from a stratified sample. Contingency table 
analysis and regression analysis were both developed 
largely in the UD world and, therefore, adjustments are 
needed to use them in complex survey settings. We drew 
multiple simple random samples and calculated the simple 
Pearson chi-square test from the combined data. As the 
number of samples increases, the probability of rejecting 
the null hypothesis also increases, so one cannot take an 
arbittarily large number of simple random samples. The 
problem was how to calibrate the tests, so that the desired 
level {e.g., a 0.05 significance level for example) is 
achieved. Preliminary results indicated that one could 
determine the number of simple random samples to 
combine to achieve the desired level for the test, and using 
the Pearson chi-square on the combined samples compared 
well to the Fellegi (1980) methodology applied to tiie 
original sttatified sample, while perhaps being more user 
friendly. 

In work that Hinkins, Liu, and Scheuren presented at the 
1998 Statistical Society of Canada Conference, simulation 
results were shown for regression fits to inverse samples 
from a complex design (sttatified median balanced design). 
In this case, the original design selected 100 replicates; in 
each replicate, one observation was selected from each of 
six strata, so that the observations were median balanced 
(Liu 1999). The selection was with replacement across 
replicates. The inverse sample consisted of selecting one 
unit from each replicate. We looked at regression fits to 
individual inverse samples, and at the regression fit to the 
combination of several inverse samples. The population 
regression Une had a slope of 0.842 and R^ = 0.64. Using 
single inverse samples, the estimated slopes ranged from 
0.70 to 1.13. Combining six inverse samples, the estimated 
slope was 0.845 witii R^ = 0.64. 

Variance Estimation - The estimation of variance in 
the HOS 1997 formulation is an interesting problem 
because the samples are not unconditionally independent. 
In our 1997 paper we suggested for ratio estimates that if 
the combined sample is sufficientiy large so that a Taylor 
Series approximation is acceptable, then the "usual" 
approximation to the variance for a ratio could be used. 
That is, the variance could be estimated using the 
approximation 

1 - Y 
Wai{R) = -^Var(e) where R = — and e. 

X^ X 

Yi Rx.. 

The estimated variance for tiie ratio estimate based on the 
combined samples can then be calculated in the "usual" 
manner as 

var(/? ) = var 
I - \ 

y 

\^cj 
- 2 

Var(eJ 

where e^ = {IIg) Yj-i ej and the mean in they "" resample is 
e. = x.-R y. = x.- {y lx)y.. 

Using the estimate of variance generalized by the RSB 
equation (3.4) to estimate the variance of e^ results in the 
following variance estimate for the combined ratio estimate: 

var(/?J 

where s-
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As one would expect, this is the same variance estimator for 
the combined ratio estimate as Rao, Scott and Benhin 
constmct using their estimating equations technique. 

The use of the combined resampled samples for esti­
mating regression coefficients is also addressed by RSB. 
They have developed a variance estimate, using the esti­
mating equations technique, which appears to work well 
and further expands the possibilities for the use of 
resampling techniques. Their result also allows further 
research on the properties of the estimated variance in 
combined samples. 

In the RSB regression example, it is not clear whether 
the variance estimate for B^ has converged. The question 
of convergence of tiie estimates of error for nonlinear para­
meters is an interesting one, especially since these estimates 
are Ukely to be used to calibrate the process. (By calibration 
we mean the determination of when "enough" samples have 
been drawn, based on the desired use.) In the case of 
estimating a parameter, the only information available for 
calibration may be the comparison of the combined esti­
mate, for example, to the original estimate from the 
complex design, and the comparison of their estimated 
standard errors. That is, while we may know that the 
variance will converge, only the estimates of variance are 
available for calibration. 

Consider the following example where the inverse 
sample algoritiim is used to invert a design with three sttata 
and the minimum sttatum sample size is two. Therefore, 
each re-sample is of size m = 2 and one would not expect 
fast convergence. Two ratios are estimated. Using 1,000 
re-samples, tiie point estimates from the combined samples 
are within ±1.0% of the original estimates; using 10,000 
re-samples the point estimates are within ±0.3% of tiie 
original estimates. 

The estimates of the standard errors behave quite 
differentiy, however. For each parameter. Table 1 shows the 
ratio of the estimated standard error for the combined 
simple random samples to the estimated standard error of 
the original sttatified estimate. The estimate of variance for 
the combined estimates was calculated using the method 
described above. 

Table 1 
Ratio of Estimated Standard Errors: Combined Estimate 

to Original Estimate 

Totals 

Ratio Estimate 

Totals 

Ratio Estimate 

Parameter 

^ , 
y, 

/f ,=y,/x, 

X, 

Yi 

R2 ~ ^21X2 

1,000 samples 

1.22 

1.21 

1.07 

1.02 

0.94 

0.46 

10,000 samples 

1.03 

0.99 

1.07 

0.95 

0.93 

0.98 

Using 1,000 re-sampled simple random samples, the 
estimated standard error of the combined estimate of X^ is 
22% larger than the estimated standard error for the original 
stratified estimate of X,. Incidentally, this was not 
surprising to us. With 10,000 re-samples, the standard error 
for the combined estimate is reasonably close to that of the 
original sttatified estimate. Similar results are seen for the 
estimate of 7,. The standard error for the combined 
estimate of the ratio R^ however converges more quickly, 
and appears to be relatively stable. 

Consider the second set of variables. This time the 
standard errors for the combined estimates of the totals Xj 
and Fj appear to have converged with only 1,000 samples. 
On the other hand, the standard error for the estimate of /?2 
is severely under-estimated, as compared to the standard 
error of tiie original sttatified estimate. An additional 9,000 
draws, however, increases the estimated standard error for 
the ratio so that it is approximately equal to that of the 
original estimator. 

Clearly, more analysis on the use of inverse sampling 
and the variance estimation for ratio and regression 
estimates is needed. Also, this example points out that the 
calibration of the inverse sample must consider all 
parameters of interest. 

The remainder of the discussion considers two areas of 
interest where inverse sampling may be useful: providing 
public use data, and modeling or regression analysis. These 
two problems also illusttate two general types of data usage 
that may require different approaches to calibration. 

Public-Use Data - The goal of using inverse sampling 
may be to provide public use data that will give 
substantially similar estimates as the estimates from the 
complex design, while permitting implementation of 
commonly available data analysis procedures using 
ttaditional computer software. If inference based on 
inverse-sample techniques can be demonstrated to be 
consistent with full complex-sample techniques, then data 
users with limited computer resources can perform select 
design-based analyses using mainstream statistical soft­
ware. The results in the RSB paper expand the theory, 
providing conditions where the use of such resampling 
techniques is applicable. 

A necessary feature in public-use data is the protection 
of confidentiality. For federal statistical agencies in the 
United States, public use files have been one of the 
responses to achieving the goal of "openness" {e.g., 
Duncan, Jabine and deWolf 1993). However, the growing 
electronic availability of data of all sorts through the 
Internet and the advances in record linkage software can be 
seen to endanger this openness {e.g., Doyle, Lane, 
Theeuwes and Zayatz 2001). 

The goals of public use data can come into conflict 
when, for example, the information on the nature of the 
sample selection must be provided, implicitly or explicitiy, 
for the calculation of design-based variances, but this 
information significantly increases the likelihood of 
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identifying an individual. In many surveys, geographical 
location plays an important part in the sampling, but the 
finer details of the geographical sampling stmctures cannot 
be released witii the data without endangering the 
confidentiality of the individuals. If the geographical 
sampUng stmctures are deleted to maintain confidentiality, 
then the data become difficult to analyze using the standard 
design-based methods. In this case, the use of inverse 
sampling would allow the release of data without the finer 
details of the geographical stmctures, for example, while 
still allowing analysis using the standard methods. 

For example, the US National Health Interview Survey 
(NHIS) uses state-level stratification and selects counties 
and mettopolitan areas for tUe sample. A pubUc use file is 
released for the NHIS data in a form where the complex 
sample stmcture is simpUfied to tiiat of a sttatified design 
witii two PSUs imbedded within each sttatum. The original 
design sttata and PSUs were masked in part using some of 
the techniques discussed in Eltinge (1999) and Parsons and 
Eltinge (1999). This masked "2 PSUs per sttatum" design 
can be used to calculate variances. We investigated tiie 
NHIS design to see if inverse sampling was applicable for 
providing pubUc use data (Hinkins and Scheuren 2001) and 
we found that it was not possible to invert the design down 
to the level of detail that was useful to data analysts. We 
still believe that inverse sampling can be an atttactive 
option for providing pubUc use data sets, when the design 
is invertible. It is not necessarily a viable option, however, 
unless its use is anticipated in the original design, so that 
invertible designs are used. 

Another possible use of inverse sampling should be 
mentioned with respect to this example. For analytical 
domains covering most of the sttata, the variance estimators 
from tiie NHIS public use data will be stable, i.e., the 
estimators have large associated degrees of freedom. But 
for subpopulations that are less geographically dispersed, 
that cover few sttata, the resulting degrees of freedom may 
be very small, and the variance estimate may be quite 
unstable. In such instances, it may be possible to produce a 
more stable variance estimator by drawing many, many 
samples from the pubUc use design. In this case, rather than 
providing public use data, the inverse sampling might be 
used as a "black box" variance calculator that would 
provide more stable variance estimators for rare items in the 
population. 

Modeling and Graphical Applications - Inverse 
sampUng can be used to provide data in a form that allows 
greater analysis potential. This may be particularly valuable 
when there are multiple uses for the data. A natural example 
grows out of our initial proposal for using a resampling 
approach for the Statistics of Income (SOI) stratified 
samples of corporate tax retums. The underlying population 
is highly skewed (a relatively few large units accounting for 
a large percentage of the total value) and in order to provide 
efficient estimates of annual totals, a highly sttatified 
sample design is used. However for economists, another 

important use of the data is modeling economic activity and 
developing tax models, which is not the same problem as 
calculating a finite population regression estimate. 

Another such example, from EPA, is a large sttatified 
sample of US lakes from which water chemistry 
measurements were made in order to provide background 
measurements relating to acid rain. These data were also of 
great interest to biologists who were interested in modeling 
certain aspects of the chemical and physical relationships. 

Interpreting regression models in finite population 
sampling can be confusing. There are many well thought-
out approaches to regression in a complex sample setting, 
but die simpUfied mle of thumb is tiiat you generally can't 
ignore the design stmcture (for example the sample 
weights.) To analysts interested in modeUng tiie underlying 
parametric stmcture, tiiis can seem counter-intuitive. And 
if the design is ignored, one can get the wrong answer 
unless either there are no missing regressors or the design 
is not confounded with regressors (botii unlikely in our 
experience for complex designs). A simple random sample 
satisfies the second requirement. In the case of the SOI 
sample, if economists were interested in modeling the 
stmcture of the small to medium corporations, for example, 
then fairly large simple random samples could be generated 
from the sttatified design. And a combination of multiple 
draws might provide a reasonable data base. 

FinaUy, the use of graphical techniques in modeling and 
regression analysis is very important for understanding how 
a variable depends on other predictor variables. Even in the 
simple problem with one or two predictors of a dependent 
variable, the graphical display of relationships using 
weighted sample data is difficult. The analysis of residuals 
and the detection of outiiers are more difficult with 
weighted data. Graphing is a powerful tool for extracting 
information from data. This would seem to be an area 
where the use of inverse sampling specifically for 
producing simple random samples should be considered. 

As RSB rightly note in their conclusions, there are still 
many opportunities for further research and analysis. Their 
paper makes significant steps in advancing the theory and 
the application potential for the use of resampling 
procedures, opening doors to more opportunities. 
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Response From the Authors 

1. INTRODUCTION 

We thank the discussants, John Eltinge and Susan 
Hinkins, for their insightful comments and for suggesting 
some topics for furUier research on inverse sampling. In our 
rejoinder, we will attempt to address some of the issues 
raised by the discussants. 

Our research on inverse sampUng was motivated by the 
pioneering work of Hinkins, Oh and Scheuren (1997) 
(henceforth HOS). The latter authors developed several 
inverse sampling algorithms and provided some appli­
cations. They also noted the potential of inverse sampling 
in providing public-use microdata files, consisting of 
multiple simple random subsamples, that can be used to 
make valid inferences, such as regression and categorical 
data analysis, and to develop graphical displays of the data. 
The main conttibutions of our article is to provide some 
theoretical support (Theorems 1-5) and to develop the 
combined estimating equations (CEE) approach (section 5) 
to handle a variety of analyses of the data, such as linear 
and logistic regression, even when the subsample sizes are 
small. We have developed a Unearization inverse-sampling 
variance estimator (equations (5.17) and (5.20)) that can be 
computed from the microdata file, and provided conditions 
for its convergence to the fuU-sample Unearization variance 
estimator as the number of subsamples, g tends to °°. 

(i) Point estimation of a total 

In the context of estimating a total 9 = 7, we proposed 
the inverse-sampling estimator Y given by (4.1) and 
showed that as g - °°, it converges to the full-sample 
Horvitz-Thompson estimator under the condition 
ft (•̂ Q) = ft, for all SQ^I (see Theorem 3). Eltinge raised the 
important issue of improving the efficiency of F , for a 
given g. To this end, he suggested that single inverse 
sampling may be viewed as special type of two-phase 
sampling, and that using this analogy one could implement 
ratio or regression-based inverse-sampling estimators by 
constmcting a public-use data set consisting of g 
subsamples, {{y.,x^);iesj*},j = I,..., g, supplemented by 
the full-sample estimated totals X for a vector of auxiliary 
variables, x. For example, a ratio inverse-sampling 
estimator is given by Y ={Y IX)X, where X is the 
inverse-sampling estimator of the total X. Eltinge remarked 
that some additional auxiliary information may be required 
for variance estimation. It would be useful to pursue 
Eltinge's suggestions; one of us (E. Benhin) is looking into 
variance estimation. Benhin is also studying the analogues 
of full-sample calibration (or generalized regression) 
estimators constmcted from multiple inverse samples 
(subsamples). 

Eltinge also noted that in some cases the full-sample 
weights are adjusted to avoid problems with variance 
inflation induced by influential observations. He raised the 
question whether it is possible to modify the inverse 
sampling algorithms such that the resulting inverse-
sampling estimator, say Y , converges to the adjusted-
weight full-sample estimator, say, Y, as g~ °°. This appears 
to be a challenging problem, but it may be possible to 
achieve approximate solutions. 

(ii) Nonlinear parameters 

In section 3 we considered a "separate" inverse sampling 
estimator, 6 , of a nonUnear parameter 6, such as a ratio of 
totals 0 = YIX = R, and noted tiiat 6 can lead to large bias 
if the subsample size, m, is small. This is due to the fact tiiat 
the bias of 0 is of the order m"'. In her discussion, 
Hinkins noted tiiat HOS were in fact aware of this problem 
and that HOS commented briefly on estimating the ratio R 
(page 18 of HOS). In particular, HOS suggested the esti­
mation of the numerator Y and the denominator X 
separately, leading to the "combined" inverse-sampling 
estimator, R = Y IX , which follows as a special case of 
our CEE approach (see section 5.2). In section 5.1, we have 
spelled out tiie combined approach of HOS for the ratio R, 
at the suggestion of the Associate Editor, Fritz Scheuren. 

(iii) Approximate variance estimator 

Eltinge noted that approximate full-sample variance 
estimators, such as those based on sttatum collapse, have 
been proposed in the literature and that it may be possible 
to develop inverse sampling procedures based on the 
approximate "variance estimation design" rather than the 
original sampling design. Such procedures may lead to 
larger subsample sizes, m. For example, in the case of 
sttatified two-stage sampUng with two clusters per stratum, 
we have m = 2 and m can be increased by stratum 
collapsing. This in tum may require a smaller number of 
subsamples, g, compared to the number of subsamples for 
the original design. Alternatively, for a given g, we may be 
able to obtain a more stable variance estimator, provided the 
full-sample approximate variance estimator is deemed to be 
satisfactory. 

For PPS sampling without replacement, practitioners 
often assume that the sampling was with replacement to 
estimate the variance. In this case, HOS noted that "an 
inverse algorithm would exist to the same order of approxi­
mation as was being assumed to estimate variances" (page 
16 of HOS). 
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(iv) Number of subsamples 

The stabiUty of the inverse-sampling variance estimator 
depends on the number of subsample, g, drawn from the 
fuU-sample and the function (or parameter) being estimated. 
For smaller g, the variance estimator can even take negative 
values. Also, when m is very small (as in the case of 
sttatified two-stage sampling with two clusters per sttatum), 
we will need a very large g to obtain a stable 
inverse-sampling variance estimator. We can increase m 
either by the approximate methods noted in (iii) or by 
drawing sttatified random subsamples, provided 
confidentiality requUements or other considerations do not 
preclude tiie use of sttatified subsamples. 

Hinkins noted that the number of subsamples, g, may be 
determined by "calibrating" the inverse-sampling estimates 
and variance estimates to the corresponding full-sample 
values, and that the resulting g might vary significanfly 
across parameters of interest. To illusttate the latter point, 
Hinkins studied the case of three sttata and minimum 
sttatum sample size of two, and computed tiie ratio, r, of the 
inverse-sampling variance estimator to the full-sample 
variance estimator for two ratios /?, = Y^ /X, and 
/?2 = y^/Xj. Hinkins showed that the use of ^ = 1,000 
subsamples leads to poor calibration for /?2(r = 0.46 
compare to r = 0.98 with g = 10,000). This result is 
somewhat surprising, but it could be attributed to the 
instability of the inverse-sampling variance estimator with 
subsample m =2. Hinkins noted that the inverse-sampling 
variance estimator for the intercept term B^ in our Table 2 
(denote CEE) may be behaving somewhat erratically as g 
increases. We agree with her, but it is difficult to address 
the question of convergence for nonlinear parameters such 
as BQ. Clearly, we need more work on the choice of g for 
variance estimation under inverse sampUng. Fritz ScUeuren 
noted in private correspondence that "the data user does 
know, however, what the main users are going to do, so g 
can be chosen with tiie important parameters in mind. But, 
of course, not all". 

(v) Analysis of survey data 

Computations of valid standard errors of parameter 
estimators from a full-sample microdata set may not be 
feasible in tiie context of sttatified multistage sampling 
without the identification of clusters and sttata on the data 
file. Even when the necessary information for standard error 
calculations is available on tiie data set, an analyst may lack 
appropriate complete-survey software for many (or all) of 
tUe intended analyses, as noted by Eltinge. On the other 
hand, valid standard errors may be obtained via the CEE 
approach using microdata files containing multiple simple 
random subsamples without the need for survey weights, 
clusters identifiers, etc. Moreover, as noted by Eltinge, the 
additional computational steps for implementing the CEE 
approach "impose a relatively low incremental burden on 
the analyst, or can be absorbed into the analytic software 
that is ttansparent to the analyst". However, we need further 

work on providing the necessary enhancements to standard 
software in order to implement the CEE metiiod in practice. 

Hinkins, Oh and Scheuren (1995) combined the 
subsamples to test independence in a 2 x 2 contingency 
table. Their Pearson chi-squared statistic is of the form 

X'- {gm)Y Y iPijg-PiJ.jgf/iPiJ.jgl 
i-i j-i 

where P.. is the inverse-sampling combined estimator of 
,jg f o 

the {i,j)-ui ceU proportion P.. calculated from g subsamples 
each of size m, and i",.̂ ^ = Yj P.j^, P^j^ = Yi Pjjg - It is clear 
from the form of Z^ tiiat it increases with g so that the 
probability of rejecting the null hypothesis also increases 
with g. Hinkins, Oh and Scheuren (1995) noted that it may 
be possible to determine the number of subsampling, g, to 
combine to achieve the desired test level using X^. This 
idea looks interesting, but actual implementation of the 
method needs further study, especially for testing hypo­
theses in multi-way tables. Instead of using this approach, 
it is possible to develop first- and second-order Rao-Scott 
corrections to X^ by using the multiple subsamples to 
implement Rao and Scott (1984) corrections, based on the 
concept of design effects. These adjusted X^ will be valid 
for any g. Benhin is currentiy studying the Rao-Scott 
corrections in the context of inverse sampling. As g^ °°, 
the corrected X^ will converge to the Rao-Scott adjusted 
X^ based on the full-sample. 
(vi) Graphical displays and modeling 

Direct application of standard methods for statistical 
graphics and modeling to complex survey data may produce 
misleading graphs and models, as noted by Eltinge, due to 
the effects of clustering, unequal weights, sttatification and 
other features of the survey data. On the other hand, it is 
appropriate to apply standard metiiods to data from a single 
inverse sample (or subsample), provided the subsample is 
simple random sample unconditionally. However, the sub-
sample size, m, is typically small and hence the subsample 
data set is not informative for graphical displays or 
modeling. The size of the data set may be increased to gm 
by combining the g subsamples, but the application of 
standard methods {e.g., scatter plots) to the combined data 
set can produce misleading displays and inferences because 
the subsamples are unconditionally correlated. Eltinge 
made some useful suggestions on accounting for the 
unconditional correlation in the context of bivariate density 
estimation, but much work remains to be done in the area of 
statistical graphics and modeling using multiple inverse 
samples. 

(vii) Confidentiality of microdata 

As noted by Eltinge, a major potential attraction of 
inverse sampling is that it allows the calculation of point 
estimators, standard errors, etc. from the microdata file, 
consisting of multiple subsamples, without the knowledge 
of weights, cluster labels or sttatum labels. This feature 
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allows the reduction of identification risk induced by the 
knowledge of cluster labels etc. It could be a challenging 
task to evaluate the extent to which the data file of multiple 
subsamples allows data users to reconstmct weights or 
cluster labels. Note that the characteristic values reported 
on the data file of inverse samples are real in the sense of 
corresponding to the values in the full sample. 

If the full sample is a PPS cluster sample and the 
subsamples are obtained by selecting one element from 
each cluster, tiien cluster identification may be avoided by 
first randomly permuting the data vectors within each 
subsample and then reporting the permuted subsamples. 
The CEE approach is invariant to permutations of data 
vectors within each subsample. 

It should be noted that the confidentiality protection 
provided by the data set with multiple subsamples is never 
more than the protection provided by a simple random full 
sample. Various methods have been proposed in the 
literature for Umiting disclosure in microdata obtained from 
simple random sampling, such as microdata masking (see 
e.g.. Cox 1994). We can use similar methods on the data set 
with multiple subsamples, if necessary. Raghunathan, 
Reiter and Rubin (2002) proposed multiple imputation for 
statistical disclosure limitation in the context of simple 
random sampUng. The basic idea behind their proposal is to 
simulate multiple copies of the population by imputing for 
the nonsampled values using an imputation model based on 
auxiliary variables available for all the units in the 
population and then releasing a random sample from each 
of the synthetic populations. They used a parametiic 
model-based approach and an approximate Bayesian 
bootsttap method for imputing die nonsampled values. The 
paramettic approach protects confidentiality more 
effectively since the imputed values do not contain 
observed records, unlike the approximate Bayesian 
bootsttap, but it is far more susceptible to misspecifications 
of the imputation models. Note that the Raghunathan et al. 
(2002) method is fundamentaUy different from our method 
for complex full-samples. However, U is interesting to note 
that the variance estimator of Raghunathan et al. is given by 

the variance between the imputed data estimators minus the 
average of the imputed data variance estimators, whereas 
our variance estimator (3.3) is given by the average of the 
subsample variance estimators minus the variance between 
the subsample estimators. In die case of multiple imputation 
for missing data, the variance estimator is given by the 
average of the imputed data variance estimators plus the 
variance between tiie imputed data estimators, tteating the 
imputed values as the tme values. 

(viii) Concluding remarks 

As noted by Hinkins, inverse sampling is not necessarily 
a viable operation unless its use is anticipated at the 
full-sample design stage to permit the use of invertible 
designs. Currently, we do not have inverse sampling 
procedures for several commonly used fuU-sample designs. 
For example, consider single stage cluster sampling with 
probabiUty proportional to a measure of cluster size M., not 
necessarily equal to the actual cluster size M.. In this case, 
we cannot apply the algorithm in Case 3 of section 2 to get 
a simple random subsample. 

Further work is clearly needed on developing suitable 
algorithms to achieve exact matching or at least approxi­
mate matching with simple random sampling or sttatified 
random sampling. As Fritz Scheuren noted in private 
communication, "this stuff is fun, but lots of fence to paint 
yet". 

We thank the Associate Editor, Fritz Scheuren, for his 
interesting observations on our rejoinder. 
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The Accuracy and Coverage Evaluation: Theory and Design 
HOWARD HOGAN' 

ABSTRACT 

This paper discusses both the general question of designing a post-enumeration survey, and how these general questions 
were addressed in the U.S. Census Bureau's coverage measurement planned as part of Census 2000. It relates the basic 
concepts of the Dual System Estimator to questions of the definition and measurement of correct enumerations, the 
measurement of census omissions, operational independence, reporting of residence, and the role of after-matching 
reinterview. It discusses estimation issues such as the treatment of movers, missing data, and synthetic estimation of local 
corrected population size. It also discusses where the design failed in Census 2000. 

KEY WORDS: Dual system estimation; Census adjustment; Undercount. 

1. INTRODUCTION 

The U.S. Census Bureau attempted to correct the initial 
Census 2000 population figures for measured net 
undercount (U.S. Census Bureau 2000.) This correction 
was to be based on tiie Accuracy and Coverage Evaluation 
(A.C.E.). The A.C.E. is a post-enumeration survey based on 
the dual system estimator (DSE). Although seemingly well 
designed and well executed, the initial A.C.E. production 
estimates were badly flawed. The A.C.E. produced an 
estimate of 3.3 million net undercount (378,000 s.e.). This 
conttasts sharply with the current demographic analysis 
estimate of only 340 thousand (Robinson 2001) as well as 
a later revised survey estimate of a 1.3 million overcount 
(542,000 s.e.) (U.S. Census Bureau 2003). 

This paper discusses both the general question of 
designing a post-enumeration survey (PES), and how these 
general questions were addressed in the U.S. Census 
Bureau's plans for the A.C.E. Where applicable, it 
discusses where the assumptions underlying the design 
failed in 2000. Throughout, I will use the terms DSE and 
PES when a general question is discussed and A.C.E. for 
specific details of the U.S. 2000 design. The next section 
defines the dual system model as applied to census 
coverage measurement. Section 3 discusses the definition 
and measurement of census correct and erroneous 
enumerations. Section 4 presents tiie issues in defining and 
measuring omissions. Section 5 deals with small area 
estimation. The paper ends with a discussion of some of the 
problems encountered in implementing the A.C.E together 
with some concluding remarks. 

2. THE DUAL SYSTEM ESTIMATION MODEL 

The use of the dual system model is well known either 
for measuring the completeness of vital events registration 
(Sekar and Deming 1949; Marks, Seltzer and Krotici 1974) 

or for use in measuring coverage errors in census data 
(Marks 1979; Wolter 1986; U.S. Bureau of the Census 
1985.) AppUcation of the dual system model in the context 
of the 1990 Census, including the issue of census 
adjustment, is documented in Hogan (1992, 1993.) 

The standard Petersen (1896), Sekar-Deming or dual 
system estimator (DSE) can be expressed as: 

N.. - N^, (NjN,,) (1) 

where 

A ĵ, is the number of people counted in both the census 
and tiie survey, 

Â ĵ is the number of people correctiy counted in the 
census, 

Â , ̂  is the number of people counted in the survey, and 
Â ^̂  is the total number of people. 

That is, the total population is estimated by the number 
captured in the census multiplied by the ratio of those in the 
survey to those in both systems {i.e., the inverse of the 
coverage rate of the census, as measured by the survey). 

The DSE will yield a direct estimate of the population of 
classy, as well as any sum of classes. The classy might be 
the household population of a state, of a district, of an 
ethnic group, or perhaps of an ethnic group within a state. 

Requirements for estimating small or local populations, 
for example, age by sex, by race, by town, often far exceed 
the capacity of even a very large sample. To meet this need, 
the DSE is combined with a synthetic assumption to 
produce estimates for areas of geography smaller than that 
defined by the domain j . The synthetic estimator assumes 
that a proportion or ratio measured at an aggregate level 
applies equally to all sub-groupings (Gonzalez 1973; 
Gonzalez and Hoza 1978.) Using a synthetic assumption, 
we write 

Â  CCF C 
j jkh 

(2) 

Howard Hogan, Chief, Economic Statistical Methods and Programming Division, Census Bureau, Washington, D.C. 20233. 
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CCF, ^ 

Cj 
(3) 

where, 

Njlf^ is the estimated population in domain;, available at 
the level of geography k and demographic subclass 
h. 

CCF J is the net coverage correction factor 
Nj is the DSE for domain 7 
C.̂ ^ is the measure (usually census count) of the 

population in domain j available at the level of 
geography k and demographic subclass h, and 

Cj-YY Cj,,. (4) 

Cj need not equal the number of people correctly included 
in the census {N^^). N^^ is estimated from sample data and 
is not available for all small areas. C is normally the census 
count, including imputations and erroneous inclusions 
(duplicates, etc.). 

Summing over group; and subclass h yields a measured 
population for the given geographic area k, we have 

N Y Y 
j h 

CCF. C,,. (5) 

For example, j may define all 0-17 year-old Asians in 
owner-occupied housing units while k may define Orange 
County, Califomia, and h may define 11-year-old girls. 

While this produces a small-area and small-group esti­
mate, this calculation can generate fractions. The typical 
user of census data prefers whole person records. The U.S. 
Census uses controlled rounding and person record 
imputation to create integer number of person records for 
ease of tabulation and data acceptance. 

3. MEASURING CORRECT ENUMERATIONS 

3.1 Defining and Measuring Correct and Erroneous 
Enumerations 

The fu-st step in operationalizing Equation 1 is to define 
and estimate the set of individuals "correctiy" in the census. 
In this context "correctly" has four dimensions: 

1. Appropriateness 
2. Uniqueness 

3. Completeness 
4. Geographic correctness 

"Appropriateness" means that the person should be 
included in the census. People who die before or who were 
bom after the census reference date (April 1 in the U.S.) are 
not part of the population (universe) to be measured. 
Similarly, records that refer to fictitious "people," tourists, 
or animals are out-of-scope. 

"Uniqueness" refers to the fact that we wish to measure 
the number of people included in the census, not the 
number of census records. If more than one record refers to 
a single person, the count of records must be reduced for 
purposes of the DSE. 

"Completeness" means that the census record must be 
sufficient to identify a single person. If it lacks sufficient 
identifying information, we cannot determine whether the 
person was appropriately and uniquely included in the 
census, nor can we determine whether he or she was also 
included in the survey. 

Although completeness is necessary for the DSE, the 
census count includes imputations and other incomplete 
enumerations. Census operations normally have a 
requUement for a "data-defined person record." In Census 
2000, the requirement was two characteristics where name 
counts as a characteristic. The name field must have at least 
three characters in the first and last name fields combined. 
The characteristics that are included in the counting are 
relationship to the householder, sex, race, Hispanic origin, 
and either age or year of birth. (Childers 2001) 

When a record does not meet these requirements census 
processing substitutes (imputes) a data-defined record. 
Since the census processing identifies all these whole-
person imputations, the quantities are known and need not 
be estimated. Traditionally, the number of whole person 
imputations is denoted by n, for "insufficient information." 

Additionally, there are person records that are acceptable 
for census processing but insufficient for use in the DSE. 
This group includes records witii reasonably complete data 
but without a person's name. Accurate matching or 
additional interviewing is not possible for these cases. For 
A.C.E. 2000, the definition for "sufficient information for 
matching" was complete name and two characteristics. 
(Childers 2001) 

"Geographic correctness" means that people are 
included in the census where they should be included. 
Enumerations outside that defined search area (or areas) are 
counted in the census but not correctly included in the 
census. This area must be searched during the matching 
process as well as searched for census duplicates. As the 
number of addresses in tiie search area increases, the 
complexity of matching increases and the chance of 
matching error grows. This increased complexity and 
possible levels of error will affect both the matching 
between the survey and the census and the search for census 
dupUcates. The more addresses that must be searched, the 
more likely a tme match will be missed. Equally 
importantly, the chance of a false match increases. For 
example, the chance of finding two people with similar 
names and ages living in the same block is small. The 
chances of finding two such people in a large city is 
considerable. 

Two dimensions must be defined to operationalize a 
search area: (I) correct location and (2) the search area 
around the correct location. 
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The "correct location" defines where, under the DSE 
residence mles, the person should be included in the census. 
These mles may differ from the mles used in the census. 
The only requirement is that the location be precisely 
defined and consistentiy applied during PES processing. 
More than one location may be defined as correct so long as 
the mle is consistentiy applied. However, usually only one 
location is defined as correct. This was the mle in the 
A.C.E. 

In the 1990 PES and 2000 A.C.E. tiie Census Bureau 
adopted the following mle: 

The person is correctiy included in the census if he or 
she is included at the location where the person 
considers, at the time of the survey interview, to have 
been his or her usual residence as of April I. 

This definition generally follows the census mles. 
However, it makes an expUcit allowance for the fact that the 
concept of "usual residence" is somewhat subjective. 
Because of this subjectivity, where the person considers 
his/her usual (April 1) residence may have changed by the 
time of the survey interview. This, by itself, does not bias 
the DSE. However, it does require consistent reporting of 
the "correct location." 

The second dimension of geographic correctness is the 
area of search around the correct location, i.e., the search 
area. The concept of a search area is to accommodate errors 
in either the census or survey assignment of residents to a 
particular geography. It has the effect of lowering the 
variance and can, in some circumstances, lower the bias as 
well. 

The A.C.E. used the following definition: 

A person was correctiy enumerated if the person was 
counted in the block cluster containing his/her usual 
residence; or if he/she was included by the census in 
the housing unit where he/she usually resides, and 
the housing unit was included in a block adjacent to 
the correct block cluster. 

An important part of this design is that enumerations of 
people in the "wrong" location are to be classified as 
erroneous, whether or not the people are also enumerated in 
die correct location. Thus a person counted only once, but 
in the wrong location, should be measured, on average, as 
contributing one erroneous enumeration (in the wrong 
location) while being missed (one omission) in the correct 
location. This approach obviates the need to search widely 
for possible duplicates, but does require that the field 
interview determine a unique correct location for each 
person. 

The definition of "correctly included" does not depend 
on the correctness of classification j . For example, if a 
person was really 19 years-old, but was counted in the 
census as 17, he/she is stiU considered as correctiy included. 
This is discussed in section 5.2. 

To estimate the number of people correctiy included in 
the census, one must take a sample of all data-defined 
census enumerations. This sample is called the enumeration 
(or E) sample. Census whole-person imputations (II's) are 
not part of the E-sample frame. 

To maximize correlation with the population sample (see 
below), the A.C.E. first defines a set of sample areas. These 
are either a single block or a group of contiguous blocks 
and are known as block clusters. If a block is sampled, all 
census records coded to that block, even incorrectiy, fall 
into sample. If tiie block contains many census housing unit 
records it may be subsampled. 

The records in the S-sample will be checked for 
completeness. Only records that meet the minimum 
completeness requirement can be considered as correctly 
enumerated in the census. Records are then searched 
throughout the search area to see if the person was counted 
more tiian once within the sample block (uniqueness). 
Duplicate search is done using computer-assisted clerical 
matching. If more than one record is found, the extra 
records are coded as duplicates. 

Appropriateness and geographic location cannot be 
determined from the census enumeration alone, but require 
additional interviewing. If interviewing locates a member of 
the household, or an acceptable respondent who can 
confirm the person's existence and that the person had 
his/her usual residence there on April 1, the enumeration is 
accepted as correct. 

If the respondent reports that the person did not live in 
the block or search area on April 1, the enumeration is 
excluded from the correct enumerations. This can occur 
when the person responded to the census but moved before 
April 1; the person moved in after April 1 but was 
enumerated by tiie census nonresponse follow up operation; 
or when a parent incorrectiy reports a college student as 
living at home. 

The interviewers may determine that the person never 
existed or was never associated with the block. These 
records are considered erroneous. It is difficult in some 
cases to prove tiiat a "person" was not real, especially in a 
large block. The A.C.E. required the interviewers to find at 
least three knowledgeable respondents before coding a 
record as fictitious. However, since the person might have 
lived somewhere else in the block, it can be difficult in 
some situations to code the record fictitious. 

An important source of error arises from the need to 
accept proxy responses to verify many enumerations. If the 
proxy reports a different "correct" residence than the person 
himself would, an enumeration could be miscoded, since 
the requirement of a unique "correct" residence would be 
violated. The A.C.E. used proxy interviews for households 
that moved between the time of the census and the time of 
the A.C.E. interviews. Even within a household, different 
members may hold different views of a person's "correct" 
residence on Census Day. Proxy respondents, both 
household and non-household, were responsible for many 
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of the errors in reporting residence in the A.C.E. and thus, 
the underestimation of census error. 

After missing-data estimation and sample weighting, we 
can estimate die number of people correctiy counted in the 
census as 

CE 
N. {C-II) 

N. (6) 

Where 

C = Census total records, including imputed, duplicate, 
fictitious, etc. (the Census count), 

// = number of whole-person census imputations, 

CE = weighted estimate of appropriate, unique, complete 
and correct enumerations, 

N^= weighted £-sample estimate of total, including 
duplicate, fictitious, etc. 

Occasionally, due to processing errors or tinting 
constraints there may be a group of census enumerations 
that are excluded from both the ^-sample processing and 
from the searching and matching process. Thus, while these 
records may be processed in time to be included in the 
official census results, they arrived too late be included in 
coverage measurement processing. These cases are 
sometimes known as "Late Census Adds" (LCA). These 
cases can be handled analogously to die treatment of census 
whole person imputations, that is replace ( C - II ) in 
Equation 6 with (C- I I - LCA). Excluding the LCAs wiU 
not affect the DSE of the tme population if the number of 
matches is reduced proportionally to the number of census 
correct enumerations. Said another way, the assumption is 
that the probability of a LCA being excluded from the 
A.C.E. processing must be statistically independent of its 
inclusion probability in the A.C.E. This is, of course, the 
traditional dual system independence assumption. (See 
Hogan 2001 for the supporting theory.) Although there 
were 2.3 million LCAs in Census 2000, analysis of the 
A.C.E. results by RagUn (2002) showed a trivial impact on 
the final DSE results. 

In situations where the number of whole person 
imputations (II) was small, {CE IN^ -1) would be a 
measure of census gross overcoverage. That measure, 
however, is a function of the operational definitions of 
"correctiy enumerated" adopted by the coverage 
measurement design. Definitions adopted to produce a good 
measure of net coverage, especially with respect to 
completeness and geographic correctness, may differ from 
those most appropriate for studying the quality of Census 
field operations. In any case. Census 2000 included 5.8 
million whole-person imputations, of which 1.2 miUion 
were for housing units where the interviewer was unable to 
obtain even the number of residents (see Table 1 in Nash 
2001, and page U of Wetrogan and Cresce 2001.) 

4. MEASURING THE PROPORTION OF 
PEOPLE CORRECTLY ENUMERATED 

Having defined the set of correctiy enumerated people, 
the next step in the DSE is to estimate the census coverage 
rate, N^^IN^^. 

Conceptually, estimating the rate entails (I) taking a 
sample of people, (2) determining whether they should be 
enumerated in the census, and (3) determining whether they 
were, indeed, correctiy enumerated, using the same 
definitions as were used to measure N^y If an unbiased 
sample can be drawn of people who should have been 
enumerated and, if we can determine whether they actually 
were correctiy enumerated (included in the census), then the 
DSE will produce asymptotically unbiased estimates. If 
each step can be approximately correct, the results will 
approach an unbiased estimate. 

The first step in the process is, normally, to draw a 
random area sample. The A.C.E. uses the same set of block 
clusters for this purpose that it uses to define the £-sample. 

Interviewers then canvass the block and prepare an 
independent list of people who should have been 
enumerated. This list constitutes the population or 
P-sample. The (weighted) sum of the people on this list, 
denoted N , estimates Â , .̂ However, it is not the number 
which is of interest, but the ratio of Â ,, to Â , ̂ , which we 
approximate by the ratio of correct matches, M,toN. 

Operationally, the "correctiy enumerated" census records 
are searched to see if the P-sample people were 
enumerated. The (weighted) number who were matched 
(M) estimates A ,̂,. 

The DSE model will work if we can approximate: 

1. Operational independence 
2. Consistent reporting of residence 
3. Accurate matching 
4. Homogeneity within post-stratum 

4.1 Operational Independence 

Operational independence is the easiest assumption to 
approximate, but still requires vigilance. In Census 2000, 
the A.C.E. sample was drawn and the housing units listed 
before the delivery of the census questionnaires. Although 
personal contact was minimal, some people may react 
differentiy to the census because of their inclusion in survey 
listing. Early telephone interviews were allowed for 
independentiy listed housing units linked to a census 
address with a completed census questionnaire. This 
operation occurred while census nonresponse follow up was 
still being conducted in the area. Personal visit interviewing 
took place concurrently with some census "coverage 
improvement" interviewing. Clearly, some contamination 
could occur. Great care was taken to prevent the same field 
staff from working the same area in both Census and 
A.C.E. and to prevent the sharing of information. Still, 
some people may react differentiy to the survey because 
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they were enumerated, for example, by a very poUte or very 
surly enumerator. Others may believe that they have a duty 
to provide the information once, but not twice. 

Operational independence must also be preserved in 
office procedures. Definitions of "nonresponse" or 
"sufficient iiiformation" are sometimes applied differentiy 
to matched and non-matched P-sample records. The A.C.E. 
guarded against unnecessarily introducing operational 
dependence by forcing the processing system to first decide 
whether a case is acceptable for matching and only then 
attempt matching. The philosophy is "Do not attempt to 
find a match unless you would be satisfied that, if no match 
is found, the person was not enumerated!" 

Before beginning the matching, P-sample records first are 
reviewed for: 

(1) Appropriateness 
(2) Uniqueness 
(3) Completeness 
(4) Geographic correctness 

The A.C.E. contained no obviously fictitious records. 
One important safeguard is the use of Computer Assisted 
Personal Interviewing (CAPI). The CAPI instiiiment makes 
falsification difficult by "time stamping" the interview and 
recording every key stroke. We have instituted a quality 
assurance process to minimize other sloppy or dishonest 
A.C.E. interviewing. In addition, one important exception 
to the "no follow up" mle are cases where A.C.E. 
fabrication is possible, e.g., cases where no one in the 
household matches, implying possible fabrication. 

Out of scope records, e.g., group quarters, are screened 
out. Occasionally, survey duplicates occur and tUese are 
eliminated (uniqueness). Finally, if the survey interview 
does not meet minimal standards, the case is converted to 
nonresponse and is later imputed. 

4.2 Consistent Reporting of Residence 

To measure the number of people correctly in both 
systems, we must determine whether or not a F-sample 
person was correctiy enumerated in the census. This is done 
by searching the correct census records in the area where 
the person should have been enumerated. 

The same definition of geographic correctness must 
apply both to whether an enumeration (in the E-sample) 
was correct and to whether the person (in the P-sample) 
was correctly enumerated. Failure to make these concepts 
agree is termed "balancing error." 

Specifically, we must have the same definition of 
"correct" location and the same search area around the 
correct location. Errors can result in both erroneous non-
matches and erroneous matches. Difficulty comes primarily 
from two sources. First, both the P and £-sample accept 
proxy responses. Thus, even though the person might have 
a clear and consistent understanding of his usual residence, 
the proxy respondent may not. Secondly, the way in which 

the question is posed in each interview could lead to 
different responses even from the same person. This might 
result in false non-match/not correctiy enumerated status. 
On the other hand, if the person was incorrectiy included by 
the census, we could incorrectly count the person as 
"correctiy enumerated." Both errors clearly occuned on a 
relatively large scale in the A.C.E. (See section 6.) 

The other dimension of geographic correctness is, again, 
the extent of search. The same area must be used to define 
the correct residence for determining both whether an 
enumeration was correct and whether a person was 
correctly enumerated. This is achieved by consistently 
applying the same search area definitions as in section 3. 

4.3 Accurate Matching 

The purpose of matching is to determine whether a 
person interviewed in the P-sample was also enumerated in 
the census within the defined search area. Much of the 
matching is now done by a computerized matching system. 
The system produces matches, possible matches, and 
non-matched cases. Repeated tests have shown that cases 
matched by the computer are nearly certainly correctiy 
Unked (Belin 1993). Nearly all clerical matching is now 
computer-assisted and largely paperless. This new system 
makes searching easier, including duplicate seiirch. It 
restiicts the codes clerks can apply to only tiiose appropriate 
for the situation. The almost paperless system eliminated 
lost and misfiled A.C.E. questionnaires. 

The first-level clerks were backed up by a team of 46 
technicians. Training for these technicians began in 
September 1999. They were supported by a team of seven 
permanent analysts, most of whom have been matching for 
many years. Each level of matching acts as quality 
assurance for tUe level before. In addition, each level could 
refer problem cases to the next higher level. All matching 
was done in one location by one staff The 1980 and 1990 
matching operations were done in three and seven sites, 
respectively. 

The use of the A.C.E. procedures for movers also greatiy 
simplified the matching. Information about those who had 
moved was gathered from current residents. Under the 
procedures used in 1980 and 1990, movers were inter­
viewed at their residence at the time of the PES interview. 
It was necessary then to code the reported correct Census 
Day residence to the correct census geography before 
beginning matching. This procedure was difficult, 
especially in raral areas. Mover matching was never before 
automated. In A.C.E., all matching, including for movers, 
was done in the f-sample block cluster or an adjacent 
block, using the same computer and computer-assisted 
clerical matching system. The change in the treatment of 
movers is discussed below. 

4.4 The Role of After-Matching Reinterview 

Some cases are sent to the field to gather further 
information after the initial matching is complete. This 
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after-matching reinterview is often termed "follow up 
interview." 

The follow up interview process, like all PES activities, 
must fit into the overall framework of the DSE. 
Specifically, it must account for: 

1. Appropriate, unique and correct response 

2. Independence between census and survey inclusion 
probabilities 

3. Balancing P and ̂ -sample concepts 
4. Search area and unique location matching mles 
5. Treatment of missing data. 

Follow up is only useful if it provides more accurate or 
consistent responses. Simply obtaining a different response 
is not justification. Since follow up takes place further from 
the census reference date than tiie initial interview, it is 
more difficult to obtain accurate responses. This is equally 
tme for E-sample follow up and P-sample follow up. To 
provide better responses, follow up must use better 
resources, for example: (1) better respondents (household 
vs. proxy), (2) a better trained, supervised or quality-
controlled interviewer, or (3) better questions or interview 
procedures. 

The census data collection period extends from 
mid-March through mid-summer. Because of the huge scale 
of the operation, littie emphasis is placed on verifying that 
the people were residents of the household on April 1. 
Quality assurance reinterview to prevent fabrication is 
minimal. Because of better training and supervision, and 
more complete questioning, the A.C.E. follow up 
interviewing can, in general, obtain more accurate 
information on residence and location than that gathered 
during the census process itself Thus all non-matched 
E-sample cases were sent to follow up. 

Follow up can, however, compromise independence. If 
all cases were sent to follow up, independence would not 
necessarily be compromised. However, cases that are 
matched during initial matching are seldom sent to follow 
up. To do so would stress the resources available for follow 
up. Instead, only non-matches or "possibly matched" cases 
are usually selected for follow up. This can introduce 
operational dependence. 

The biases tiiat can be introduced by follow up can occur 
even if the foUow up interview was successfuUy conducted, 
since follow up may selectively change the defined "correct 
location" for non-matches but not for matches. If the foUow 
up operation results in a non-interview, further biases can 
be introduced depending upon the missing data models 
applied to these cases. 

Choosing cases for follow up requires balancing the need 
for accurate and consistent information with the need for 
independence. The P-sample only followed up cases when 
better information was likely. Cases sent to follow up 
included: 

1. Possible matches, since with the information at hand 
the interviewers can resolve the situation, 

2. IrUtial non-household proxy interviews that result in 
non-matches. Since we have not spoken to a 
household member, we have reason to doubt the 
accuracy, 

3. Non-matched cases where, for the same housing unU, 
the census reports one family and the A.C.E. reports 
another. In order to ensure consistent reporting of 
Census Day address between the P-sample and the 
S-sample, these cases are sent out together, 

4. Partial-household non-matches. 

Cases that match and some other non-matched cases 
were generally not sent to follow up. For example, the 
A.C.E. did not follow up whole-household nonmatched 
cases where the census missed the unit, reported it as 
vacant, or could not obtain an interview (last resort 
information only). 

4.5 Homogeneity Within Post-stratum 

The DSE requires that the capture probabilities be 
independent for all individuals within estimation domains 
called post-strata. This is approximated by making the 
post-strata as homogeneous as possible with respect to the 
census capture probabilities, and then striving for as 
uniform as possible inclusion probabilities for the survey. 

Dividing the population into many relatively small post-
strata can increase within strata homogeneity. However, 
small sti-ata can have high sampling variance and ratio bias. 
Ratio bias follows from the fact that the DSE is inherentiy 
a ratio estimator. This bias tends to decrease as the size of 
the post-stratum increases. In addition, our treatment of 
movers adds an additional ratio (see below). For this reason, 
we designed post-strata with a minimum expected sample 
size of 100. 

For the A.C.E. we post-stratified based on the following 
variables: 

1. Race / Hispanic Origin (7) 
2. Age / sex (7) 
3. Tenure (2) 
4. MetropoUtan area size and type of enumeration area 

(4) 
5. Return rates (2) 
6. Region (4) 

where the number in parenthesis refers to the number of 
categories. More details on the post-strata are found in 
Haines (2001). 

Coverage differences between racial and ethnic groups 
is well documented. (See for example Robinson, Ahmed, 
Das Gupta and Woodrow 1993; Hogan 1993.) Social, 
cultural, linguistic and economic differences may lead 
different racial and ethnic groups to react differentiy to the 
census procedures. 
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Demographic analysis and previous coverage surveys 
have demonstrated that people are differentially missed in 
different age groups and that tiie pattem is different for 
males and females. Most important in this pattem is young 
adults (Robinson etal. 1993.) 

The importance of tenure was first measured following 
the 1980 Census and then implemented in the 1990 
post-stratification. Those who live in owner-occupied 
houses are less mobile. They may feel that they have more 
of a stake in theU community and thus, are more influenced 
by the census outreach program. 

Metropolitan area size obviously affects housing patterns 
and is correlated witii tiie way the Census Bureau builds its 
address lists. The combined variable "metropolitan area size 
and type of enumeration area" isolates differences in 
housing unit coverage. It may, in addition, measure some 
aspects of social and economic isolation. 

The census return rate measures pubUc cooperation with 
the census, an important predictor of coverage. It also 
measures directiy the proportion of the enumeration that 
must be done in the census nonresponse follow up. One 
difficulty in this variable is that not all areas of the country 
are in the mailback universe. A small proportion is done by 
direct interview, and obviously have no "retum rate." We 
have chosen to group tiiese areas with "high" mail response 
areas. 

Census Region picks up, among other things, broad 
differences in settiement pattems and housing stock. 
"Brown stone walk ups" are more common in the 
Northeast. Mobile homes are more common in the South. 

Obviously, tiie complete cross-classifications can lead to 
very smaU ceUs. The maximum set of post-strata the sample 
was designed to support was 448. In fact, after collapsing 
small cells, there were 416 post-strata. 

4.6 Treatment of Movers 

People who move between the census reference date and 
the time of the survey interview present a challenge for 
designing a DSE for census application. First, people who 
move are more likely to be missed by the census and by the 
survey. Secondly, if a person has a different "usual 
residence" at the time of the survey than he did at the time 
of the census, one must decide where to sample him. 

In the 1990 PES, movers were sampled where they Uved 
at the time of the survey interview. We then searched the 
census records at, and only at, theU April 1 usual residence. 
This is known as procedure B (Marks 1979). This approach 
requires both coding the address to the correct Census Day 
geography and then matching. These activities are complex 
and time consuming. 

The A.C.E. used a different procedure known as proce­
dure C. The A.C.E. estimated the number of movers by the 
number of people who moved into the sample blocks 
between April I and the time of the A.C.E. interview 
(in-movers). If the population was closed to intemational 
migration, deaths, movement to group quarters, etc., then 

the number of people who moved in must equal the number 
who moved out (out-movers). They are the same people in 
the population, if not in tiie sample. It is normally easier to 
find people where they are, so the measured number of 
in-movers is normally a better estimate of the total number 
of movers than the measured number of out-movers. 

The proportion of movers who are correctly enumerated 
is estimated by matching the out-movers to the census 
records for the sample block and extended search area, if 
appropriate. The estimated number of correctiy enumerated 
movers is then M^ = {MJN^)N. where M denotes the 
weighted number of correct matches; N denotes the 
weighted population number; and the subscripts denote 
total movers (f), out-movers (o) and in-movers {i). 

If we denote those who do not move by the subscript n, 
the overall coverage rate becomes 

N. N,. + A'.. 

The effect of procedure C is to increase the effective 
capture probabilities in the survey for movers and thus 
increase homogeneity of inclusion in the survey with 
respect to mover status {i.e., mover/nonmover) (Griffin 
2000). 

There will be nonresponse and incomplete response at 
various steps. The goal of the missing data process is to 
improve the estimate of the number of people correctiy 
counted (from the ̂ -sample) or tiie estimate of tiie coverage 
ratio (from the P-sample). In designing missing data proce­
dures, we choose methods that support the underlying DSE 
assumptions. Starting with the 1990 PES, the U.S. has 
estimated the probabiUty a nonresponse record was correct 
rather than assigned a "zero/one" classification. (Schenker 
1988, BeUn 1993) The methods used for the A.C.E. are 
described in Cantwell and Ikeda (in this volume). 

5. SYNTHETIC ESTIMATION 

5.1 The Synthetic and Dual System Model 

To this point, we have been dealing with the actuiU DSE. 
However, as noted in section 2, we use a synthetic estimator 
to distiibute the measured net undercount to local areas and 
small groups. 

In the A.C.E. the carrying-down was based on the same 
post-stratification variables as tiie DSE itself The synthetic 
estimation is based on the assumptions that (1) the DSE 
estimates the tme population, and (2) witiiin post-strata, the 
tme population is distributed proportionally to the 
pre-adjustment census count. 

Clearly, at some level the second assumption can be only 
true with respect to the expected census counts. That is, 
even if within post-strata all people had identical 
probabiUties of being enumerated in the census, we would 
observe different outcomes across blocks. The underlying 



136 Hogan: The Accuracy and Coverage Evaluation: Theory and Design 

DSE explicitly models the undercount as a stochastic 
process. 

As areas get larger, two things happen. First, the 
stochastic effect, or the random "block effect" begins to 
average out. Secondly, the effect of the actual undercount 
from a collection of blocks becomes positively correlated 
with the post-stratum's coverage correction factor. That is, 
the larger the area, the more the area's undercount 
determines the net correction factor. 

The stochastic effect would be tiivial for all but the 
smallest areas if Wolter's (1986) autonomous independence 
assumption held in practice, that is, if each person was 
included or missed independentiy of all other people. In 
fact, it is well known whole families are often missed or 
dupUcated. Indeed, tiie whole building (or sometimes even 
block) might be missed or duplicated by the census address 
listing procedure. The failure of the autonomous inde­
pendence assumption does not cause a bias in the dual 
system model as long as the underlying probabilities are 
equal within post-strata. This failure can mean that 
observed coverage for a block is inconsistent with the esti­
mated undercount adjustment. However, as attention is 
turned to larger areas, the stochastic effect diminishes and 
is replaced with the problem of tme heterogeneity of the 
underlying capture probabilities (see Haines 2001 for 
synthetic estimation details.) 

5.2 Misclassification Error 

In the discussion so far, we have accepted the post-
sti-atum classification,;, as fixed. In practice, some people 
will be classified in different post-strata in the census and 
in the survey. For example, a woman may be reported as 
age 28 in tiie census and 31 in the survey, placing her in 
different post-sti-ata. 

Such misreporting is normally not important for 
matching. Name, address, month and day of birth, relation 
and household composition are far more important than 
age, race or sometimes even sex. So, assuming a match, in 
the above example we would have one correctly 
enumerated 28 year-old in the fi-sample and one correctiy 
enumerated 31 year-old in the P-sample. Misclassification 
can be seen to have two effects. To the extent the tme 
undercount probabilities are homogeneous with respect to 
the tme characteristics, misclassification introduces hetero­
geneity (and heterogeneity bias) into the observed esti­
mation cells. This is tme even if reporting is consistent 
between the census and the survey, because it can introduce 
unobserved subgroups within post-strata where the 
probabilities of inclusion in each system are correlated. 

Inconsistent reporting between the census and the survey 
poses a problem for the synthetic estimator as well as for 
the DSE. This is easily seen by ignoring census imputations 
and erroneous enumerations. In this case, the coverage 
correction factor is the inverse of the matching rate 
{N^^.IN^^.) where j represents the post-stratum. If the 
classification into the post-strata is inconsistent between the 

census and survey, we would be applying the rate, esti­
mated from one group, to a somewhat different group. 
While misclassification may be ignorable at the poststratum 
level, it may be important locally. The A.C.E. protected 
itself against the general problem by avoiding, when 
possible, post-stratum definitions based on variables with 
high reporting variability. 

6. FAILURE OF THE A.C.E. DESIGN AND 
CONCLUDING REMARKS 

In spite of being seemingly well designed and well 
executed, the A.C.E. failed to even approximately measure 
the coverage error in the 2000 U.S. Census. The chief 
reason seems to have been a failure of the assumption of 
consistent reporting of Census Day residence. In other 
words, depending upon when and where and with whom 
the interview was conducted two or more residences were 
reported as the correct one for a large number of people in 
sample. 

We know that this happened because, after the both the 
census and the A.C.E. were completed, we were able to 
search and match nationally. This allowed us to search for 
census dupUcates, even when the pair was miles apart. This 
was possible because, for the first time, practically all 
names in tiie census were data captured. (See Fay 2002; 
Mule 2001, 2002.) We could see, for example, how many 
of the people who were classified by the A.C.E. £-sample 
as "correctiy enumerated" were also enumerated 
somewhere else, including at an other household or in a 
group quarters. 

In one study, of the 1.3 million (weighted) E-sample 
people Unked to a dupUcate census enumeration outside the 
search area, only 14 percent were coded as erroneous 
enumerations by the A.C.E. (Feldpausch 2001, Table I.) 
Since tiie A.C.E. f-sample was a random sample, one 
would expect that for any pair of duplicates it would pick 
up the erroneous enumeration roughly half the time. 

Another 521 thousand i?-sample cases (weighted) were 
linked to census enumerations in group quarters. Of these, 
only 31 percent were classified as erroneous by the A.C.E. 
(Feldpausch 2001, Table 3.) Roughly half, 271 tiiousand, of 
tiiese linked ^-sample cases were Unked to an enumeration 
in a college dormitory. Under census residence mles, those 
living in a dormitory should be counted there, and not at 
home. However, the A.C.E. classified only 45 percent of 
these £-sample cases as erroneous enumerations. Since the 
proportions coded as correctly enumerated by the A.C.E. 
are significanfly different from what would be reasonable, 
one must conclude that the A.C.E. had a strong tendency to 
misclassify enumeration status. Interestingly, many of these 
misclassified cases, the exact number is hard to determine, 
must have been A.C.E. matches. This is certainly due to the 
tendency of respondents to confirm people as living at an 
address who should be counted as living somewhere else. 
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We now have clear evidence that large number of 
parents of college students living in dormitories will 
consistentiy report theU child as Uving at home even though 
census instmctions clearly say not to. Further, both parents 
in a "joint custody" situation may consistentiy report the 
child as living in each of two households. Neighbors, no 
doubt, will report someone as "living there" who is in fact 
away at college, in the military, in jail, or at a second home. 
This misreporting occurred in spite of the numerous, 
detailed and specific probing questions about ususal 
residence asked by the A.C.E. 

The extended search for census duplicates discussed 
above formed the principal evidence for A.C.E. error. 
However, other evidence was also gathered, including a 
re-interview study. These evaluations are discussed in detail 
in the Census Bureau's "Executive Steering Committee on 
A.C.E. Policy" (ESCAP) documentation. (See ESCAP I 
2001, ESCAPII2001). 

The results of these evaluations is that the A.C.E. failed 
to correctiy identify 4.7 million erroneous enumerations 
(U.S. Census Bureau 2003, page iv). In addition, it probably 
mis-identified tiie residences of large numbers of people in 
the P-sample, leading to both false matches and false 
non-matches. An extensive program by the Census Bureau 
of analysis and estimation produced the 1.3 million 
overcount estimate cited above. However, this program was 
uniquely tailored to the special circumstances of the 2000 
post-census rematching, reinterviewing and duplicate 
search. Those interested are dUected to U.S. Census Bureau 
(2003). 

This paper has described the theory of the DSE, and has 
discussed how PES in general, and A.C.E. in particular, 
have implemented that theory. It has described the 
approximations necessary in real applications and the types 
of errors that can occur. 

It discussed how carefully each of tiiese approximations 
must be controlled. Obviously, the A.C.E did not success­
fully measure the large number of duplicates in the 2000 
Census. Failure of even extensive probing questions to elicit 
accurate reports of ususal residence was the principal cause. 
However, the theory and design developed here should be 
of value in any future coverage measurement program. 
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Handling Missing Data in the 2000 Accuracy and 
Coverage Evaluation Survey 

PATRICK J. CANTWELL and MICHAEL IKEDA* 

ABSTRACT 

The Accuracy and Coverage Evaluation survey was conducted to estimate the coverage in the 2000 U.S. Census. After field 
procedures were completed, several types of missing data had to be addressed to apply dual-system estimation. Some 
housing units were not interviewed. Two noninterview adjustments were devised from the same set of interviews, one for 
each of two points in time. In addition, the resident, match, or enumeration status of some respondents was not determined. 
Methods applied in the past were replaced to accommodate a tighter schedule to compute and verify the estimates. This 
paper presents the extent of missing data in the survey, describes the procedures applied, comparing them to past and current 
alternatives, and provides analytical summaries of the procedures, including comparisons of dual-system estimates of 
population under alternatives. Because the resulting levels of missing data were low, it appears that alternative procedures 
would not have affected the results substantially. However some changes in the estimates are noted. 

KEY WORDS: Cell Imputation; Noninterview Adjustment; Logistic Regression; Dual-System Estimation. 

1. INTRODUCTION 

Following the 2000 Census in the United States, the 
Census Bureau conducted the Accuracy and Coverage 
Evaluation (A.C.E.) survey. The survey had two goals: (1) 
to measure the level of net undercoverage across the nation 
and in various demographic and geographic domains 
through a statistical technique called dual-system estima­
tion, and (2) to produce revised population counts that 
could be used to adjust for this net undercoverage - if the 
adjusted numbers were deemed to be more accurate than the 
initial census counts (Hogan 2003). 

In the process of interviewing and following up 
respondents in the A.C.E., some households were missed, 
and certain information needed to calculate the dual-system 
estimates was not collected from other sample respondents. 
This paper describes the levels of missing data, discusses 
the procedures used to address the problem in the A.C.E., 
and provides some results and evaluations. It should be 
noted that the term "missing data" applies after all follow-
up attempts were made in the field. These activities 
included multiple attempts at interviews, the use of highly 
trained clerks and technicians to resolve cases, and the 
foUow-up of cases where a second interview could provide 
additional required information. 

The A.C.E. realized three main types of missing data. 
First, some households were not interviewed because they 
could not be contacted or the interview was refused. What 
makes the situation different in the A.C.E. is that to each 
sample housing unit, two noninterview adjustments were 
applied; one corrected for noninterviews on Census Day, 
while the other corrected for noninterviews on tiie day of 
the A.C.E. interview. As will be shown, the need for two 
adjustments reflects the different ways that out-movers and 
in-movers were treated in the dual-system estimation. 

The second type of missing data occurred when infor­
mation for a household or person was available but specific 
demographic characteristics needed for dual-system esti­
mation were not collected. For missing tenure (owner vs. 
non-owner), race, and Hispanic origin, a form of nearest-
neighbor hot-deck imputation was used to take advantage 
of the correlations often found among people Uving in 
geographic proximity. In general, the values of age and sex 
are geographically less clustered, but often well predicted 
by specific conditions, such as the person's relationship 
{e.g., spouse, child) to the household's reference person, or 
whether information is available on the person's spouse. 
Therefore, national donor distributions conditioned on 
relevant covariates were used to impute for age and sex. 
Because characteristic imputation for the A.C.E. was 
similar to that done in the Post-Enumeration Survey 
following the 1990 Census, tiie methods and results are not 
discussed further in this paper. 

The third type also involved item missing data. For a 
small number of people in the A.C.E., not enough informa­
tion was collected to determine tiie resident status (whether 
or not the person was living in the sampled block cluster on 
Census Day) or the match status (whether or not the person 
actually matched to someone in the census). Similarly, 
some people counted in the census lacked sufficient infor­
mation to determine whether they were correctiy enumer­
ated. The status in such cases is said to be "unresolved." 
Yet this information is required to compute dual-system 
estimates. To resolve such cases, a probability of resident 
(or match or correct enumeration) was assigned as the 
average weighted value from a set of resolved cases with 
similar characteristics. 

Some of these procedures - described in greater detail 
below - were applied in similar forms in the 1990 Post-
Enumeration Survey, as well as in tests conducted during 
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the 1990s. The main exception is the assignment of a proba­
bility in tiie case of unresolved resident, match, or enumer­
ation status. In the Post-Enumeration Survey and at times 
for specific tests in the 1990s, these probabilities were 
computed using a logistic regression model. The method 
appUed in the 2000 A.C.E. used less information than some 
alternatives such as logistic regression, but was simpler to 
implement and verify in the tight A.C.E. schedule. 

The levels of missing data in the A.C.E. were relatively 
low, which helped to reduce the potential for additional 
error in the estimates. 

- The household noninterview rates were 3.0% and 
1.1% (unweighted), respectively, on Census Day and 
Interview Day. 

- The imputation rates for the five A.C.E. character­
istics required for dual-system estimation ranged 
from 1.4% to 2.5% (unweighted and weighted). 

- Among people in the A.C.E., tiie rates of unresolved 
resident and match status were 2.3% and 1.2% 
(unweighted), respectively; among census enumer­
ations, only 3.0% (2.6% weighted) of tiie sample had 
unresolved enumeration status. 

When assigning probabilities for unresolved status, the 
success of the variables used to define imputation ceUs was 
mixed. Variables that used information related to an 
individual's processing in the survey operations discrimi­
nated well among cells. However, variables describing the 
person's demographic characteristics appear to have been 
generally less successful. 

Section 2 contains background information about the 
A.C.E. and dual-system estimation. The A.C.E. non-
interview adjustment is discussed in section 3. For persons 
with unresolved resident, match, or enumeration status, a 
probabiUty was assigned according to procedures described 
in section 4. Section 5 examines the effect of some 
alternatives to the A.C.E. missing data procedures on the 
dual-system estimates of the population. Finally, a few 
observations are recounted in section 6. For a detailed 
description of tiie missing data procedures for the 2000 
A.C.E., see Cantwell (2001). Summaries of missing data 
can be found in CantweU et al. (2001). 

In what foUows, unweighted frequencies and proportions 
are generally given. Unless noted otherwise, the weighted 
numbers are very close. However, the probabilities assigned 
to unresolved cases in Tables 4, 5, and 6 are the actual 
weighted ones used in the estimation. 

2. A BRIEF ACCOUNT OF THE SURVEY AND 
DUAL-SYSTEM ESTIMATION 

Through the Accuracy and Coverage Evaluation 
(A.C.E.), the Census Bureau attempted to measure and 
adjust for the historical differential net undercount observed 

in the U.S. Census (Anderson and Fienberg 1999, page 29). 
Like the 2000 Census, the A.C.E. covered the entire nation. 
(A separate sample and analysis were conducted for Puerto 
Rico.) A sample of about 300,000 housing units in 11,303 
block clusters was selected (Fenstermaker 2000, Childers 
2000). 

To estimate coverage of the population, the A.C.E. relied 
on dual-system estimation, a method based on capture-
recapture metiiodology (Peterson 1896, Sekar and Deming 
1949). Suppose one considers only those housing units 
contained in the sample of block clusters selected for the 
A.C.E. After the census enumeration - but without using 
any information collected in the census - the Census 
Bureau independently interviewed people in the A.C.E 
sample and obtained a roster of people living in the units on 
Census Day, April 1, 2000. These results were then 
matched to (compared with) the census enumeration in 
those block clusters to estimate how many people were 
missed. Within the sample block clusters, the units 
enumerated independentiy in the A.C.E. were defined as tiie 
P-Sample, and those enumerated in the census as the 
£-Sample. 

In the same sample of block clusters, comparisons and 
analyses were made to estimate the proportion of census 
enumerations tiiat were correct, that is, complete, unique, 
and recorded in the proper location. Erroneous enume­
rations include people who are duplicated or fictitious, or 
should not be counted at that address, for example, because 
their usual residence was elsewhere, such as in a college 
dormitory. The resulting dual-system estimator is 

N = {C-I)p^ 1 

^ m a t c h J 
(1) 

where C is the official census count, including imputed 
persons and erroneous enumerations; / is the number of 
whole-person imputations; p^^ is tiie weighted estimate of 
the proportion of correct enumerations in the census; and 
m̂atch ^̂  ^^^ weighted estimate of the proportion of 

P-Sample people who match to someone enumerated in the 
census. People are imputed, for example, when a census 
enumerator confirms that a certain number of people live at 
an eligible address, but sufficient additional information 
cannot be gathered. The actual number of whole-person 
imputations is known and can be removed from C in the 
estimate. 

Dual-system estimates were calculated separately within 
population subgroups called post-strata. Post-stiatum esti­
mates were then used to determine adjustment factors to be 
applied to all people counted in the census according to 
their specific post-stratum. Finally, adjusted counts for any 
geographic area were calculated by summing the adjusted 
counts across post-strata in the area. For more detailed 
information on A.C.E. field operations and dual-system 
estimation in general, see Childers (2000) and Hogan 
(1993, 2003), respectively. 
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3. NONINTERVIEW ADJUSTMENT 

Noninterview adjustment was performed only on the 
P-Sample; in the census (and, thus, in the f-Sample), 
people in all known housing units were accounted for 
through a variety of procedures. The small number of 
housing units whose information was collected by a proxy 
respondent, often a neighbor or building manager, were 
treated as valid interviews and are not the subject of the 
noninterview adjustment. Because people moved in and out 
of housing units between Census Day and the time of the 
A.C.E. interview, the Census Bureau had to consider the 
mover status - out-mover, in-mover, or non-mover - of all 
people in the P-Sample, as well as the interview situation at 
the two different moments. Out-movers were living in the 
housing unit in question on Census Day, but had moved out 
before Interview Day. The situation was reversed for in-
movers. Non-movers Uved in the unit on both days. At the 
time of the A.C.E. interview, in one interview questions 
were asked to determine who lived in the household on 
Interview Day and who lived there on Census Day. Mover 
status was assigned to each person in the sample, and two 
rosters were created for each household - the Census Day 
roster and the Interview Day roster. 

The A.C.E. used in-movers to estimate the number of 
P-Sample movers, while using out-movers to estimate the 
match rate of the movers. The weighted P-Sample total, 
that is, the denominator of p^^^^^^ in equation (2), is 
estimated as the weighted total of all non-movers and in-
movers. Yet the weighted number of P-Sample matches is 
estimated by adding the number of matches among non-
movers to the product of the number of in-movers and tiie 
match rate for out-movers: 

M +N. X 
nm — 

M„ 

/V„ (2) 
match 

N +N. 
nm w 

where Â  (people) and M (matches) are indexed by nm, im, 
and om, representing non-movers, in-movers, and out-
movers, respectively. All in-movers and non-movers were 
generally assumed to be A.C.E. Interview Day residents. 
(People Uving in group quarters, such as college students in 
dormitories, were not eligible for the P-Sample.) 

The mover procedure used in the A.C.E. differed from 
that used in die 1990 Post-Enumeration Survey. In 1990 in-
movers were used to estimate the number of movers and 
their match rate. For the latter, the in-movers had to be 
matched back to their address on Census Day. That 
procedure was changed for the census tests conducted 
during the 1990's to accommodate the planned use of 
sampling for census nonrespondents. When the U.S. 
Supreme Court mled against the sampling plan in 1999 
{Department of Commerce v. United States House of 
Representatives, 525 U.S. 316, 1999), U was thought tiiat 

changing the mover procedure again so late before the 
census would introduce unacceptable risks. 

Due to the mover procedure described above, each 
housing unit had two interview statuses - one based on the 
housing unit's situation as of Census Day, and the other 
based on the day of the A.C.E. interview. A unit that was 
vacant, removed from the list of eligible housing units 
(because, for example, it was demolished or used only as a 
business), or in certain special places was not considered an 
interview or a noninterview. Table 1 provides a fictional but 
illusttative block cluster. It demonstrates how the status of 
a housing unit on Census Day and Interview Day would 
have been determined. 

Results of the A.C.E. interviewing operation are shown 
in Table 2. Of the 261,969 housing units occupied on 
Census Day, 7,794 (3.0 percent) were noninterviews. The 
corresponding numbers for Interview Day were 267,155 
and 3,052 (1.1 percent). 

As different interview statuses were possible for a 
housing unit on Census Day and Interview Day, different 
noninterview adjustments were required for each day. Each 
of the two adjustments generally spread the weights of 
noninterviewed units over interviewed units in the same 
noninterview ceU: the sample block cluster crossed witii the 
type of basic address, defined as single-family, multi-unit 
(such as apartments and condominiums), or all others. 
Other characteristics, known for all housing units, could 
have been used to define the cells. However, the cells were 
defined to take advantage of the typical local homogeneity, 
and of tiie fact tiiat people living in, for example, 
apartments share many of the characteristics - household 
size, propensity to move, etc. - that are related to capture 
probabilities in the census. 

The noninterview adjustment based on the Census Day 
status of housing units was used to adjust tiie person 
weights of non-movers and out-movers. Similarly, the 
Interview Day noninterview adjustment was used to adjust 
the person weights of in-movers. Within a noninterview 
cell, the adjustment factor for Census Day was computed as 
the weighted sum of interviews and noninterviews for 
Census Day divided by the weighted sum of interviews for 
Census Day. A housing unit's weight was the inverse of the 
final selection probability of its block cluster into the 
A.C.E. sample. (These weights were trimmed in a very 
small number of clusters.) 

The noninterview adjustment factor for Interview Day 
was computed as above, but with its status - interview, 
noninterview, vacant, or delete - being considered for 
Interview Day rather than for Census Day. The example in 
Table I demonstrates the calculation of the noninterview 
adjustment for the fictional block cluster. Because the non-
interview rates were so small, the noninterview adjustment 
factors were close to I for most housing units in the sample. 
For Census Day, the factors were less than 1.10 for more 
than 92% of the units; for Interview Day, the factors were 
less than 1.10 for over 98% of the units. 
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Table 1 
An Example of Adjustment for Noninterviews 

Consider a block cluster with nine housing units, all having the same type of basic address, for example, 
all single family homes, as depicted below 

Housing 
Unit 

1 

2 

3 

4 

5 

6 

7 

Weight 

100 

100 

100 

100 

100 

100 

100 

Actual Situation Status of (and Information from) Census Day A.C.E. Interview 
A.C.E. Interview Status Day Status 

100 

100 

Resident on 4/1/00 and at time of 
A.C.E. interview 

Resident on 4/1 and at time of 
A.C.E. interview 

Resident on 4/1 and at time of 
A.C.E. interview 

Vacant on 4/1, resident at time of 
A.C.E. interview 

Vacant on 4/1, resident at time of 
A.C.E. interview 

Vacant on 4/1, resident at time of 
A.C.E. interview 

Resident on 4/1, vacant at time of 
A.C.E. interview 

Resident on 4/1, vacant at time of 
A.C.E. interview 

Resident on 4/1, different resident 
at time of A.C.E. interview 

Interviewed in A.C.E. 

Neighbor (proxy) interviewed in 
A.C.E. 

No one interviewed in A.C.E. 

Interviewed in A.C.E., knows of 4/1 
status 

Interviewed in A.C.E., no knowledge 
of 4/1 status 

No one interviewed in A.C.E. 

Information obtained from proxy 

No info on 4/1 status; Census staff 
determines vacant at time of A.C.E. 

Interviewed in A.C.E., knows of 
4/1 status 

Interview 

Interview 

Noninterview 

Vacant 

Noninterview 

Noninterview 

Interview 

Noninterview 

Interview 

Interview 

Interview 

Noninterview 

Interview 

Interview 

Noninterview 

Vacant 

Vacant 

Interview 

In this noninterview cell (sample block cluster x type of basic address), people in interviewed housing units would have received the 
following noninterview adjustments: 

(1) to the person weights of non-movers and out-movers, the Census Day noninterview adjustment = 800 / 

(2) to the person weights of in-movers, the A.C.E. Interview Day noninterview adjustment = 700/500 = 

)/400 = 2.0 

1.4 

Table 2 
Status of Household Interviews in the A.C.E. (Unweighted) 

Census Day 

Number Percent 

A.C.E. Interview 
Day 

Number Percent 

Total Housing Units 

Interviews 

Noninterviews 

Vacant Units 

Deleted Units 

Noninterview rate' 

300,913 

254,175 

7,794 

28,472 

10,472 

3.0% 

100.0 

84.5 

2.6 

9.5 

3.5 

300,913 

264,103 

3,052 

29,662 

4,096 

1.1% 

100.0 

87.8 

1.0 

9.9 

1.4 

' Noninterview rate = Noninterviews / (Interviews + Noninterviews) 

When the unweighted number of noninterviewed units 
in a given noninterview cell was more than twice the 
unweighted number of interviewed units, the weights of the 
noninterviewed units in this cell were spread over the 
interviewed units in a broader set of noninterview cells. 
This remedy was needed for only 65 cells for the Census 
Day adjustment, and 13 cells for the Interview Day 
adjustment. The prescribed procedure differs from the usual 
collapsing of sparse cells, but allowed us to address such 
cells in a simple automated fashion. This capability was 
important under a very tight schedule when it was 
impossible to predict which cells would have too few 

interviews. For evaluation purposes, the housing-unit 
weights were later re-computed under a collapsing scheme, 
and compared to the weights as determined in the A.C.E. 
Again, due to the low rates of noninterview, the weights 
were the same for most units, and close for the rest. The 
effect on the resulting dual-system estimates is shown in 
section 5.2. 

4. ASSIGNING PROBABILITIES FOR 
UNRESOLVED CASES 

After all A.C.E. follow-up activities were completed, 
there remained a small fraction of the A.C.E. sample 
without enough information to compute the components of 
the dual-system estimator given in equation (I). Their status 
was said to be "unresolved." 

4.1 Unresolved Cases and Their Frequencies 
One component of the dual-system estimator in equation 

(I) is Pn,a,(,|,, the estimated proportion of the P-Sample who 
match to someone enumerated in the census. In (2) for 
Pmatch' w*̂ "̂ estimating flie number of people (Â „„, N„J or 
matches {M , M ) among non-movers and out-movers, 
only Census Day residents of the sample block clusters 
were considered; someone who usually lives in a nursing 
home, for example, was omitted from the computation. 
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Thus, for each person in the P-Sample, determining resident 
status and match status was required. 

After foUow-up operations were completed, aU people in 
the P-Sample who were eUgible to be matched to the census 
were classified into three types according to their status as 
a resident in their sampled block on Census Day: residents, 
nonresidents, and unresolved persons - those for whom 
there was not enough information to determine the resident 
status. Further, each confirmed or possible (unresolved) 
Census Day resident in the P-Sample was determined to be 
a match, a nonmatch, or unresolved match. The match 
status for confirmed Census Day nonresidents, such as in-
movers, was not used in the estimation. The estimator in (1) 
also requires an estimate of the proportion of correct 
enumerations in the census, p^^. After whole-person 
imputations were removed from the £-Sample, each 
remaining person had one of three types of enumeration 
status: correct, erroneous, or unresolved. 

Table 3 summarizes the frequencies of resident and 
match status in the P-Sample, and enumeration status in the 
E-Sample. The table also shows results for non-movers and 
out-movers in the P-Sample. One can see that the extent of 
unresolved cases is quite small: 2.3% for resident status, 
1.2% for match status, and 3.0% for enumeration status. 
(The weighted rates are 2.2%, 1.2%, and 2.6%, respec­
tively.) In the 1990 Post-Enumeration Survey, the rate of 
unresolved matches was 1.9%, and unresolved enumer­
ations was 2.4%. (Resident status was not defined in a 
manner comparable to 2000.) Care must be taken, however, 
as the definitions of the several statuses were slightly 
different in 1990. 

4.2 Assigning Probabilities to Unresolved Cases 

In the A.C.E., a form of cell imputation was used to 
assign probabilities for sample cases with unresolved 
resident, match, or enumeration status. All people in the 
sample - resolved and unresolved - were placed into 
groups called imputation cells based on operational and 
demographic characteristics. Different variables were used 
to define cells for each type of status. Within each 
imputation cell the weighted average of I's and O's 
(representing, e.g., match and non-match, respectively) 
among the resolved cases was calculated, and that average 
was imputed for all unresolved persons in the cell. More 
details are provided below. 

In the 1990 Post-Enumeration Survey, hierarchical 
logistic regression was used to calculate probabilities of 
match and correct enumeration for cases with missing 
information. (Due to the procedure used to treat movers in 
1990, resident status played a different role then.) The 
model and some results are discussed in Belin et al. (1993). 

During the 1990s, the Census Bureau originally planned 
to produce in 2000 adjusted census estimates for each of the 
50 states (and the District of Columbia) using data collected 
only from that state. This approach affected the strategy for 
treating unresolved status in two ways. First, within each 
state, there would be far fewer data - resolved cases - on 
which to build a logistic regression model. Second, there 
would be 153 different models to examine and verify, 
separate models for resident, match, and enumeration status 
in each state. Because the production schedule for the 
A.C.E. provided only about three weeks for addressing all 

Table 3 
Final Status Frequencies for the P and E-Samples (Unweighted) 

f-Sample 

U.S. Total 

Mover status 

Non-mover 

Out-mover 

P-Sample 

U.S. Total 

Mover status 

Non-mover 

Out-mover 

£-Sample 

U.S. Total 

Total people' 

653,337 

627,992 

25,345 

Total people^ 

640,945 

617,490 

23,455 

Total people 

704,602 

Confirmed 
resident 

95.8% 

96.6% 

75.2% 

Match 

90.3% 

91.1% 

67.8% 

Correct 
enumeration 

92.6% 

Final resident status 

Confirmed 
nonresident 

1.9% 

1.7% 

7.5% 

Final match status 

Nonmatch 

8.5% 

8.0% 

21.7% 

Final enumeration status 

Erroneous 
enumeration 

4.4% 

Unresolved 
resident 

2.3% 

1.7% 

17.4% 

Unresolved 
match 

1.2% 

0.9% 

10.5% 

Unresolved 
enumeration 

3.0% 

Resident rate for 
resolved cases 

98.1% 

98.3% 

91.0% 

Match rate for 
resolved cases 

91.4% 

91.9% 

75.8% 

Correct 
enumeration rate 
for resolved cases 

95.5% 

' Those in the /"-Sample eligible to be matched to the census. 
^ Confirmed or possible residents in the P-Sample. 
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aspects of missing data, it was believed that a procedure to 
handle unresolved status that was simpler to implement and 
verify would reduce the risk of not completing the dual-
system estimates under the imposed deadline. Cell impu­
tation provided the desired simplicity, but its accuracy 
relative to that under logistic regression modeUng had to be 
evaluated in subsequent testing. 

During census tests in 1995 and 1996, certain types of 
unresolved status were addressed using logistic regression, 
while cell imputation was used for other types. The latter 
procedure was used exclusively in tiie Census Dress 
Rehearsal in 1998 (Ikeda, Kearney and Petroni 1998), when 
the Census Bureau was still preparing to produce estimates 
independentiy witUin each state. Data from these tests 
indicated tiiat the exact method of calculating probabilities 
for unresolved status (match, resident, or correct enumer­
ation) had only a minor effect on the dual-system estimates. 
Details of this research can be found in Petroni (1997, 
1998a, 1998b, and 1998c). 

With the decision by the U.S. Supreme Court in 1999 
{Dept. of Commerce v. U.S. House of Representatives), the 
Census Bureau changed the design of the survey and 
removed the restinction that adjusted estimates be based 
solely on data from within each state. However, there 
remained concerns about implementing a logistic regression 
approach that had not been tested in the Dress Rehearsal. 
Further, there was no guarantee tiiat available software 
would adequately mn logistic models on data sets the size 
of tiie entUe A.C.E. sample (between 640,000 and 750,000 
people). Based on these concerns and research findings on 
relative accuracy, a decision was made to use the simpler 
procedure, cell imputation, to resolve missing status in the 
A.C.E. 

To demonstrate how cell imputation was applied in the 
A.C.E., one can look at resident status; the method was 

appUed analogously to match and enumeration status. First, 
all non-movers and out-movers in the P Sample were 
placed into a number of imputation cells according to 
operational and demographic characteristics, as defined in 
Table 4; in-movers were left out, as their Census Day 
resident probability was 0 by definition. Among the 
resolved cases in cell /, denoted by the set R{i), an indicator 
variable for resident status was defined as 1 ,,,j = 1, if person 
j was a resident in the household on Census Day, or 0, 
otherwise. Then within cell /, the weighted proportion of 
Census Day residents, was computed: 

P{res). _ jeRji) 
w. 1 

J res.j 

W, 
(3) 

jeR(.i) 

where Wj is the weight of person j incorporating all stages 
of sampling. P{res)i was then assigned to each unresolved 
person in ceU /, that is, each of the 15,082 people (2.3% of 
653,337) witii unresolved resident status. (The exception is 
for match code group 7, as explained below.) Table 4 
provides the resident probabiUties assigned within the cells. 
This assignment defines for all cases - resolved and 
unresolved - an "extended" indicator, allowing values 
between 0 and 1: 

1' . 
res.j 

I ., if / e R{i) 

F(res)., otherwise 
(4) 

The estimated numbers of non-movers and out-movers 
in tiie P-Sample in (2), N^^ and Â ^̂ , respectively, are then 
computed by attaching the person weight and summing the 
indicator l',^^ over the non-movers and out-movers, 
respectively, in all cells. The number of matches, M„„, or 

Table 4 
Imputation Cells for Resolving Resident Status in the P-Sample 

P Sample 
Match Code Group 

Owner 

Nonhispanic White Others 

Non-Owner 

NonhispanicWhite Others 

1. Matches needing follow-up 

2. Possible matches 

3a. Partial household nonmatches needing 
follow-up; aged 18-29, child of reference person 

3b. Partial household nonmatches needing 
follow-up; others not in 3a 

4. Whole household nonmatches needing 
follow-up, not conflicting households 

5. Nonmatches from conflicting households 

6. Resolved before follow-up 

7. Insufficient information for matching 
(Weighted column average of groups 1-5 and 8) 

8. Potentially fictitious or said to be living 
elsewhere on Census Day 

0.982 

0.973 

0.755 

0.956 

0.986 

0.968 

0.901 

0.971 

0.993 

0.966 

0.883 

0.959 

0.991 

0.972 

0.928 

0.969 

0.920 0.943 0.911 0.914 

0.910 

0.993 

0.813 

0.119 

0.927 

0.990 

0.867 

0.123 

0.945 

0.990 

0.844 

0.177 

0.954 

0.988 

0.872 

0.157 
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M„„„ and thus, p„j„ch' ^^ determined analogously, as is p^^, 
in the case of enumeration status. 

In the Census Dress Rehearsal of 1998, cell imputation 
for unresolved resident probabiUty was used with only three 
cells: persons sent to follow-up, persons not needing 
follow-up, and persons with insufficient information for 
matching. For the third cell, which contained no resolved 
cases, a proportion based on all resolved cases in the first 
two cells was assigned. Results from the Dress Rehearsal 
(Keamey and Ikeda 1999) suggested that dividing the 
P-Sample into the various match code groups would be 
helpful. Further research and discussion suggested adding 
other demographic variables within match code group. The 
larger A.C.E. sample size in 2000 made it possible to 
support a larger set of imputation cells. 

For the A.C.E. in 2000, match code groups 1 through 7 
were determined from the match codes and other variables 
derived before the follow-up operation, as explained in 
Childers (2000). Group 8 was formed differentiy. Some 
information from the foUow-up operation was coded in time 
for the A.C.E. missing data procedures. (Under the original 
schedule, this information would have become available too 
late to be of use.) After the follow-up operation, a small 
number of people in the P-Sample were coded as being 
potentially fictitious or said to be living elsewhere on 
Census Day. Among the resolved cases in this group, the 
probability of being a resident was much lower than for 
resolved people in other groups. Thus, people satisfying the 
conditions for group 8 were placed there first, and each of 
the remaining people was placed appropriately in one of the 
first seven groups. 

Two tenure categories were used: owners and non-
owners. Persons were also placed into one of two race-
ethnicity categories: Nonhispanic white, and all others. 
People of multiple races (for example, a person responding 
as White and Asian) were placed in the latter group. Match 
code group 3, partial household nonmatches, was split into 
two subgroups. The first, 3a, included persons in group 3 
who were 18 to 29 years of age and were listed on the 
A.C.E. household roster as a child of the reference person. 
These were young people many of whom were attending 
college, sharing residence with colleagues, or moving in 
and out of their parents' residence. Classification and 
regression tree analysis, applied to data from tUe Census 
Dress Rehearsal of 1998, suggested that this combination of 
characteristics would discriminate well with respect to 
resident status. The group 3b included all other persons in 
group 3. 

The resident probability for unresolved P-Sample 
persons was computed as described above, except for those 
in match code group 7 - people with insufficient infor­
mation for matching. Within this row in Table 4, there were 
essentially no resolved cases from which to extract a 
probabiUty of being a Census Day resident. Because of their 
lack of information - most of these cases did not even have 

a valid name - these people did not go through the 
matching operation and were not sent to follow-up. To 
determine a resident probabiUty for these cases, a weighted 
proportion of Census Day residents (I's and O's) was 
computed among the resolved cases in match code groups 
I through 5 and 8, separately for each of the four tenure x 
race/ethnicity classes. This probability was then assigned to 
those in group 7. Left out of this computation were those 
people who were resolved before follow-up (group 6). 
Observations from the Dress Rehearsal indicated that, in 
terms of their demographic and operational characteristics, 
people in group 7 tended to be more like those in groups 1-
5 and 8, than like those in group 6. 

The issue of unresolved matches was treated like that for 
unresolved resident status in (3) and (4), with resident status 
replaced by match status, but with a different set of cells, as 
is seen in Table 5. Confirmed nonresidents were excluded 
from the computations of match probabilities. 

For unresolved match probabiUty in tiie Dress Rehearsal, 
only one imputation cell was used within each of the 
geographic sites. Subsequent analysis (Keamey and Ikeda 
1999) showed that mover status (non-mover v̂ . out-mover) 
discriminated well between matches and nonmatches 
among the resolved cases. Thus, for the 2000 A.C.EL mover 
status was used to define imputation cells for match status. 
The housing-unit address match code refers to the initial 
match between housing units on the independent (A.C.E.) 
Usting and the census address list; conflicting housing units, 
determined during A.C.E. person match activities, were 
those where the census and A.C.E. rosters had two 
completely different lists of residents for Census Day 
(Childers 2000). 

It should be noted that 98.3% of the unresolved matches 
(7,693 of 7,826) were people with insufficient information 
for matching. As mentioned above, most of them did not 
have a valid name, and almost all (7,506) were not sent to 
follow-up. Further, theU rate of missing characteristics was 
much higher than average. Therefore, littie useful predictive 
information was available when forming imputation cells 
for match status. Variables such as age and ethnicity - that 
had a higher chance of being imputed and might be of 
questionable quality - were avoided. 

People with at least one imputed demographic variable 
(age, sex, tenure, race, or Hispanic origin) were grouped 
when resolving match status. UnpubUshed studies indicated 
that - at least among resolved cases in the Dress Rehearsal 
- die presence of these imputed characteristics is negatively 
associated with the propensity to be a match. Out-movers 
from a unit that was a nonmatch or a conflicting household 
were not separated according to this variable to ensure a 
reasonable number of resolved cases in each cell from 
which to estimate the proportion of matches. 

In the £-Sample, unresolved enumeration status was 
addressed as discussed above. See Table 6. 
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Table 5 
Imputation Cells for Resolving Match Status in the P-Sample 

Mover Status 
Housing-Unit Address Match Code 

Housing unit was a match Housing unit was a nonmatch 
or the household was conflicting 

Non-mover No imputed characteristics' 
0.945 

Out-mover No imputed characteristics 
0.798 

1 or more imputed 
characteristics 
0.901 

1 or more imputed 
characteristics 
0.791 

No imputed 
characteristics 
0.690 

1 or more imputed 
characteristics 
0.567 

0.516 

Among the characteristics age, sex, tenure, race, or Hispanic origin. 

Table 6 
Imputation Cells for Resolving Enumeration Status in the £-Sample 

E-Sample Match Code Group No Imputed Characteristics' 1 or More Imputed 
Characteristics 

1. Matches needing follow-up 

2. Possible matches 

3a. Partial household nonmatches; aged 18-29, child of reference 
person 

3b. Partial household nonmatches; others not in 3a 

4. Whole household nonmatches where the housing unit 
matched; not conflicting households 

5. Nonmatches from conflicting households; 
for housing units not in regular nonresponse follow-up 

6. Nonmatches from conflicting households; 
housing units in regular nonresponse follow-up 

7. Whole household nonmatches, where the housing 
did not match in housing-unit matching 

8. Resolved before follow-up 

9. Insufficient information for matching 

10. Targeted extended search cases^ 

11. Potentially fictitious people 

12. People said to be living elsewhere on Census Day 

0.977 

0.968 

0.871 

0.974 

Nonhispanic 
White 
0.965 

0.975 

Others 

0.974 

0.977 

0.968 

0.908 

0.960 

0.958 

0.965 

0.914 0.926 

nhispanic 
White 
0.959 

nhispanic 
White 
0.995 

0.928 

0.058 

0.229 

Others 
0.950 

0.947 

Others 
0.979 

0.990 

0 (assigned by definition) 

0.858 

0.088 

0.210 

' Among the characteristics age, sex, tenure, race, or Hispanic origin. 

^ Targeted extended search refers to a field operation conducted to reduce the variance in the dual-system estimates caused 
by clustered geocoding errors. For more information, see Navarro and Olson (2001). 

As witii resident status for P-Sample people, a key factor 
in determining enumeration status was the E-Sample 
person's match code group, although the match code groups 
were defined differentiy for the two samples. Similar to the 
P-Sample, people coded as potentially fictitious or said to 
be living elsewhere on Census Day during the follow-up 
operation were first placed in groups 11 or 12, respectively. 
The remainder of the ^-Sample was then placed in the 
appropriate match code group, as defined in the table. 
Group 3 was spUt into two subgroups, as when determining 

resident status in the P-Sample. That is, people aged 18 to 
29 who were children of the reference person were 
separated. Other characteristics used to define cells were 
the presence or absence of imputed characteristics, as 
defined in the imputation cells for match status; and 
whether the person was Nonhispanic white or any other 
race-ethnicity combination. It should be noted that, 
according to A.C.E. procedures, anyone in the £-Sample 
with insufficient information for matching (group 9) was 
automatically assigned an enumeration probability of 0. 
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4.3 Comparing Probabilities Under Cell Imputation 
and Logistic Regression 

It can be insightful to compare the probabilities assigned 
to cases with unresolved status under alternative proce­
dures. Belin (2001) presents such a comparison under a 
logistic regression model that considered 186 predictors for 
resident and match status, and 202 predictors for enumer­
ation status. The variables included most of those used in 
the cell estimation described in section 4.2, as well as 
individual demographic characteristics, such as age, gender, 
and relationship to tiie household's reference person; 
information about the A.C.E. interview, such as whether the 
respondent was a proxy; information derived from the 
sampling process; local-area features, such as whether the 
area was urban or non-urban; and the interactions among 
the variables. As the models were fit to the resolved cases 

sent to follow-up, and then applied to unresolved cases to 
predict a probability, the models are ignorable in the sense 
that unresolved status is not considered as a covariate in the 
underlying model. (See Rubin 1976.) 

Tables 7 and 8 summarize the probabilities assigned to 
unresolved cases under A.C.E. cell imputation and the 
logistic modeling averaged over the different match code 
groups. Recall that cell imputation probabilities were 
computed from weighted data as in (3), while the logistic 
regression models were mn on unweighted data. The 
predicted probabilities for the two procedures were 
averaged across all unresolved people unweighted. With an 
exception to be mentioned later, probabiUties and estimates 
in the A.C.E. were typically similar wUen using unweighted 
and weighted data, as the sample was designed to avoid a 
wide range of weights. 

Table 7 
Average Resident and Match Probabilities Under Cell Imputation and Logistic Regression 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

P-Sample 

Match Code Group 

Matches needing follow-up 

Possible matches 

Partial household nonmatches 

Whole household nonmatches 

Nonmatches, conflicting household 

Resolved before follow-up 

Insufficient information 

Fictitious, living elsewhere 

Number 
Unresolved 

767 

352 

1,306 

1,610 

1,455 

129 

7,506 

2,402 

Resident Status 

Avg. Probability Assigned 

Cell 
Imputadon 

0.989 

0.970 

0.956 

0.917 

0.940 

0.990 

0.844 

0.148 

Logistic 
Regression 

0.983 

0.962 

0.951 

0.926 

0.927 

0.990 

0.851 

0.167 

Number 
Unresolved 

4 

131 

71 

36 

49 

23 

7,506 

6 

Match Status 

Avg. Probability Assigned 

Cell 
Imputation 

0.848 

0.889 

0.893 

0.770 

0.616 

0.842 

0.835 

0.655 

Logistic 
Regression 

0.941 

0.837 

0.050 

0.010 

0.070 

0.940 

0.880 

0.041 

Table 8 
Average Enumeration Probabilities Under Cell Imputation and Logistic Regression 

£-Sample 

Match Code Group 

Enumeration Status 

Number 
Unresolved 

711 

305 

2,191 

4,813 

532 

779 

3,881 

179 

0 

2,902 

1,690 

3,152 

Avg. Probability Assigned 

Cell 
Imputation 

0.977 

0.968 

0.962 

0.967 

0.973 

0.917 

0.954 

0.990 

0.918 

0.064 

0.225 

Logistic 
Regression 

0.986 

0.967 

0.963 

0.974 

0.973 

0.926 

0.961 

0.982 

0.679 

0.077 

0.280 

1. Matches needing follow-up 

2. Possible matches 

3. Partial household nonmatches 

4. Whole household nonmatches where the housing unit matched; not conflicting 

5. Nonmatches from conflicting households; housing units not in nonresponse follow-up 

6. Nonmatches from conflicung households; housing units in nonresponse follow-up 

7. Whole household nonmatches, where the housing unit did not match 

8. Resolved before follow-up 

9. Insufficient information for matching 

10 Targeted extended search cases 

11. Potentially fictitious people 

12. People said to be living elsewhere on Census Day 
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Comparing procedures, one sees almost no difference in 
the average probabilities assigned for resident status. This 
is not surprising, as cell imputation used the match code 
group (among otiier variables) to define cells. Match status 
presents a different story. To recall, match code group was 
not used in the cell imputation, as almost all unresolved 
matches (98.3% of 7,826; 7,506 before the follow-up 
operation, and 187 more after follow-up) had insufficient 
information for matching. The first two groups have sUghtiy 
different probabiUties assigned under the two procedures. 
But in groups 3,4, and 5, aU nonmatches before follow-up, 
the average probabilities are high under cell imputation 
(0.893, 0.770, and 0.616), and very low under logistic 
regression (0.050, O.OIO, and 0.070). Of the 156 cases in 
the three cells, 134 were people each of whom was given an 
initial code indicating a "nonmatch"; later it was 
determined correctiy that the person had insufficient 
information for matching. In almost every case, the A.C.E. 
interviewer recorded a name Uke "Child Jones", "Jose Don't 
Know", or "Unknown Smith". Such cases should have been 
caught before matching by a clerk, and assigned an initial 
code of insufficient information. Instead, a match to the 
census was attempted and failed. If not for this error, such 
people would have been placed in group 7, where their 
match probability under logistic regression would have 
been much higher. Thus, for this small set of 134 cases, the 
logistic variable, match code group, takes on an incorrect 
value, and the model predicts a probability - much too low 
- based on the many resolved cases in group 3, 4, or J who 
really were nonmatches, but were sent to follow-up prima­
rily to resolve their resident status, not their match status. 

The predicted match probabilities in group 8 were also 
very different. However, with only six unresolved cases, the 
effect on estimation would be minimal. 

Comparing average enumeration probabiUties by matcU 
code group in Table 8, one sees almost no difference except 
in group 10, targeted extended search cases. There, the 
average probability assigned by cell imputation, 0.918, is 
much higher than that predicted by logistic regression, 
0.679. The difference can be explained by the weighting. 
In the jB'-Sample, of 32,334 people eligible for the targeted 
extended search operation, 8,298 (all in match code group 
10) were sampled out to contain costs and given an A.C.E. 
weight of 0. The matching operation did not try to 
determine whether the 8,298 cases were enumerated 
correctiy or not, but simply left them on the data file as 
erroneous enumerations. Probabilities based on cell 
imputation were assigned as in equations (3) and (4), 
incorporating the A.C.E. weight. This removed from the 
computation those who were sampled out of the A.C.E. 
The logistic regression model was mn on unweighted data 
and included the 8,298 cases in group 10, bringing down 
the probability of a correct enumeration predicted for tiie 
2,902 people with unresolved enumeration status. 

5. THE EFFECT OF SOME ALTERNATIVE 
MISSING DATA PROCEDURES ON 

DUAL-SYSTEM ESTIMATES 

In the last section, predicted probabilities were compared 
across two options for treating cases with unresolved status. 
But the ultimate effect of competing procedures is seen in 
the resulting dual-system estimates. In this section, several 
alternatives to tiiose used in the A.C.E. for addressing 
missing data are compared via the resulting estimates. 
When they differ significantly, it is not clear which 
procedure is to be preferred. It should be noted that the 
A.C.E. estimates released by the U.S. Census Bureau in 
March of 2001 have been revised following further analyses 
(Haines 2003). Even though the A.C.E. data are flawed and 
A.C.E. estimates should generally not be used, it is beUeved 
that they are adequate to evaluate the differences in the 
estimates caused by alternative missing data approaches. 

5.1 Results from an Early Evaluation 

In the months after initial dual-system estimates from the 
A.C.E. were released, altematives to tiie applied missing 
data procedures were studied. There were several reasons: 
estimating the variation that might result from the alter­
natives, incorporating tUis variation into total error and loss 
function analysis for tiie A.C.E. dual-system estimates, and 
investigating the viability of non-ignorable missingness 
procedures for addressing unresolved status. As the results 
are available in Keathley, Keamey, and Bell (2001), only a 
summary will be provided here. 

Three altematives involving die noninterview adjustment 
were examined. The first defined cells differently for the 
adjustment, adding variables such as race, Hispanic origin, 
tenure, and household size, as determined from a match to 
the census file. This procedure tended to produce larger 
dual-system estimates. Two other noninterview altematives 
had no apparent affect on the estimates. In one, a nearest-
neighbor noninterview adjustment, the weight of a non-
interviewed household was added to that of the nearest 
interviewed household in the sorted file. In the second, the 
last 30% of A.C.E. interviews completed were labeled as 
"late" interviews. The weights of noninterviewed units were 
added only to the weights of late interviews. These alter­
natives tried to take advantage of the anticipated homo­
geneity of units induced by geographic proximity or time of 
response to the A.C.E. 

The other altematives described in Keathley et al. (2001) 
address unresolved resident, match, or enumeration status. 
A "late" data approach used information collected only 
from the last 30% of interviews in the P-Sample, or housing 
units tiiat requked nonresponse follow-up in the E-Sample. 
By itself, this approach did not appear to affect the dual-
system estimates. The remaining altematives involved 
logistic regression models to predict probabilities for 
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unresolved cases. FUst, an ignorable logistic model, the one 
described above (Section 4.3) in Belin (2001), was appUed 
to unresolved resident, match, and enumeration status and 
tended to produce smaller dual-system estimates (47,481 
smaller for the U.S. total). However, it appears that the 
lowered (on average) enumeration probabUities assigned to 
the 2902 unresolved cases in the £-Sample match code 
group 10 (see section 4.3) would have more than accounted 
for this decrease. 

Perhaps more interesting are three altematives that 
attempted to constmct non-ignorable logistic models by 
lowering the probabilities assigned to unresolved cases, on 
the premise tiiat ignorable models may overstate the under­
lying probabilities (BeUn 2001). Data from die 1990 Post-
Enumeration Survey and its evaluation follow-up were used 
to estimate non-ignorable effects and incorporate them into 
the 2000 logistic models. This sti-ategy tended to produce 
larger dual-system estimates when applied to unresolved 
match probabiUties, and smaller estimates when applied to 
resident or enumeration probabilities. This result is not 
surprising, based on equation (1) and the fact that the 
average match probability assigned to cases with 
unresolved resident status is less than that for cases with 
resolved resident status. Although the study's authors 
conclude that "[tjhere is no evidence to suggest that the 
non-ignorable missingness procedures that we considered 
are or are not viable altemative missing data procedures" 
(Keathley et al. 2001, page 2), Belin's approach takes a 
promising step toward addressing the non-ignorability of 
the missing status. 

5.2 Analyses on Other Alternative Procedures 

In this section, differences in the dual-system estimates 
are presented under six numbered altematives described 
and motivated below. The results are provided in Table 9 
for the U.S. total and for breakdowns by race-ethnicity, 
tenure, and age. For a precise definition of the race-
ethnicity domains, see Kostanich (2001). (Note that a small 
part of the U.S. population was not part of the A.C.E. 
universe.) For each altemative, the three numbers given are 
(a) the difference: the altemative estimate minus the A.C.E. 
estimate; (b) the standard error of that difference; and (c) 
the percent relative difference. 

Altemative (1) reconsidered the noninterview procedure 
as applied in the A.C.E. to adjustment cells with a relatively 
small number of completed interviews. (See section 3.) In 
tiiis altemative, instead of spreading weights from non-
interviewed units over a wider range of cells, cells with too 
few interviews were collapsed with nearby cells, and 
noninterview adjustment factors were computed afresh in 
the newly created cells. Except for Nonhispanic Blacks, 

none of the estimated differences in Table 9 under this 
altemative are statistically significant (greater than two 
standard errors). Similarly, except for several race-ethnicity 
domains less than two million in size, none of the relative 
differences are greater than 0.01%. 

Altematives (2), (3), and (4) were derived after 
examining the effects of the variables used in the 
imputation cells on the resulting assigned probabilities. 
From the probabiUties assigned in Tables 4 and 6, it is clear 
that the match code groups discriminated well with regard 
to resident and enumeration status. Yet it appears that 
dividing the ceUs based on demographic variables, such as 
"Nonhispanic white" vs. "Other," made less of a difference. 
To investigate the effect of demographic variables on the 
imputation, new probabilities were assigned for unresolved 
status without using them. Specifically, all resolved and 
unresolved cases were combined across cells for 
Nonhispanic white and Other (resident and enumeration 
status), for match code groups 3a and 3b (resident and 
enumeration), and for "No imputed characteristics" and "1 
or more imputed characteristics" (match and enumeration); 
the variables derived from A.C.E. operations - match code 
group, housing-unit address match code, and mover status 
- were retained. Altemative (2) applies the smaller set of 
cells only in the P-Sample, that is, only for unresolved 
resident and match status; altemative (3) applies it only in 
the E-Sample (enumeration status); and altemative (4) 
applies it to both samples. 

Under altemative (2), the greatest change in the resident 
probabilities assigned to unresolved cases occured in the 
four (original) imputation cells in group 3a, affecting only 
96 people with unresolved status. In most other cells for 
resident status (over 99% of the cases), the probabilities 
changed very little. A large difference in match proba­
bilities occurred only in the cell "non-mover, nonmatched 
unit or conflicting household, one or more imputed 
characteristics," containing 421 unresolved cases. The 
variable differentiating tiie number of imputes appears to 
have had an effect here; if its two "impute" subcells are 
collapsed, the probabiUty assigned to tiie "one or more" cell 
is dominated by the much larger number of resolved people 
wiUi no imputes, raising the value from 0.567 to 0.684. As 
is seen in Table 9, the eflect on the dual-system estimates is 
statistically significant for the U.S. total and almost all the 
breakdowns shown, except for two race-ethnicity groups 
with sizes under one milUon people. The relative differ­
ences do not appear to be very large, however, ranging from 
0.01% to 0.04%. It is not obvious which missing data 
option produces estimates closer to the unknown tme 
values. 
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Table 9 
Dual-System Estimates Under Altemative Missing Data Procedures 

Each cell to the right of the vertical bar contains, in order, estimates of (a) the difference: the altemative estimate minus the A.C.E. estimate, 
(b) the standard error of that difference, and (c) the relative difference as a percent. 

U.S. Total 

A.C.E. 
Estimate 

(Standard Error) 

276,848,873 
(366,543) 

Race-Ethnicity Domains 

Nonhispanic 
White 

Nonhispanic 
Black 

Hispanic 

Native Hawaiian 
or 
Pacific Islander 

Nonhispanic 
Asian 

American Indian 
on Reservation 

American Indian 
not on 
Reservation 

Tenure 

Owner 

Non-Owner 

Age Group 

0-17 

18-49 

50 and Over 

194,226,285 
(265,893) 

34,210,774 
(118,415) 

35,552,109 
(138,870) 

618,698 
(17,873) 

10,056,009 
(64,372) 

567,053 
(7,235) 

1,617,944 
(22,032) 

188,764,543 
(260,408) 

88,084,330 
(226,108) 

73,076,071 
(137,126) 

129,785,393 
(208,070) 

73,987,409 
(111,125) 

Estimated Differences Based 

(1) 
Noninterview 
Adjustment 

Witii Collapsed 
Cells 

-4,299 
(7,423) 
0.00% 

-2,467 
(6,247) 
0.00% 

-3,495 
(1,290) 
-0.01% 

725 
(3,016) 
0.00% 

-98 
(81) 

-0.02% 

709 
(571) 

0.01% 

-245 
(300) 

-0.04% 

572 
(661) 

0.04% 

-2,237 
(3,805) 
0.00% 

-2,063 
(6,057) 
0.00% 

2,924 
(2,624) 
0.00% 

-2,721 
(4,714) 
0.00% 

-4,502 
(2,766) 
-0.01% 

(2) 
Collapsed 
Imputation 

Cells: 
P-Sample Only 

-55,284 
(1,623) 
-0.02% 

-32,324 
(1,055) 
-0.02% 

-11,136 
(753) 

-0.03% 

-8,132 
(857) 

-0.02% 

-73 
(72) 

-0.01% 

-3,175 
(356) 

-0.03% 

-59 
(49) 

-0.01% 

-386 
(68) 

-0.02% 

-34,503 
(1,205) 
-0.02% 

-20,782 
(1,121) 
-0.02% 

-21,872 
(625) 

-0.03% 

-23,304 
(1,143) 
-0.02% 

-10,108 
(563) 

-0.01% 

1 on Six Altematives to A.C.E. Missing Data Procedures 

(3) 
Collapsed 
Imputation 

CeUs: 
£-Sample Only 

-568 
(2,581) 
0.00% 

-1,677 
(1,870) 
0.00% 

-119 
(1,328) 
0.00% 

1,432 
(973) 

0.00% 

88 
(43) 

0.01% 

-257 
(439) 

0.00% 

61 
(17) 

0.01% 

-96 
(174) 

-0.01% 

933 
(1,971) 
0.00% 

-1,501 
(1,607) 
0.00% 

-3,315 
(1,324) 
0.00% 

3,247 
(1,565) 
0.00% 

-500 
(670) 

0.00% 

(4) 
Collapsed 
Imputation 

Cells: 
Pand 

f-Samples 

-55,852 
(3,045) 
-0.02% 

-34,000 
(2,163) 
-0.02% 

-11,255 
(1,528) 
-0.03% 

-6,700 
(1,297) 
-0.02% 

15 
(85) 

0.00% 

-3,431 
(567) 

-0.03% 

2 
(52) 

0.00% 

-482 
(186) 

-0.03% 

-33,570 
(2,317) 
-0.02% 

-22,282 
(1,935) 
-0.03% 

-25,186 
(1,474) 
-0.03% 

-20,057 
(1.930) 
-0.02% 

-10,608 
(877) 

-0.01% 

(5) 
Imputing 

Probabilities 
Based on the 

MES 

-63,632 
(5,368) 
-0.02% 

-61,817 
(4,534) 
-0.03% 

-1,303 
(1,417) 
0.00% 

196 
(1,577) 
0.00% 

-107 
(74) 

-0.02% 

-414 
(576) 

0.00% 

-38 
(73) 

-0.01% 

-148 
(144) 

-0.01% 

-7,816 
(1,942) 
0.00% 

-55,816 
(5,071) 
-0.06% 

-8,559 
(2,047) 
-0.01% 

-44,534 
(3,777) 
-0.03% 

-10,538 
(1,421) 
-0.01% 

(6) 
Imputing 

Probabilities 
Based on the 

MER 

385,969 
(24,358) 

0.14% 

108,604 
(13,026) 

0.06% 

124,710 
(11,343) 

0.36% 

124,937 
(10,657) 

0.35% 

1,330 
(616) 

0.22% 

19,556 
(3,704) 
0.19% 

1,402 
(250) 

0.25% 

5,430 
(1,446) 
0.34% 

125,058 
(10,063) 

0.07% 

260,911 
(21,684) 

0.30% 

107,308 
(9,785) 
0.15% 

244,070 
(16,245) 

0.19% 

34,591 
(4,561) 
0.05% 
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Under altemative (3), tiie enumeration probabilities were 
re-computed using only the match code groups as impu­
tation cells. Noticeable changes were detected in the 
probabUities in the (original) ceUs for match code group 3a. 
In the dual-system estimates, the only significant differ­
ences were found in two of the three age categories and 
some of the small race-ethnicity domains. Except for the 
latter domains, all the percent differences were under 
0.01%. As altemative (4) uses Uie re-computed probabUities 
from die P and f-Samples, tiie resulting estimates here were 
dominated by tiie P-Sample results and tiius were similar to 
those under altemative (2). 

The final two altemative procedures employed the same 
set of imputation cells as those used in the A.C.E., but 
assigned to unresolved cases in both the P and £-Samples 
potentially improved probabiUties, as determined from one 
of two evaluations conducted by the Census Bureau 
following the A.C.E. Altemative (5) secured its proba­
bilities from the Matching Error Study (MES), while 
altemative (6) based them on the Measurement Error 
Reinterview (MER). Each study took place in a set of 
evaluation clusters, a roughly one-in-five subsample of the 
A.C.E. sample block clusters. Information on the MES and 
MER sample designs can be found in Petroni (2001) and 
Killion (2000). 

The primary purpose of the MES was to evaluate the 
A.C.E. person matching operation. The evaluation clusters 
were rematched by expert matchers, and appropriate 
changes were made to final match codes and person status. 
No additional data were coUected for the MES. Imputation 
cell probabiUties based on MES data were generally similar 
to tiiose assigned in tiie A.C.E. One exception, for resident 
status, was in the cell for match code group 4, Nonhispanic 
white, non-owner. Here, the MES probabiUty, 0.712, was 
much lower than the A.C.E. value of 0.911. This resulted 
from one cluster in the cell tiiat had 24 persons with large 
weights geocoded incorrectiy, as detected in the MES. The 
MES enumeration probability for match code group 11, "1 
or more imputed characteristics," 0.176, was a bit higher 
tiian tiiat for tiie A.C.E., 0.088. Most otiier probabilities for 
resident, match, and enumeration status were close (within 
0.03) between tiie A.C.E. and MES; all others were witiiin 
0.07. 

In conti-ast, the MER was designed to evaluate the data 
collection error arising from the A.C.E. matching process. 
People in the MER were reinterviewed about nine months 
after Census Day to collect information analogous to that 
collected in tiie A.C.E. follow-up operation, but in greater 
detail. Based on the MER, resident probabilities tended to 
be substantially higher for the cells in match code group 8, 
but to be lower for the cells in groups 3,4, and 5 (denoting 
nonmatches). The reductions tended to be larger in cells 
where group 8 took more cases away from groups 3, 4, and 
5. One might note Uiat tiie MER cells in subgroup 3a were 

faUly small. The "Nonhispanic white, non-owner" cell had 
only 34 unweighted resolved persons, while the olher three 
cells in group 3a ranged from 125 to 140 unweighted 
resolved persons. The MER probabilities for enumeration 
status exhibited similar behavior, with probabilities in 
groups 11 and 12 raised, and tiiose in the nonmatch groups 
(3 through 7) lowered. Match probabilities were similar 
between A.C.E. and MER, mostiy differing by 0.01 to 0.05. 

Before looking at the dual-system estimates under 
altematives (5) (MES probabilities) and (6) (MER proba­
biUties), one should note that,/or the comparison in Table 
9, only the probabilities assigned to unresolved cases were 
changed based on data coUected tiirough the MES or MER. 
Although the evaluated status of some people may have 
changed (for example, from nonmatch to match, or 
confirmed resident to unresolved resident) based on the 
evaluations, their status was not changed when computing 
these estimates, as the goal of this exercise was only to 
explore different methods or information as they affect the 
missing data procedures component of the dual-system 
estimates. 

Under altemative (5), based on MES data and proba­
bilities, the estimates decreased in almost all population 
domains in Table 9, although never more than 0.1%. Yet 
this decrease can be attributed almost exclusively to the 
domain Nonhispanic White. With altemative (6) based on 
MER data and probabilities, there were significant 
increases in the estimates of every domain. The relative 
differences under altemative (6) are larger in magnitude 
than for earlier altematives, but all have an absolute 
magnitude of less than 0.4%. There are several relative 
differences greater than 0.3% in absolute value: for 
Nonhispanic Black, Hispanic, and American Indian not on 
Reservation. 

6. OBSERVATIONS 

The observations given here pertain to the third type of 
missing data, assigning probabilities to unresolved people 
in the A.C.E. It is important to note that the A.C.E. 
procedures were specified well before the conduct of the 
census and the A.C.E. The early deadlines were due to (1) 
the very tight schedule coordinating many sepiffate but 
interrelated activities, and (2) tiie need for a process open to 
the scmtiny of policy makers as well as statistical experts. 
Although one can leam much about the missing data and 
the relevant correlation stmctures by examining the 
responses as they are collected, making decisions after 
seeing tiie data might have been constmed as manipulating 
the results of an operation that had serious political 
implications. 

In tiUs tight, one can look back and realize various ways 
to improve the process - too late to change the procedures. 
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This does not imply that we did not react to information 
made available unexpectedly during the processing of the 
data. We knew that the post-match follow-up operation 
would help resolve some cases, especially those whose tme 
residence on Census Day was uncertain. Much other 
information was collected in these interviews, but we did 
not anticipate seeing the details. However, due to an 
intensive keying of tiie follow-up interview forms at the 
Bureau's processing center, some additional information 
was made available during the nussing data operation. At 
that time, we added several match code groups not 
originally in tiie plan: group 8 for resident status; 11 and 12 
for enumeration status. Separating the people in these 
groups allowed us to assign probabilities that were quite 
different - and, we beUeve, more accurate - from what they 
would have received. 

Different models, imputation cells, or data could have 
been used to assign probabilities for unresolved cases. The 
values determined tiirough logistic regression were quite 
similar on average, and may or may not have had an effect 
on the resulting population estimates. In section 5 it was 
shown that ignoring some of the demographic variables 
would have made a difference in the match rate, but 
probably not in tiie rate of correct enumeration. Basing tiie 
probabilities on data collected in the Matching Error Study 
or the Measurement Error Reinterview (not yet available 
during the A.C.E.) could have made a larger difference stiU. 
But it is unclear which one might have made an 
improvement; using MES data would have lowered the 
population estimates, while using MER data would have 
increased them. 

Weighing the various resuUs, one is constantiy reminded 
that, when assigning probabilities to people witU unresolved 
status, match code group was the most important variable. 
It worked well for resident and enumeration status, but 
could not be effectively used for match status. The problem 
there - perhaps the biggest hole in our procedures - is once 
again that almost all of the unresolved matches, and over 
half of the unresolved residents, were people with 
insufficient information for matching. Littie information 
was collected on these cases, and almost all of them were 
not sent through the matching process or foUow-up. 
Further, almost none of these people were included in any 
post-A.C.E. evaluations. In future tests a concerted effort 
should be made to obtain real information about the status 
of such people. 
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Coverage Error in Population Censuses: The Case of Turkey 
H. OZTAS AYHAN and SUHENDAN EKNI' 

ABSTRACT 

Coverage errors and other coverage issues related to the population censuses are examined in the light of the recent 
literature. Especially, when the actual population census count of persons are matched with their corresponding post 
enumeration survey counts, die aggregated results in a dual record system setting can provide some coverage error statistics. 
In this paper, the coverage error issues are evaluated and altemative solutions are discussed in the light of the results from 
the latest Population Census of Turkey. By using the Census and post enumeration survey data, regional comparison of 
census coverage was also made and has shown greater variability among regions. Some methodological remarks are also 
made on the possible improvements on the current enumeration procedures. 

KEY WORDS: Census coverage error; Coverage error measures; Coverage error estimation; Dual record system estimate; 
Population census; Post enumeration survey. 

1. INTRODUCTION 

Coverage has been an important issue in censuses as weU 
as in sample surveys. The difference between the census 
count and tiie target population count is the coverage error. 
When the census count is less than the target population 
count, it creates an undercount as is common in many 
countries. 

Several techniques are available to understand the 
problem of coverage errors in censuses. Dual record system 
(DRS) estimator (Chandra Sekar and Deming 1949) was 
also extended by many researchers (Ayhan 2000; Casady, 
Nathan and Sirken 1985; Hogan 1990, 1993a and 1993b; 
Isaki 1992; Marks, Seltzer and Krotid 1974). 

Dual record system estimates based on the census 
enumeration and a post enumeration survey (PES) are used 
by the U.S. Census Bureau to measure census coverage 
error (Hogan 1993a and 1993b; Mulry and Spencer 1988, 
1990 and 1993). Post enumeration surveys can be used to 
improve the population estimate (Ayhan and Ekni 1991; 
Diffendal 1988; Hogan 1990; Hogan and Wolter 1988). 

For tiie United States, the 1980 Census Post Enu­
meration Program attempted to measure census coverage 
through direct measurement using sample survey models 
(Fay, Passel, Robinson and Cowan 1988). Several methods 
are also proposed for tiie adjustment of census count for 
under enumeration (Choi, Steel and Skinner 1988; Cressie 
1988 and 1990). 

Recentiy, models for population coverage error have 
been studied extensively (Isaki 1992; Wolter 1986). A 
method of overlapping data systems or multiple frame 
methodology was used to improve the population estimates 
(Goodman 1949; Hartley 1962 and 1974; Bankier 1986). 

This study highlights the methodological problems 
related to the population census coverage and proposes 

remedies to some of the issues covered. In addition, it 
proposes and discusses altemative estimates for the 
population census coverage errors. To achieve the above 
goals, coverage evaluation issues are included in the design 
of tiie PES. 

In this paper, section 2 discusses methods of census 
enumeration and section 3 covers post enumeration survey 
procedures. Methods of coverage error estimation is 
presented in section 4 of the paper. Estimators of the 
population total is given in section 5 and comparison of the 
coverage error statistics are presented in section 6. 
Important findings are summarized in the conclusion. 

2. METHODS OF CENSUS ENUMERATION 

Population censuses have many common features in 
most countiies. The method of enumeration can either be 
based on de facto or de jure system. In de jure system 
people are enumerated at their normal residence, while de 
facto system enumerates people actually there. De facto 
system is widely used in developing countries, and the de 
jure system is generally used in developed countries. 
Countries that are using de facto system of enumeration 
seem to have more problems related to coverage, than the 
countries which are using de jure system of enumeration. 
These problems stem mainly from their existing imperfect 
frames for their target population. 

De facto based population censuses are generally 
conducted on a single day, as a complete count, to 
determine the total population within the country on the day 
of enumeration. The citizens of the country who are living 
outside the country were excluded from the census, whereas 
alien population who are present within the country were 
included in the census. 

' H. Ozta? Ayhan, Department of Statistics, Middle East Technical University, 06531 Ankara, Turkey; SUhendan Ekni, State institute of Statistics, 06100 
Ankara, Turkey. 
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Design of the Census Operations 

The Population Census of Turkey was conducted, on the 
basis of de facto system of enumeration, by the State 
Institute of Statistic (SIS) to determine the quantitative, 
social and economic characteristics of the population. 

For the Census enumeration, the list of buildings are 
created by the local authorities and send to tiie local Census 
Committees. Based on the list of buildings (Forms 1 or 2), 
enumeration districts (EDs) list of buildings (Form C) are 
formed (see Appendix I for details). Due to the lack of 
timely availability of the complete list of buildings in the 
SIS Central Office, the number of EDs are estimated by 
projection techniques for advance fieldwork planning of the 
Census, as well as PES. EDs are obtained by assigning 100 
persons per enumerator in province and district centers, and 
200 persons per enumerator in sub-districts and villages, 
based on average daily workloads. They are then numbered 
sequentially. In the Census, tiie Usted addresses were taken 
as the base for identifying the "dwelling units (DUs)", 
while the "individual persons" within the household(s) of 
the dwelling unit is considered as the unit of enumeration. 

The workload of each enumerator is taken as an ED, 
which contains a list of addresses to be covered witiiin a 
specified close interval. Instmctions are given to the 
enumerator to treat this interval as a compact segment. If an 
enumerator encountered an address not on the list, it is 
included in the enumeration by work definition. For vacant 
and nonexistent units the related information is also 
recorded. There was no special procedure for dealing with 
reluctant respondents or in general any non-interviewed 
units, due to the compulsory nature of response by the 
related Act. The enumerator's workload is set in such a way 
that, they will complete all the interviews in a given day. 
For very special cases, the instmction is given to complete 
the enumeration of the segment during the extended hours 
in the same census day. 

Additional enumerators were assigned to enumerate the 
"special enumeration districts" such as the places of the 
mobile populations (travelers, persons on duty, nomadic 
tribes, etc.) and institutional populations (hospitals, 
prisons, factories, military establishments, etc). 

Institutional population are covered by additional 
enumerators, who are assigned for these special EDs. The 
mobile populations ti^avelling by vehicles are stopped and 
were enumerated as a group when they first appeared within 
the borders of the provinces. The passengers continues theU 
journey after enumeration and dupUcate enumerations are 
avoided by placing an "Enumerated" sign on the vehicle 
after tiie census operation, and later their individual 
identification is also checked by manual and computerized 
algorithms, against the other records of the relevant 
settlement. 

The Census was conducted on a Sunday, and the 
enumeration was completed on the same day. On the 
Census day, a national curfew was declared. The 

enumerators visited each household (HH) within the 
dwelUng units listed in their enumeration district building 
lists and completed the census questionnaire (see Appendix 
2 for details). For the Household Module, the information 
is coUected from an adult household member for the general 
household characteristics, whUe for the Individual Person's 
Module the information is obtained from self respondents 
on their personal characteristics. 

The following type of errors occurred during the 
different stages of the census operations; 

(1) Omission errors and erroneous inclusions has 
occurred during the constmction of the List of 
Buildings. However, due to the use of compact 
segment approach in the enumeration process of the 
census operation, these errors are mostly eliminated. 

(2) Response errors based on memory recall error, 
cheating, and inadequate answer for coding has 
occurred during the census enumeration. These are 
measured as the response inconsistency in the 
Response Reliability Study (Ayhan and Ekni 1991; 
SIS 1994) of the Population Census, which was 
based on the PES. 

(3) Some enumerator errors (failure to probe, inadequate 
perception of response, and recording errors) are also 
observed during tiie census operation. These are also 
covered by the Response Reliability Study. 

(4) Processing errors such as, coder and verifier errors 
also occur during the data processing and these are 
eliminated later during the data handling in the 
office. 

3. POST ENUMERATION SURVEY 
PROCEDURES 

The objectives of the PES are to determine coverage 
error in the population census as well as obtain measures of 
response reliabiUty of the questions in the census. In this 
paper, the first objective is discussed for the Population 
Census of Turkey, and the preliminary findings for both 
objectives are summarized by Ayhan and Ekni (1991). 

3.1 Sample Selection Procedures 

The sample design for the PES is initiated 3 months 
before the Census operation. At this stage, creation of the 
Population Census EDs was not complete yet. 

Stratification and estimation of population EDs. The 
previous Population Census enumeration distiict lists of die 
State Institute of Statistics is used as the base for sampling 
frame for PES operation. The population of people is first 
stratified into 5 geographical-socio economical regions of 
Turkey. A second explicit stratification variable is also 
used, which is based on the 8 size groups for the place of 
the settlements, in a nested stmcture within regions. Here, 
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urban-mral boundary corresponds to a population size of 
10,000. The number of census enumeration districts were 
estimated for 40 design strata for the Census day by using 
forward population projection method, which were based 
on the person counts of the two previous population 
censuses. For tiie census enumeration, EDs were created by 
using Form C witiiin Uie Centtal Office. A total of 479 251 
EDs are established for the Census. Sampling frame 
information is given in Table 1. 

Table 1 
Estimated Number of Population and Sample EDs by 

Regions and Urban-Rural Strata 

URBAN RURAL TOTAL 

Region Popu. Samp. Popu. Samp. Popu. Samp. 
ED ED ED ED ED ED 

M W , W M («) . ( R ) M, ,(i) 

1 125,726 125 

2 42,442 42 

3 65,466 76 

4 15,790 16 

5 39,358 40 

40,333 32 

24,992 20 

45,925 36 

30,459 22 

48,760 34 

166,059 157 

67,434 62 

111,391 112 

46,249 38 

88,118 74 

Total 288,782 299 190,469 144 479,251 443 
.(I) (2) The expansion factors: F,|" = Â '̂V/î 'V M^lm^" = F^ 

The coverage of the number of dwelling units in the 
Census and PES were achieved by the following proce­
dures. The number of population EDs for each province 
was determined and numbered sequentially. Then, the 
number of population EDs in each population strata was 
estimated by, dividing tiie projected strata population (A^̂ ) 
to the fixed daily workload of enumerators (B^). 
Population EDs were estimated for urban areas as 
M .̂ = NJBf^. and for mral areas as M^j = Nf^jIB^^j, where 
the ED sizes are taken as fixed daily workload, B^^. = 100 
persons in urban strata and B.. = 200 persons in mral strata. 
The results of the population projections for each strata by 
urban-mral aggregation are also obtained. The estimated 
number of population EDs and expansion factors for 
regions and urban-mral sti-ata are also computed. 

Selection of sample EDs. A stratified multistage sample of 
localities and blocks are selected systematically for PES 
from the available master sampling frame of the State 
Institute of Statistics at the Central Office. The blocks of the 
master sampUng frame is periodically updated for the multi 
purpose selection of other samples on routine basis. The 
interviewers of the PES is recmited and trained in the 
Cential Office, and then interviewers are send as a team to 
the local sample settlements for the independent enu­
meration of the selected PES sample. For the identification 
purpose, the selected sample blocks are linked to tUeir 
corresponding Population Census EDs of the settlement in 
the field by previously given instmctions to the PES 
interviewers. 

For the use of Dual Record System estimation, the 
sample enumeration districts for the PES should be 
determined independentiy from the census frame. This is an 
absolutely cmcial assumption of the DRS model, which was 
emphasised by many researchers during the past 50 years 
(Ayhan 2000; Chandra et al. 1949). 

Due to the use of unwanted old ED lists in some areas, 
the range of the planned workload per ED per enumerator 
may have changed and consequently the selected sizes of 
the EDs may be different from the actually enumerated 
sizes. This will effect the achieved sampling fractions, 
which wiU naturally be different from the selected. 

A total of m = 443 sample enumeration districts are 
selected in 16 province centers, 23 districts, 16 sub-districts 
and 43 viUages within the 40 strata. For the PES, a sample 
of 443 EDs are selected from the created ED list by 
systematic sampling. 

The sampling fractions and sample allocation was 
achieved in the following way. Equal probability selection 
method was used to select the sample enumeration districts 
in all strata. Sampling fractions were planned to be 
/^ s 0.001 for all strata. However, the sampling fractions 
are also varied among sti-ata. Technical details of the 
sampling fractions and the sample allocation are given 
below. The sampUng fractions [//,̂ '̂ ] and sample allocation 
[nP] can be achieved as. 

r=«r/<^=i/^rand/r m 
(1) (2) 

/M, = i/Fr'.(i) 

The total population sizes of urban (U) and mral (R) EDs 
are. 

'^h '^'h '^hi B,, MhSci and (2) 

N, (R) 
< \ = EM; hj 

B,j Vh&j (3) 

where the components are defined earlier. 
Then the population size of each stratum was determined 

as 

Ni-UNr (4) 

Similarly, the corresponding sample sizes of each stratum 
are 

.(') . ( U ) .(R) (5) 

where nl""^ ^mj,""^ B,. and nl^"'= mj!"^ B,.. (6) 

3.2 Design of the PES Operations 

The fieldwork operation for PES was identical to the 
census, where the details are given in section 2.2. For 
operational purposes, each ED was defined as a close 
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interval of dwelling unit numbers within the streets. In 
terms of special enumeration districts {i.e., institution) the 
total number of enumeration districts are checked with prior 
information which was obtained at province level. 

Due to previously given instmctions to the enumerators, 
PES starts in the sample enumeration districts an hour after 
the starting time of the census enumeration on the same 
day. PES enumerators visit the same households in the 
same (ascending) order as the census enumerators, so that 
PES enumerators did not visit the same household before 
the census enumerators. Results of the PES was used as a 
basis for evaluation, after matching the individual cases 
with the census records for the corresponding EDs. 

all used for exact agreement in matching of 
individuals. 

(4) Matching of non-matched individuals of the 
households. This was achieved by matching with the 
other individuals in the neighboring households 
(from the other data source) by searching. The same 
criteria was used for exact agreement in matching of 
individuals. 

The preliminary work of matching operation is done 
clerically, while matched households and persons are 
evaluated by automation. For the matching procedure of 
persons the frequencies n{r, c) are shown in Table 2. 

4. METHODS OF COVERAGE ERROR 
ESTIMATION 

This section addressed coverage error estimation, by 
stating data matching procedures and dual system esti­
mation procedures and related findings. The evaluation and 
estimation of population coverage is obtained using the list 
of EDs from two independent sources. In this section, the 
data matching procedures, dual record system estimators, 
altemative population total estimators are proposed and the 
estimates are evaluated. A comparison of the computed 
coverage error statistics are also presented here. 

4.1 Data Matching Procedures 

Several models (Deming and Glasser 1959; Nathan 1967 
and Tepping 1968) have been proposed for determining the 
optimum matching procedures. These are based on 
establishing procedures that mininuse the "estimated net 
matching error" subject to given costs and other constraints 
(Marks et al. 1974). These models provided valuable 
concepts to the theory and practice of matching, but none of 
are completely satisfactory for all purposes. 

The work of Tepping (1968), extended by Srinivasan 
and Muthiah (1968), required a minimum set of charac­
teristics for the "exact agreement" in matching. Also, 
Ayhan and Ekni (1991) and SIS (1994) have used similar 
methods based on the following specifications; 

(1) Matching of the population of the EDs. The total 
population of the ED was taken as the sum of the 
household population within the total DUs of the 
ED. 

(2) Matching of the households within the EDs. Several 
sets of information (address of the dwelling unit, 
names of household head and number of persons in 
the household) was considered for matching of 
households. 

(3) Matching of the individual persons within the 
matched households. A total of 4 Census / PES 
variables (names, age, sex and education level) were 

Table 2 
The Layout of the Matching Procedure 

Matching Procedure 

DATA In 

SOURCE 1: 

(CENSUS) Not in 

Total 

DATA SOURCE 2 

In 

n{\, 1) 

n(2, 1) 

n(*, 1) 

: (P E S ) 

Not in 

n ( l , 2) 

n(2,2) 

n (*, 2) 

Total 

n ( l ,* ) 

n (2, *) 

n 

On the basis of the above specifications, the households 
are matched at the first stage, and within the matched 
households the persons are matched at the second stage. 
The resuUs are presented in the following tables by regions. 
Enumeration districts are located in sample settiements 
witiUn 19 provinces in 5 regions of the sample design. Out 
of 443 selected EDs, 437 were matched with their corres­
ponding population census counterparts and other 6 EDs 
could not be matched due to differences in independentiy 
given instmctions for tiieir creation by tiie local offices. The 
information on the regional breakdown of the 6 non-
matched EDs are provided in Table 3, while the information 
on the urban-mral breakdown was not obtained. 

The matching procedure of households can be illustrated 
by k {r, c) in the same way as presented for persons in Table 
3. In the stratified case, the number of households in each 
strata can also be denoted by /:^(r, c). The total number of 
households in the Census which are not matched with PES 
households can be estimated for each strata as 

fc,(l,2) = [k,{l,*)-k,{l,l)] (7) 

and the total number of households in the PES which are 
not matched the Census households can also be estimated 
for each strata as 

^,(2,1) = [kJ*,l)-k,{l,l)]. (8) 

Information on matched and non-matched households are 
given in Table 3. 
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Table 3 
Matched and Non-matched Households in the Post Enumeration 

Survey and Census Enumeration Districts by Regions 

Regions 
h 

1 

2 

3 

4 

5 

Total 

Selected 
no. of 
EDs -r 
157 

62 

112 

38 

74 

443 

Enumerated 
no. of EDs 

(2) 

154 

62 

112 

38 

71 

437 

Matched 
HHs 

k,{l,l} 

3,320 

1,262 

2,636 

645 

995 

8,858 

Non-matched 
households 

Census 
k,{l,2) 

168 

27 

262 

204 

170 

831 

PES 
k, (2, 1) 

144 

30 

259 

80 

175 

688 

In these 437 EDs, a total of 8858 households were 
matched. In the Census 831 (9.38 %) and in PES 688 
(7.77%) households could not be matched. The Census 
based household match rate was 90.62 %, while PES based 
match rate was 92.23 %, which is presented in Table 3. 

Coverage rates for the Census and PES households are 
given by regions in Table 4. Comparison of Census and 
post enumeration results for the coverage rate of households 
(C^) were higher for the Census in most regions (except 
Regions 2 and 5) and the total. Here all the coverage rates 
were greater than it was expected. In terms of persons 
within the covered households, the coverage rates {C^) 
were higher for the Census for all regions and for the total. 
Total of matched persons were n (I, 1) = 41,020 in the 
Census and PES. 

Differences in the coverage of EDs in the Turkish 
Census and PES comes due to the following reasons; 

(1) Additional Forms of C and D are established by the 
Census Committee of the provinces through list of 
buildings (Forms 1 and 2). List of buildings are 
created by the local authorities and they are not 
reliable enough for some settiements. 

(2) Numbering of EDs are also done at the local level, 
they are also effected by the insufficient numbering 
operation. 

(3) Forms C and D may or may not contain 100 persons 
in urban and 200 persons in rural areas due to 
outdated listings. 

(4) Due to different starting points by the Census and 
PES enumerators, the number of dwelUng units 
covered were different. 

(5) AppUcation of the PES questionnaire was started at 
least 2 hours after the actual Census operation within 
the selected EDs. Coverage differences may be due 
to the mobility of the members of census completed 
households within the same ED. 

(6) During the one day enumeration period, some of the 
planned Census and PES questionnaUes could not be 
completed, resulting inconsistency during matching. 
Of course, this is a source of undercount, which 
happened rarely during the field enumeration. 

(7) Because of the de facto enumeration base, the local 
visitors (from other dwellings of the apartment) for 
either data source were subject to change. 

(8) Again, due to de facto enumeration, there will be 
counting errors for the mobile population for the 
Census. The PES only planned to cover the 
household population. 

(9) The PES was not planned to cover the special EDs 
and mobile populations {i.e., travelers, persons on 
duty, etc). By definition, intemational and domestic 
travelers are permitted to continue their travel after 
being counted, if thehjoumey had started before the 
official census starting time. During this research, the 
mobile population was excluded from the analysis. 

(10) Nomadic tribes (Special enumeration techniques are 
required for the census of nomadic tribes. De jure 
rather than de facto enumeration base, as well as 
mobile interviewers may be recommended for the 
enumeration of nomadic tribes in place of inter­
viewers who are stationary.) will not be covered in 
the PES due to non-listings. 

Table 4 
Number of Households and Persons in the Census and Post Enumeration Survey by Regions 

Regions 

h 

1 

2 

3 

4 

5 

Total 

Census 

**(1. *) 
3,488 

1,289 

2,898 

849 

1,165 

9,689 

Number of Household 

PES 

k,{*, 1) 

3,464 

1,292 

2,895 

725 

1,170 

9,546 

Coverage 

c. 
1.0069 

0.9977 

1.0010 

1.1710 

0.9957 

1.0150 

Number of Persons in Households 

Census 

«*(!.*) 

14,035 

6,587 

13,058 

4,233 

7,898 

45,811 

PES 

«,(M) 

13,926 

6,582 

12,984 

3,580 

7,888 

44,960 

Matched 

«,(1,1) 

13,393 

6,400 

11,644 

3,134 

6,449 

41,020 

Coverage 

c; 
1.0078 

1.0008 

1.0057 

1.1824 

1.0013 

1.0189 

Coverage rates: C^ =k^{l, *)lk^i*, 1) and C^ =n( l , *)/«(*, 1) 
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(11) Botii Census and PES EDs are enumerated with the 
same instmction for the previously defined close 
interval. However, due to the use of different quality 
of the frames (updated 1990 or outdated 1985 or 
even outdated 1980) the amount of workload of each 
interviewer was varying. Consequentiy, the amount 
of coverage in each ED may be different from both 
sources. 

4.2 Dual Record System Estimation 

Dual record system is used as a method for determining 
the estimated number of households and persons through a 
matching procedure. The results are used to estimate the 
total number of persons in each region and the total popu­
lation. The model assumes independence of data collection 
from two sources, where the Census and tiie PES are used. 
In theory, all cells [n (r, c)] are observable except for n{2, 
2) and any of tUe totals that include n{2, 2). Chandra et al. 
(1949) assumes that, there is no correlation bias with the 
estimate for cell n{2, 2). For practical purposes, this paper 
also considers this assumption as vaUd. On the other hand, 
further discussion on the validity of such assumption is 
recentiy reported by Ayhan (2000). 

The methodology and the estimation procedures are 
presented below. Estimation of the number of persons not 
in the Census or in PES 

n(2,2) = [n ( l , 2 )n (2 , l ) ] /« ( l , I ) . (9) 

Total number of persons is estimated as 

n=n ( I , I )+n ( I , 2 )+« (2 , I )+n(2 ,2) (10) 

or alternatively, 

n = [n{*,l)n{l,*)]ln{l,l). (11) 
Table 2 earlier illustrated the matching procedure used 

for the dual record system method. The computational 
procedure presented here was repeated for each region 
separately. The estimates are given in Table 5. For each 
strata, n̂  is computed as n previously. 

Table 5 
Matched and Non-matched Number of Persons in the Census 

and Post Enumeration Survey by Regions 

Regions 

h 

1 

2 

3 

4 

5 

Total 

Matched 

«.(1,1) 

13,393 

6,400 

11,644 

3,134 

6,449 

41,020 

Census 
non-

match 

«,(1,2) 

642 

187 

1,414 

1,099 

1,449 

4,791 

PES non-
match 

n,(2, 1) 

533 

182 

1,340 

446 

1,439 

3,940 

Estimated 
omissions 

in both 
sources 

n,(2,2) 

26 

5 

163 

156 

323 

673 

Dual 
record 
system 

estimate 

(0) 

14,594 

6,774 

14,561 

4,835 

9,660 

50,424 

4.3 Total Population versus Household Population 

The total population was considered as the target 
population for the population projections, which was used 
to estimate the total number of EDs in the population. On 
the other hand, PES sample design only considered the 
household population as the target population. Because the 
PES design was based on the selected sample dwelling 
units only, which excluded the special enumeration distiicts 
(the institutional population). 

As stated earlier, the PES sample design was taken as the 
base for the comparison of two different enumeration 
systems during the matching procedures. This naturally led 
us to consider the household population as the target 
population for the appropriate estimation of the population 
total by the proposed estimators. In order to achieve this, 
the institutional population was computed later, from the 
1990 Census data, for regions and population size groups. 
The institutional population of regions are presented (by 
aggregating over the size groups) in Table 6. 

Table 6 
Determination of Household Population and Sample Sizes by Regions 

Regions 

h 

1 
2 
3 
4 
5 

Total 

Projected 
population size 

iV<'> 

20,639,200 

9,242,600 

15,731,600 

7,670,800 

13,687,800 

66,972,000 

Institutional 
population 

estimate 

A^f> 
367,184 

89,934 
176,031 
55,104 

249,309 
937,562 

Household 
population size 

iVf 
20,272,016 
9,152,666 

15,555,569 
7,615,696 

13,438,491 
66,034,438 

Household 
survey sample 

size 

" ^ 

18,900 
8,200 

14,800 
6,000 

10,800 
58,700 

Expansion 

r ( l ) 

1092.02 
1127.15 
1062.95 
1278.47 
1267.39 
1140.92 

factors 

^(3 ) 

1072.59 
1116.18 
1051.05 
1269.28 
1244.30 
1124.95 

N, (3) , A^r - A'f here F,'" = A^,'"/".'" and F f = N^'W,^^ 
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For the further use of the information on the institutional 
population, it was also assumed that, there were no cover­
age errors associated in measuring the institutional popu­
lation during the 1990 Census enumeration. The household 
population of each region, are then computed by sub­
traction. 

There were several reasons for removing the institutional 
population from the total population; 

(1) The PES sample design only reflected the household 
population. 

(2) The correct selection probabilities for the ideal 
coverage (representation) of each sample strata can 
only be based on the household population, not on 
the total population. 

(3) The proposed coverage error estimates should only 
be based on the household population. 

(4) The proposed estimators for the population total 
should also be based on the household population, 
where the PES results are household based. 

(5) It wiU be wrong and misleading to make comparison 
of coverage error statistics, when the base popu­
lations are different. 

(6) The census undercount is artificially inflated if the 
wrong population (namely, the total population) is 
taken as the target population. 

4.4 Coverage Error Measures 

Many coverage error statistics are proposed in the 
literature. Some of these error statistics are based on simple 
ratios or proportions, and others are based on more complex 
adjustment procedures. To simplify the solution to this 
problem, the following coverage error measures are 
proposed for the regional and total population. These are 
census coverage rate, census discrepancy rate and the 
amount of census discrepancy. The following coverage 
error measures are proposed which are based on the 
household population. 

Census Coverage Rate: 

Regional estimators: 

^ r = < / N r Vh h = l,2,...,H (12) 

where N,! = Census count of the household population 
[Ni^ =NI^-NI ] and N^ = Estimate from source (or 
method) 5. 

Standard error of regional estimators: Ma\dng the 
W, rw following scale tiansformation X\ (0.5) =^^ which is 

taken as a proportion, realizing that within each strata 
rw if Hi 

census coverage rates of each region is computed as 
X\) = 1, the standard error estimators of the 

se 
rw 

rw 1 -X w 
.(D) I 

Total population estimator. X=N*IN 

Census discrepancy rate: 

(s) 

Regional estimators: tp/ = 1 - X/ = 5flSif 

(13) 

(14) 

(15) 

Total population estimator :(p = l-[N*IN\=l-X. (16) 

Census discrepancy: 

Regional estimators: 5^^'=^1'-N* V/i (17) 

Due to the Umitations of the one day enumeration by the 
de facto system, other additional local coverage measures 
could not be considered for this study. Such additional 
coverage measures for the local areas could provide useful 
additional information for more complex coverage error 
models in countries who are employing de jure system of 
enumeration in their census taking. 

Even with the limitations of the de facto census, one 
could compute coverage estimates for large domains (such 
as provinces), where the population would not likely to shift 
very much between Census and PES interview. This was 
not possible, due to the limited sample size of PES which 
did not provide independent provincial estimates to be 
made within the regions. In addition, the sample sizes might 
not be large enough to give sufficient precision. 

5. ESTIMATORS OF POPULATION TOTAL 

The estimated population total is taken as the weighted 
sum of the all regional estimates. 

H 

(18) 
h 

N W ^ J - N W 

The standard error estimators for the total household 
population of each region is computed as 

se N W :N (S) Ph(^-Ph) 

. ( D ) 1 
(19) 

while the proportion of each strata is computed as 
,(0) /YU, (D) 

Ph 
The determination of the coverage error of a given 

Census is not an easy task, especially when a perfect list of 
a target population is not available to compare the results. 
This is always the case in most countries of the world, 
except the ones with population registers. 
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Table 7 
Estimates of the Regional and Total Household Population for 1990 by the Expanded Dual Record System 

Estimate and Their Standard Errors 

h 

1 

2 

3 

4 

5 

Total 

N<: 

15,936,939 

7,635,314 

15,573,280 

6,181,402 

12,242,987 

57,569,922 

se[N<,"] 

58,967* 

31,305 

57,621 

38,943 

48,972 

241,794 

N<f 

15,436,073 

7,367,741 

14,571,298 

5,884,582 

11,502,934 

54,762,628 

se[N'f] 

57,113 

30,208 

53,914 

37,073 

46,012 

230,003 

N ' : 

15,653,378 

7,561,003 

15,398,933 

6,136,969 

12,019,938 

56,770,221 

se[N';>] 

57,917 

31,000 

56,976 

38,663 

48,080 

238,435 

*: Standard error estimates are rounded to the nearest integer. 

Comparison of the results of a population census with 
projection figures also creates some kind of comparison 
problems, due to the validity of the several assumptions 
relating to projection models. In order to avoid a single base 
of comparison, the following expanded dual record system 
regional estimators are proposed for the determination of 
the census coverage errors. 

Estimator 1. N*^"=-P'r«r (20) 

where F<" =iV,''Vnr and n ^ = E E " . ( ^ O -

. ( D ) 

.(» 
Here n^ refers to the unweighted DRS estimate and 

nl corresponds to the selected sample size. 

Estimator 2. Nl̂ > = F r n r where F f = M , / m 
(1) .(21) 

< '̂̂ " '̂ViVf' = l/F/^^ h ] 
household 

the ideal selection probabilities { fl =n^ 11^^ 
for the PES sample, which is based on 
information. Therefore, Estimator 3 can be considered as 
more representative of the household population. 

6. COMPARISON OF COVERAGE ERROR 
STATISTICS 

For the comparison of error statistics, the population 
counts should be of the same standard base. It will be 
recommended to use a household population count which 
matches the corresponding population estimate. The 
regional and total population counts are given in Table 8. 
As mentioned earlier, the institutional population counts are 
determined from the 1990 Census counts. 

Estimator 3. N» , F f l ^ r where Ff'.NfVn«.(22) 

The dual record system estimators are expected to yield 
higher estimated counts than a single round survey {i.e., 
PES), by definition. Therefore, all the proposed estimators 
for the household population totals are DRS based. DRS 
estimates of the total household populations are given in 
Table 7. 

Difference between the three proposed estimates, are 
only based on the type of expansion factors used. When we 
examine the expansion factors, F̂ * is based on the 
projected population sizes over household survey sample 
sizes. On the other hand, F^ is based on total population 
EDs over total sample EDs of the original PES design. 

Finally, F^ is based on the household population size 
over household survey sample size. The first two estimators 
include institutional population components [Â ^ ] in the 
numerator of their expansion factors [Â ^ or M^], while 
only the third estimator uses household population 
information [Â ^ ] in its expansion factor. It is clear that, 
the expansion factor for the third estimator is derived from 

Table 8 
Regional and Total Population Counts for Turkey, 1990 

h 

1 

2 

3 

4 

5 

Total 

Census counts 

Nh 

18,544,967 

7,836,940 

12,824,347 

5,964,565 

11,302,216 

56,473,035 

where ŵ ' 

Institutional 
population 

counts 

Nf' 
367,184 

89,934 

176,031 

55,104 

249,309 

937,562 

= ^ . - < ' 

Household 
population 

counts 

N: 

18,177,783 

7,747,006 

12,648,316 

5,909,461 

11,052,907 

55,535,473 

For the purpose of population coverage error evaluation, 
the census coverage rate and the amount of census 
discrepancy was used. The computed population coverage 
error rates are given by regions and the total in Table 9. 
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Table 9 
Estimates of the Census Coverage Rates for Regional and Total 

Household Population in Turkey 1990 and Their Standard Errors 
, ( 1 ) se[X^l^] ,(2) se[Xf] ^(3) se[X^l^] 

1 1.14061 0.00410 1.17762 0.00407 1.16127 0.00408 

2 1.01463 0.00607 1.05148 0.00607 1.02460 0.00607 

3 0.81218 0.00407 0.86803 0.00411 0.82138 0.00408 

4 0.95601 0.00718 1.00423 0.00719 0.96293 0.00719 

5 0.90272 0.00506 0.96088 0.00508 0.91955 0.00507 

Total 0.96466 0.00223 1.01411 0.00223 0.97825 0.00223 

There is a clear pattem for certain regions, for all 
estimates. The census coverage rates can also be expressed 
as the amount of census discrepancy. A sinular pattem is 
expected for the three estimators, since the estimators are 
highly correlated. 

For tiie total population, estimates based on methods (I) 
and (3) has resulted in census undercount when compared 
with the corresponding actual population counts. Due to tiie 
computational procedures. Estimate 3 can be recommended 
among others because Estimate 3 is based on tiie projected 
household population, where the comparison base is the 
same as the selection. 

There is also a pattem for regional estimates, regardless 
of the method of estimation. For regions I and 2, all 
estimates indicated census overcount, while census under­
count was observed for all other regions by all estimates, 
except for Estimate 2 in region 4. 

7. CONCLUSIONS 

The coverage error study of the population census had 
provided some useful information in evaluating die metho­
dological issues which is summarised below. 

Comparison of the three proposed population total esti­
mates indicates that, the first estimate provided the highest 
value of the total count, while Estimate 3 provided more 
representative result for the total household population. 

The evaluation of the census coverage error rates and the 
amount of census discrepancy had shown that, for the total 
population. Estimates 1 and 3 has resulted in census 
undercount. There is also a distinct pattem for regional 
estimates, regardless of the method of estimation. There 
seems to be a census overcount in the first two regions, 
while census undercount was observed for the otiier three 
regions by aU estimates (except for Estimate 2 in Region 4). 

For the developing countries, the main problem of 
census taking is based on the undercount. In Turkey, the 
overcount issues in census taking only occur in very limited 
local areas and they are re-evaluated later and removed 
from the census data before release of the census results. 

On the basis of these findings it is clear that, the 
comparison of several sample based estimates with the 

population census count indicated the existence of some 
methodological problems which are present in the 
enumeration procedures of the Turkish Population Census. 
The most important of tiiese issues are the following; 

(1) Improving and updating the list of possible EDs in 
rapidly growing peripheries of the large cities by the 
use of area methods. 

(2) Obtaining a perfect Ust of all dwelling units within 
the EDs. This can be better achieved through a 
continuous screening operation by tiie local 
authorities, where they are responsible for this by 
law. Altematively, a Census of Housing can be taken 
just before the population census by the SIS which 
will also provide a useful frame for the population 
census enumeration. 

(3) There are many laws in the country which refers to 
the latest "population counts". This suggests that, 
major changes might be necessary on legal issues as 
well as in enumeration techniques. 

(4) Enumeration of the mobile populations also requires 
special attention, methods and qualified personnel. 

One would like to hope that, measuring the 
characteristics of the population through the Censuses may 
be considered important, by the responsible officials in time 
and the necessary developments will take place along these 
directions. 
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APPENDICES: TOOLS OF ENUMERATION 

The foUowing listing forms and questionnaires are used 
before and during the Census and PES operations. 

APPENDIX 1. LISTING FORMS USED 

Form 1: List of Buildings {for localities with municipal 
organization). 

This list is created by the local municipality personnel 
and later produced in triplicate. Used for sequential 
numbering of DUs in urban areas. 
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Form 2: List of Buildings (for localities without municipal 
organization). 

This list is created by the village head person and later 
produced in triplicate. Used for sequential numbering of 
dwelling units in mral areas. 

Form C: Enumeration District List of Buildings. 
This list is based on Forms 1 or 2. The EDs are formed 

on the basis of this list in urban and mral areas, separately. 

Form D: Census Control List. 
This is an update of Form C which was completed by the 

enumerator after the census field operation and retumed to 
the Local Census Committees with the completed census 
questionnaires. This form and the completed census 
questionnaires are forwarded to the SIS after the census 
field operation. 

APPENDIX 2. QUESTIONNAIRES USED 

Form A: Population Census Questionnaire. 
The population census questionnaire consisted of four 

main parts. The information is collected through a personal 
interview by a paper and pencil approach. 
Part 1. Address details. 
Part 2. Type of place of the residence. 
Part 3. Household module [contains 7 precoded household 
questions]. 

Information is collected to identify the household head, 
presence of head, total number of persons in HH, number 
of guests, number of HH members absent, ownership of 
present DU, and ownership of any other DU. 
Part 4. Individual person's module [contains 26 precoded 
individual questions]. 

For each person present, information is obtained on sex, 
age, relation to HH head, place of birth, citizenship, 
permanent residence, educational background, marital 
status, fertility information, employment status, and main 
occupation. 

Form B: Post Enumeration Survey Questionnaire. 
PES questionnaires are generally based on a subset of 

questions of the main study. However, for this study it was 
decided by the Census Advisory Committee to use the 
complete census questionnaire for the PES. The 
questionnaire for PES is completed in the same way as the 
Census. 
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A Hierarchical Model for the Analysis of Local Census 
Undercount in Italy 

D. COCCHI, E. FABRIZI and C. TRIVISANO' 

ABSTRACT 

Census counts are known to be inexact based on comparisons of Census and Post Enumeration Survey (PES) figures. In 
Italy, the role of municipal administrations is crucial for both Census and PES field operations. In this paper we analyze 
the impact of municipality on Italian Census undercount rates by modehng data from the PES as well as from other sources 
using Poisson regression trees and hierarchical Poisson models. The Poisson regression trees cluster municipalities into 
homogeneous groups. The hierarchical Poisson models can be considered as tools for Small Area estimation. 

KEY WORDS: Census undercount; Post enumeration survey; Bayesian hierarchical modelling; Gamma-Poisson regression 
models; Poisson regression trees. 

1. INTRODUCTION 

The Italian Population Census takes place every ten 
years and represents the most important institutional duty of 
the Italian National Institute of Statistics (ISTAT) (The 
work leading to this paper has been developed just before 
2001 Italian Census and the subsequent PES. The results 
have been considered in performing the 2001 PES). In 
order to carry out the Census, ISTAT reUes on municipal 
administiations who are responsible for all field operations 
(training of interviewers, planning of interviews, data gath­
ering and basic data processing). During Census operations, 
each municipality works independently from the others 
under ISTAT supervision. The accuracy of the Census re­
sults therefore differ considerably from one municipality to 
another, even if contiguous. In Italy, the geographical area 
of a municipal borough is sub-divided into Census Enumer­
ation Areas (EAs), which are assigned to a single interview­
er during Census operations. The EAs differ in terms of 
shape, stmcture and difficulty of enumeration, as well as 
interviewer. It is likely that the undercount rate varies 
substantially among EAs within the same municipality. 

After tiie 1991 Population Census, ISTAT conducted a 
Post Enumeration Survey (PES) to measure the phenome­
non of undercount. Population Census counts are known to 
be generally incorrect because of missed, multiple and 
misplaced enumeration. Missed enumeration is the most 
important inaccuracy and typically yields a net population 
undercount that may vary geographically and between dif­
ferent social groups, and impacts the determination of the 
relative sizes of sub-populations (Abbate, Masselli, Signore 
1993). Field operations of the PES were carried out by the 
sampled municipalities themselves. The 1991 Italian PES 
data have been analyzed by Abbate, Masselli and Signore 
(1993), who estimate the overall national undercount rate 
by means of a Lincoln-Petersen model (see Wolter 1986) 
using post-strata of municipalities based on large 

geographical areas (North, Center, South). Working on the 
same data, Fortini (1994) estimates the overall national 
undercount by means of latent class models. 

Instead of estimating the undercount rate for the whole 
counhy or smaller domains, we propose models designed to 
explain the variation in undercount rate at the municipal 
level. The availability of factors accounting for the size of 
the net undercount may be a basis for creating homoge­
neous groups of municipalities, for planning a more effi­
cient stratification in future Post Enumeration Surveys. 
Moreover, knowledge of those flaws in municipal organi­
zation which significantiy influence the undercount may 
provide guidelines for actions designed to reduce its size. 

Contributions which use disaggregated PES data are 
present in the literature. Alho, Mulry, Wurdeman and Kim 
(1993) consider a logistic regression model for the indi­
vidual (household) probability of being censused. In 
keeping with Moura and HoU (1999), their model could be 
extended to include municipality or other group effects. We 
are in fact aware that our choice of modelling municipal 
data is not the same as the analysis of household level 
records, since many features determining individual propen­
sity to be caught by the Census average out when dealing 
with aggregated data. A comprehensive analysis based on 
individual records is not feasible in the Italian case, since 
there were very few questions for individuals included in 
the 1991 PES schedule. Similarly, tiie 1991 PES provides 
very littie auxiUary information on the EAs, with the conse­
quence that models based on EA undercounts cannot be 
proposed. 

Our analysis is based on combining different data 
sources. The auxiliary information comes from the above-
mentioned 1991 PES, two studies on the statistical quality 
of municipalities conducted by ISTAT during the early 90s 
(Di Pieti-o 1998, 1999) and demographic and social 
indicators obtained from the 1991 official Census results. 

D. Cocchi, E. Fabrizi and C. Trivisano, Dipartimento di Scienze Statistiche "P. Fortunati", Universitil di Bologna, Italy. 
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We face the problem of how to make efficient use of the 
information obtained from the various data sources. We 
have in fact a large number of variables, most of which are 
categorical or polychotomous. Instead of using a variable 
selection algoritiim, we have chosen to build homogeneous 
groups of municipalities which are then introduced into the 
model by means of a design matrix for the random effects. 
These groups are constmcted using Poisson regression trees 
(Themeau and Atkinson 1997). This hierarchical usage of 
information provides a natural basis for the design of strata 
of geographically non-contiguous municipalities. 

Few EAs are re-censused within each sampled munici­
pality in the PES; the average EAs sampling rate is 0.001. 
This is a typical Small Area setting where direct estimates 
of the municipal undercount rate are unreliable and ought 
to be replaced by syntiietic or composite estimates based on 
a suitable model. The phenomenon of undercount is rare. 
Our data consist of counts and may show a large over-
dispersion with respect to a Poisson distributional assump­
tion. We suggest the use of hierarchical Poisson regression 
models to manage overdispersion. 

The hierarchical models here adopted manage explicitly 
overdispersion due to municipal heterogeneity. A further 
extra Poisson variability source is due to heterogeneity 
within municipaUties, because of clustering of missed enu­
meration within EAs, or of clustering due to missed enu­
merations of individuals in the same family. This kind of 
overdispersion is not explicitiy treated in the models. 

We adopt a full Bayesian approach for specification and 
estimation purposes and base tiie solution of the models on 
Markov chain Monte Carlo simulation methods. Witiiin this 
hierarchical framework, we deal with overdispersion by im­
posing a Gamma distribution on the rate of the first level 
Poisson distribution, thus marginally obtaining a Negative 
Binomial. Moreover, conditionally on the hyperparameters, 
the proposed model features posterior linearity and the 
corresponding posterior means for the municipal under­
count rates are linear composite estimators. Thus, the 
amount of smoothing depends on how much information is 
provided by each municipal sample in the PES. 

Our results show that the municipality stratification em­
ployed in designing the 1991 PES (based on geographical 
area and population size) can be improved, since the under­
count rate is shown to be largely independent of geograph­
ical area. On the contrary, variables describing the statisti­
cal efficiency of local administrations are useful in discrimi­
nating between the different degrees of undercount among 
municipalities of similar size and demographic stmcture. 
Whilst leaving the design of the PES unchanged, our results 
may provide useful guidance when performing data 
analysis. 

The present paper is organized as follows. Section 2 de­
scribes the basic features of the PES and of the other data 
sources we have taken into consideration. Section 3 looks 
at the Poisson regression trees used to build homogeneous 
groups of municipalities. In section 4 we introduce the 

hierarchical Poisson regression models, while empirical 
results and model comparisons are discussed in section 5. 

2. THE PES DATA AND AUXILIARY 
INFORMATION 

2.1 The Italian Post Enumeration Survey 

The 1991 Italian Population Census took place on 
October 20"". The subsequent Post Enumeration Survey, 
based on a two stage stratified sampling design, was carried 
out a few weeks later. Municipalities constitute the primary 
units, whereas the secondary ones are represented by the 
Census EAs. An EA is the smallest area into which the 
municipal territory is partitioned for Census operations; 
each EA is assigned to a single interviewer. 

The primary sampUng units were stratified according to 
geographical area (North-West, North-East, Center, South, 
Islands) and demographic size (7 classes for the municipal­
ities below 350,000 inhabitants), producing 35 stiata. 
Within each stratum the sampled municipalities were se­
lected without replacement and with probabiUty proportion­
al to their demographic size. The 10 municipalities with 
more than 350,000 inhabitants have been included in the 
sample as self-representative units. The secondary sampUng 
units were selected with equal probabilities by systematic 
sampUng. The final PES sample contains 85 municipalities 
and 638 EAs (out of a national total of 8,095 municipalities 
and 64,000 EAs) with a national design based estimate of 
1.24% (Abbate, MasselU and Signore 1993). 

The PES forms were filled out during face to face 
interviews and contained just a few simple questions. The 
characteristics of tiie sampled households are limited to the 
number and gender of household members. Other PES 
questions were designed to facilitate record Unkage with the 
Census result, and therefore to reduce both misplaced enu­
meration and other non sampUng errors in the evaluation of 
undercount (see Fortini 1994 for details). 

2.2 The Surveys of the Statistical Quality 
of Municipalities 

A data set on the statistical quality of Italian munici­
palities was constmcted by ISTAT (see Di Pietro 1998, 
1999). It integrates different sources: information from 
1991 Census performance records, municipal population 
registers and Interior Ministry data. This data set contains 
also the results of three administrative surveys, conducted 
during the 90s, carried out in order to evaluate the 
performance of municipalities with regard to their commit­
ments to ISTAT. The first survey is about the computer­
ization of municipal Statistics Bureaus. The second survey, 
known witii the acronym POSAS, is a post-Census survey 
of the demographic registers of the resident population, 
classified by year of birth, age and civil status. The third 
survey, known with the acronym ISCAN, regards tiie 
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appropriateness of registiations on the municipal population 
registers list. These surveys provide data for all Italian 
municipalities. 

From this data set we selected a subset of variables 
related to the municipal activity at the time of the 1991 
Census: 

a) the percentage of noncoded fields of the Census 
household forms which had to be filled out, after the 
interview of the households, by the municipal 
Statistics Bureaus (PERCOD); 

b) the ratio of the population temporarily abroad to the 
population present at the 1991 Census (PERCEST); 

c) the ratio of the difference between the 1991 Census 
and population registers counts to the 1991 Census 
counts (PERDIFF); 

d) the time needed to update municipal demographic 
registers on the basis of 1991 Census results (ESTDOl); 

e) delay in street name updating (INDl 1). 

2.3 Demographic Variables 
We also consider a set of demographic ratios from the 

1991 Census results. In particular, we use the percentages 
of "single member" and "more than one family" house­
holds, and sex ratios (males/females) in the municipality. 
TUe municipal resident population - resulting from the un­
corrected 1991 Census counts - is also a very important 
variable. The number of EAs sampled in each municipality 
for the PES is a further signal of the municipality 
importance. 

3. POISSON REGRESSION TREES 

The available data sources provide us with a large num­
ber of auxiUary variables, many of which are categorical or 
polychotomous. Before we fit the hierarchical models, we 
group municipalities with homogeneous household under­
count rates using Poisson binary regression trees. Groups 
based on trees are included as factors in the models de­
scribed in the next section. Our principal aim is to check the 
effectiveness of traditional stratifications, improving them 
ex post by hierarchical models with suitable covariates and 
to verify how they differ from comparable results based on 
optimal groupings. 

The conditional regression models are based on the ca­
nonical logarithmic Unk. The splitting criterion is based on 
the usual deviance statistic (Themeau and Atkinson 1997): 

Deviancep^^„, - (Deviance^,,, ,̂ f, + Deviance^,,,^^,,) 

The basic idea for building a tree is to begin with a large 
tree TQ constmcted using a naive and mild stopping mle (as 
the minimum number of observations in the final nodes of 
the tree) and then to select the right-sized ti-ee among the 

sub-trees of T^ by pmning. The established methodology 
for pmning ti^ees is cost-complexity pmning, first intro­
duced by Breiman, Friedman, Olshen and Stone (1984). Let 
Dj be the deviance of a subtree J of T^, size (7) tiie 
number of terminal nodes of T and a > 0 a cost-complexity 
parameter for defining the cost-complexity measure: 

D.j.{a) = D.J. + asize(r) (1) 

For a specified a the tree T{a) that minimizes (1) can be 
found. It can be shown (Breiman et al. 1984) that a nested 
family of subtrees { 7Q, T,,..., T^,,..., T^^^ ] of T^ exists 
such that each tree is optimal for a range of values of a. 

The problem is now reduced to selecting one of these 
subtrees. The selection is carried out in order to minimize 
the prediction error defined as the deviance contribution for 
a new observation. To estimate the prediction error, the 
availabiUty of an independent sample would be in principle 
the best option, but since it is advisable to use all data to 
"instmct" the tree in the best possible way, a cross-
validation method is used. Usually, the ti-ee T̂ , with the 
minimum estimated prediction error is selected. Here we 
use a more severe pmning mle which consists in selecting 
the smallest tree with an estimated prediction error not 
larger than the estimated prediction error of T^. plus its 
standard error. This pmning mle, known as the "1 SE mle" 
(Breiman et al. 1984), is adopted in order to avoid model 
overfitting. 

Since the cross-validation of Poisson regression trees 
may give, in some nodes, infinite values for the deviance 
statistic, we use Bayesian shrinkage estimators of the tme 
rates, based on a simple Poisson-Gamma model, as sug­
gested in Themau and Atkinson (1997). 

We built three different trees based on different starting 
subsets of auxiliary variables. 

Tree I (shown in Figure 1) is based on demographic 
variables only. The first split separates municipalities with 
population less than 100,100 from those with more than 
100,100. This splitting value is almost coincident with the 
100,000 demarcation value used in the stratification of 
municipalities for the 1991 PES. The second split isolates 
a sub-sample of small municipalities for which less than 4 
EAs were sampled in the PES. A further split is made on 
the basis of the sex ratio. 

Tree 2 (Figure 2) is based exclusively on variables 
concerning the quality of the statistical performance of mu­
nicipalities. The first split is based on the timing in cor­
recting demographic registers (INDOl): those munici­
palities that were quickest in performing this activity have 
the lowest undercount rates. Lower level splits highlight the 
problem of people temporarily abroad (PERCEST) which 
in areas characterized by massive emigration may lead to 
serious undercounting of the municipal population and 
errors in the book-keeping of demographic registers 
(PERDIFF). In this tree, one half of tiie sample is classified 
in a single node which is likely to contain residual 
heterogeneity. 
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Tree 3 (Figure 3) is based on both demographic and 
quality variables. The first spUt is based on the municipal 
population exactiy as was the case in Tree I. Subsequentiy, 
the subset of municipalities with less than 100,100 

inhabitants is split into small and middle sized 
muiucipaUties at a threshold of 13,200. The quality variable 
included in this tree consists of timing in correcting 
demographic registers (INDOI). 

Undercount rate 

If mun. pop. < 100100 then: 

If sampled EA's < 4 then: 

0.0124 

^^648 85 

0.006 

154 66 

Non enum. households 

else 
\ 

municipalities 

If sex ratio > 0.92 then: 

' s ^ ^ ^ ^ 

0.0083 

127 25 

E'SMiailiili 

Figure 1. Tree 1 based on demographic variables. 

Undercount rate 

municipalities 

If INDOldiefon! 1993 then: 

IfPERCEST< 0.53% then: 

0.0124 
M 648 85 

0.005 
_Z5 40 

non enum. households 

ebe If PERDIFF > 045% then: 0.0155 
573 45 

lOIglggH WMfm 

Figure 2. Tree 2 based on municipal statistical quality variables. 

If mun. pop. < 13200 then: 

Undercount rah: 

If mtui. pop. < lOOlOO then: 
0.0124 

^^648 85 

0.006 

154 66 

Non enum. households 

else municipalities 
X 

If INDOI^before 1993 then: 
0.0072 

146 33 

f 
,/Xi& ,(l(5\'i' 

Figure 3. Tree 3 based on demographic and quality variables. 
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4. HIERARCHICAL POISSON-GAMMA 
MODELS 

We denote the observed number of not enumerated 
households in each municipal sample witii y.{i = I,..., 85). 
As an initial approximation, these counts can be modeled 
using a Poisson distribution: 

y,. |5,.,e,.~Pois(5,.e,.) (2) 

where 5̂ . represents the rate of undercount to be estimated 
and e. is given by tiie number of households in the sampled 
EAs within the municipality. Dependency on a set of 
explanatory variables is expressed by means of a canonical 
log-linear link: 

ln(5,.e,.)=X.|3+Z.^ (3) 

where Z. is the i-th row of a categorical design matrix 
introduced for modelling group effects. Each X. is a p-
vector of explanatory variables associated with the i-th 
municipality and (3 and ^ are tiie regression parameters. 

The occurrence of failure to enumerate is relatively rare 
when compared to the number of observed households. For 
this reason, the data may show strong overdispersion. 
Overdispersion can be managed by hierarchically modelUng 
the parameters 8̂ . in (2). If the 8̂ . are Gamma(a, v) dis­
tributed, the Negative Binomial distribution is marginally 
obtained for y. by integrating out the parameters 
8.: i.e. y. \ a, v, e. ~ NegBin (a , v/(v -*• e.)) with mo­
ments: 

ae. ae.{v +e.) 
E{y. I a, e., v) = , V{y. \ a, e., v) = 

V V 

(see Lawless 1987). 
Instead of the parameterization above, we adopt the 

parameterization of the Gamma distribution at the second 
level of the hierarchy according to the proposal made by 
Christiansen and Morris (1997). When assuming 

8,. |L,^~Gamma(C,C/\) (4) 

with moments £(8; | X., Q = X. and V(8. | X., Q = X^ IC,, 
we have 

( ux ] 
y.\e,,X.,i;~-NegBin C , - — ^ , 

I (^IX. + e. 
where V{y. \ e., X., Q - E{y. \ e., X., Q = e^x]l(,. As ^ 
moves towards infinity, the variance of the Negative 
Binomial converges towards that of the Poisson (the vari­
ance of the Gamma in (4) tends towards 0), while small 
values of I, point to high overdispersion. 

From (4) it is immediate to see that: 

E{b.e. I e.,X.,Q =X.e.; 

therefore the dependence assumption (3) is re-stated in 
terms of X. e.: 

ln(X.e.)=X,.p+Z,.^. 

The prior (4) is conjugate to the likelihood defined by (2). 
Consequentiy one obtains 

S,-1 y,-, e., X., t; ~ Gamma(y,. + C„ e. + ^/L) 

from which it follows that 

E{5.\y.,e.,X.,Q = {l-B.)r.^B.X. (5) 

where r. = y.le. and B. = ^/(^ + e. X.). 
Each posterior mean (5) can be seen as a composite 

Small Area estimator where both the direct and the syn­
thetic components are weighted according to the infor­
mation available from the sample. 

From (5) we note that the posterior mean of the distri­
bution of the rate parameters S. is a linear combination of 
tUe observed undercount rate r. and the prior mean X.. In 
other words, the model features posterior Unearity. The two 
terms in (5) are weighted according to B., which varies 
between 0 and 1. The larger the B., the more the prior 
means X. (synthetic estimators) receive weight and the 
model estimates gain in importance compared with the 
observed rates. We note tiiat each B. is inversely propor­
tional to the e.X., expressing the amount of information 
provided by the sample of each domain. 

To complete the full Bayesian specification of the model 
we assign a distribution to the third level parameters 
C,,^,^. According to an approximate non-informative 
criterion, we introduce proper, but flat, prior distributions. 
In particular we assume that: 

iid 
p. ~ iV(0,100), j=l,...,p 

ind _ 1 

^̂  ~ N{kUi^,^), 
xn,. 

k = l,...,q 

(6) 

(7) 

where iî  is the average undercount in tiie k-th group and n̂  
is the average number of sampled households in the mu­
nicipalities of the same group. Priors (7), associated to 
group effects, are therefore centered on groups means and 
their precision is proportional to the group size. They are 
built to be weakly informative for improving the stability 
and convergence properties of the model. Priors for 
regression coefficients (6) associated to the remaining 
regressors are centered in 0. For the overdispersion para­
meter C, we select the prior 

C,~ 1,000'Gamma(0.001,l) (8) 

foUowing the suggestion given by Christiansen and Morris 
(1997). Note that the first two prior moments of (8) are 
E{Q = I and V(0 = 1,000; thus the prior is very diffuse 
and characterized by high positive skewness. 

At the fourth level of the hierarchy we specify the 
following priors: 

k~N{0,lOO) (9) 
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T~ Gamma(0.001,0.00I). (10) 
ABIC = -21n 

which are both designed to have a very mild impact on 
posterior inferences. 

We compute tiie posterior distiibutions of (5̂ . | y.^, e.) by 
using Markov chain Monte Carlo (McMC) sampling 
algorithms. For these calculations we use the software 
BUGS (Spiegelhalter, Thomas, Best and Gilks 1995), 
which is based on Gibbs sampUng. Since the solution of 
models involving discrete distributions is computationally 
very demanding, we specify the prior distributions (6) -
(10) by selecting simple well known functional forms, as 
Normal and Gamma, that facilitate fast computations. We 
examinated the sensitivity of the posterior means in (6) -
(10), and we did not find any substantial changes in the 
posterior means. Hence, these priors can be considered 
noninformative. For the convergence assessment we con­
sider the multiple chain approach suggested by Gelman and 
Rubin (1992), mnning three different chains with weU 
separated starting points for each model. The visual 
inspection of the chains path and the modified Gelman and 
Rubin statistic (Brooks and Gelman 1998) are considered 
as basic convergence assessment tools. We mn 10,000 
iterations for each chain, discarding on average a 
conservative "bum in" of 3,000, thus yielding an approx­
imate 20,000 draws from the posterior of each model. 

5. MODEL COMPARISON AND DISCUSSION 
OF EMPIRICAL RESULTS 

We estimated a variety of models for different def­
initions of the matrixes of regressors X and Z. As regards 
the design matrix Z we consider seven different cases, in 
which municipalities are grouped using either traditional 
stratification criteria (geographical area and demographic 
size) or the results of the partitioning techniques discussed 
in section 3. They are: a) geographical area (North, Center, 
South and Islands), b) demographic size classes only, c) 
demographic classes by geographical area, d) demographic 
size classes and geographical areas, e) Tree 1 (based on 
demographic variables), f) Tree 2 (based on quality vari­
ables), g) Tree 3 (based on both quality and demographic 
variables). Two kinds of variables may be proposed in 
matrix X: the quality variables of section 2.2 and the de­
mographic variables of section 2.3. Matrix X has therefore 
three different possible compositions: I) quality variables 
only, II) demographic variables only, HI) both quality and 
demographic variables. By matching the different def­
initions of X and Z, twenty-eight different models have been 
estimated. In this way we do not perform variable selection 
procedures, rather we intioduce altemative blocks of 
variables. 

The quantity commonly used for comparing models 
within the Bayesian framework is tiie Bayes factor {BF). A 
large sample approximation of -2ln{BF) is given by 

SUPM/CJ I %) 
iPk-Po)^^" (11) 

(see Schwarz 1978) which, moreover, makes no reference 
to the prior assumptions. We note that in (11) the 
M^.{k = l,...,K) index tiie set of competing models and 9̂  
is the pj^ dimensional parameter indexing the likelihood 
associated to each model. The null model against which all 
the others are compared is the one with the only intercept, 
and is denoted by MQ. Positive and large values of (II) 
support model M .̂ 

The complexity penaUzation in (I I) depends on the size 
of tiie subset of third level parameters; Uiat is, aU models are 
compared as if they were non hierarchical. Since they share 
a similar hierarchical stmcture, this operational modifica­
tion of the standard BIC criterion does not alter the results 
of model comparison summarized in Table 1. 

We note that those models where group effects are based 
on geographical area perform very poorly (row I), and the 
same happens when die geographical area is combined with 
the demographic size of the municipalities (rows 3 and 4). 
This is rather surprising, since geographical areas are em­
ployed in designing the stratification of the PES sample, 
and the efficiency of administrations, together with other 
social and economic indicators, are currently supposed to 
be clustered with respect to Italy's large geographical subdi­
visions (North, Center, South). This outcome may be as­
cribed to the predominant role that the specific organization 
of each municipality plays in determining the efficiency of 
Census operations within its territory. 

Models with ti-ee-based group effects (rows 5-7) clearly 
perform better than models with group effects based on 
ISTAT ti-aditional stratification criteria (rows 1-4). The only 
exception to this behavior are those models relying on Tree 
2 (row 5), which perform rather poorly when demographic 
size and other demographic variables are not included. In 
fact, the municipal population can be thought of as a proxy 
of municipal organizational complexity. It seems that 
quality variables are powerful in discriminating the level of 
undercount among municipalities with similar demographic 
features, but have little relevance when the effect of a dif­
ferent degree of organizational complexity is not accounted 
for by inttoducing a variable of demographic size. We point 
out that adding a design matrix Z based on Poisson re­
gression trees grouping of municipalities allows us to model 
non linear relations between the undercount and the pre­
dictors. 

Actually, the models based on Tree 3 provide the best 
performance. A number of comments about the model with 
maximum ABIC follow. This model uses demographic and 
quality variables as regressors. The adequacy of the selected 
model is assessed by means of posterior predictive checks. 
In particular the general purpose goodness-of-fit discrep­
ancy measure proposed by Brooks, Catchpole and Morgan 
(2000) as a suitable tool for rare occurrencies as census 
undercounts: 
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D{y;Q) = Y[fi-^|^i)\ (12) 

where Exp. = e.E{5. | y^, e.), is adopted. The associated 
0.46 tail area probability highlights a good fit for the 
selected model. 

The set of models has been estimated again after 
eliminating the greatest municipality, which is potentially 
an influential case. Again, the model based on Tree 3 with 
demographic and quality variables as regressors has been 
selected using the criterion (11). This model shows a good 
fit (the Bayesian p-value associated to the discrepancy 
measure (12) is equal to 0.51). Moreover, composite esti­
mates do not change much when compared with those ob­
tained with the whole sample. 

In order to check model fitting, in Figure 4, composite 
estimates against direct estimates of the number of not 
enumerated household in each municipality are plotted (the 
values of the largest 10 municipalities are reported with a 
different scale). The composite estimates are 
w.eiE{5.\y.,e.), while the direct estimates are w.y.,w. 
being the expansion factor due to EA sampling in each 
municipality. Composite estimates are posterior expecta­
tions of first level parameters and, conditionally on the 
hyperparameters, are composite estimates in which the 
model predictions represented by the X. receive littie weight 
when there is sound sampUng evidence. From (5) we know 
that this weighting process is mled by the municipal 
shrinkage factors B.. They weight the direct estimates 
y.le. in proportion to e.X., i.e. the number of not enu­

merated households within tiie municipal sample predicted 
by tiie model. 

Table 1 
ABIC of the estimated models compared with the reference model MQ 

Variables in the models 

Group 
Effects 

Area 
Classes of Mun. Pop. 
Area* Mun. Pop. Classes 
Area + Mun. Pop. Classes 
Tree2 (quality vars) 
Treel (demographic vars) 
Tree3 (quality + demographic vars) 

Only group 
effects 

-4.22 
15.34 
2.08 
9.68 

11.81 
35.14 
38.89 

Group eff. + 
quality vars 

-0.39 
17.87 
6.13 

13.20 
8.34 

35.37 
35.76 

Group eff. + 
demographic vars 

18.52 
17.32 
4.91 

13.74 
23.48 
32.28 
41.12 

Group eff. + 
quality and 

demographic va 

23.32 
20.09 

8.45 
17.83 
26.15 
35.53 
41.45 
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Figure 4. Composite estimates against direct estimates of the number of not enumerated 
households in each municipality. 
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For municipalities with resident population of up to 
10,000 (this value is relatively close to the spUtting value 
13,200 of Tree 3) in almost all cases we have B. values 
that are very close to I; this means that, for small 
municipalities, the role of the model component in the 
determination of the composite estimate is overwhelming. 
In Figure 5 composite estimates (and their 95% credibility 
intervals) are plotted against direct estimates. 

Figure 5. Composite estimates (x) and their 95% credibility 
intevals; (O) direct estimates. Municipalities are sorted by 
demographic size. 

The width of the credibility intervals depends on the 
undercount level and, as should be expected, is large when 
the size of the sample within the municipality is small. 
Composite estimates associated with large credibility inter­
vals are also characterized by large shrinkage factors, as a 
consequence of the scarce sample information. Large 
intervals for some middle-sized municipaUties can be 
justified with the fact that they are under-sampled with 
respect to their size. 

In small municipalities, where Census is conducted more 
easily, the undercount is generally very small. The under­
count estimate is difficult since very few EAs are currently 
sampled from each of the small municipalities, often 
providing no evidence of undercount. In such cases, the 
composite estimate essentially consists in the model based 
component. Therefore, for the next PES, given the overall 
sample size, our suggestion is not to insist in sampling a 
great number of small municipalities, but to redirect 
sampling towards middle-sized municipalities, which are 
more etherogeneous. Moreover, die number of EAs to 
sample in the selected small municipalities ought to be 
increased. 

The results of this work, which considers for the first 
time a criterion for grouping togetiier municipalities 
according to their performance in statistical operations, 
confirm that an improvement may be reached for future 
similar surveys by modifying the sttatified sampling design 
and by modelling undercount by means of the covariates 
mimicking the difficulties of the municipality behaviour in 
conducting censuses. 
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Estimation of a Measure of Disclosure Risk for Survey Microdata 
Under Unequal Probability Sampling 

C.J. SKINNER and R.G. CARTER' 

ABSTRACT 

Skinner and Elliot (2002) proposed a simple measure of disclosure risk for survey microdata and showed how to estimate 
this measure under sampling with equal probabilities. In this paper we show how their results on point estimation and 
variance estimation may be extended to handle unequal probability sampling. Our approach assumes a Poisson sampling 
design. Comments are made about the possible impact of departures from this assumption. 

KEY WORDS: Confidentiality protection; Finite population inference; Poisson sampling; Statistical disclosure control; 
Uniqueness. 

1. INTRODUCTION 

Microdata files of survey data may be of great analytic 
value to researchers. When deciding whether and how to 
make such files available, agencies conducting surveys 
need to protect against risks of possible statistical disclosure 
(Willenborg and de Waal 2001). Skinner and Elliot (2002, 
abbreviated henceforth to SE) proposed a simple measure 
of statistical disclosure risk for survey microdata, for use as 
evidence to inform such decisions. They showed that this 
measure may be estimated simply under sampling with 
equal probabilities. In this paper we show how tiieir results 
may be extended to handle unequal probability sampling. 

The measure is inttoduced in section 2. Point estimation 
and variance estimation for the measure are considered in 
sections 3 and 4 respectively. See SE for the relation of this 
measure to the literature on statistical disclosure risk. 

2. THE MEASURE OF DISCLOSURE RISK 

We consider the possible release of a microdata file 
consisting of a set of records for units {e.g., individuals or 
households) in a sample s, selected by probability sampling 
from a population U. EacU record consists of a vector of 
values of a specified set of variables for the given unit. 
Following a standard approach to disclosure risk assess­
ment {e.g., Betiilehem, Keller and Pannekoek 1990), we 
suppose that an intmder attempts to match the microdata 
records to known population units using a specified subset 
of variables. We assume that these 'identifying variables' 
are categorical and that the possible combinations of their 
values define the categories 1,..., 7 of a variable X. {J will 
usually be very large). 

We suppose that the intmder is able to determine the 
value of X for a population unit with known identity and 

that the intmder 'claims' that a microdata record has been 
identified if and only if this value matches the value of X 
recorded in the microdata for just one microdata record. 
Assuming (a) that the population unit with known identity 
is randomly drawn from U with equal probabilities and (b) 
that the value of X for this unit is measured in the same way 
that X is measured in the microdata, the probability that the 
intiude's claim is correct is: 

0 = Pr (correct match | unique match) 

Ynfj = i)/YEjf(fj = 'i)' 
j = i y=i 

where /. and F. are the frequencies of units in s and U 
respectively, for which X =j and where /(.) is the indicator 
function (/(A) = 1 if A is tme, I{A) = 0 otherwise). The 
numerator of 9 is the number of microdata records which 
are unique in the microdata with respect to X and the 
denominator of 0 is the number of units in the population 
which share tiie same value of X with any of these records. 

The quantity, 9, is the measure of disclosure risk 
considered in this paper. To protect against disclosure, 6 
might be estimated under alternative forms of microdata 
release (implying altemative specifications of X) and a form 
of release chosen so that 9 is inferred to be acceptably 
small. A sensitivity analysis will usually be required in 
which the specification of X is varied not only according to 
the form of release but also to allow for altemative plausible 
forms of extemal information which an intmder might hold 
about known population units. For example, one might 
consider both an intmder with access only to publicly 
available information, such as the visible characteristics of 
an individual, and an intmder with access to a private 
database held by an organisation. 

C.J. Skinner, University of Southampton, Southampton, United Kingdom, S017 IBJ and R.G. Carter, Statistics Canada, B-2 Jean Talon Building, Ottawa, 
Ontario, KIA 0T6. 
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3. ESTIMATION OF 0 

We suppose that tiie data consist of the values of X for 
the sample units. Hence, the sample frequencies /. are 
known but tiie population frequencies F. are unknown 
{j = l,...,J). The 'parameter' of interest, 9, is also 
unknown and must be estimated. We adopt a design-based 
approach to inference in which the /. are random and the 
Fj are fixed. As discussed by SE, the 'parameter', 9, 
therefore depends on s, unlike standard finite population 
parameters considered in survey sampling. 

SE motivate a point estimator of 9 by a resampling 
argument, which may be generaUsed to the case of unequal 
probability sampling, as follows. 

Repeat the following steps K times. 

Step I: remove a single unit / from the microdata sample 
s with probabiUty 

-1 , r ^ -1 

a,- = T'i 'Ys^i ' 
where TT,. is the (first-order) inclusion probability 
of unit i; 

Step 2: copy the removed unit back into the sample with 
probability Tt̂ .; 

Step 3: record whetiier the removed unit matches a unique 
record in the microdata and whether this match is 
correct. 

The idea is that Step I mimics the intmder's (equal 
probability) selection of a unit from U (using the inverse 
sampUng idea of Hinkins, Oh and Scheuren 1997). Step 2 
mimics the inclusion of that unit in 5. The estimator of 9 is 
the empirical proportion of unique matches which are 
correct. Following the argument of SE, this estimator 
converges almost surely as AT - «> to 

9 = 

Ys^n Pr(unit/removed and then copied back) 

I Ys^'i Pr(unit i removed and then copied back) 

+53̂ (2) Pr(unit / removed and then not copied back)] 

^ E.c) a,t,. / [E , (o a,'̂ , + E.(2) a,(l -^i)] 

= nC)/nW + V « « ' - l ) 
(1) 

where 5*'' is the subsample of unique units in s, s^^^ is the 
subsample of units which occur in pairs and n*" = 
Yj I{fj = 1) is the size of.? ̂ '\ In the case of equal probabi­
lity sampUng with TI. =7i, 0 reduces to n^'V 
[n(')+2n'2'(7t-'-I)], where 2n^^^ = 2Y^jI{fj = 2) is the 
size of s ̂ '^\ as in SE. 

We are interested in 9, defined in (1), as an estimator of 
9. SE show that 0 is consistent for 9 in the equal probability 
sampling case. The basic steps of their argument may be 
generalised to the case of unequal probability sampling as 
follows. We may write 

9 =«('7[n(') + J^(F.-l)/(^. = I) (2) 

Hence, by comparing (1) and (2), 0 will be a 'good' 
estimator of 9 if Z;,P)('t,' ~1) is a 'good' estimator of 
Yj {Fj - l)I{fj = 1). In fact, we prove in Appendix 1 that the 
latter estimator is unbiased, that is 

La)«'-i) = E YiFj-l)I{fj = l) (3) 

under the assumption of Poisson sampling, that is where 
population units are sampled independentiy. Equation (3) 
generalizes Proposition 2 of SE. In the equal probability 
sampling case SE show how the result in equation (3) may 
be extended to prove consistency of 9 as an estimator of 9, 
using an asymptotic framework where y-«) and under 
some regularity conditions, in particular that the F. are 
bounded. 

Having established the main unbiasedness result in (3), 
we conjecture tiiat tiiis consistency result will generaUse to 
the case of unequal probabiUty Poisson sampling, subject to 
additional weak conditions on the n., for example tiiat the 
71; are bounded above by a positive constant. 

The Poisson sampling assumption generalises the 
BemoulU sampling assumption in SE. They conclude that 
in practice 9 will remain approximately unbiased for 0 
under a number of other equal probabiUty sampUng designs 
including simple random sampling, (equal probability) 
systematic sampling or proportionate sttatified simple 
random sampUng. We suggest that in a similar way 0 will 
remain approximately unbiased for 9 under corresponding 
unequal probabiUty designs, i.e., disproportionate sttatified 
simple random sampUng and unequal probability systematic 
sampling. We also suggest that it may be reasonable to 
allow for nonresponse in 9 if 5 is the set of respondents and 
if Tt, consists of a weight which may be interpreted as the 
reciprocal of the estimated probability of both being 
sampled and responding. 

As discussed in SE, the form of sampUng which seems 
to have the potential to lead to most bias in 0 as an 
estimator of 9 in practice is multistage sampling, where the 
multistage units are strongly related with respect to X. For 
example, bias might be non-negligible when households 
form clusters within which all adult individuals are 
sampled, where the microdata includes individual-level 
records and where X is primarily determined by house­
hold-level variables. This might lead to a higher value of 
n ̂ ^fn *'̂  than expected under Poisson sampling and hence 
to underestimation of 9. Such an example is somewhat 
contrived, however, and we suspect that the bias of 0 as an 
estimator of 0 will be modest in most typical social surveys. 
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4. VARIANCE ESTIMATION 

SE present a linearization estimator of var(0 - 9), which 
depends on n^'' and n^^\ like 0, as weU as on 
n'^' =£. / ( / . = 3), the number of values of X for which 
there are exactiy three microdata records. We show in 
Appendix 2 that this variance estimator may be generaUsed, 
in the case of unequal probability Poisson sampling, to 

^ ri^ j~l V = 0 ^̂— 

Y{nfj = Wij-y2j)^nfj = 2){yl^y,p] 
(4) 

n^" + E^(/;=2)Y„. 

where y,. = Ys.^i,!^ = E,.P,.P,- = ^ -1 and 
{ies;X.=j}, where X,. is the value of X for unit i. 

Note that, in this notation, we may write 

0 = n ( ' ^ / [n ("+E^( / ;=2)Y, 

As in the equal probability case, both 0 and v can be 
computed sttaightforwardly from die values X,. and TC,. for 
ies. The expression given above for -0 reduces to the 
expression given in Proposition 3 of SE when n. = n for all 
J 6 5 . 

The linearisation argument which gives v assumes J is 
large. This seems a weak condition relative to the assump­
tion of Poisson sampling. The linearisation variance 
estimator does not appear to generalise sttaightforwardly to 
other complex sampling designs. This is because the 
linearised form of 0 - 9 depends on the F. and these cannot 
simply be replaced by consistent estimators. It also does not 
appear to be sttaightforward to apply repUcation methods to 
estimate the variance of 0 - 0, since 9 is unknown and, as 
indicated by the simulation study in SE, the variance of 9 
may not be negUgible in practice relative to the variance of 
0. 

5. CONCLUDING REMARKS 

The estimated measure 0 considered in this paper may 
be used as evidence in assessing whether or not a proposed 
microdata file has an acceptable level of disclosure risk. 
The aim may be to ensure that 0 does not exceed some 
specified probabiUty. To allow for sampling variation in 0 
a more conservative procedure would be to require that the 
upper bound of a confidence interval for 0, say 0 + 2 i; " ,̂ 
does not exceed the specified probability. 

As well, 9 may be used to compare altemative sttategies 
to conttol disclosure risk. For example, variables may be 
included in microdata files with more or less classification 
detail. Greater detail may enhance the value of the file for 
analysis but may also increase disclosure risk if the variable 

could be used to match against extemal information. The 
estimated measure 9 could, therefore, be used to assess the 
relative risk resulting from different ways of collapsing the 
level of classification in specific identifying variables, 
including geography. 

The measure may be estimated not only for the popu­
lation as a whole, but also for subpopulations. Such a break­
down of the measure permits a more realistic assessment of 
the risk posed by intmders who target specific subpopu­
lations. Such a targeted threat invalidates the basic 
assumption underlying the definition of whole population 
measure, 9, that the population unit with known identity is 
randomly drawn from U with equal probabilities. Separate 
estimation of the measure in different sttata with different 
sampling fractions also provides a simple method of 
handUng unequal probabilities of selection. This paper has 
shown how to allow for more general sources of unequal 
probabiUty sampUng in 0 and v. More research is required 
to assess the robustness of these estimators to departures 
from Poisson sampling, especially multi-stage sampling. 

A potential problem with estimating the measure 
separately by subpopulations is the impact of the reduction 
in sample size. SE found 0 to be stable in their numerical 
investigations, with a coefficient of variation never 
exceeding 6%. Their minimum sample size was, however, 
about 9,000 so further numerical work is needed to assess 
the stability of 9 for smaller sample sizes. The proposed 
variance estimation method provides some guidance for any 
specific case. Stability could, in principle, be improved by 
the use of model assumptions and one of us (CJS) is 
conducting further research on die limiting case of a small 
subpopulation, a single unit, extending 9 to a record-level 
measure of risk analogous to that considered by Skinner 
and Holmes (1998). 

APPENDIX 1 

Proof of Equation (3) 

Let |3,. = 7t: '-l and Uj= {i€U;X.=j},j = l,...,J, 
where X, denotes the value of X for unit i. The size of U 
is F.. Instead of labelling units in U by the single index i, 
consider the double index {jk),j = l, ...,J, k = l,..., Fj, so 
that, for example, TT, .̂ - denotes the inclusion probability for 
the k-th unit in [A and P̂ .̂̂^ = n^^ji^^ 
sampling the right side of (3) is 

1. Under Poisson 

i : (F.-!)/(/;. = 1) 

J 

DE'̂ , 
k-l 

Xjk) ft 
t=l 
i*k 

(1 -Ttoo) (A.I) 
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and the left side of (3) is 

EP. 
, (2) 

J -j -J 

-YYY^uk)''m 
M i . , s=i 

k<ll 
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First, pj and Pj are estimated by x, and x, +X2 
respectively so that Pj/pj is estimated by 0/(T, +X2). Next 
note that 

rid-^r™)) 
m-l 
m*k,i 

[P(..)^P(;o] 

J - j -J 

= E E E \jk)''u<) 
M i=i »=i 

k*i 

n (l-^r™)) 
m-l 
m*k,t 

(jk) 

J -j -j 

YYY ^uD 
j-i k-l ' = ' 

kH 

na-'^r/J 
m-l 
m*t 

-Y(Ej-i)in,j, 
j'l (-1 

n (1 -r^um? 
m-l 
m*t 

which is identical to (A.l) so (3) follows. 

APPENDIX 2 

Derivation of Linearisation Variance Estimator 

Write 0 - 0 = X[/(x, + X2) -Xj/Xj, where 

h =Y Kfj = 1),T2 = E lUj = 2)y,,,T3 =Y Fji{fj = 1). 
i j J 

Let p, = E{z^),t = 1,2,3, and note that Pj + P2 = 1̂3 from 
(3). A linearised expression for 0 - 9 is 
p,(-x,-Xj+X3)/p3, the variance of which may be 
expressed as 

var(9-9) 

~ var (P,/H3)E {iFj-l)I{fj = l) -yyl{fj = 2)} 

(M,/M3)'E [{Fj-l)'Pr{fj=l)^E{yll{fj=2)}]. (A.2) 

This generalises the expression for the variance in 
Proposition 3 of SE. The expression for v in (4) is obtained 
by replacing terms in (A.2) by their unbiased estimators. 

I{fj = 3){yl-y2j) 

= E E YT^uk)'^m''(jm) 
k-l . , m-l 

f t (1 -^Un) 
ll-l n = i 

k*t*m n*k,i,m 

=E E E T^(jk) 
k-l . . m-l 

k*i*m 

fid-'^c,.)) 
n = \ 
n*k 

^UO^Um) 

= {FJ - I) {FJ - 2)Pr{fj = 1), 

using the notation of Appendix 1. We may also show that 

E[l{fj = 2)y^j] = {Fj-l)Pr{fj = 1) (A.3) 

by following the proof of (3) in Appendix 1, but omitting 
the summation over 7. (Note that the sides of (3) are equal 
to the corresponding sides of (A.3) summed overy). Hence, 
an unbiased estimator of (F. - 1)̂  Pr(/. = 1) is 

Kfj = 3){jl-y2j)^I{fj = 2)j,j. 

/ A 2 • It follows that the numerator of the expression for v/9 in 
(4) is unbiased for the second part of the expression on the 
right side of (A.2) (omitting (p,/p3)^) as required. 

REFERENCES 

BETHLEHEM, J.G., KELLER, W.J. and PANNEKOEK, J. (1990). 
Disclosure control of microdata. Journal of the American 
Statistical Association. 85, 38-45. 

HINKINS, S., OH, H.L. and SCHEUREN, F. (1997). Inverse 
sampling design algorithms. Survey Methodology. 23, 11-21. 

SKINNER, C.J., and ELLIOT, M.J. (2002). A measure of disclosure 
risk for microdata. Journal of the Royal Statistical Society, Series 
B. 64, 855-867. 

SKINNER, C.J., and HOLMES, D.J. (1998). Estimating the 
re-identification risk per record for microdata. Journal ofOffical 
Statistics. 14, 361-372. 

WILLENBORG, L., and DE WAAL, T. (2001). Elements of 
Statistical Disclosure Control. New York: Springer. 



Survey Methodology, December 2003 
Vol.29, No. 2, pp. 181-188 
Statistics Canada 

181 

Inference for Partially Synthetic, Public Use Microdata Sets 
J.P. REITER' 

ABSTRACT 

To avoid disclosures, one approach is to release partially synthetic, public use microdata sets. These comprise the units 
originally surveyed, but some collected values,.for example sensitive values at high risk of disclosure or values of key 
identifiers, are replaced witii multiple imputations. Although partially synthetic approaches are currently used to protect 
public use data, valid methods of inference have not been developed for them. This article presents such methods. They are 
based on the concepts of multiple imputation for missing data but use different rules for combining point and variance 
estimates. The combining rules also differ from those for fully synthetic data sets developed by Raghunathan, Reiter and 
Rubin (2003). The validity of these new rules is illustrated in simulation studies. 

KEY WORDS: Confidentiality; Disclosure; Multiple imputation; Synthetic data. 

1. INTRODUCTION 

When releasing data to the public, statistical agencies 
seek to provide detailed data without disclosing 
respondents' sensitive information. To reduce the risk of 
disclosures, agencies typically alter the original data for 
public release, for example by recoding variables, 
swapping data, or adding random noise to data values 
(Willenborg and de Waal 2001). However, these metiiods 
can distort relationships among variables in the data set. 
They also compUcate analyses for users: to analyze properly 
perturbed data, users should apply the likelihood-based 
methods described by Littie (1993) or the measurement 
error models described by FuUer (1993). These are difficult 
to use for non-standard estimands and may require analysts 
to leam new statistical methods and specialized software 
programs. 

An altemative approach was proposed by Rubin (1993): 
release fully synthetic data sets comprised entirely of 
multiply-imputed data rather than actual values. This can 
protect confidentiality, since identification of units and their 
sensitive data can be difficult when the released data are not 
actual, collected values. And, with appropriate imputation 
and estimation methods based on the concepts of multiple 
imputation (Rubin 1987), the approach can allow data users 
to obtain valid inferences using standard, complete-data 
statistical methods and software. Such inferences can be 
made using the methods developed by Raghunathan et al. 
(2003), whose mles for combining point and variance 
estimates differ from tiiose of Rubin (1987). Other 
discussions and variants of synthetic data approaches 
appear in Littie (1993); Fienberg, Steele and Makov (1996); 
Fienberg, Makov and Steele (1998); Dandekar, Cohen and 
Kirkendall (2002a); Dandekar, Domingo-Ferrer and Sebe 
(2002b); Franconi and Stander (2002, 2003); Polettini, 
Franconi and Stander (2002); Polettini (2003) and Reiter 
(2002, 2003). 

Although no data producers have adopted the fully 
synthetic approach on a production basis yet, some have 
adopted a variant of the approach: release partially synthetic 
data sets comprising a mix of actual and multiply-imputed 
values. For example, to protect data in the U.S. Survey of 
Consumer Finances, the U.S. Federal Reserve Board 
replaces monetary values at high disclosure risk with 
multiple imputations, then releases a mixture of these 
imputed values and the unreplaced, collected values 
(Kennickel 1997). Anotiier partially syntiietic approach has 
been implemented by Abowd and Woodcock (2001) to 
protect data in longitudinal, linked data sets. They replace 
all values of some sensitive variables with multiple impu­
tations, but leave other variables at their actual values. A 
third approach has been implemented by Liu and Little 
(2002), who develop an algorithm for simulating multiple 
values of key identifiers for selected units. All these 
partially synthetic approaches are appealing because they 
promise to maintain many of the benefits of fully synthetic 
data - protecting confidentiality while allowing users to 
make inferences without learning complicated statistical 
methods or software - with decreased sensitivity to the 
specification of imputation models. 

Even though partially synthetic data sets are being 
publicly released, the literature does not contain technical 
results on how to obtain inferences from them. At first 
glance, it may appear appropriate to use the inferential 
methods for multiple imputation of missing data in Rubin 
(1987). Unfortunately, as shown in this article, these 
methods can result in biased variance estimates. Further­
more, and also as shown, the methods developed by 
Raghunatiian et al. (2003) for analyzing fully syntiietic data 
are not vaUd when appUed on partially synthetic data. New 
metiiods of inference are required. 

This paper describes methods for obtaining inferences 
from multiply-imputed, partially synthetic data sets. The 
derivation of these methods also provides prescriptions for 

' J.P. Reiter, Institute of Statistics and Decision Sciences, Box 90251, Duke University, Durham, NC 27708-0251. E-mail: jerry@stat.duke.edu 
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generating partially synthetic data. The paper is organized 
as follows. Section 2 presents the new methods of infe­
rence. Section 3 shows a derivation of these methods from 
a Bayesian perspective, and it discusses conditions under 
which the resulting inferences should be valid from a 
frequentist perspective. Section 4 describes simulation 
stiidies tiiat illustrate the validity of these methods, as well 
as the ineffectiveness of competing mles for combining 
multiple point and variance estimates. Section 5 concludes 
with suggestions of future areas of research. 

2. INFERENCES FROM MULTIPLY-IMPUTED, 
PARTIALLY SYNTHETIC DATA SETS 

Let I J = 1 if unity is selected in the original survey, and 
/. = 0 otiierwise. Let / = (/,, ..., /^). Let Y^^^ be tiie « xp 
matrix of collected (real) survey data for the units with 
/. = 1; let Y^^^^ be the {N-n)xp matrix of unobserved 

let survey data for the units with /. = 0; and, 
^ "̂  (̂ obs' n̂obs)- ^°^ simplicity, we assume tiiat all sampled 
units fully respond to tiie survey. Let X be tiie A'̂  x <i matiix 
of design variables for all Â  units in the population, e.g., 
stratum or cluster indicators or size measures. We assume 
that such design information is known approximately for aU 
population units. It may come, for example, from census 
records or tiie sampUng frame(s). 

The agency releasing synthetic data, henceforth 
abbreviated as tiie imputer, constmcts synthetic data sets 
based on tiie observed data, D = (X, 7̂ ^̂ , / ) , in a two-part 
process. First, the imputer selects the values from tiie 
observed data that will be replaced with imputations. 
Second, the imputer imputes new values to replace those 
selected values. Let Zj = I if unity is selected to have any 
of its observed data replaced with synthetic values, and let 
Zj = 0 for those units witii all data left unchanged. Let 
Z = (Z,,..., Z^). Let F̂ gp. be aU the imputed (replaced) 
values in the i-th synthetic data set, and let Y be all 

•̂  n r e p 

unchanged (unreplaced) values of ŷ ^̂ . The Y . are 
assumed to be generated from the Bayesian posterior 
predictive distribution of (y .\D,Z). The values in Y 
•̂  ^ rep.i I ' -' nrep 

are the same in all synthetic data sets. Each synthetic data 
set, d., then comprises (-̂ , yrep,,-^nrep'- '̂̂ )- Imputations 
are made independentiy for i = l, ...,m times to yield m 
different synthetic data sets. These synthetic data sets are 
released to the public. 

The values in Z can and frequentiy will depend on the 
values in D. For example, tiie imputer may choose to simu­
late sensitive variables or identifiers only for units in the 
sample with rare combinations of identifiers; or, the imputer 
may replace only tiiose incomes above $100,000 with 
imputed values. To avoid bias, imputers should account for 
such selections by imputing from the posterior predictive 
distribution of y for those units with Z. = I. In practice, this 
can be done by using only the units with Z. = 1 as the data 
when finding the posterior distributions for imputations. 

Using all units with Ij = I can result in biased estimates or 
wider confidence intervals with overly conservative cover­
age rates, as illustrated in the simulations of section 4. 

From tiiese synthetic data sets, some user of the publicly 
released data, henceforth abbreviated as the analyst, seeks 
inferences about some estimand Q = Q{X,Y), where die 
notation Q{X, Y) means tiiat Qisafunction of (X, Y). For 
example, Q could be tiie population mean of Y or the popu­
lation regression coefficients of Y on X. In each synthetic 
data set d., the analyst estimates Q with some point 
estimator q and estimates the variance of q with some 
estimator v. It is assumed that the analyst determines the q 
and V as if the synthetic data were in fact collected data 
from a random sample of (X, Y) based on the actual survey 
design used to generate /. 

For J = 1,..., m, let q. and v̂ . be respectively the values 
of q and v in synthetic data set d^. Under certain conditions 
to be described in section 3, the analyst can obtain valid 
inferences for scalar Q by combining tiie q. and v̂ . Speci­
fically, the following quantities are needed for inferences: 

E.,/ m 
i-l 

K = Y(^i-^m)'n'n-i) 

m 

m̂ = E ^i'' Im. 

(1) 

(2) 

(3) 
1=1 

The analyst then can use q to estimate Q and 

T = b Im -^ V 
p m n 

(4) 

to estimate the variance of q^. When ^ is a function of only 
(X, ŷ j.gp /) and not any imputed values, the synthetic data 
inferences are identical to the observed data inferences; that 
is, tiie q^ = 9̂ ^̂  and v,. = v̂ ,̂̂  for all i, and tiie b^ = 0. 
When n is large, inferences for scalar Q can be based on 
^-distributions with degrees of freedom v = 
(m^-1) (1 + r ^ y , where r^={m'^b^ IvJ. In many cases, 
r^ and hence v̂  wiU be large enough that a normal distri­
bution provides an adequate approximation to the 
f-distiibution. Extensions for multivariate Q are not 
presented here. 

Tp differs from the variance estimator for multiple impu­
tation of missing data, 7^ = (1 + I/m)fc^ + v^ (Rubin 
1987). In the partially synthetic data context, the v^ 
estimates Var(^^j,j) and the b^lm estimates the additional 
variance due to using a finite number of imputations. In the 
missing data context, the v^ and bjm have the same 
interpretations, but an additional b^ is needed to average 
over the nonresponse mechanism (Rubin 1987, Chapter 4). 
This additional averaging is unnecessary in partially 
synthetic data settings, since the selection mechanism Z, 
which is set by the imputer, is not treated as stochastic. 
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T also differs from the variance estimator for analyzing 
fully synthetic data, T^ = {I -^ llm) b^ - v^ 
(Raghunathan et al. 2003). To generate fully synthetic data, 
new units are sampled off the frame(s) for each synthetic 
data set, and their data are imputed. As shown by 
Raghunatiian et al. (2003), this re-sampUng and imputation 
process results in b^ -v^ as an appropriate estimate of 
Var (̂ g ĵ). For partially synthetic data, the original units are 
released for each data set, so tiiat v^ is an appropriate 
estimate of yax{q^,^^). 

3. JUSTIFICATION OF NEW COMBINING 
RULES 

This section shows a Bayesian derivation of the infe­
rences described in section 2 and conditions under which 
these inferences are valid from a frequentist perspective. 
These results are based on, and closely follow, the theory 
developed in Raghunathan et al. (2003). 

3.1 Bayesian Derivation 
For this derivation, we assume that the analyst and 

imputer use the same Bayesian model. The posterior distri­
bution for {Q Id"), where d"' = {d^,^2, - ,dJ , can be 
decomposed as 

f{Q\d"')= jf{Q\d"',D,B)f{DId"•,B)f{B\d"•)dDdB (5) 

where B ='Var{q. \ D,Z). The integration with respect to 
f{D I d'", B)dD is only over the values of Y^,^^ that are 
replaced with imputations; the {X,Y ,1) components of 
D remain fixed. Given D, the synthetic data are irrelevant, 
so that f{Q\d'",D,B)=f{Q\D). We assume standard 
Bayesian asymptotics hold, so that f{Q \D)~N{q^^^^,v^^), 
where q^^^ and v̂^̂^ are the posterior mean and variance of 
Q determined using D. 

Integrating (5) over D, we obtain f{Q \ d ", B). Since 
only q^y^^ and v̂^̂^ are needed for inferences about {Q\D), 
for f{D\d'",B) it is sufficient to determine 
/(^obs'^'obsl^'"'^)- ^ ^ assume imputations are made so 
thaV °for aU i,{q.\D,B) ~ N{q^y^^, B) and 
{v.\D,B)~{v^y^^,«B). Here, the notation F ~{G,«H) 
means that the random variable F has a distribution with 
expectation of G and variability much less than H. In 
actuality, v,. is typically centered at a value larger than v̂ ^̂ ,̂ 
since syntiietic data incorporate uncertainty due to drawing 
values of the parameters. For large sample sizes n, this bias 
should be minimal. The assumption that E{q.\D,B) = ĵ,̂ j 
should be reasonable when die imputations are drawn from 
the correct posterior distribution of Y for those units with 

^r' Assuming flat priors for q^^^ and v̂ ^̂ ,̂ standard Bayesian 
tiieory implies that {q^y^^\d'",B) ~ N{q^,Blm) and 
('̂ obs \d"',B) ~ {v^,«Blm). Hence, the posterior mean and 
variance of {Q\d"", B) are 

E{Q\d"',B) = E{E{Q\D,d"',B)\d"',B) 

= E{q^Jd"',B) =q^ (6) 

Vai{Q\d'",B) = E{Yai{Q\D,d'",B)\d'",B) 

+ Vai{E{Q\D,d'", B)\d'", B) 

= V + BIm. (7) 

Since all the convolutions involve normal distributions, 
f{Q\d"^,B)~N{q^,v^^Blm). 

To integrate this distribution over f{B\d'"), we use the 
fact that {{m-l)b^B'^\d'") ~ xLi and, following the 
approximation in Rubin (1987), fit the first two moments of 
v^ + BIm to a mean-square random variable. The resulting 
approximation to the posterior distribution of Q is 
{Old'") ~ t {q ,T ) , where v is as defined in section 2. 

3.2 Randomization Validity 

For inferences based on (1) - (4) to have valid frequentist 
properties, we require two conditions. First, the analyst 
must use randomization valid estimators, q and v. That is, 
when q and v are applied on D to get ^̂ ^̂  and v̂ ^̂ , the 
(̂ obs 1 '̂ ^) ~ ^ (2 . U) and (v„,̂  |X, Y) ~ {U,«U), where 
the relevant distribution is that of /. Second, the synthetic 
data generation methods must be proper in a sense similar 
to Rubin (1987). Specifically, the data generation methods 
should satisfy the following conditions: 

CI: Averaging over imputations of Y .,11 is required that 

(i) {q.\X,Y,I,Z)~N{q^^^,B); 
(ii) {bJX, Y, I, Z) ~ {B, «B); and, 
(iii) (v„|X,y,/,Z) ~ (v^b^,«B/m), where 

B = Var (̂ ,. I Xy, / ,Z) . 

C2: Averaging over the sampling and replacement 
mechanisms (/, Z|X, y), it is required that 
{B\X, Y) ~ (Bo«f / ) where B^ = E{bJX, Y). 

Essentially, these conditions requke tiie synthetic data be 
generated so that the q. are unbiased for q^y^^, the b^^^ is 
unbiased for B^, and the v^ is unbiased for v̂ ^̂ .̂ Further 
discussion of proper imputation can be found in Rubin 
(1987). 

Using these assumptions, it follows that 

E{qJX, Y)=E{E{qJX,Y,I,Z)\X,Y) (8) 

= E{q,JX,Y)=Q 

Var{qJX,Y)=E{yar{qJX,Y,I,Z)\X,Y) 

^Wai{E{qJX,Y,I,Z)\X,Y) 

=E{B\X,Y)lm^Nax{q^.\X,Y)=BJm^U 
(9) 
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Since {q^^JX, Y) and tiie {q.\X, Y,I,Z) are assumed to 
have normal distributions, it follows that 
{qJX,Y)~N{Q,BJm^U). 

When CI and C2 hold, T is an unbiased estimator of 
Bp/m + U. The ^-approximation is justified using the 
method outiined in Rubin (1987). Specifically, the 
-̂approximation foUows sUice {{m - I)Z7̂ B(,~' |X, y) ~ x^^.,, 

and the degrees of freedom of a chi-squared random 
variable equals two times the square of its expectation over 
its variance. 

4. SIMULATION STUDIES 

This section illusti-ates the validity of these new 
combining mles, as well as the ineffectiveness of T^ and 
T^ as variance estimators, using simulation studies of 
partially synthetic strategies. Section 4.1 describes two 
studies in which tiie imputer generates synthetic data only 
for selected units. Section 4.2 describes a study in which 
the imputer generates synthetic data for all values of one 
survey variable, leaving the otiiers at their observed values. 
For illustrations, the simulations use artificial data and 
correct posterior distiibutions for imputations. Of course, in 
real settings the correct imputation model typically is not 
known and must be estimated using the observed data and 
subject-matter expertise. For all simulations, the population 
sizes are considered infinite so that finite population 
correction factors are ignored. 

4.1 Imputation for Selected Units 

Imputers may decide to replace the observed values for 
some units in the collected data, then release a mixture of 
the imputed and observed values. This sti-ategy is employed 
in two simplistic although illustrative simulations, the first 
involving a single variable and the second four variables. 

4.1.1 Simulations Using a Single Variable 

Each observed dataset, D, comprises n = 100 values 
drawn randomly from Y ~ N{0, 10 )̂. Two different 
schemes are used to specify the units with Z. = 1, so that 
two sets of partially synthetic data sets are generated for 
each D. The first scheme, labelled "Random", replaces Y 
for 20 units randomly sampled from D. The second 
scheme, labelled "Big Y", replaces Y only for units witii 
y^.>io. 

For each D, and for each scheme, there are m = 5 
synthetic data sets d. = {Y^^p.,Y^^^^,I,Z), for 
i = 1,..., 5. The Y . are generated by using a Bayesian 
bootsti-ap (Rubin 1987, pages 123-124), which draws values 
of y from a donor pool of selected values of Y^^^. Let Y^^^ 
be the n^xl vector of values of Y^^^^ that make up the 
donor pool. Let n^^^ = Yj^ Zj. The Bayesian bootstrap 
proceeds as follows: 

1. Draw («Q - 1) uniform random numbers. Sort these 
numbers in ascending order. Label these ordered 
numbersas flf, =0, a,,a,,..., a ,,a =1. 

U I Z fin 1 tjn 

2. Draw n^^^ uniform random numbers, MpWj,..., 
Uj,..., u^ . For each of these u, impute Y^.^ . when 

•rep 

a.._, <u <. a J. 

This Bayesian bootstrap is not likely to be used to impute 
data in real settings, since data sets contain more than one 
variable. It is used here because it provides sttaightforward, 
proper imputations for this illustration. 

As mentioned in section 2, the correct posterior pre­
dictive distiibution is f{Y\D, Z), not f{Y\D). This implies 
that the donor pool, ŷ ,. , should equal the set {y.: Z. = 1}. 
This set is labelled "SELECT." For comparisons, synthetic 
values also are imputed using the donor set [Y.:I. = l}. 
This set is labelled "ALL". Imputations based on ALL 
donors do not meet condition CI in section 3.2, since 

E{q, I X y, / , Z ) = ( Y]T'^ y„,^,j - «,ep 3̂ obs) / « ^ >^obs. 

whereas imputations based on SELECT donors are proper. 
Table I summarizes the resuUs from 5,000 mns of this 

simulation. For both the Random and Big Y schemes, the 
averages of the ^5 based on tiie SELECT donors 
approximately equal the average of q^^^^. In tiie Random 
scheme, tiie q^ based on ALL donors is also unbiased, 
because E{y^^^^\X,Y,I) = q^^^^ when averaged over Z 
(which is in fact stochastic in this scheme). However, when 
using ALL donors in the Big Y scheme, q^ has a large, 
negative bias. This results because imputed values are not 
restricted to be greater than 10 when using ALL donors. 

In both the Random and Big Y schemes, 94.5% of the 
5,000 synthetic 95% confidence intervals based on T and 
the SELECT donors cover zero. This rate is identical to the 
94.5% coverage rate for the confidence intervals based on 
the observed data {q^y^^ ± 1-96,/v^). The nominal rates are 
less than 95% due to simulation error. The 2-3% difference 
between tiie averages of the T and the Var(^j) roughly 
equals the difference between the average v̂^̂^ and 
^^(^obs)- ^he usual multiple imputation variance 
estimator, T^, tends to overestimate the Var (^5), leading 
to overly conservative confidence interval coverage rates, 
showing that T^ is not tiie correct variance estimator when 
analyzing properly imputed, partially synthetic data. 

When imputations are based on ALL donors - an 
improper imputation method - in the Random scheme, T 
is negatively biased, and only 92.6% of tiie synthetic 95% 
confidence intervals cover zero. Using T^ increases the 
coverage rate to 95%, suggesting tiiat it is safer to use T^ 
instead of T when ALL units are used for imputations. The 
confidence intervals based on ALL and T^ are on average 
wider than those based on SELECT and T^. This illusttates 
the advantage of conditioning on Z to obtain proper impu­
tations, even when the scheme used to set the Z. = 1 does 
not depend on the values of Y. 
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Table 1 
Simulation Results when Imputing Single Variable 

Scheme and Imputation Method 

Z. = 1 for 20 randomly selected units 

SELECT 

ALL 

Z. = 1 for units with Yj> 10 

SELECT 

ALL 

Observed data results* 

Avg. ^5 

0.024 

0.020 

0.016 

-2.383 

0.016 

Var^ j 

1.097 

1.233 

1.031 

0.796 

1.021 

Avg. T^ 

1.067 

1.044 

1.011 

0.736 

1.000 

Avg- ?•„ 

1.420 

1.281 

1.068 

0.921 

Coverage 

Using Tp 

94.5% 

92.6% 

94.5% 

20.7% 

94.5% 

of 95% CIS 

Using T^ 

96.7% 

94.9% 

95.0% 

28.8% 

* The column labels do not apply for this row. The average of the q^^^ =0.016, the variance of the ^̂ ^̂  = 1.021, 
the average of the v̂ ,,̂  = 1.000, and 94.5% of the five thousand 95% observed-data confidence intervals cover zero. 

Although not shown in Table 1, the variance estimator 
for fully synthetic data, T^, is negative in every one of the 
5,000 simulations for both schemes and both imputation 
methods. Clearly, altiiough valid for fully synthetic data 
(Raghunathan et al. 2003), T^ is not generally appropriate 
for partially synthetic data. 

4.1.2 Simulations Using Four Variables 

Each observed dataset, D, comprises n = 200 values of 
four variables, {Y^, Y2, Y.^, Y^), generated as follows: 
(yj, y ,̂ y^) ~ MVN{ii, L), where L has all variances equal 
to one and all covariances equal to 0.5; and, 
(>'4 I y,. y^ J-a) ~ '^(103', +7y2 +4y3,252). To fix ideas, tiie 
variable y, can be considered a key identifier and Y^ the 
sensitive variable. The plan is to simulate values of the 
sensitive Y^ for all units with "unusual" values of the key 
identifier, defined as y[>I. Hence, ŷ ^̂ p comprises 
sampled values of (y,, Y2, Y^) and values of Y^ for those 
units with y, ^ I. Typically, around 30 units per observed 
data set have y, > 1. 

As before, we examine two schemes for determining the 
posterior predictive distribution for imputations. SELECT 
uses only the units witii Z. = 1 as the data for the posteriors, 
and ALL uses all observed units. Imputations under each 
scheme are made by (i) drawing values of the parameters 
of tiie regression of Y^ on (y,, Y2, Y.^) from their posterior 
distiibution, which is estimated using either the SELECT or 
ALL units, and (ii) drawing values of Y^ for units with 
Z. = I using the drawn values of parameters. There are 
m = 5 synthetic data sets generated for each observed data 
setD. 

The estimands of interest include p, the regression 
y, in the linear regression 
the regression coefficient of 

of y on 
tiie 

coefficient of 
(y,, Y2, Y,); a, 
regression of Y^ on {Y2, Yy Y^); and Y^, the population 
average of Y^. For inferences about P and a, q is tiie usual 
ordinary least squares estimator and v its variance estimator. 
For inferences about Y^,q is the sample average and v its 
standard error. 

Table 2 summarizes results from 5,000 mns of this 
simulation. When imputations are based on the SELECT 
units, the averages of the q^ and T are within simulation 
errors of the averages of the q^^^^ and Var (^5). Addition­
ally, tiie coverage rates for the synthetic 95% confidence 
intervals are similar to the coverage rates for the observed 
data 95% confidence intervals. The T^ are substantially 
larger than the Var (^5), resulting in coverage rates around 
97%. Altiiough not shown in Table 2, T^ is negative in all 
5,000 simulation mns. Taken together, these results are 
consistent with the findings in section 4.1.1: when impu­
tations are drawn from a posterior distribution that condi­
tions on Z, point and interval estimates based on T are 
more accurate than those based on T^ and T^. 

Although imputations based on ALL units are not 
proper, it is informative to examine the performances of T 
and T^ for such imputations. Imputers might base impu­
tations on all observed units for practical reasons, for 
example because the units with Z. = I do not provide 
sufficient data to fit the imputation models. The results 
mirror tiiose in section 4.1.1: the T underestimate the 
Var (^5), leading to coverage rates around 94%, whereas 
using T^ increases coverage rates to around 96%, primarily 
due to the positive bias in T^. This again suggests that, 
when imputers do in fact base imputations on all observed 
units even though only some Z. = 1, analysts are safer using 
T as tiie variance estimator rather than T . Just as seen in 

m p 

section 4.1.1, the intervals based on ALL units are typically 
wider than those based on SELECT units, suggesting that, 
when possible, imputers are better off basing imputations 
only on the units with Z. = 1. 
4.2 Imputation of all Values of Y for one Variable 

Each observed data set comprises n = 200 values of four 
variables generated as follows: {y^,y2,y^) ~ MVN{Q,1) 
where I is the identity matrix; and, (y4 |y|,y2'>'3) ~ 
N{lOy^ + lOŷ  + I0y,,25^). Hence, the y„,,p = (y,, y ,̂ Y,). 
Values of Y^ are imputed from the Bayesian posterior 
predictive distribution of {YjY^y^^), derived by fitting the 
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regression of Y^ on {Y^,Y2,Y^). AU units have Z. = 1 and 
are used as data for the posterior distributions. The 
estimands are the same as those described in section 4.1.2. 

Table 3 summarizes the results from 5,000 simulation 
mns using m = 5 partially synthetic data sets. For all 
estimands, the averages of the q^ are practically identical to 
those of the q^y^^. Additionally, the estimated variances 
based on T^ are close to the actiial variances of the ^5. The 
sUght upward bias results because v^ tends to overestimate v^^^^, 
as explained in section 3.1. The T^ on average over-
estUnate die Var {q^) by factors of more than two, and the T 
severely underestimate the Var (^5) for a and P^. These 
problems are not due to small m; in simulations with large 
m they persist. Although errors of these magnitudes may not 
occur in other settings, the results in this simple setting 
again indicate tiiat T^ and T^ are not appropriate in general 
for analyzing partially synthetic data, especially when 
synthesizing entire variables. 

Imputers have incentive to release small numbers of 
synthetic data sets. Each additional data set requires extta 
storage, and more importantiy, releasing too many data sets 

might jeopardize confidentiality if intmders somehow 
combine the imputed values to leam about the actual 
values. Table 4 displays resuUs of independent replications 
of 5,000 simulation mns using different values of m. Point 
estimates are unbiased for all three estimands and so are not 
displayed in the table. The 95% confidence interval 
coverage rates are close to 95% for all values of m greater 
than two. The inflations in the T are again due to positive 
biases in the î  . 

m 

Table 4 illusttates that, when imputing entire variables, 
substantial efficiency gains can be made by increasing m 
beyond five. The amount of efficiency gain depends on the 
magnitude of b^. When b^ is small relative to v^, for 
example when imputing values only for a small number of 
selected units, efficiency gains from increasing m will not 
be large. For any partially syntiietic sttategy, imputers can 
compare gains in efficiency with potential ttadeoffs in 
confidentiality by simulation studies of intmder behavior on 
different numbers of released synthetic data sets. 

Table 2 
Simulation Results when Imputing y f̂or Units with Y. > 1 

Type of Inference 

Estimand is p 

SELECT 

ALL 

Observed data* 

Estimand is a 

SELECT 
ALL 

Observed data* 

Estimand is Y^ 

SELECT 

ALL 

Observed data* 

Avg. ^5 

10.02 

10.04 

10.00 

9.25 X 10-̂  
9.59 X 10-' 

9.66 X 10' 

-1.45 X 10-2 

-1.24x10-' 

-2.34 X 10-' 

Var 95 

5.45 

5.89 

4.70 

4.49 X 10 ' 
5.03 X 10-' 

4.26 X 10-' 

4.97 

5.19 

4.76 

Avg. r 

5.68 

5.28 

4.76 X 10-' 
4.75 X 10 ' 

5.01 

4.82 

Avg.7-„ 

8.97 

7.57 

6.97 X 10' 
6.31 X 10 ' 

6.09 

5.59 

Coverage of 95% CIs 

Using T^ 

95.3% 

93.7% 

95.5% 

95.4% 

94.1% 
95.4% 

95.0% 

93.8% 

945% 

Using T^ 

98.2% 

96.9% 

97.9% 
96.5% 

96.6% 

95.4% 

* The column labels do not apply for this row. These are the averages of the q^^^, the variance of the 9^̂ ,̂ and the 
percentage of 95% observed-data confidence intervals that cover their Q. 

Table 3 
Simulation Results when Imputing an Entire Variable 

Estimand Avg. ĝ ^̂  Avg. ĝ  Varg„|,s Var I5 Avg. r Avg. 7-, Avg. r 

9.95 

0.0137 

0.00 

9.94 

0.0135 

0.00 

3.19 

6.12 

4.55 

4.46 

7.69 

5.83 

4.54 

7.94 

6.00 

11.10 

17.30 

12.30 

4.63 

5.17 

2.87 
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Table 4 
Sensitivity of Partially Synthetic Inferences to Value of m 

Setting 

Inference for p 

m = 2 
m = 3 
m = 4 
m = 5 
m=10 
m = 50 

Inference for a 

m = 2 
m = 3 
m = 4 

m = 5 
m=10 
m = 50 

Inference for Y^ 

m = 2 
m = 3 
m = 4 
m = 5 
m=10 
m = 50 

Var?^ 

6.52 
5.38 
4.64 
4.46 
3.87 
3.30 

10.62 
8.92 
8.41 
7.69 
6.99 
6.05 

8.13 
6.51 
6.11 
5.83 
5.13 
4.66 

Avg. T^ 

6.50 
5.38 
4.89 
4.54 
3.88 
3.37 

10.89 
9.15 
8.45 
7.94 
7.02 
6.28 

7.96 
6.86 
6.33 
6.00 
5.38 
4.87 

95% CI cov. 

92.7 
94.4 
95.4 
95.1 
94.4 
95.1 

93.4 
94.9 
94.9 
95.4 
94.8 
95.5 

93.4 
95.5 
95.6 
95.3 
95.4 

95.5 
Variances associated with a are multiplied by 10 

5. CONCLUDING REMARKS 

The simulations in this article illusttate that tiie usual 
mles for combining multiply-imputed data sets can result in 
positively biased variance estimates when applied on 
partially synthetic data. The new mles presented here 
appear to remedy this problem, thereby leading to more 
reUable inferences. Further research is needed to assess the 
performance of these new mles when using partially 
synthetic sttategies for genuine data, for which the correct 
imputation models are unlikely to be known. Additionally, 
evaluations of the new mles are needed when the released 
data sets also contain multiple imputations of missing data, 
for example imputations for item nonresponse. As 
conjectured by a referee of this article, when significant 
fractions of imputations are for missing data, T^ may not 
perform so unfavorably relative to T . 

The simulations and theory also suggest that, when 
possible, imputers should use only units witii values 
selected for replacement as the data when estimating 
posterior predictive distributions for imputations. Further 
examination of this prescription when simulating more than 
one variable in genuine data sets would be valuable. 

Lastiy, this article does not examine the implications of 
various partially synthetic data strategies for protecting 
confidentiality, nor does it compare partially synthetic 
approaches to altemative techniques for disclosure conttol. 

Such comparisons would help imputers determine whether 
partially synthetic approaches are appropriate for their 
public use microdata releases. 
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The High Entropy Variance of the Horvitz-Thompson Estimator 
K.R.W. BREWER and MARTIN E. DONADIO' 

ABSTRACT 

Using both purely design-based and model-assisted arguments, it is shown that, under conditions of high entropy, the 
variance of the Horvitz-Thompson (HT) estimator depends almost entirely on first order inclusion probabilities. 
Approximate expressions and estimators are derived for this "high entropy" variance of the HT estimator. Monte Carlo 
simulation studies are conducted to examine the statistical properties of the proposed variance estimators. 

KEYWORDS: Horvitz-Thompson estimator; Model assisted survey sampling; Monte Carlo simulation; Variance 
estimation. 

1. INTRODUCTION 

Let U denote a finite population of Â  units labelled 
i = I, ...,N, and let Y. denote the value for the i-th unit of 
a certain characteristic y. Consider the problem of estima­
ting the population total 7. = Yi-i ^, • If ^ sample, 5, of n 
units is drawn witiiout replacement from U with first order 
inclusion probabilities TÎ .,iE U, the Horvitz-Thompson 
(HT) (1952) estimator of the total is Y,^^.^ = Yies ̂ .'̂ . • I" 
this paper, we confine consideration to fixed size sampling 
designs. For this important special case. Sen (1953) and 
Yates and Gmndy (1953) showed independently that y.̂ .p 
has the variance 

-\2 V(y„T.) = (1/2)5: E (^i^j-^ij)(Yin;'-Yjn:') 
ieU i(.*i)eU 

(1) 

where n.. is the second order or joint inclusion probability 
of the i-th and y'-th population units together in the same 
sample. They therefore suggested the variance estimator 

'svrA'^.HT-' 

= (i/2)E Y 
ies J(.*i)es 

;r:'(7i,.3i.-7t,..)(F.7t:' Y.n. 
J J 

')l (2) 

This is known to perform better than the variance estimator 
proposed by Horvitz and Thompson (1952) (the latter, 
however, usually being unbiased for random n), but the 
critical dependence of (2) on TI .. has proved problematical 
(Brewer 1999). If one or more' of the Â(Â  -1)/2 distinct 
values of Tt,.. are zero, the estimator (2) is biased down­
wards. And if any of them should be very small compared 
with their corresponding values of Tt̂ .Ti., (2) will be unstable 
(that is, it will itself be subject to high variance). In 
addition, the double sum feature of (2) is quite inconve­
nient, especially for large sample sizes. Not only are there 
many more 3r..'s than there are n.'s; it is also frequentiy the 
case that the individual TT .̂'S are problematic to evaluate. In 
view of these difficulties, the aim of this paper is to provide 

altemative variance estimators, which do not depend on the 
71..'s and are simple to compute. 

In the next section, a new expression for the 
design-variance of the HT estimator is presented. This new 
expression leads, under high enttopy conditions, to the 
derivation of an approximate formula for V (^.^j) > which 
is n..-free. In section 3, we check the usefulness of our 

'J 
approximate formulae using a model assisted approach. An 
estimator of our approximate variance is proposed in 
section 4; this variance estimator is expected to perform 
well under conditions of high enttopy (meaning the absence 
of any detectable pattem or ordering in the selected sample 
units). Most sample selection schemes though, result in the 
selection of high enttopy samples. Witii the aim of testing 
the usefulness of the variance estimator presented in section 
4, some empirical studies were conducted. The main 
findings from tiiese studies are reported in section 5. Some 
concluding remarks are provided in section 6. 

2. SOME APPROXIMATE FORMULAE FOR 
THE DESIGN-VARIANCE OF THE 

HT ESTIMATOR 

We begin this section by presenting an alternative 
formulation for the variance of die HT estimator, valid only 
when the sampling design is of fixed size. Before 
proceeding, we state the following relations, which will be 
useful later: 

Y ty = ("-l)Jt,., ieU 
J(*i)eU 

Y T^iT^j = («-'i,)t,-, ieU 
J(*i)£U 

Y Y ^ij =«(«-!) 
ieUj(*i)eU 

(3) 

(4) 

(5) 
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Y Y ^i^j = « ' -E^' 
ieUj(*i)eU • •• ieU 

(6) 

The altemative formulation is obtained as follows. We 
start with a trivial modification of (1), 

V ( ? H T ) 

= ( 1 / 2 ) E Y {n,n-n){{Y.K:'-Y,n-') 
ieU j(*i)eU 

-{Yjn:'-Y,n-')Y 

= (1 /2 )E E {it,itj-nAY.n:'-Y,n-'f 
ieU J(*i)eU 

*{Yjn:'-Y,n-'f-2{Y.n:'-Y,n-'){Yjn:'-Y,n-')]. 

Using the relations (3) and (4), the above equation may be 
shown to be identical to 

V(K.H.,) 

^Yhi^i^ -y.'^-'f-YAiyi^? -y.n-') -i\i 

ieU ieU 

Y Y {n?tj-n,){Y^'-Y,n-'){Jjii:' Y:\ (7) 
ieU j(*i)eU 

The first term in (7) is virtually the same as the variance of 
tiie corresponding Hansen-Hurwitz (1943) estimator of total 
for sampling at n draws with replacement, the probabiUty of 
selecting unit i at each draw being p. =it.ln,ieU. The 
second term can be viewed as a finite population correction. 
Consequentiy, these two terms together plausibly constitute 
a first approximation to the entire variance of the HT esti­
mator and, importantly, neither of them depends on the 
%.j s. 

The magnitude of the third term depends mostiy on the 
sampling design p{s). Thus, if p{s) is such that ii..~n.n., 
for all i *je U, then we can expect a very small third term 
in (7) (compared with the other two). This condition seems 
to be satisfied by high enttopy sampling designs. For 
example, in simple random sampling without replacement 
{srswor), which maximizes the enttopy among all fixed 
sized designs (see Hdjek 1981), the second order inclusion 
probabilities can be written as n.. = it.n. 
[N{n-l)l[n{N-l)}]. The factor N{n-l)l[n{N-'i)] is less 
than 1, and tends to I for large population and sample 
sizes. For this design, the third term in (7) accounts for only 
1/Â  of the entire variance of the HT estimator. Furthermore, 
for several probability proportional-to-size designs, such as 
rejective sampling (Hdjek 1964) and randomized systematic 
nps sampling (Hartley and Rao 1962), the condition 
n.j ~ It.It J also holds, provided N and n are large enough. 

There are some exceptions, however, in which the third 
term in (7) can be important. The most important of these 

exceptions is systematic sampling from a population in 
which the units are arranged in a meaningful order prior to 
the selection. In such a case, a number of second order 
inclusion probabilities can even be equal to zero. This and 
other special cases need to be dealt with separately, and are 
not discussed further in this paper. 

The rest of this section is devoted to deriving an 
approximation to V(y.p .̂j,) that uses first order inclusion 
probabilities only. We start by proposing a simple approxi­
mation to the 71.. of the form 

Three possible choices for c., ieU, are then: 

c. = (n - l)/(n-7t,.). 

c. = c = {n-l)/(n-n-'Yitl] and 

) / ( " Cj = {n- l)/(n-2it.-^n'^Y î 
keU 

(8) 

(9) 

(10) 

(11) 

The first two choices of c. are prompted by ratios of 
sums of Jt.. to the corresponding sums of it. n.. Thus, on the 
one hand, formula (9) is obtained by comparing (3) with 
(4). On the other hand, formula (10) is suggested by the 
comparison of (5) and (6). Finally, formula (11) is based on 
the asymptotic expressions for TI.. obtained by Hartley and 
Rao (1962) and by Asok and Sukhatme (1976) for ran­
domized systematic Tips sampUng and for Sampford's 
(1967) procedure respectively. To order 0{n^ N'^), both 
these asymptotic expressions simplify to 

n.j = n.iij [{n-1) In] j l +n"'{n. + n)-n'^Y 4 
[ keU 

implies c. = {(«• l)ln] which in tum 
{l-2n~^n.-n'^Ykeu''^k)- Under srswor, however, this 
choice of c. does not yield the exact formula for the TI.. 's. 
For this reason, the slightiy different expression given by 
(11) is used here, (1 -2n'^it.-i-n~^Ykeu''^k) being the first 
two terms in the Taylor expansion of the reciprocal of 
(1 +2n '^it.-n ~^Ykeu''^k) ^'^'^ ^'^^ versa. 

The next step consists of replacing the it-.'s in the third 
term of (7) by the approximation (8). This replacement 
yields 

Y Y {ninj-n.j){Y.n: 
ieU J(*i)eU 

^ -Y Y ^,ty[l-(c, 
ieU j(*i)eU 

y.n- ' ) (y .Ti ; ' -y .n - ' ) 

+ c.)/2] 

(y, .Tr: ' -y .n- ' ) (F.Ti ; ' -y .n- ' ) 

= E ( l - c , ) 7 t f ( l ' , t , - ' - i ' . n ' ' ) ' , 
ieU 
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and thus the variance of the HT estimator may be 
approximated by c = (i-«-')E-f/E4 

ieU ieU \ 

I -2n '^n.-n '^Y '̂ i 
keU 

(15) 

V(I'.HT) 

= Y[^i-^^Hi-c)n^]{Y.it:'-Y,n-')^ 
ieU 

= 5]Tt.(i-c.Ti,.)(y.Ti:'-y.n-')^ 
ieU 

(12) 

This approximate variance has a very simple form. It is 
also without error under srswor for all the three choices of c. 
presented above. 

Under srswor, (15) becomes c = Â (n - l)/{n(A^-1)}, 
which yields the exact expression for V(y.p,.,.). Even 
without srswor, replacing a- by â Tî . in (15) retums (10) 
for c. It is reassuring that the purely design-based analysis 
and the model-assisted one produce resuUs in such close 
agreement. 

ESTIMATING THE DESIGN-VARIANCE OF 
THE HT ESTIMATOR 

3. A MODEL ASSISTED CHECK ON THE 
USEFULNESS OF THE APPROXIMATE 

VARL\NCE FORMULAE 

Consider the following ratio model as a possible 
description of the population being sampled: 

^: Y. = pTi,. + e,.; E ê,. = 0; Ê C; = of; 

E^(e;e.) = 0, i*j; i,jeU. (13) 

This is a shorthand model. It is intended to reflect the 
situation where the expected values of the Y. ate intrin­
sically proportional to the values X. of an auxiUary variable 
X, and the inclusion probabilities TÎ. are chosen to be 
proportional to the X.. It is of course impossible for the Y. 
to be directiy dependent on the inclusion probabilities as 
such, since tiiose probabilities may be set quite arbittarily 
by the person designing the sample. 

The prediction or model expectation under ^ of the 
approximate variance expression (12) is 

E</{Y,^.,) = Ê  Y 't/d -Cin,HY.it:' - Y.n'^f 
ieU 

= E E't,.(l-c,Ti,)(e.Ti:'-e.n-')' 
ieU 

= Y (y^U;' -n-' -c.{l-2n-'n.)-n'^Y ^*%1'n4) 
ieU [ keU } ^'^^^ 

where e. =Yieu ^r Meally, expression (14) should be equal 
to E^V{Y,J), namely E,.gyof(Ti:' -1) (Godambe 1955; 
Godambe and Joshi 1965). This condition leads to the 
implicit formula 

The aim of this section is to propose a plausible sample 
estimator for the approximate design-variance of the HT 
estimator given in (12). One such estimator is 

V(i'.HT) = E ( c,.-'-7i.)(y,.Tt:'-4T.n-')2, (16) 

which is arrived at by replacing each population sum in (12) 
by the corresponding HT estimator, and adjusting by the 
factor c, . This estimator has some atttactive properties: (i) 
For all three choices of c., it reduces to the standard 
variance estimator in the case of srswor; (ii) it is simple to 
compute, since no double sums are involved; and (iii) using 
Taylor Unearization technique, it can be shown that (16) is 
approximately design-unbiased for (12). 

A further atttactive property of the estimator (16) is the 
following. When c. is specified by (9), we have 

c,."' - TI. = {n - n.)l{n - I) -it. = {nl{n - 1)} (1 - TI,.). (17) 

The factor (I -it,.) is easily interpretable as a finite popu­
lation correction, while the factor nl{n-l) has an entirely 
different role, which can be explained as follows. It is easy 
to see that p = y.^j" ' is a model unbiased estimator of (3 
in model (13). Let us write o, = {Y. - ^n.)^, for all i. Then 

-1 w „ - K 2 _ (y.Ti,: ^ . H T « ' ) ' = ( > ' , • ^itfn:' d, Tî  ,ieU. It is not 
difficult to show that the factor nl{n-l) removes the 
(model) bias fi-om E,e/^,'t,'' " ^.HT" '')^ = Yies^^t'^'t^ ^ ^ 
estimator of Yies'^t ^i • 

The choice of (9) to specify the value of c. also renders 
particularly simple the calculation both of the HT estimate 
itself and of its estimated variance; for substituting (17) into 
(16) and expanding that expression into individual terms we 
obtain: 

c,- = f 1 - « " ' - « '^ E c*%] / ( I -2n "'TI,), V(y HT) = [nl{n -1)}| Yyfn^-n-

which can be solved for c. iteratively, starting with the trial 
value c, ={n-1)1 n. To 0{N"'), tiiis iterative solution is 
identical to (11). Altematively, a closed expression can be 
derived by putting (14) equal to Yieu ^i ('̂ i" ~^) ^"^ ^^" 
requiring that c. = c for all i e U, in which case we obtain 

E>'^;'-2n-'y. HT YYi •HT 

•HT 

E-,-
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This formula involves six expressions, namely n, Y^^j, 
E f e ^ / < ^ E , « ^ f < ' ' Z f e ^ , ' a n d E,.,^Ti,.,which are the 
sample sums of 1 (unity), y-Ti^', yf TI,.^, yf TI^', Y., and TI,. 

respectively. If these individual terms are cumulated over 
every sample unit, tiien Y,^ and V(y.y.p) can be evaluated 
together, using only a single pass of the sample data. 

Note that, if non-response is present, a first order 
correction for it may be obtained by conditioning the 
sample on the achieved sample size, which we may denote 
here by n'. That would involve replacing the original first 
order inclusion probabilities, TI,., by the "adjusted inclusion 
probabilities", TI,.' =n.n'ln. (This terminology has been 
taken from Fumival, Gregoire and Grosenbaugh (1987), 
where the same type of adjustment was used in a different 
context). The summations over the achieved sample, s', 
would then be n', Yi,, K.TI,.'"', I,.,,, yf TI,.'-^ Yi,, YJ TI,'"' , 
Yies' ^i' and Yie,T^i' respectively. 

Beyond the properties listed above, a further study of 
(16) is possible with the aid of the model t, of (13). The 
most desirable expression for the ^-expectation of an 
estimator of V {Y,^^) is Yies ̂ t ^i (''^i ~ 1)' because this in 
tum has design-expectation Yieu ^^t (T Î"' ~ !)> which is the 
lower bound for the anticipated variance of any unbiased 
estimator (Godambe 1955; Godambe and Joshi 1965). For 
all the three definitions of c,., tiie ^-expectation of (16) 
differs from Yies ̂ t ^i ('̂ i" ~^) ^y terms of order 
0{Nn"'). Although these "unwanted" terms have opposite 
signs and therefore tend to cancel, they are not entirely 
negligible, being only 0{N'^) smaller than the variance 
itself 

In view of this, a new version of c., which retained the 
(design) properties (i)-(iii) for (16) and provided a closer 

expression to Y^ies ^i ^i ("̂ i' "1) ^^^ the ^-expectation of 
(16), was desirable. These requkements are satisfied by a c. 
defined as follows: 

where A^ =I ,«« , -^ ,< ,«,• = (1 -^i)'Ykes(^-''k)' and(iii) 
a slight modification of (19) proposed by Deville (1999), 

c. = {n-l)/\n-{2n-l){n-l)-'n.Hn-l)-'Y^X 
[ keU j 

(18) 

for aU i e U. With this definition of c., the ^-expectation of 
(16) still contains some "unwanted" terms, but they now 
consist only of a single term of order 0{Nn "̂ ) - which is 
therefore smaller than V(y.jj.j,) by a factor of order 
0{N'^n'^) - and other terms of smaller magnitude still. 

5. SOME EMPIRICAL RESULTS 

WitU the aim of evaluating the performance of the 
variance estimator proposed in section 4, some empirical 
studies were conducted. Three other variance estimators 
were also included in these studies: (i) the SYG estimator, 
given in (2); (U) the variance estimator suggested by Hajek 
(1964, page 1520), 

^ ' • H T ) = 

1 
DEV "-̂  •HT 

1 - V a.' ies 
^ Lies"-i 

E(i-7i,)(y,Ti,: ' -A,)l (20) 

VHAJ (^•HT) = {«/(« - 1) l E (1 - ' t , ) ( l ' ,< ' -Af, (19) 

It is worth mentioning that the estimator (19) was originaUy 
intended only for a particular high entropy design, namely 
rejective sampling, and not for all the high entropy ones. 
Later on, however, this estimator was proposed for its use 
with some otiier high enttopy designs. For example, Rosdn 
(1997) suggested the use of (19) in the context of Pareto 
sampling. 

The inclusion of the estimators (2), (19) and (20) in our 
empirical studies deserves a brief explanation. The SYG 
variance estimator would usually be the preferred choice if 
the TI.. were known and were neither zero nor very small 
compared with the corresponding TI,.TI.. Under these 
conditions, it would then be natural to ask: Is there a 
significant difference, in terms of performance, between (2) 
and the simpler estimator (16)? On the other hand, a 
comparison with (19) and (20) is of interest because these 
two estimators share with (16) the simplicity and Tt,..-free 
features. Thus, they are "competitors" in the same class. 

The performance of a variance estimator can be assessed 
in different ways; here we will focus on bias and stability. 
The main findings from our studies are reported in the 
remainder of this section. We will consider two cases 
separately, namely « = 2 and n>2. 

5.1 Case n =1 

With the aim of testing the variance estimators under 
different situations, nine smaU populations were used in this 
study, most of which were also included in the stability 
studies carried out by Rao and Bayless (1969). Table 1 
summarizes the main features of each population, including 
the coefficients of variation (CV) of y and x, and tiie 
correlation coefficient, p, between y and x. Here, y is tiie 
variable for which total estimates are sought, and x is an 
auxiliary variable that may be used for sample selection. 
Note tiiat Â  varies from 10 to 20, CV(x) from 0.14 to 0.73, 
and p from 0.49 to 0.94. This provides a good mixture of 
populations with different characteristics. 

The inclusion probabiUties are chosen to be proportional 
to X, i.e., 71,. = 2X,. IX,, for all i. Two sampling designs are 
considered here, namely Brewer's (1963) procedure 
(BRE\yER) and Tille's (1996) elimination procedure 
(TILLE). For both procedures, the Tt,.. are simple to 
compute and, for these nine populations, they are sttictly 
positive (this condition is not always satisfied by TILLE). 
Moreover, since n = 2, for any sample s = {i,j] we have 
p{s)=n.j. Hence we can obtain the exact statistical 
properties of any given variance estimator V. 

To this end, let S denote the set of all possible samples of 
size n = 2 from a population U. The expectation of V is 
then defined as 
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E(V) = YP(^)^(')' 
seS 

and its standard error (SE) as 

SE(V) = | 5 ] p ( ^ ) [ V ( 5 ) - E ( V ) f p 

For each of the two sampling designs mentioned above. 
Table 2 displays the relative bias RB(V)=E(V)/ 
^(^•HT) ~ ' ' expressed as a percentage, of the six 7i..-free 
variance estimators. The first two of these estimators need 
no explanation; the other four correspond to (16) coupled 
with (9), (10), (II), and (18) respectively. Since for n = 2 
(only), Vpgy and V,gg are identical, they both appear in 
the same row. In order to simplify the reading of the table, 
the smallest RB (in absolute terms) in each population and 
sampling design has been highlighted. 

The results in Table 2 prompt the following comments: 
(i) the performance of the Ti,..-free variance estimators is 
reasonably good for all populations, with the possible 
exception of Population 4. An examination of the 
relationship between x and y for this population reveals the 
presence of some curvature, with larger cities growing at a 
higher rate. There is also an outUer - city 26 - for which the 

number of people almost tiipled in the 10-year period 
between 1920 and 1930. Another interesting case is given 
by Populations 5 and 6. These two populations have 
identical definitions, thus one would expect to obtain 
similar results for them. However, the RB figures for 
Population 5 are considerably worse than those for 
Population 6, specially for BREWER. The only noticeable 
difl̂ erence between these two populations is that Population 
5 contains an outiier (Farm 14 in the reference provided). 
It would appear then tiiat tiie presence of outiiers may result 
in some additional bias in these variance estimators, (ii) The 
estimator V,gjg seems to be the best of the class, 
performing remarkably well in all situations, and showing 
the smallest bias figures (in absolute values) in most cases; 
(iii) The estimator V,g ,Q tends to exhibit the largest bias 
figures. 

Regarding stability. Table 3 reports the coefficient of 
variation CV(V) = SE(V)/E(V), expressed as a percent­
age, of all tiie seven variance estimators. It can be seen that 
the Ti,..-free variance estimators tend to be more efficient 
(lower CVs) than V^yg, although the gains are small. 
Otherwise, there is little to choose from among these 
variance estimators, even though V,g ,Q is the best 
performer in all but the last population. 

Table 1 
Description of the Nine Small Populations 

Pop. Source N CV(y) CV(A:) 

1 Cochran (1963, page 325) 

2 Yates (1981, page 150) Kraals 26-38 

3 Rao (1963, page 207) 

4 Cochran (1963, page 156) Cities 19-33 

5 Sampford (1962, page 61) Even units 

6 Sampford (1962, page 61) Odd units 

7 Yates (1981, page 153) 

8 Sukhatme (1954, page 279) Circles 1 -20 

9 Horvitz and Thompson (1952, page 682) 

No. of persons per block 

No. of persons absent 

Com acreage in 1960 

No. of people in 1930 

Oat acreage in 1957 

Oat acreage in 1957 

Vol. of timber 

Wheat acreage 

No. of households 

No. of rooms per block 

Total no. of persons 

Com acreage in 1958 

No. of people in 1920 

Total acreage in 1947 

Total acreage in 1947 

Eye-estimated vol. of timber 

No. of villages 

Eye-estimated no. of 
households 

10 

13 

14 

15 

17 

18 

20 

20 

20 

0.15 

0.67 

0.39 

0.67 

0.61 

0.75 

0.51 

0.63 

0.44 

0.14 

0.47 

0.43 

0.69 

0.71 

0.73 

0.48 

0.50 

0.40 

0.65 

0.72 

0.93 

0.94 

0.80 

0.91 

0.49 

0.59 

0.87 

Table 2 
RB (%) of Variance Estimators for n = 2 

Popl Pop2 Pop3 Pop4 Pop5 Pop6 Pop7 Pop8 Pop9 

B 

R 

E 

W 

T 

I 

L 

L 

E 

V 
' H A J 

V V 
' D E V ' 16.9 
V 
* 16.10 
V 
' 16.11 
V 
^ 16,18 

V 

V V 
* DEV ' 16.9 
V 
^ 1 6 . 1 0 

V 
' 16.11 
V 
^ 16.18 

-1.04 

-0.98 

-1.37 

-0.59 

-0.20 

-1.06 

-1.00 

-1.39 

-0.62 

-0.23 

-2.97 

-2.52 

-3.55 

-1.49 

-0.46 

-4.40 

-3.94 

-4.91 

-2.98 

-2.02 

-2.60 

-2.29 

-3.21 

-1.37 

-0.46 

-1.07 

-0.75 

-1.68 

0.17 

1.10 

-6.05 

-5.21 

-7.16 

-3.26 

-1.31 

-5.90 

-5.03 

-6.91 

-3.14 

-1.25 

-3.64 

-3.00 

-431 

-1.69 

-0.38 

-1.86 

-1.19 

-2.47 

0.09 

1.37 

0.08 

0.54 

0.82 

0.26 

-0.01 

-0.41 

0.07 

0.33 

-0.20 

-0.46 

-0.81 

-0.63 

-0.94 

-0.31 

0.00 

0.32 

0.51 

0.19 

0.83 

1.15 

-1.48 

-1.33 

-1.89 

-0.76 

-0.19 

-1.10 

-0.95 

-1.50 

-0.39 

0.17 

1.13 

1.24 

1.80 

0.68 

0.13 

0.82 

0.93 

1.48 

0.38 

-0.17 
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CV 
Table 3 

(%) of Variance Estimators for n = 2 

B 

R 

E 

W 

E 

R 

T 

I 

L 

L 

E 

V 
^SYG 
V 
HAJ 

V V 
' DEV ' 16,9 
V 
* 16.10 
V 
' 16.11 
V 
* 16.18 
V 

V 'HAJ 
V V 
' DEV ' 16.9 
V 
* 16.10 
V 
' 16.11 
V 
' 16.18 

Popl 

123 

121 

121 

120 

122 

122 

123 

121 

121 

121 

122 

122 

Pop2 

126 

119 

119 

117 

122 

125 

143 

118 

118 

116 

121 

123 

Pop3 

118 

115 

115 

114 

116 

117 

118 

115 

115 

114 

115 

116 

Pop4 

245 

238 

238 

236 

241 

243 

248 

238 

238 

235 

240 

243 

Pop5 

138 

131 

131 

128 

133 

136 

147 

128 

128 

125 

130 

133 

Pop6 

127 

125 

125 

124 

126 

127 

131 

125 

125 

124 

125 

126 

Pop7 

158 

155 

155 

153 

157 

158 

164 

155 

155 

154 

157 

159 

Pop8 

127 

124 

124 

123 

125 

126 

131 

124 

124 

123 

125 

126 

Pop9 

133 

134 

134 

135 

133 

133 

134 

134 

134 

135 

133 

133 

5.2 Case n > 2 

In this section, we adopt a standard Monte Carlo simu­
lation approach to examine the performance of the variance 
estimators. Two real populations are used in this study. The 
fu-st one is a population of 220 blocks (BL220) taken from 
Appendix E in Kish (1965). The dataset contains two 
variables: Y. = no. of dwelUngs occupied by renters in 
block /, and X. = total no. of dwellings in block i. Some 
features of this population are: CV (y) = 1.05, CV(x) = 
0.85, and p = 0.97. 

The second population comprises 281 municipalities 
(MU281), and is given in Samdal, Swensson, and Wretman 
(1992). The role of the study variable, y, is played by 
RMT85, revenues from the 1985 municipal taxation, while 
P75, the municipality population in 1975, is used as a 
measure of size. The main characteristics of this population 
are: CV(y) = 1.06, CV(A:) = 0.96, and p = 0.99. 

Samples of sizes n = 10, 20 and 40 with TI. « X., i e U, 
are drawn from BL220 and MU281 by means of random­
ized systematic nps sampUng (RANSYS) and TILLE. For 
each sample, we compute a total estimate using the HT 
estimator, and variance estimates using tiie seven variance 
estimators mentioned in the previous section (for RANSYS, 
however, the Hartiey and Rao (1962) approximation to the TI,. ., 
instead of the exact Tt,.., is used in formula (2)). This 
sampling-estimation process is repeated /?=50,000 times. 

Table 4 shows the observed Monte Carlo relative biases 
of the variance estimators for RANSYS and TILLE. Note 
that, for TILLE, no values have been provided in the row 
corresponding to the SYG variance estimator. This is 
because, given the populations, measures of size, and 
sample sizes employed here, TILLE produces stricdy 
positive 31,.., which means that the SYG variance estimator 
is design unbiased. All the figures in this table are reason­
ably small, which seems to support our belief that, under 
conditions of high enttopy, the calculation of the TI. . is not 
essential for obtaining nearly unbiased variance estimates. 

Within the group of Jt.-free estimators, there are no 
noticeable differences among them so far as RANSYS is 
concemed, but V„., and its relative, Vr,py, seem to 
perform somewhat better than the Vj^ ^ family so far as 
TILLE is concemed, especially for n = 40. However, all the 
observed TILLE biases are positive and tend to increase as 
the sample size increases. This seems to indicate that 
TILLE is slightiy lower in enttopy than RANSYS, in which 
case the higher observed biases for the V,g ^ family are 
reflecting the actual facts quite accurately. 

Table 4 
RB (%) of Variance Estimators for n>2 

Variance 
estimators 

V 
*SYG 
V 'HAJ 
V 
'DEV 
V 
' 16.9 
V 
'16.10 
V 
' 16.11 
V 
'16.18 

V 
'SYG 
V 'HAJ 
V 
'DEV 
V 
' 16.9 
V 
'16.10 
V 
' 16.11 
V 
' 16.18 

RANSYS 

n = 10 

0.13 

-0.14 

-0.12 

-0.06 

-0.23 

0.11 

0.13 

-0.27 

-0.40 

-0.37 

-0.34 

-0.40 

-0.27 

-0.27 

n=20 

1.02 

0.47 

0.54 

0.83 

0.64 

1.02 

1.03 

-0.43 

-0.75 

-0.68 

-0.51 

-0.58 

-0.43 

-0.43 

n=40 n = 10 

BL220 

-0.27 

-2.35 

-2.15 

-0.52 

-0.75 

-0.30 

-0.29 

-

1.49 

1.52 

1.58 

1.41 

1.75 

1.77 

MU281 

0.77 

-0.59 

-0.39 

0.67 

0.58 

0.76 

0.76 

-

0.64 

0.67 

0.70 

0.63 

0.77 

0.78 

TILLE 

n=20 

-

2.18 

2.25 

2.54 

2.34 

2.73 

2.74 

-

1.01 

1.09 

1.26 

1.19 

1.34 

1.34 

/j=40 

-

3.27 

3.48 

5.21 

4.97 

5.45 

5.45 

-

1.93 

2.14 

3.22 

3.13 

3.31 

3.32 

In order to test whether TILLE is of slightiy lower 
entropy than RANSYS or not, we compared their Monte 
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Carlo variances (MCV) witii formula (12), the high enttopy 
approximation to the HT variance. The most accurate 
version of c,., that is (18), was used to compute (12). The 
comparison is presented in Table 5. It is seen that the 
TULLE variances are somewhat smaller than the corres­
ponding RANSYS variances. Moreover, the approximate 
variances provided by (12) are in closer agreement with the 
RANSYS variances. These findings support our previous 
conjecture that the enttopy for TILLE is sUghtiy lower than 
that for RANSYS, particularly when the finite population 
correction is appreciable. 

Table 5 
Comparison of Variances (all values in lO**) 

(12)+(18) 

MCV-RANSYS 

MCV-TILLE 

n = 10 

14.06 

14.07 

13.87 

BL220 

n = 2 0 

6.572 

6.520 

6.404 

n=40 

2.830 

2.841 

2.691 

n = 10 

565.5 

566.2 

560.0 

MU281 

n=20 

264.3 

265.3 

257.6 

n=40 

113.7 

112.8 

108.9 

Next we focus on stabUity. Table 6 reports the observed 
Monte Carlo SE of the variance estimators. Clearly, titiere 
are no differences worth mentioning among the variance 
estimators. The same is tme for a comparison of the two 
sampling procedures. It seems tiiat stability does not 
constitute a relevant factor when choosing between these 
variance estimators. 

Table 6 
CV (%) of Variance Estimators for n > 2 

Variance 
estimators 

V 
' S Y G 

V 'HAJ 

V 'DEV 

V 
' 16.9 
V 
' 16.10 
V 
' 16.11 
V 
' 1 6 . 1 8 

V 
' S Y G 

V 
' H A J 
V 'DEV 

V 
' 16.9 
V 
' 16.10 

V,6.i , 

V 
' 1 6 . 1 8 

RANSYS 

n = 10 

58.31 

57.90 

57.90 

57.02 

57.79 

58.04 

58.05 

54.90 

54.69 

54.68 

54.67 

54.63 

54.70 

54.71 

n=20 

41.16 

40.49 

40.49 

40.54 

40.45 

40.64 

40.65 

37.29 

36.98 

36.98 

36.92 

36.89 

36.95 

36.96 

n = 4 0 n = 10 

BL220 

30.70 

29.48 

29.48 

29.64 

29.56 

29.73 

29.73 

57.43 

57.39 

57.39 

57.41 

57.29 

57.53 

57.55 

MU281 

25.33 

24.96 

24.95 

24.70 

24.66 

24.74 

24.74 

55.07 

54.79 

54.79 

54.77 

54.74 

54.81 

54.81 

TILLE 

n=20 

40.41 

40.24 

40.24 

40.29 

40.19 

40.39 

40.39 

37.50 

37.07 

37.07 

37.01 

36.98 

37.04 

37.04 

«=40 

29.54 

29.08 

29.08 

29.24 

29.16 

29.32 

29.32 

25.45 

24.78 

24.77 

24.52 

24.48 

24.56 

24.56 

6. SUMMARY 

Estimators are derived for what, in the context of any 
high enttopy selection procedure, is a close approximation 
to the design variance of the HT estimator of a total. 

These estimators resemble, but are not identical to other 
variance estimators suggested for certain particular high 
entropy selection procedures by Hdjek (1964), Rosen 
(1997), and Deville (1999). All these estimators have tiie 
important advantage over the standard SYG variance esti­
mator that tiieir formulae do not involve the second order 
inclusion probabilities, TI,... 

Empirical investigations indicate that these estimators all 
behave acceptably well, both for the important special case 
n =2 and when n takes larger values. The estimator given 
by (16) with c. defined by (18), which has certain 
near-optimal theoretical properties, appears to be noticeably 
less biased than the others for n =2, but not for larger 
values of n. 

For the case n > 2, two high enttopy procedures were 
used, namely systematic sampUng from a randomly ordered 
population (RANSYS) and the procedure proposed by Till6 
(1996) (TILLE). The biases in all the variance estimators 
were consistentiy higher (meaning algebraically larger) for 
TILLE than for RANSYS, and particularly so when n took 
its largest value of 40. The differences between the TILLE 
biases and the RANSYS biases were also positive for all 
values of n, and again particularly so when n = 40. We 
conjecture that these differences may indicate that T I L L 6 
is a slightly lower enttopy (and typically lower variance) 
selection procedure than RANSYS. 
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Estimation with Link - Tracing Sampling Designs 
- A Bayesian Approach 

MOSUK CHOW and STEVEN K. THOMPSON' 

ABSTRACT 

In link-tracing designs, social links are followed from one respondent to another to obtain the sample. For hidden and hard-
to-access human populations, such sampling designs are often the only practical way to obtain a sample large enough for 
an effective study. In this paper, we propose a Bayesian approach for the estimation problem. For studies using link-tracing 
designs, prior information may be available on the characteristics that one wants to estimate. Using this information 
effectively via a Bayesian approach should yield better estimators. When the available information is vague, one can use 
noninformative priors and conduct a sensitivity analysis. In our example we found that the estimators were not sensitive 
to the specified priors. It is important to note that, under the Bayesian setup, obtaining interval estimates to assess the 
accuracy of the estimators can be done without much added difficulty. By contrast, such tasks are difficult to perform using 
the classical approach. In general, a Bayesian analysis yields one distribution (the posterior distribution) for the unknown 
parameters, and from this a vast number of questions can be answered simultaneously. 

KEY WORDS: Link-tracing designs; Snowball samples; Adaptive sampling; Graph sampling; Network sampling; Beta 
prior. 

1. INTRODUCTION 
Social network data include measurements on the 

relationships between people or other social entities as well 
as measurements on entities tiiemselves. Collecting network 
data on entire networks requires a great deal of time and 
effort, especially when networks are large. It is thus 
important to be able to estimate network properties from 
samples. In link-ttacing sampUng designs, social links are 
followed from one respondent to another to obtain the 
sample. For hidden and hard-to-access human populations, 
such sampling designs are often the only practical way to 
obtain a sample large enough for an effective study. For 
example, in a study of injection drug use in relation to the 
spread of the HIV infection, social leads from initial 
respondents may be ttaced and the Unked individuals added 
to the sample, {e.g., see Neaigus, Friedman, Goldstein, 
Udefonso, Curtis and Jose 1995; Neaigus, Friedman, Jose, 
Goldstein, Curtis, Udefonso and Des Jarlais 1996 and 
Thompson and Collins 2002). Similarly, for studies of 
homeless people, respondents may be asked about other 
homeless people who will then be sampled. 

Populations with social structure are often modeled as 
graphs, with the nodes of the graph representing popu­
lations and the arcs of the graph representing social links, 
relationships, or transactions. In the graph setting, the 
variables of interest include both those associated with 
nodes and those associated with pairs of nodes. The 
population graph itself can be viewed either as a fixed 
structure or as a realization of a stochastic graph model. 
Samples are taken to obtain information about the 
population graph. Usually, the sampling method will take 
advantage of the arcs or links from one entity to another. 

There is a large literature on network sampling, both 
applied and tiieoretical. Frank (1977a, 1977b, 1977c, 1978, 
1979,1980, 1997) has many important resuUs in sampling 
for social networks. His classic work (Frank 1971) presents 
basic solutions for estimating graph quantities from the 
sample data. Snijders and Nowicki (1997) propose various 
statistical approaches, including a Bayesian approach, for 
estimation and prediction with stochastic blockmodels for 
graphs in which the node values are not observed. 

Snowball sampUng (Goodman 1961) is one type of link-
ttacing sampling design in which individuals in an initial 
sample are asked to identify acquaintances, who in turn 
were asked to identify acquaintances, and so on for a fixed 
number of stages or waves. Erickson (1978) and Frank 
(1979) review snowball sampling designs with the goal of 
understanding how other "chain methods" (methods 
designed to ttace ties through a network from a source to an 
end) can be used in practice. Snijders (1992) used the same 
term "snowball sampling" to include designs in which only 
a subsample of links from each node is traced. Frank and 
Snijders (1994) consider model and design-based esti­
mation of a hidden population size, that is, the number of 
nodes in tiie graph, based on snowball samples. Another 
link-ttacing procedure for which design-based estimators 
are available is adaptive cluster sampling Thompson and 
Seber 1996), which has been formulated in tiie graph setting 
as well as the spatial setting. 

With a fixed-population, design-based approach in the 
graph setting, both the characteristics of the people and the 
social network structure of the population are viewed as 
fixed, unknown values. The properties such as design-
unbiasedness do not depend on any assumptions about the 
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population itself but they do depend on the sampling design 
being carried out as specified. In this paper, we consider the 
model-based methods since they can be applied to a wide 
range of sample selection procedures. In many studies of 
hidden and hard-to-reach populations, the sample selection 
procedures, including Unk-ttacing, are not readUy analyzed 
based on idealized design induced probabilities, but results 
fi"om the model-based methods can be appUed for the cases. 

Thompson and Frank (2000) used a model-based 
approach to inference witii link-ttacing designs. In their 
paper, maximum likelihood estimators of population graph 
parameters and predictors of realized population graph 
quantities were described. In this paper, we adopt a 
Bayesian approach for the graph estimation problem. For 
real problems with sampUng designs that foUow social Unks 
from one person to another, prior information may be 
available on tiie characteristics that one wants to estimate. 
Using this information effectively via a Bayesian approach 
should yield improved estimators. Moreover, when tiie 
available information is vague, we can use noninformative 
priors and conduct a sensitivity analysis. It is important to 
note that under the Bayesian setup, obtaining interval 
estimates to assess the accuracy of the estimators can be 
done without much added diffculty whereas such tasks 
would be difficult to perform using the maximum likelihood 
approach. We deal with inferences for both the 
characteristic of nodes and also of arcs such as the 
prevalence of disease in a certain community and also the 
ttansmission rate of that disease between two subjects. 

Notation for a full graph model with Unks related to node 
values and its Ukelihood function wiU be given in section 2. 
In section 3, the likelihood function for the sample obtained 
from a Unk-ttacing design wiU be presented and a Bayesian 
inference method will be inttoduced. In section 4, an 
illustrative example will be given. The paper will be 
concluded by an empirical example and a discussion in 
section 5. 

2. THE MODEL 

Using notation similar to Frank (1971) and Thompson 
and Frank (2000), we denote the full set of node labels by 
U = {1,2,..., N} which form the population of Â  units. A 
variable of interest associated with an individual node u wUl 
be denoted y„ while a variable of interest associated with 
paU- of nodes u and v wUl be denoted A„̂ ,. The sequence of 
node variables of interest is denoted by Y = {Y^,..., Y^). 
Here we consider the variable of interest A„̂ , as an 
indicator variable which equals one if there is an arc 
(directional link) from M to v and zero otherwise for two 
distUict nodes u and v. The matrix of arc indicators, having A^^ 
as the element in the M-th row and v-th column, is the graph 
adjacency matrix, denoted A. For convenience we will 
assume that the diagonal elements A„„ are zero. The 
ordered pair (M,V) is referred to as a dyad of type 

{Y^,Y^; A^^, A^^). In the following assumed model the 
node variables Y^,..., Y^ are independent, identically distii-
buted (i.i.d.) BemoulU random variables with probabilities 
P{Y^ = i) = 9,., for / = 0,1, and 00 + 0, = 1. Conditional on 
the node values y,,..., Y^, the dyads (A^̂ ,, A ,̂,,) are inde­
pendent, for 1 ̂  M < V ^ Â , with conditional distribution 
given by P[{A^,,AJ = {k, /) | F = i, Y^ =j] = X foraU 
combinations of / = 0,1; j = 0,1; ^ = 0,1; and / = 0,1. For 
all combinations of / and j , the sums over k and / are 
denoted X.. =YkYi ,̂ ki ^^^ equal I. In order to get graph 
probabilities not depending on node identities, the 
following natural symmetry conditions are assumed: 

'^1110 '^1101' 1011 '^0111 
1 - - I -i - • ) . •). - • ) . > 

' ' ^ in i i ""ni 11''^'inin '̂ -nini >"'inni "'niin'^'ni "1010 '"0101''"lOOl '"0110''"0010 

A,oQQ, and ,̂000 = Q̂IOO- ^^^ example, tiie first and the fifth 
conditions say that between two nodes having the same 
value, the probability of an arc in either direction is the 
same. Let N. denote the total number of nodes with value 
i in the graph so that N^^-^ N^ = N. Let further M. .j^i denote 
the total number of dyads of type {ijkl), that is, the total 
number of ordered node pairs {u,v) such that 
{Y^,Y^; A^^, A^J = {ijkl). The likelihood for the fuU 
graph under the model with parameters (9, A,) is 

L{Q,X;Y,A)={U]__,Q'^'){nl_,ul_,ul,ulXu)-

3. BAYESIAN INFERENCE FROM 
LINK-TRACING DESIGNS 

3.1 Likelihood Function given the Sample Data 

A sample .s from the graph is a subset of nodes from U 
and a subset of node pairs from U^. The sample data 
d = {s,y^,a^) are a function of the sample selected and of 
the graph values y and a. For any design in which the 
selection of the sample depends on graph y and a values 
only through those values y^ and a^ included in the data, 
the design does not affect the value of estimators or 
predictors based on direct likelihood methods such as 
maximum likelihood or Bayes estimators (Rubin 1976, 
Thompson and Frank 2000). For example, many of the 
snowball and other link-ttacing designs are ignorable for 
likelihood-based inference provided the selection procedure 
for the initial sample is ignorable. Any carefully imple­
mented conventional or adaptive survey design would be 
ignorable in this sense. Nonignorable initial samples can 
occur when the selection is uncontrolled and selection 
probabilities are related to unobserved node and link values, 
as when people with risk-averse behaviors and low numbers 
of relationships are less conspicuous to investigators, 
thereby influencing what units are missed and hence 
influencing sample selection probabilities in ways that are 
not measured. 

Consider the link-tracing design in which an initial 
sample SQ is selected and all links out from nodes in ĝ are 
followed to add the set s^ of nodes not in s^ that are 
adjacent to nodes in SQ . The whole sample is 5 = ĝ U 5,. 
The entire set of labels in the population can be written as 
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the union of three disjoint sets, [/ = i'g U 5, U S where 5 
denotes the nonsampled nodes. Here, we consider a design 
in which the decision to follow the links from node u 
depends on the node value y„. For example, in a study on 
injection drug use, tiie initial sample may contain both users 
and nonusers. If the investigators choose to follow social 
links only from users, then the design depends adaptively 
on the node y-values as well as the links. The design then 
can be written P{s\y ,a ) , since the selection procedure 
depends on both node and link values. The data are 
d = {s,y ,a ). Since the decision depends on y and a 
values only through the observed data, the design factors 
out of tiie likeliUood function and divides out of the Bayes 
posterior, so that likelihood or Bayes inference depends 
only on the assumed model. 

With the graph model described in the previous section, 
it then follows (Thompson and Frank 2000) that the 
likelihood with the sample data is: 

( N 

L{Q,X;d)=P{s\y^,a)Y U ^ U^ yu ^l i^V UV' VI 

where the sum is over all values of y„ and a^^ that are not 
fixed by the sample data. 

For link-ttacing designs in which all links, rather than a 
subsample, from the initial sample nodes are ttaced, all of 
the elements in the submatrix a . are zero. It has been 
shown by Thompson and Frank (2000) that tiie likelihood 
function can then be written as: 

L{Q,X;Y,A) = P(s\y,a^^^j^UQf 

n 
V ijkl 

^ijkl n 
ijk 

^ijk 

(Sr.,S.) 

Ee.n So. 
n(-s) 

(1) 

where n.{s),n.{sQ), and n.{s) denote the numbers of 
nodes of type / in the full sample s, the initial sample 5 ,̂ 
and the nonsampled nodes s, respectively, and 
m..j^i{sQ, ^g), m..f,i{Sg, s^) are the counts of node pairs in 
SQXSQ and 5oX.$|. 

For a symmetiic model, X. .̂ ^ = 0 for k* I so that arcs 
are always two-way or, equivalentiy, they can be considered 
as undirected edges. The full symmetric model has 

hjkk = hikk for iJ'k = 0,l, with 
1. To simplify notation for this model, let 

parameters 
hjoo^hjii 
p,.̂ . = L.,, and tiius |3̂  denotes the probability of a mutual 
link between two nodes having total value k, for /: = 0,1 or 
2. The above likelihood simplifies to 

L(0,P;d) -Pis\y,a\ ne? '^ '^ 
V ' 

u^^^f^y-^ij"^'^-
i.j 

"(s) 

(2) 

''0,0 '"0000 (•̂ O''*)'''0,2 '"OOIÎ '̂ O''̂ '̂'̂ l.O 
1000̂ '̂ 0' ^)' ''1,2 ""̂ OIIÎ '̂ O' ^) "'"'̂ lOll̂ '̂ O' ^)' 

Q,s), r22 = '''i\\i{So'^)- Note that tiler's are 

Now define 
' " 0100(^0 ' ^ )+ ' " 

'̂ 2,0 ~ "^iioo''̂ 0' ^)' '̂ 2,2 ~ 'n 
dyad counts where the fttst index represents the sum of the 
node values and the second index represents the sum of the 
link values. The above expression can be rewritten as: 

L(0, p ;d) =P(s I y, ajQf\ 1 " eo)"''^'Po"( 1 " Po)̂ °° 

p;'\l-p,)^'''p;^'^(l-p,)^^° 

0o(l Po)"°*''''(l Pi) 
n,(io) 

+ (1-0„)(1-P,)"°''°\l-P,)"'^'°^ nCs) 
(3) 

In the remainder of this paper, we focus on the full 
symmetric model to illusttate tUe proposed Bayesian metho­
dology for simpUcity of presentation. The same method can 
be appUed to the general model with tiie likelihood function 
given in (1). 

3.2 Choice of Prior Distributions 

Since there are no specific constraints on 0,,, PQ, Pp P2, 
we may assume independent priors on 0̂ , Pg, pp p,, all of 
which take values in the interval [0, I]. It is quite common 
to put a beta prior on a parameter that takes values in [0, 1] 
because most smooth unimodal distributions on [0, 1] can 
be well approximated by some beta distributions and the 
class of beta distributions is reasonably rich to model the 
uncertainty about the parameter. Also, the expression in (3) 
is in general quite complex but beta priors can yield a 
ttactable posterior distribution (to be shown later). Using 
beta priors, we obtain an analytic formula for the Bayes 
estimates and the marginal posterior distribution. 

In this paper we consider independent beta priors for the 
parameters: 

r^a-l 
7r(0g,Pg,P,,P2)-9o ' ( l - 9 g ) ' ' - ' P ^ - ' ( l - P g ) ' \d-l 

pr'(i-p,)^-'P2^ (1-P2)' '" ' - (4) 

When determining the constants a and b it is often useful to 
equate the mean E[QQ] =al{a •*• b) of Beta{a, b) to a value 
which represents your belief about the location of 9̂  and 
the variance Var[9o] = ab/{a + b)^ {a + b + I) of Beta 
{a, b) to a value which represents the uncertainty put on the 
specified 9Q value. SirrUlarly, the values of c, d, e,f, g and 
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h can be determined. For example, if one is interested in the 
prevalence of injection drug use in a certain community, 
one may take an initial sample and ttace Unks by asking the 
injection drug user in the sample to name the people with 
whom they share injection equipment. If the value y„ = 1 
represents injection drug use, then 0^ is the percentage of 
non-users in that community. Quite often an estimate for the 
centtal location and the spread of 0^ may be provided. 

In the case of complete ignorance, we wiU consider three 
commonly used noninformative priors and provide a 
comparison of the resulting Bayes estimates in our 
iUusttative example in section 4. (For a fuller discussion of 
the noninformative priors, see Berger 1985, pages 89-90). 
The first one is the uniform prior, which corresponds to 
Beta(l,l). The second one, Beta(0, 0), suggested by 
Haldane (1931), has an improper density. It is equivalent to 
a prior uniform in the log-odds log{9Q/(I - 0o)}. A 
possible compromise between Beta(l,l) and Beta(0,0) is 
Beta(l/2, 1/2), which has a proper density. This prior 
implies a uniform prior for sin"' M'^. 

3.3 Posterior Distribution and Bayes estimates 

In our problem, the posterior distribution 
71(00, Pg, Pp p2 I d ) corresponding to the beta priors is 
given by: 

;i(0o,Po,ppp,|J)oc0o' > ( - ' ) + ' ' - l . ^ _ Q .n^(s)*b-l 

p;"^^"'(i-Po/"'"^''' 

p;'-^^^"'(i-p.)^-^^-' 

p;^'^^'"'(i-p,)'"^°^'-' 

\{l -%)"'^'°\l -P;)"' ' '°^ 

+ (I-9„)(I-P,)"°<'°^ 
(5) 

\''i(^o) n(-s) 

( I - P 2 ) 

To find the posterior mean (Bayes estimate) of 9o, let 

^(9o,Po,PpP,) = 9 r ^ ' ' ' ' ( l - e o ) " ' ^ ^ ^ ^ ' ' " ' 

p;-^^"'(l-Po)^»'°^''-' 

P, ( 1 - P , ) '•1,0-/- ' 

p;^'^^'"'(i-p,)'^°^''"' 

0o(l -^J°^''\l -p,)"'^'° 

+ ( l -0o)( l -p , )"°^^° ' 

( I -P2) ' 
"iC'^o) « ( 5 ) 

Since / " ' .x" - ' (1 - A ; ) ^ " ' JA ; =f i (a , P) is the beta 
function, we have the foUowing two results: 

M, = r r r rq{o^,%,^„^2)d%d%d^,df>2 
•'0 *'0 •'0 *'0 

n(-s) 
n{s) 

B{nJs)-^a-^i,n{s)i-n.{s)^^b-i) 
1 = 0 V I 

B{r^2 + <̂ ' ^"o('^o) + '•Q.O "• ̂ )^(''1,2 

+ e, in^{Sff) + {n{s)-i)n^{sQ) + r^^ + / ) 

B{r22 +g,{n{s)-i)n^{S(^) + r2Q + h). 

^2 = f 7 7 7 ^0^(00'Po'PpP2)^VPo ̂ Pl̂ P2 
d Q J Q J Q J Q 

^yi n{s)^ 
fi(nQ(5)+a + l +f, n(5)+rt, ( i )+fe- i ) 

1=0 V I 

B{r^2 + ̂ ' ''"o('^o) * ''o.o + ^ ) ^(''1,2 

+ e,jni(5o) + {n{s)-i)n^{sQ) +r^Q + / ) 

5(^22 +g,{n{s)-i) n, {SQ) + TJQ + h). 

The Bayes estimate for 9^ can thus be evaluated by the 
quotient of the righthand side of the above two equations 
since: 

f 7 ' f 7 ' 0̂ 9(^0' Po' Pi' P2) d%d% dp, d^2 
£(9J^ ) = -'°-^°-^°-^" 

f V ' f'f'^(^O.Po.P,'P2)^MPo^Pl^P2 
"O •'0 "O *'0 

_ M2 

~~~M,-

Similarly, the Bayes estimates for Pg, P,, P2 can be 
computed. 

3.4 Prediction of Realized Graph Quantities 

Consider the problem of estimating or predicting, from 
the sample data, the realized value of some graph quantity 
Z = Z(Y, A), an observable but unobserved finite-popu­
lation quantity. Denoting the unknown parameters 
collectively by \|/, the relevant posterior predictive density 
is 

f{z\d) = ff{z\d,\^)n{\\t\d)d\^ 

"^ [fid, Z\ Vj/)7t(V|l)c?V|/ 
(6) 

where the constant of proportionality is, as usual, f{d). 
For example, suppose the objective is to predict the 

proportion of nodes in the population that have value y = 
1. Let «, (5) denote the number of nodes for which y = I 
in the sample, and let n, (5) denote the number of nodes 
with value 1 among the nodes not in the sample. Note that 
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n^{s) is observed and n, (J) is an unobserved quantity to 
be estimated or predicted. The reaUzed proportion of value-
I nodes in the population is denoted 
Z = {n^{s) + n^{s))/N, where Â  is the total number of 
nodes in the population. 

For a one-wave snowball design with an ignorable initial 
sample from which all links are ttaced and with the 
nondirected stochastic block model, the joint predictive 
likelihood is 
/(d,n,(5)|9o,po,ppP2) = 

p('\ys^\u) 
'n{-s)^ 

n.{s) 

no(j)+no(5) n , (s)+n,(S) 
% ( I - %) 

p;'^'^"'^i-p,) 

p?^^°"'(i-P2y '•2o(''0''')*"l(*o)"l(^) ( 7 ) 

With joint likelihood (7) and independent beta priors and 
carrying out the integration, the posterior predictive density 
for the finite-population proportion Z becomes 

f{n,{-s)\d)« n{-s) 
n.{s) 

B\^ng{s}+ng(s)+a,n^{s)+n^{s)-^•bj 

^['•o2-"^'''oo-'"o(^o)«o(5)-'^] 

^[' '12 * ^ ' ''lO '""O^'^o) " l (^ ) + " l (^o) "O (^ ) •*•/] 

^[ ' '22 •*-^'''20 ' • " l ( ' ' o ) " ! ( * ) • ' ' ' ] • 

The Bayes predictor of n, (5) is 
n(-s) 

E[n^{-s)\d]= Y n^{-s)f{n^{-s)\d). 
n,(5) = 0 

Since/(f) = n(«:}) . 

E[n,{-s)\d]'<n{-s)'£ 
1 ( 3 ) / / - \ i \ 
- ^ n ( j ) - 1 B[ng{s)+n{s)-i 

i-l 

+ a, n , (5 ) + i + b] 

^['•22-'«'' '20-'"l(^o)'-'^] 

=M^. 

in which M^ is defined to be the right hand side. Thus, 
since M, =f{d) defined earlier is the proportionality 
constant, £[n, (5) | d] = M^/M^. 

Therefore, the Bayes predictor Z of the realized 
proportion Z of positive nodes in the population is 

Z = £(Z| J ) = E[{n^ {s) + n, {s))IN\d] 

_n^{s)-^{M.^IM^) (8) 

'N • 

4. AN ILLUSTRATIVE EXAMPLE 

Here, we consider an example which concerns esti­
mating the percentages of injection drug users and nonusers 
among a certain target population. Let 9Q represent the 
proportion of non injection drug users in the target popu­
lation. Then 1 - Ô  is tiie proportion of injection drug users. 
Suppose that there are 200 people in tiiat population. In the 
first wave sample, 22 people are sampled randomly without 
replacement and 5 of those sampled are injection drug users 
whereas 17 are not. The injection drug users are asked to 
name their injection partners. Note that links are only 
possible between users and ttacing these links can only add 
users to the sample. The initial users give 12 referrals, of 
which 10 are distinct users not in the initial sample. The 
statistics are: 

n,(5o) =5,ng(5o) = 17, n, (5) = 15,no(5) = 17, 
n{s) 168, 2̂2 = 12, 2̂0 = 93. 

In terms of the notation of section 3, PQ = Q̂OH '̂  ^^^ 
probabiUty of a mutual Unk between two non injection drug 
users. P, = Xjo,, =̂ 0111 '̂  ^^ probability of a mutual link 
between injection drug user and non injection drug user (it 
is natural that the two different orders of node values have 
the same probability). P2 = ^u 11 ^̂  ^^^ probability of a 
mutual link between two injection drug users. Since non 
injection drug users will by definition not have injection 
partners, Pg = p, = 0 for this example. 

The Bayes estimates for 0̂  and P2 corresponding to 
different noninformative priors are given in table 1. 

Note that the three noninformative priors are very 
different from each other. For example, the improper non-
informative prior corresponding toa=b=g=h = 0 
place a lot of its weight on botii 0 and 1. This would arise in 
practice when people in a certain neighbourhood are either 
all injection drug users or are all non injection drug users, 
but we just do not know which one. On the other hand, the 
prior corresponding toa=b=g=h = l place a flat 
weight to values between 0 and 1. Even though the three 
priors are very different, the posterior distributions 
corresponding to these three non-informative priors nearly 
coincide with each other. Figure I shows the posterior 
distribution of 0o and P2 corresponding to the three non-
informative priors. One can conclude that the Bayes 
estimates here are not sensitive to the specification of the 
three priors. 
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Table 1 
Bayes estimates for noninformative priors corresponding to the specified values of a, b, g, h 

(The values in the brackets are the 95% HPD regions) 

Bayes estimate a=b=g= 

.7273 (.5706, 

.0420 (.0153, 

h = 0 

.8713) 

.0738) 

a = b = g = h = .5 a = b = g = h=\ 

.7285 (.5747, .8670) .7295 (.5786, .8686) 

.0439 (.0164, .0766) .0458 (.0175, .0791) 

Figure 1. Marginal Posterior distributions: solid line for 9̂  and 
dashed line for p^. (The posterior distributions 
corresponding to the three non-informative priors are 
given here and they nearly coincide) 

For comparison purposes, it is of Uiterest to note that tiie 
maximum likelihood estimates obtained using the Ukeli­
hood function given in (3) are calculated to be: 
©0 = .7604, P2 = .0501, not far from the Bayes estimates. 
However, it is not easy to compute confidence intervals for 
the maximum likeUhood estimate whereas one can obtain 
the posterior intervals for the Bayes estimates without any 
additional diffculty. For example, a (1 - a) highest 
posterior density (HPD) region can be obtained for the 
specified a value for each parameter 0g, pg, Pp P2, where 
HPD is the region of values that contains (1 - a) of the 
posterior probability for that parameter with the 
characteristic that the density within the region is never 
lower than that outside. It is worthwhile to note that the 
posterior intervals can be directiy regarded as having the 
stated probability of containing the unknown quantity in 
contrast to the repeated sampling property of frequentist 
confidence interval. See Gelman, Carlin, Stem and Rubin 
(1995, pages 104-106) for a discussion on the frequency 
property of some Bayesian procedures. 

From Table 1, we can see that even though the width of 
the HPD interval of P2 is large compared to the magnitude 
of its Bayes estimate, it gives us a rough order-of-
magnitude estimate of P2 and provides useful information 
to the subject matter specialists. 

5. AN EMPIRICAL EXAMPLE AND 
DISCUSSION 

To examine the properties of estimators and predictors 
under repeated sampUng, socially-networked data from the 
Colorado Springs study on the heterosexual ttansmission of 
HIV/AIDS was used as an empirical population from which 
to repeatedly sample. The Colorado Springs study, which is 
described in Potterat, Woodhouse, Rothenberg, Muth, 
Darrow, Muth and Reynolds (1993); Rothenberg, 
Woodhouse, Potterat, Muth, Darrow and Klovdahl (1995), 
and Darrow, Potterat, Rothenberg, Woodhouse, Muth and 
Klovdahl (1999), involved a very thorough investigation of 
a population of people thought to be at high risk for 
infection with the human immunodeficiency virus. In the 
study, data were obtained not only on the risk-related 
behaviors of individuals, but also on their social relation­
ships with other individuals. Risk-related behaviors 
included various sexual and drug-use behaviors, and the 
social links examined included sexual and drug-use 
relationships. Over the course of the study, data were 
obtained on several thousand people. 

For our empirical population we have used the 595 
individuals in the study for which the data on both 
individual risk-related behaviors and relationships to other 
people in the study are complete. For the node variable of 
interest we chose a high-risk sexual behavior (commercial 
sex work) and sexual relationship for the link variable of 
interest. Figure 2 shows a graphical representation of the 
empirical population, in which the nodes or circles 
represent people in the study and the lines represent sexual 
relationships between pairs of individuals. Presence of the 
high-risk sexual behavior (y = I) is indicated by a dark 
colored circle, while presence of a sexual relationship 
between two individuals is indicated by a line between the 
two circles. The positioning of the nodes in the graph is 
arbittary, but has been arranged to separate connected 
components. The largest connected component contains 
219 of the 595 people in the population. The next largest 
connected component contains 12 people, followed by 
several components of 4, 3 and 2 people. There are 267 
people without sexual relationships to others among the 595 
in the empirical population. The extremely uneven distri­
bution of connected component sizes exemplified by this 
population presents one of the challenges to sampling 
design and inference in such populations. 
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population one-wave snowball sample 

Figure 2. Colorado Springs study on the heterosexual 
transmission of HIV/AIDS (Potterat el al 1991; 
Rothenberg el al. 1993; Darrow el al. 1999): The 595 
people in the empirical population. Dark circles 
represent individuals with high-risk sexual behavior 
(sex work). Links between circles indicate sexual 
relationships. 

Figure 3. shows a one-wave snowball sample from this 
population. First, a simple random sample of 40 nodes 
(circled in the figure) is selected. All links from these initial 
nodes are ttaced to add the additional nodes to the sample. 

Repeated sampling of the empirical population was 
carried out using the one-wave snowball design with initial 
simple random sample of 40 individuals. The addition of a 
wave of new nodes brought the total sample size to 85, on 
average. For each sample, various estimators of the 
proportion of high-risk individuals (y = I) in the 
population were computed, and this procedure was repeated 
1,000 times. The undirected stochastic block graph model 
was used for tiie maximum lUcelihood and Bayes estimators 
of 0 and the Bayes predictor of the finite-population 
proportion z. A uniform prior was used for the Bayes 
procedures. Table 2 and Figure 4 summarize tiie properties 
under tiie repeated sampUng of the different estimators. The 
actual proportion of nodes having value (y = I) in the 
empirical population is 0.2235. The sample proportion 
overestimates relative to the actual proportion because the 
linkttacing has a tendency to enrich the sample with high-
risk nodes. Each of the model-based estimators has 
relatively littie bias with the link-ttacing design. 

Figure 3. A one-wave snowball sample selected from the 
Colorado Springs empirical population. From an initial 
random sample of 40 individuals (circled), links are 
traced to add one wave of new individuals to the 
sample. 

Table 2 
Means and mean square errors of estimators of the population 
mean of the node values, for the Colorado Springs empirical 

population. The actual mean of node values in the population is 
0.2235294. The design is a one-wave snowball sample with an 

initial random sample of 40 nodes. The average final sample size 
was 82.65. The number of simulation runs is 1,000. 

Type of sample 
estimator: proportion 

m.l.e. Bayes Bayes 
estimator predictor 

mean: 0.3147 0.2155 0.251 0.2142 

m.s.e.: 0.011391 0.003279 0.003261 0.003275 

In this paper, we employ a Bayesian approach to the 
estimation problem with Unk-ttacing design and show that, 
corresponding to the independent beta priors, the posterior 
distribution can be evaluated analytically. If a more general 
prior is desired then one can use the Markov Chain Monte 
Carlo (MCMC) method to evaluate the posterior for that 
general prior. References for using MCMC techniques in 
Bayesian computations include Gilks, Richardson and 
Spiegelhalter (1996) and Gelman, Carlin, Stem and Rubin 
(1995) . The approach used in Gelfand and Smith (1990) 
can be adapted for the implementation of the MCMC 
simulations here. 



204 Chow and Thompson: Estimation with Link - Tracing Sampling Designs - A Bayesian Approach 

c 
Q cnJ 

sample proportion 

( ^ 

i: 

L 

• 4 — * 

c 
Q ^ 

mle 

1 
0.0 

1 

0.2 
1 

0.4 
1 

0.6 
1 

0.8 
1 

1.0 
1 

0.0 
1 

0.2 
1 

0.4 
1 

0.6 
1 

0.8 
1 
1.0 

\o-

i n -

D
en

si
ty

 
3 

4 
1 

1 

CN-

Fk 

] ; • 

J 
1 

0.0 
1 

0.2 

bayes 

h 1 

1 

0.4 

> estimator 

1 1 

0.6 0.8 1 

\o-

tn' 

D
en

si
ty

 
3 

4 

CN-

1 
.0 

l' 
bayes predictor 

I 
• \ 

Im • -
1 1 

0.0 0. 
1 1 1 

I 0.4 0.6 0.8 
1 

1.0 
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empirical population, with the one-wave snowball design using an initial sample of 40. Solid triangle is the actual 
proportion in the population. Hollow triangle is the mean of the distribution of the estimator. The number of 
simulations was 1000. 
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