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In This Issue 

This issue of Survey Methodology contains the fourth in the annual invited paper series in honour 
of Joseph Waksberg. A brief description of the series and a short biography of Joseph Waksberg were 
given in the June 2001 issue of the journal. I would lUce to thank the members of tiie awards selection 
committee for having selected Norman Bradbum as the author of tiUs year's Waksberg invited paper. 

In his paper entitled "Understanding the Question-Answer Process", Bradbum ttaces the history of 
conceptualization of the survey process over the past couple of decades, in which concepts from social 
and cognitive psychology and linguistics have been applied to improving our understanding of this 
process, and cognitive tools and approaches have been adapted for use in formulating survey 
instinments. He presents a conceptual model for tiie survey interview, and discusses various cognitive 
processes in survey response such as comprehension, retrieval, answer formulation and response. In 
his concluding summary he outiines challenges and priorities for further research in this area. 

In Demnati and Rao, the authors present an approach for obtaining Taylor linearization variance 
estimators that is easier to apply than the usual Taylor Unearization approach. The new method leads 
to a unique variance estimator and is applicable in many situations and estimators. The method is 
iUusttated for caUbration estimators, estimating equations and under two-phase sampling. For 
calibration estimators, the calibration weight is automatically captured in tiie variance formulae tiius 
justifying what is commonly done in practice. Discussions of this paper are provided by Phil Kott, 
Babubhai Shah, and Chris Skinner. 

Isaki, Tsay and Fuller propose a new method of household weighting for the 2000 U.S. Census long 
form, using quadratic programming to ensure that the weighted sums of household and individual 
characteristics match conttol totals derived either from the Census short form or from the Accuracy 
and Coverage Evaluation (A.C.E.) study. The weights are then rounded to integer values. They 
propose a jackknife procedure for estimation of the variance that incorporates the effects of both 
rounding and tiie random conttols from A.C.E. Results of tiie proposed weighting procedures are 
compared to the 1990 weighting procedures using the 1990 Census data. 

The theoretical properties of the estimator through reweighting within ceUs are studied in the article 
by da Silva and Opsomer. In confrast with numerous other studies on the subject, which involve a 
response model in which the population units are homogeneous within cells, it is not necessary to 
correctly specify the response model. It is necessary, however, to determine an auxiliary variable that 
is correlated with the response probability. The proposed approach can thus be seen as non-parametric. 
A simulation study explores the properties of tiie estimator being considered under various scenarios. 
The authors also provide some recommendations on the size and number of reweighting cells. 

Brick, Kalton and Kim deal with the estimation of variance in the presence of hot-deck imputation 
within imputation cells for Unear estimators. Samdal's decomposition (1992) and a model for the 
variable of interest are used to estimate variance. The originality of tiie proposed approach comes from 
the fact that, not only are tiie sampled and responding units conditioned, but also the units selected at 
the time of imputation. The article also deals with estimation for domains and a simulation study is 
carried out to evaluate the proposed method when certain model assumptions do not hold. 

Hidiroglou and Patak study the properties of a number of small area estimators. They classify the 
estimators into two types, Horvitz-Thompson and H^jek, and by the detail of auxiliary information 
requtted. Conditional and unconditional properties of the estimators are investigated both analytically 
and in a simulation study. They conclude that the Hdjek-type estimators have the best conditional 
properties, both in terms of bias and coverage, but these estimators do not have the additive property 
and theU- weights are domain dependent. 



In This Issue 

In their paper, Sverchkov and Pfeffermann develop prediction of finite population totals using a 
model for a variable of interest conditional on the unit not being in tiie sample (the sample-
complement distribution) and possibly some covariates. They first describe the sample distribution and 
the sample-complement distribution, and then develop semi-parametiic estimation of tbe sample 
complement model. A resampling procedure is proposed for mean-square error estimation. The 
method is illusttated by examples and it is compared to alternative approaches in a simulation study. 

The article by GrilU and Pratesi considers the problem of parametric estimation for ordinal and 
binary models at a number of levels for informational sample plans. The authors extend the pseudo 
maximum likelihood method to deal with this problem. This method uses the inverse of the inclusion 
probabilities at each degree to weight the logaritiim of the likelihood function. The estimator's 
properties thereby obtained are tested in a simulation study. The bootsttap method is also used to 
obtain a variance estimator. 

Rowe and Nguyen explore longitudinal analysis using data from an overlapping panel survey, 
specifically, the Canadian Labour Force Survey. Successive six-month longitudinal panels can be used 
to provide estimates relating to cohorts of people over time, provided that cohort members can be 
identified in each panel. They develop a likelihood function for the longitudinal data observed in each 
six-month window, and show how this can be used to obtain estimates of parameters of interest. They 
then give an illusttation of this approach for estimating transition probabiUties between employment 
states and validate it by comparing simulated and observed data. 

Finally, in a paper somewhat related to Bradbum's, Callens and Croux look at individual level and 
municipality level predictors of contact and cooperation in the Belgian FertiUly and Family Survey 
using multilevel logistic regression models. They discuss some social theory models for contact and 
cooperation tiiat imply an important role for different indicators, and then fit models using data from 
the survey. Their qualitative findings, in particular with respect to socio-economic status (SES) 
indicators, seem to conflict witii tiie results of similar studies in the literature. In this study, SES was 
found to be positively related to cooperation. Some possible explanations of the observed results are 
offered. 

M.P. Singh 
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Waksberg Invited Paper Series 

Survey Methodology has estabUshed an aimual invited paper series in honor of Joseph Waksberg, who has 
made many important contributions to survey methodology. Each year, a prominent survey researcher will 
be chosen to author a paper that wiU review the development and current state of a significant topic in the 
field of survey methodology. The author receives a cash award, made possible through a grant from Westat 
in recognition of Joe Waksberg's contributions during his many years of association with Westat. The grant 
is administered financially and managed by the American Statistical Association. The author of the paper is 
selected by a four-person committee appointed by Survey Methodology and the American Statistical 
Association. 

The author of the Waksberg paper is announced at tiie aimual JoUit Statistical Meeting during the American 
Statistical Association Presidential Address and Awards session. In tiUs session, recipients of awards such as 
Section, Chapter, Continuing Education-Excellence and other co-sponsored awards are congratulated. In 
particular, Uie Waksberg Award for outstanding contributions Ui Uie theory and practice of survey 
methodology is highlighted. FinaUy, the winner of ttie Waksberg award appears in the Awards program 
booklet. 

Previous Waksbei^ Award Wirmers: 

Gad Nathan (2001) 
Wayne A. Fuller (2002) 
Tim HoU (2003) 

Nominations: 

Nominations of individuals to be considered as authors or suggestions for topics 
should be sent by December 3, 2{X)4 to the chaU of the committee, David 
BelUiouse by e-mail at: belUiouse@stats.uwo.ca or by fax (519) 661-3813. 

2004 WAKSBERG INVITED PAPER 

Author: Norman M. Bradbum 

Norman Bradbum is die Tiffany and Margaret Blake DistUiguished Service Professor Emeritus in die 
University of Chicago. He has spent most of his career as a survey methodologist at the National Opinion 
Research Center (NORC) at the University of Chicago where he is currentiy a Senior Fellow. His research 
has concenttated on the study of non-sampling errors in surveys with particular emphasis on the cognitive 
aspects of the survey question/answer process. 

mailto:belUiouse@stats.uwo.ca
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Understanding the Question-Answer Process 
NORMAN M. BRADBURN' 

ABSTRACT 

Survey statisticians have long known that the question-answer process is a source of response effects that contribute to non-
random measurement error. In the past two decades there has been substantial progress toward understanding these sources 
of error by applying concepts from social and cognitive psychology to the study of the question-answer process. This essay 
reviews the development of these approaches, discusses the present state of our knowledge, and suggests some research 
priorities for the future. 

KEY WORDS: Measurement errors; Response effects; Cognitive psychology; Questionnaire design. 

1. INTRODUCTION 

When I was Ui graduate school, I was deeply impressed 
by Gordon AUport's comment to the effect that the best way 
to fuid out something was to ask a direct question. Later, as 
1 began to shady and do research on methodological 
problems Ui sample surveys of human populations, I 
became more convinced of the wisdom on this remark. I 
have even formulated it mto Bradbum's Law for Ques­
tionnaires: "Ask what you want to know, not something 
else." 

The ttouble with tiUs law is that U is exti^mely difficuU to 
put mto practice for several reasons. FUst, it presumes that 
we know what we want to know. Often when we start out to 
construct a questionnaUe, we are not sure what we want to 
know and use the questionnaUe constmction process in an 
iterative fashion to refine our ideas about what we want to 
know. Until we have a clear imderstanding of what we are 
tiying to ask about, there is Uttie hope tiiat we wiU be able to 
ask meaningful questions. 

Second, even if we know what we want to know, we 
need to understand how people answer questions. The 
complexities of human communication make U difficuU to 
constiiict of single, standardized instmment that wUl enable 
us to ask our questions so that respondents wUl understand 
them in the way that we intend and that we will understand 
theU answers Ui the way they intend. Belson (1968), who 
has done extensive studies on the comprehension of 
questions by respondents, estimates that even with the best-
constracted questionnaires, less than half of the sample wUl 
understand die questions the way the researcher intended. 
He does not present any data on how weU the researchers 
understand die responses. 

Even if this estimate is too pessimistic, we are faced witii 
a difficult problem of measurement error tiiat comes from 
the question-answer process itself, rather than from sample 

design or survey execution. The existence of tiiis source of 
measurement error has been recogruzed sUice the begUming 
of scientific surveys, that is, sUice the development of 
sampUng theory and its appUcation to human populations. 
UnUke samplUig theory, which rests on firm mathematical 
principles, the understanding of measurement error due to 
the question-answering process has not, until recentiy, been 
based on die theoretical understanding of human commu­
nication and cogiution. This situation is beginnmg to 
change. 

In die past two decades there has been substantial 
progress in the conceptuaUzation of the survey interview 
applying concepts from social and cognitive psychology 
(JabUie, Sttaf, Tanur and Tourangeau 1984, Sudman and 
Bradbum 1974, Sudman, Bradbum and Schwarz 1996, 
Tourangeau, Rips and Rasinski 2000). In this essay I wUl 
review briefly the development of tiiese approaches, discuss 
the present state of our knowledge regarding the question-
answer process, and suggest some research priorities for die 
future. 

Some History 

The coUaboration between cognitively oriented psycho­
logists and survey researchers began about 25 years ago. 
LUce many Umovations it had many progenitors and seemed 
to spring up from several Uidependent sources. One of the 
earliest, if not the earUest mstance, was a seminju* held Ui 
1978 by the British Social Science Research Council and 
the Royal Statistical Society on problems m the collection 
and interpretation of recall data m social surveys. Parti­
cularly noteworthy was the participation of the Cambridge 
cognitive psychologist Alan Baddeley whose paper, 'The 
Limitations of Human Memory: Implications for tlie Design 
of Retix)spective Surveys," is perhaps tiie first paper by a 
psychologist interested in memory directiy related to survey 
design (Baddeley 1979). 

Norman M. Bradbum, National Opinion Research Center, University of Chicago. 
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Two important events occurred in the United States in 
1980. The first was a workshop convened by die Bureau of 
Social Science Research in connection with its work in the 
redesign of the National Crime Victimization Survey. This 
workshop brought together cognitive scientists and survey 
statisticians and methodologists to discuss what contiibu-
tions cognitive scientists could make to under standing 
response errors m behavioral reports (Biderman 1980). One 
of the results of this conference was to stimulate some of the 
cognitive psychologists who participated to begUi to study 
problems in survey questions in a laboratory setting. One of 
the earUest of such papers was "Since the emption of Mt. St. 
Helens has anyone beaten you up? Improving the accuracy 
of rettospective reports with landmark events, " (Loftus and 
Marburger 1985) which demonsttated experimentally the 
value of using landmark events to improve the quality of 
dating events in survey reports. 

The second event was the estabUshment of a panel on the 
measurement of subjective phenomena by the Committee 
on National Statistics. This panel produced two large 
volumes that reviewed a considerable amount of research on 
response effects involved in the measurement of subjective 
phenomena. It complemented the work that had been done 
by the earlier seminars on measuring behavior or more 
"objective" phenomena. (Tumer and Martin 1982) 

A big stimulus came m 1983 when die Committee on 
National Statistics with funding from NSF orgaiuzed a 6-
day seminar m St. MicUaels, Maryland on Cognitive 
Aspects of Survey Metiiodology. Two papers, "Potential 
contiibutions of cognitive research to survey questionnaUe 
design" (Bradbum and Danis 1984) and "Cognitive science 
and survey methods," (Tourangeau 1984) reviewed how 
new developments m cognitive psychology could contiibute 
to survey methodology and how developments in survey 
methodology could contribute to the further development of 
cognitive psychology. The conference was exttaordinarily 
fruitful and led to a whole new field of research in survey 
methodology both as appUed to objective and subjective 
pUenomena. The results of this conference were pubUshed 
in JabUieefa/. (1984). 

The final instance of Uidependent work that may be 
thought of a progenitor of this field was a conference 
organized by Norbert Schwarz and his associates in 
Germany. Perhaps the most influential paper from this 
conference was tiie model proposed by Sttack and MartUi 
(1987) 'Thinking, judgUig and communicatUig: A process 
account of context effects in attitude surveys." The results of 
the conference are pubUsUed in Hippler, Schwarz and 
Sudman, Social Information processing and survey 
methodology (1987). 

In the ensuing years, there has been a stteam of research 
that has refined and elaborated the research agenda that 

came from these early seminars. Some of the work 
sponsored by the Social Science Research CouncU is 
pubUshed Ui "Questions about questions: Inqutties into the 
cognitive bases of surveys" (Tanur 1992). Subsequent 
research has been updated in a series of volumes edited by 
Schwarz and Sudman (1992, 1994,1996). 

A Conceptual Approach to the Survey Interview 

A survey interview is a stractured social interaction 
between two people who play distinctive roles-the inter­
viewer and the respondent. It has been described as a 
"conversation with a purpose" (Bmgham and Moore 1934). 
The purpose, to put it succinctiy, is to get a series of 
questions answered. In scientific surveys, these questions 
are usually embodied Ui a stractured questionnaUe designed 
by a third party, the researcher. It is this type of survey 
activity that 1 wUl consider, although the analysis could be 
extended to other, less stractured mterviews. 

Like aU social interactions among people from the same 
culture, there are impUcit rales that influence the way the 
participants behave. Some of these are general and apply to 
aU social interactions between social equals; some are 
general to the pecuUar type of Uiteraction we call the survey 
interview; some are general to tiiis survey; and some are 
idiosyncratic and apply to only this particular interview. 
Thus we think of tiiese rales as hierarchicaUy organized 
from the most general, which apply to all survey interviews, 
to the particular rales involved in a particular interview. 

At the most general level the interaction is governed by 
the rales for voluntary interactions between sttangers. The 
interaction is initiated by one party, the interviewer, who 
must establish the nature of tiie encounter. The important 
elements that must be estabUshed are: 1) that it is non-
threatening, tiiat is the Uiterviewer is not going to do any 
harm to the respondents; 2) the purpose of the encounter, 
and 3) what are the costs and benefits to the respondents if 
they agree to participate in the interview. The interaction is 
tiius viewed as neuttal, purposive, and worthwhUe. As with 
any stractured social Uiteraction, it is govemed by die norms 
related to such interactions. 

What are the norms that are important for the interview? 
The first is mutual respect for individuals, particularly the 
privacy of the respondents. This principle has become an 
important issue regarding the protection of research parti­
cipants because of a number of instances Ui bio-medical 
research where the volimtary nature of participation was not 
made clear. For high-risk research written consent to 
participate is now requUed. In the survey interview, 
however, the context of the request for an interview makes it 
easy for respondents to refuse if they do not wish to 
participate and written consent is superfluous. Asking for 
written consent may actually raise suspicion that the 
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Uiterviewer has not been ttuthful about the purpose of the 
interview because written consent is not normally part of a 
conversation between sttangers who have estabUshed that 
the interaction is non-tbreateiung. 

A second important norm is tratiifuUiess. It is part of the 
role obUgation of botii parties to be tratiiful. For the inter­
viewer, this means tellUig the respondent pertinent facts 
about the purpose of the interview, what is required of the 
respondents, e.g., how much time it wiU take, whetiier ttiey 
will need to consult records, whetiier the questions may be 
sensitive, etc. and to answer any questions tiie respondents 
might ask. If providing some Uiformation at tiie begmning 
of the interview might bias responses, such as who die 
sponsor of tiie research is, tiie information can be given at 
the end of the interview. 

The purpose of the interview is to obtaUi tUe information 
requUed by tiie research. The interviewer's role is to get the 
desUed information and the questionnaire is the principal 
instiument for accomplishing this task. A well-designed 
questionnaire makes the interviewer's job easier and 
minimizes die need for the interviewer to have to answer 
questions about the meaning of questions in the question­
naUe. While Uiterviewers need to be ttained about the 
purpose of questions and theU meaning, Uiterviewers may 
become a source of unconttoUed variance if tiiey have to 
interpret questions for many respondents. Interviewers need 
to be alert to cues that respondents are misunderstanding 
questions and to act to correct them. The need for many 
interventions by interviewers indicates a bad questionnaUe. 

If respondents accept the role and agree to participate m 
the interview, tiiey have the obUgation, under the norm of 
trathfuUiess, to answer the questions as accurately and 
completely as possible. This norm, however, may confUct 
widi the general desUe of individuals to be well thought of 
and to present themselves in a favorable hght. In many 
surveys, we ask questions about potentially embarrassUig, 
sensitive or even iUegal beUavior or unpopular attitudes. 
The interviewer and the questionnahe both play an 
important role in minimizing this conflict and reinforce the 
norm of trathfuUiess. The empirical evidence, however, 
suggests that even with the best ttaUied Uiterviewers and the 
best techiuques of questioimaUe design, U is rarely possible 
to prevent some overreportUig of socially desUable behavior 
and attitudes or underreporting of undesirable attitudes and 
behavior (See Bradbum, Sudman and Associates 1979; 
Wentiand and Smitii 1993). 

Survey data are coUected under a sttong norm of confi-
dentiaUty. TUe norm is so sttong that even if it is not made 
explicit, respondents expect tiiat information from mter­
views tiiat have the form of scientific surveys, such as 
public opinion polls or employee attitiide surveys, wUl not 
be identified with them. Violations of this norm such as 

occur witii "suggUig" (selling under die guise of a survey) or 
"fraggUig" (fund raising under die guise of a survey) 
threaten to erode pubUc confidence in surveys and contri­
bute to die increase in rates of refusal to participate. Unless 
the data are collected under "sUield laws" or certificates of 
confidentiality that have die force of law, confidentiality 
promises, however, can be compromised by law enforce­
ment activities. 

Linguists have also noted that there are basic shared 
assumptions underiying conversations that faciUtate the 
interactions. These have been systematically described by 
Grice and are referred to as Grician rales (Grice 1975, see 
also Sudman et al. 1996 for tiieU application in surveys). 
According to Grice, conversations are based on a principle 
of "cooperativeness" which is embodied in four maxims. 
The maxim of quaUty enjoins speakers to be tiuthful and not 
to say things diat they lack evidence for. The maxim of 
relation Uidicates that the utterances are relevant to die topic 
of the ongoing conversation. The maxim of quantity 
requUes that speakers not repeat themselves and make the 
contributions to the conversation as Uiformative as possible. 
The maxim of manner requUes Uiat die speakers be as clear 
as possible in tUeU meaning. Thus, according to Grice, 
speakers are expected to be trathful, relevant, informative 
and clear. 

These maxims apply equaUy to informal conversations 
and to interviews diat have the form of a specid type of 
conversation. Thus the questions asked by the interviewer 
are Uiterpreted within die same framework, diat is bodi 
questions and inttoductory material to questions are relevant 
to the topic, are supposed to be informative and clear. 
Violations of these maxims can lead to confusion on the part 
of respondents and produce response effects that are well 
documented. For example, violations of die maxim of rele­
vance when questions are obscure (see for example, 
Schuman and Presser 1981) or deUberately about fictitious 
issues (Bishop, Oldendick and Tuchfarber 1986) lead to 
respondents trying to make sense of die question by looking 
to contextual cues about the meaning of die question. This 
produces what appears to be an erroneous response when 
viewed from die perspective of die researcher who does not 
understand the conversational assumptions of tbe 
respondents. 

One of the most well documented order effects in 
surveys occurs when questions of differing levels of 
specificity occur together. When one question is general, 
e.g., 'Taking all dungs togedier, how happy are you these 
days? " and tiie other is specific, e.g., "How happy is your 
marriage?", responses to the general question are affected 
by the order of the questions, whUe responses to the more 
specific question are not. The effect appears to be Ihe result 
of the workings of the maxim of relevance. When the 
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general question comes first it is Uiterpreted as Uitended, that 
is, respondents should mclude all aspects of tiieir Uves in 
making die judgment about theU happUiess. When the 
general question comes second after the specific question 
about marriage happUiess, die maxim of relevance suggests 
that respondents should exclude from consideration theU 
marriages because they have aheady reported on them. 
Thus, even diough die question Uterally asks about "aU 
dungs togedier", it is Uiterpreted to mean "all tilings except 
those we have already asked about." It is only diose things 
that have not been asked about that are stiU relevant. 

What happens if the norms outlined above are not 
accepted in the mterview either because the respondent 
rejects or redefines the role of respondent or does not 
observe die maxims of conversation? Of course the easiest 
form of rejection of die role of respondent is to refuse die 
mterview altogether. SometUnes, however, a person 
sampled becomes a "reluctant respondent", that is, they are 
may feel pressured to participate in the study because of 
foUow-up procedures, because they do not Uke to refuse a 
sttong request from another person or for some other reason. 
In such cases diey may care less about being a good 
respondent than just gettUig the interview finished. Thus 
diey may take less time to diink about questions, make less 
effort to recall Uiformation requested, or be less Uiterested 
Ui a trathful answer than a "don't know" or even a false 
answer. Interviewers have told me diat they often feel that 
the responses given by those that they have convinced to 
participate Ui an interview after many attempts at refusal 
conversion are less vaUd diat diose who participate more 
wiUingly. Exttas efforts to obtain high completion rates may 
Ui fact produce less good data. 

Respondents also may nusunderstand die nature of the 
survey mterview, sUnply want to convert it mto a social 
conversation, or not be very skiUed conversationaUsts, that 
is not abide by the Grician maxims and tiius engage m an 
"Uiefficient" conversation. Such conversations are charac­
terized by frequent asides or changes of topic, comments on 
topics of Uttie or no relevance to the question at hand, 
relating personal anecdotes that may be triggered by some 
aspect of the question, or simple repetition of comments. In 
such cases the Uiterviewer must poUtely but firmly teach the 
respondent die rales for the conversation and guide die 
respondent to keep focused on die questions in die mter­
view. SkUled Uiterviewers become experts Ui steering die 
conversation and, by selective remforcement, shaping the 
respondents' behavior to foUow the Grician maxims. 

In summary, mterviews take place in social contexts diat 
have a sttucttue govemed by sociaUy shared expectations 
and norms. These norms may differ from society to society 
and perhaps even widiUi subculttires m die same society, but 
diey have powerful effects on die way mterviews are 

conducted and the way questions are Uiterpreted. Violations 
of the expectations or norms may lead to "effects" tiiat may 
be Uiterpreted as error from die perspective of the 
researcher. If diese norms and expectations are understood, 
they can be used to avoid problems or to mitigate the 
effects. 

Data could also be obtained from interviewers about how 
much the interview deviated from the model outUned above. 
Although Uttie research has been done assessing the quality 
of interviews from this poUit of view, a fruitftil area for 
future research could be to Uivestigate the decline Ui vaUdity 
of data as die conditions of die mterview UicreasUigly 
deviate from the ideal model. 

Cognitive Processes in Survey Response 

Answering questions Ui a survey involves considerable 
cognitive work on die part of respondents. Much of what 
underUes recent advances Ui imderstanding survey response 
processes derives fix)m the appUcation of models of Uifor­
mation processing to the question-answering process. While 
there is stiU much work to be done before we have complete 
and detailed understandmg of how die braUi processes Uifor­
mation, diere is sufficient agreement about the general 
approach to serve as die basis for a better understanding of 
the response process. 

The mind is conceptuaUzed as a large Uiformation 
processing system composed of a series of component 
systems. The physical sensations of sound and sight enter 
die system m die sensory register. The sensory register has 
capacity limitations so diat oiUy a portion of the Uiformation 
is transferred to short-term memory. Attention plays a large 
role Ui determUiUig what is brought mto short-term memory. 
Attention is a function of an executive monitor that enables 
and conttols the Uiformation processing system much the 
way diat programs enable what computers do. The execu­
tive system conttols the entUe system dirough goals and 
plans that are organized into priorities for action. 

The storehouse of die system is the long-term memory 
system diat has a very large capacity. Working memory 
refers to the system in which active diinkUig takes place. 
The activity here draws on short-term memory and 
retiievals from long-term memory. Short-term memory has 
Umited capacity but rapid access, while long-term memory 
has large capacity but is relatively slow in access. Long-
term memory appears to have two radier distinct sub­
systems, semantic memory and episodic memory, aldiough 
this distinction is not uiuversally agreed upon. Semantic 
memory refers to memory associated with vocabulary, 
language sttucttire, rales and absttact knowledge, while 
episodic memory refers to memory for events diat took 
place in time and space. 
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Information is represented as a Ust of features or concepts 
diat are lUiked togedier m networks. Information is stored in 
memory Ui stractures that are hierarchicaUy organized with 
more general concepts beUig Uigher Ui the sttucture dian 
more discrete Uistances of the concept or distUict features. 
The term "schema" is sometimes used to refer to larger, 
more complex shared and/or overleamed stractures that 
organize our thoughts on famiUar topics and may be 
retiieved as a whole rather than as individual parts. 

Language is the medium through which Uiformation is 
primarily commimicated and dius Uiformation, to be 
available for commurucation, must be associated with a 
linguistic code. The exact relationship between language 
and diought and whether or not aU thoughts have verbal 
representation are stUl subjects of debate. It is clear, how­
ever, that meaning is encoded somehow Ui language and 
these codes play an important role in die acquisition, storage 
and retrieval of information. Emotion may also be part of 
the code, although its role is not weU understood. 

Knowledge stractures faciUtate and constraUi patterns of 
activation Ui die mUid. What comes to mind, diat is, into 
consciousness, is Umited and is the resuU of the activation of 
die networks. Activation is rapid but goes along pathways 
determined by the ways Uiformation is encoded. Encoding 
puts Uiformation mto particular categories and stractures die 
pathways by which die Uiformation wiU be retrieved. Cues 
are stimuU that are related to the codes and stimulate the 
activation of the networks. Activation is rapid but does take 
time. The amount of tUne it takes for someone to respond to 
a stimulus (reaction time) is often used Ui research as a clue 
to the way Uiformation is coded. 

There are number of models of the question-answering 
process (CanneU, MiUer and Oksenberg 1981; Strack and 
MartUi 1987; Tourangeau and RasUiski 1988; Sudman 
etal. 1996;) that, while differing m detaUs, generally agree 
on a series of processes respondents go through in 
answering questions. These processes are: 1) compre­
hending the meaning of die question; 2) retrieving relevant 
Uiformation; 3) formulatUig an answer; 4) formatting and 
editing die answer to meet the requirements of the inter­
viewer and respondents self-presentation. WhUe concept­
ually viewed as a Unear sequence, U is recognized that in 
reaUty the processes occur in die flow of a conversation and 
that die different processes may go on Ui paraUel or Ui rapid 
cycling back and forth. For purposes of considering the 
question-answer process, it is useful to consider them as if 
they were separate and proceeded in an orderly sequence. 

Comprehension 

In order to answer a question, respondents must first 
understand what they are being asked. The goal for the 
researcher is for respondents to understand the question in 

the same way diat the researcher does. This goal is very 
difficuU to reach because of the many subdeties and ambi-
gmties of language. Indeed Belson (1981), who has studied 
extensively respondents' understanding of common terms 
such as "weekday", "chUdren," "regularly" and 
"proportion," found widespread misunderstandUig even in 
questions usUig such common terms. 

Comprehension begins with a perceptual process of 
Uiterpreting a string of sounds or written symbols as words 
Ui a language that respondents understand. The string of 
words is "parsed" into syntactical uruts that are understood, 
that is, the meaning that is encoded in the linguistic uiuts is 
exttacted by a process that is stUl poorly understood. Many 
comprehension problems occur because of ainbiguities 
arising from words that have different meanUigs (lexical 
ambiguity) or are used in different ways (stiaictural 
ambiguity). For example, the question "Where is the table?" 
is lexicaUy ambiguous because the word "table" can refer to 
an object on which things can be placed or a set of numbers 
arranged in a sheet of paper. The sentence "Flying planes 
can be dangerous" is stiiicturaUy ambiguous. The interpre­
tation depends on whether "flying" is understood as a verb 
or as an adjective. Stractural ambiguities can be resolved by 
careful wording of questions. Lexical ambiguities, on die 
otiier hand, are Uiherent in language and are usuaUy 
resolved by the context within which die sentences appear. 

Context plays an important role not only in resolving 
ambiguities but also aids Ui interpretUig the meaning of 
words diat are unfamihar. For example, a stiidy by Schuman 
and Presser (1981) found that a question about the Monetary 
Conttol BiU, an obscure piece of proposed legislation, was 
Uiterpreted as referring to an anti-inflationary measure when 
h occurred after a series of questions about Uiflation, but 
was Uiterpreted as referring to controls of die Uitemational 
transfer of money when it occurred after questions deaUng 
with die balance of payments. 

The underlying psychological mechanism for diese types 
of context effects is primUig. In order to Uiterpret the stream 
of sounds or written symbols, we have to draw on our 
semantic memory that contains the store of linguistic infor­
mation that enables us to understand the languages we 
know. SUice this is a large store of knowledge, it takes time 
to retrieve information, and some things wUl be more easUy 
accessible than others. Those bits of Uiformation that have 
been recentiy activated are more easUy accessible and wUl 
be used fkst to interpret what is being said or read. PrimUig 
activates thoughts or "schemata", that is, organized thoughts 
about objects or concepts, so that diey are more accessible 
to consciousness and thus more easUy come into play Ui 
UiteipretUig die questions. In the example above, previous 
questions have primed either thoughts about Uiflation or 
about Uitemational flows of money, so that when die 
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unfamihar concept of die Monetary Conttol BiU is asked 
about, the thoughts that have been primed come more 
rapidly to the fore and affect the interpretation of the words. 

Different meanings may be differentiaUy accessible to 
different respondents because of the frequency with which 
they employ them in daily Ufe. For example, BilUet (cited in 
Bradbum 1992, page 317) observed that, in response to the 
question "How many chUdren do you have?" some 
respondents offered numbers between twenty and thirty. 
Further inspection of the data revealed that these 
respondents were teachers who interpreted the question to 
refer to the chUdren in theU classes, the meaning that was 
most accessible in theU memories. 

Information Retrieval 

Once a question has been comprehended, respondents 
must retrieve from memory the Uiformation necessary to 
answer the question. In almost all cases this means 
retrieving the Uiformation from long-term memory. If the 
question is about behavior, the relevant Uiformation is lUcely 
to be stored Ui episodic memory. If the question is about 
attitudes, the relevant Uiformation is Ukely to be stored in 
semantic memory, but may requhe some retiieval from 
episodic memory. 

Remembering is a process by which the memory 
storehouse is searched to retrieve a particular item that is 
beUig sought. If we think of memory as a big storehouse, U 
is clear that it must be organized in some way in order for us 
to be able to retrieve diUigs from it. Just as we must label 
files when we put them in file drawers, so we must attach 
some kind of labels to information in the memory 
storehouse. The labeling process, often called "encodUig," 
refers to various aspects of the Uiformation or the 
experience, including emotional tone, attached to the item 
when we stored is it memory so that we can retrieve it. (For 
a more complete discussion of memory models see 
Tourangeau et al. 2000, Chapter 3). 

Barsalou (1988) has proposed a theory that provides a 
good framework for understanding how information about 
personal events is stored in memory. He notes that infor­
mation about activities or event types in episodic memory 
includes not only specific events but also extensive 
idiosyncratic, generic knowledge about the events, that is, 
having a generic mental image of some types of activity, 
e.g., visiting a pediatrician, rather than an image of a 
particular event, e.g., going to Dr. Jones about your 
daughter's rash (Brewer 1986, 1994). For activities to be 
stored Ui memory, they must be comprehended. In other 
words diey must be understood widiUi some meaning 
system, usuaUy Unguistic, that brings to bear knowledge of 
past activities and generic knowledge about similar event 
types as weU as specifics of the event itself and the context 

within which it occurred. This complex set of information 
that goes into the comprehension of the event becomes 
integrated into the memory of the event. The comprehension 
process determines how die memories are encoded. 

Information, such as the wordUig of the question and any 
explanatory material available to respondents at the time 
they are asked to recall an event, acts as retrieval cues. 
Retrieval cues are any words, images, emotions, etc. that 
activate or direct the memory search process. If retrieval 
cues do not specify the event type, e.g., pediatrician visits, 
then the event types must be inferred before the search can 
begin. This inference can come from the wording of the 
question or from the larger context in which the question is 
asked, including the preceding questions or tbe inttoductory 
material to the survey. 

Retrieval is an active process that is facUitated by cues in 
the question that activate the pathways of association 
leadUig to die desUed uiformation. Because information, 
bodi Ui episodic and semantic memory, is encoded in many 
different ways, die cues in tUe question or in the context 
sim-ounding the question including previous questions, may 
facUitate or constrain the activation and produce better or 
less good retrieval. 

Retiieval takes time. One clear empUical finding is diat 
giving respondents more time to answer questions produces 
more accurate reports, particularly for behavioral questions. 
But time is not all there is to it. Memories for events in 
one's life appear to be orgaiuzed in event sequences 
(Barsalou 1988), for example, a summer vacation or a 
hospitaUzation, which are hierarchically organized. GivUig 
respondents cues to remind them about the sequence is more 
effective than trying to get them to retrieve information 
about a specific event. For example, in questions about 
alcohol consumption, giving examples of the kinds of situa­
tions in which one might drink increases consumption 
reports. 

Examples are an important aid to recall, but they are not 
a panacea. Giving respondents of Ust of magazines diat they 
might have read improves reports of reading; a Ust of 
organizational types helps respondents remember aU the 
orgarUzations they belong to. While examples may help 
reduce omissions, they have the effect also of being direct 
cues for memory and result in greater reports for the types 
of items on the Ust. If an important type of activity or event 
is omitted from a Ust, the lack of a cue for that type of 
activity may resuU Ui underreportUig. The cuUig effect of 
question wording can scarcely be overestimated. 

When thinking about retiieval, we mostiy thmk about 
forgetting or failure to retrieve relevant information. Some 
times, however, incorrect information may be retrieved that 
results in overreportUig behavior. The best-known example 
is the phenomenon observed by Neter and Waksberg (1964) 



Survey Methodology, June 2004 11 

called "telescoping", diat is, recalUng events that took place 
at a time other dian the time period asked about. 
TelescopUig occurs in response to questions about behavior 
Ui a defined time period such as: "How many times have 
you been to the doctor in the past 6 months?" Neter and 
Waksberg found in analyzing data from die Consumer 
Expenditure Survey that when respondents reported on 
purchases Ui different reference periods, there was a 
systematic overreporting of purchases that came from 
reporting purchases made in a pervious period as if diey had 
been purchased in the period beUig asked about. WhUe die 
phenomenon has been observed in a number of studies, 
there had been no cogrutive explanation for it until recentiy. 

Memory for the time of events becomes more uncertain 
the further back in time the event happened, even though 
there is no systematic bias Ui the reports. Telescoping results 
from the conjunction of two processes-rounding and 
bounding. Rounding refers to the fact that respondents 
round dieU estimates for when things took place in 
successively larger periods the ftirther back Ui time an event 
occurred. For example, events are remembered as having 
occurred Ui "days ago" discretely up to about 7 days ago, 
then they are rounded to periods such as 10 days, two 
weeks, 4 weeks, 3 months, and 6 mondis ago. Bounding 
refers to die aspect of die question that limits die time of 
reports, e.g., the last 6 months. The effect of dus boundUig is 
to trancate reports of events that are remembered as having 
occurred longer ago dian 6 months. Since die variance Ui the 
memory for the dates of events becomes larger die further 
back the event occurred, a larger number of events wiU be 
incorrectiy remembered as falUng Uito the period the further 
back die events occurred. This overreporting of events from 
outside die period wiU not be offset by an underreporting of 
events in the near term because events carmot be reported 
diat have not yet happened. Since there are no offsettUig 
events remembered as occurring outside die period at die 
odier end of the time boundary, i.e., the future, die result is a 
net overreport. (For a fuU explication of the model see 
Huttenlocher, Hedges and Bradbum 1990). 

Formulating an Answer 

Taking into account the Uiformation activated by die cues 
provided by the questions and the context in which diey are 
asked and retrieved from memory, respondents must formu­
late an answer to the question. Some information is easily 
accessible. For example, if the questions are about well-
rehearsed topics, such as birdidates or marital status, or 
about topics for which the respondents have an aheady weU-
articulated position, respondents may retrieve the answers 
dUectiy. They spring, as U were, fully formed from memory 
and can be reported dUectiy. This kUid of Uiformation we 
call chronically accessible. 

On die odier hand, if die questions are about behavior 
that has not been thought about recentiy and is not well-
remembered or about attitudes diat have not been well 
thought out or discussed, respondents must constiiict 
answers on the spot using all the Uiformation from whatever 
source avaUable to diem in working memory. This 
constraction process utiUzes not only chronically available 
information but also, importantiy, information diat is 
temporarily accessible because it has been activated by the 
question itself, contextual cues, previous questions, or any 
other aspects of the interview situation. 

There are several general cognitive processes that are 
pervasive strategies used to process information efficientiy. 
Assimilation and conttast are two such fundamental 
processes diat affect communications. In the stiidy of 
perception, assimilation refers to die tendency to perceive 
stimuU as more alike that diey actually are. Conttast refers 
to the tendency to perceive stimuli as more different than 
they actuaUy are. Applying tUese principles to survey 
answering leads to wUat has been called the inclusion/ 
exclusion model (Schwarz and Bless 1992; Sudman etal. 
1996). Information that is Uicluded in the temporary 
representation that respondents form of die target of the 
question wUl result Ui assimilation effects because die 
judgment requUed to answer the question is based on Uifor­
mation Uicluded Ui the representation used. If the Uiforma­
tion is positive, die judgment wUl be more positive. If die 
Uiformation is negative, the judgment will be more negative. 
TUe size of tUe effect depends on the amount and exttemity 
of the temporarily accessible information 

Previous questions may activate thoughts that are then 
included in the representation of topics of later questions. 
The impact of a given question decreases as the number of 
other context questions increases. For example, answering a 
question about marital happUiess had a pronounced effect on 
answers to subsequent questions about general Ufe satis­
faction when respondents' marriages were the only specific 
Ufe domain asked about. When respondents were asked 
about theU- leisure time and dieir jobs in addition to 
questions about theU marriages before reporting on Ufe 
satisfaction, the effect was significantiy reduced. (Schwarz, 
Sti^ckandMai 1991). 

Information that is excluded rather than included in the 
temporary representation of die target will lead to a conttast 
effect. In this case, if the information excluded is positive, 
the judgment wUl become more negative; if the information 
is negative, the judgment wiU become more positive. 
SimUarly tUe size of the effect depends on the amount and 
exttemity of the temporarily accessible information. In 
effect, the excluded information is subttacted from the 
representation of the attitude object. 
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Excluded Uiformation, however, may play an additional 
role Ui formulatmg judgments, hi addition to bemg excluded 
from die representation of die target, die Uiformation may be 
used in constracting a standard or scale anchor. In this case 
we speak of comparison-based conttast effects. The effect 
here is not caused so much by the subtraction of die 
excluded Uiformation from the evaluation of the attitude 
target, but by die comparison of the target witii some 
standard or evaluated on some scale. 

Which of diese processes drives the emergence of a 
conttast effect determines whetiier die contrast effect is 
Umited to the sUigle object or generalizes across related 
objects. If the conttast effect is based on simple subttaction, 
die effect is Umited to diat particular target. If die contrast 
effect is based on a comparison, the effects are apt to appear 
in each judgment where that standard of comparison is 
relevant. 

An example of a conttast effect based on usUig Uifor­
mation from previous questions is provided m a study by 
Schwarz, Muenkel and Hippler (1990). Respondents were 
asked to rate a number of beverages accordUig to how 
"typicaUy German" diey were. When tius question was 
preceded by a question about the frequency with which 
Germans drink beer or vodka, contrast effects appear Ui the 
typicaUty ratUigs. Respondents who had estimated the 
consumption of beer first (a high frequency item), rated 
wine, miUc and coffee as less typical German drinks dian did 
respondents who had estUnated the consumption of vodka 
first (a low frequency item), thus showUig a conttast effect 
that extended across the three target drinks. This conttast 
effect, however, did not appear when die precedUig question 
was about the caloric context of beer or vodka because the 
Uiformation activated by this question was not relevant to a 
judgment about typicaUty. 

Formatting and Editing Responses 

After respondents have formulated theU responses, there 
remains the task of fitting these answers mto the response 
formats diat die Uiterviewer offers. Rarely in surveys does 
die researcher aUow respondents to answer questions Ui a 
free format. Open-ended questions have a multitude of 
problems not least of which is the cost and difficulty of 
transforming free-form answers in a format diat can be 
ti:eated quantitatively. Today almost aU questionnaUes 
depend on closed or pre-coded questions. 

Research on response altematives is less weU developed 
theoretically dian the study of question wordUig and context 
effects. In general, the empUicaUy observed effects are 
diought to stem from two sources-memory limitations and 
cognitive elaboration stimulated by the response alter­
natives. 

Memory limitations create some order effects among 
response altematives. Primacy and recency are two well-
known effects Ui die memory Uterature. When a series of 
stUnuU are present visuaUy, those diat come early Ui the 
series are remembered better dian those later in the series 
(primacy). When a series of stUnuU are present in an audi­
tory mode, tiiose that come late in die series are remembered 
better (recency). Thus tiiere is an Uiteraction between die 
order Ui which stimuU are presented and die mode by which 
they are presented. 

The research Uterature has shovra that there are 
persistent, aldiough Ui general samples faUly small, primacy 
and recency effects in the serial position of response 
altematives dependUig on die mode presentation. Primacy 
effects appear when die response altematives are presented 
visuaUy, as in show cards in personal UiterviewUig, and 
recency effects appear Ui telephone UiterviewUig when the 
respondents have to depend entirely on auditory memory for 
die response altematives. More recent research (Knaeuper 
1999; Schwarz and Knaeuper 2000), however, reveals diat 
die effect is very much a function of memory capacity and is 
sharply increased among older respondents whose memory 
is poorer and who depend more on the primacy or recency 
of the StimuU as supported by mode of presentation. Among 
older respondents, die primacy/recency effects can be quite 
large, on the order to 20 percentage points (Schwarz and 
Knaeuper 2000). Among younger respondents the effects 
aresmaU. 

An UitiiguUig dieory to account for some observed 
response order effects within a question is that of cognitive 
elaboration. This dieory draws on early work by Krosnick 
and Alwin (1987) and cognitive research on persuasion 
(Eagly and ChaUcen 1993; Petty and Cacioppo 1986). This 
dieory hypodiesizes tiiat die order and mode m which 
response altematives are presented affects respondents' 
opportuiuty to elaborate on thek content. Such elaboration, 
Ui tum, activates thoughts in response to die question and 
provides retrieval cues in response to behavioral questions. 
The response altematives provide supplementary cues that 
activate a range of dioughts diat become temporarily 
accessible and may become part of die answer formulation 
process. In effect, die response altematives are an essential 
part of the question but may be processed later m time after 
the question itself has been processed. 

The cognitive elaboration hypothesis suggests a number 
of complex predictions, few of which have yet been tested. 
One example for which there is considerable evidence, is an 
Uiteraction between serial position and mode of admiiUs-
ti^tion Ui long Usts. The primacy effect evident Ui visually 
presented material gives respondents time and stimulus to 
dunk more about altematives early Ui die Ust before givUig 
an answer. The crowdUig out of early altematives by the 
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readUig of later altematives and recency effects evident in 
Usts presented Ui an auditory mode suggest diat die later 
altematives can be more deeply processed cogrUtively. 
These effects are more robust that the primacy and recency 
effects that appear to depend more on simple memory 
Umitations. 

Once a response altemative has been chosen in the 
respondents' mind, the respondent may stUl edit die 
response. As mentioned earUer, the interview is a social 
situation and respondents may be concemed with self-
presentation. There is ample evidence diat social desUabiUty 
is an important aspect of die response process and responses 
to sensitive question may be seriously distorted by 
unwUUngness to admit to behavior or attitudes diat would 
put die respondent Ui a bad Ught Ui die Uiterviewer's eyes or 
by the desUe to over claim socially desUable behavior 
(Bradbum, Sudman and Associates 1979; Sudman and 
Bradbum 1974). There are several techniques for reducUig 
social desUabiUty bias, although there is no technique that 
totally and reUably elimUiates U. The general sti^tegy is to 
Uicrease social distance between respondents and inter­
viewers. This can be done by changUig the mode of admi-
nisttation by eUminating or reducUig the presence of the 
interviewer. Computer Assisted Personal Interviews (CAPl) 
which aUow respondents to directiy enter responses to 
sensitive questions into the computer as part of a face-to-
face interview enable researchers to combUie the benefits of 
a personal mterview with a self-administered questionnaUe. 
The use of audio enhanced CAPI (Audio-CAPl) which 
enables respondents to Usten to a recorded voice readUig die 
questions, although somewhat more expensive, overcomes 
Uteracy and language problems that might arise when 
respondents have to read questions from a computer screen. 

Research on mode effects generaUy indicates that self-
admiiustration of a questionnaUe, particularly m an anony­
mous, group setting, minimizes, but does not entirely 
eUminate desUabiUty bias. Interviews done on the telephone 
generaly produce results that are intermediate between a 
face-to-face interview and a totally anonymous self-
administtation, aldiough die results are not entirely 
consistent. 

In addition to reducUig the social distance between inter­
viewer and respondent by altering the mode of adminis­
tration there are techniques for increasUig the real or 
perceived anonymity of respondents that also reduce social 
desUabUity bias. For example, respondents may put theU 
responses Ui a sealed envelope and maU them back to a 
central office so diat diey know diat die Uiterviewer cannot 
see theU responses. 

Anodier technique is die so-caUed random response tech­
nique, although it is more properly a random question tech­
nique (Greenberg, Abul-Ela, Simmons and Horvitz 1969; 

Horvitz, Shah and Simmons 1967; Wamer 1965). The 
Uiterviewer asks two questions, one sensitive and Ihe other 
non-sensitive. Both questions have the same possible 
answers, "yes" and "no". Which question the respondent 
answers is determined by a probabUity mechanism, such as 
fUppUig a com or using a plastic box containing two colored 
beads, e.g., red and blue beads, Ui differing proportions, e.g., 
70% red beads and 30% blue beads. The box is designed so 
that when U is shaken by respondents a red or a blue bead 
seen only by the respondent wiU appear in die window of 
die box. If die bead is red, die sensitive question is 
answered; if blue, die non-sensitive question is answered. 
The Uiterviewer does not know which question is answered. 

By using this procedure you can estimate the behavior of 
a group on die sensitive questions, but not diat of any sUigle 
individual. Thus with diis method you cannot relate indivi­
dual characteristics of respondents to individual behavior. If 
you have a very large sample, group characteristics can be 
related to the estimates obtaUied from randomized 
responses. For example, you could look at aU die answers of 
young women and compare them to aU the answers of men 
or young versus older age groups. On the whole, however 
much Uiformation is lost when randomized response is used. 

WhUe, compared widi odier methods, randomized 
response greatly reduces the under reporting of undesUable 
beUavior, U does Uttie to reduce the overreportUig of desir­
able behavior. It also does not entiirely elUnUiate imder-
reporting of undesirable behavior (Bradbum et al. 1979). 

CONCLUSION 

In tUis essay, I have died to present the outiines of a 
social psychological approach to die understanding of the 
question-answer process in the survey interview. This 
approach draws on theory from sociology, cognitive 
psychology and Unguistics, to present a comprehensive 
framework for research on response effects. Much, how­
ever, remains uncertaUi or unknown. 

WhUe social role theory provides a good starting point 
for conceptuaUzing the social relations among researchers, 
Uiterviewers and respondents, diere is much we do not know 
about how diese roles are played by tiieU respective actors 
and how they may be changing. Contemporary concems 
about privacy and confidentiaUty of data and protection of 
human participants in research are changing to an unknown 
degree the way respondents view surveys and social 
research. Technology is changing respondents' abiUty to 
protect thek privacy and researchers' abiUty to protect 
confidentiality of data. Response rates have been decUning 
and greater efforts are requked to convince sampled persons 
to respond. UiterviewUig is increasingly mediated by 
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computer-assistance, which may change the way in which 
respondents and Uiterviewers Uiteract and the way 
respondents view the interview situation. 

The cognitive processes involved Ui formulatmg an 
answer are complex and not yet fuUy understood. The appU­
cation of our understanding of fundamental cognitive 
processes to the study of question formulation and order 
goes a long way toward Unproving our understanding of 
context effects. Cognitive science is making great strides in 
understandmg how the braUi works and how we organize 
and process information. New knowledge in these areas 
grows at a rapid pace. As we leam more, many of the 
conceptuaUzations outlined in this essay wUl change and 
either shown to be wrong or greatiy elaborated. 

FinaUy there is a great challenge to Unguistics. Many of 
the effects we have discussed in this essay occur because of 
ambiguities in language. Understandmg Uow meaning is 
encoded in language and how we extract that meaning from 
spoken and written language is a formidable challenge. 
Perhaps more than anything else, our abiUty to resolve some 
of the most fundamental problems in questionnaUe 
constraction depends on progress in these areas. 

What are the high priority areas for research? In the short 
ran, I would concenttate on better understandmg of the 
biasing effects of declining respondent participation, parti­
cularly on possible distortions of responses from reluctant 
respondents. We must develop response effect models that 
not only account for missUig data, whether at the item level 
or at die whole person level, but also for response effects 
Uittoduced by reluctant respondents who give oiUy partial 
answers or not weU-considered answers. Multiple imputa­
tion models such as those developed by Littie and Rubin 
(1987) and latent variable approaches such as developed by 
O'Mukcheartaigh and Moustaki (1999) are promismg. 
More empirical work is needed on the effects of pushing 
people into responding who inititially are unwilling to 
participate in a survey. 

In the longer run, further research is needed on the 
mechanisms by which questions and answer categories 
stUnulate cognitive elaboration and activate thoughts diat 
are then used Ui answering questions. We need to know 
what it is about questions that cause respondents to exclude 
Uiformation in making a judgment as conttasted with those 
that stimulate them to include information when they make 
judgments. Progress in this area wiU requke a close coUabo­
ration between cognitive psychologists and survey medio-
dologists and involve both laboratory and field siu^ey work. 

In the end, however, fundamental understanding of the 
question-answer process wiU only come when we imder 
stand how meaning is commuiucated between human 
beUigs. Questions have meaning tiiat we expect respondents 
to comprehend. We can orUy go so far in improving the 

process of clear communication without a much deeper 
understandmg of the basic mechanisms of communication. 
We need a concerted multidiscipUnary effort by Unguists, 
psychologists, statisticians, and cognitive scientists and 
others to crack the meaning code much as natural scientists 
cracked the genetic code. It is one of die grand scientific 
challenges of our time. 
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Linearization Variance Estimators for Survey Data 
ABDELLATIF DEMNATI and J.N.K. RAO' 

ABSTRACT 

In survey sampling, Taylor linearization is often used to obtain variance estimators for calibration estimators of totals and 
nonlinear finite population (or census) parameters, such as ratios, regression and correlation coefficients, which can be 
expressed as smooth functions of totals. Taylor linearization is generally applicable to any sampling design, but it can lead 
to multiple variance estimators that are asymptotically design unbiased under repeated sampling. The choice among the 
variance estimators requires other considerations such as (i) approximate unbiasedness for the model variance of the 
estimator under an assumed model, (ii) validity under a conditional repeated sampling framework. In this paper, a new 
approach to deriving Taylor linearization variance estimators is proposed. It leads directly to a variance estimator which 
satisfies the above considerations at least in a number of important cases. The method is applied to a variety of problems, 
covering estimators of a total as well as other estimators defined either explicitiy or implicitiy as solutions of estimating 
equations. In particular, estimators of logistic regression parameters with calibration weights are studied. It leads to a new 
variance estimator for a general class of calibration estimators that includes generalized raking ratio and generalized 
regression estimators. The proposed method is extended to two-phase sampling to obtain a variance estimator that makes 
fuller use of the first phase sample data compared to traditional linearization variance estimators. 

KEY WORDS: Calibration; Design weights; Estimating equations; Raking ratio estimator; Regression estimators; Two-
phase sampUng. 

1. INTRODUCTION 

Taylor linearization is a popular method of variance 
estimation for complex statistics such as ratio and 
regression estimators and logistic regression coefficient 
estimators. It is generally appUcable to any sampUng design 
that pennits unbiased variance estimation for linear estima­
tors, and it is computationally simpler than a resampling 
method such as the jackknife. However, it can lead to 
multiple variance estimators that are asymptotically design 
unbiased under repeated sampling. The choice among the 
variance estimators, therefore, requkes other considerations 
such as (i) approximate unbiasedness for the model vari­
ance of the estimator under an assumed model, (ii) validity 
under a conditional repeated sampling framework. For 
example, in the context of simple random sampling and the 
ratio estimator, Y^ = {ylx)X, of the population total Y, 
Royall and Cumberland (1981) showed that a commonly 
used Unearization variance estimator, Vj^ = N^ 
{n'^ -N'^)s^, does not track the conditional variance of 7^ 
given X, unlike thejackknife variance estimator v .̂ Here y 
and X are the sample means, X is the known population 
total of an auxiliary variable x, s^ is the sample variance of 
the residuals z^=y^.-{yl^)xJ^ and (n, Â ) denote the 
sample and population sizes. By linearizing the jackknife 
variance estimator, v ,̂ a different linearization variance 
estimator, v̂ ^ = {X/x)^ v ,̂ is obtained. This variance 

estimator also ttacks the conditional variance as well as the 
unconditional variance, where X = XIN is the mean of x. 
As a result, v̂ ^ or v̂  may be preferred over v .̂ Yung and 
Rao (1996) considered generalized regression and ratio-
adjusted post-sttatified estimators under sttatified 
multistage sampUng and obtained a jackknife linearization 
variance estimator, Vjj^ by linearizing v .̂ Valliant (1993) 
also obtained v̂ ^ for the ratio-adjusted post-sttatified esti­
mator and conducted a simulation study to demonsttate that 
both Vj and v̂ ^ possess good conditional properties given 
the estimated post-sttata counts. Samdal, Swensson and 
Wretman (1989) showed that v̂ ^ is both asymptotically 
design unbiased and approximately model unbiased in the 
sense of E {v„)~V {Y^, where E denotes model 
expectation and VJY^ is the model variance of F^ under 
a "ratio model": £^(y^) = p.x^;/: = 1, ...,A^anddiey^'sare 
independent with model variance yj.yi^) = o .̂r̂ , ô  > 0. 
Thus, v̂ ^ is a good choice from either the design-based or 
the model-based perspective. 

Binder (1996) presented an elegant "cookbook" 
approach to Taylor linearization that leads directly to v̂ -̂
type linearization variance estimators. He applied the 
method to smooth functions of estimated totals, 
g{Y^,..., Y^), generalized regression estimators and the 
WUcoxon rank sum statistic. To iUusttate Binder's method, 
consider a ratio estimator 

y„ = {Y/X)X = RX, 

' Abdellatif Demnati, Social Survey Methods Division, Statistics Canada, R.H. Coats BIdg, 15* Floor, Ottawa, Ontario, Canada, KIA 0T6; J.N.K. Rao, School 
of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada, KIS 5B6. 
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where Y = E^,, dp) ŷ  = Y{y), X = T.^^^ dp)x^ = Y{x) and 
the difs) are the design weights with d^i^s) = 0 if the popu­
lation element k is not in the sample s, e.g., d^f^s) = 
{llit^Oit^s) where 7t̂  is the probability of including the 
element A: in the sample 5, a^i^s) = I Hkes, a^f^s) =0 other­
wise, and E denotes summation over the population 
elements. The weights are assumed to provide a design 
unbiased estimator 7 of Y, i.e., E{di^{s)) = I for 
k = l, ...,N. Now take the total differential of K̂  to get 

{dY^) = {dR)X = - [{dY) - R{dX)], 
X 

(1.1) 

and replace all the total differentials in (1.1) by deviations 
of estimators from their respective population parameters, 
e.g., dYj^ is changed to 7^ - Y. Then (1.1) yields 

where 

yR-y ^ Ydp)z,--sY-RX), 
X 

h = -Ayk-^^'k)-
X 

(1.2) 

(1.3) 

The term T,di^{s)zi^ in (1.2) reduces to zero, but it is 
retained for variance estimation. On the other hand, the last 
term of (1.2) is ignored for variance estimation. Thus, 
y^ - 7 is represented as T,diJ{s) ẑ  = Y{z) for the purpose of 
variance estimation. Denoting an unbiased variance esti­
mator of Y = Y{y) as v(y), BUider's variance estimator of 7^ 
is given by v{z). The linearization variance estimator v{z), 
obtained from (1.3), agrees with Vj^ for simple random 
sampUng and sttatified multistage sampUng if the sample is 
treated as if the primary sampling units are sampled with 
replacement. Note that the jackknife method is not appli­
cable generally for any sampling design. 

For the estUnator 0 = g{Y^,..., YJ of a smootU function 
of totals, 0 =g{Y^,..., YJ, Binder's (1996) metiiod leads to 

with 

0 - 0 i Yd,{s)z,^... 

h = T.[ds{a)/da\^_}^y^., (1.4) 

where Y = {Y^,..., YJ^ and a = {a^,..., aj^. It foUows 
from (1.4) that the partial derivatives, dg{a)lda., are 
evaluated at Y to obtain z^'s, whereas in die standard 
method (see e.g., Andersson and Nordberg 1994) they are 
evaluated at Y =. {Y^,..., Y^)^ before getting ẑ  and then 
substituting estimates for the unknown components. For 
example, for the ratio estimator 7^ the term XIX disappears 
from Zj^ in the standard procedure because X/X becomes 1 
when X is replaced by X. 

Although Binder's (1996) approach is simple and atttac-
tive, a more rigorous and broadly applicable method is 
needed. In section 2, we propose an altemative approach 
that is theoretically justifiable and at the same time leads 
dkectiy to a v^ -̂type variance estimator for general designs. 
We apply die method, in section 3, to a variety of problems, 
covering regression calibration estimators of a total 7 and 
other estimators defined either explicitly or implicitly as 
solutions of estimating equations, e.g., estimators of logistic 
regression parameters with design weights calibrated to 
known auxiliary population totals. We also obtain a new 
variance estimator for a general class of calibration estima­
tors that includes generalized raking ratio and generalized 
regression estimators. Section 4 extends the proposed 
method to two-phase sampling to obtain a variance esti­
mator that makes fuller use of the first phase sample data 
compared to ttaditional linearization variance estimators. 

For die case of independent and identically (iid) random 
variables y^,..., ŷ  witU distiibution function F{y), estima­
tion of general parameters 0 = T{F) has been studied exten­
sively in the literature (see e.g., Huber 1981). A natural 
estimator of 0 = T{F) is 0 = T{F), where F{y) is die empi­
rical distribution function given by F{y) = « ' ' Hl^^ 
I{y^ ^ y) widi I{y^ ^ y) = I if y^<y and I{y^ ^ y) = 0 if 
y^>y. For example, if T{F) is the population mean 
lydF{y), then T{F) = jydF{y) =n-'Yr^._,y^=y, the 
sample mean. Note that F assigns equal mass, lln to each 
of the sample values yj,...,y^. ffT is "sufficiently regular", 
then T{F) may be linearized near F in terms of the 
influence curve (or function) of T{-) given by 

lC(y,F,r) = lim[r((l-a)F + a5p - T{F)]/a, (1.5) 

where 5 denotes the point mass 1 at y. We have 

^f^[T{F)-T{F)] = ^flC{y,F,T)dF{y)+^R„ 

-^Y?k-fnK 
fn *=i 

(1.6) 

where z^ = IC {y^, F, T) and \fnR^ is a remainder term. If 
\[n R^ is asymptotically negligible in the sense that \fn R^ 
converges in probability to zero as «-<» (denoted 
\/n/?„-pO)dienUfollowsfrom(1.6)tiiat s[n[T{F) - T{F)] 
is asymptotically normal with mean 0 and variance 

A{F,T) = f[lC{y,FT)]UF{y), (I.7) 

noting that the terms ẑ  in (1.6) are iid random variables. 
As noted by Huber (1981, page 13), ^/t^R^ is "often" 
asymptotically negligible, but the proof of this property may 
not be easy for general functional T{F). Serfling (1980, 
section 6.2) gave the following two conditions for 
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\fn R^ ^ 0, applicable for general random variables 
y,,...,y^ (not necessarily iid): (i) T{-) is "stochastically 
differentiable" at F; (ii) \fnsup\F{y) - F{y)\ is bounded in 
probability, where sup is over y. Condition (U) is satisfied 
in tUe iid case, but it may not be easy to prove (ii) for 
complex sampUng designs. Condition (i) means tUat tiiere 
exists a functional T{F; F^-F) such tiiat T{FJ-T{F) = 
n'' E^,, T{F;5 -F) +/?^, where R^ is of lower order in 
probabiUty than sup\FJ^y) - F{y)\ as the latter tends to zero. 
This condition may not be easy to verify for general T{-). 
Serfling (1980) suggested that in practice it is more 
effective to analyse R^ directly using "the method of 
differential inequalities". 

A natural estimator of the asymptotic variance A{F, T) 
is 

A{F,T) = ^Y [lC{y,,F,T)]\ 
n k-i 

(1.8) 

where lC(y, F, T) is the influence curve evaluated at F = F. 
It foUows that a linearization variance estimator of T{F) is 

vjn/O] =A{F,T)ln. (1.9) 

Practical implementation of v̂  [T{F)] involves the compu­
tation of IC(y^, F, T) for each specified T. The latter can 
be avoided by using thejackknife method. Substituting F 
for F and -l/(n-l) for a in (1.5), we obtain a jackknife 
estimator of lC(y^, F, T) as ẑ ^ = {n-l)[T{F) - T{F_^)], 
where F_^(y) is the empirical distribution function 
obtained when ŷ  is omitted. The resulting jackknife 
variance estimator T{F) is 

Vj[T{F)] =—^Yzkj 
n{n-l) k-

n-l 

n k-i 
Y mF.k)-T{F)] 2. 

(1.10) 

see e.g., Hampel, Ronchetti, Rousseeuw and Stahel (1986, 
page 95). If lC(y, F, T) does not depend smoothly on F, 
then thejackknife variance estimator may not be consistent 
for the variance of T{F); for example, when T{F) is the 
sample median. 

Campbell (1980) attempted to extend the above results 
for the iid case to general sampling designs, using the 
design weights d^Jis). The population (or census) parameter 
0 is now given by 0 = T{F^), where F^(y) is the popu­
lation distribution function that assigns equal mass, UN, to 
each of the Â  population values y,, ...,y^. An empirical 
distribution function is given by F{y) = Ê ^̂  dp)I{yf^ <. y), 
where d/i^s) = dp)lY,^^^df{s) are the normalized design 
weights. Note that F{y) assigns the mass dp) to the 
element kes. An estimator of 0 = T{Fj^) is given by 
0 = T{F). For example, if 7"(F )̂ is the population mean 

^ydF,{y), then T{F) = fydF{y) = E , , / , ( . )y , /E , , / , ( . ) , 
the design-weighted sample mean. Campbell (1980) 
followed the linearization (1.6) for the iid case and 
concluded that \/n [T{F) - r(F^)] is asymptotically normal 
with mean 0 and variance 

A{F^,T) = nVar 'Ydp)zjYdp) 
kes I kes 

~~ nNar[Y,,JP){{zrR)IN]\ d-H) 

using the approximate variance of a ratio, where 
R = T,i^^^Zi^lN is the population mean of z '̂s and 
ẑ  = IC(y^, F^, T). Denoting the unbiased variance estima­
tor of 7 = Y{y) = J^kesdi,{s)y^ as v(y), UfoUowsftom(l.ll) 
that a linearization variance estimator of T{F) is given by 

where 

and 

vjr(F)] = v[{z-R)IN], 

lC{y,,FT), 

^=Ykesdk(^)h/Ykesdk(^)-

(1.12) 

(1.13) 

(1.14) 

To avoid the computation of z^'s, Campbell (1980) 
proposed a jackknife estimator of ẑ  for each kes. It is 
given by 

'-*/ 
l-^,(^) 

dds) 
[T{F)-T{FJ], (1.15) 

where 

dF. (y) 

dF{y)-d,{s) 

l-d,{s) 

dF{y) 
I -d,{s) 

if y = ŷ  

if y * y,. (1.16) 

The resulting linearization variance estimator is given by 
V [{zj - Rj)IN]. Note that the proposed jackknife method is 
different from the customary jackknife for survey sampling. 
For example, for sttatified multistage sampUng, the custom­
ary jackknife deletes sample clusters in tum whereas the 
Campbell method deletes elements in tum. Also, the cus­
tomary jackknife is not always applicable {e.g., unequal 
probability sampling without replacement) unlike the 
Campbell method which uses the unbiased variance 
estimator v(y) of the total 7 for the given design and then 
replaces y by {Zj - Rj)IN. However, the computations 
involved in the Campbell method can be very heavy 
because it requkes the computation of 7'(F_ )̂ for each 
element kes; in large-scale surveys the number of sample 
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elements can be very large, as in the Canadian Labour 
Force Survey. 

Deville (1999) and Berger (2002) obtained results very 
similar to those of Campbell (1980). Instead of using the 
natural probabiUty measure F, they considered functionals 
of the form T{M), where M denotes a measure that 
allocates the design weight dp) to any point ŷ  for kins 
and zero to units k not in s. For example, T{M) = 
fxdM{x) = Ed^(5)y^ if the population parameter is the 

total T{M) = fxdM{x) = 7, where tiie measure M allocates 
a unit mass to each of the Â  points ŷ  in the finite 
population U. Suppose that T{-) is of degree a in the sense 
that N"" 7'(-) tends to a limit for some a > 0. Typically, 
a = 0 or 1; for example, a = 1 if T{M) is the total 7 and 
a = 0 if T{M) is die ratio R = YIX. Deville (1999) used the 
following asymptotic approximation: 

^N-'{T{M)-T{M)\ - - ^ 5 3 ( d / 5 ) - l ) z ~ , (1.17) 

where dp) =0 if ^ is not in the sample s. Further 
ẑ  = 1T(M; y^) with IT denoting the influence function of 
T{M) defined by 

IT(M;y) = lim i \T{M + f5 ) - T{M)]. (1.18) 

As noted earUer, it is not easy to justify the approximation 
(1.17) for general functionals T{-). Deville (1999) 
developed mles for evaluating lT(M;y) for selected 
functionals T{M). Berger (2002) used die jackknife mediod 
to estimate ẑ = IT(M,y^), similar to CampbeU (1980). 

Noting ttiat T.dp)Zk =Y{z) it foUows from (1.17) that 
a Unearization variance estimator of A "̂" T{M) is given by 
Â  "̂  v(z). But Zj depends on unknown parameters and the 
corresponding estimator, z^, may not be unique. For 
example, suppose T{M) = 7^ = {YIX)X, then a = 1 and ẑ  = 
ŷ  - /?x^, where R = YIX. In dus case, two possible candi­
dates for ẑ  are Zk=yk-Rx,^ and ẑ  = {XIX) {y^-Rx^). 
Thus, the choice of ẑ  in the presence of auxiUary 
information, such as a known total X, is not unique under 
Deville's approach. UnUke DevUle's approach, our method 
leads to a uiuque choice z^^ and it avoids the calculation of ẑ  
to determine ẑ . Our ẑ  satisfies desirable properties 
mentioned in section 1, at least in a number of important 
cases. 

2. THE METHOD 

To motivate the method, we start with a simple general 
case where the estimator 0 of a parameter 0 can be 
expressed as a smooth function g{Y) of estimated totals 
Y = (7,,..., 7.,..., Yj, where 7. = E,^^d,(.)y,,, 

i = l,...,m, is an estimator of the total 7. = E^ ĵ̂ y.̂ , and 
0=g{Y) widi Y = (7,,..., 7.,..., Yj'. We may write 0 as 
0 =f{d{s),A^) and 0 =/(l,A^), where A^ isan mxA^ 
mattix witii k^ column y^ = {y^^,..., ŷ ,., ...,ykJ^, 
k = l,..., N, d{s) = {dp),..., d^{s)f and 1 is die A -̂vector 
of I's. For example, if 0 denotes the ratio estimator 
Y^ = UXdp)y^)l{T.dp)x^)]X, then m = 2, y,k=yk^ 
y2k =^i and /(1,A ) reduces to the total 7, noting that 
(7/X)X = 7. Note that 7^ is a function of d{s),y and x 
and the known total X, but we dropped X for simplicity and 
write 7j,=/(rf(5),y,j:). 

Taylor Unearization of 0 around Y gives the approxi­
mation 

^Ar-«(0-0) ~~ :J^[dg{a)/da)\__, [Y-Y] (2.1) 
Â  

where dg{a)lda = {dg{a)lda^,..., dg{a)ldaj' and Â  ""§(•) 
tends to a limit for some a > 0. Asymptotic normality of 
\/nN''^{Q-Q) follows from (2.1), provided a central linut 
theorem for \fnN'\Y-Y) holds and ^(0 has continuous 
first derivatives in a neighbourhood of the mean 7. 
Krewski and Rao (1981) justified (2.1) for stratified 
sampling. 

Let F = Efc^yj. for arbittary real numbers 
b =(fo,,..., b^)\ and ^(7) =/(6, A p =f{b). Noting that 
Y =A d{s) and 7 =A 1, we can express (2.1) as 

^N-'^{Q-Q)^^(dg{Y)/dY)%__yA{d{s)-l) 
N ^ 

§Y(dAb)/dYyl.-,y,{dp)-l),^2.2) 
N k-l 

noting diat 7 = 7 is equivalent to 6 = 1. Now we substitiite 
y , = 37/3^,1^^^ in (2.2) to get 

y;̂ ;v-'"(0-0) = ^Y{dAb)/bb,)lJdp)-i) 

~z''{d{s)-l), (2.3) 

where z = (z,,..., ẑ y)̂  with ẑ  = df{b)ldbi^\^^^. 
A variance estimator of the right hand side of (2.3) is 

given by {nlN^)v{z), where v(z) is the variance estimator 
of the estimated total 'E,dp)Zi^ = Y{z). Since F '̂s are 
unknown, we replace ẑ^ by 1^ = df{b)ldbi^\^^^^y to get 
{nlN'^)v{z). Thus, a linearization variance estimator of 0 is 
given by 

v (̂0) = {N^yN^)v{z), (2.4) 

which reduces to v(z) if a = 1. Note diat v (̂0) given by 
(2.4) is simply obtained from the formula v(y) for 7 by 
replacing ŷ  by ẑ  for kes. Note that we do not first 
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evaluate the partial derivatives df{b)ldb^, atb = l to get z 
and then substitute estimates for the unknown components 
of z. Our method, therefore, is similar in spirit to Binder's 
approach. The variance estimator v (̂0) is valid because z^. 
is a consistent estimator of 2]̂ . 

Example 2.1 Suppose 0 is the ratio estimator 7^ = 
X{{YAp)yj^)l{Tdp)x^)] of die total 7. Then f{b) = 
X[(E&,yp/(EVi)]and 

a/(ft)/afe,=x^^'*^*-^^^'^^^ 
(Y h^kj 

Therefore, 

Zk = df{b)/db,\,__,^^^ = ^\y,-Rx,) 
A 

which agrees with (1.3). Thus, our variance estimator 
v^(7j,) is identical to Binder's (1996) variance estimator, 
v(z), noting that a = 1. 

Our derivation is simple and natural. On the other hand, 
in the standard Unearization metUod, 0 is first expressed in 
terms of elementary components 7j,..., 7^ as g{Y) and 
the partial derivatives dg{a)ldaj are then evaluated at 
a = 7. It is interesting to note that all the components of 7 
use the same weights dp) and our approach always takes 
first derivatives of/(A) with respect to fc^ at b =d{s). It is 
not necessary to first express 0 in terms of elementary 
components. 

3. CALIBRATION ESTIMATORS 

The ratio estimator can be viewed as a calibration esti­
mator, 7^ = 'Lwp)yi^, witU expUcit weights wp) = 
{XIX)di^{s) and satisfying the calibration consttaint 
'Lwp)Xi. = X. Calibration estimators of a total 7 of the 
form Y^ = T,wp)yi^ with explicit weights wp) and satis­
fying the caUbration consttaints 'Lwp)Xi^ = A" are widely 
used, where oĉ  = (A:,̂ , ..., x .)^ and X = {X^,..., X Y is the 
vectorof known totals of auxiUary variables Xj, j = 1, ...,q. 
In subsection 3.1 we consider the generalized regression 
(GREG) estimator and then study a general class of 
regression calibration estimators in subsection 3.2. 
Extension to estimators, 0, obtained as solutions of esti­
mating equations is presented in subsection 3.3. The case of 
general calibration estimators is investigated in subsection 
3.4. 

3.1 Generalized Regression Estimator 

The GREG estimator of total 7 is given by 7^ with 
calibration weights wp) = dp)gi^{d{s)), where 

g,{d{s)) = l^{X-Xy[i:dp)c,x^xlYc,x, (3.1) 

with specified constants ĉ  and X = Y.dp)Xi^ {cf, Samdal 
etal. 1989). The ratio estimator, 7^, is a special case with 
q=l{i.e., scalar j:^) and ĉ  = x^^ , and gijid{s)), given by 
(3.1), reduces to X/X. 

The GREG estimator may be expressed as a diffe­
rentiable function of estimated totals. Hence, the general 
theory of section 2 is applicable and it remains to evaluate 
z, = a/(*)/afcJ,.^(,), where f{b) = E{b,g,{b))y, ^is 
obtained by replacing d{s) by b in the formula for Y^. 
Noting diat dA{b)-^/dbi^=-A{b)-^ {dA{b)ldb^)A{b)-\ 
where A{b) = Efĉ ĉ Ar̂  jĉ ,̂ we get 

d{b,g,{b))ldb, 

= gk^f^)-^lA{br'bf^x^ 

- {X-X{b)YA{br\c^x,xl)A{b)-\b,c,x,) (3.2) 

and for I* k 

d{b,g,{b))idb, 

= -xlA{b)-^{b,c,Xi) 

- {X-X{b))^A{b)-\c,x,xl)A{b)-'{b,c,x,). (3.3) 
It now follows from (3.2) and (3.3), that 

df{b)ldb^ = gpb)epb), 

where 

e,{b) =y,-xlB{b) 

(3.4) 

(3.5) 

with B{b) =A~\b){'Li^bi^Ci^Xi^yi^). Therefore, ẑ  = 
a/(6)/afeJj^^(j) reduces to 

z, = g,{d{s))e,, (3.6) 

where ê  = ŷ . -X/^B with B = B{d{s)). 
The variance estimator of 7^, resulting from (3.6), 

namely v(z), takes account of the ^-weights, gi^{d{s)), 
unlike the standard linearization variance estimator (see 
e.g., Samdal et al. 1991, page 237). It agrees with the 
model-assisted variance estimator of Samdal et al. (1989). 
It also agrees with the jackkiufe linearization variance esti­
mator when the latter is applicable (Yung and Rao 1996). 

3.2 A General Class of Regression Calibration 
Weights 

We now tum to a general class of regression calibration 
weights of the form wp) = dp) /î (rf(5)) with 

h,{d{s)) = lHX-X)''Q'\c,x,^Y,.k '^i^')'=ki^ i)' (3.7) 

where the ab-th element of Q is given by 

^ab = Yti dp)c,x^,x^,^Y!t-i Ylk dp)dp)c,,x^,x^, 
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for specified constants ĉ  and Ci^pc^^). The class (3.7) 
covers the GREG estimator as well as the "optimal" linear 
regression estimator widi dp) = {llii^)ap). In tUe former 
case c^.^ = 0 while the optimal linear regression estimator 
uses ĉ  = (1 -7î )/7î  and ĉ ^ = (TT̂^̂  -7t̂ 7i;)/7ty, k* I, wUere 
7t̂ , is the probability of including both elements k and / in 
the sample 5 (Montanari 1998). 

The caUbration weights wp) may be rewritten as 

wp) = dp)^{X-XfQ' 

^*(^)Ct^t + E,.t^«(^)c«J^,), (3.8) 

where d̂ ,(5) =dp) d,{s) IE[dp) d^ {s)], c^, = c^E [dp) dp)] 
and 

%b = Er=i dp)c^x^^x^^*Yti Yik dkiis)Ck,x^k^b,-

Note tiiat Edp) = 1 and EdJ^s) = 1. If dp) = {lln^)ap) 
then d^.p) reduces to d^f^s) = ap)ap)lii^^ and ĉ ; = 
(% ~ 'tA:^/)/(%'̂ /). We can regard the calibration estimator 
Y^ resulting from (3.8) as a function of totals, by 
expressing a quadratic form as a total of synthetic variables 
(Sitter and Wu 2002). Therefore, we can use the method of 
s e c t i o n 2 a n d w r i t e 
t =f{d^\s),d^'-\s),y) =Edp)h{d^%), d^%))y, 
where d^^\s) = d{s) and d^^\s) is the vector of elements 
di^{s), k<l, arranged in a sequence. Now, following the 
derivation of (2.3), we get 

t - y-Yk z,{dp)-i)^2Y Yk<i 4(^*,(^)-i) (3.9) 
where 

ẑ  and Zi^i involves the derivatives 

z,= df{b^'\b^'\y)/db^\ A'» = UP> = 1' 

z,r df{b^^W'\y)/dbJ im=i,Ara = i ' 

6''^ = A = ( i j , . . . , bf^)^ and 6'̂ ^ is the vector of arbittary 
real numbers fe^^, k<l, arranged in the same order as the 
elements df^p) in d^^\s). Using (3.9), a variance estimator 
of Y^ is approximately given by the variance estimator of 

^k^k^k^^) ^'^'^^k<ihidki(^)' denoted by v{z^^\ z^^^). 
Smce vCz''', z*̂ )̂ mvolves die unknown values z^ and ẑ ,, 

we replace ẑ  by Z;^ = df{b'-^\b^'^\y)/db^\^o)^ja)^,^^ia)^ja)^,) 
and Zi,by Zi; = a/(6(",*®,y)/afe^Jja,^^(,)(^) j(2)̂ (̂2,(,) toget 
v(z*'\z^^^). Unfortunately, the variance estimator 
v(z' ' \ z'^') involves dikd order and fourth order moments 
E[dp)dp)dp)] and E[dp)d,{s)dp)dp)] in addition 
to the second moments E[dp)dp)], whereas the variance 
estimator for the generalized regression estimator requires 
only the second moments. In particular, if dp) = {lln,) ap) 
we required third and fourth order inclusion probabilities 
71̂ . and iZj^i as weU as the second order inclusion proba­
biUties 7t̂ ,. 

The calculation of 
a [b, h{b^^\ b^'^^)] Idbj^ for / = fc and / ?* fc and die derivatives 
d[bih{b'-^Kb^^^)ydbi^i for I = k and l^k. After simph 
fication, we get 

1 +(X •XfQ ^k^k 

and 

where 

{X-X)^Q-'c, kl^l^k^ 

^k ^yk-^kB 

with B* =e"'(E,d,(5)c,x,y, + E,E,,,rf,(5)^,(5)c,,JC,y,). 
Note that the customary Taylor linearization variance 
estimation uses v{e *), while v(z*'\z^^') would involve the 
residuals ê *̂ as weU as tUe^-weights 1 +{X-X)^Q~ c^x,^ 
and {X -XYQ^ C/,X,. If C ,̂ = 0 for all fc ̂  /, dien ẑ , = 0 
and v(z^'\z^^^) reduces to v{z) with z^ given by (3.6). 
Thus the GREG result of subsection 3.1 is a special case. 

V 
3.3 Estimating Equations 

We now tum to a vector parameter 0 = (0,, 
defined eitiier explicitly or implicitly as die solution to 
"census" estimating equations S(0) =E|^^,M^(6) =0. A 
calibration estimator 9 = (0j,..., 0 )^ with GREG calibra­
tion weights wp) =dp)gi(^d{s)) is obtained as the 
solution to sample estimating equations: 

5(9) = Y wp)u^{^) = 9, (3.10) 

where H^(9) and S(9) are {pxl) vectors (Binder 1983). 
For example for logistic regression with scalar 0, we have 
"t(6) = (y, - /'*(6))«*. where p/0) = P{y^ = 1 \a^) = 
exp(0a^)/(l +exp(0a^)) and â  is the predictor variable. 
Note that 0, in this case, is the implicit solution to (3.10) 
and obtained iteratively using Newton-Raphson or Fisher 
scoring method. 

The estimator of a ratio of totals 7 and A =Ea^ is 
obtained as the explicit solution of (3.10) with M^(0) = 
y^-0a^:0 = E wp) y^l'^ v^p) a^. = YIA. In dus case, 0 is a 
function of estimated totals and hence our method for 
functions of totals is applicable. It remains to evaluate 
df{b)ldb^, where f{b) = 'Lb,g^{b)yi^lZb^g,{b)a,. We 
have 

df{b) Idb, = Ef,, [d{b,g,{b)) Idb,] A{b)-' {y, -f{b)a,), 

where A{b) = Y.bjgj{b) a,. Now using (3.4) and (3.5), it is 
easy to verify that z^ reduces to 

r - i 

where 

gkid{s))A 

«,(e)-^*fi„ 
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widi B^ obtained from B by changing ŷ . to MJ^(0). Note 
that the residuals e^ has the same form as the GREG 
residuals ê  with ŷ  changed with M^(9). 

In general, the solution 9 to the estimating equations 
(3.10) may not be expressable as a function of estimated 
totals. We therefore follow Binder's (1983) approach and 
write the Unearization estimator of die covariance matiix of 9 

as 

v,(e) = [ / ( 9 ) J ' E , (9)[7(9)J (3.11) 

wUere 7(9) =-aS(9)739 and̂  2:^(9) is the estimated 
covariance matrix v^(S(9)) =2^(9) evaluated at 9 = 9. 
Binder (1983) gave regularity conditions for the validity of 
(3.11). Noting that S (9) isa vectorof estimated totals with 
GREG weights dp) gi^{d{s)), U follows from (3.6) and 
(3.11) that 

v^(9) = v{z) (3.12) 

where 

z* = lji^)Vgk(d{s))el (3.13) 

withel = {e*^,...,e*p)^ and 

e*j = Uj,{Q)-x^Bj^;j = I,..., p. 

Further, B.̂  is obtained from B. by changing ŷ  to M.J^(9) 

and V (Z) is the estimated covariance matrix of the vector of 
estimated totals Z = 'Ldp)Zk, where M.^(9) is the 7* 
element of M^(9). The result (3.12) agrees with the 
jackknife Unearization variance estimator, v̂ ,̂ for sttatified 
multistage sampling obtained by Rao, Yung and Hidkoglou 
(2002). 

The result (3.12)-(3.13) may also be obtained dkectiy by 
writing 9 as f{d{s)) and evaluating ẑ  = df{b)ldbi}^ ^^^^j. 
We denote Q{b)=f{b) as the solution of 
E{b,g,{b))u,{Q)=0,i.e., 

Yib,g,{b))u^{d{b)) =0, (3.14) 

We now take the derivative of (3.14) with respect to Z?̂  to 
get 

Y [d{b,g,{b))ldb,]u,{m)*Y ib,g,{b)) 
i-i i-i 

du,{Q{b))ld{Q{b)) d{d{b))ldbi^. (3.15) 

Substituting (3.2) and (3.3) for d{b^g^{b)) Idb^ in (3.15), 
we obtain (3.13) after simplification. This result shows that 
our method is also dkectiy appUcable to general estUnators 9 
under Binder's (1983) regularity conditions. 

3.4 A General Class of Calibration Estimators 

The calibration weights, wp), associated with the 
GREG estimator Y^ may not be always nonnegative. To get 

around this difficulty, generalized raking ratio weights are 
often used. These weights are always nonnegative, but the 
method can lead to some extteme weights (Deville and 
Samdal 1992). 

The generalized raking weights belong to the class 

(3.16) wp) = dp)F{xlX) 

with F{a) = e", where the LaGrange multiplier X, is 
determined by solving the calibration equations 

Y ^k^')^k = Y dp)F{xJX)x, = X. (3.17) 

The GREG weights correspond to F{a) = l+a in which 
case X = {Jldp)xi^xi^)~\X -X). 

In general, the calibration estimator Y^ = Y.wp) ŷ  witU 
weights wp) given by (3.16) may not be expressable as a 
function of estimated totals. We therefore follow Binder's 
(1983) approach and expand F(x^ X) around X, where X 
denotes the probability Umit of X. We get 

F{xlX) ^ F{xlX)^f{xlX)xl{X-X), (3.18) 

where f{a) =dF{a)lda. Further, by expanding the 
calibration equations (3.17) around X, we obtain after 
simplification. 

X-X -Q'M-x) (3.19) 

where g^ = Ed^(j)/(x^>.)^jr^A:^ ^and S^ = i:^dp) 
F{xi^X)Xi^. Note that both Q^ and S,̂  are of the form of 
estimated totals. Substituting (3.19) into (3.18) gives 

F{xlX) ^ F{xlX) -f{xlX)xlQ;\s, - x). (3.20) 

Using the approximation (3.20) in (3.16), it follows tiiat 7^ 
is approximated by a differentiable function of estimated 
totals. Hence, tUe general theory of section 2 is applicable 
and it remains to evaluate ẑ  = dh{b)ldbi\^^^,y wUere 
h{b) = T.b^g*{b)y^\Nit\i 

g;{b)=F{xlX) -f{xlX)xlQ^{b)-'{S^{b) -X) 

where Q^{b) = 'LbJ{xlX)x^xl and S^{b) = 
T,bj^F{Xi^X)Xf.. After simplification, we get 

h = P'(4^)(yk - ^ [ « \ ) = Pixl^)e,^' (3.21) 

where 

«\ = ( E dp)f{xlX)x,xiyY dp)f{xli)x,y,. 
Singh and Folsom (2000) obtained a similar result, using a 
somewhat different approach. 

The result (3.21) may also be obtained dkectiy along the 
lUies of (3.2) and (3.3) by writing 7^ as f{d{s)) and evalu­
ating Zt = a/(*)/afcJj^(,), where f{b) = T.b^g,<,b)y^ 
with g^{b) = F{xlkb)). We have 
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d{b,g,{b))ldb,=g,{b)^bJ{xlM.b))xl{dX{b)/db,),{3.22) 

and for l*k 

d {b,g,{b))ldb, = b, f{x]X{b))x]{dUb)ldb,). (3.23) 

To evaluate dX{b)ldb^, we take the derivatives of the 
calibration equations (3.17) with d{s) replaced by b: 
i:b^F{xlX{b))x^-X = 9. This gives 

9 = F{xlm)x, + Y,bif{xJX{b))XixJ{dX{b)/db,) 

or 

die parameter Q=g{Y,X) with 7 = (7,,..., 7^)^ and 
X = (X|, ...,X )^ denoting die vectors of 7 - and X- totals. 
For example, the two-phase ratio estimator, 7̂ 2 - î  °f ̂ ^^ 

(1) 
form0=g(7,X,X^'): 

4^ = Zx"̂  = RX''' 
X 

Ydp)yk 

Y di,{s)x^ 
(E ,̂ k%i)^^ (4.1) 

3mi8b,-{Y bJ{xlX{b))x,xiyF{xlX{b))x,. (3.24) ^ T / j ^ ^ ' V o ) : ! * / ' ^ ' ' '^ ^^ ' " ' ^ ^ ' ^ = ^ ' " 

Substituting (3.24) into (3.22) and (3.23), we get (3.21) 
after simpUfication. 

Deville and Samdal (1992) showed that the asymptotic 
variance of 7^ for general F(-) is equivalent to the 
asymptotic variance of the GREG estimator which involves 
the "census" regression coefficient B. Using this result tUey 
obtained a variance estimator of 7^ for general F(-), by 
replacing B by B=(Ewj.(5)x^;i:^)"'Ew^(5)x^y^, where 
wp)=dp)F{xlX). The resulting ẑ^ agrees with our ẑ  
given by (3.21) if f{a) = F{a), i.e., in the case of generalized 
raking weights. In the case of GREG estimator, we have 
F{x)=l+x, f{x)=l and X = {T.dp)x^xl)-\X-X). It 
readily follows that F{Xi^X) reduces to the customary 
^-weight gj^{d{s)) = I + {X-X)^{Tdp)x^l)yi^, and 
^u^^i~^t^x reduces to e,^=yi^-x^B with 
B={lldp)Xi^xl)'^'£dp)Xi^yi^. Note tiiat our ẑ  in this 
case is different from the z,^ of Deville and Samdal (1992), 
but agrees with a commonly used ẑ  (Samdal, Swensson 
and Wretman 1989). 

Our method, along the lines of section 3.3, can be 
extended to implicitiy defined estimators, 0,̂ ,, obtained as 
solutions to estimating equations (3.10) based on the 
general calibration weights (3.16). Details are omitted for 
simplicity. 

4. TWO-PHASE SAMPLING 

We extend our method to two-phase sampUng, assuming 
the estimator 0 of a parameter 0 can be expressed as a 
differentiable function, ^(7,X^''), of estimated totals, 
7 = (7j,..., 7^)^, from the second-phase sample and 
estimated tottu", t^^ = (X,^",..., X '̂*')̂ , from die first-phase 
sample only. Here Y. = E^,, dp) y.^, i = I,..., m, 
X.*'̂  = Ef̂ , dl^\s^)xJ^,j = 1, ...,p, dl^%^) denotes die first-
phase design weight attached to the /c* element with 
dp^)=0 if/: is not in the first-phase sample s^ and dp) 
is the final design weight attached to the fc* element with 
dp) =0 if /: is not in tiie second-phase sample s. Further, 

Also, 0=,g(7,X,Xf')) = 7. 
For simplicity, consider a g{-) such that N'^g{-) tends 

to a limit. Taylor linearization of Q = g{Y,T ) around 
(7, X) gives 

0-0 = g{Y,t'^)-g{Y,X) 

-Og(a,fl('V5fl)^L=y,„o)=A:(i^-^ 

.(ag(a,aW)/aa(>fL.,„,n.;,(X<"-X). (4.2) 

^ l,X^^^ = A^d'-%^), X=A^1, U can be shown diat 

Let 7 = Efe^y^ and X^" = Efct'^x^ for arbittary real 
numbers b={b^,..., b^f and ft<'^ = (fc,̂ '\ ..., ̂ ' V - Also, let 
g{Y,]t'^)=f{b,b^'\A^,A)=f{b,b^\ where A^ is an 
mxN matrix with l^ colunrn AT̂^ = 
{Xj^y...,Xi^ )^,k = l, ...,N, and A ̂  is an pxA^ matrix with 
/:* column y^ = {y^^, ...,y^f,k = l, ...,N. Now^following 
the derivation of (2.3) and noting that Y=A^d{s), 
Y=A 
(4.2) reduces to 

0 -0 - e{d{s)-\) + z-<'> (̂d("(5,) -1), (4.3) 

where d{s) = {dp),..., df^{s)f and d^\s;) = 
{d[\s^),..., d''^\s^)f. Further, z = (z",,..., z^f witii z, = 
a/(6,A('>)/aZ7,|,^j,o,.i,andz-<') = (z-,''',...,z-;̂ '̂ )'"with z'^ = 
a/(6,6<'V5fet '̂̂ Uj_ft(.).i. It follows from (4.3) that a vari­
ance estimator of 0 is approximately given by the variance 
estimator of the estimated total Ed^(5)z^ + 
Y.d^^\s;)z]^^ = Y{z) +X*'\z''^). We denote die latter vari-

(1) 
ance estimator as v( z, z ^ ' ) . Now we replace ẑ  and 4 by 
z, = a/(6,6<'Va^L,(,,,<„^(0(,,) and z r = a/(6 6<'>)/ 
3^(1)1 : . . , , . . „: „ „ ^ .-(1) Lrf(.),ft<"=d('>(.,) respectively, since z^ and 4 are 
utUaiown. This leads to a linearization variance estimator 

v^(0) = v(z,z^')). (4.4) 

We now consider tUe special case of a "double 
expansion" estimator Y{y) ='^dp)y^. with dp) =11̂ 712̂ , 
for kes and the Horvitz-Thompson (H-T) estimator 

-1 X^\x)=T.dl'\s;)x^ with dl'\s;)=n[l for kes^, where 
Jt,jj is the probabUity of including element fc in 5,, and Ttĵ y, 
is the conditional probability of including element kin s 
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given J,. In this case, an unbiased H-T type estimator of 
7(y)+X^'\x) is given by 

v{y,x) = YY 
k.les, 

'^Ikl ^ Ik ^11 •'^k ^l 

k.les 

YY 
k,les 

hkl ^Ik ^11 

^ikr''^ik^ii 

Ki 

yk yi ^ 

, ^ik '^1/ 

''^2klll ~''^2kll ^21/1 yk yi 

.2AA 
^ik'^^iij 

(4.5) 
••2W/1 Itv It, 

where n*^ =''^ik^2k/v % '̂'u;'̂ 2W/i' '̂ iw '^ ^^ probability of 
including both elements k and / in 5j and Ttĵ ŷj is the 
conditional probabUity of including both elements k and / in 
J given 5j. A proof of (4.5) is given in the Appendix. The 
variance estimator (4.4) is obtained from (4.5) by changing ŷ  
and ;ĉ  to ẑ  and z^ respectively. 

Example 4.1 We iUusttate die calculation of v(z,z^'^) for 
the two-phase ratio estimator 7^2' given by (4.1), for the 
special case of simple random sampling at both phases: 5j 
is a simple random sample of size n and J is a simple 
random subsample of size m from 5,. In this case, 
71,̂  = nIN and 7i2̂ /j = min. Further, it follows from (4.1) 
that for general two-phase design. 

and 

X '̂ 

X 

) 

-(yk 

4'̂  

-Rx,)-

=Rx,. 

X 
(4.6) 

(4.7) 

Under simple random sampling at both stages, (4.6) and 
(4.7) reduce to ẑ  = (̂ *'VJc)e^ and Zt'̂  = (y/3c)x ,̂ where 
ei^=yi^-{ylx)Xi^,y and x are the second-phase sample 
means of y and x respectively, and 3c*'̂  is the first-phase 
sample mean of x. Now substituting ẑ  and z^^^ for y and 
X in (4.5) and nothing diat 7tij, = n(n-l)/[A^(A^-l)], 
%/i ='n{m-l)l[n{n-l)], n^,^ = K^^andn2,^i =112^,, we get 

v,(7„)=A^^|l-l 
n N 

+ 2N^ 

R\I^N' 1 1 ) ( -w "1 2 

m n 
•'2e 

R^ 
:(i) 

(4.8) 

where 

R=ylx, sl = {n-l)-'Ykes, (^^-^^'V, 

S2e = {m-l)-'Ykes(^k-^)^' 

*2« = ("»- ir'Ete, (er^)(''k-^) 

and e is the second-phase sample mean of e. The formula 
(4.8) agrees with the formula derived by Rao and Sitter 
(1995). It is different from the customary formula 
(Sukhatme and Sukhatme 1970, page 176) which fails to 
make use of the full x-data {x^,/cej,}. Rao and Sitter 
(1995) demonsttated tUrough simulation that Vj{Yj^2) 'S 
more efficient than the customary variance estimator. Also, 
v (̂7^2) performed better in ttacking the conditional mean 
squared error of 7^2' ^^e Rao and Sitter (1995, section 3) 
for details of the simulation study. 

CONCLUDING REMARKS 

We have presented a unified approach to deriving Taylor 
linearization variance estimators and applied it to a variety 
of problems. It leads directiy to a variance estimator that 
has some desirable properties at least in a number of 
important special cases; in particular, approximate 
unbiasedness for the model variance of the estimator under 
an assumed model and vaUdity under a conditional repeated 
sampling framework. It would be useful to investigate 
whether such desirable properties also hold for more 
complex cases such as the general class of cdibration 
estimators (section 3.2), the estimators based on estimating 
equations (section 3.3) and two-phase sampUng (section 4). 
We are currentiy investigating various extensions of our 
method, including variance estimation under imputation for 
item nonresponse and variance estimation from longitudinal 
survey data. 
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APPENDIX 

(1)/ Unbiased Variance Estimator of Y{y) + X {x) 

The vanance of Y{y) + X {x) is die sum of the variance 
of Y{y), the variance of X {x) and twice the covariance of 
Y{y) and X {x). An unbiased H-T type estimator of 
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^[^(}')] is given by Samdal, Swensson and Wretman 
(1991, chapter 9, page 348): 

= EE 
k,les 

-EE 
k,les 

"•Ikl 

'^2«/l 

"•lk"ll 

~'^2ifc/l 

^2kin 

^Ik 

'^21/1 

"^11 

yk 

4 
yi 

It] 
(A.l) 

v d V An unbiased H-T type estimator of y[X (x)] is given by 

v[x%)] = E E " ' " " ' ^ " " ^ - - (A.2) 
k.les, '•Ikl 

Further, 

Cov[7(y),x'V)] = FCov2[7(y),X^'\x)] 

+ Cov i?(i)/ 
E2{Y{y)),E2{r"{x)) 

where F2 and C0V2 denote conditional expectation and 
conditional covariance given 5,. Noting that 

F2 7(y) =X^'\y),E2X^'\x) = X^'\x) 

and Cov2[7(y),X^'\;c)] =0, we get 

Cov[7(y),X^'V)l = Cov[x''\y),X^'V)]. 

An unbiased H-T type estimator of 2Cov [X"\y), X^'^x)] 
is given by 

2cov[x^'\y),x"\x)] 

^iki'^ik'^^ii yk ^i 
-2YY 

k.l€s 

(A.3) 
Jt, *; ^ik^ii 

The sum of (A.l), (A.2) and (A.3) equals (4.5). 
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Comment 
PHILLIP S. KOTT' 

The article addresses an impressive number of contexts, 
many of which have only recentiy been investigated in the 
literatiire, often by Professor Rao himself. I will have littie 
to say here about estimating functions with caUbration 
weights or two-phase sampUng, except (mostiy) to agree 
with the solutions advocated in the text. Instead, 1 wUl focus 
on three applications: die ratio estimator under simple 
random sampling discussed in tUe Inttoduction, the general 
class of regression calibration weights from section 3.2, and 
the general class of caUbration estimators from section 3.4. 
I will end with a question about the Unearization variance 
estimator in full Horvitz-Thompson form, which has 
bothered me for some time. 

The Ratio Under Simple Random Sampling 

Before beginning, let me confess to a certain skepticism 
about the general method proposed in section 2.1 find that 
techniques of this sort work best when you aheady know 
what the answer is. Godambe and Thompson (1986) died 
to use estimating functions to settie a conttoversy then 
surrounding the best variance estimator for tiie ratio under 
simple random sampling. Using die notation in the text, 
they demonsttated diat {Xlx)v^ was the proper way to 
estimate the variance of a ratio estimator, 7^ = {Xlx)y. 
Later, Binder (1996) corrected diem. He showed diat when 
done property, v̂ ^ = (X/I)^v^ is produced from esti-
mating-function technology. It helped diat he already knew 
that was the better answer. 

As Demand and Rao state, v̂ ^ has both good random­
ization (design) and model-based properties (here and 
hereafter I omit the qualifier, "under mild conditions which 
1 assume to hold"). In fact, when nIN is ignorably small, 
Vji^ has a relative bias of 0{l/n) as an estimator for die 
model variance of 7^. If die ŷ  are uncorrelated, tiien diis 
is not only ti^e when ^^(yj) = Ô A:̂  as stated in the text, 
but, more generally, when V„(y^) = of. Unformnately, die 
result is less general when nIN is not ignorably small. In 
that context, when die ŷ  are uncorrelated and V^{yi^) = 
â -r̂ , a more appropriate estimator for the model variance 
of YR is v^ = [{Xlx)^ -{nlN){Xlx)][l -{nlN)r'v^^ 
(Kott and Brewer 2001). As an estimator for the 
randomization mean squared error of 7^, v^ has a relative 
bias of 0{ll\fn), just like v̂ ^ and v̂ . 

When simple random sampling is used in practice the 
sampling fraction is almost always small. Thus, v̂ ^ is an 

atttactive variance/mean-squared-error estimator, and my 
criticism of Demnati and Rao for advocating it is mild. 

A General Class of Regression Calibration Weights 

I would generalize tUe results of section 3.1 in a different 
manner than the authors do in section 3.2. Following 
Estavao and Samdal (2002), replace ĉ .«:̂  in equation (3.1) 
with a vector 9^ having the same dimension as jc .̂ The rest 
of that section follows easily. 

One cUoice for ^^ is 

9(i)t = E (T^kj-'^k^)^ji(''^k^j)> 
jell 

the use of which results in a variant of the randomization-
optimal regression estimator proposed by T\ll€ (1999). 
Observe Jhat (Ey^(,),x[)-'(Ej,<7(„,y/) = [Var(X)]-> 
Cov(X, 7), where Var and Cov denote randonuzation-
based properties. 

Another choice, investigated indirectiy by Demnati and 
Rao and likewise resulting into a variant of the randomi­
zation-optimal estimator, is 

*(2)t = E (%-'t*^,)-f,/('t^/,). 
jes 

Since ^̂ 2)* is a function of the sample, the authors take us 
through die complications of section 3.2. This was only 
necessary for randomization-based inference. 1 would have 
gone a different way. Observe that dp)q^2)k ~ ^«:('''')*(i)t = 
Op{ll\/n.). Replacing one for the odier has an asymptoti­
cally ignorable effect on wp) {i.e., the relative difference 
is Op{lln)). 

A General Class of Calibration Estimators 

A mild generalization of equation (3.16) allows 
calibration weights of the form, 

wp) = d^{s)F{qlX), 

where ^^ again has the same dimension as jc .̂ For 
convenience F is assumed positive and twice differentiable 
around q,^X. Without loss of generality, one can assume X 
(die Umit of X) is 0, and /(0)> 1. When 7^^ = Eytv^(5)y^ 
is a randonuzation consistent estimator, as 1 assume it is, 
F(0) is equal to 1. 

ParalleUng the development in die text leads ultimately 
to 

Zk = F{qlX){y^-xlB^) = F{qlX)e,., 

Phillip S.Kott, USDA / NASS, 3251 Old Lee Hwy, Fairfax. VA 22030, U.S.A. 
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where B, = [^dp)f{qlX)q,xlr'Edpif{qlX)q,y,. 
The presence of the /(•) Ui the expession of B^ may be a bU 
of a surprise, but, it mms out, not a meaningful one in this 
context. For inference under die prediction model, 
E {yAx^=xlfl, die derivative can be replaced by any 
constant without asymptotic consequence; B^ remains a 
model unbiased estimator for p. For randomization-based 
inference, since ^[X, = 0^(1 /^ ) and F(0),/(0)>0,z^ 
would be unaffected asymptotically if f{qkX) were 
replaced by 1 or by F (9^ >.). 

Things change, however, if we push the envelop a bit. 
Fuller, Loughin and Baker (1994) use calibration to adjust 
for unit nonresponse by tteating sample response as a 
second phase of sampUng. They assume diat every element 
k in the population has a Poisson probabiUty of sample 
response, Jt2 ,̂ which is independent of whether it is 
actually chosen for the sample. They furdier assume 
JI2J = 1/(1 +Jc[X.), where X is unknown and implicitiy 
estimated by calibration. Here we generalize that and 
assume 312̂  = llF{qlX), where F is known, positive, and 
twice dUferentiable. In practice, q,^ will lUcely be identical 
to jc^, but it may be reasonable to replace one of more 
components of JĈ  with variables conjectured to be more 
sttongly correlated with response/ nonresponse. 

Redefining s as the respondent sample and dp) as 
(l/7t,j) when kes,0 odierwise, everything proceeds as 
before. The difference is thatf{qli) in B^ need no longer 
need be asymptotically identical across the k. Thus, the term 
can matter even with a large sample. 

Now V{Yfy.)'''^(^u^k(^)h)^ '̂̂ '̂•^ '^u^k(^)h = 
Eydp)F{ql'x)^kx *s the double expansion estimation. 
Substihiting llF{qlX) for 712̂ , die variance estimator for 7^^ 
becomes (from equation (A.l) with 712̂ .̂ /1 = ^2kj^2k''^2j) 

v(yGc) = Y \-(^ikj-^ik^iP'^ikji 
k.jes 

dp)F{qlX)e,^dj{s)F{q]X)ej^ 

kes 

This differs from the variance estimator in Folsom and 
Singh (2000) mainly because tiiose autiiors assume die 
original sample is chosen using a sttatified multistage 
design employing with-replacement sampling in the first. 
That, among other things, annihilates the second summation 
on the right hand side. 

Not only does v{Y^^ estimate the quasi-randomization 
mean squared error of 7^,^- "quasi" because a response 
model is assumed, it also estimates the model variance of 
7g^. In fact, die relative bias of v(7g^) under die 
piediction model, EJ^y^\x^,q^) =x^p, is 0{lln) when die ŷ  

are uncorrelated and V^(yjjc^,9^) =^[Y> where y (like p) 
need not be specified. Surprisingly, the second term in 
v(7(,^) provides the model-based correction I 
recommended for the ratio estimator under simple random 
sampUng in the absence of nonresponse. 

Does the "Plug-in" Variance Estimator Really Work 
for the Full Horvitz-Thompson Form? 

As 1 wamed parenthetically early on, 1 have omitted the 
key phrase, "under mild conditions which I assume to 
hold," repeatedly in these comments. Now, I want to tum 
my attention to what may be one of those conditions. It is 
standard in variance estimation to replace population (or 
model) values widi sample analogues since their difference 
is asymptoticaUy ignorable. That is done, for example, by 
Demnati and Rao in equation (2.4 ) when they plug in ẑ  
for z^. The question 1 want to raise, and for which 1 do not 
know the answer, is this. Suppose one is estimating a total 
with a calibration estimator. TUe total is 0{N), and 
0{n) = 0{N). The estimator's model variance and 
randomization mean squared error are also 0{n). Is it 
legitimate to plug in z^ for z ,̂ where z^^-z^ = Op{ll\/n), 
when tiiere are n(n-l)/2 terms in the Horvitz-Thompson -
or Yates-Gmndy - variance/mean-squared-error estimator? 
In most practical applications, this is a non-issue, because 
the variance estimator can be re-expressed with 0{n) 
terms. What if that is not the case? 

Let me conclude these remarks by thanking Drs. 
Demnati and Rao for their stimulating article and Survey 
Methodology for both publishing it and allowing me to 
provide some comments. 

ADDITIONAL REFERENCES 

ESTEVAO, V.M., and SARNDAL, C-E. (2002). The ten cases of 
auxiliary information for calibration in two-phase sampling. 
Joumal of Official Statistics. 18, 233-255. 

FULLER, W.A., LOUGHIN, M.M. and BAKER, H.D. (1994). 
Regression weighting for the 1987-88 National Food 
Consumption Survey. Survey Methodology. 20, 75-85. 

GODAMBE, V.P., and THOMPSON, M.E. (1986). Parameters of 
superpopulation and survey population: their relationship and 
estimation. Intemational Statistical Review. 54, 2, 127-138. 

KOTT, P.S., and BREWER K.R.W. (2001). Estimating the model 
variance of a randomization-consistent regression estimator. 
Proceedings of the Section on Survey Research Methods, 
American Statistical Association. 

RAO, J.N.K., and SHAO, J. (1992). Jackknife variance estimation 
with survey data under hot deck imputation. Biometrika. 811-822. 

TILLfi, Y. (1999). Estimation in surveys using conditional inclusion 
probabilities: complex designs. Survey Methodology. 25, 57-66. 



Survey Methodology, June 2004 29 

Comment 
BABUBHAI V. SHAH' 

This is an excellent paper that removes the mystery 
underlying Taylor linearization. Most data analysis 
applications use Horvitz-Thompson weights that are 
reciprocals of the probabilities of selection. The simplest 
prescription for deriving the Unearization for an estimator 0 
is as foUows: 

1. For each observation, create a new variable 
Zj = dQldw., where w. is the reciprocal of the 
selection probability for the i-th observation 
selected in the sample. In cases where the esti­
mator 0 is defined implicitiy through estimating 
equations, the derivative can be computed by 
differentiating the implicit equations. 

2. Define weighted T = T,w. z, total. 

3. Compute the variance V of the total T based on 
the sample design. 

4. The variance V is the approximate variance of the 
estimator 0. 

If the parameter 0 is a vector then the variable z, and the 
total T are also vectors and V is an approximate estimate of 
the variance covariance matrix of the estimator 0. 

The steps (1) and (2) specified above produce the correct 
linearization in the following cases: 

a. Means, proportions, and ratio estimates. 

b. Generalized linear regression models. 

c. Predicted marginal for generalized Unear model. 

d. Estimate of the mean from regression imputed 
data. 

e. Generalized linear regression models with 
calibrated weights. 

f. Wilcoxon two sample rank sum test. 

g. Estimates of coefficients and the hazard rate in 
Cox's proportional hazard model. 

h. Estimates of predicted marginal sur\'ival in 
Cox's proportional hazard model. 

i. Two-phase sample survey. 

The derivation in the step (1) is uniquely defined and 
does not contain the tme value of the parameter 0, and does 
not require substitution by the estimator 0. 

The independence of step (3) for variance computation 
from the Unearization in steps (1) and (2) is aptiy 
demonsttated by die discussion on two-phase sampling in 
section 4. In most cases, one assumes with replacement 
sample design to estimate the variance of the total in the 
step (3). Of course, a better estimate of the variance of the 
total may be obtained by using all the available information 
about the sample design. For the case of a two-phase 
design, step (1) can be performed by using Horvitz 
Thompson weights for the phase one sampling, and tteating 
die multipliers m. as data. The muUipUer m. is equal to 
zero if the observation i is not selected in phase two and is 
equal to the inverse of die conditional probabiUty nl/^/^. The 
resultUig step (2) produces the same total as presented in the 
paragraph between equations (4.3) and (4.4). The sub­
sequent discussion in section 4, describes the appropriate 
way to estimate the variance of this total for a two-stage 
sample design without replacement at each stage, and that 
calculation is independent of the linearization. 

The steps (1) and (2) generate appropriate linearization 
in all known cases except where the estimator is not a 
continuous function of the weights Wp e.g., quantile. 

' Babubhai V. Shah, SAFAL Insdtute, Inc. E-mail: babushah@earthlink.net 
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Comment 
CHRIS SKINNER' 

Linearization and replication approaches provide two 
broad classes of methods for variance estimation in surveys. 
Both have theU relative advantages and it seems important 
to keep a place for both in the survey statistician's 'toolkit'. 
This paper deepens our understanding of linearization 
methods, proposes a general procedure to generate such 
variance estimators uniquely and provides valuable 
illusttations of this procedure in some important areas of 
application. 

A linearization method approximates the variance of a 
statistic of interest by the variance of a linear statistic, for 
wUich it is assumed a suitable variance estimator is 
available. The main issue here is the method used to 
determine the linear statistic. The standard approach 
assumes the statistic of interest may be expressed as a 
differentiable function of a vector of linear statistics (of 
fixed dimension) and uses Taylor series expansion to 
determine tUe approximation. The approach proposed in 
this paper applies to a more general class of sample-
weighted statistics, illusttated by the complex examples in 
sections 3.2. and 4. The variance estimator is constracted by 
differentiating the statistic widi respect to the sample 
weights. The approach to Unear approximation is closely 
related to methods based upon the influence function {e.g., 
equations 1.6 and 1.13) and the paper provides a helpful 
review of such methods in section 1. The authors note that 
it is not easy to verify the validity of such methods for 
statistics which are not smooth functions of (or a fixed 
number of) linear statistics and it would be interesting to 
know how far the proposed approach does indeed provide 
valid variance estimators for statistics, sucU as quantiles, 
wUich are not of this form. 

A key feature of the proposed approach, which ensures 
the unique constmction of the variance estimator, is that 
derivatives are evaluated at values based on the achieved 
sample, without any initial evaluation of the approximating 
linear statistic at tUeoretical population values. Such initial 
evaluation may lead to non-uniqueness when auxiliary 
information is available, for example on a population mean, 
X, and it is assumed that this value is equal to the limiting 
value of a corresponding sample statistic, S. For statistics 
which are smooth functions of linear statistics, it appears 
that the variance estimator generated by the proposed 
method may also be constmcted by conventional Taylor 
series methods, provided no initial simplification of the 

variance estimator takes place based on such assumptions 
about auxiliary information. Such constmction may, 
however, be less clear-cut than for the proposed approach. 

Assumptions employed by linearization methods 
differing from the proposed approach, such as that an 
auxiliary value X is the theoretical limiting value of a 
sample value 3c, are based upon unconditional distributions 
and so it might be anticipated that the incorporation of such 
assumptions into a variance estimator nught damage the 
mediod's conditional properties, especially with respect to 
statistics such as x. The proposed procedure avoids 
dependence upon such assumptions and, by evaluating 
derivatives at achieved sample values, may be expected to 
ttack conditional properties more closely. (There appear to 
be paraUels with Efron and Hinkley's (1978) arguments in 
favour of the observed versus the expected information, 
although the context is rather different.) 

The avoidance of dependence upon such assumptions 
may not only benefit the conditional properties of the 
proposed approach, but also protect the variance estimator 
against possible biasing effects of non-sampling errors. TUe 
auxiliary population information may differ from the 
limiting values of the corresponding sample statistics either 
because of non-response or non-coverage or because of 
discrepancies in the way the auxiliary variables are 
measured. In such circumstances, linearization methods 
differing from the proposed approach might lead to 
inconsistent variance estimation. For tiiis reason. Fuller 
(2002, page 10) recommends the use of the g-weights in 
(3.6), as proposed, especially in the presence of 
nonresponse (page 15). With regards to the latter case, it 
seems worth noting that the vaUdity of the proposed 
procedure does not appear to depend on the requirement 
that E{d{s)) = 1, provided 1 is replaced by E{d{s)) in the 
development in section 2. In particular, if s denotes unit 
respondents and non-response may be represented by 
Poisson sampUng with unknown response probabiUties then 
the proposed approach to variance estimation may still be 
consistent (when based on many standard variance 
estimators for linear statistics), even if d{s) is based only on 
sampling inclusion probabilities. 

Julia d'Arrigo and 1 have recently studied tbe properties 
of linearization variance estimators under nonresponse in 
simulation studies as part of the DACSEIS research project 
(www.dacseis.de) using data from the UK Labour Force 

Chris Skinner, Southampton Statistical Sciences Research Institute, University of Southampton, Southampton S017 IBJ, United Kingdom. 
E-mail: cjs@socsci.soton.ac.uk. 
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Survey and the German Income and Expenditure Survey. 
We considered various calibration estimators under Poisson 
models for unit non-response which were ignorable given 
the calibrating variables, using standard variance estimators 
for linear statistics under sttatified multi-stage sampling. 
We indeed found that nonresponse could lead to serious 
biases in die Unearization variance estimators if they failed 
to take account of the ^-weights for GREG estimation 
(section 3.1.) or ignored the F(x^ X) term in (3.21). Such 
biases were absent in the proposed approach. 

We also investigated the altemative calibration 
estimators discussed in section 3.4. DeviUe and Samdal's 
(1992) theoretical finding that the asymptotic variance of Y^ 
does not depend on the form of the function F{-) is based 
on the assumption that 'Ldp)Xi^ is consistent forX. This 
assumption may not hold under various sources of 
non-sampling error, and is not required for tUe proposed 
approach. Hence, the appropriate approximate linear 
statistic (under departures from this assumption) is defined 
by (3.21) and the resulting variance estimator may depend 
on the form of F{-), even asymptotically. The standard 
linearization variance estimators in which dp)f{X;^X) Ui Bĵ  
is replaced by dp) or wp) may be inconsistent if these 
weights differ from dp)f{Xi^ X). Despite this theoretical 
fact, we observed littie difference in our simulation study 
(for each of the functions, 1 +M, exp(M), and (1 -M)"', used 
for F{u)) between the statistical properties of variance 
estimators based upon these three different choices of 
weight, dp)f{Xi^ X), dp) or wp), in the B^ vector in 
(3.21). Others studies might produce different findings. 

A disadvantage of the linearization methods considered 
here compared to replication methods is the need for 
analytic differentiation. It would appear from the examples 
presented in this paper that the analytic differentiation 
involved in the proposed method is at least as sttaight-
forward as that in standard methods of Taylor series 
expansion of smooth functions of linear statistics. 
Nevertheless, in some appUcations, it may be advantageous 
to replace the human labour and possible human error 
arising with analytic differentiation by the use of 'numerical 
differentiation'. The proposed approach might be described 
as an infinitestimal jackknife method since it perturbs the 
weight given to each sample observation by an infinitesimal 
amount to determine the approximating Unear statistic. The 
derivative with respect to a weight in the proposed approach 
may be approximated numerically by a finite difference 
approach in which the statistic is recalculated with the 
weight perturbed by a finite amount for each observation in 
tum. This approach may be described as a jackknife method 
of linearization. A conventional approach would be to 

change each weight to zero in tum, perhaps standardizing 
for unequal weights as in (1.15). It does not seem essential 
to replace the original weight by zero and, in principle, each 
weight might be perturbed in some other way, for example 
by reducing it by a fixed amount 5, smaller dian the 
minimum value of dp). It seems likely that in many 
applications tUe variance estimator arising from such 
jackknife linearization will have very similar statistical 
properties to that constructed by the proposed approach. 
The choice between the estimators is lUcely to depend more 
on practical and computational considerations. 

My final comments are on terminology. There are 
practical reasons why it may be helpful to give the ẑ  
variable a name. In particular, this may be helpful for the 
practitioner who, for some complex statistics, has to employ 
two separate computational steps: (a) constiiiction of the ẑ  
variable, for example using least squares routines when 
calibration weighting is used, and (b) use of standard 
variance estimation software for linear statistics. Different 
names are used for z^ in die Uterature. Woodruff (1971) is 
usually acknowledged as the first paper in the survey 
sampling literature to draw attention to the role of ẑ^ and 
Andersson and Nordberg (1994) refer to ẑ  as die Woodruff 
transformation. Woodmff and Causey (1976) refer to the 
approximating linear statistic as the Unear substitute and ẑ  
as the substitute variable. In the more mainstteam statistical 
literature, Davison and Hinkley (1997, page 46) refer to the 
ẑ  as the empirical influence values. The term linearized 
variable, as used by Deville (1999), seems to me a simple 
and natural one. It is consistent with the use of the term 
linearized statistic to denote the approximating linear 
statistic and the term linearization for the method (which is 
a more suitable general term than Taylor series method for 
the broad class of approaches considered here). 
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Response from the Authors 

1. INTRODUCTION 

We thank the three discussants, Phillip Kott, Babubhai 
Shah and Chris Skinner, for theU insightful comments. Our 
rejoinder will attempt to address some of the issues raised 
by the discussants. The main aim of our paper was to study 
variance estimation for caUbration estimators of population 
totals and nonlinear parameters, 0, defined as solutions to 
"census" estimating equations. We proposed a new Taylor 
linearization approach that provides a unique variance 
estimator, by avoiding initial evaluation of the linearized 
statistic at the population values. We have also shown that 
the variance estimator satisfies some desirable consider­
ations, such as approximate model unbiasedness and 
validity under a conditional repeated sampling frame work, 
at least in a number of important cases. We have also shown 
that in two-phase sampUng the variance estimator makes 
fuller use of the first phase sample data compared to 
ttaditional linearization variance estimators. 

Kott 

Kott's discussion focused on three appUcations in our 
paper: (i) the jackknife linearization variance estimator, 
Vŷ , of the ratio estimator 7^ = {ylx)X in simple random 
sampling mentioned in section 1; (ii) tiie general class of 
regression calibration weights considered in section 3.2; 
(iii) the general class of calibration weights studied in 
section 3.4. Regarding (i), we noted the result that Vj^ is 
both asymptotically design unbiased and approximately 
model unbiased under the ratio model Ej{yi^) = ^Xi^ and 
V^(y^) = ô jĉ . Kott is correct in saying that the model bias 
may not be negligible if the sampling fraction, n/N, is not 
small. If nIN is "ignorably small", then model unbi­
asedness is, in fact, valid under a general variance function 
y^(y^) = o^, as noted by Kott and previously by Samdal 
etal. (1989). Under the ratio model, Kott proposes a more 
appropriate variance estimator, v^, that is model unbiased 
even if nIN is not small and also valid under repeated 
sampUng. The leading terms of v^ and Vj^ are identical, 
and our new approach captures only the leading term. It 
should be noted that model-unbiasedness of v^ depends on 
the validity of the assumption ô  = ô x̂ .̂ 

Turning to (ii), we have shown in section 3.2 that if the 
general class of regression calibration weights, (3.7), are 
used, our approach leads to a variance estimator that is quite 
complex, involving third and fourth order moments of the 
design weights dp) with dp) =0 if the A:* population 
element is not in the sample s. Kott proposes an atttactive 
choice of weights obtained by replacing ĉ  x̂ ^ in the GREG 

weight (3.1) widi 9(jĵ  = Ef^i (u^,-jr^;t,)X;/(7i^7i;). This 
choice gives a variant of the "optimal" linear regression 
estimator and also avoids the complexities associated with 
die variance estimator based on the weights (3.7). This is an 
interesting and useful proposal, but ^,,,^ requires the 
knowledge of the jr-vector for all die population elements, 
unlike (3.7) which depends only on the population total X; 
in practice, only X may be available. Moreover, ĝ ,̂ ^ 
depends on all the Â(Â  - l)/2 joint inclusion probabiUties 
71̂ , and hence computation of ^ . j . ^ may become 
cumbersome when the sampling design is based on unequal 
probability sampling without replacement. 

Tuming to (iii), Kott proposes a generalization of the 
calibration weights wp)=dp)F{x,^X) in section 3.4 by 
replacing x^^ with "instramental" variables g^ having the 
same dimension as JĈ .̂ The corresponding z-variable in the 
variance estimator v(z) is similar to our (3.21) with JĈ AT̂  

and jr^y^ in B^ changed to qkXk ^ d ^^y^ respectively 
and F{xlX) changed to F{qlX). This is an useful 
extension. Kott notes that B, remains a model unbiased 
estimation of By^ if f{qkX) in B^ is replaced by any 
constant and the resulting Zk is unaffected asymptotically 
under repeated sampling. However, Kott also notes that the 
term f{qkX) can matter even asymptotically if the 
calibration is used to adjust for unit nonresponse by tteating 
sample response as a second pbase of sampUng. Using the 
resuU for two-phase sampling given in the Appendix, Kott 
then obtains a corresponding variance estimator, v(yp^). 
This extension for nonresponse setting is also useful. It is 
indeed surprising that the second term in V{YQ^) provides 
the model based correction he recommended for the ratio 
estimator F^ under simple random sampUng in die absence 
of nonresponse. 

Finally, Kott raises a question on the customary 
"plug-in" or "substitution" method used for variance 
estimation, as done in (2.4), where we plug in Zk for z .̂ 
He asks if it is legitimate to plug in Zk for z,^, where 
Zk-z^ = O {lly/n), when they are n{n- 1)12 terms in the 
variance estimator v(z'j), as in the case of Sen-Yates-
Gmndy variance estimator. We are not sure if we have 
understood his point correctly, but as long as 0 {ll\fn) is 
uniform in k, say a/\/«, then v(z) = (?)+ lower order 
terms. 

Shah 

Shah's prescription (steps 1-4) clearly summarizes our 
method. Shah also notes that his steps 1 and 2, leading to 
our z-variable, produces die "correct" Unearization in many 
other important applications not studied in our paper. 
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including Wilcoxon two sample rank sum test and 
estimation of regression coefficients and hazard rate in the 
Cox proportional hazard model. Shah's unpublished paper 
(seen by courtesy of the author) speUs out the z-variable for 
those applications, but using design weights. Extension to 
calibration weights should follow along the lines of section 
3. 

Shah makes an important point that step 3 for the 
computation of the variance estimate is independent of the 
linearization in step 1 and 2 and that it is "aptiy demon­
sttated by the discussion on two-phase sampling in section 
4". He also notes that for two-phase sampUng, Unearization 
(step 1) can be performed using only the first-phase H-T 
weights ii]i^, by tteating the second phase weights, it2kn. 
if kes and 0 if A: is not in the second-phase sample s as 
data, and that the resulting step 2 produces the same 
approximation as given in our paper. We have verified this 
equivalence result for the two-phase ratio estimator in 
Example 4.1, and it is likely to hold generally. SUah's 
proposal might simplify the implementation of step 1 to 
some extent. 

Skinner 

Skinner gives a clear appraisal of our linearization 
method and raises a number of important points: (i) termi­
nology, (ii) possible extensions to non-smootU statistics 
such as quantiles, (iii) modifications of the method to 
handle unit nonresponse, (iv) possible use of numerical 
differentiation to calculate the z^ -̂variables. 

With regard to point (i), Skinner notes that it would be 
useful to give the ẑ  variable a name since different names 
have been used in the literature. He suggests that the term 
linearized variable, as used by Deville (1999), is a simple 
and natural one since it is consistent with the usage of 
linearized statistic to denote the approximating linear 
statistic and Unearization for the method. We are in 
agreement with Skinner's suggestion. 

Tuming to point (ii), a difficulty in extending our 
proposal to nonsmooth statistics Q=f{d{s)), such as 
quantiles, is that /(•) is not a differentiable function. A way 
to get around this difficulty is to approximate 0-0 by a 
differentiable function and then apply our method to the 
approximation. For example, in the case of the /?"" quantile 0, 
Francisco and Fuller (1991) and Shao (1991) established 
the foUowing asymptotic approximation vaUd for sttatified 
multistage designs: 

0 - 0 = - —!- {F (0) -p], 
h{Q) ^ " "̂ J 

where F^(0) =Ew^(5)/(y^^0)/Ew^(5) is the calibration 
estimator of tUe distribution function F{-) at 0, F(0) = 
N'^'El{yi^<.Q) = p, and h{Q) is the value of the density 

function h{-) at 0. The definition of h{-) requires refer­
ence to a sequence of populations (Shao and Rao 1993) or 
to a superpopulation (Francisco and Fuller 1991). We used 
h{-) to denote the density rather than the customjtfy /(•) 
because we used f{d{s)) to denote the estimator 0. Now, 
suppose wp)=dp)gi^{d{s)), where g,^{d{s)) is die 
GREG weight given by (3.1). We can then use (3.2) and 
(3.3) to get the Unearized variable ẑ  from the above 
approximation to 0-0, by replacing h{Q) with a suitable 
estimator /i(0); for example the kemel-based estimator of 
h{-) used by Berger and Skinner (2003). Similarly, one can 
apply the method to general calibration weights, wp), 
using the results of section 4. Variance estimators of a low 
income proportion, say 0 =F(T/2) where T is the median 
income, can also be obtained using the asymptotic approxi­
mation for 0 - 0 developed by Shao and Rao (1993). Berger 
and Skinner (2003) studied variance estimation for a low 
income proportion when generalized raking ratio weights, 
wp), are used. We can apply the results in section 3.2 to 
this case, and the resulting linearized variable Zk will 
account for the calibration. Also, it will be different from 
the DeviUe z-variable (10) in Berger and Skinner (2003). 

The modification suggested in point (iii) to handle unit 
noruesponse is very important, and it broadens the 
appUcabiUty of our method. As noted by Skinner, Kott and 
Fuller (2002), it is important to retain the ^-weights in 
variance estimation whenever the limiting values of the 
estimators X differ from the corresponding conttol totals X, 
as in the case of non-response or non-coverage. Our method 
automatically accounts for the g-weights and may lead to 
consistent variance estimators in such cases. Empirical 
results of Skinner with d'Arrigo in diis context are very 
interesting. The case of variance estimators for altemative 
calibration estimators, studied in section 3.4, relative to 
customary variance estimators that replace dp)f{Xi^ X) in 
the expression for B^ by dp) or wp) need further study, 
as noted by Skinner. 

It may be noted that unit nonresponse is typically tteated 
as second phase sampling {e.g., Poisson sampling with 
unknown response probabiUties) and Skinner notes that our 
method may lead to consistent variance estimators even 
when the estimators are based only on the siimpling 
inclusion probabilities. However, conttol totals X are 
needed to get valid estimators of the total Y, under some 
assumptions on the response probabilities (Fuller 2002, 
equation (8.4)). We have extended our method to handle 
weight adjustment for unit nonresponse and imputation for 
item nonresponse when conttol totals are not available, 
assuming uniform response within classes (Demnati and 
Rao 2002). The resulting variance estimators are naturally 
more complex compared to Skinner's modification for unit 
nomesponse in the presence of conttol totals. 
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Tuming to point (iv) on the possible use of numerical 
differentiation to calculate the linearized variables z^, 
Woodroff and Causey (1976) used such a method to 
calculate the derivatives dg{a)lda.\^^f given in (1.4) when 
Q=g{Y). Skinner proposes perturbing each weight di^{s) in 
tum and then recalculating 0; for example, by replacing it 
by a fixed amount 5 smaller than the minimum value of 
dp), kes. He conjectures that the proposed approach 
should lead to variance estimators very similar to those 
obtained through analytical differentiation. It would be 
useful to study the statistical properties of the proposed 
approach to analytic differentiation of f{d{s)) with respect 
to weights dp). 

We hope the discussions by Kott, Shah and Skinner wiU 
stimulate furtUer work on the approach to variance estima­
tion presented in our paper. 

REFERENCES 

BERGER, Y.G., and SKINNER, C.J. (2003). Variance estimation for 
a low income proportion. Applied Statistics. 52, 457-468. 

DEMNATI, A., and RAO, J.N.K. (2002). Linearization variance 
estimators for survey data with missing responses. Proceeding of 
the Section Survey Research Methods, American Statistical 
Association. 736-740. 

FRANCISCO, C.A., and FULLER, W.A. (1991). Quantile estimation 
wih a complex survey design. Annals of Statistics. 19,454-469. 

SHAO, J. (1991). L-statistics in complex problems. Technical Report, 
University of Ottawa, Ottawa. 

SHAO, J., and RAO, J.N.K. (1993). Standard errors for low income 
proportions estimated from stratified multistage samples. 
Sankhya, Series B. 55, 393-414. 

WOODRUFF, R.S., and CAUSEY, B.D. (1976). Computerized 
method for approximating the variance of a complicated estimate. 
Joumal of the American Statistical Association. 71, 315-321. 



Survey Methodology, June 2004 
Vol. 30, No. 1, pp. 35-44 
Statistics Canada 

35 

Weighting Sample Data Subject to Independent Controls 
CARY T. ISAKI, JULIE H, TSAY and WAYNE A. FULLER' 

ABSTRACT 

In the U.S. Census of Population and Housing, a sample of about one-in-six of the households receives a longer version 
of the census questionnaire called the long form. All others receive a version called the short form. Raking, using 
selected conttol totals from the short form, has been used to create two sets of weights for long form estimation; one for 
individuals and one for households. We describe a weight construction method based on quadratic programming that 
produces household weights such that the weighted sum for individual characteristics and for household characteristics 
agree closely with selected short form totals. The method is broadly applicable to situations where weights are to be 
constructed to meet both size bounds and sum-to-control restrictions. Application to the situation where the controls are 
estimates with an estimated covariance matrix is described. 

KEY WORDS: Raking; Regression; Quadratic programming; Coverage adjustment; Integer weights; Weighting area. 

1. INTRODUCTION 

Given the availabiUty of knovra characteristic totals, it is 
common among survey practitioners to use such in­
formation Ui estimators of the post sttatified, ratio and 
regression type. The known characteristic totals are some­
times caUed independent conttols because they are derived 
outside of the survey situation. Use of independent conttols 
tends to reduce the variance of most estimates. Independent 
conttols also often compensate for coverage problems in 
surveys. See DeviUe and Samdal (1992) and Fuller (2002). 

The U.S. decennial census utiUzes a sample for the 
measurement of selected characteristics. The questionnahe 
for these characteristics is caUed the long form and the 
sample for the long form consists of a random sample of 
addresses. The long form questionnaire requests information 
diat is asked of aU individuals (caUed short form Uifor­
mation) plus information on a set of additional charac­
teristics. In previous Censuses, raking to conttols based on 
short form information was used to constmct weights for the 
long form sample. Two sets of sample weights were created, 
one for person characteristics and one for housUig unit 
characteristics. 

The set of categories used for person weighting was a 
classification of individuals by race, Hispanic origin, age 
and sex, family type, and household size. For households, 
the categories were the cross classification of race by 
Hispanic-origin-of-householder by tenure by household type 
and size. In the 1990 Census long form weighting process, 
persons and housUig units were eacU classified by four sets 
of classifications for raking in four dimensions. When 
raking was completed, the long form sample weights were 
converted to Uitegers. Integer weights are desirable because. 

unUke real weights, integer weights provide arithmeticaUy 
consistent totals of integral characteristics. For details, see 
SchUidler, Griffin and Swan (1992). 

Long form weighting using short form census infor­
mation is a part of the Canadian Census of population and 
housUig. UrUUce the procedure used by the U.S. Census 
Bureau (USCB), the procedure used at Statistics Canada 
constracts a sUigle set of household weights using regres­
sion estimation. See Bankier, Houle and Luc (1997). Should 
the irUtial weights generated by die regression procedure 
exceed prescribed bounds, coUapsing of ceUs defining ex­
planatory variables is carried out. Linear dependencies and 
near linear dependencies among the explanatory variables 
are also removed by eliminating variables. See Bankier, 
RatiiweU and Majkowski (1992). 

Lemaltte and Dufour (1987) used a generaUzed least 
squares estimator (GLS) to constmct weights meeting 
person and household consttaints. Alexander (1987) con­
siders a procedure for constracting household weights in the 
census setting. One of his distance functions is simUar to the 
one used Ui this paper. 

The use of quadratic programming to compute regression 
weights in the survey context was suggested by HusaUi 
(1969). An appUcation of quadratic programming (QP) in a 
Census envUonment is that in Isaki, Dceda, Tsay and FuUer 
(2000) where household weights for Census households 
were obtained usUig person totals as conttols. Motivation for 
the use of various distance functions can be found in diese 
two papers and in DevUle and Samdal (1992) who discuss a 
general class of estimators called calibration estimators. 
FuUer, Laughin and Baker (1994) consider a regression 
weight generation procedure diat is modified so that all 
weigUts are positive and very large weights are made 
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smaUer than the corresponding least squares weight. 
Jayasuriya and Valhant (1996) also consider a restricted 
regression. FuUer (2002) is a review of regression esti­
mation. 

Our proposed long form weighting method is a type of 
regression estimation and, Uke the Statistics Canada 
approach, provides a single set of household weights that 
maintain given independent conttols. We generate Uouse-
hold weights usUig quadratic programming with the re­
strictions that the weights fall within a specified range and 
that die weights maUitaUi conttol totals. In die following, we 
refer to the suggested method as die quadratic programming 
mediod or QP. 

2. THE QUADRATIC PROGRAMMING 
METHOD 

The purpose of quadratic programming is to produce 
sample weights that i) are close to initial weights, U) are 
within reasonable bounds, Ui) maUitain specified conttol 
totals and iv) produce a design consistent estimator. Apart 
from the bounds on the weight, the weights irom quadratic 
programming are those of a simple regression estimator. We 
first describe the mathematical form of the QP and then 
discuss the implementation. Let 

i) {Wi; I = 1, 2,..., n } denote the set of final housUig uiut 
weigUts, wUere / denotes die /* long form sample 
household and n is die size of the long form sample, 

ii) {^/^'; i = l,2,...,n} denote die set of initial housing 
unit weights, 

YW.Zj^ = ZJ, for ;• = 1,2,. ., m, h ' 

iU)Xji,j-l,2,...,m , i = l,2,...,n; denote die obser­
vation on the j person conttol variable for the i* 
sample household, 

iv) Zji, j = l,2,...,m^, i-l,2,...,n; denote the obser­
vation on the J* household conttol variable for the i 
sample household, 

v) Xj, j= 1,2, ...,mp, denote the_/' person conttol, 

vi) Zj, j = 1,2,..., mi,, denote they* household conttol. 

The quadratic programming method seeks Wi, i=l, 
2,..., n, that minimize a quadratic objective function subject 
to Unear constraints, hi our appUcation we minimize 

g{w) ̂  Y (wi-wr^ YWr^]' (1) 
1=1 

subject to 

Y W,Xj, - XJ, for ;• = 1,2,..., m^, (2) 

I < W, < K 

(3) 

(4) 

1=1 

where the summations are over housing units Ui the long 
form sample. Observe that die long form household weights 
are boimded below by one. This is on the basis that an 
element in the sample should at least "represent" itself. In 
our program, K was set equal to 48 but the bound was never 
attaUied. The lower bound of one was attaUied. The 
FORTRAN subroutine from MSL was used to solve the 
QP. Odier programs, such as LCP of SAS®/I!VIL, are 
available. 

The USCB's current long form weighting procedure 
rakes the iiutially weighted long form sample counts to the 
census counts for the conttol categories. The weighting is 
done by subdivisions of die country called weigUting areas 
and is done separately for person and household char­
acteristics. The nominal sample rates for the long form are 
one-in-two, one-in-six, and one-in-eight. The nominal 
sampling weights are the inverses of die nomUial sampUng 
rates and are denoted by W/". A second set of weights, 
denoted by W/^', are the realized sampling rates calculated 
for ceUs, where the ceUs are requUred to contaUi at least five 
sample households. For details on the USCB's procedures 
see SchUidler etal. (1992). 

SUice we intend to compare the raking and QP methods, 
we use most of the USCB's person and household cat­
egories as the Xj and Zj conttol totals Ui the quadratic 
program, but some changes were instituted. For example, 
while we maintained aU of the age-race-sex person cat­
egories, we did not use a category based on the nominal 
sampling rates. 

We used the USCB's specifications for determining 
whether a cell category would be retaUied as a separate 
conttol or would be combined with another ceU and we used 
the USCB's procedure for determining the ceUs to be 
combUied. This capitaUzed on the USCB's experience and 
minimized differences between the USCB's set of long 
form conttol totals and the set used by die QP method. The 
procedure used to define W,*̂ ' is given Ui the appendix. 

Two possibUities exist for the control totals to be used in 
the constraction of weights for the long form of the U.S. 
2000 Census. One possibUity is to use conttols from die 
20(X) Census short form. That is, die Uidependent conttols to 
be maUitaUied in long form weighting are diose that are 
tabulated from die Census short form. When the Census is 
used as the conttol, die person conttol {Xj) categories 
include a cross classification of age and sex-race/ethnicity. 
Other characteristics, such as tenure, were used as additional 
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conttols. The majority of the household conttol categories 
{Zj) are defined by a cross classification of household type 
(e.g., family with children under 18) and household size 
{e.g., number of persons in the family). The Zj also include 
race/ethnicity of the householder cross-classified by tenure. 

The other possible set of conttols for the 2000 Census is 
the set of estimates from the post enumeration survey, caUed 
the Accuracy and Coverage Evaluation (A.C.E.) survey. 
The A.C.E. survey is designed to estimate person char­
acteristics only. The Xj for the A.C.E. Uiclude age-sex-
race/etUnicity-tenure conttols. 

The last step in long form weighting is to round the Wi to 
integers. Integer weights prevent discrepancies between sets 
of estimates caused by rounding of real valued estimates. 
Sample housing units were grouped by race/ethnicity of the 
householder and by tenure. Then within each group, the 
sample was sorted by family type by household size. The 
weights were then rounded to integers using the cumulate-
and-round procedure. Table 1 Ulusttates the method. The 
partial sums of the weights are formed (cumulated) as 
shown in the column CW. The partial sums are then 
rounded as shown in the column RCW. The Uiteger weight 
for element i is the difference between successive entries 
i - 1 and / in the RCW column. 

Sample 
Unit 

1 

2 

3 

4 

5 

6 

Table 1 
Illustration of Cumulate and Round 

Initial 
Weight 

3.333 

2.500 

1.428 

1.250 

l . I l l 

5.021 

CW 

3.333 

5.833 

7.261 

8.511 

9.622 

14.643 

RCW 

3 

6 

7 

9 

10 

15 

Integer 
Weight 

3 

3 

1 

2 

1 

5 

3. VARIANCE ESTIMATION 

Variances of long form estimates were estimated using 
the jackknife method. In the numerical results using census 
conttols, sixteen repUcates were formed. Sixteen was chosen 
for convenience and a larger number could have been used. 
The long form sample was ordered by the census iden­
tification number within blocks and sixteen repUcates were 
formed as the sixteen one-in-skteen systematic samples. 
Sixty seven repUcates were formed for the estimates usUig 
ACE conttols. 

.th 

3.1 Replicates for Census Controls 

The jackkiufe repUcate is created by deleting die / 
group of elements, computing the quadratic programming 
weights and roundUig die weights to Uitegers. B£x;ause of 
the rounding, the usual jackknife variance estimation 
procedure required modification. To isolate the effect of 
roimding, we consider the repUcate estimate constracted 
with real-valued weights. Let 

0^ = the sample estimator with weights rounded to 
integers, 

0^ = the sample estimator with real-valued weights. 

R(i) = jackknife replicate estimate with i 
deleted and real-valued weights. 

group 

• th 0^ = jackknife replicate estimate with i group 

and let 

deleted weights rounded to integers. 

9w - '• ' S ^H.(0' (5) 

where r is the total number of repUcates. Then the jackknife 
deviation for the estimator with integer weights can be 
decomposed as 

8 w(i) 

+ k a ) - 9 . v - ( 0 « ( o - 0 « ) l (6) 

We assume that die error in the roimding operation is 
Uidependent of the group chosen for deletion, a n;asonable 
assumption, given that the deletion produces an entUe new 
set of weights to be rounded. Then 

E{{Q„,,-Q„)'}= £{(§«,) -0/e) '} 

+ £{[(0.„-,-^(o)-(9.-e«)]'}. (7) 
Assume that the average of the Ô ĵ ,.) is equal to 0^,. 

Then die last term of (7) is a replicate deviation for the 
difference between die real and rounded estimates. Then 

'•-'{r-MKii)-Kii)}=v{K-'QR}^^^ 

where V{ 0„(,) - 0^(,)} is die variance due to roimdUig for a 
sample of r - 1 groups and V{0^ -0^} is the variance 
due to rounding for a sample of r groups. In obtaining (8) 
we assumed the variance due to rounding for a sample of r 
groups is the variance for r - 1 groups multipUed by 
r"' (r -1 ) . Thus 
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E\{r-l)-'Y ( 0 . ( O - 9 J ' | = 

E{{r-l)-'rV,{Q,}} 

+ V{Q„-Qp}, (9) 

Q ' V ^ Q = A , (13) 

where 

VR{K}-r-\r-i)Y (e«(,)-e«)' 
i=l 

is the jackknife variance estimator for the estimator with real 
weights. Then an estimator of the variance due to rounding 
is 

V{K-^R}-

r - ' ( r - l ) 

= r 

('•-ir'Z(e.(„-9J 
i=l 

-r{r-l)-'V,{Q,} 

^ - - 2 

(=1 

-r{r-l)-'Vp{Qp} (10) 

Based on these results, the estimated variance for the 
rounded estimator is 

y{0 .}= {r-l)-'{r-2)V,{e,} 

+ r-± (e.a)-ej^ (11) 

3.2 Replicates for A.C.E. Controls 

The replicates for estimates constracted with A.C.E. 
conttols were modified so that the estimated variances 
contained a component for the error Ui the A.C.E. estimates. 
The data Ui a weighting area were assigned to 67 replicates 
where 67 is the number of conttols. The procedure requires 
the number of repUcates to equal or exceed the number of 
conttols if the covariance matrix of the estUnated conttol 
totals is to be reproduced. More repUcates dian conttols can 
be used. See Fuller (1998). 

The estimator of the total of a characteristic for the long 
form is a type of regression estimator using the A.C.E. 
numbers as conttols. We write the estimator for the total 
based on real valued weights as 

e« = x J , (12) 
where X^ is the vector of A.C.E. estimates and p is the 
regression coefficient computed with the long form data. 

Let V ^ be the r X r covariance matiix of the vector of 
A.C.E. conttols, where V ^ is estimated as part of the 
A.C.E. process, and r = 67. Let X^,X2,...,X^ be the roots of 
V ^ and let 

where A = diag(X,, ^ . j , . . . , ^,.), ^, >^.j >...> A,̂ , and Q 
is die matrix composed of the characteristic vectors of V ^ . 
Recall tiiat 

V M = QAQ' 
and 

v ^ -Y^'j^j<=--Y ^'1^1 (14) 

where q.; is the ; * column of Q and z,j = X^'^ q . j . 
UsUig result (14), conttols for the r repUcates were 

constracted as 

^A{i) = X^-t-cz'. , , / = l ,2, . . . , r , (15) 

where X^ is the row vector of the original conttols and c is 
a constant. The constant c is determined so that the ex­
pectation of the sum of the jackknife squared deviations for 
the elements of die vector X are the diagonal elements of 
V ^ . In our appUcation, tUe constant c is {r-1)""^ r"^ and 

{r-l)r-'Y c'z.jz'.j 
j=i 

= Z ^ v < - = VM- (16) 
7=1 

TUus, if die characteristic bemg "estimated" is one of the 
conttols used in the QP, the jackknife procedure retums the 
A.C.E. estimated variance for that characteristic. The z,j are 
assigned at random to the r repUcates. 

UsUig the regression representation, we write die 
estimator for the i^ repUcate as 

6R(0 = X (̂,.) P(,.) 

= X^ P(,.)+(X^(,.)-X^)P(,) 

=:e„o+^z'.;P(0 ' (17) 

where Ĝ ,̂., is die real-valued estimator computed with the 
J* group deleted using X^^,, as the conttol vector, p̂ ,.) is 
the regression coefficient computed with the «* group 
deleted, and 0 (̂,.) is the real-valued estimator computed 
with the j * group deleted using X^ as the conttol vector. 
Then 

0 R(i) -K =0«(o-0«+^<P ( ' • ) • 

Because q.j are assigned to repUcates at random, die 
expectation of die repUcate variance estimator for the real-
valued estimator based on A.C.E. conttols is 
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E{VP(Q,)}-E\ r-^{r-l)Y (O^,,-0«] 
/•=i 

= £ | r - ' ( r - l ) ; ^ (e,„,-0«)^ 

-f£{p;,V^P,,}. (18) 
^ Now, assumUig £ { y ^ } = V ^ , £{p(,.)} = P, and diat 
V ^ is Uidependent of Pj,,, 

£{P'(,)V^P(,)}=P'V^P 

+ ^ ' - ^ { P ( O } V A . } > 

where tt {V^} is the ttace of the matiix. It follows diat 

E\r-\r-l) Y (e«(o-6«)^ 

= £|r-'(r-l) Y (K,)-K)-

+ P'V^P + 0(n-^), (19) 

where we assume tt(V^} =0{n~ ) and tt[V{p(,.j}] -
0{n~^), where n is the sample size. The first term on the 
right of die equality Ui (19) is die expectation of die variance 
estimator for the variance due to the sampling of long forms 
from the census. The second term is the contribution of the 
variance of the error Ui die A.C.E. estimates to the total 
variance. Thus, the variance estimator based on 0̂ ,̂) 
estimates bodi components of variation. Observe that the 
estimated covariance matrix for the conttols is V ^ , as it 
should be. 

4. NUMERICAL RESULTS 

We used die USCB's 1990 Census datti file to Ulusttate 
die appUcation of die QP method to actual data. The file 
provides data for households and for persons Ui households, 
together with long form weights as developed for the 1990 
U.S. Census. Hence, the file provides data appropriate for 
comparing the performance of the USCB's 1990 long form 
weighting method with the QP method. 

The USCB long form sample weighting is done by 
weighting area, where the weighting areas usually contain 
two to three thousand housing units. There were about 
56,(XI0 weighting areas in the U.S. Ui 1990. For our 
numerical work we chose weighting area (WA) 1788 that 
contains 8,034 occupied housing units and 25,145 persons. 

In Table 2 we provide estimates of some person and 
housing unit characteristics for weighting area 1788. The 

characteristics in the table, except die number of rented 
uiuts, were suggested by subject matter personnel at die 
USCB. In Table 2, Est.(H) is the long form sample weighted 
estimate computed with housing unit weights, Est.(P) is the 
long form sample weighted estUnate computed widi person 
weights. The quadratic programming estimator constracted 
with Census conttols is called QP in the table, while QPG is 
used to denote the generaUzation of the quadiatic pro­
gramming estimator with objective function (20). The QPG 
estUnator is discussed subsequentiy. The USCB housing 
unit estimates in Table 2 that are based on person weights 
were created by using the householder weight as die 
housUig unit weight. Every occupied unit contains a single 
householder. The householder procedure is called the 
principal person method hy Alexander (1987). AU estimates 
in the table are given as a percent of the census count. 

Estimates constracted by die two USCB methods can 
differ by several percentage points with the differences 
between Est.(P) and Est.(H) for rented units, persons aged 0 
to 4 years, persons aged 65 and over, Hispanic, Asian, and 
persons Ui rented units being noticeable. The Est.(H) 
estimate for persons Ui rented units is closer to 100 dian the 
Est.(P) estimate. 

TUe ceU coUapsUig rales produced 45 person and 22 
housUig unit conttols for WA 1788. An example of a person 
conttol is the total number of Non-Hispanic Black males 
aged 65 and over, while an example of a housing unit 
conttol is the total number of Non-Hispanic White owned 
housing units. Total Black persons is an impUcit conttol in 
WA 1788. Conttols for total persons 18-44, total persons 
45-64, total males, total renters and total number of rented 
housUig units were added to the QP. Apart ft-om die conttols 
mentioned above, none of the remairUng characteristics in 
Table 2 is also used as a conttol in the QP procedure. 

The QP estimates and standard errors of the QP estimates 
are given, as a percent of the census counts, in die fourth 
and fifdi columns of Table 2. The agreement between count 
and QP estimates for household characteristics are 
comparable to die USCB household based estimates and 
superior to USCB person based estimates. For person 
counts, the QP estimates are generaUy closer to die census 
counts dian either of the USCB raking estimates. 

The largest difference between a QP estimate and die 
census count relative to the standard error is for the estimate 
of the number of households with own chUdren present, 
where the difference is about 1.6 standard errors. The 
majority of the QP estimates differ from the census count by 
less than one standard error. A number of the USCB person 
estimates deviate from the census count by more than one 
QP standard error. 
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Table 2 
Estimated Occupied Housing Unit and Person ChMacteristics for WA 1788 

Census 
Count 

Est.(H) 
Count 

(%) 
Est.(P) 
Count 

(%) 
Count (%) 

se(QP) 
Count 

(%) QPG tt 

Count 
(%) 

se(QPG) 
Count 

(%) 

Housing unit characteristics 

With Own Children 

Not Widi Own Children 

With 1 to 4 Persons 

With 5* Persons 

Rented Unit 

Owned Unit 

Person characteristics 

Age 0 ^ years 

Age 5-17 years 

Age 18-44 years 

Age 45-64 years 

Age 65* years 

Males 

Females 

Hispanic 

Not Hispanic 

Black 

White 

Asian 

Remainder 

In Rented Unit 

In Owned Unit 

4,349 

3,685 

6,785 

1,249 

2,559 

5,475 

2,493 

6,339 

12,711 

3,028 

574 

12,473 

12,672 

2,385 

22,760 

1,285 

22,372 

257 

1,231 

7,978 

17,167 

100.18 

99.78 

100.00 

100.00 

100.00 

100.00 

101.92 

103.91 

99.50 

101.65 

81.18 

99.95 

101.43 

95.38 

101.25 

101.08 

100.69 

92.60 

101.94 

102.04 

100.06 

100.45 

99.67 

100.57 

97.51 

95.97 

102.02 

97.95 

101.07 

99.69 

101.95 

93.73 

99.64 

100.36 

103.40 

99.64 

101.79 

99.91 

80.05 

103.89 

95.41 

102.13 

100.21 

99.76 

100.04 

99.76 

100.00 

100.00 

98.84 

100.63 

100.01 

99.90 

100.17 

100.06 

99.95 

99.96 

100.03 

100.86 

100.03 

96.83 

105.84 

100.01 

100.00 

0.13 

0.15 

0.05 

0.30 

0.19 

0.09 

1.68 

0.71 

0.05 

0.09 

0.85 

0.08 

0.10 

0.38 

0.07 

1.22 

0.07 

2.32 

9.54 

0.24 

0.09 

100.18 

99.78 

100.07 

99.60 

99.92 

100.04 

99.96 

99.98 

100.00 

99.97 

100.00 

99.98 

100.01 

99.87 

100.00 

99.77 

100.00 

99.76 

100.78 

99.92 

100.02 

0.14 

0.16 

0.05 

0.30 

0.16 

0.08 

0.29 

0.18 

0.06 

0.09 

027 

0.09 

0.09 

0.38 

0.10 

0.54 

0.10 

0.50 

1.75 

0.19 

0.13 

USCB weights for households 
USCB weights for persons 

^ QP weights with 82 constraints 
^̂  Generalized QP with 13 constraints and objective function (20) 

Because the number of rented units, persons aged 18-44, 
persons aged 45-64, males, and persons Ui rented units were 
used as conttols in the QP procedure, differences between 
QP estimates and census totals for those categories are due 
to rounding. The standard errors demonsttate that die 
rounding can lead to sizeable deviations from the conttols. 

The 45 person and 22 housing unit conttol totals obtained 
by the coUapsUig rales are such diat a margin estimate, such 
as total males, may not be consttaUied to agree with the 
coimt. In addition, for different weighting areas, USCB's 
collapsing procedure gives different person and housUig unit 
constraints. Thus we considered adding some margin totals 
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to the set of conttol totals. To reduce the impact of the added 
conttols on the weights, we replaced the original consttaints 
with additional terms in the objective function. The terms 
are deviations between the final estimates and die conttol 
totals. The objective function becomes 

67 f 
G{w)^g{w)-^Y "; Y WiXj,-Xj 

J=i V >• 

(20) 

where g(W) is defined in expression (1), the 
{Xji,j = 1,2,...,61} is the set of auxiUary variables 
defining die 45 person and 22 housUig unit conttols, and a^ 
are constants to be specified. The X,, for category j of 
household i for a person characteristic is the number of 
individuals Ui category j in the housing unit. The X,, for a 
housing unit characteristic is one if the housing unit has the 
characteristic and zero otherwise. In our appUcation, the 
ftmction is minimized subject to two household conttols and 
eleven person conttols. The housing unit conttols are rented 
housUig units and owned UousUig units. The person conttols 
are persons 0 to 4 years, persons 5 to 17 years, persons 18 to 
44 years, persons 45-64 years, persons 65 years and over, 
males, black, white, Asian, Hispanic, and renters. The Uj 
are 10[W"'̂ >]-' [oj]" ' , where W"<̂> = 8.95 is die mean of 
die W/^', o]=Pj {l-Pj), and Pj is die proportion of 
the population Ui cell 7. The â  would minimize die mean 
square error of an estimated total if there was a single 
conttol variable and the squared correlation between the 
conttol variable and the dependent variable was about 0.9. 
Thus, the function exerts considerable pressure for the final 
estimate to be close to the conttol total. 

The QP solution to (20) gives a type of regression 
estimator. See Fuller (2002) and Fuller and Isaki (2001). 
Rao and SUigh (1997) and Bardsley and Chambers (1984) 
consider related estimators. 

UsUig G{W) of (20) and the 13 Unear constraUits, the 
results in the final two columns of Table 2, under the 
heading "QPG", were obtained. As expected, the estimates 
are close to Census totals because the Census marginals 
were used as consttaUits. The relative percent differences 
between the QP estimate and the census count for the 67 
characteristics in G{W) of (20) ranged from -3.50% to 
3.75% with about 50 of the differences bemg less tiian one 
percent. 

The sample weights obtaUied by the two programming 
approaches are compared to those of the USCB's household 
raking method in Table 3. The number and type of conttols 
used under the USCB raking was not determined exactiy 
because the number depends on the execution of the USCB 
coUapsing procedure and on some preliminary files that are 
not readily available. However, we beUeve the number to be 
about 67 because the coUapsing procedure used to form the 
67 ceUs is basicaUy diat used by die USCB. The QP 

procedure used 82 conttols and die QPG procedure used 90 
conttols. The range of weights for die two QP methods are 
similar with a smaller range for raking. There are modest 
differences among die tiiree sums of squares of die weights. 
The g{W) values are also sUnilar, with the value for (20) 
being the largest. The g(W) value is the quantity being 
minimized by the weights of die first line of the table. The 
sum of squares of die weights for die QP of (20) could be 
reduced by reducing the a^ in the objective function. 

We also used data from the 1990 Census to simulate die 
situation in which the conttols come fi"om adjusted census 
counts. For 1990, person estimates from the 1990 Post 
Enumeration Survey are available, but tUere are no housing 
imit estimates based on that survey. We caU these estimates 
A.C.E. estimates. See Hogan (1993) and Isaki, Tsay and 
FuUer (2000). Estimates for WA 1788 were created by die 
QP mediod, usUig the A.C.E. estimates as conttols. We used 
G{W) of (20) as die objective function with 63 age-race-sex-
tenure person characteristics in the second term of the 
objective function and 11 person constraUits. The person 
constraints are persons 0 to 4 years, 5 to 17 years, 18 to 44 
years, 45 to 64 years, 65 and over, total males, total 
Hispaiuc, total Black, total White, total Asian and total 
persons in rented units. 

Table 3 
Properties of Long Form Housing Unit Sample Weights 

in WA 1788 

Method Weight Weight Y ^i" s{'m 

QPwithg(HOof(l) 
72 consttaints 

QP witii G (HO of (20) 
13 exact constraints 

Raking 

1 

1 

4 

26.5 

29.9 

22 

78,028 

78,672 

77,000 

326 

383 

369 

Table 4 contains the estimates for WA 1788 identified as 
QPG and given as a percent of the census counts, llie QPG 
estimates for these eleven person characteristics agree with 
the A.C.E estimates, except for roundUig error. The standard 
errors reflect the error in the A.C.E estimates and, hence, are 
much larger dian the standard deviation of rounding error. 
For example, the rounding error standard deviation for 
persons 18 - 44 is 0.06 Ui Table 2, while the standard error 
for die ACE estimate of persons 18 - 44 is 0.63. The QP 
estimates for household characteristics seem very reason­
able. The estimated total number of households is 1.8% 
larger than the census coimt whUe the A.C.E. estimated 
number of persons is 2.0% larger than the census count. The 
quadratic programming total number of persons differs 
sUghdy from the A.C.E. estimate because of romidUig of tUe 
weights. The difference is about 7% of the standard error. 
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Table 4 
The Census Count, A.C.E. Estimates and QP Estimates with A.C.E. Conttols - WA 1788 

Census Count A.C.E 

Count 

QPG 
Count 

(%) s-e.(QPG)^ 
Count 

Housing unit characteristics 

With Own Children 

Not With Own Children 

4,349 

3,685 

101.89 

101.66 

2.09 

3.07 

With 1 to 4 Persons 

With 5* Persons 

6,785 

1,249 

102.03 

100.40 

2.03 

5.92 

Rented Unit 

Owned Unit 

2,559 

5,475 

104.57 

100.47 

2.62 

1.50 

Total 8,034 101.78 1.22 

Person characteristics 

Age 0-4 years 

Age 5-17 years 

Age 18-44 years 

Age 45-64 years 

Age 65*years 

Males 

Females 

Hispanic 

Not Hispanic 

Black 

White 

Asian 

Remainder 

In Rented Unit 

In Owned Unit 

2,493 

6,339 

12,711 

3,028 

574 

12,473 

12,672 

2,385 

22,760 

1,285 

22,372 

257 

1,231 

7,978 

17,167 

103.17 

103.09 

101.67 

100.26 

99.48 

102.18 

101.74 

104.95 

101.64 

104.59 

101.69 

100.00 

104.47 

104.25 

100.89 

102.81 

103.08 

101.67 

100.33 

98.95 

102.01 

101.82 

104.91 

101.60 

104.82 

101.69 

101.95 

102.92 

104.21 

100.84 

1.00 

0.96 

0.63 

0.59 

0.70 

0.68 

0.62 

1.09 

0.60 

1.01 

0.61 

1.95 

1.14 

0.89 

0.68 

Total 25,145 101.96 101.91 0.57 

5. CONCLUSIONS 

Tbe QP method is shown to work weU on actual USCB 
long form data. The QP sUigle household weight method 
possesses several advantages over the USCB separate 
weights method. With one set of weights, there will be no 
confusion as to which weights to use for estimatUig a given 
characteristic. Also, estimates of relationships such as ratios 
of person characteristics to household characteristics are 

expected to be less variable when a single set of weights is 
used for bodi characteristics. 

Given that a sUigle set of weights is easier to compute 
and easier for analysts to use, one would only constract two 
sets of weights if the weights designed for one type of 
characteristic give estimates with smaller variance for diat 
type of characteristic. This did not seem to be the case in our 
example. The sUigle set of QP weights gave favorable 
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results for both household and person characteristics when 
compared with the USCB weights for die specific category. 

The QP estimation module is computationaUy feasible 
and can replace die raking estimation module in the USCB 
operational setting. The QP method can produce long form 
sample weights for households in an adjustment situation in 
which only person conttols are available. 
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APPENDIX 

Procedure used to define cells and initial 
weights Wl^> 

We used the USCB's procedure to determine the order Ui 
"which cells are combined (coUapsed). The ceU coUapsing 
rales specify that each ceU contain at least 5 sample 
households. The procedure below is our extension of the 
USCB rales for defining W/̂ .̂ 

Let two ceUs imder consideration be identified as CeU 1 
and Cell 2. 
i) Cell 1 is not to be coUapsed and n,""'N, < B, where Âi 

is the Census count of households in Cell 1 and ni is 
the long form sample count in Cell 1. The constant B 
is provided by the sponsor and in our work, 27 is 
used. For household i in Cell 1, let 

W/̂ ^ = max {1.2, W,}, 

where W,. = min{e, W/'\ B}, 

(A.l) 

e, = Y^i (I) N,, 

and Al is the set of indices in Cell 1. The number 1.2 
is an arbittary lower bound chosen greater than one 
and less than the minimum of W/'' which is two. 
Note that the W/̂ ^ provides reasonable estimated 
totals for CeU 1. If n,"'A ,̂ > B, collapse cell 1 with 
cell 2 as in ii) below. 

ii) Cells 1 and 2 are designated for collapse, (ni + nj)'^ 
{Ni-i-Ni) < B, ni -i- n2 > 5, and V A ^ , > n'^N^. 
Then for i in CeU 1, l^/^' is defined by (A.l). For i in 
CeU 2, 

im _ 
WI'" = max {1.2, W,.}, 

where 

W, = rrun{Q,Wi''>, B), 

Y"^: (1) {N,+N2-N,), 

and 

Â , Zw, (2) 

The W> ' in A, u Aj, the union of cells 1 and 2, 
maintains the total households in A, u Aj £ind also 
provide an estimated total for Cell 1 that is reasonably 
close to the tme total. 

iU) Cells 1 and 2 are designated for collapse, n\ -¥ n2> 5, 
and {n\ + «2)~ (Â i + Â a) > B. Then it is necessary to 
initiate further collapsing. The combined cell becomes 
the CeU 1 of case (U). Continue cell collapsing until 
(ni + /T2 +••)"' (Â i -^ Ni -^ ..) < B. Case (iU) was not 
observed in the study data set. 

One could repeat the weight constraction procedure in an 
iterative manner by using the W/̂ * as IV/'* Ui a second 
cycle. We tried a second cycle on the data described in the 
text. There was no discemable improvement in the estimates 
from usUig a second cycle. 
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Properties of the Weighting Cell Estimator Under a 
Nonparametric Response Mechanism 
D. NASCIMENTO DA SILVA and JEAN D. OPSOMER' 

ABSTRACT 

The weighting cell estimator corrects for unit nonresponse by dividing the sample into homogeneous groups (cells) and 
applying a ratio correction to the respondents within each cell. Previous studies of the statistical properties of weighting 
cell estimators have assumed that these cells correspond to known population cells with homogeneous characteristics. In 
this article, we study the properties of the weighting cell estimator under a response probability model that does not require 
correct specification of homogeneous population cells. Instead, we assume that the response probabilities are a smooth but 
otherwise unspecified function of a known auxiliary variable. Under this more general model, we study the robustness of 
the weighting cell estimator against model misspecification. We show that, even when the population cells are unknown, 
the estimator is consistent with respect to the sampling design and the response model. We describe the effect of the number 
of weighting cells on the asymptotic properties of the estimator. Simulation experiments explore the finite sample properties 
of the estimator. We conclude with some guidance on how to select the size and number of cells for practical 
implementation of weighting cell estimation when those cells cannot be specified a priori. 

KEY WORDS: Finite population asymptotics; Quasi-randomization inference; Weighting cell selection. 

1. INTRODUCTION 

Item and unit nonresponse occur in aUnost aU large-scale 
surveys, and proper estimation techiuques need to account 
for it. While item nonresponse is often dealt with through 
imputation, unit nonresponse is most often accounted for 
through weighting adjustments. Cell weigUting adjustments 
for nonresponse have been applied since at least the 1950s 
in survey estimation, e.g. U.S. Bureau of the Census (1963, 
page 53), and continue to be widely used in practice today, 
because they have intuitive appeal and are relatively easy to 
implement in practice. Reviews of common weighting 
procedures are given in Kalton (1983) and Kalton and 
Kasprzyk (1986). A number of authors have studied the 
properties of the weighting cell estimator under a variety of 
theoretical frameworks. Oh and Scheuren (1983) derive the 
mean and variance of the weighting cell estimator under 
simple random sampling, conditional on tUe sample size 
and the number of respondents in each ceU. See also Kalton 
and MaligaUg (1991). Samdal, Swensson and Wretman 
(1992, page 578) use the term "response homogeneity 
group" for cells in which the nonresponse is assumed to be 
constant, and derive the properties of the resulting 
weighting cell estimator for general designs. The recently 
inttoduced ^//y efficient fractional imputation (FEFI) of 
KUn and Fuller (1999) can also be expressed as a weighting 
cell estimator, and these authors derive its model properties 
under the assumption that the variables are Uidependent and 
identically distributed (iid) within each cell. 

While the specific assumptions vary, a common thread 
among all these results is that the weighting cells are 
correctly specified, in the sense that units within each cell 
are indeed fully "exchangeable" (the precise definition of 
this term depends on the framework selected: equal 
response probabilities for randomization-based inference, 
or iid observations for model-based inference). In the 
terminology of Littie and Rubin (2002, Chapter 1), this is 
the case of observations missing at random (MAR), where 
auxiUary information {i.e., cell membership in this case) can 
be used to correct the inference for the nonresponse. 

In this article, we depart from tUis framework. We will 
assume that the response mechanism depends on a known 
continuous auxiUary variable, but the exact functional form 
of this relationship is left almost completely unspecified 
(details on this nonparametric response mechanism are 
provided in the next section). Knowledge of such a variable 
could be used to constract more sophisticated nonresponse 
adjustments such as propensity weighting (Cassel, Samdal 
and Wretinan (1983), Littie (1986), and Da Silva and 
Opsomer (2003)) or post-sttatification, but we will instead 
linut our use of this auxiliary variable to the division of the 
population into weighting ceUs. Our primary goal with this 
approach is to study the robustness of die popular weighting 
ceU estimator to model misspecification, and in particular, 
the effect of the number of cells. Hence, in conttast to the 
approach of the authors discussed above, the weighting 
cells are used as a practical way to constract an survey 
estimator, but they will not be assumed as part of the 
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statistical framework. This is similar to the "adjustment by 
subclassification" idea proposed by Cochran (1968) for 
removing the bias due to a continuous covariate in 
observational studies. 

We will study the properties of die estimator under 
quasi-randomization, a term used by Oh and Scheuren 
(1983) to denote joint inference under the sampling design 
and die response mechanism. The asymptotic properties of 
the estimator will be establisUed by embedding the finite 
population and the corresponding sampling design and 
response mechanism in a sequence of such populations and 
random mechanisms, as wiU be explained in later sections. 
This asymptotic framework is very similar to diat advocated 
by Hansen, Madow and Tepping (1983) and used in Isaki 
and Fuller (1982), among others. 

The remainder of this paper is as follows. In section 2, 
we inttoduce the notation and framework for the sampling 
design and the nonresponse model, and discuss the 
weighting ceU estimator. In the foUowing section, we derive 
the asymptotic design properties of the estimator. In section 
4, we report on a simulation study to examine the practical 
behavior of the estimator, compare its practical behavior 
with that predicted by the asymptotic theory, and provide 
some guidance on the choice of the weighting cells. 

2. THE WEIGHTING CELL ESTIMATOR 

Before describing die weighting ceU estimator, we 
inttoduce our survey design framework and the response 
generating mechanism. We consider a population 
U = [1,2, ...,N}, where A îs finite and known. For every 
element / in U, let Y. = {Y^.,Y2j,...,Y .)be the associated 
vector of values of p characteristics of interest, 
Y^,Y2,..., y,. LUcewise,let X. = (X,,.,X^,.,...,X^,.)bedie 
vector of values of q auxiUary variables, Z^Zj , ...,X , 
corresponding to the i* unit, / 6 U. We assume that X. is 
known \fie U. If p = I, we denote Y. by Y. and, for 
q = I, X. is used to denote X.. Let s represent a sample 
drawn from 17 according to some sampUng design p(-). This 
sampling design p{-) is chosen by the survey sampler and 
may be based on information available in the X., ieU. 

The goal of the sample survey is to estimate unknown 
population quantities such as the population mean or total, 
or a function of these quantities. To simplify the presen­
tation, we will focus on the estimation of the population 
total of the Y., 

ty - Y Yi 
V 

W^en there is no nonresponse, this quantity will be 
estimated by a sample-based estimator of the form 

ty = Y^iyi = Y^iyiii (1) 

where the w., i e s, are the sampling weights and /. is an 
indicator for whether the /"" unit is in the sample or not. In 
this article, we will assume that the sampling weights are 
the inverse of the inclusion probabilities, or w^ = ;t, , with 
71. = Pr(i6i), so that the estimator (1) is the classical 
Horvitz-Thompson estimator (Horvitz and Thompson 
1952). Also, let / = (7̂ , / j , . . . , 7̂ )̂̂  represent the vector of 
inclusion indicators for the population. 

In die context of nonresponse, it is convenient to assume 
that each unit in the population is eitiier a respondent or a 
nonrespondent for the variable of interest Y. Consider the 
vector R = (/?,,/?2, ...,Ri,,f, where 7?,. indicates if die J* 
unit is a respondent or not. The distribution of R is called 
the response mechanism. In analogy to the definition of the 
sample s, we use r c [/ to denote the (realized) set of 
respondents in die population, i.e., those elements for which 
R. = l. Since the distribution of r and R is typically 
unknown and can in principle depend on the realized value 
of I as weU as on the Y, we need to assume a model for the 
response mechanism. When this assumed model is used to 
develop an estimator for a population quantity, the 
properties of this estimator become dependent on the 
response model. Hence, a misspecified model for R has the 
potential to cause significant and difficult to measure bias 
in both the estimator and its associated measures of 
precision. To avoid this problem, we wiU keep the response 
mechanism quite general in this article. Specifically, we 
will assume that the R. are independent BemouUi variables 
with 

Pr{/?,. = l\I,Y} =(p., 0<(p,.<l,Vief/, 

and that die cp,. can be written as <^. = (p {X.), with (p(-) a 
continuous and differentiable but otherwise unspecified 
function of the X.. Note that this includes the uniform 
response mechanism, where tp̂ . = tp for all /eU, as a 
special case. 

When some of the selected elements do not respond, the 
estimator (1) can no longer be computed, and an estimator 
that includes a nonresponse adjustment is required. In this 
article, we are using the weighting cell estimator for this 
purpose. For simplicity, we will describe the situation in 
which both the Y. and X. are univariate variables, but the 
approach can be generaUzed to tUe multi-dimensional case. 
Let s^ = sr\r represent the subset of the selected elements 
that actually respond to the survey. 

Let U ,g = 1,..., G, represent G groups obtained by 
dividing the population into groups based on the values of 
the known auxiliary variable X. Specific implementations 
might generate groups of equal size, or divide the range of 
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X into equal-length intervals. We shall leave the 
implementation unspecified for now, and state some general 
assumptions about G and the size of the groups in the next 
section. Note that we are considering the groups as fixed 
with respect to the sampling design and the response 
mechanism, which excludes the situation in which groups 
are formed based on the observed sample values 
{X.:ies}. This was done primarily to simplify the 
theoretical derivations, and is similar to the approach of 
Samdal et al. (1992) and Kim and Fuller (1999), among 
others. 

Let s=sr\Ube the portion of the sample that falls in 
group g, and define similarly s^ = s^nU . The weighting 
cell estimator is defined as 

'wc 

G 

= Y 
w. 

w. 
Y ^lyr (2) 

From tUis expression, is it easy to see that in each group, the 
estimator of the group total is ratio-adjusted by the inverse 
of the weighted proportion of respondents in the cell. This 
estimator is also the FEFI estimator of Kim and Fuller 
(1999). The properties of this estimator will be studied in 
next section. 

3. PROPERTIES UNDER 
QUASI-RANDOMIZATION 

3.1 Asymptotic Framework and Assumptions 

TUe quasi-randomization properties of the weighting cell 
estimator will be studied in the usual finite population 
asymptotic context, in which the population U is treated as 
an element in an increasing sequence C/,, f/j' •••' ̂ v ^ ' ^ 
V - oo, widi a corresponding sequence of sampling designs 
p^O (see Isaki and Fuller (1982) for an early example of 
this framework). Let Â^ be the size of the v* population 
widi A'̂  > A^̂ .,, let Y^ = (F,, Y2,..., Y^^ )^denote the set of 
values of the characteristic of interest, Y, associated with 
U^, and similarly, X^ = {X^, X^,..., X^ )^. We assume that 
X^ is known. For each v, a sample of size n^{n^ > n^_^) is 
selected from U^, according to a sampling design p^{-). As 
before, let 7̂ , = (7,, 7^,..., 7̂  )^ be tUecorresponding sample 
inclusion vector. We will denote the IC*' order centtal 
moment of the sample membership indicators/., ...,f by 

IK \ 
n(/,-\) 
k-l * ' 

(3) 

It is assumed that U^ can be divided into G^{G^> G^_^) 
mutually exclusive and exhaustive groups, U , 
g = I, ...,G^. These groups are constracted by sorting the 

population according to their X values and dividing the 
population into G^ groups. We will assume that there are at 
least Gj, distinct values among the elements of X^. Let A' 
represent the number of elements in U . 

As mentioned in the previous section, we are tteating the 
groups as fixed with respect to the population. The problem 
created by this approach is that in general, there is a 
non-zero chance of obtaining a group without any 
respondents. We solve this problem by adding a small 
constant in the denominators in each of the groups, or 

•^wc Y 
«=1 

w. 

max ̂ ^ w,.,A^G^rt; 
Y ^^,- (4) 

Hence, the difference between t^^ and f̂ ,̂ in (2) is 
asymptotically negligible. This is similar to what is often 
done in practice to avoid overly large weights in ratio 
estimation. 

Fuller and Kim (2003) give the limiting distribution of 
the FEFI estimator under the assumption that die response 
probabUities are constant witiiin these cells. We will study 
the case where the response probabilities are a smooth 
function of an auxiUary variable and the number of cells are 
allowed to vary. Let R̂ , = (/?,, 7?2,..., ;̂v )^ ^^ ^^ response 
indicator vector for the v"" population. We assume that the 
distribution of R̂ , satisfies the nonparametric response 
mechanism assumptions, specified as follows: 

(Rl) i?j, 7?2,. ., Rj^ are independent random variables, 

(R2) Pr{7?. = l | I > J = ( p , . , V / 6 [ / , , 

(R3) (p. = (?{X.) y ieU^, where (p(-) is differentiable with 
bounded first derivative, and the X.e[x , x,.], with 
X , x^. fixed constants and x <x.,. 

m M m m 

The remaining assumptions are techiucal conditions that 
wUl be used extensively in the proofs. We assume that diere 
are positive constants ^ j , X2,..., X^ such that: 
(Al) X^<N^n^^ ii.<X2<°°,y ieU^, and 

n.K 7 1 6 ( 0 , 1 ) , as V - 00; 

(A2) For distinct /,, ...,i^e U^, K = 2,3,...,S, 

(nf=i(^-'t + l))''«f'^'^3. if K is even 

('n!-iiN-k^l))''n™X,, if K is odd 

(A3) lim^_„—E,.gy 9; = 9g.Vg = 1,2 Ĝ  and v ̂  1; 
A' 

(A4) max,.^yjr,. I <X^; 

(A5) >,g<min.gy (p,. < 1; 
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(A6) X,G;' ^A^^A ;̂' <x,G;\ \ fg = i,2,...,G^-, 

{Al) 1 < Ĝ  < «JXg, widi 0 ^ Y < 1/2. 

Assumptions (Al) - (A2) imply that, asymptotically, the 
sampling design is "well behaved," in the sense that the 
moments of the sample membership indicators are of the 
same order of magnitude as those in simple random 
sampling without replacement. This is a common 
assumption in finite population asymptotic theory. (Al) also 
requires that the sampling fraction converges to a constant 
in the interval (0,1). The boundedness assumption (A4) on 
the observations will significantly simplify the proofs for 
some of the theorems in the article, and could be relaxed to 
the existence of bounded moments if desired. Similarly, 
some technical regularity conditions are required to avoid 
degenerate response mechaiusms: (A3) provides that the 
linut for the average response probabiUty in a cell exists, 
and (A5) excludes die situation in which some units might 
have (p; = 0. Finally, assumptions (A6) and (A7) on the 
weighting ceUs require that all the cells grow at a similar 
rate, and that the total number of cells does not increase 
"too fast" relative to the sample size. 

3.2 Main Results 

The approach we will use in the study of the properties 
of the weighting ceU estimator follows that commonly used 
in the study of finite population estimators. First, we show 
the asymptotic equivalence between the non-linear 
weighting ceU estUnator and a "linearized" approximation. 
Next, we derive the mean squared error properties of the 
linearized estimator and consider those as the asymptotic 
properties of the weighting cell estimator or, more 
precisely, the properties of the asymptotic distribution of 
the weighting ceU estimator. See, for instance, Samdal et al. 
(1992, Chapter 5) for a description of this approach. 

The following theorem formally states our first results. 
The proof is in the appendix. 

Theorem 3.1. Consider the sequence of populations 
{U^:v>l}. Assume that for each v, a probabilistic sample 
of fixed size n^{n^'^n^_.^) is selected from U^ according to 
sampling design pf;), and that the response mechanism 
satisfies the conditions {RI) - {R2). Finally, assume that 
{Al) — {AT) hold. Then, the estirrmtor t,^^ is asymptotically 
equivalent to a linearized random variable t, 
sense that 

^ (^^c -^wc) = Op{GX')-

wc in the 

(5) 

The bias and variance of t^^^ IN^ are given by 

(7 ^ 'wc 
N„g-i u. 

( - \ 

V ^8 / 

{Y.-Y) (6) 

and 

Var 'wc 
G„ G.. 

A^, « = 1 «'=! 

G„ 

YY^Vj,' 
u. u 

' 8' 

where 

tp = — > (p., y = — > Y, Y = -==-5— 

^' N^jr.' ' Kir ' ' Yu 9i g "s g "s 

and 

~ (p.(F.-y )+(p y 
Y= ^-^ ' ^! ^^ ^ , MieU and\/g = 1,2, ...,G,. ig 

^ , c p . 

Remark 1. The asymptotic equivalence between f̂^̂  and 
t^^ depends on the number of groups G^, with a faster 
convergence rate achieved when G^ grows more slowly. 
The intuition behind this result is that the goodness of the 
Unear approximation depends on how well the trae ceU ratio 
response adjustments cpj are estimated by the sample-based 
estimators E w. / E w.. Since the ceU ratios wiU be better 

s. „ i S„ I 
r.g 8 

estimators as the sample size grows larger, this would argue 
that G^ should be chosen to be small, which corresponds 
to the current practice in applications of weighting cell 
estimation. However, as will be shown below, the MSE 
properties of f̂ ,̂ under the nonparametric response 
mechanism improve as G^ gets larger. A more detailed 
discussion of the selection of the number of groups will be 
provided after Theorem 3.2 below and in section 4. 
Remark 2. The results in Theorem 3.1 depend on the 
population groups U ,g = l,...,G^ and on the (p̂ ., ieU^, 
but do not rely on the fact that the response probabiUties are 
a smooth function of the auxiliary variable X. Hence, the 
explicit expressions for the asymptotic bias and variance 
can be used to derive results for other response mechaiusms 
that follow (Rl) - (R2). In particular, results for the 
response homogeneity group model (see Samdal et al. 
1992, page 577) follow directiy from Theorem 3.1. This is 
also the model studied by Fuller and Kim (2003). Under 
that model, one assumes that cp; = (p for all 
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ie U ,g= 1,..., G, and it can easUy be shown that die bias 
of tyj(. is 0 and its variance is 

/ ~ 
Var 'wc 

N.. 
= Var '0 

^-2Y'-^YnM-y,f-

The first term in the variance is the variance of the 
estimator without nonresponse, and the second term 
represents the variance inflation caused by the nonresponse 
under a homogeneous within-cell response mechanism. 

The following corollary follows directly from Theorem 
3.1 and Fuller (1996, Theorem 5.2.1). A proof is given in 
the appendix. 

Corollary 3.1. Under the conditions of Theorem 3.1 with 
Y < 1/2 in (A7), for any sampling design pjc) such that 

1/2 
-Y..-B. - A^(0, V), 

where B̂ , corresponding to the bias of t^^^ IN^ given in 
Theorem 3.1 and 

V ^ lim n^Var{t^^lN^)e{0,«>), 

then 

Var 
'7 ^ 'wc 

N.. 

-1/2 / 

N. - y. - B. N{0, I). 

Corollary 3.1 states that, whenever the linearized 
estimator î ,̂ achieves asymptotic normaUty, then so does 
/^(,. Since F,^,. can be written as a classical expansion 
estimator of the form (1), this result is quite general. 

Under the nonparametric response mechaiusm described 
in (Rl) - (R3), it is possible to describe the effect of the 
number of groups G^ on the asymptotic bias and variance 
of t^^. The next theorem gives the asymptotic rates for the 
bias and variance, and is proven in the appendix. 

Theorem 3.2. Assume that (R3) and the conditions of 
Theorem 3.1. Then, 

\ 
'wc y.,= o 

and 

Var 

(~ ' 
'wc 

Â  
= 0 

' i ; 
+ 0 [ ^ 1 

Remark 3. Theorem 3.2 shows that both the asymptotic 
bias and variance of the weighting cell estimator t^^ 
become smaller as die number of groups Ĝ  increases. An 
intuitive explanation of that fact is that die approximation 
of the function tp. = (p(X.) by the step function (p. = tp* 
improves as the number of cells increases. The asymptotic 
variance has a term that is independent of Ĝ ,. This 
"residual variance" is due to the inherent variability of the 
sampling design and the response mechanism, and cannot 
be reduced by changing G^. 

Remark 4. As noted in Remark 1, constracting a good 
linear approximation f̂ ,̂ requires G^ to be small, while 
Theorem 3.2 states that the MSE of 7,^^ is minimized by 
taking Ĝ  as large as possible. Taken together, this can be 
interpreted to mean that, once the sample size in every cell 
is sufficiently large to obtain a "valid" ratio estimator for 
the average cell response probability (p̂ , it is preferable to 
increase the number of cells than to increase the sample size 
per ceU. The sUnulation experiments discussed in section 4 
will further explore this recommendation. 

The following coroUary follows directiy from Corollary 
3.1, Theorem 3.2, and Chebyshev's inequality, and 
establishes the consistency of the weighting cell estimator 
under the nonparametric response mechanism. 

Corollary 3.2. Under the conditions of Theorem 3.2, t^^ 
is a consistent estimator for t, in the sense that for any 
e>0, 

Pr 'wc -t 

N.. 
>e 0, V 

Remark 5. As CoroUary 3.2 shows, as long as a variable X 
can be found that is sufficientiy related to the nonresponse, 
in the sense of assumptions (Rl) - (R3), constraction of 
weighting cells does not require knowledge of homo­
geneous response probability ceUs in order tp constract a 
consistent estimator. However, as discussed in Remarks 1 
and 4, the choice of the number of cells stiU has an effect on 
the properties of the estimator. 

Remark 6. Assumption (R3) can easily be relaxed to allow 
for a small number of points of discontinuity in both (p() 
and its first derivative. A "small" number can mean that the 
number is either fixed as v - «> or increases at a rate slower 
than G .̂ This would make it possible to account for 
situations such as sttatified designs or the presence of 
domains within U . The present theory can be extended 
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directly to these situations, if the values for the variable X 
fall in non-overlapping segments for the different sttata or 
domains. 

4. SIMULATION EXPERIMENTS 

4.1 Description of the Experiment 

In order to investigate the practical implications of the 
results of section 3, we carried out a Monte Carlo 
experiment on a fixed population of N = 3,000 units. We 
consider the case of one covariate, X, whose population 
values are generated as: 

X,,X2,.. . ,X^~i.i .d. U{0,1), 

and two different variables of interest, Y^ and yj. We are 
interested in evaluating the effects of (1) the (model) 
relationship between Y and X, (2) the response mechanism 
(p(X), (3) the sample size n and (4) the number of ceUs G, on 
the bias and on the mean square error of the t,^^ estimator. 
Since our theoretical results rely on tUe approximation of 
ty/Q (or t.^^) by a linearized estimator f̂ ,̂, we will also 
compare die behavior of t,^^ IN^ and r^^. IN^ as estimators 
of the population mean, Y^=N^^Y.jjY.. FinaUy, we 
compare i,^^ IN^ to the "naive" estimator of the mean, 
which is defined for the variable Y as: 

yr = 
Y w-y 

W. 
•'les,. I 

corresponding to a ratio adjustment of the respondent 
sample to die original sample. This estimator is appropriate 
under the assumption of uniform response mechanism or, 
to use the terminology of Littie and Rubin (2002, chapter 
1), when observations are missing completely at random 
(MCAR). Note that y^ is equivalent to the weighting cell 
estimator with a single cell. 

The levels of the four factors used in the experiment are 
given in Table 1. The "levels" of the variable y correspond 
to two populations of independent values. The variable Y^ 
was generated as A (̂40, 58), trancated to -3 to -i-3 standard 
deviations, corresponding to the "white noise" case. The 
variable y2 is related to X and was generated through the 
Unear model y2 = 27.12 + 26.06X + e, where e ~ A (̂0, 9). 
The population mean and variance for the two variables 
were, respectively, (39.9, 55.3) for Y^, and (40.0, 63.9) for 

Y2-
The four levels of the response mechanisms contain two 

different scenarios regarding the response probabilities: 
constant (CI, C2), and linearly related to X (LI, L2). The 
response probabilities are: 

-(Pc,(X) =0.5 

-q)„(X) =0.8 

- cp̂ i (X) = 0.20 + 0.60X 

- 9 ^ 2 ^ =0-65 +0.30X 

The levels of the linear response mechanisms were chosen 
so that the average probabilities (over X) were approxima­
tely equal to 0.5 and 0.8, respectively. 

Table 1 
Overview of Factors in the Simulation Experiment 

Factor 

Y variable 

Response mechanism (p(-) 

Sample size n 

Number of cells G 

Levels 

Y Y 

C\,C2,L\,L2 

200, 500 

2,3,5,8 

For a given G, the groups were created by dividing the 
range of X into G equal segments and assigning the element 
i to the group g if the value X. was in the g"" segment, 
i = 1,2,..., N and ^ = 1,2,..., G.The simulations were 
carried out through a completely randomized factorial 
experiment 2 x 4 x 2 x 4 . For each combination of the levels 
of the factors in Table l,B = 5,000 independent realizations 
of the vector indicator of responses, R = {R^, R2,..., ^^ )^ . 
were generated according to the corresponding response 
mechanism. For each one of such realizations, a simple 
random sample (widiout replacement and of size n), s, was 
selected from the overall population. Within each selected 
sample, the respondents were the values of / 6 .s such that 
R. = l. 

This procedure could in principle lead to a group not 
containing any sampled and responding element, in which 
case the weighting cell estimator (ignoring tbe adjustment 
in (4)) carmot be computed. If that happened, the realization 
was discarded and a new sample drawn from the popu­
lation. Out of the 5,000 repetitions for each combination of 
factors, this happened 13 times in the factor combination 
{Y^, cp^,,200, 8) and 15 times with (y2, q)i^i,200, 8).It did 
not occur with any of the other factor combinations. Hence, 
the number of samples discarded was very small and this 
has a negligible effect on the simulation results. 

With n = 200 and G = 8, we expect approximately 25 
sampled elements in each cell, to be further reduced by die 
nonresponse. Since the estimator reUes on ratio estimation 
in each ceU, we judged this to be a reasonable lower bound 
on the number of observations per cell to consider in the 
simulations. In practice, a number of procedures could be 
used when groups have too few elements, such as picking 
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a smaller value for G or collapsing neighboring groups. We 
also implemented an estimator that collapses the empty cell 
with a neighboring cell as well as a version with a lower 
bound on the value of the denominator in the weighting 
adjustment {i.e., ?^c)' "̂*̂  '•̂ ^ results are virtually 
indistinguishable from those reported below, so they will 
not be further discussed here. 

4.2 Results 

Table 3 
Relative Bias of the Weighting Cell and Naive Estimators 

Tables 2 and 3 show the simulated bias of the weighting 
cell estimator for the variables Y^ and y2 as a fraction of 
the standard deviation. As a comparison, the last column of 
Tables 2 and 3 displays the bias of the naive estimator, y .̂ 
The bias as a fraction of the standard deviation, referred to 
here as the relative bias. 

RB(fwc.^) 
E(^wc-y) 

(Var(;^c))"' 

was also used in Cochran (1977, page 14), where it is 
shown that as the relative bias increases, inferential results 
rapidly become uiueUable. In a simple simulation example, 
Cochran (1977) shows that a relative bias of ±0.50 or more 
leads to highly inaccurate 95% confidence intervals. 

For y, (Table 2), the relative bias of the weighting cell 
estimator is small and is similar to tUe relative bias of the 
naive estimator, for all sample sizes, response mechanisms 
and cells sizes considered. For the variable Y2 (Table 3), 
similar results hold when the response mechaiusm is 
uniform (CI, C2). However, when the response probabi­
lities are a linear function of X (LI, L2), the naive estimator 
becomes severely biased. This relative bias decreases as the 
number of cells increases, and three to five cells appear 
sufficient to remove most of the bias. This finding agrees 
with that of Cochran (1968) in the context of bias reduction 
for observational studies. 

Table 2 
Relative Bias of the Weighting Cell and Naive Estimators 

for the Mean Y, 

Sample 

size 

200 

500 

Response 

mechanism 

CI 

C2 

LI 

L2 

CI 

C2 

LI 

L2 

2 

-0.00 

0.01 

-0.02 

-0.00 

-0.00 

0.01 

0.05 

0.01 

Number of Cells 

3 

-0.01 

-0.00 

0.03 

-0.02 

-0.01 

0.02 

0.02 

0.01 

5 

0.01 

-0.01 

-0.04 

0.00 

0.04 

-0.01 

-0.01 

-0.00 

8 

0.01 

0.00 

-0.01 

-0.02 

-0.01 

-0.01 

-0.02 

-0.01 

Naive 

estimator 

-0.00 

0.00 

-0.00 

-0.00 

0.00 

0.00 

0.01 

0.01 

Sample 

size 

200 

500 

Response 

mechanism 

CI 

C2 

LI 

L2 

CI 

C2 

LI 

L2 

for the Mean of Kj 

2 

0.01 

-0.03 

1.16 

0.36 

0.01 

0.02 

1.98 

0.61 

Number of Cells 

3 

-0.01 

-0.00 

0.59 

0.18 

0.01 

-0.00 

0.96 

0.29 

5 

-0.02 

0.02 

0.22 

0.06 

-0.02 

-0.00 

0.32 

0.09 

8 

0.02 

0.01 

0.07 

0.03 

-0.00 

-0.01 

0.15 

0.02 

Naive 

estimator 

-0.01 

-0.00 

3.57 

1.36 

0.00 

-0.01 

5.84 

2.26 

Hence, when the variable of interest is totally unrelated 
to the response mechanism, as in the cases of y, under all 
mechanisms considered and of Y2 under the uniform 
response mechanism, the bias does not depend on the 
number of cells. WUen the variable of interest and the 
response mechaiusm are related, multiple cells are required 
to remove the bias. 

The relative mean squared error (RMSE) for the two 
variables of interest, defined as the MSE of the weighting 
ceU estimator divided by the MSE of the estimator with no 
non-response, 

E(f - ' '^^ 
RMSE{t^c,-. g = 'wc ĝ  

E(^ ^ / 

are in Tables 4 and 5. In these tables, the last column again 
corresponds to the relative MSE of the naive estimator. 
Note that with the exception of the two LI cases for 
variable y2, the Tables 4 and 5 are really variance tables, 
since the bias is so small. 

For Y^ (Table 4), the variable uncorrelated with X, the 
number of cells has relatively little effect on the relative 
mean square error, with results around 2.3 for a 50% 
response rate, and around 1.3 for the 80% rate. However, a 
relatively modest increase in MSE is observed, especially 
for the high nonresponse cases (CI, LI). For y2 (Table 5), 
the variable correlated with X, increasing the number of 
cells improves the results for all response mecUanisms, but 
the effect is much more pronounced when the response 
mechanism is also correlated with the variable of interest. 
As for the relative bias, three to five cells acUieve most of 
the efficiency gain, while the naive estimator is extremely 
inefficient. 
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Table 4 
Relative Mean Squared Error of the Weighting Cell Estimator 

Compared to the Estimator Without Nonresponse for y. 

Sample 

size 

200 

500 

Response 

mechanism 

CI 

C2 

LI 

L2 

CI 

C2 

LI 

L2 

2 

2.02 

1.25 

2.34 

1.30 

2.25 

1.30 

2.55 

1.32 

Number of Cells 

3 

2.13 

1.31 

2.32 

1.29 

2.21 

1.32 

2.57 

1.35 

5 

2.11 

1.29 

2.61 

1.29 

2.19 

1.34 

2.62 

1.33 

8 

2.21 

1.28 

2.70 

1.31 

2.31 

1.29 

2.70 

1.34 

Naive 

estimator 

2.08 

1.28 

2.08 

1.28 

2.23 

1.30 

2.22 

1.31 

Table 5 
Relative Mean Squared Error of the Weighting Cell Estimator 

Relative to the Estimator Without Nonresponse for y2 

Sample 

size 

200 

500 

Response 

mechanism 

CI 

C2 

LI 

L2 

CI 

C2 

LI 

L2 

2 

1.33 

1.09 

3.14 

1.23 

1.35 

1.09 

6.60 

1.50 

Number of Cells 

3 

1.17 

1.05 

1.57 

1.07 

1.19 

1.05 

2.30 

1.14 

5 

1.10 

1.02 

1.16 

1.03 

1.10 

1.03 

1.23 

1.04 

8 

1.07 

1.02 

1.12 

1.01 

1.09 

1.03 

1.13 

1.02 

Naive 

estimator 

2.07 

1.26 

26.32 

3.57 

2.22 

1.30 

69.75 

7.83 

created a variable yj =25+95X - 95X^+e, where 
e ~ A^(0,3), so that the Y^ has mean 40.9 and variance 
51.8, and two additional quadratic response mechanisms 

- (pgj(X)=0.17 + 1.96X-1.96X^ 

- (pg2(^) = 0.50 + 1.80X- 1.80X1 

The results (not shown) broadly reflect the findings for the 
previous variables. When the response mechanism and the 
variables are correlated (the linear variable is correlated 
with the linear response mechanism, and the quadratic 
variable is correlated with the linear and quadratic response 
mechanisms), significant bias occurs but can be removed by 
increasing the number of cells. In the case of the quadratic 
response mechanism and the quadratic variable, eight or 
more cells appear to be required to remove the bias. 
Similarly, the relative efficiency improves for all response 
mechanisms for both the Unear (yj) and quadratic variable, 
with the most dramatic results found for the linear 
variable/linear response and quadratic variable/quadratic 
response cases. 

In the previous sections of this article, we approximated 
the weighting cell estimator by a "linearized" estimator 
t^^, and then derived the asymptotic properties of that 
estimator. It is therefore of interest to compare the statistical 
properties of both estimators in simulated settings. For all 
the scenarios in Table 1, we calculated the relative effi­
ciencies of the weighting cell estimator compared to the 
linearized estimator. These relative efficiencies were all 
close to 1.00, with the largest deviation being a value of 
1.08. Hence, the statistical properties of weighting cell 
estimator appear to be well approximated by those of the 
linearized estimator. 

The difference between the results for both variables is 
surprising at first, but it can be explained using the results 
from section 3. Clearly, the results for y2 follow the 
asymptotic dieory, in diat the MSE improves as die number 
of cells improves (as long as sufficient observations are 
available in each cell). In the case of Y^, note first that the 
bias is negligible relative to the standard deviation for all 
values of G (see Table 2), so that the change in MSE is due 
almost exclusively to differences in variance. It tums out 
tiiat when a variable is Ud in the population and sampUng is 
equal-probability, the asymptotic variance in Theorem 3.1 
is relatively insensitive to the number of cells. In that case, 
the increase in MSE is influenced by the variabiUty impUed 
in tUe Unear approximation in Theorem 3.1, which increases 
with the number of cells. 

The theory described in this article applies to response 
functions that can have arbittary smooth shape. In order to 
evaluate results for more complicated functions, we also 

5. CONCLUSIONS 

We have shown that the weighting cell estimator, 
corresponding also to the FEFI estimator proposed by Kim 
and FuUer (1999), is consistent with respect to the sampling 
design and a nonparametric response model. That model 
does not require the correct specification of homogeneous 
response probability cells, as long as a variable related to 
the response probability can be identified. 

TUe statistical properties of tUe estimator depend on the 
number of ceUs used in the estimation, but the relationship 
is rather complex. Asymptotically, tUere appears to be a 
ttade-off between the goodness of the approximation of tiie 
weighting cell estimator by a linearized estimator, which 
requttes a small number of cells, and the mean squared 
error of that linearized estimator, which is reduced when a 
large number of cells are used. WTiile useful in under­
standing the asymptotic behavior of the estimator, these 
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findings only provide limited guidance for choosing the 
number of cells for a particular siu^ey. However, these 
findings show that reliable inference for weighting cell 
estimators will require cells with reasonable sample sizes, 
because variance estimates typicaUy rely on the variance of 
the Unearized estimator as an approximation of the variance 
of the weighting cell estimator. 

The simulation experiments show that when the variable 
of interest and the response mechanism are uncorrelated, 
the number of cells has vUtually no effect on tUe design bias 
of the estimator. When the variable of interest and the 
response mechanism are uncorrelated, even the estimator 
with a single weighting ceU (corresponding to a sUnple ratio 
adjustment) is essentially unbiased, wUile models with 
multiple cells perform equally well. When the response 
mechanism and die variable of interest are related, however, 
the bias properties of the weighting cell estimator depend 
critically on the number of cells. In particular, estimators 
with a single cell are severely biased, but even a relatively 
small number of cells is sufficient to reduce both the bias 
and variance of the estimator. This result holds for both 
linear and nonlinear relationships between the response 
mechanism and the variable of interest. 

The design efficiency of estimators depends on the 
relationship between the variable of interest and the 
variable(s) used to form weighting cells. When those two 
variables are uncorrelated, the number of cells has no effect 
on the efficiency of the estimator. Conversely, when those 
two variables are correlated, increasing the number of cells 
improves the design efficiency of the estimator. Even a 
small number of cells dramatically improves the 
performance of the estimator. 

Overall, it appears that in the presence of nonresponse, 
forming at least a small number of weighting ceUs based on 
a variable related to the non-response provides a good 
"insurance policy" against design bias and design ineffi­
ciency. This article has shown that this adjustment does not 
require the assumption that the cells be based on a priori 
knowledge of constant nonresponse groups. The resulting 
weighting ceU estimator will never perform worse than the 
naive estimator with a single ratio adjustment for the whole 
sample, and it might perform significantiy better. 
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APPENDIX 

Derivations of Theoretical Results 

Lemma 1. Assume that the conditions {Al) - (A3) and 
{RI) - {R2) hold. For /,, j ^ , •••, '^^ U^,, define 

T. . = E 
( k \ 

n(7 7? - , r ( p ) 
i-i ' ' ' ' 

where (p̂ . = (p(X.). Consider the A. . of (3). Let A'' 
denotes the r-fold Cartesian product of the set A, where r is 
a fixed positive integer, ^\rv~ 
{{i^,i2,...,i,)eu;^•.i^=i2 = ...=i,} and A^^^ = 
{{i^,i2,...,i^) e Uj: exactly k components are distinct], 
k =2,2),..., r. Then, for r = 8, 

0{Nln:\ if k=5 

0{Nln;\ if k=6 

0{NX\ if ^=7 

0(n; ') , if ^=8. 

A^,V max (|r .,.|,|A,. |) = 
I i (=A I ' ' 8 1' ' K 

Proof of Lemma 1. See Da SUva (2003). 

Lemma 2. Suppose the conditions of Theorem 3.1 hold. 
Consider the vectors t^„ = {t. .t., .1., )'=11,, n, 
{l,Y.R.,R.yi. and t*^^ (h.jxjlg)'- ^ ' ' ' ' 
i^^=max{i^^,N^GJn^]. Let t^^ = E{i^f). Then for all 
g'=l,2,...,Gl, 

-L(E||r-f^J|«,E|k;^-<^J|«) = 0[{GJn^f). 

Proof of Lemma 2: See Da Silva (2003). 

Proof of Theorem 3.1: Consider the proof of (5). Let 
a =(a,,a2,a3)'eK^ and /i:M -̂>M, where h{a) = 
a J 02 lay flj * 0. Define 

V«) = h{N-;tJ.Yh''\N;Uj{a,-N;Uj, 
k-l 

where h^'{a) = dh{a)lda.,andlet e„„ = h{a) - TI„ (a). Note 
C 1 AJ , 

that t'='^/-iNMN't), and hence, defiiung the «v 
"linearized" estimator r̂ ,̂ ~ ^«=i^?\v(^«' ^cv)' ^^ ^^^ 
write 

( ^WC"W = ^v^\' 
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where 

and 

g'g^(KO 

Consider first the term fĵ ,. Observe that 

I n (A ;̂' r ) - n (A ;̂' i )\ = 

\h^^\N'^t )I — i r -t 
Â_ -Xg '•^.g I 

E|iJ <-^E^E|e^^(Ar;'^;;)| 

< J -EA^(E/ {N-'V)Y-O 
^G' 

n 

which leads to e^ = O {G^n~) by an application of 
Markov's inequality. 

Expressions (6) and (7) are obtained by dttect compu­
tation of the moments of the Unear estimator t^^ under the 
sampUng design and the response mechanism. 

Proof of Corollary 3.1: Let 

By (A4) and (A5), it is straightforward to check that h{-) 
and h^''\-),k = 1,2,3, are 0(1) when evaluated at N'^t^. 
for all g = l,2,...,Gj,. Since by constixiction, we have 
1/Â  If* - f, \<G In , we conclude that In I = 
O{GJn^). Thus, to complete the proof of (5), it remains to 

showtiiati^ = 0^{GX')- i^ifgM) = (^gM))^- By*e <̂ r 
the inequality (Sen and Singer 1993, page 21), 

\f(a)\'<5U\h{a)\'^\h{N'\X 

-Eî '̂ '(A^Av)n«.-̂ " .̂vr)-

Using (Al) and (A4), sttaightforward bounding arguments 
show diat \h{Ng^t*X = 0{{nJG/) and that 

'* = 0(1) for fc = 1, 2, 3. Therefore, 
( 4\ 

n.. 

K'\h,g-h,g 

l/.v(<Ol'=0 

1 
/ ~ 

V. 1/2 

and 

W.. = 
,112 

wc 

/ -» 
%c 

Â  

B 

'wc 
N 

where V = Nar{t,^^ IN ). Hence, 

Var 'wc 
Â ., 

•' I . 

1/2 / 

'wc 
N 

Y -B = Z+W... 

Since VIn V - l,as v - o°, then. 

Z. = 
'1/2 n V 

\ V vj 

1/2 
1/2 WC B. 

L I 

V 1/2 z. 

Since by Lemma 2, ^ £ 1 1 ^ - ^ , , 1 ' = 0((n/G,)-^)_,^and 
VI f {N„ t* ) P is continuous at any realization of Â„ t* , 
then the sequence { \fg^{Ng tg^,)\^] satisfies the conditions 
of Theorem 5.4.4 (with i] = l, p = 4) of Fuller (1996, page 
247). Therefore, 

\fg^Ng't;^)\'] = 0{l), yg = l,2,...,G^. 

Now, from the continuity of / (•) and its derivatives up to 
_ 1 A ^ 6 ^ 

order three, {f ^{N t )] satisfies the conditions of 
Theorem 5.4.3 (with 5 = 1, s = 4 and â  = 0{^G^ In^) of 
Fuller (1996, pages 244-245). Hence, 

^fgM'O = (̂"v') O , \fg = l,2,...,G^, 

because / (•) and all of its derivatives up to order three are 
-1 zero at Â  t . Therefore, we conclude that 

where Z~N{0, V). Also, (A7) with y< 1/2 implies tUat 
1/2 -1 

n.^ O (G^n^ )=o (1). Hence, by Theorem 3.1, 

W„ I 
V 1/2 

\ 1/2 ( 

n V 
V V / 

1/2 'WC 
~ \ 
ŵc 
N ^,(1)-

The result of the corollary follows, therefore, from Fuller 
(1996, Theorem 5.2.1). 

Proof of Theorem 3.2: Fix a ^ e {1,2, ...,G^}. The 
conditions of the theorem imply, by the Intermediate Value 
Theorem, that there exists XQ inside the interval defined by 
the lowest and the highest values of XeU such that 
- -1 T^ ' S 

(f) =N T,y (p. = (P(XQ ).AISO, by the mean Value 
Theorem, y'ieU^, 

(p,. = (p(X.) = (p(XoP+(p'(c*)(X,-Xop, 

where c * is between X,. and XQ . So, 

^0. (p . -9 j = | 9 ' ( c * ) l | X , - X o J < C ^ ^ I ^ , (8) 
r, -rg I 
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for some constant C e (0, <») and, by (A5) and (A6), 

Bias 

/ ~ 
^wc <c;.,-'x/<^>"^w. 

Observe now that since 

1 (p. 1 Up. - tp _ 

\Y. I < -LJJ-ly.j + ±-1-!J—111 jy j 
IO — 1 — o P 71. (p 

1 T o 

then,by(Al,(A6)and(8), 

^>g-0 
(N^ 

n 
+ 0 

^ Â .. ^ 

n G 
V V v / 

Jt, 9 , 

, Vf/„,Vg = 1,2,...,G,„ 

which implies that 

y. y ,= 0 
'« ig 

(N^^ 
2 

+ 0 
(^^\ 

2 / -
, V [ / , V ^ = 1,2,...,G,. 

Using die facts that, by (A7), N^IN^ = 0{llGJ,by (A2) 
and (A3), E^ E^ Â . =G(VG,) and, for g*g', 

Ey T,y A.. = 0{nJG^), then, the first term of 

War{t,^f.lNJ is bounded by 

O 
( 1^ 

V " v / 

+ o 
' 1 ^ 

nG„ 

Since the second terms of Var{t^^lN^) is bounded by 
0{lln ) , the conclusion follows. 
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Variance Estimation with Hot Deck Imputation Using a Model 
J. MICHAEL BRICK, GRAHAM KALTON and JAE KWANG KIM ' 

ABSTRACT 

When imputation is used to assign values for missing items in sample surveys, naive methods of estimating the variances 
of survey estimates that treat the imputed values as if they were observed give biased variance estimates. This article 
addresses the problem of variance estimation for a linear estimator in which missing values are assigned by a single hot deck 
imputation (a form of imputation that is widely used in practice). We propose estimators of the variance of a linear hot deck 
imputed estimator using a decomposition of the total variance suggested by Samdal (1992). A conditional approach to 
variance estimation is developed that is applicable to both weighted and unweighted hot deck imputation. Estimation of the 
variance of a domain estimator is also examined. 

KEY WORDS: Missing data; Model-assisted approach; Conditional variance estimation. 

1. INTRODUCTION 

The important practical problem of estimating the vari­
ance of an estimate computed from a data set in which some 
of the items are nussing and values are assigned by im­
putation has been addressed in a number of different ways 
{e.g., see Rubin 1987 and Rao and Shao 1992). The ap­
proach used in diis article is based on the model-assisted 
approach introduced by Samdal (1992). In the initial 
application, Samdal used the model-assisted approach with 
a simple random sample in which the missing data were 
imputed using deterministic ratio imputation. Subsequentiy, 
the approach has been extended to other imputation meth­
ods and sample designs {e.g., DeviUe and Samdal 1994; 
Rancourt, Samdal and Lee 1994; and Gagnon, Lee, 
Rancourt and Samdal 1996). This article extends the 
model-assisted approach to general forms of linear esti­
mators in which missing values have been assigned by hot 
deck imputation within imputation cells. This form of hot 
deck imputation, which replaces a missing item by the value 
observed for a responding unit in the same ceU, is one of the 
most frequentiy used methods of imputing for missing items 
in household sample surveys (Brick and Kalton 1996). This 
paper employs a conditional approach to develop a variance 
estimator for hot deck imputed estimators that is valid for 
general sample designs and a variety of estimation 
sfrategies. 

In the model-assisted approach, the difference between 
an imputed estimator (the term used here to denote an 
estimator based in part on imputed values), 0,, and the 
corresponding fiiute population parameter, 0^, is written as 

%-% = (%-%)-(^,-Kl (1) 

where 0̂  is the usual, approximately design unbiased, 
estimator of 0^ with complete response. The first term on 
the right hand side of (1) is called the sampling error and 
depends only on the sampling distribution of the estimator 
based on the sample design used to select the full sample, 
denoted by p. The second term is the imputation error; it 
depends on the sampling distribution, the response mech­
anism (/?) that generates the respondents from the full 
sample, and the imputation mechanism (/) for fiUing in the 
missing values. This paper is restricted to estimators 0̂  that 
involve only one variable subject to missing data. 

We use a model-assisted approach that makes assump­
tions about the distribution of the variable of interest in the 
population. We refer to these assumptions as a super-
population model, denoted by E,. In general, the aim of 
imputation is to create a multi-purpose data set that can be 
validly analyzed in many different ways, potentially in­
volving the associations of a variable subject to imputation 
with any of the other variables in the data set. Since a 
superpopulation model is needed to impute for item non-
responses in a way that preserves such associations, it is 
natural to use that approach also in variance estimation. 

Under the superpopulation model, the total variance for 
an imputed estimator is given by 

(2) 'TOT ^i^p^R^li^l'^Nl ' 

where E^,E^,Ej^, and Ej refer to expectations with 
respect to the superpopulation model, the sampling mech­
anism, the response mechanism, and the imputation 
mechanism, respectively. We assume that the sample de­
sign, response mechanism, and the imputation mechanism 
are unconfounded as described by Rubin (1987) and used 
by Samdal (1992) and all of tUe other Uterature cited above 
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on the model-assisted approach. Essentially, unconfounded 
mechanisms allow tUe order of the expectations to be 
changed so that the expectation with respect to the model 
can be taken first. Thus, the total variance can be re-written 
as V.J.Q.J. = E Ej^ Ej EAOj- 0 )̂'̂ . Roughly speaking, uncon­
founded sampling, response, and imputation mecUanisms 
imply that die mechanisms are independent of the distribu­
tion of the y-value being analyzed after conditioning on 
auxiliary variables {e.g., stratification variables for sam­
pling or imputation cells for imputing). Thus, for example, 
we assume the value of the variable being imputed is inde­
pendent of the probabiUty of response within each hot-deck 
cell. Rubin (1987, pages 36-39) has a more detailed discus­
sion of unconfounded mechanisms. 

Using the decomposition given in equation (1), Samdal 
(1992) expressed die total variance for the imputed 
estimator as 

•^OT ~ ^4 ^p ^R ^I \ " / ~ ^NJ ~ ''̂ SAM "*" MMP '*' ^ ''̂ MIX' (3) 

where V^^^ = E.E (Q^ - 0^)^ is the sampling variance, 
Vjĵ p = E.E Ef^EjlOj- 0„ )̂  is tUe Unputation variance, and 
^Mix = ^^ ^p ̂ R ̂ / [ (9/ - 0„) (0„ - 9w) ] is a mixed compo­
nent. In this formulation, the total variance and its com­
ponents are more aptly described as anticipated variances 
because they incorporate the added expectation widi respect 
to the superpopulation model. 

The model-assisted approach to variance estimation with 
imputed data used in this paper should be distinguished 
from model-assisted sampling (Samdal, Swensson and 
Wretman 1992). With model-assisted sampling, models are 
used to guide the choice of efficient sample designs and 
estimators, but the validity of statistical inferences is not 
dependent on the vaUdity of the models. In contrast, when 
some data are missing, reliance on models for inferences is 
essential, both for point estimators and for variance 
estimators for diem. In this paper, the general approach to 
inference employs the imputation model assumptions {i.e., 
superpopulation model and unconfoundedness assump­
tions) only to the extent necessary to account for imputed 
data. Both the point estimators and the variance estimators 
are the standard design-based estimators when no data are 
missing. Whether the variance estimators are approximately 
unbiased for V^/^ depends on the validity of tUe imputa­
tion model. Also, the estimators for Vjĵ p̂ and V-^^ rely 
completely on the imputation model. Thus the validity of 
the model is much more critical with model-assisted vari­
ance estimation with imputed data than it is with model-
assisted sampling. Samdal (1992) argues that if we are 
willing to accept tUe validity of the model in point esti­
mation with imputed data, we should also be willing to 
accept its validity for variance estimation. 

Variance estimators are obtained by conditioning on the 
realized set of sampled units, responding units, and impu­
tations. We develop estimators of ^SMA ~ 
£^[(0„-0^)^|A,AR,d],V;,p = £^[(0,-0„)2|A,AR,d], 
and V ĵx = f j (§„ - 0;v) (0/- 9„) I A, A^, d ], where A and 
Ajj denote matrices of indices for the sampled and re­
sponding units, respectively, and d is the set of indices for 
the imputations. The conditioning is on the set of indices, 
not on the values of the units. The matiix d is an 
rx{n - r) matrix in which the rows refer to respondents 
and the columns to nonrespondents. In this paper, we 
consider only single imputation methods, in which case all 
but one of the d.. = 0 in every column. The exception 
occurs in the row of the donor respondent when d.j = 1. 

By considering the conditional expectations of Vj'̂ p and 
^Mix' ^^ estimators reflect the number of times responding 
units are used as donors in the given appUcation rather than 
taking the expectation over all possible imputation out­
comes. We argue below that these are the appropriate vari­
ances to estimate in a given application. If the variance esti­
mators are conditionally unbiased, they are also, of course, 
unconditionally unbiased. 

A conditional approach is useful for two reasons. First, 
when an estimator is conditionally unbiased and consistent 
(as 0̂  is assumed to be for 0^), die conditional variance is 
generally a more appropriate estimator for making infer­
ences from a realized sample than an unconditional vari­
ance (Holt and Smidi 1979, Rao 1999, Kalton 2002). Thus, 
a variance estimator that conditions on the actual number of 
times each donor is used is to be preferred to a variance 
estimator that averages over all possible donor selections. 
Second, the results apply to any unconfounded sampling, 
response, and imputation mechanisms that produce the 
same set of sampled units, respondents, and imputations. 
Therefore, the results given below for hot deck imputation 
apply to any unconfounded imputation scheme that substi­
tutes observed values for missing ones and for which 
E^{Q,)=E^{%). 

2. HOT DECK IMPUTATION 

We consider a simple model for which hot deck 
imputation is appropriate. Assume that the finite population 
{U) is composed of G classes or cells. Within ceU g{g = 
1,..., G), the elements in U are realizations of indepen­
dently and identically distributed random variables with 
mean p„ and variance o„. This cell mean model can be 
written as 

H^g'^'l)' ieU„ (4) 
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where ~ is an abbreviation for independentiy and identi-
caUy distributed. 

A linear estimator of 0^ with complete item response 
from a complex sample survey can be written as 

K = Y •̂>',-. 
ieA 

(5) 

where w. is the weight that accounts for unequal selection 
probabilities and the estimation strategy. When the cell 
mean model holds, a more efficient estimator of 0^ uses the 
unweighted group means, i.e., Q^ ='L'Ew .y where 
y^ = T,.y^.ln . However, the model-assisted approach 

does not place complete reliance on the model; rather, it 
uses the standard design-based approach to die extent 
possible and the model is used only for the missing data. 
The weights in (5) can be the inverse of the probability of 
selection weights or calibration adjusted weights, as 
described below. 

The hot deck imputed value for y. is y ' = E.^^ d..y. 
and the imputed estimator is 

9/ = Y ^i yi = Y ^lyi + Y %• Y dy yi, 
ieA ie/ t„ JeA^ ieAr. 

(6) 

where yi=yi for ieA^ and yi=yi for ieA^. We 
assume throughout that imputed values are selected from 
respondents in the same imputation ceUs, and that each cell 
contains at least one respondent. 

This imputation formulation does not specify the way in 
which donors are selected. It thus covers both unweighted 
hot deck imputation in which donors are selected with equal 
probabilities within each cell and weighted hot deck 
imputation. Weighted hot decks are typically used when 
assumptions are made only about the response distribution. 
The form (6) also covers with and without replacement 
imputation methods. For example, it covers the common hot 
deck procedure in which a respondent is randomly selected 
to be a donor within a cell, and then that respondent is not 
used as a donor again until every other respondent in the 
cell Uas been used. 

While not explicitiy considered here, nearest neighbor 
imputation procedures that use continuous variables to 
identify a small set of the most similar respondents and then 
randomly select one as the donor, satisfy the above require­
ments. Furthermore, researchers often use hot deck methods 
even when continuous variables are available. Little (1986) 
discusses strategies for forming imputation cells using 
variables that are predictive of the y-variable and notes that 
imputation within cells and regression imputation should 
produce similar results in many circumstances. Cochran 
(1968) and Aigner, Goldberger and Kalton (1975) show 
that a relatively small number of well-constmcted cells 

formed from a continuous variable can capture a large 
proportion of the predictive power of the variable. 

The conditional bias of the imputed estimator under the 
cell mean model is 

•0jA,A^,d) = £,(0, 

Y w.(y;-y.)|A,A„d 0, 

since £,(3';) = £ , ( i : , , , / , y , ) =i: , , ,^rf,£^(y,) = 
^ieA ^ij V'g ~ V'g ^°'' i i" '-^l' S- This expectation is 
conditioned on the indices of the sampled units, the 
responding units, and the donors. However, since the 
estimator is conditionally unbiased for any sample, it is also 
unconditionally unbiased. Kim and Fuller (1999) also use 
this conditioning argument. Estimators for each component 
of the variance of the hot deck imputed estimator are given 
in the next section. 

3. ESTIMATION OF THE COMPONENTS OF 
THE TOTAL VARIANCE 

This section contains the main results about estimators 
of the three components of the total variance of a linear hot 
deck imputed estimator. Throughout, we assume uncon­
founded sampling, response, and imputation mechanisms 
and a Unear complete sample estimator of the form (5). The 
results requhe that the cell mean model holds and that there 
is at least one respondent in each imputation cell. We begin 
with the variance due to sampling, Vg^^. 

We assume that there exists a complete sample variance 
estimator, V^, that is design unbiased for the sampling 
variance of 0 ,̂ is a quadratic in the y-variable, and is of the 
form 

t = YY ^ijyiyj = Y Y ^ayf - 2 Y ^^yiyj, {i) 
ieA jeA ieA •<J 

i.jeA 

for known coefficients D... This formulation covers the 
Horvitz-Thompson estimator, where the f2.. are determined 
by the single and joint probabilities of selection. It also 
covers the Unearized variance estimator for the generalized 
regression (GREG) estimator. Rao, Yung and Hidiroglou 
(2002) show that the linearized variance estimator for the 
GREG estimator can be written by substituting g. e. for y. 
in the variance estimator for the Horvitz-Thompson esti­
mator of a total. Here, g^ is die sample-dependent ^-weight 
and e. =y. -x . 'B , where x̂  is the vector of auxUiary 
variables and B is the vector of estimated regression 
coefficients. Since g.^ is not a function of y and B is linear 
in the y-variable, g.^e. is linear in y. Therefore, the 
linearized variance estimator for the GREG estimator is 
quadratic in y and can be expressed in the form given by 
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equation (7). Note that in diis case the Q.. may be depen­
dent on the specific sample as weU as on the selection 
probabiUties. Deville and Samdal (1992) show diat any cal­
ibration estimator has the same asymptotic variance as the 
GREG. Thus, asymptotic variance estimators for calibration 
estimators in general have the required quadratic form. 

The naive variance estimator treats imputed values as if 
they were observed values and can be written as 

Vo = Y Y^ijyiyj-
ieA jeA 

(8) 

Lemma 1 gives the bias of the naive variance estimator as 
an estimator for Vg'̂ ^. As noted earlier, the naive variance 
estimator is proposed as the estimator of Vg'̂ ^ to be as 
consistent as possible witii design-based inference. An 
additional practical reason for using the naive variance 
estimator is to take advantage of existing software programs 
that estimate the sampling variance under complex samples. 
Lemma 1. Under the cell mean model with unconfounded 
sampling, response, and imputation mechanisms and the 
assumptions that 0, is an unbiased hot deck imputed linear 
estimator given by (6) and V^ is an unbiased complete 
sample variance estimator given by (7), then the bias of the 
naive variance estimator, VQ , as an estimator of V„ is 

2E E E ^ijdij^^^YYY^ij^A^ (9) 
g-l ieA„_ jeA^.^ g-1 i<j 

where A^ =A^D U^, A^^ = A^P\ U^, and 

lij= Y dkidkj- (10) 
keA„ 

For any two nonrespondents, i and j , that have the same 

donor, y.. = 1; y,.. = 0 otherwise. By definition, y,.,. = 1. 

Proof. We begin by noting that the difference between Vg 

and V can be written as: 

ieA 
y.-yn = Y^ii^!-y^] 

eA 

- 2 E E ^iAyih-yiyj) 
i.jeA 

Y^iiiyT-y-
ieA. 

+2 E E ^ij[yiyryiyi) 
'<j 

ieAg,jeA,^ 

+ 2 YY^ij(yiyj-yiyj)- ( n ) 

Under the ceU mean model, the conditional expectation of 
the first term of (11) is zero. The conditional expectation 
£^( y, y'j - yi yj) = E^ [yi {y* - yp ] = 0 unless respondent i 
is die donor for nonrespondent j ; it is thus zero when units 
i and J are in different ceUs and is only nonzero for one i 
and ;• in the same cell g. It may be represented by 
EJyi{y*-y)] = d..a^g. The conditional expectation 
EAy* y* - y, y ) is zero unless nonresponding units i and 

j have the same donor, which can occur only if these units 
are in die same ceU. It can be represented by 
E^ {y* y* - y,. yj) = Jij o] for / * j . Applying tiiese resuUs in 
equation (11) gives 

E,(Vo-V„\A,A^,d)=2Y Y Y 
8 = 1 '^^R, i^^M, 

^,^ij< 

2YYY %YyOg- (12) 
g= 1 '<J 

The proof is completed by noting that since V^ is 
unbiased under the design, it is also unbiased for Vg'^^. 

2 2 

Substituting a model unbiased estimator for o^, say o^, 
gives an unbiased estimator of the bias of die naive variance 
estimator. Note that whenever respondents donate their 
values to more than one nonrespondent, the last term in 
equation (12) is positive; otherwise, it is zero. 

Two simple examples illustrate applications of these 
resuUs. Consider first the estimation of a population mean 
from a simple random sample selected widi replacement. In 
this case, Q,. = n'^ and Q... = -n {n - I)' for i *j. 
Assume that the ceU mean model holds with hot deck 
imputation and that no donor is used more dian once. By 
Lemma 1, die bias of VQ is -2n"^(« - 1)" 'E^m^o^, 
where m =E.^ . E.^. d.. is the number of imputed 
values in cell g. In this case, the bias of the naive variance 
estimator is 0 {n ~^) and hence is negligible for large n. 
Now suppose diat every nussing value in each cell is 
imputed from the same donor. In this case, with 

EE.. . .^. Y =m {m - 1)12, the bias of K IS 
eA^'il g- g • • " 

-n ~^{n-l)"' E^ {mg + m^) o^, which is Op{n'') and is 
the same order as the sampling variance. 

As the second example, consider a simple two-stage 
sample of size n = ab, in which a clusters are selected from 
a population of A equal-sized clusters by simple random 
sampling and b of B elements are selected by simple 
random sampUng within each sampled cluster. Let y^ be 
the value for y for sampled unit i in cluster a. Assume that 
the first stage sampling fraction is small enough to ignore. 
The estimate of the variance of the sample mean is of the 
form given by equation (7) where Q^̂  pj = a'^b'^ - '- "̂  
for a = P, and ^ W, P7 = -n •{a- 1)"' for a ^ p . These 
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values can now be inserted into equation (9) to compute an 
estimate of the bias. For example, suppose that all missing 
values are imputed using donors from the same cluster (the 
cells are the clusters) and no donor is used more than once. 
In this case, the bias of the naive variance estimator is 
2n "̂  Ejj m^ o„, where m^ is the number of nonrespondents 
in cluster a. Now, suppose an overall cell mean model Uot 
deck is used and no donor can donate more than once, but 
that donors are always chosen from different clusters than 
their missing values. In this case, the bias of the naive 
variance estimator is -2« '^ {a - I )"'o^ Ê^̂  m^. This two-
stage example shows the naive variance estimator can be 
biased in either direction. In both of the cases considered, 
the bias is of lower order than the variance, and if a is large 
the bias will be negligible. 

The second component of the total variance is die 
variance due to imputation, Vj,^. Lemma 2 gives an 
unbiased estimator for this component with hot deck 
imputation. 

Lemma 2. Under the assumptions used in Lemma I, an 
unbiased estimator of Vĵ p is 

î̂ tP = 2 E j E vv ' d̂  + E E ^i ^j Jij ̂ l • (13) 

2 2 

where d is an unbiased estimator for o .̂ 

Proof. Since die variance due to imputation involves the 
squared difference between the imputed and complete 
response estimates, we begin by writing 

e.-e„f = fEw,(yVy,)f 
[ieA 

Ywf[yi* -yJ 

2YY^i^j(yi*-y.)(yi -yj)-

ieA. 

XJ 

Noting that EAy* -y,)^ = 2o^ for i in cell g and, from 
above, E^[{y. -yi){yj - y^] = E^{y. y- -yiyj)] = 
y.. a., it follows that 

î;«. = 2 E j E v̂ 'ô  + E E -̂̂ YyOg 1. (14) 

2 2 

Substituting Og, a model unbiased estimator for Og, 
establishes the lemma. 

Equation (14) shows that the imputation variance has 
positive contributions from each imputed value and also 
from using donors more than once. For example, suppose 
that the weights for all sampled cases are equal. The 

contribution to the imputation variance from cell g is then 
proportional to the sum of die number of missing cases in 
the cell and tUe number of pairs of nonrespondents that 
receive values from the same donors. Limiting the number 
of times donors are re-used can reduce the imputation 
variance. 

The third term in the total variance is V ĵx. which 
previous research often considered small or negUgible {e.g., 
Samdal 1992; Deville and Samdal 1994). Lemma 3 gives 
an unbiased estimator for V^^j^. 

Lemma 3. Under the assumptions used in Lemma I, an 
unbiased estimator for V ^ is 

G 

Y 
«= i 

E E 
ieA 

w.w.d.. 
' J y 

• E w. 
^2 
o„. (15) 

Proof. Begin by writing (0, - 0„) (0„ - 0^) = 
0„ (0/ - 0 J - 0^(0, - 0„). Let 0^ be die finite population 
total, which can be written as ^,ef/~/t>'/"^ 
^ieA yi'^'^ieA yi- Using tills expression, the second 
component can be expanded as 

0>, - K) -

{ Y >', + E 3'/+ E y^ Y -̂(>'/->';) • 
\ieU-A ieA„ ieA,,, ) [J^A^, 

In taking the conditional expectation of this product, the 
only nonzero contributions occur either when unit / in A^ 
is the donor for y*, or when unit i in A^ in the first set of 
parentheses is unit j in the second set. In the first case, 
E^ [ y,. (y/ -yj)]= d.j o] for / e A„̂ , ; e A^^. hi die second 
case, if nonrespondent unit i in A„ is the same as unity in 

* * 2 

the second term, J =7, £, [y,(y, -y,)] = ~o„. and this 
expectation is 0 otherwise. Thus, 

^5K(9/-e„)|A,A„,d)=E E ^ji 

Y Y ^CTJ = (). 

The first term can be expressed as 

Y ^lyi + E ^lyi 
ieA„ ieA^ 

E ^j(y/-yj) 

Using the results for E^{y.{yj - y^ ) given above. 

^MIX 2 ^ E E ^i^jdij-Y Y < 
ieAg jeA,^ g = l le/tj, 

^,r (16) 

Substituting an unbiased estimator of o proves the lemma. 

file:///ieU-A
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The estimator of V^^ is zero when the weights are 
constant, or more generally wUen the weights of the donors 
are equal to the weights of the missing cases to which they 
are assigned. Most of the simulations in the literature {e.g., 
Samdal 1992; Lee, Rancourt and Samdal 1995) have used 
simple random samples so that the estimates of the mixed 
term from the simulations are approximately equal to zero. 

To illustrate the effect of unequal weights, consider a 
stratified simple random sample selected from two equal 
size strata with replacement, and suppose that the sampling 
rate in sfratum 2 is fc times the rate in stratum 1. Let the 
imputation model be the overall cell mean model and let the 
hot deck procedure select donors with simple random 
sampling without replacement. For dus simple situation, 
Vĵ iĵ  can be derived algebraically. Table 1 shows the 
percentage contribution of the mixed term to the total 
variance (100* 2V^^^IVJQJ) for various combinations of 
strata response rates. The table iUusttates the fact that when 
the sampling weights are unequal, the contribution of the 
mixed term may be important and can be either positive or 
negative. The mixed term may also be important in domain 
estimation, as discussed in the next section. 

Table 1 
Percentage Contribution of the Mixed Term to K̂ Q.̂  

Response rate 

Stratum 1 

100% 

100 

100 

100 

60 

60 

60 

60 

60 

Stratum 2 

80% 

60 

40 

20 

100 

80 

60 

40 

20 

Oversampling rate in stratum 2 

k = 2 

4.3 

8.7 

13.7 

19.9 

-15.4 

-10.4 

-5.2 

1 

9.4 

k = 4 

5 

10.8 

18.3 

28.8 

-34.1 

-27.1 

-19 

-8.8 

6.5 

k = 6 

13.7 

18.3 

n.i 
29.7 

-44.5 

-37.6 

-29.3 

-18.2 

0 

Now consider estimating the total variance using the 
three lemmas for the hot deck estimator under the ceU mean 
model. To estimate V^'^^ we can either use the naive vari­
ance estimator, with its bias as given in Lemma 1, or correct 
for the bias with a procedure similar to that recommended 
by Samdal (1992). For a single stage sample, the bias cor­
rection given by Lemma 1 is easy to apply. However, with 
multi-stage sampling the correction involving fl may be 
compUcated and difficult to implement in practice. In this 
case, the naive variance estimator should produce an ade­
quate approximation provided that the number of sampled 
clusters is large, that no donor is used too often, and that the 
percentage of missing data in each cell is not extremely 
large. 

For the other two components, the only unknown 
quantities that must be estimated from the sample are the 
cell variances, a . These parameters could be estimated 
using either unweighted observations or weighted obser­
vations, where the weights are the selection weights. Fuller 
(2002) recommends the use of weighted observations to 
provide more robust estimates. Unbiased estimators of the 
conditional variance due to imputation and the mixed 
component are computed by substituting unbiased estimates 
of the ceU variances, d̂ . Then, adding Vn,V,'„,„, and 
2V' 

^g. ^ , J, / Q 

' MIX giv^s an estimator of the total variance 

^ror-\-^YYY^i^j\j^\ 
g = 1 '•<;• 

i.jeA,, 

2E E E 
> = 1 ie/(„ 

W.w.d.. 
' J y 

^2 

o„. (17) 

To examine this estimator, we give a few simple 
examples with known solutions. All of these examples 
involve samples with equal weights so the mixed com­
ponent is zero. FUst, assume simple random sampling with 
replacement, hot deck imputation under the overall cell 
mean model, and no donor used more than once. Using the 
naive variance estimator for Vg^, the estimated total 

n ' ' 5 - + 2n"'d^(l - m"') , where s~ = 
''E..^^(y; - y,)^, r is the number of respondents, 

A.2 

vanance 
(« - 1 ) ' -ieA^ 
and m is the number of missing cases. If we use d̂  instead 

».2 Jc of s- (where 6̂  is model unbiased while s~ has a small 
sample bias), then this simplifies to r ''d^ [1 + m( r - m)n '^]. 
Taking the expectation of this estimator gives the 
unconditional variance of the without-replacement hot deck 
estimator given by Kalton (1983, page 25, 2.3.1.7). 

If a multiple cell mean model rather than an overall cell 
mean model is used, then the estimated total variance is 
n~^s~->-2n'^T!^^^^t{n -r), which is sinular to the 
result given by Tollefson and Fuller (1992). 

Continuing with the simple random sampUng example, 
now allow donors to be used more than once with the 
overall ceU mean model. Again using d̂  instead of s-, the 
estimated total variance is approximately 

n 6̂̂ 1 n + m -^^ YYjij 
i<j 

''J^'^M 

(18) 

For fixed m, the variance in equation (18) is minimized 
when no donor is used more often than any other donor, to 
the extent possible (thereby minimizing E;^^ Ê .̂ ^ -^.j). 
Therefore, an imputation scheme that uses any donor at 
most once more than any other donor minimizes the total 
variance. 
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If donors are selected by simple random sampling with 
replacement, then £/[Yy] = r~^ and the expected value of 
(18) is /-"'6^[1 •>• n~^m{r-l)]. This is the expected 
variance of the with-replacement hot deck estimator given 
by Kalton (1983, page 26, 2.3.1.9). 

These examples show that the approach produces rea­
sonable estimates for the total variance in simple cases and 
highlights the conditional nature of the variance estimates. 
For example, (18) is conditional on the actual number of 
times donors are used rather than on the expected number 
of times they are used (the unconditional result). The ap­
proach is flexible enough to allow a variety of imputation 
methods, including with- and without-replacement and 
weighted and unweighted versions of the hot deck. 

4. DOMAIN ESTIMATION 

This section considers the important problem of domain 
estimation under the cell mean model with hot deck 
imputed data. Previous research on this topic is Umited (Lee 
etal. 1995). The standard estimator widi complete response 
for a population total for domain v is 0̂  = E.^^ ^,3 ' , ' 
which may be altematively expressed as 0̂  = E^̂ ^ w/ ŷ  
where w! = 5 .w. with 5 . = 1 if ieA and 5 . = 0 other-

I VI 1 VI V W /N 

wise. The hot deck imputed estimator is 0̂  = 
^ieA^i^v/i^,- = ^ieA^'i y,-Throughout we assume diat "8̂ ,. 
is known for all ieA. 

The cell mean model assumes that all the elements in a 
cell have the same distribution. In general, some elements 
in a cell may be in the domain and others not. One version 
of the model assumes a separate cell mean model for the 
domain alone and then applies an appropriate imputation 
scheme. The theory given in the previous section covers this 
case, and it will, therefore, not be discussed further here. 
While it is feasible to account for key domains in the 
imputation stage, it is impossible to consider all possible 
domains analysts may wish to study. Thus, the focus in this 
section on domains that cut across imputation cells has 
important practical implications, especially for analysis of 
public use data files. 

We now discuss the estimation of the three components 
of V̂Q.p , the variance of an imputed domain total. Consider 
first the estimation of V^'^^ . In the case of complete re­
sponse, by setting y. = 0 for elements outside the domain, 
the estimated sampling variance can be expressed in the 
form of equation (7) as V„̂  = E,.̂ ^ D.,.yf + 2EE,.̂ .̂̂ ^ Q,̂ .y,. ŷ .. 
With domain membership known for all sample elements, 
the conditional bias of the imputed variance estimator V^, 
following the developments in section 3 is: 

^ J \ - ^ l ^ ' V d ) = 2E E E ",^,A 

-2EEE" ,Y,4 (19) 
•<j 

As discussed in section 3, with large samples VQ may be 
conveniently employed to estimate Vg'̂ ^̂  using standard 
survey sampUng variance estimation software. It is 
interesting to note that the naive variance estimator would 
be unbiased if all the donors were from outside the domain 
(thus, d.. = 0) and no donor was used more than once 
( Y - 0 ) . 

The derivation of Vĵ p follows directiy from Lemma 2, 
wUere the weights are treated as constants in the conditional 
expectation. Replacing w! for w. in equation (13) gives 

Î;.P. = 2 E | E - ;^6^EE-/^ 'T,d 
g = l .-eA^ i<j 

'.JeA,^ 

= 2E E "^f^l^YY^i^jJij^ll 
••JeA^.^ 

îMP ̂ ^^ "°^ depend on whether donors come from within 
or from outside the domain. 

The derivation of V^^^ also follows from section 3. 
Substituting w! for w. in equation (15) gives 

G 

V' 
M1X„ 

E[ E E ^>;d,-Y w/1 
g-^ [ '^\J'^M^ J^^M^ j 

G 

= E E E ^i^jdij- Y '̂ Z 

,2\ ^2 
o„ 

' I '^^R.J^^M., 
ol (20) 

Note that the mixed component is not zero for a domain 
total, even if all the original weights are equal. With equal 
weights w (but not equal w'), the contribution to V^^ is 
zero when the donor is from inside the domain whereas it is 
negative when the donor is from outside the domain. As a 
result, V' = - w ̂  E / o , where I is the number of 
donors from outside the domain in cell g. In this case, 
ignoring the mixed component with domain estimation 
results in an overestimate of the total variance. With un­
equal weights, the bias due to ignoring the mixed com­
ponent can be either positive or negative. 

The total variance of a (linear) imputed domain estimator 
under the cell mean model is then estimated by 
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T̂OT. = \ - 2 i : EE<vv . 'Y , ;6 j 
g = 1 Kj 

- 2 E E E ^i^j'dy&l- (21) 
g '^A,f jeA^, 

As an illusttation, consider the case of equal weights 
within the domain (ŵ ,̂ = w^) and no donor used more than 
once. In this case, the second term on the right in (21) is 
zero and the third term reflects the variance increase from 
imputation. If all the missing values are imputed using 
donors from the domain, then the third term is 2w^ ^'"gv ^g 
where m is the number of missing items in cell g and 
domain v. On the other hand, if no units are imputed from 
within die domain, then this term is zero. Thus, the total 
variance is minimized when the donors are selected from 
outside the domain rather than from within the domain. 
This result occurs because imputing from outside the 
domain in effect substitutes a new value for a missing value 
for domain estimation, thus maintaUung the original domain 
sample size. On the other hand, imputing from within the 
domain does not increase domain sample size and there is 
also a penalty to the variance from reusing a domain 
respondent's value for the nonrespondent. 

If the distribution of y varies by domain {i.e., the 
imputation model is misspecified), then choosing donors 
from outside the domain results in biased estimates. Since 
all models are misspecified to some degree, it is therefore 
generally unwise to intentionally select donors from outside 
the domain in order to minimize the variance. 

5. SIMULATION STUDY 

A small simulation study was performed to examine the 
model-assisted variance estimates for estimating an overall 
total and a domaUi total. A sample of 40 clusters with exact­
ly 5 units in each cluster was selected from an infinite su­
perpopulation, where y^ is the study variable for unit i in 
cluster a. The y-values were generated from y^ = xa^ + e^, 
where a^ and e^. are independent random draws from the 
standard normal distribution. Thus, the y-values have mean 
zero, variance (T^ + 1), and correlation p = T^/( 1 + T^) if 
the units are from the same cluster and p = 0 otherwise. 
Values of T = 0 and T = 0.5 were chosen, giving correla­
tions of 0 and 0.2, respectively. The value, p = 0.2, was 
chosen to iUusttate the effect of a high inttaclass correla­
tion. In addition to the y-variable, an indicator variable for 
domain v was generated by independent sampling with the 
probability of being in the domain of 0.25. Respondents 
were selected from the fuU sample using a uniform response 

probabiUty of 0.6 and missing values were imputed using a 
single-cell with-replacement hot deck. A total of 5,000 
Monte Carlo samples was selected. 

The simulated point estimators for the overall total and 
the domain total are unbiased. The means and biases of the 
model-assisted variance estimators (V^OT) ^^ given in 
Table 2 (die tabulated values are divided by A^̂ IO'"̂ ). 
When p = 0, the relative biases of the variance estimators 
for the overall and domain totals are very small. On the 
other hand, when p = 0.2, the variance estimators have 
negative relative biases that are not negUgible (a relative 
bias of -13% for the overall total and -5% for the domain 
total). To identify die source of the bias. Table 2 also gives 
die means and biases of the three variance components. The 
tabled values show diat Vj^ and V^-^ are approximately 
unbiased, and it is only VQ that has a non-negligible bias. 

When p = 0 the ceU mean model holds and VQ is 
unbiased as expected under the theory. When p = 0.2, the 
correlation of the y-values within clusters impUes that the 
cell mean model assumption does not hold. The imputation 
procedure replaces some missing values using donors from 
outside the cluster, causing VQ to underestimate the sam­
pling variance due to the underestimation of the inttaclass 
correlation. In this particular situation, the model failures do 
not result in biased estimates for the other two components. 
However, these components could be biased under other 
types of model failure. The simulation Ulusttates the 
dependence of the model-assisted estimators on the model 
assumptions and this is discussed furdier in the next section. 

Table 2 
Mean and Bias of Simulated Variance Estimators, with Cluster 

Sampling of 40 Clusters with 5 Elements and Response 
Rate of 60 Percent* 

v 
•^TOT 

-J\A ' 0 'IMP 'MIX 

Estimate p Mean Bias Mean Bias Mean Bias Mean Bias 

, 
y 

yy 

0 

0.2 

0 

0.2 

104 

126 

16 

18 

-0.5 

-19.6 

-0.1 

-1 

50 

86 

12 

16 

-1.9 

-21 

0.3 

-1 

54 

61 

11 

12 

-1 

0 

0 

0.1 

0 

0 

-4 

-4 

1.2 

0.9 

-0.2 

-0.1 

* The values in the table are actual values divided by iV^ 10"̂  

6. DISCUSSION 

This paper describes a method for estimating the vari­
ance of a survey estimate when some of the values are im­
puted using hot deck imputation. The method uses a model-
assisted approach and conditions on indices for sample 
members, respondents, and hot deck donors. The approach 
extends the work of Deville and Samdal (1994) to variance 
estimation for hot deck imputation, probably the most 
widely used method of imputation in household surveys. 
The proposed variance estimator is valid for a general 
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sample design and for a variety of estimation procedures 
under the superpopulation model and unconfounded as­
sumptions. The paper also extends the previous work by 
handUng stochastic rather than determiiustic imputation and 
giving conditions for die bias of the naive variance 
estimator as an estimator of Vg'̂ ^ to be small. 

The results focus attention on the need to take the mixed 
component into account when the sample elements have 
unequal weights. In particular, since domain estimates can 
be tteated by assigning adjusted weights of zero for sample 
elements not in the domain, the nuxed term needs to be 
taken into account in estimating the variance of domain 
imputed estimates even if the original weights were equal. 
Other statistics can also be covered by the approach used 
for domain estimates. For example, for the simple regres­
sion of y on X, widi y including hot deck imputed values and 
X complete, the regression coefficient can be expressed as 
a weighted linear combination of the y's: b = 
E w.{x. - X )y.l'Lw.{x^- xf = Ew/ y_., where w! = 
wfyX.^ -X )l'E,w.{Xj -X ) ^ . Also the difference between 

two domain estimates, 0̂ ,, and 0̂ ,2, can be expressed as 
9vi -6v2 = ̂ ,evi'^/>'/-^,ev2^,-3', = Svv/y,., where w.' =w. 
for / e vl, w.' = -w. for i e v2, and w.' = 0 for i$ vlli v2. 

The last example, involving the difference between 
domain estimates where imputation cells cut across 
domains, highlights the importance of the model in the 
imputation process. In this example, the analytic interest in 
the difference between the domain statistics is incompatible 
with an imputation model that assumes no difference in 
y-distribution across domains within imputation cells. By 
imputing across domains witU a Uot deck cell imputation 
scheme, the sample domain means for y will be brought 
closer together, thus decreasing the estimate of the differ­
ence. Thus, a good imputation model is cmcial for pro­
ducing valid point estimates. 

The model-assisted approach to variance estimation with 
imputed data described here assumes a Unear estimator, but 
smooth nonlinear functions can also be included using a 
Taylor series approximation. LUce the Rao and Shao (1992) 
adjusted jackknife method, the model-assisted method is 
applicable with general sample designs and estimation 
schemes. However, the adjusted jackknife method is 
applicable only with a weighted hot-deck whereas, as a 
result of its model assumptions, the model-assisted method 
can be employed with a variety of hot deck methods, 
including choosing donors with equal probabiUty and witU 
probabilities proportional to their weights. The model-
assisted method of variance estimation could also be 
extended to other imputation schemes such as nearest 
neighbor imputation and fractional hot deck imputation 
(Kalton and Kish 1984; Fay 1996; Kim 2000), a technique 
which reduces the variance due to imputation. 

Implementation of the model-assisted method with hot 
deck imputation requU ês the availabiUty of the information 
needed to compute the three components of the total 
variance. Standard survey sampling variance estimation 
software can be used to compute an estimate of VQ that is 
approximately unbiased with large samples, but as the 
simulation study iUusttates the estimate may be biased if the 
ceU mean model does not hold. The computations of the 
other components require irtformation on the identity of the 
donor for each imputed value and of the imputation cell 
membership of aU sample members. From this information, d.. 
and •Yy can be determined. In addition, an estimate of oi is 
required. 

While the theory given above applies to variance 
estimation widi many sample designs, including multi-stage 
samples, there are serious concems about die vaUdity of the 
imputation model in many cases. In the case of multi-stage 
sampling, tUe means of many survey variables differ across 
PSUs, yet hot deck cells are seldom formed within PSUs. 
Rather they are constructed in terms of other variables that 
cut across PSUs. Even within these cells there may be 
differences in means between PSUs. These differences may 
be offsetting to some extent and not inttoduce substantial 
biases for point estimation. However, their effect on 
variance estimation may be more significant. As indicated 
in the simulation, failure of the assumptions may have a 
greater impact on second order statistics than first order 
statistics. This issue merits more detailed investigation. 

Imputation is more difficult when the goal is estimating 
a function of more than one variable with missing values. 
To produce an unbiased estimate of a parameter that 
involves several variables subject to imputation requkes the 
development of an appropriate multivariate model and an 
imputation procedure consistent with that model. Given an 
appropriate model and a hot deck imputation that is 
consistent witii it, die model-assisted approach to variance 
estimation can then be implemented. However, estimating 
the variance becomes considerably more complex with 
multivariate estimates. The development of practical 
methods of imputation and variance estimation for this 
situation is much needed. 
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Domain Estimation Using Linear Regression 
MICHAEL A. HIDIROGLOU and ZDENEK PATAK ' 

ABSTRACT 

One of the main objectives of a sample survey is the computation of estimates of means and totals for specific domains of 
interest. Domains are determined either before the survey is carried out (primary domains) or after it has been carried out 
(secondary domains). The reliability of the associated estimates depends on the variability of the sample size as well as on 
the y-variables of interest. This variability cannot be controlled in the absence of auxiUary information for subgroups of the 
population. However, if auxiliary information is available, the estimated reliability of the resulting estimates can be 
controlled to some extent. In this paper, we study the potential improvements in terms of the reliability of domain estimates 
that use auxiliary information. The properties (bias, coverage, efficiency) of v£irious estimators that use auxiliary 
information are compared using a conditional approach. 

KEY WORDS : Domain estimation; Auxiliary data; Conditional properties. 

1. INTRODUCTION 

One of the maUi objectives of a sample survey is to 
compute estimates of means and totals of a number of 
characteristics associated widi the units of a finite 
population U. The data are often used for analytic studies 
such as the comparison of means and totals for subgroups of 
the population. Such subgroups are referred to as domains of 
stiidy. Hartiey's (1959) paper is one of die first attempts to 
urufy the theory of domaUi estimation. Harfley provided the 
theory for a number of sample designs where domain 
estimation was of interest. His paper mostiy discussed 
estimators that did not make use of auxiUary information. 
He did, however, consider the case of the ratio estimator 
where population totals were known for the domains. The 
use of auxiUary data in the context of domaUi estimation has 
been discussed in a number of articles. Samdal, Swensson 
and Wretman (1992) provided a unified tieatment of 
domaUi estimation witU auxUiary data. Estevao, HidUoglou 
and Samdal (1995) were tUe first to recognize that the 
weights accounting for auxUiary data could be domain 
dependent or not domaUi dependent. Estevao and Samdal 
(1999) discussed desUable properties of regression esti­
mators of domaUi totals usUig auxiUary data. 

The existence of multivariate auxiUary data raises a 
number of questions in the context of domain estimation. 
Some of diose questions are as foUows. What is the effect of 
having auxUiary information that is not known on a popu­
lation basis for the given domain of interest? How do we 
compute vaUd variance estimates in the context of domain 
estimators that use auxiliary data? If more than one esti­
mator is possible for point estimation and/or variance esti­
mation, what criteria should be used to choose the best 

estimator? Durbin (1969) supported the use of conditional 
inference to do such comparisons. He stated, "If die sample 
size is determined by a random mechanism and one happens 
to get a large sample, one knows perfecdy well that the 
quantities of interest are measured more accurately than 
they would have been if the sample size had happened to be 
smaU. It seems self evident that one should use the infor­
mation available on sample size Ui die interpretation of the 
resuU. To average over variations in sample size which 
might have occurred but did not occur, when Ui fact die 
sample size is exactiy known, seems quite wrong from die 
standpoint of the analysis of the data actuaUy observed". 
Holt and Smith (1979) favored conditional inference, and 
appUed U to study the properties of the post-stratified esti­
mator, given simple random sampUng. Rao (1985) intto-
duced die idea of "recognizable subsets" of die population 
to formaUze the conditioning process. Recognizable subsets 
are defined after the sample has been drawn. In the case of 
domain estimation the number of units belonging to a par­
ticular domain is a random variable. Recognizable subsets in 
that context are those where the sample size is fixed within 
each domain. Comparison of the conditional statistical prop­
erties {i.e., bias, mean squared error) of the different esti­
mators can dien be based on these subsets. The conditioning 
process assumes diat population totals are known for each 
domain. In the case of simple random sampUng, the number 
of units in the population domain is assumed known. 

The main purpose of this paper is to study die un­
conditional and conditional properties of a number of 
domain estimators of totals in the presence of auxiUary data 
Ui the context of simple random sampUng without 
replacement (SRSWOR). These conditional properties will 
be estabUshed by conditioning on fixed sample sizes within 
each domain. 

Michael Hidiroglou, Business Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, KIA 0T6; Zdenek Patak, Business Survey Methods 
Division, Statistics Canada, Ottawa, Ontario, Canada, Kl A 0T6. 
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The paper is organized as foUows. In section 2 we wiU 
Uittoduce several estimators of domaUi totals. TheU 
unconditional and conditional properties are provided in 
section 3. In section 4, we wiU present the results of a 
simiUation study for the case of die ratio estimator of 
domain totals, and provide some concluding remarks in 
section 5. 

2. ESTIMATORS OF DOMAIN TOTALS 

We first inttoduce some notation to set up the 
framework, under which we wiU be assessUig the 
performance of various estimators of domain totals. Let 
U -{l,..., k,...,N} denote tbe finite population. A sample 
"s" is selected from this population usUig a sampUng plan 
P{s). Let die first and second order inclusion probabiUties be 
given by TT̂  and TT̂^ . The domain total Yj -J^ ŷ  is the 
parameter of interest for a variable "y". A domain Uj 
{d= I,..., D) is any subpopulation of U, for which a 
separate estimate may be requUed, before or after the 
plannUig stage. The number of population units in domain 
Uj is denoted Â^ and Â  = E J=i Â^ for D mutuaUy 
exclusive and exhaustive domains spanning the entire 
population. The sample s is correspondingly divided into D 
domains Si,..., Sj,..., s^ where Sj=Ujr\s. The 
reaUzed sample size within s^ is a random variable that we 
denote n^. Note that the sum of the n^'s over non-
overlapping and exhaustive domaUis of the sample equals 
n . An estimator of the domaUi total Y^ - Ey ŷ  that does 
not use auxiUary data is given by ^̂  HT = 
T-s,Wkyk='^sWk y^k where w^ = n"^, and ŷ ^ is equal 
to ŷ t if fee UJ and 0 otherwise. 

AuxUiary Uiformation in the form of a p-dimensional 
vector X may be available at different levels of aggregation. 
It may be known for each unit in the population, or for 
subsets U g^U{g = l,...,G) of the population U that may 
coincide with the domains U ̂  . We denote such known 
totals X^ = E[/ x^; they are estimated by X^ „j -
Ej w* X;t- A modified set of weights iv̂  incorporating the 
auxiUary data can be computed usUig either caUbration or 
Unear regression procedures (LR). We cUose the LR 
approach. In the case of G population groups, the LR 
estimator is given by 

t=>^m-+i (X, -X^ ,p r r ) 'B , (U) 

where B^ = (I,^ w, x, x', /c,)"' I,^ w, x, y, Ic,, and q 
are suitable positive constants. The use of auxUiary data Ui 
the domain context offers a wide range of choices for 
various levels at which auxiUary totals are used and 
regression models are constmcted. To simpUfy matters, we 
assume that ^ = 1 {e.g.: a sUigle group U), yielding the 

simple regression estimator Y^^-Y^J-lr{X-X^^.^)o, 
where XHT = Z, w^̂ x̂ . 

We consider six estimators for estimating the domain 
population total Y^ . These estimators are based on whedier 
we use the domain totals X^ or the population total X, and 
whether we constract the regression estUnator at the domain 
or at the population levels. The estimators are categorized 
into Horvitz-Thompson and "Hdjek" types. We provide an 
example of the ratio estimator that is associated with each of 
these estimators. 

2.1 Horvitz-Thompson Type Estimators 

Casel 

We assume that the auxiUary information X;̂  is avaUable 
at the population level U, X = Zy x^ and that the domaUi 
specific y ĵ variables are regressed on x^, ksU. The 
resulting population regression parameter B,^ = 
(l£/X;t x; /cj ' ' i ;yx^y^^/c^ is estimated by B,^ = 
(E, w,x, x; Ic,)"' Z, w,\, y,^ Ic, and die resulting 
estimator of the population total Yj is 

^d.<r, - ^rf.trr + ( X • (2.1) 

Example: The domain ratio estimator given by F̂  RAJ = 
XR^J, where R^^ -Yd.Hr ^ ̂ m- ^hi^ estimator was first 
suggested by HidUoglou (1991), and is discussed Ui more 
detail in Estevao et al. (1995). 

If the auxiUary data totals are available at the domain 
level, X^ = Zy Xj, then two possible estimators of Yj 
(cases 2 and 3) can be constracted, depending on how the 
population regression parameter is estimated. 

Case 2 

The population regression parameter 

^2d ^[Y,^ ^k x'tAtJ Y,^ ('>^k yk/ck) 

is estimated by regressing ŷ  on x̂  for each domain Uj 
separately. Its estimator is given by 

Bzd = [Y,^^k X, x;/c,J Y,^i^k ^k yk/ck). 

and the resulting regression estimator of a domain total is 

where X^ = Zj w,^ x̂ ^ with x̂ ^ defined sUnilarly to y^ .̂ 

Example: The Horvitz-Thompson post-sttatified estimator 
given by Kd.posTR ^^d^id' where R^j =Yd.ml^d.m-
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Case 3 

The population regression parameter 

is estimated by regressing y^ on x^ using all units in U. 
The corresponding estimator is 

B3 = t WtX, Xk/c.y'Ys (^k'^k yk/Ck)> 

resulting in the regression estimator 

^rf.̂ rj = ^d.HT + (Xrf ~ ^ d . H x ) 8 3 . (2.3) 

Example: The altemate ratio estimator given by J'̂  ALTR -

Yd.m + (^d - ^d,m-)^3. where R^=Ym'^m-

2.2 Hajek Type Estimators 

Estimators (2.1)-(2.3) belong to the Horvitz-Thompson 
family. If the known population domain size Â ^ is also 
Uicorporated Ui the estimation, then we get die "Hajek" 
versions of the previously defined Horvitz-Thompson 
regression estimators. The Hajek regression estimators are 
obtaUied by replacUig YJ^^J, X^ Ĥ . , and X^^. by 

1̂ .. HA - l^d l^d K.HT, X ,,„A = (A^. IN, ) X , , 

and 

X H A = ( ^ / A ^ ) X „ T , 

where N, = Zj^ w^ and ^ = Z^ w* • The estimators are 
nearly conditionally unbiased for a given n,, wUereas tUeh 
Horvitz-Thompson counterparts do not have this property. 
The " B "s contained within die Hajek regression estimators 
correspond exactiy to theU Horvitz-Thompson counterparts. 

Case 4 

1^ . .„=1^. ,HA+(X-X„J 'B„. (2.4) 

Example: The Hajek ratio estimator given by 1^ RAX -

^rf.HA + ( -^ ~ ^ H A )^ld • 

Case 5 

yd.tr^ = J'rf.HA + (Xrf - X^ HA )'^2d - (2-5) 

Example: The H^jek post-sttatified ratio estimator given by 

yd.posrR=yd.HA+(^d-^d.HA)^2d- This estimator is 
identical to die Horvitz-Thompson post-sttatified estimator. 

Case 6 

>"..., = W + ( X . - X , , H A ) ' B 3 . (2.6) 

Example: The Hajek altemate ratio estimator given by 

^d.ALTR ~ ^d.HA "'' (^d ~ "^d.HA^^S • 

3. PROPERTIES OF THE DOMAIN 
ESTEVLVTORS 

Estimators (2.1) - (2.6) may be expressed as: 

^d.tr = Ys ^k ^dk ydk = Ys ^dk ydk (2.1) 

where a^^ is an adjustment factor diat may or may not be 
domain dependent. The product of the design weight w^ 
and die adjustment factor â ^ is known as the regression 
weight (or caUbration weight) w^^. Tables 1 and 2 provide 
a summary of these factors, as well as the residuals required 
for unconditional variance estimation. The population and 
sample residuals are denoted as £^^ and e^^. The indicator 
variable 8̂ ^ is equal to one if k^U, and zero otherwise. 

The approximate population and corresponding esti­
mated variances of the Horvitz-Thompson estimators 
y,,,, (7 = 1,2, 3) are: 

y[yd.tr)=YYu ^^^ 
'dk 

y^k J 

^dl 

\'^t ) 

(2.8) 

and 

vfc.J=ZI.̂ f° dk '^dk a^.e. dl '^dl (2.9) 

where Â ^ = Tt̂ .̂  - TT̂  Tt̂ ; /r̂ ^ = Pr{ k,i&s\ widi die 
appropriate E^̂  's, e,^^ 's, â ^ 's defined in Table 1. 

The approximate unconditional population and corre-
spondding estimated variances of the Hajek-type estimators 
y,,,,^(y = l ,2 ,3)are: 

^dk -^U^dkl^d] 

E,,-^,jE,JN,]h,, 

forj = l 

YYu, ̂ « 
Edk Ey Edi Ey 

forj = 2,3 (2.10) 
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Table 1 
Adjustment Factors and Residuals for Horvitz-Thompson Regression Estimators 

Estimator Domain Dependent Adjustment Factor: a^^ Residuals 

'd,(r, 

'd.tr. 

'd,tr. 

No 

Yes 

Yes 

1 + ( X - X H T ) ' 

N-1 

•-k J 

•"dk l + (Xd -^d,m) 

5<ft + (Xrf - X ^ H T ) ' Y: 
Wk^k^k 

>̂ ; 

Edk - ydk - 4 Bw 

^dk - ydk ~ " * 8|rf 

^dk = ydk ~ ^dk ^2d 

^dk - ydk ~ ^dk ^2d 

^dk - ydk ~'>'-dk^3 

edk=ydk-''^dk^i 

Table 2 
Adjustment Factors and Residuals for the Hajek-type Estimators 

Estimator Domain Dependent Adjustment Factor: a^k Residuals 

'd.tri Yes 

Yes 

k J 
^. (X-X„A) ' [Z .™^ 

^^(x.-x,,HA)'fy 

N-1 

' A - ' 

^d.tr. 5 , , ^ . ( X , - X , , „ A ) ' E . ^ ^ ^ ^ 
Nd { ' '=k ) 

^k'^k'^k 

^k ) 

\ 
Ck 

Ck 

Edk -ydk-'>'-'k^id 

edk =yd*-x! t B,rf 

Edk - Jdk ~ *dk ^2d 

edk=ydk-'^'dk^2d 

Edk = ydk - ^dk^3 

^dk = ydk ~ ^'dk B3 

and 

^ d t ^dk ^dt ^dt 
• \ 

( x ; ) ' = ( i , ( x ^ , - X „ ) 
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forj = l ,2,3 (2.11) 

where E^^ =Zc/, E^JN,. The appropriate £̂ ^ 's, e^/s, 
and â ^ 's are defined Ui Table 2. Note that die form of the 
estimated unconditional variance is the same for both the 
Horvitz-Thompson and the Hajek-type estimators. 

Result 3.1: The Hdjek-type regression estimator can be 
obtained as a by-product of the regression of ŷ  on 

(x;)'=[^i,(x,-xy) J, 

where x^ =N~^ Zu x^. The resulting regression vector is 

B" = fi:,B, 

where 

^x^i^.^ki^k-^s^^k-'^s) ICkW X 

and B ; - y ^ - l - ( x y - x J B^, widi y^=Yy^.^lN and 
^s=K-rlN-

The regression estimator of total Y^^ =NB° is equal to 
die Hajek form f̂ , =yHA+(X-XHA)'B^. The various 
Hajek-type domain regression estimators can be obtained 
using this approach. For mstance, regressing ŷ ^ on 

yields ŷ _j,_. 

Proof. We first show how to arrive at the Hajek form of the 
regression estimator. Defining the auxiUary data vector ẑ  
as z^ = (jCĝ t' x't)', the regression estimator is 

where 

^z^\Y,'^k^k^'k/Ckr [Y^^k^kyk/^^kh 

Z = Z„z* and^ZHT=Z.w,z,. 
If XQI^=1, Y(^ is exactiy equivalent to Ŷ ^ = Z' B^. 

Decomposing B^ as 

B;=fBo,Bl, 

Xj B , and 

we have that Ŷ ^ = AWg+Z£/X^B^, where Bo^?, 
nd 

Ys ^ki^k-^.hk - x J 
B -

,'A 

Ys ^ki^'^k-^shi.-ys) 

Hence, the Hajek form of die regression estUnator is 
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^{r - Y H A +\XC/ - X H A J ' B ^ . 

Regressing y^ on 

( X ; ) ' = (1,(X, - X y ) 

yields die estimated regression vector B° =\B°,B^ |, 
where 

B , = 
^^v' Y ^*(x*-x,Xx,-xJ y H't(x;fe-xjyt 

and B^ =y^-\-{Xu -\J B^. Substituting B^ into 

Y^^ =NB? yields die Hajek form Y^ .̂ 

Remark 3.1: (Adtiitivity). Suppose that the domains U, 
are mutiiaUy exclusive {Uj n,Uj^ = 0 for d, ^tdj) ^ ^ 
exhaustive {[jj^^U^-U ) . Additivity over such domains 
means tiiat ZL^'d.fr, =Z?=il'd.fr3=?£r where 

ygr ^ym+(X-XHT.JB. 

The additive property of Yj g^ is desirable because a sUigle 
set of caUbration weights, w^ a^^., can be used repeatedly 
to produce ad hoc domain estimates. Only two out of the six 
estimators, Y^^^ and Yjg^, are additive over aU such 
domaUis. 

Remark 3.2: (Calibrating on domain auxiliary data). 
Estevao et al. (1999) discussed some of die estimators 
provided Ui Tables 1 and 2 for the case of a sUigle auxUiary 
variable x^. They arrived at theU estimators by conttoIUng 
on domain information, either via auxiUary variables and /or 
conttol totals. 

In what follows, we wiU assume that the sample s of size 
n has been selected usUig simple random sampling without 
replacement (SRSWOR) from a universe of size N. The 
estimated unconditional variance of the Horvitz-Thompson 
and Hajek-type estimators for dus sampUng plan is: 

vfc..,)=L Â  \l-f)Ys\'^dkedk-adej (2.12) 
n n-l 

where a^e- Zj(«rfi ê ^ In) and f -nlN is the sampUng 
fraction. 

3.1 Unconditional Properties 

The choice between the various regression estimators 
should be based on the level at which the auxiUary totals are 
available, as well as bias and variance. AU the above esti­
mators are asymptoticaUy unconditionaUy unbiased; how­
ever, theU variances differ. We compare the imconditional 
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population variances of the six domain regression estimators 
(2.1) - (2.6) by distinguishing two cases: (i) an Uitercept 
term is Uicluded in the regression; and (ii) no intercept term 
is included in the regression. 

Result 3.2: Assume that an intercept is included in the 
regression, c,^-c for alike U , and N > p, where p refers 
to the number of auxiUary variables. The following 
UiequaUties hold for the population variances of the domain 
regression estimators (2.1) - (2.6): 

(i) v(y,,,,) < v{t,r,); v{Y,,,^) < v{Y,,,^) -, v{t,,^) 
may be smaller, equal or greater to V{Yj g^^). 

(ii) y(yj.er,) < V(yd.er,) and V{Y,g,^) < V{Y,g,^); 
V{Yjg^) may be smaller, equal or greater to V{Yj g^). 

Proof. In die case of simple random sampling without 
replacement, V{Y^g^^) = Aj:y{Ej^ -EyJ^ for ^ = 1,2,3, 
where A = N^'{i-f )l {n{N-l)) and £y^ = 
Zt/ Eji^ IN. Given that the regression contains an 
Uitercept, it follows that Zy E^,^ = 0 or diat Zt/̂  E^,^ =0 , 
depending on which regression estimator we use. We only 
show that (i) holds: the proof for (U) is sUnilar. The 
popiUation variances for Yjg^ and Yj g^ are respectively 

v{Yd.ir,)=AYu(ydk-^'k^uf 

and 

v(yd.J=AYu(ydk-K^2d)'-

The population variance of Y^g,. is 

y(t.J=AYu(E.k-Euj\ 

where 

Eu.=N-'YuEdk=[^](yu.-K.^^ 

widi yy = Nj^ Y.Uj ydk and x^ similarly defined. 
We first show diat V{Y^g^^) < V{Yjg^^). To diis end, we 

decompose 'Lu(ydk ~K^id)^ i"t° i^ widiin domain U^ 
and outside domain Uj components, yielding 

Yu(ydk - x ' ^ B . j ' =Xy/yrft - X ; B , J ' 

+Yv,(ydk-^'k^id)'-

Since 

Yu,(ydk - X ; B , J ' = X f / , ( > ' * - x ' t B j j ' 

+ Z u , K ( B 2 . - B „ ) ) ^ 

UfoUowsdiatV(y,,,,^)<V(y,,,,,). 
Next, we show diat 

v(Yd.JMt.J-
The variance V{Yj g^) can be re-expressed as 



72 Hidiroglou and Patak: Domain Estimation Using Linear Regression 

' Vd.er, j - Yu, 

(yk •x[B,)' 

(y . - x ' Bj)" 

The difference between V {Y^g^) and V{Y^g^) is: 

y(yd.tr,]-y(Ktr.) 

Z . J ( 3 ' . - x ; B 3 ) ^ ) - [ ^ k - x ; , ^ B 3 ) ^ 
V y 

-Yu,(yk-''^'k^2d)'' 

''k]^},-^2d) 

=A 

=A\ 

>A 

(B3-B, 

- f ^ f e -2B'3X,̂ y,̂  +B'3X,̂ x;̂ B3) 

(B3-B2j ' t^x,x;)(B3-B,J 

-^d^l, -2B'^'^uJu, +B;xy^x;^B3) 

Noting that y^ =Xy Bj^ it follows that: 

fu, - 2B'3 x;,^y^^ + B'3 Xy^x;_,B3 

~ "2d ^Uj^Uj"2d ~ 2 B 3 Xy^Xy^Bjj 

+ B'3Xy^x;^B3 

- ( B 3 - B 2 j ' x y ^ x ; , ^ ( B 3 - B , J 

Since 

Yuj^k^i' ~^d^Uj^Uj ~Yuj y^k ~^Vd ly^i' ~^Vd I' 

the difference V {Y^g^) - V{Yj g^) can be expressed as: 

v(Yd.J-v(yd.tJ 

= A{(B3 - B,, )(Y,^ XX - N,x,x',^ )(B3 - B,,)} 

= A{(B3-B,j'X„jx,-XyJ(x,-XyJ'(B3-B,,)} 

>0. 

FinaUy, we show that V{Yjg^) may be smaUer, equal or 
greater to V{Yjg^) by constractUig examples: 

(i) V(y . . , , )<V(y , , , , _ ) , i fB3=B, , ; 

(ii) V{Y,,,^)=V{Y,,,^),ifB,=B,,; 

(iU) V(y,,,,^) >y(y, , , , , ) , i f die fit of y, on X, is 
much poorer than the fit ŷ ^ on x^ for ke U. 

It can also be shown that V{Yjg^) <V{Yji^); 
V{Y,_g,^)<V{Y,g,^); and V{Y,g^^) <V{i\). The esti-
mator widi the smaUest variance is Yj g^ . However, if it is 
assumed that die 82^ 's are similar across aU domains, and 
diat there are very few observations Ui s^, it may be 
preferable to use Yjg^. The choice between ŷ  ,̂  and 

Yjg^ should not always be based on the asymptotic 
variance. If there are very few observations in Sj, this can 
cause significant bias in Y^g^^ and also cause the exact 
variance of Yj g^ to be larger dian that of Y^g^ , so that the 
latter may be preferred. 

Remark 33: If diere is no intercept Ui the regression, then it 
does not necessarily foUow that Result 3.2 holds. 
Proof. We Ulusttate this statement usUig die elementary ratio 
versions of cases 1 and 2. They are respectively the Horvitz-
Thompson ratio estUnator i^RAT = ^d.m-(.^^^frr) and the 
Horvitz-Thompson post-stratified ratio estUnator y^ PQSTR -

r̂f.HT (^d l^d.m) - Also, suppose that die elements of die 
data vector {y^,x,^) are positive for aU ke.U. The 

population variances for Yd,KM and 

^ (̂ d,posTR) = A Zt/, (y* - B^a x^ f and 
are 'd.POJTR 

V(>'.,RAT) = 
AHu (ydk-^u Xk) , where B^, = y ^ / X ^ , and B,^ = 

^dl^-

The difference I^(yd.RAT)~^(^d.posTR) '̂ an be re-
expressed as: 

AYvS^M-B2df4 

+ 2A{B^,-B,,)Yy^{y,-B,,x,)x, 

+ AYuAydk-BuXkf-

Since the second term of this expression can be positive, 
negative or zero, the difference V(y^RAT)~ ^(^d,posTR) 
can be negative. 

3.2 Conditional Properties 

For a given sample s, let n^ be the realized sample size 
of Sj. The foUowing result can be used to evaluate the 
conditional bias of estimators (2.1) to (2.6). 

Result 3 3 : Let z^ be an arbitrary p-dimensional vector, 
diat is z^ ={Zki,—,Zkpy, and suppose that nj>l. The 
conditional expectation of z^ = n"' Zj z^ given n^ can be 
written as: 

Ei^.\'rd)=^fdYu.^k^f,iYu^k-Y.^^k)] 

= Zy+-
•w. 

i-w. 
fc.-zJ 

where Zy = N'^ Zt/ z* :A^ d Zc/, "k' 

(3.1) 

w.^nJn, 
W,=NJN, f,=njN,, f2=n-jN-^ widi n-^ = 
n-n^, and N^ =N -N^. 
Proof. Rewriting z^ as 

we have that 

^ ( z J « d ) = -
N, • ! . : • N-N, s.. 
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where Sj={kes and kis^} and 

U^={keUandkiUj}. 

SUice Zy- ^k -'E.u^k~ Z(/j Zj , we obtaUi the requUed 
result, that is 

E{z\nj) = Zy-¥ 
^d -Wd . -

i-w. (^u, - Z t / ) -

Result 3.4: The conditional population variance of z, given 
nj, can be written as 

vk |nJ=^( l - / JV , .^(1-/,)V,„^., 
"d 

where 

^̂". =]r::TZt/,k-^«J(^^-y-J' 

widi Zy. = A^ '̂' Zt/,- Zj , and w^ = 1 - ŵ  . 
The estimator of the conditional population variance 

V(Zj I n^) is given by 

where 

and 

4^.M-^f.-'...*^{'-f,h.... 

"d ^ 

with z,̂  = n / Z., z, , z,_ = n -̂"' Z., z,. 
Proo/ It follows using arguments simUar to those used in 
ResiUt 3.3. We first Ulustrate how ResiUt 3.3 can be used to 
obtaUi the conditional bias for the sUnpler estimators of 
domain totals. This includes the Horvitz-Thompson esti­
mator ŷ  Hj, as weU as post-stratified ratio estimator 
ŷ PosTR ={^d I ^d.m) r̂f.HT • Let ẑ  be the domain vari­
able y^ . UsUig Result 3.3, we have diat E{Yjyij\nj)-
^'^d yu ' where y^ ^Yd^^d - The conditional bias of 
d̂.HT given n^ is therefore Bias(y^HT. In^) = 

N{wj -Wj) y^ . For die post-sti:atified ratio estimator, 
note diat ŷ posTR - Yd ^ ^̂ .m- ~ Vd I ^d)^d.m-
Defining ẑ  as ydk~^dl^d)xdk^ we obtaUi that 
Bias(ŷ PosTR l«d) = 0. 

We next proceed to evaluate the conditional bias and 
variance of estimators (2.1) - (2.6). We oiUy iUustrate the 
procedure for the regression estimator 1̂  ^̂  , as the steps are 
similar for the other estimators. Conditional on n^, the dis­
tribution of Sj is diat of an SRSWOR. This means that, for 
each sample s^ , n^ can be considered as having been se­
lected from N^. We express Y^g^ as Y^g^ = Zt/ y* + 
NlnY.s e^k, where ej,^=y^ -x\ B,^ and ŷ  = x; B,^ . 

FoUowUig Samdal and Hidiroglou (1989), we define the 
conditional regression vector B*̂  as 

1-1 

Kd = Ys 
' \ 

-k J 

x* yk 

'k J J (3.2) 

The estUnated regression vector B,^ wiU converge to 
B\^ (under appropriate conditions) in conditional design 
probabiUty as n^ and Â^ Uicrease. 

We have that 

Ys 

and 

where 

Ys 

nct 

^k yk 

nct 

= I,^^^^+R. 

=Yu 

Nc, 

^k yk 

Nc, 
+ r. 

R. = " ' - " ' ' 

and 

r. = 

l-W, 

^d-Wd 

i-w. 

1 ' 1 ' 

yN,^"^ c, N^" c, 

1 ,^ x^y^ 1 , ^ x,y, 
\l ^u. 

K^d N^" 

= 0 

= 0. 
^k " ^k 

Consequentiy, using ResuU 3.3 and assuming that 
(w</-Wj/(l-W^J = 0,we have diat B„ = B ; , . 

Define the "conditional residual" for the fc* urUt as 

Edk=ydk-A'^'id- (3.3) 

The deviation of y, 
written as 

ji^ from the trae value Yj can be 

Â  
Yd.tr, -yd=-Yu^dk+-Ys^dk- Kd (3.4) 

where 

A;.-(^Z.X,-Z,X,]{B„-B:J. 

In equation (3.4), A* ̂  is of lower order than N/n Z s Eji, 
To see this, note that 

Â  
Ys^k Yu^k = ̂ ^^^fc.-x„). 

l-W. 

where {wj -Wj)l{l-Wj) should be close to zero. 
Also, as noted earlier, B,^ -B*^ is near die vector 0 in 

conditional design probabUity. Hence Ej^. = ŷ ^ -
x't B*̂  = yji^ -x[ B^J = E^^. This impUes diat we can 
write (3.4) as 

Â  
Yd.lr, Yd - Yu dk "•" Y s dk - (3.5) 

The conditional expectation of Yjg^ -Y^ is approx­
imately: 

http://Yd.tr
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4t^-J'Jk.^^^^^fe.-^t/J (3.6) 
where _ ^t/, = Z u, E^ IN^ and ^c/, = Z t/ ^ A / ^• 
Since y^ = Ŵ  yt/ , the conditional expectation (3.6) can 
be re-expressed as: 

• N-
l-W, 

t̂/, (l-W^J-fe -Xt/)'B, (3.7) 

The term Z u d̂* î  constant in (3.5). Using Result 3.4, 
die conditional population variance of Y^g^^ and its 
estimated value are respectively 

y^d.^rMd)=N' 

and 

vfc,.J«J=A^' 

^(i-/.K,.^(i-/.K,-

^ ( l - / J v .^( l - / , )v , 

where V,^^ - (A^, - l ) - 'Z t/, fc* - ^t / , ) ' . 

%-(^.--l)"'Zt/, fe*-^^J'' 

and 

d;t "^t 

'd n d J 

v=k--i)-'Z. -Y ^dk ^dk 

' "d J 

The conditional bias and variances of the remainUig five 
estimators can be derived simUarly. Table 3 presents a sum­
mary of these properties. The required adjustment factors 
a ĵ and residual terms ê ^ are given in Tables 1 and 2. 

4. SIMULATION STUDY 

A simulation study was carried out to iUusttate the 
conditional and unconditional properties of the ratio version 
of estimators (2.1) - (2.6). We studied diese properties using 
a popidation of 1,(X)0 bivariate observations {y,x). This 
population resulted from the concatenation of two generated 
population domains: a large domain of size 9(X) and a smaU 
domain of size 100. The (y, x) observations were generated 
withUi each domam assuming a ratio model ŷ  = p^^ -i- ê  
where E{z^)-0 and 'V{z,^) = rP'x^. The p coefficients 
were 1.0 and 3.0 in the large and small domains. The 
auxiUary variable x was generated using a gamma 
distiibution T{a,b), where a = 3 and i> = 16. The 
dependent variable y was also generated by a gamma 
distribution, r(A,B) such that die parameters A and B 
satisfied E{y^) = pA:̂  = AB and V(yt) = ̂ '^x^ = AB^. 
After solving for A and B, we obtained A = p^/o^ and 
B = a^/p. The term o^ was chosen to satisfy a set 
correlation between x and y defined by 

Pfe 
/'X.Y 

VoV îv 
The preceding equation yields the constant term 

f - ^ 
-^% I 

•2 

f>xy 
- 1 

of die error variance. Common correlation values p^ were 
used for both domaUis, rangUig from 0.1 to of 0.9 in steps of 
0.1, resulting in nine different populations. Random samples 
(M = 10,000) of size 250 were then repeatedly selected from 
the populations. For each sample, estimates of domain totals 
were computed using the estimators given in Table 4. We 
do not Uiclude die Hajek post-sttatified estimator, 1^̂ ^̂ , as 
it corresponds exactiy to its Horvitz-Thompson analogue. 

Table 3 
Conditional Bias and Variance of Estimators (2.1)-(2.6) 

Estimator Conditional Bias Estimated Conditional Variance 

yd.ir N {{w, -WM-Wd))(yuAl-Wj)-{xy^ - x ^ J B , 

'd.tr. 

'd.tr, 

Yjg,. Almost 0 

Niwd-Wd)[yu,-'^'u,^3) 

Niw,-wJ{xy-XyjB^,/{l-W,) 

YJ g,. Almost 0 

Yjg,. Almost 0 

k /nd ){l-fd) v..̂  + (wf/nj)(] - fj)v,^_ 

(NI (1 - fd )/nd )Z., [{"dk edk - '^J /{"d -1)] 

({Nd^df{l-fd)/nd)Y,l(''dk edk -^ef/{n, -l) 

[N Iw, f \(wlIn, )(!- / , ) v,̂ ^ + (wl jn-, )[l-fj)v, 

(N] (1 - fd )lnd ]YS, (("-i* '<"' - '^'f /("" -1) 

(^1 (1 - fd )/nd )YS {i"dk edk-^ef /{n, -1) 



Survey Methodology, June 2004 75 

Table 4 
Estimators and Associated Error Terms 

Estimator Ratio Version Error Term 

HT ratio: Y,g,^ Y.^^j = Yj,„ (X/X„T ) 

HT post-stratified ratio: Yjg,.^ d̂.posTR = Yd.m {^d l^d.m ] 

HT altemate ratio: Y^g,.^ d̂.ALTR = Yd.m + i^d ' ^d.mWml^m ] 

HSjekratio: Y,g,^ W T = W+(^-^HA)fc,HT/^HT). 

HSjek altemate ratio: Y^g,^ f̂  ALTR = Îrf.HA + (^d - ^^.HA)(l'm-l^m) 

edk - ydk ~^ld ^k ' ^Id = ^ d . H T / ^ 

edk = Vdk ~ ^2d ^dk > ^2d = Yd.HT/ ^ 

edk - ydk ~ ^3^k ' ^3 - I 'M? / - ^ H T 

edk = ydk -l^ld^k ' ^Id = I d . H T / ^ 

edk = ydk ~ ^3^k ' ^3 = ^ H T / ^ t r r 

HT 

HT 

4.1 Unconditional Results 

The unconditional properties of the estimators were 
assessed using two performance measures: (i) root mean 
squared error (RMSE) and (U) coverage rate (CR). They 
are: 
i. The RMSE is defined as 

Y{yJ'"'-Y,fiM, 

(m) 

U. 

where Y/ is the estimated total (either Horvitz-
Thompson or Hajek type) based on sample m, and M is 
the total number of samples drawn for the simulation. 
The coverage rate CR for a given estimator Y is 
defined as the ratio of the number of times that the 95% 
confidence interval 

(m) ±1.96^^^ /-') 

contains the trae population total to the number of 
replicates. We used the unconditional variances given by 
(2.12), and the error terms in Table 4 to estimate die 
required variances. 

The four graphs provided Ui Figures 1 and 2, summarize 
the unconditional analysis for smaU and large domains. Also 
shown is the impact of increasing p^^ . The square root of 
the average mean squared error and coverage rates are used 
to compare the estimators. 

In Figure 1, we note that the RMSE decreases 
substantially widi UicreasUig p̂ ^̂  . This can be attributed to 
the decreasing dispersion of the dependent variable 
conditional on the independent variable as die correlation 
between the two increases. We also note that the spread of 
the RMSE is narrower for the large domain dian for the 
smaU domaUi. The ranking of die estUnators Ui terms of 
RMSE from worst to best is as follows: (i) HT ratio (HT 
RAT), (U) Hajek ratio (HA RAT), (Ui) HT altemate ratio 

(HT ALTR), (iv) Hajek altemate ratio (HA ALTR), and (v) 
HT post-stiatified ratio (HT POSTR). This ranking is in 
agreement with Result 3.2. 

In Figure 2, we note that the unconditional coverage rates 
are similar across aU die estimators regardless of die 
correlation p̂^ ^ . For small domains the Horvitz-Thompson 
estimators exhibit a slight degradation in die coverage rate 
when p, „ is weak. But as the correlation increases, theU 
coverage rate becomes comparable to the Hdjek type 
estimators. The Hajek estimators have a better overaU 
coverage rate than thek Horvitz-Thompson counterparts. 

4.2 Conditional Results 

The conditional properties of die estimators were studied 
usUig: (i) average relative conditional bias and (ii) condi­
tional coverage rates. They are defined as: 

i. ARE, =(lOO/M,)Zi:f=^,(yi'">-yj/y,, where M, is 
the number of samples of size n, . 

U. The conditional coverage rate has the same definition as 
its unconditional counterpart. The associated variance is 

-d =i^Y(yr-Yd)' 

where 

1 "i . 

V - Vv('") 

Table 5 summarizes the conditional biases of Ihe ratio 
versions of estimators (2.1)-(2.4) and (2.6). They were 
obtaUied from Table 3 using a sUigle auxiliary variable. 

The relative conditional bias and coverage rates of die 
estimators are summarized in Figures 3, 4a, and 4b with 
respect to die reaUzed sample size n, for large and small 
domains, and for two correlations (p;fy=0.90 and 
P;,,=0.60). 
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Unconditional KMSE - Small Domain 
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Figure 1. Unconditional RMSE 

Covcnge lUtc - SmalUXMiulii 

Figure 2. Unconditional Coverage Rates 
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Relative Onfitknal Bias - Small Donain 

Figure 3. Average Relative Conditional Bias for p;^ ^ = 0.90 , p^, = 1.0 , and p^2 = 3.0 . 
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Figure 4a. Conditional Coverage Rates for p;̂  j- = 0.90, pj, = 1.0 , and p,,2 = 30 . 

Conditiona] Coverage Rate - Large Domain 

Domain Sample Size 
-HTRAT—•—HTPOSTR—a—KTALTR—•—HARAT—»—mALTRl 

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

Domain Sample Size 
-HAALTR I 

Figure 4b. Conditional Coverage Rates for p^y = 0.60 , pj, = 1.0 , and Pji = 3.0 . 

Table 5 
Conditional Biases of Ratio Versions of Estimators (2.1)-(2.4) and (2.6) 

Estimator Conditional Bias 

HT Ratio: Yjg,.^ 

HT post-stratified ratio: Yjg,. 

HT altemate ratio: Yjg^ 

Hajek ratio: Yjj,. 

Hajek altemate ratio: Yjj,. 

NyaMd-Wd) 

Almost 0 

NyuMd-Wd'. 

NyuMd-Wd) 

Almost 0 

Xuil-Wd) 

vu-xu,yu/yu., 

Wd(%-%, 

( i - w j % 

The conditional bias presented in Figure 3 supports the 
theoretical resuUs presented in Table 5. The three Hajek 
estimators are nearly conditionally unbiased. The magnitude 
of the conditional bias of bodi the HT ratio estimator and die 
HT altemate ratio estimator is in agreement with the 
dieoretical conditional bias. But it should be noted diat the 
conditional bias associated with die HT altemate ratio 
estimator is smaller than the one of the HT ratio estimator. 
Also, in larger domains, this conditional bias is less 
pronounced for the HT altemate ratio estimator. 

The conditional coverage rates are given in Figures 4a 
and 4b. We note that the three Hajek estimators follow 
closely die nominal 95% coverage probability. Tbe cover­
age rate of the HT altemate ratio estimator is reasonable in 
larger domains despite its being conditionally bia.sed. But its 
coverage deteriorates substantially in smaller domains. The 
coverage rate of die HT ratio estimator is not acceptable. 
But it should be noted diat the coverage rates of die condi­
tionally biased estimators improve as die realized sample 
size nj approaches die expected domain sample size 

EM. 
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In summary, the simulation study identified the three 
Hajek estimators, Hajek post-stratified ratio, Hajek 
altemate ratio, and Hajek ratio as the best estimators in 
terms of dieU conditional and imconditional properties. Note 
that even though the Hajek ratio estimator uses the least 
domain auxiUary data (it uses domain population counts 
Nj), its mean squared error is stiU reasonable. The Hajek 

post-stratified ratio is the best estimator in terms of its 
conditional and unconditional properties. 

5. CONCLUDING REMARKS 

r̂f.fr, ~ Y l «̂,HA + (^g ~ ^ « , H A ) ^Ig J 

where 

and 

J ; , H A - ( ^ « / A ^ J W ' ^g.m=Ys. ^* ydk 

^Ig =\Ys ^k X t X ' J c J ' ' Ys ^k ^k yklck-

We have studied six possible regression estimators of 
domam totals, each usUig various levels of auxiUary 
Uiformation at the domain and/or population level. The only 
estimator that has regression weights that are not domain 
dependent and diat also have the additive property is 
Horvitz-Thompson estimator Y^g^. This estimator is 
constracted using auxiUary information at the population 
level: the domain dependent independent variable y^ is 
regressed on die auxiUary vector x̂ .̂ However, it can be 
seriously conditionally biased and the associated confidence 
intervals can be understated. 

The Hajek-type estimators have two the disadvantages: 
(i) they do not have die additive property; and (ii) their 
associated regression weights are domain dependent. 
However, they have the best conditional properties. They 
are nearly conditionaUy unbiased, and the conditional 
confidence intervals associated with the estimators follow 
closely die nominal coverage rate. They also have the 
smaUer unconditional MSB's. The Hajek estUnator that uses 
the least auxiUary data at the domain level is Y^^r- ^ 
reqiures domam population counts Nj{d=l,..., D), and 
die population totals X . Its conditional and unconditional 
properties are reasonable. 

The best Hajek estimator, Y^g^ , uses auxiUary infor­
mation at the domain level. The Hajek regression type esti­
mator Yjg^ can be made domain independent usUig a single 
set of regression weights as follows. Suppose that the most 
important domains are C/̂  cC/(g =1, ...,G), and that 
these domains are mutuaUy exclusive and exhaustive. The 
resulting Hajek estimator is 
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Prediction of Finite Population Totals Based on the Sample Distribution 
MICHAIL SVERCHKOV and DANNY PFEFFERMANN' 

ABSTRACT 

This article studies the use of the sample distribution for the prediction of finite population totals under single-stage 
sampUng. The proposed predictors employ the sample values of the target study variable, the sampUng weights of the 
sample units and possibly known population values of auxiliary variables. The prediction problem is solved by estimating 
the expectation of the study values for units outside the sample as a function of the corresponding expectation under the 
sample distribution and the sampling weights. The prediction mean square error is estimated by a combination of an inverse 
sampling procedure and a re-sampling method. An interesting outcome of the present analysis is that several familiar 
estimators in common use are shown to be special cases of the proposed approach, thus providing them a new interpretation. 
The performance of the new and some old predictors in common use is evaluated and compared by a Monte Carlo 
simulation study using a real data set. 

KEY WORDS: Bootstrap; Design consistency; Informative sampling; Sample-complement distribution. 

1. INTRODUCTION 

The sample distribution is the parametric distribution of 
die outcome values for units Uicluded in the sample. This 
distribution is different from the population distribution if 
the sample selection probabiUties are correlated with the 
values of the study variable even when conditioning on the 
values of concomitant variables included in the population 
model. It is also different from tUe randomization (design) 
distribution that accounts for all die possible sample 
selections with the population values held fixed. The sample 
distribution is defmed and discussed with examples in 
Pfeffermann, Krieger and Rinott (1998), and is furdier 
investigated in Pfeffermann and Sverchkov (1999) who use 
it for the estimation of linear regression models. Krieger and 
Pfeffermann (1997) use the sample distribution for testing 
population distribution functions and Pfeffermann and 
Sverchkov (2003a) discuss its use for fitting Generalized 
Linear Models. Chambers, Dorfman and Sverchkov (2003) 
utilize die sample distribution for nonparametric estimation 
of regression models, and Kim (2002) and Pfeffermarm and 
Sverchkov (2003b) apply it for small area estimation 
problems. 

In diis article we study the use of the sample distribution 
for the prediction of finite population totals under single-
stage sampling. It is assumed that the population outcome 
values (the y-values) are random realizations from some 
distribution that conditions on known values of auxiUary 
variables (die x-values). The problem considered is the 
prediction of the population total Y based on the sample 
y-values, the sampling weights for units in the sample and 
the population jr-values. The use of die sample distribution 

permits conditioning on all these values, which is not 
possible under the randomization (design) distiibution, and 
the prediction of Y is equivalent therefore to the prediction 
of the y-values for units outside the sample. 

The prediction problem is solved by estimating the 
conditional expectation of the y-values (given die J:-values) 
for units outside the sample as a function of the conditional 
sample expectation (the expectation under the sample 
distribution) and the sampUng weights. The prediction mean 
square error is estimated by a combination of an inverse 
sampUng procedure and a re-sampUng method. As it tums 
out, several famUiar estimators in common use and in 
particular, classical design based estimators are special cases 
of the proposed procedure, thus providing them a new 
interpretation. The performance of the new and old 
predictors is evaluated and compared by mean of a Monte 
Carlo simulation study using a real data set. 

2. THE SAMPLE AND SAMPLE-COMPLEMENT 
DISTRIBUTIONS 

2.1 The Sample Distribution 

Suppose diat die population values {y,-X'} = 
{(y,...y^)',[x,...x,y]'} are random realizations with con­
ditional probabiUty density function {pdf) fi,{yj ix,) that 
may be discrete or continuous. The y-values are assumed to 
be scalars but the j:-values can be vectors. We consider 
single stage sampling with sample inclusion probabiUties 
71, =Pr(je s)- g{y,X,Z,i) for some function g, where Z 
defmes the population values of design variables used for 
the sampling process. Note that the y-values are random and 
we also consider the design variables as random so diat die 

Michail Sverchkov, The Bureau of Labor Statistics, Washington D.C. 20212, U.S.A.; Danny Pfeffermann, Hebrew University, Israel and University of 
Southampton, U.K. 
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g-values are random as weU. Let /, =1 if ie s and /, - 0, 
if / g s. The conditional margUial sample pdf is defined as, 

def 

/.(y,|x,) = /(y, |x,,/ , =1) 

Pr(/,. =l|y,.,x,.)/p(y,.|x,) 
(2.1) 

Pr(/, =l |x , ) 
with the second equality obtained by appUcation of Bayes 
theorem. Note that Pr(/, = 11 y,,x,) is not necessarily the 
same as die actual sample selection probabiUty Tt,. -
g{y,X,Z,i) (see Remark 1 below). It foUows from (2.1) 
tiiat the population and sample pdjs are different, unless 
Pr (/,. = II y,., X,) = Pr (/,. -11 X,.) for all y,.. When die 
sample distribution differs from the population distribution 
it becomes informative, and the sampUng scheme can not be 
ignored at the inference process. 

Remark 1. It is important to emphasize that the definition 
and use of the sample distribution does not assume that the 
sample selection probabiUties are function of only (y,-, x,). 
As mentioned earlier and highUghted by expressing the 
selection probabilities as iti = g{y,X,Z,i), the actual 
selection probabUities may depend on all die population 
values {y,X,Z). However, as sUown in Pfeffermann and 
Sverchkov (1999), E^ (TI,. I y,., x,.) = Pr (/,. = 11 y,., x,.). 
Thus, aldiough the selection probabUities may depend on all 
die population values {y,X,Z), for given values (y,,x,) 
diey equal Pr(/,. = 11 y,,x,) 'on average'. In fact, Tt, may 
not depend directiy on y at aU and only be a function of 
{X,Z), and stiU the expectation ^^(TI, I y,.,jc,) equals 
Pr(/,. =lly,.,x,.). The reason why the expectation may 
depend on y. in this case is that Z may be correlated withy. 
For example, die 1999 Canadian Workplace and Employee 
Survey uses a disproportionate stratified sample with the 
strata defined by region, activity, and the size of the 
workplace. The size Uiformation is obtained from tax 
records from 1998; see, Patak, HidUoglou and LavaU ê 
(2000) for details. When modelUig die payroUs in 1999 
against the number of employees, the sampling design is 
found to be Uiformative, which is explaUied by the fact that 
the stratification is based Ui part on die size obtaUied from 
die tax records in the previous year, which are correlated 
with die payroll the year after. See Fuller (2003) for detaUs 
of die analysis. 

The discussion above should not be understood to mean 
that Tt, is never a function of (y,,x,.) only. A classical 
example for the latter case is retrospective sampling. Thus, 
in a case control study, the selection probabiUties of the 
cases and controls usually only depend on the respective y 
and X values (and often just on the y values). In the 
empUical study of this paper we use a real data set where the 
sample was drawn by a disproportionate sti-atified sample 

with the strata boundaries defined by the values of the 
dependent variable. 

In what foUows we regard die probabUities it, as random 
realizations of die random variable g{y,X,Z,i). Let 
w,=l/Tr, define the sampUng weight of unit /. The 
following relationships, estabUshed in Pfeffermann and 
Sverchkov (1999) hold for general pairs of vector random 
variables (u,.,v,), widi E^ and E^ defming expectations 
under the population and sample pdjs respectively. (As a 
special case, u, = y,, v,- =x,.). 

^p('t,|u,.,v,.)//u,.|v,.) 

Ep{ni\yi) 

Es(w,\ui,\i)f,{u,\\i) 

£p(u, |v ,)-

ft foUows from (2.4) diat 

^ . K | V , ) 

Es{Wi\Vi) 

(2.2) 

(2.3) 

(2.4) 

a) 

b) 

c) 

Es (W/ \^i)= i 
Ep(Tt!\\i) 

E {wu ) 
E ( u . )= '^ ' " ^ ; 

Es(Wi) 

£.(w,.) = — ^ . 
EAn,) 

(2.5) 

For a detailed discussion of the sample distribution with 
illustrations, see Pfeffermarm etal. (1998). 

2.2 The Sample-Complement Distribution 

Similar to (2.1), we defme tUe conditional pdf for units 
outside the sample as, 

def 

/c(}',K) = /,(>',|x,,/,=0) 

_Pr ( / ,=0 |y , ,x , ) / /y , | x , ) 

Pr(/, =0x, ) 
(2.6) 

The relationships (2.2)-(2.5) and die equaUty 
Pr (/, = 0 I u,, V,) = 1 - Pr (/, = II u,., v,) = 
1—^^(TtjIu^jV,.) imply the foUowing representations of 
die sample-complement distribution for general pairs of 
vector random variables (u,, v,). 

£^[(l-Tr,)|u,,v,]//u,|v,) 

Ep[{l-n,)\yJ 

£^[(1-Tr,)|u,,v,] £,[Ti,|v,] 

Ep[{l-ni)\\,] £p[Tr,.|u,.,v,.] 
/.(u,|v,) (2.7) 
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, , I , g.[(v*^,-l)k>v,]/.(u,|v,) 
/c(u,v,) = —f I — . (2.8) 

£.[(w,-l)|v,] 

(Equation (2.8) follows by appUcation of (2.5a) to the 
second expression in (2.7)). Also, by (2.8) and the fu-st 
equation Ui (2.7), 

, £• r(l-7t,)u,.|v,] £ r(w,.-l)u,.|v,.] 

Ep[{l-it,)\y,] £J(w,.-l)|v,.] 

Remark 2. In practical appUcations the sampUng fraction is 
often very small and hence the sample selection proba­
bUities are smaU for at least most of the population units. If 
ir, < 8 widi probabiUty 1, 

/ c (U, |v , ) = 
gp[(l-7I,.)[u,,V,]/p(u,|v,.) 

Em-it,)\y,] 

= / / u , | v , ) + 

£p {[£;, (Jt,-K-) - t ; ]|U,., V,. }//u,. IV, ) 

£p[( l -^) |v , ] 

- / / u , lv,)(l + A) (2.10) 

where - 5 < A < 5/(1-5). ft foUows from (2.10) diat for 8 
sufficientiy small, the difference between the population pdf 
and the sample-complement/?^is accordingly smaU, which 
is not surprising. 

3. OPTIMAL PREDICTION OF FINITE 
POPULATION TOTALS 

Let Y - X!,ii y, define the population total. The problem 
considered is how to predict Y based on die sample data and 
possibly population values of auxiUary variables. Denote tUe 
'design information' available for prediction by D^ -
{{y,,w.,),ies; {Xj, Ij), j = l...N}^and let Y = Y{DJ 
define the predictor. The MSE of Y with respect to the 
population pd^given D^ is, 

MSE{Y\D^) = E^[{Y-Y)'\D,] 

= E^{[Y-E^{Y\D,)]'\D,} + V^{Y\D,) 

= [Y-E^{Y\Djf+V^{Y\DJ (3.1) 

since [Y-Ep{Y\D^)] is fixed given D^. It foUows from 
(3.1) diat M S E ( y i D J is mUiimized when Y = Ep{Y\DJ. 
The latter expectation can be decomposed as. 

Ep(y\Ds) = Y^.,E^{y,\D,) 

= YEp(yi\Ds,f=l) + YEp(yj\Ds>fj =0) 
ies 

-Yyi+Y^c(yj\E>s) 
ies j€s 

-Yyi+YEc(yMj) 

J&S 

(3.2) 
J^S 

where in die last equality we assume that y^ for j ^ s and 
Dj are uncorrelated given x^. The prediction problem 
reduces therefore to the estimation of the expectations 
E^{yj \Xj). In section 4 we consider semi-parametric 
estimation of these expectations. 

4. SEMI-PARAMETRIC PREDICTION OF FINITE 
POPULATION TOTALS 

Suppose that the sample-complement model takes the 
form, 

ŷ . =Cp(x.) + 8 .̂, 

£,(e^.|x.) = 0,£,(6^|x.) = o^(x. ) , 

EAs,Sj\x„Xj) = 0,k*j (4.1) 

where Cp(x) is a known (possibly nonUnear) function of x 
that depends on an unknown vector parameter |3. The 
variances o^ ^( ' ' j ) are assumed known except for o^. 

Remark 3. In actual appUcations the model (4.1) can be 
identified by a two-step procedure, utiUzing the equality 
£,(y,.lx,)=£,(r,y,lx,) widi r , - (w, . - l ) / iEJ(w, . - l ) lx , ] 
(foUows from Equation 2.9). First, estimate E^ (w, I x,) and 
hence r. by regressing w, against x,. using the sample data. 
Let /; - {Wj - l) /[£ '^(w,. lx,)-l] and tiansform y,* =/^,y,-. 
Second, study die relationship in die sample between y* 
and X, for identifying the form of Cp(x,.). See 
Pfeffermarm and Sverchkov (1999, 2003a) for examples of 
estimatUig ^^.(w^lx,). A similar procedure can be applied 
for identifyUig the variance function v(x,.), using the 
empirical residuals e, = y, - £^ (/; y, I x,.). 

The function Cp{Xj) in (4.1) widi die true vector 
parameter p satisfies for all j g s. 

CB(x,) = argmin £, 

•• arg nun E^ 

' [ y , - C p ( x , ) ] ^ ^ 

v{Xj) 1"̂ ' 

' [yj-c~^{^j)f^ 
r v{Xj) 

(4.2) 

(The second equaUty foUows from (2.9)). Hence, by 
substitutUig the sample expectation outside the curved 
brackets by tbe sample mean (a straightforward application 
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of the method of moments) and estimating A; by /; (see 
Remark 3), the vector P can be estimated as, 

P, =argniin^ 
^^[y,.-Cg(x,.)f^ 
r. 

v(x,.) 
(4.3) 

J 

The predictor of the population total takes then the form, 

Î , =!>',•+ZC._(xp. (4.4) 
iGs jSs 

Alternatively, it follows from (4.1) that, 

' [y,-Cp(xp]^ ^ 

= E, 

v(x,.) 

[y^.-Cp(x.)] 

V 

rr 
v(xp 

W j —I [yj-C,{x^)f 

v(xp 
(4.5) 

E,{wj)-l_ 

where the right hand side expectation is with respect to the 
joint distribution of (y,., x^). Thus, P can be estimated as. 

p2 = arg min ^(w,. -1) 
[y,-Cp(x,)r 

v(x,) 
(4.6) 

smce E^ (w,) - constant. The predictor of Y widi p 
estimated by P2 is therefore. 

y2=Yyi^Yc,(^j)- (4.7) 
j i s 

Remark 4. A notable advantage of the use of the predictor 
Y2 over the use of the predictor F, is that it does not requke 
the identification and estimation of the expectation 
H'(x) -E^{w\ x). On die other hand, in situations where 
this expectation can be estUnated properly, the predictor 7, 
is likely to be more accurate smce die weights r^ -
(w,. - l)/[£'j (w,. IX,) -1] wUI often be less variable than the 
weights (w, -1). This is because the weights r; only 
account for the net effect of the sampUng process on the 
target conditional distribution /(.(y,ix,), whereas the 
weights (w, -1) account for the effect of die sampUng 
process on the joint distribution /c(y,,x,). In particular, 
when w, is a deterministic ftmction of x,. such that 
w,. =w(x,), the sampling process is noninformative and 
/c (>*; I xp = / , (y,-1X;) = /p (y,. IX,.). hi tius case die esti­
mator P, (but not P2) coincides with die optimal 
generaUzed least square (GLS) estimator of p since r-^l 
and the model (4.1) holds for the sample data. (For the data 
analysed in section 7, the empirical variance of the weights 

r- is 1.36, whereas the empUical variance of the weights w, 
is 2.66). In contrast to this, when the sampUng weights w, 
are independent of x,, the estimates P, and Pj, and hence 
the predictors F, and Y2 are equal since w{x^)-constant. 

An interesting special case of die predictor Kj arises 
when the working model postulated for the sample-
complement is lUiear with an intercept term and constant 
variance. Let x' - (1, x,'). As easily verified, the estimator 
in this case takes the form. 

^2,Reg=Z3'<+^C+'B;[i'(c)-ic] 
(4.8) 

where X(c) = Z,,, x,, {Y^ ,Xc) = [{N - n) I Zi.s (w,- -1)] 
[Efes(w,-l)(y,, X,.)] and B^ is die probabUity weighted 
estimator of the vector coefficient of x,. but with the 
weights (w, -1) instead of w,.. 

Remark 5. The predictor 72, Reg '^^ ^^ obtaUied as a 
special case of the Cosmetic predictors proposed by Brewer 
(1999). It should be emphasized, however, that the 
development of die cosmetic predictors and the derivation 
of their MSE assumes expUcitiy noninformative sampling. 

An important property of 1̂2, Reg î  that under general 
conditions it is design consistent for Y, irrespective of the 
tme sample-complement model (see Lemma 1 below). 
Many analysts view 'design consistency' as an essential 
requirement from any predictor; see the discussion in 
Hansen, Madow and Tepping (1983) and Samdal (1980). 
The following Lemma 1 defines conditions under which the 
more general predictor Y^ of (4.7) is design consistent for Y. 

Lemma 1. The predictor Y^ is design consistent for 7 if the 
working model used for tUe computation of P2 satisfies the 
conditions, i-Cp(x) has an intercept term, H-Cp(x) is 
differentiable with respect to P in the neighborhood of P2 
and iii- v(x) - constant. 
Proof: By (4.6) and condition m, p2=argmin^ 
2,6. (Wi - l)[y, - Cg (x,. )f and by condition i, Cp (x) = 
Po+Cp p (x), so that by condition ii, 8/8Pfl 
{Ife. {^i-1) [y,- - Cp (X, )f }p_. = 0, which impUes 
I,-..(w,-l)[y,-C^^(x,)]-Oor,' 

Zw,y,- =Yyi^Y^iC^S^i)-YC;S^i)- (4-9) 
i^s i&s ies i€s 

The proof is completed by noting that under mild 
regularity conditions Zfes>v,y, is design consistent for Y, 
and ZfejVV,C. (x,) is design consistent for Zf=|C. (x,). 
Thus, the right hand side of (4.9) converges Ui probabiUty to 
Kj while the left hand side converges in probabiUty to Y. 

It is important to emphasize again that the Lemma does 
not assume that the working model is the correct sample-
complement model. 
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The use of the predictors F, and i^ requires a 
specification of the sample-complement model. Next we 
develop another predictor that only requhes the iden­
tification and estimation of the sample model. The approach 
leading to this predictor is a sample-complement analogue 
of the 'bias correction method' proposed by Chambers et al. 
(2003). The proposed predictor is based on die foUowing 
relationship. 

Z^c(>',|x,) = S^,(y,|xp 
Ms 

^(^-^)[-j;fi;,I^^^c{\yj-Es{yj\xj)]\xjj^ 

=YEAyj\^j) 
'is 

Jis 

jis 

10) 

where in the second row we replaced the sample-
complement average of die conditional expectations 
£•,, (y ̂  I x y) by its expectation over the sample-complement 
distribution of the x-values (n denotes the sample size). By 
(2.9), 

E^[yj-E,{yj\xj)] 

= ̂ ^{i^^t.-^^(^.h.)l} (4-11) 
implying that the sample-complement mean in the second 
row of (4.10) can be estimated as M^=lln 
lies{[(Wi -l)l{w, -l)][y,. -£,(y,.lx,.)]}, where w, = 
Zfej ̂ ; / "• The proposed predictor therefore takes the form, 

Y3=Yyi+Y^s(yMj) + (N-n)M, (4.12) 
ies jis 

with E^{yj\Xj) estimated from the sample data. The use 
of 3̂ only requires the identification and estimation of die 
sample regression E^{yj\Xj), which can be carried out 
using conventional regression techniques. Moreover, under 
mild conditions Y^ is design consistent for Y even if the 
expectation ^^(y^lxp is misspecified. This property 
follows from the fact that S;«j^j(>'yl ^ p is design 
consistent for 'LjesEs{yj\^j) and {N-n)M^ is design 
consistent for M^ =I;«,[yj -£:,(y^.| x^ ] . 
Remark 6. If the model fitted to the sample data is Unear 
regression with an intercept and constant residual variance, 
the difference between the predictor I^ Reg defined by (4.8) 
and die predictor 1̂  is diat Yi^^eg "^es a consistent 
estimator for the regression coefficients defining the linear 

approximation to the model holding for the sample-
complement, whereas Ui K, the regression coefficients are 
estimated by ordinary least squares (GLS), thus estimating 
the linear approximation to the sample model. 

FinaUy, rather than only predicting the sample-
complement values as widi the previous predictors, one 
could instead predict all the population values by their 
estimated expectations under the population model. Assum­
ing that the latter model is linear regression with an intercept 
term and constant residual variance, appUcation of (2.5b) 
yields, 

p-argmin£ (y^t-x'tP)^ 

• arg nun 
EA^Vk(yk-<h'^ 

EAWk) 
(4.13) 

Estimating the sample expectation in the numerator of 
(4.13) by the corresponding sample mean (appUcation of the 
mediod of moments) and minimizing die sample mean with 
respect to P yields the famiUar probabiUty weighted 
estimator fi^„ = {X^, W, X,,,)-\Xl, W, 7,), where 
(X[,j,yj-{[x,...xJ',(y,...yJ'} and W, = Diag[w,...ivJ. 
Let x ;^( l , X,'). Estimating £p(yjxj ) = x'̂ fî ^ = 
BQ + x\ Bp^ and summing over aU the population values 
yields the familiar generaUzed regression (GREG) estimator 
(Samdal 1980), 

Y —M ^—"^^ \ Tl 
-"GREG"'* 'Y' """"pw 

2mJii W, 
X{p)-N Z . W,J 

w. 

x(P)-Yli^k- (4.14) 

Remark 7. By considering the estimation of 7 as a 
prediction problem, die use of the predictor Y2 R̂g in (4.8) 
requires the prediction of (Â  - n) values whereas the use of 
the GREG requUes the prediction of A'̂  values. Hence, in 
situations where both the sample-complement model and 
the population model can be approximated faUly well by 
Unear regression models with intercept terms (but possibly 
with different vectors of coefficients for the two models), 
one expects that for sufficientiy large sampling fractions 
nlN the predictor Ĵ  Reg wi^ t>e superior (see the empir­
ical results in section 7). 

5. EXAMPLES 

5.1 Prediction with No Concomitant Variables 

Let X, =1 for all/.By (3.2), 
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Y = Yyi+YEc(yj)-Yy. 
ies je.s 

-t-{N-n)E 
w- - 1 

y. 
Es{wj)-l 

(5.1) 

J 

EstimatUig the two sample expectations in the right hand 
side of (5.1) by the respective sample means yields the 
estimator, 

w, —1 
•yi J^£.=Z>'-+(^-«)-Z W,-l 

= Yyi^ 
{N-n) 

Y.s(^i-i) 
ZK-- ! )> ' . • • (5-2) 

In (5.2), E,ej(M',-l)y, is a 'Horvitz-Thompson 
estimator' of "Zjisyj- The multipUer (Af-n)/Xfes(w,-1) 
is a 'Hajek type correction' for controlUng the variabiUty of 
die sampUng weights. Notice that Y^, is a special case of 
the predictor F2,Reg defined in (4.8), obtaUied by settUig 
X, = 1 for all /. It is also a special case of die predictor Y^ if 
one estimates E^{yj) = y = 'Z,iesyi/''- For sampUng 
designs such that Zfej w, = N for aU s, or if one estimates 
E^ (w,) - N/n, the predictor Y^j reduces to the famiUar 
Horvitz-Thompson estimator of the population total, 

FH_T ==S,E.w,y,-
As with the GREG estimator considered in section 4, 

rather than predicting the sample-complement total Y^ = 
"Zjes yj and using the predictor Y^.,, one cotUd predict aU 
the population y-values by estimating theU expectations 
under the population model. By (2.5b), ^ ^ ( y , ) ^ 
Es (^1 J,) / ^ j (w, )• Estimating the two sample expectations 
by the corresponding sample means yields the famiUar 
Hajek estUnator, 

Hajek ••Y-iEp(yk)=NEs 

-Y^iyr 

Es{^d 

N 

Z . W; 
les ' 

(5.3) 

Here again, we anticipate Y^i to be more precise than 
Ĥajek as the sampling fraction increases (see also the 

empUical results Ui section 7). Note that Y^j and ŷ ĵg,; are 
the same and coUicide with the Horvitz-Thompson 
estimator for sampling designs satisfying Sisj ^/ - ^• 

5.2 Optimal Prediction with Concomitant Variables, 
Comparison with Optimal Predictors Under 
Noninformative Sampling 

Let the population model be, 

y,. =ifp(x,.)-h8,., £'/e,.|x,.) = 0, 

£p(8,'| x.) = v(x,), E^{E,Ej\ X,, X .) = 0, / ^ j (5.4) 

and suppose that the sample Uiclusion probabiUties can be 
modeled as, 

n,^Kx[y, g(x,) + 5 , ] ,£ , (5 , | x, ,y,)=^0 (5.5) 

where //p(x), v(x) and g{x) are positive functions and .K̂  
is a normalizing constant. (Below we consider the special 
case of 'regression through the origin'). This sampling 
scheme is considered for iUusfration only, aldiough Ui 
section 2 we mention several practical situations where the 
sample selection probabiUties depend directiy on the y and 
x-values. In particular, dus is the case with the data set 
analysed in section 7. Under (5.4) and (5.5), TI(X,.) = 

£/Tt,lx,.) = i^//p(x,)^(x,). Hence, by (2.9), (5.4) and 
(5.5), 

r ^ - \ 
^c(3',- x . ) = £p 

1 - T t , 
•yj\ 

^E, 

1-Tt(xp 

{l-Ti{Xj)-Kzjg{Xj)-K.hj 

l-n{xj) 

, s Kg{Xj)v{Xj) 
-^Ayj\^j)- i_^(^^.) • 

3'; I 

(5.6) 

The last expression in (5.6) shows that £ '^(y^lxp< 
E^{yj\Xj) = H^{Xj), which is clear since for the 
Uiclusion probabiUties defined by (5.5), die sample-
complement tends to Uiclude die units with the smaller 
y-values for any given x-values. Note, however, that as 
nlN^O, K^O and Ep{yj\Xj)-E^{yj\Xj) ^0 
(see Remark 2). 

As a special case of (5.4), consider the case of a single 
auxiUary variable x and let Hp{x) - x^ and v{x) - a^x 
('regression through the origin with variance proportional to 
x'). For noninformative sampling and known p, the optimal 
unbiased predictor of Y mUiimizing ^^[(y -y)^l £)J is in 
dus case, F = Sfejy, +PS;«j-^;. hi the practical case of 
unknovm p, the optimal unbiased predictor of Y is the 
familiar Ratio estimator 7^ =Ny{Xlx) widi y denoting 
the sample mean of Yand {x ,X) denoting the sample and 
population means of x (Brewer 1963, Royall 1970). 

Now let g{x) = l in (5.5) for aU x, so diat Tt, = 
"(y, + 5,) /Z^=i (yj + 8y). For sufficientiy large N, we can 
approximate n^ ~ n{yj-i-6j)l{N^X), Unplying that 
Ti(x,.)=Ep{Tt,. Ix,.)~nx,. /{NX). By (5.6), E,{yj \Xj)= 
x ^ . p - o \ . / [ p ( / ' X - x p ] where f^nlN is die 
sampUng fraction, so diat for known p and o^ the optimal 
predictor of F is, 

^..Reg=Zy,+PZ^;-^Z,4'-v- ^̂-̂^ i^s i^s P j^s J ^ Xj 

Lemma 2: Let the population model be defined by (5.4) 
with //p(x) = xP and v(x) = o^x. Assume also 
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Ep (ef I ^,) = 0. Suppose that the sample units are selected 
Uidependentiy widi probabiUties defined as in (5.5), widi 
g{x) = l. Then, 

MSE^{F^,R,JDJ= 

Proof: By die Uidependence of the population values and of 
the sample selections, 

MSE/F^,R,JDJ 

= Ep[{Y,,^^,-Y)'\D,] 

= Yj.sEc{[yj-EAyj\^j)f\xj}-

By (5.6), [y; - £ , (y,. I Xj )]^ - {8̂ . + x* / [1 - TI(X .̂ )])' 

where x'j=Ka^Xj, K-nl^NX and it{Xj)-Ep{itj\ Xj)~ 

nxj I {NX). Hence, 

EA[yj-E,{yj\xj)f\xj} 

= E, {e]\xj) -f 2 X* /(I - 71 (x .̂) )E, {EJ \XJ ) 

•^[x'j/{l-1t{Xj))f. 

Now, 

£c(e-h) 

= £^[1-Tt^./(1-Tl(xp)85|x^.] 

= £^[ l -T t (xp-Kej - / ( :8^ . / ( l -T t (xp)e^ |x . ] 

= £ / e ] | x p = o^x .̂ 

and 

Ec(&j\xj) 

= E^[l-n{xj)-KEj -K5j/(l-it{xj)) ej\xj] 

= -x]/{l-n{xj)). 

ft foUows dierefore diat MSEp(F£ R.̂  \DJ = a^Z^^.x^. -
Z,.,Jx7(l-Tr(xp)]l Q.E.D. 

Remark 8: For noninformative sampling and widi known 
P, the prediction MSE of the optimal predictor F = 
Ife.yi + PI,-..Xj is, £p[{Y-Y) ' \D,] = o'^j,sXj . This 
MSE is larger than the MSE obtaUied under the informative 
sampUng scheme defined by the Lemma, which is obvious 
since the latter scheme tends to sample the imits with the 
larger y-values and hence also with the larger x-values and 
the larger standard deviations. 

6. MEAN SQUARE ERROR ESTIMATION 

Estimating MSE(F I D J = ^^[(F - F)^ I D J for die 
predictors F considered in section 4 requires strict model 
assumptions diat could be hard to vaUdate. This is largely 

due to the conditioning on die design information D^. In 
order to deal witii tius problem, we propose to estimate 
instead die unconditional MSE, MSE(F) = E[{Y - F)^] = 
E„{EA{Y-Y)'\D,]}, where ED, ~ EQE^ defines the 
expectation over the sample distribution (given the selected 
sample) and over aU possible sample selections. Notice that 
Ep[{Y-Y)^ I D J can be viewed as a random variable 
M ( D J , SO diat MSE{Y) = Eo[u{D^)] defines its 'best 
predictor' witii respect to the mean square loss function 
under the distiibution / ^ over which the expectation E^ 
is taken. By changing the order of the expectations, the 
imconditional MSE can be expressed as. 

M S E ( F ) - £ , £ ^ £ J ( F - •yy\y] 

E^E^[{Y-Yf\y] (6.1) 

where y = {yi; ieU). EstimatUig die unconditional MSE 
of any of the predictors F can be carried out therefore by 
estimatUig its randomization MSE, see Pfeffermann (1993) 
for further discussion. Estimation of the randomization MSE 
of the various predictors has die additional advantage of 
aUowing theU use under the design based approach. 

Estimation of randomization variances of design based 
estimators is considered extensively in the Uterature and 
many diverse metiiods are in routine use. However, in view 
of the compUcated stmcture of some of the predictors 
considered Ui this study and Ui order not to restiict to 
particular sampling schemes, we propose below the use of a 
two-step procedure that combines an inverse sampUng 
process (Step 1) and what can be viewed as a bootsti-ap 
resampling algorithm (Step 2). A notable advantage of this 
procedure is that it is general and appUes 'equally' to all the 
predictors. Also, unlike other variance estimation methods 
in common use, it does not requUe knowledge of the pair 
wise joUit selection probabUities Tt,y =Pr(/, ye 5). As 
discussed later, a vaUd appUcation of the fu^t step requUes 
sufficientiy large samples. The two steps of the proposed 
procedure are as follows: 

Step 1- Generate a single 'pseudo population' by selecting 
with replacement N units from tUe original sample widi 
probabiUties proportional to w,. = 1 / TT,. , where N is the 
population size. The justification for diis step is given 
below, see also Remark 10. Denote by F^̂  the sum of the y-
values in the pseudo population. 

Step 2- Select independentiy a large number B of bootstrap 
samples from the pseudo population generated in Step 1, 
using die same sampling scheme as used for die selection of 
the original sample, and re-estimate the population total. 

Let F represent any of the predictors and denote the 
predictor obtaUied for bootstrap sample b by F^ . Estimate, 

Eo(Y-Yf=\YlK-^i pp' 
(6.2) 
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The performance of the estimator (6.2) in estimating the 
randomization MSE depends obviously on die 'closeness' 
of die pseudo population generated in Step 1 to die actual 
population from which the original sample was drawn. The 
closeness of the two populations can be verified Ui part by 
noting that die margUial distribution of y, I x, in the pseudo 
population is the same as in die origUial population. To see 
this, note that die pseudo population generated in Step 1 is a 
'sample with replacement' from the original sample with 
selection probabiUties Cw^ on each draw, where 
C = 1/I"=|W,.. Denoting by /^^(y,. Ix,) die margUial 
pseudo popidation distribution we find using (2.2) and 
(2.5a), 

/pp(>', |x,) = 
Es(CWi\yi,Xi)f^{yi\xi) 

Es{Cw^x,) 

Ep{n,\x^)f,{y,\x.) _ , (6.3) 
= — 7 r - — \ — ^ — = f p (y> \^' )• 

Ep{Tti\yi,Xt) 

Remark 9. Equation (6.3) only refers to the margUial 
distiibution of y,. I x,.. Like with the standard bootstrap 
method, a successful appUcation of the proposed procedure 
requires that the original sample size is sufficiently large and 
that the sample measurements are approximately Uide­
pendent. Pfeffermann et al. (1998) estabUsh conditions 
under which for independent population measurements the 
sample measurement are 'asymptoticaUy Uidependent' 
under commonly used sampUng schemes with unequal 
selection probabiUties. 

Remark 10. Step 1 is sUnUar and asymptoticaUy equivalent 
to dupUcatUig sample unit i w,. times. Notice, however, that 
the use of this dupUcation procedure does not yield pseudo 
populations of size Â  imless I"=i w', = N. It is also not clear 
how to estabUsh the relationship (6.3) when using this 
procedure. 

7. EMPIRICAL ILLUSTRATIONS 

7.1 Description of Empirical Study 

In order to Ulusti-ate die performance of the predictors 
and the associated MSE estimates discussed in previous 
sections we use a real data set, coUected as part of the 1988 
U.S. National Maternal and Infant Health Survey. The 
survey uses a disproportionate stratified random sample of 
vital records with the strata defined by mother's race and 
child's birth weight; see Kom and Graubard (1995) for 
detaUs. For the empUical study in this section we considered 
the sample data as 'population' and selected independentiy 

1,(X)0 samples with probabiUties proportional to tbe inverse 
of the original sampling weights, using a systematic PPS 
sampUng scheme. The Ust of 'population units' was 
randomly ordered before every sample selection. For each 
sample we predicted the population total of birth weight 
(measured in grams, divided by 10,000 in die present 
study), usUig gestational age as the auxiUary variable 
(measured in weeks). The sample Uiclusion probabiUties 
depend therefore on the values of the study variable that 
defines the original strata. Notice that although the original 
sample was supposedly a stî tified random sample, the 
sampling weights actually vary within die sfrata, which is 
why we used systematic PPS sampUng for the sUnulation 
study. We considered three different sample sizes, n = 232, 
1,145, 2,429. The 'population' (origUial sample) size is 
Af = 9,948. (For n = 232, 0.002 < TI, = Pr{i €s)< 0.15. For 
n= 1,145, 0.01 < Tt, < 0.73. For n = 2,429, 0.03 < 
TI, < 0.99 with mean TI - 0.26 and standard deviation 
Std{ni) = 0.29. In the latter case some of the units were 
drawn almost with certainty). 

Some of the predictors considered for this study (see 
below) requke the specification of either the sample model 
or the sample-complement model. We assumed for both 
models the third order polynomial regression, 

yk = P o + P i ^ * + p 2 ^ ' + M t + e * (7.1) 

with Uidependent residuals and constant variance. This 
model was found by Pfeffermann and Sverchkov (1999) to 
give a good fit to the 'population' (original sample) data 
widi R^ = 0.61 (see Figure 1), and it was found also to fit 
faUly weU the sample data (widi different coefficients) for 
several samples selected from this 'population'. Notice, on 
die other hand, that with this stî ongly informative samplUig 
scheme, it is unlikely that the sample model, the population 
model and the sample-complement model are aU from the 
same famUy even if with different parameters. The present 
study enables therefore studying the performance of the 
various predictors when some or aU of the diree models are 
misspecified. This important robustness question is ftirther 
examined by fitting simple regression models instead of the 
third order polynomial regressions diat is, by omitting the 
second and third powers of the auxiUary variable. The only 
exception is the model dependent predictor F, (Equation 
4.4) where no coherent estimator for the expectation 
E^{Wj \Xj) could be found when restricting to simple 
regression. (The method considered Ui Pfeffermann and 
Sverchkov (1999) for the estimation of this expectation 
assumes normaUty of the population model residuals. This 
is a vaUd assumption when fitting the third order polynomial 
regression model but is clearly violated when droppUig the 
second and thkd powers of the auxiUary variable). 
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U.S. National Matemal and Infant Health Survey,!988. 
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Var(8,) = 603.2, R^ =0.61 

Figure 1. Scatterplot of Birth Weight against Gestational Age in 'Population' (original Sample), and Predicted Values 
Under 3"* Order Polynomial Regression. 

The predictors considered for dus study divide therefore 
mto diree groups. The first group consists of predictors that 
only use the sample y-values and the sampling weights. 
Included in dus group are the Horvitz-Thompson estimator 
FH_T = Z.ejM'/y;, Uic prcdictor Y^-, defmed by (5.2) and 
Hajek's estimator Y^^^•^^. defined by (5.3). The second group 
consists of predictors diat use the working model defined by 
(7.1). Included in this group are the two regression pre­
dictors F| and Fj R̂g defined by (4.4) and (4.8) respec­
tively, the bias corrected predictor Fj defined by (4.12) and 
the GREG estimator defmed by (4.14). The third group 
contains the same predictors as the second group (except for 
F,, see above), but based on the simple regression model 
(only the fu-st power of x). 

The MSEs of aU the predictors considered in this study 
have been estUnated by use of die two-step procedure 
described in section 6. However, because of computing time 
Umitations, die MSE estUnators were only computed for a 
random selection of 2(X) out of die 1,(X)0 samples and are 
based on only 200 bootsti^p samples from each pseudo 
population. For assessing die performance of die MSE 
estimators we computed the correspondUig empirical MSEs 
based on the 1,(KX) samples selected from the study 
population. Thus, the 'tme' MSE of a generic predictor F 
was computed as. 

MSE(F) •• 1 
1,000 T:T(K.-y)' (7.2) 

where F̂ ,.) denotes die predictor computed from the r 
sample. Notice that since the population values are fixed, 
the MSE in (7.2) is the randomization MSE over all possible 
sample selections, which is what die estimator (6.2) is 
Uitended to estimate. 

7.2 Results of Empirical Study 

TUe maUi results of this stiidy are exhibited in 
Tables 1.1-1.3 (one table for each sample size). The thUd 
column of each table shows for every predictor F the 
empUical bias, [(Zf=|F(,.)//?)-F], and the standard 
deviation {Std) of die empUical bias, computed as 
[lf=,(F(,) - F « ) ' / / ? ' ] " ^ Y, = lf.,F(,j IR, R = 1,000. 
The next two columns show respectively the 'tme' 
(empUical) RMSE (square root of Equation 7.2), and die 
square root of the mean of the correspondUig Bootsti^p 
estimators defmed by (6.2). 

The mam conclusions from Tables 1.1 -1.3 are as foUows: 
1- AU the predictors considered for this study are vUlually 

design unbiased with aU three sample sizes, Urespective 
of the underlying working model. The predictor F, has a 
statistically significant bias when tested by use of the 
conventional f-statistic but the actual bias is negligible 
when compared to the tme population total. (The 
predictor F, is die only predictor considered Ui this 
study that is not design consistent). 

The next three comments refer to die RMSE of the 
various predictors. 
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2- The predictors in Groups 2 and 3 that use the auxiUary 
values perform much better than die predictors in Group 
1, particularly for the smaller sample sizes. The pre­
dictors Ui Group 2 that employ the 3"* order polynomial 
regression model (7.1) perform better than the corre­
sponding predictors Ui Group 3 that employ the simple 
regression model as the working model, but the dif­
ferences dimUUsU as die sample size increases. 

3- An important resuU emerging from this study is diat die 
predictors F2 R(.g and Y^, (and also F3 for the larger 
sample sizes), that only predict the y-values for units 
outside the sample Uideed perform better than die otiier 
predictors in theU respective groups (see also below). As 
surmised in Remark 7, this holds particularly with the 
larger sample sizes. Notice that the differences between 
^2. Reg and die GREG estimator for n =1,145 and 
AT =2,250 are smaUer under the polynomial model 
(Group 2) than under the simple regression model 
(Group 3), which is explaUied by the tight relationship 
between the stiidy variable and auxiUary variables under 
die polynomial model. The predictor F3 is less stable 
than Fj R̂g for n = 232 but for the other two sample 
sizes the two predictors perform simUarly. 

4- The predictor Fj R̂g performs somewhat better than the 
model dependent predictor F, that employs the 
expectations E{Wj I x,) to adjust the sampling weights. 
We have no clear explanation for this result because as 
Ulusfrated Ui Pfeffermann and Sverchkov (1999) usUig 

the same data, adjusting the sampling weights improves 
the estimation of the regression coefficients very 
significantiy. 

Next consider the MSE estimators. 

5- The MSE estimators developed in section 6 perform 
very weU for all die predictors and with all the sample 
sizes. For the sample size n = 232 there is a systematic 
under-estimation of the RMSE by up to 3%, which is 
explaUied by the fact that the pseudo population is in this 
case less variable than the actual stiidy population (see 
Remark 9). The MSE estimators are almost unbiased for 
the other sample sizes with the largest difference 
between the estimated and tme RMSE being again in the 
magnitude of 3%. 

Another way of assessUig the bias of the various 
predictors and their MSE estimation is by studying the 
coverage properties of confidence intervals defined by these 
predictors. Tables 2.1-2.3 compare the empirical 
percentage coverage of the standard confidence intervals 
F± Z,_„,2'vMSE with the corresponding nominal 
percentages for selected values of a (one table for each 
sample size). The empUical percentages are somewhat 
erratic with n = 232 sample units but they stabiUze as die 
sample size increases, particularly with die use of the 
predictors Ui the second and third group. The empUical 
percentages are close to the nominal percentages with aU die 
predictors when n = 2,250. 

Table 1.1 
Bias, RMSE and Square Root of Mean of MSE Estimators, n = 232 

Group Predictor Bias (Std) 

4.5(11.6) 

1.5(2.9) 

1.7 (2.9) 

4.4 (2.0) 

3.5 (2.0) 

-0.3 (2.1) 

3.4(2.1) 

-2.3 (2.2) 

-0.3 (2.2) 

-2.3 (2.2) 

RMSE 

365.1 

91.1 

93.0 

64.0 

63.4 

65.4 

63.6 

68.0 

68.6 

68.3 

VMSE 

355.0 

89.8 

91.6 

63.0 

62.4 

65.0 

62.6 

66.2 

67.4 

66.5 

No .x-values 

3''' order 

polynomial 

regression 

Simple Regression 

'H -T 

'El 

' Hajek 

' 2 , Reg 

'GREG 

' 2 , Reg 

'GREG 

True 'population' total= 2710.7 
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Table 1.2 
Bias, RMSE and Square Root of Mean of MSE Estimators, n •• ,145 

Group Predictor 

^H-T 

YE, 

^Hajek 

Yi 

^2. Reg 

1̂3 

^GREG 

^2, Reg 

Y3 

I'GREG 

Bias (Std) 

-9.1 (5.0) 

0.0(1.1) 

-0.1 (1.3) 

3.0 (0.9) 

2.0 (0.9) 

0.5 (0.9) 

1.7(0.9) 

0.0(1.0) 

0.1 (1.0) 

0.0 (2.0) 

RMSE 

157.1 

35.2 

39.5 

27.6 

27.4 

27.4 

27.8 

28.3 

28.2 

29.1 

VMSE 

156.1 

34.9 

39.3 

28.1 

27.3 

27.7 

27.8 

28.7 

28.9 

29.6 

1 
No x-values 

3"" order 
polynomial 
regression 

Simple Regression 

True 'population' total= 2710.7 

Table 1.3 
Bias, RMSE and Square Root of Mean of MSE Estimators, n=2,250 

Group Predictor 

I'H-T 

YE, 

^Hajek 

Yl 

Y2. Reg 

^3 

I'GREG 

^2, Reg 

F3 

I'GREG 

Bias (Std) 

1.3(2.7) 

-0.2 (0.6) 

0.1 (0.7) 

1.3(0.5) 

0.6 (0.5) 

-0.3 (0.5) 

0.5 (0.5) 

-0.3 (0.5) 

-0.3 (0.5) 

-0.2 (0.6) 

RMSE 

82.7 

18.5 

23.5 

17.5 

16.9 

17.1 

17.9 

17.3 

17.7 

18.8 

VMSE 

80.4 

18.8 

23.8 

17.3 

16.3 

16.5 

18.3 

16.8 

17.3 

18.3 

1 
No x-values 

3"* order 
polynomial 
regression 

Simple Regression 

True 'population' total= 2710.7 

Table 2.1 
Nominal and Empirical Percentage Coverage of Confidence Intervals, n = 232 

Group Predictor 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0 

1 

No x-values 

3"* order polynomial 

regression 

Simple Regression 

•E. 

'Hajek 

' 2 , Reg 

'GREG 

' 2 , Reg 

2.5 

0.5 

0.5 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

3.5 

2.0 

2.0 

0.0 

0.0 

0.5 

0.0 

1.0 

1.0 

1.0 

5.5 

4.0 

4.0 

1.5 

2.0 

2.5 

2.0 

2.5 

2.5 

2.5 

10.0 

8.0 

8.0 

6.5 

7.0 

6.5 

7.0 

7.0 

7.0 

7.0 

90.0 

88.5 

88.5 

86.0 

85.0 

87.5 

85.0 

87.0 

86.0 

86.5 

97.0 

91.5 

91.5 

90.5 

90.5 

91.0 

90.5 

91.5 

91.5 

91.5 

99.0 

95.5 

95.5 

92.5 

93.5 

95.0 

93.5 

97.5 

96.5 

97.0 

99.5 

98.0 

98.0 

97.5 

98.0 

98.5 

98.0 

98.0 

98.0 

98.0 
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Table 2.2 
Nominal and Empirical Percentage Coverage of Confidence Intervals, n = 1,145 

Group Predictor 1 2.5 5.0 10.0 90.0 95.0 97.5 99.0 

No x-values 

3'^ order polynomial 

regression 

Simple Regression 

' H - T 

• Hajek 

' 2 . Reg 

' 2 , Reg 

'GREG 

4.0 

3.0 

3.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1.0 

7.0 

5.0 

5.0 

2.0 

3.0 

2.0 

3.0 

3.0 

2.5 

3.0 

9.0 

8.0 

9.5 

5.0 

6.0 

6.0 

5.0 

6.0 

5.5 

6.0 

13.5 

12.5 

12.5 

7.5 

9.0 

9.5 

9.0 

11.0 

10.5 

11.0 

95.5 

92.5 

92.5 

86.5 

86.5 

88.0 

86.5 

90.0 

90.0 

90.5 

98.0 

95.5 

96.0 

93.5 

94.5 

94.0 

94.0 

93.0 

94.0 

94.0 

98.5 

99.5 

99.5 

96.0 

96.5 

97.0 

96.5 

97.0 

97.0 

97.5 

99.5 

100.0 

100.0 

97.0 

97.0 

98.0 

98.0 

99.5 

99.5 

99.0 

Table 2.3 
Nominal and Empirical Percentage Coverage of Confidence Intervals, n = 2,250 

Group Predictor 1.0 2.5 5.0 10.0 90.0 95.0 97.5 99.0 

No x-values 

3"* order polynomial 

regression 

Simple Regression 

' H - T 

•El 

'Hajek 

' 2 , Reg 

'GREG 

' 2 . Reg 

'GREG 

0.5 

1.0 

1.0 

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

0.0 

ofdUs 

1.0 

3.0 

2.5 

2.0 

2.5 

2.0 

2.0 

3.0 

2.0 

1.5 

article 

5.5 

5.5 

5.5 

5.0 

6.5 

7.5 

6.0 

6.0 

6.0 

5.0 

11.0 

9.0 

9.0 

9.0 

10.5 

12.5 

11.0 

11.0 

12.0 

11.5 

mpe = 

95.0 

91.5 

93.0 

91.0 

90.5 

91.5 

91.0 

91.0 

90.0 

91.5 

.^1.000 r ^ 
Zjr=l LZj;e 

97.5 

96.0 

97.0 

94.5 

94.5 

95.5 

94.5 

95.0 

95.0 

95.0 

s(yj-

99.0 

99.0 

98.5 

96.5 

96.5 

96.5 

96.0 

97.5 

97.5 

97.5 

yj)/{N-n)] 

99.5 

99.5 

99.5 

97.5 

98.0 

97.5 

98.0 

99.0 

98.0 

99.0 

/l,00 
As impUed by the theoretical developments of this article 

and iUustî ated in the empUical study, predicting only die y-
values for units outside the sample employing the sample-
complement model yields better predictors for the 
population total than predictUig all die population values by 
use of the population model, as impUcitiy implemented 
when using the GREG or Hajek's estimators. Clearly, the 
differences are only appreciable when the sampling 
tractions are not negUgible. 

In order to highUght this point further, we present in 
Table 3 die mean prediction error (mpe) in the original scale 
(grams) over the 1,000 samples when predicting the sample-
complement values; 

where S,. defines the r selected sample. The mpe's are 
shown for diree predictors, all utUizUig the working model 
(7.1)- and thus havUig the general form, y ; = P o + 
P,x^.+P2X] H-PjxJ, jis. For the fu'st predictor the 
vector p = (Po,P[, P2,P3)' is estimated by OLS, which 
corresponds to the use of the sample model; for the second 
predictor P is estimated by die probabiUty weighted 
estimator B^^, that corresponds to the use of the population 
model whereas for the third predictor p is estimated by the 
estimator B^ which is computed similarly to B^^ but with 
weights (w, - 1 ) , that corresponds to the use of the sample-
complement model. 
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Sample size 

Table 3 
Mean Prediction Errors and Std of Means (in brackets) Under Three Prediction Models 

Sample Model Population model Sample-Complement model 

232 

1,145 

2,250 

329.0 (2.2) 

375.0 (0.9) 

387.5 (0.6) 

10.3 (2.3) 

37.7(1.1) 

85.8 (0.7) 

4.3 (2.3) 

2.4(1.1) 

0.9 (0.8) 

The clear conclusion emerging from Table 3 is that the 
use of eidier die population model or die model holdUig for 
units in die sample for the prediction of y-values of unUs 
outside the sample can result in appreciable biases. Notice 
that the bias induced by use of die population model 
Uicreases as die sampUng fraction increases, which agrees 
widi the previous discussion asserting diat die difference 
between die sample and sample-complement models only 
shows up widi relatively large sample sizes (see Comment 
2). 

8. CONCLUDING REMARKS 

In this article we use the sample and sample-complement 
distiibutions for developUig design consistent predictors of 
finite population totals. Known predictors in common use 
are shown to be special cases of the present theory. The 
MSEs of the new predictors are estimated by a combination 
of an inverse sampling algorithm and a resampUng method. 
As supported by theory and iUustrated in the empirical 
study, predictors of fiiute population totals that oiUy requUe 
die prediction of the outcome values for units outside die 
sample perform better than predictors Ui common use even 
under a design based framework, unless the sampUng 
fractions are very small. The MSE estimators are shown to 
perform weU both in terms of bias and when used for the 
computation of confidence intervals for die population 
totals. Further experimentation with this kind of predictors 
and MSE estimation is therefore highly recommended. 
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Weighted Estimation in Multilevel Ordinal and Binary Models 
in the Presence of Informative Sampling Designs 

LEONARDO GRILLl and MONICA PRATESI' 

ABSTRACT 

Multilevel models are often fitted to survey data gathered with a complex multistage sampling design. However, if such a 
design is informative, in the sense that the inclusion probabilities depend on the response variable even after conditioning 
on the covariates, then standard maximum likelihood estimators are biased. In this paper, following the Pseudo Maximum 
Likelihood (PML) approach of Skinner (1989), we propose a probability-weighted estimation procedure for multilevel 
ordinal and binary models which eliminates the bias generated by the informati veness of the design. The reciprocals of the 
inclusion probabilities at each sampling stage are used to weight the log-likelihood function and the weighted estimators 
obtained in this way are tested by means of a simulation study for the simple case of a binary random intercept model with 
and without covariates. The variance estimators are obtained by a bootstrap procedure. The maximization of the weighted 
log-likelihood of the model is done by the NLMIXED procedure of the SAS, which is based on adaptive Gaussian 
quadrature. Also the bootstrap estimation of variances is implemented in the SAS environment. 

KEY WORDS: Informative design; Multilevel ordinal model; Multistage sampling; Pseudo Maximum Likelihood; 
Weighting. 

1. INTRODUCTION 

Multilevel models for ordinal responses, including 
binary responses as a special case, are frequently used in 
many areas of research for modelling hierarchically 
clustered populations. In fact, both in human and biological 
sciences, the status or the response of a subject may often 
be classified in two categories or in a set of ordered 
categories (ordinal or graded scale). At the same time, 
subjects are observed clustered in groups {e.g., schools, 
firms, clinics, geographical areas). The hierarchical popu­
lation structure is often also employed to design multistage 
sampling schemes, with unequal selection probabilities at 
some or all the stages of the sampling process. In tUe 
multilevel analysis of survey data, complex sampling 
scUemes are often ignored even if they may cause the 
violation of the basic assumptions underlying multilevel 
models. In fact, in complex sampling designs botU tUe 
subjects and the clusters at all levels could be selected with 
probabilities that, even conditionally on the covariates, do 
depend on the response variable; in other words, the 
sampling design migUt be informative. 

For data that are clustered and obtained by multistage 
informative designs, proposals for fitting multilevel models 
have been formulated mainly for the case of continuous 
response variables. In particular, Pfeffermann, Skinner, 
Holmes, Goldstein and Rasbash (1998) propose proba­
bility-weighting procedures of first and second level units 
that adjust for the effect of an informative design on the 

estimation in two-level models with a continuous response 
variable. The method, known as Pseudo Maximum 
LUceUhood (PML), consists in writing down a closed form 
expression for the census likelihood, estimating the 
log-Ukelihood function and then maximizing the estimated 
function numerically. The method needs the siunpling 
weigUts for the sampled elements and clusters at all levels. 
The authors also develop appropriate 'sandwich' estimators 
for the variances of the estimators. 

The work of Pfeffermann et al. (1998) is mainly 
concemed with the implementation of the PML principle in 
the IGLS (Iterative Generalised Least Squares) algorithm 
(Goldstein 1986), which is suitable for linear multilevel 
models. The probabiUty-weighted IGLS algorithm is 
available in the widespread package MLwiN (Rasbash, 
Browne, Goldstein, Yang, Plewis, Healy, Woodhouse and 
Draper 1999). However, the extension to nonlinear models 
is not trivial. For the nonlinear case the developers of 
MLwiN implemented a weighting procedure that parallels 
the one used for linear models witU some ad hoc solution 
for the level 1 variation: for example, for binary responses 
the subject-level weights are included in the binomial 
denominator. The proposed method is sfraightforward to 
implement, but its properties have not been investigated yet. 
Moreover Renard and Molenberghs (2002) report the case 
of an application where the aforementioned algorithm for 
weighting in multilevel binary models did non converge or 
yielded implausible results. 

Leonardo Grilli, Dipartimento di Statistica, University di Firenze. E-mail: grilli@ds.unifi.it; Monica Pratesi, Dipartimento di Statistica e Matematica applicata 
aU'Economia, University di Pisa. E-mail: m.pratesi@ec.unipi.it. 

mailto:grilli@ds.unifi.it
mailto:m.pratesi@ec.unipi.it


94 Grilli and Pratesi: Weighted Estimation in Multilevel Ordinal and Binary Models 

The simulation study which we will use to judge the 
performance of the PML estimators will closely foUow die 
lines of Pfeffermann et al. (1998), since they use a similar 
approach for the Unear model, so that some interesting 
comparisons are possible. However, when making the 
comparisons it should always kept in mind that, while in the 
two-level linear model the two variance components can be 
estimated separately, in the two-level binary model only a 
ratio of the two variance components is estimable, as 
discussed further on. 

A recent paper which deals with the estimation of 
variance components is Kom and Graubard (2003), whose 
work is motivated by the substantial bias showed in small 
samples by several weighted estimators of variance compo­
nents proposed to adjust for informative designs (Graubard 
and Kom 1996). Though the topic is same, the work of 
Kom and Graubard is different from ours in many respects: 
a) As Pfeffermann et al. (1998), they consider only die 
linear multilevel model, b) In the context of the linear 
multilevel model, they focus on unbiased estimation of the 
variance components in small samples: in fact they propose 
some estimators for the variance components and only 
sketch how to derive similar estimators for the linear model 
with covariates, but without testing their performance. 
Anyway, the extension to nonlinear multilevel models is not 
trivial, c) The main estimators proposed by Kom and 
Graubard (2003), which are in closed form, showed good 
performance even in small samples. However they rely on 
the pairwise joint inclusion probabilities. When such proba­
biUties are not available, which is often die case in practice, 
the authors propose a variant whose bias is substantial when 
the number of sampled clusters is moderate (33 in their 
simulation plan). In contrast, the PML method adopted in 
our work do not require joint inclusion probabiUties. d) The 
informative design used by Kom and Graubard (2003) for 
dieh simulation study is quite different from ours: in fact, in 
tUeir design the undersampling of the units depends on 
whether the model's random errors are greater than a 
certain threshold in absolute value, while in our design the 
criterion depends on whether the random errors are high or 
low. Therefore a comparison of the results is difficult. 

The wide use of nonlinear multilevel models in many 
fields of application urges for a general and reliable 
weighted estimation method, which should be both effect­
ive and simple to implement, preferably in the framework 
of a standard statistical software. The present paper 
represents a contribution in this direction. 

It is worth to note that the PML method we exploit is 
quite general, so it can be applied to a wide range of 
models. In the paper the focus is on models for ordinal and 
binary responses, since they are very common and can be 
represented as a linear model for the latent response 

endowed with a set of thresholds (see section 2), faciUtating 
the comparison with the existing results for the linear 
model. However the description of the PML approach is 
absolutely general and the estimation technique based on 
die NLMIXED procedure of SAS (reported in Appendix A) 
is easy to generalize. 

The stiiicture of die paper is as foUows. Basic definitions 
for the multilevel ordinal model are set out in section 2, 
while in section 3 the general PML approach is described, 
along with some details for fitting the model using SAS 
NLMIXED. In section 4 the properties of the various 
estimators for the random intercept binary model are 
evaluated by a simulation study. Section 5 concludes with 
some final remarks. 

2. THE MULTILEVEL ORDINAL MODEL 

In order to ease the comparison with the results 
concerning the linear model (Pfeffermann et al. 1998; Kom 
and Graubard 2003), U is useful to write the ordinal model 
in terms of a latent linear model endowed with a set of 
thresholds. Suppose that an observed ordinal response 
variable Y, with k = l,2,...,K levels, is generated, tiirough 
a set of thresholds, by a latent continuous variable Y 
following a variance component model (Hedeker and 
Gibbons 1994): 

f. = p'x.. + a)«,- + B,., (1) 

with i = I, 2,..., N. elementary units (subjects) for thej-th 
cluster {j = 1,2,...,M). In(l) x.. is a covariate vector and p 
is the corresponding vector of slopes; the random variables e ̂ j 
and u. are the disturbances, respectively at the first 
(subject) and second (cluster) level; and (ô  is the second 
level variance component. 

For the disturbances of model (1) we make the standard 
assumptions, i.e., a) the e. 's are iid with zero mean and 
unknown variance o^; b) die Uj's are Gaussian iid with 
zero mean and unit variance; c) the e. 's and M'S are 
mutually independent. 

Note that model (1) leads to die simplest case of a multi­
level ordinal model, with just two levels and a single 
random effect on the intercept; the extension to three or 
more levels and to multiple random effects is straight­
forward in principle (Gibbons and Hedeker 1997), but the 
complications in tUe formulae suggest to consider only the 
simplest case, which is sufficient for the discussion of die 
main conceptual issues. 

The observed ordinal variable Y is Unked to the latent 
one Y through the foUowing relationship: 

{yij = k] «{Y, - i<?^^y ,} , 
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where the thresholds satisfy -<» = y^ ^ y, <... ^ y^_, <. 
Y^ = + <». Therefore, conditional on M ., the model proba­
bility for subject / of clustery is 

P{Y^j=k\uj)=P{y,_,<Y,j,j,\uj) 

= P{Y,j^y,\uj)-P{Y^j^j,_^\uj), (2) 

with 

P(?y ^ Jk I Uj) = P(E,.,. ̂  Y, - [^'X.j + CO",] I Uj) 

= F 1 ai ^ 
- p X + - M 
O ^ o -̂  

a J/ 

where F{-) is the distiibution function of the standardized 
first level error term ê . Io. All the model parameters are 
defined in terms of the unknown o, the standard deviation 
of the first level error term, so only the ratios of the model 
parameters to the standard deviation of the first level error 
term are identifiable; we use tbe notation \\i^ to indicate that 
the latent model parameter y is in o units, i.e., \|/ =\\i la. 
Note that F{-) is also the inverse of the Unk function of the 
ordinal model: for example, the standard Gaussian 
distribution function yields the ordinal probit model. 

As for identification, if p^ includes the intercept, the 
estimable thresholds are K-2; so it is customary to set 
Yjj, = 0. Altematively, if the intercept is fixed to zero all 
the ^ - 1 diresholds are estimable. 

Now let 0 denote die vector of all estimable parameters, 
which include P^, cô  and K-2 thresholds 
{j^i^:k = 2,...,K-l} (y^, is fixed to zero to insure 
identifiability). Tbe conditional likelihood for subject i of 
clustery is 

h(^Wj) = n lp{yij=k\ujp\ (4) 

where P{Y.. = k\u.) is defined by (2) and (3), while J..^ is 
the indicator function of the event [Y.. = k}. Then the 
marginal likelihood for clustery is 

Ej(Q) = f ' " n L.j{e\u)cp{u)du, 

where tp is the standard Gaussian density function. Finally, 
the overall marginal likelihood is 

M 

L{Q) = n E(Q). (5) 
7 = 1 

3. PROBABILITY-WEIGHTED ESTIMATION 

3.1 Pseudo Maximum Likelihood (PML) Estimators 

Suppose diat the whole population of Af clusters (level 2 
units) with Â . elementary units (subjects or level 1 units) 
per cluster is not observed; instead the following two-stage 
sampling scUeme is used: 

- first stage: m clusters are selected with inclusion 
probabilities it.{j= l,...,M); 

- second stage: n. elementary units are selected within 
the y'-th selected cluster with probabilities 
K.,.{i=l,...,N.). 

^(Y., .-[Po' '^,7^«a«,l) ' (3) then;:. 

The unconditional sample inclusion probabilities are 
• T t . i . 7 1 . . 

•\j J 
When the sampling mechanism is informative, i.e., the Tt. 

and/or the Tt,.,. depend on the model disturbances and hence 
on the response variable, the maximum likelihood estimator 
of the parameters of the multilevel ordinal model defined in 
section 2 may be seriously biased. 

A standard solution to this problem is provided by the 
Pseudo Maximum Likelihood (PML) approach (Skinner 
1989). However in die context of multUevel models the 
implementation of the PML approach is complicated by the 
fact that the population log-likelihood is not a simple sum 
of elementary unit contributions, but rather a function of 
sums across level 2 and level 1 units. This can be seen by 
writing the logarithm of the likelihood (5) as follows: 

logL(0 )=Eiog/_; exp Y^ogL.j{Q\u)\ (p{u)du. (6) 

A design consistent estimate of the population log-
likelihood (6) can be obtained applying the Horvitz-
Thompson principle, i.e., replacing each sum over the level 
2 population unitsy by a sample sum weighted by w.= lln. 
and each sum over the level I units / by a sample sum 
weighted by w.,j = lln.,.: 

logL(e) = 

explYw.ylog L.j{Q\u)\ (p{u)du, (7) 

where E'' denotes a sum over sample units. 
Note that inserting the weights in the log-likelibood 

implies tbe use of a design consistent estimator of the 
population score function. In fact, the population score 
function U{Q) = dldO log L(6) can be written as 
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M 

; - i 

/ . : 
expjX^ logL,J 

1=1 

p—10gL^.[(p(M)jM 

(8) 

j "expjX^ logL.j\v?{u)du 

where L.. = L..{'d\u), whose corresponding Horvitz-
Thompson estimator (7(9) is 

. . / . : 
exp E vv,.| .logL,̂ ( |E Wi\j—^ogL.Mu)du 

'd% 

y e\^^w.,^logL.j\(Sf{u)du 

(9) 

which equals the score obtained by differentiating the 
probability-weighted loglikelihood (7). 

Under mild conditions, the solution Gp̂ ^ to the esti­
mating equations t/(9)=0 is design consistent for the 
finite population maximum likelihood estimator 6 which, 
in tum, is model-consistent for the super-population para­
meter 8: therefore Opĵ ĵ̂  is a consistent estimator of 0 with 
respect to the mixed design-model distribution 
(Pfeffermann 1993). 

Note that general probability-weighted estimators for 
nonlinear multilevel models can also be devised by 
weighting suitable estimating functions, as in the work of 
Singh, Folsom and Vaish (2002) in the context of small area 
estimation. 

The implementation of the PML approach requires the 
knowledge of the inclusion probabilities at both levels. 
Using only second level weights or only first level weights 
may be insufficient or may even worsen the situation, as 
shown by our simulations. 

3.2 Scaling the Weights 

A controversial issue discussed in Pfeffermann et al. 
(1998) and Kom and Graubard (2003) is die scaling of tbe 
weights to obtain estimators with little bias even in small 
samples. Obviously, scaling is not relevant for the level 2 
weights, since from (7) and (9) it is clear that multiplying 
the w.'s by a constant does not change the PML estimates 
(it simply inflates the information matrix by that constant). 
On the contrary, scaling the level 1 weights may have 
important effects on the small sample behavior of the PML 
estimator. In the simulation study discussed in section 4 we 
present the results for the following type of scaling (named 
'scaling method 2' in Pfeffermann et al. 1998): 

w, 
scaled 

''1; 
w i\j 
W. 

(10) 

where w . = ( EJ w^.,.)/«., so that, for diey-th cluster, the sum 
of the scaled weights equals the cluster sample size n.. In 
the present paper we do not wish to discuss the relative 
merits of the various scaling methods, so we limit our 
sUnulations to scaled weights (10), which have an intuitive 
meaning and showed good performance in the study of 
Pfeffermann et al. (1998), although they may yield a 
substantial bias with certain designs, as discussed in Kom 
and Graubard (2003). The topic will be broached again in 
section 4. 

3.3 Estimation Technique 

The maximization of the weighted log-likelihood (7) 
involves the computation of several integrals which do not 
have a closed-form solution, so a numerical approximation 
technique is required. When the dimensionality of the 
integrals is low, a simple and very accurate technique is 
Gaussian quadrature, which is based on a summation over 
an appropriate set of points. The NLMIXED procedure of 
SAS (SAS Institute 1999) is a general procedure for fitting 
nonlinear random effects models using adaptive Gaussian 
quadrature. Various optimization techniques are available 
to carry out the maximization; the default, used in the 
simulations of section 4, is a dual quasi-Newton algorithm, 
where dual means that the upgrading concems die Cholesky 
factor of an approximate Hessian (SAS Institute 1999). 

Though the NLMIXED procedure does not include an 
option for PML estimation, it is still possible to insert the 
weights in the likelihood, using different tricks for level 1 
and level 2 weights, as explained in Appendix A. 

3.4 Variance Estimation 

In standard maximum likelihood the estimation of the 
covariance matrix of the estimators is obtained by inverting 
the information matrix. However this conventional esti­
mator is not appropriate when using the PML method since 
it does not take into account the variability stemming from 
the sampling design. To get a more reliable covariance 
matrix Skinner (1989) proposed the use of a robust 
'sandwich' estimator, which is employed also by 
Pfeffermann era/; (1998). 

As noted in section 3.3, the NLMIXED procedure of 
SAS allows to fit the model with the PML approach, but the 
estimated covariance matrix, which is obtained by inverting 
the information matrix, is lUiely to be misleading in order to 
appreciate the actual variability of PML estimators. In the 
SAS framework the derivation of 'sandwich' estimators is 
not trivial. However, a simple and effective solution, 
requiring a bit of programming, is to empirically estimate 
the variance through the bootstrap technique for finite 
populations (Samdal, Swensson and Wretman 1992), which 
consists of the following steps: a) using the sample data, an 
artificial finite population is constmcted, assumed to mimic 
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the real population; b) a series of independent bootsfrap 
samples is drawn from the artificial finite population and 
for each bootstrap sample an estimate of the target 
parameter is calculated; c) the bootsttap variance estimate 
is obtained as the variance of the observed distribution of 
the bootsttap estimates. 

The artificial finite population can be generated in the 
following way: i) for they'-th sampled cluster, each of the n. 
sampled elementary units is repUcated w.,j times, rounding 
the weight to the nearest integer, obtaining an artificial 
cluster of about Â . elementary units; ii) eacU of the m 
artificial clusters is replicated w. times, rounding the weight 
to the nearest integer, obtaining an artificial population of 
about M clusters. Then the samples are selected from the 
artificial population in the following way: i) m clusters are 
resampled with probability proportional to TT. ; ii) for the 
y-th resampled cluster, n. elementary units are resampled 
with probability proportional to Tt,.,.. 

WUen the sampling fraction mIM is low, most of the 
variance is due to the sampling of the clusters, so the 
bootsttap procedure described above could be simplified by 
omitting die steps concerning the elementary units, i.e., step 
i) in the constmction of the artificial population and step ii) 
in the resampling process. 

A simpler resampUng tecUnique for variance estimation, 
considered by Kom and Graubard (2003), is die jackknife. 
In the case of clustered designs the technique entails the 
calculation of the variance from the set of point estimates 
obtained by deleting one cluster at a time, though the 
performance of the jackknife with correlated data is not 
always satisfactory (Shao and Tu 1995). In our simulation 
study thejackknife variance estimator seems unreliable, so 
it is not used. Further research is needed to fully evaluate 
the potentialities of the jackknife by testing some suitable 
modifications of the technique. 

4. SIMULATION STUDY 

4.1 Design of Experiment 

The experiment reflects the two-stage scheme assumed 
for the observed variables: first, the finite population values 
are generated from the adequate superpopulation model 
(stage I) and then an informative or non-informative sample 
is selected from the finite population (stage II), with one 
sample per population. The two-stage selection scheme was 
repeated 1,000 times for each combination of sample size 
and type of informativeness. In order to compare our results 
with the ones obtained for the multilevel linear model, the 
experiment has been designed following the example of 
Pfeffermann etal. (1998, section 7). 

The simulation study focussed on a simple instance of 
the model defined in section 2, namely the random intercept 
probit binary model, which has only two categories for the 
response variable {i.e., K = 2) and one cluster-level 
Gaussian random error. To parallel the study of 
Pfeffermann et al. (1998) die main simulation plan refers to 
the model without covariates, but some additional 
simulations are conducted to assess the performance of the 
estimators in the model with one cluster-level covariate and 
one subject-level covariate. 

The values of the binary response variable Y.. were 
generated using tbe following two-stage scheme which 
parallels die one of Pfeffermann et al. (1998): 

- Stage I. Finite population values Y.j 
{j = l, ...,M;i = l,...,N.) were obtained by first 
generating a value from the superpopulation latent 
model P..= p + M. + E;., with u. ~ N{0,Gy^) and 
e,.̂ . ~ ^0 ,0^ ) , and then putting Y. = 0 if Y.j ^ 0 or 
y.. = 1 if P.. > 0 (recall that the binary model has 
only one threshold which is set to zero to guarantee 
identifiability). The latent model parameter values 
employed in the simulation are P = 0, cô  = 0.2 and 
ô  = 0.5, so that the parameters estimable from the 
binary model are p^ = p/o= 0 and (i)^ = cala = 0.632 
(see expression (3)). The hierarchical stmcture of die 
population comprises M = 300 clusters, while the 
cluster sizes N. were determined by N. = 75exp{u.), 
with u. generated from A (̂0, co )̂, tmncated below 
by -1.5(» and above by 1.5co. As a result, in our 
population Â . lies in the range [38, 147] with mean 
around 80. 

- Stage n. Once the finite population values were 
obtained, we adopted one of the following sampling 
scUemes: 

(a) Informative at both levels: first, m clusters were 
selected witU probability proportional to a 
'measure of size'X., i.e., nj = mXj lHj^^Xj; the 
measure X. was determined in the same way as Â . 
but with u. replaced by u., the random effect at 
level 2. The elementary units in they-tb sampled 
cluster were then partitioned into two strata 
according to whether e. .>0 or ê . ̂  0 and simple 
random samples of sizes 0.25 n. and 0.75 n. were 
selected from the respective strata. The sizes n. 
were either fixed, n. = n^, or proportional to Â .. 

(b) Informative only at level 2: the scheme is the 
same as the previous one, except that simple 
random sampling was employed for the selection 
of level 1 units within each sampled cluster. 
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(c) Non-informative: the scheme is the same as the 
previous one, except that the size measure X. 
was set equal to Nj. 

The simulation study included samples with m = 35 
clusters and varying numbers of elementary units: large 
samples with fixed size n. = WQ = 38 and proportional 
allocation n. = 0.4A .̂, and small samples with fixed size 
n. = Wg = 9 and proportional aUocation n. = 0. lA .̂ (mean of 
about 9). 

The simulation study was carried out entirely within the 
SAS System (SAS Institute 1999), writing specific code 
with the macro language. The models were fitted with the 
NLMIXED procedure (see Appendix A), using 10-point 
adaptive Gaussian quadrature with a dual quasi-Newton 
algorithm, which reached convergence in a few iterations. 
As explained in Appendix A, to avoid gross rounding errors 
the level 2 weights were pre-multiplied by a factor 
k = 10,000 and the estimated covariance matrix was then 
multiplied by the same factor. 

4.2 Results 

The results of tUe simulations are shown in Tables 1 and 
2. For each sampling design the behavior of the point esti­
mators of the intercept P̂^ and the second level standard 
deviation cô  is summarized by the mean and standard 
deviation of their Monte Carlo sampling distribution. The 
point estimators under study are the standard maximum 
likelihood unweighted estimator and the following three 
weighted versions of it: a) cluster-level weighted: the 
weights are only at level 2 {i.e., varying w.'s and constant 
w,.| .'s); b) unsealed fully weighted: the weights are at both 
levels and the level 1 weights are unsealed; c) scaled fully 
weighted: the weights are at both levels and the level 1 
weights are scaled according to (10), i.e., 'seating method 
2' of Pfeffermann etal. (1998). 

Our results are shown and discussed according to the 
following three scenarios: 1) Base scenario: the sampling 
design is non-informative. In this situation all the basic 
assumptions underlying the random intercept binary model 
are fulfilled, so this case can be assumed as a benchmark 
for judging the subsequent results. 2) Informative/ 
Unweighted scenario: tUe sampling design is informative, 
while the estimator is unweighted. In this situation the basic 
assumptions underlying the random intercept binary model 
are violated because of the informativeness of the design 
and no adjustment is used. 3) Informative/Weighted 
scenario: the sampling design is informative and the esti­
mator is weighted. Also in this case the basic assumptions 
underlying the random intercept binar model are violated, 
but die weights are inttoduced as a tentative adjustment for 
the bias of the standard estimator. 

4.2.1 Base Scenario 

When the sampling design is non-informative the 
standard maximum likelihood unweighted estimator is 
asymptotically unbiased (Tables 1 and 2: rows 9-12, 
column 1). However for smaU samples (n. = 9 and 
njO.lNj) there is an appreciable negative bias in the esti­
mation of CO . 

If the weights are inttoduced when there is no need to 
adjust for the effect of the design (Tables 1 and 2: rows 9-
12, columns 2-4), we face a slight increase in the variability 
of the estimators, which is more pronounced when the 
unsealed fully weighted estimator is used in small samples. 
Note diat, still in small samples, the unsealed fully weighted 
estimator of cô  is upward biased. 

4.2.2 Informative/Unweighted Scenario 

The informativeness of the sampling design produces 
biased and unstable estimates. The bias is still evident for 
large samples (Tables 1 and 2: rows 1-8, column 1). The 
conclusions are the same for both types of informative 
designs, though the bias tends to have a different sign. 
Moreover the informativeness of the design inflates the 
variabUity of tbe standard estimator with respect to the base 
scenario: in particular, when the design is informative at 
both levels the standard error of the estimator of P is 
doubled. 

4.2.3 InformativeAVeighted Scenario 

Estimation of P .̂ 
The results in Table 1 show that, when the design is 

informative, the weighted-based adjustment is effective in 
removing the bias in the estimation of P .̂ 

Particularly, when the design is informative only at level 
2 (Table 1: rows 5-8, columns 2-4) and the weights are 
introduced only at this level (cluster-level weighted 
estimator), the bias in the estimation is corrected with no 
important increase in the sampling variance. The result is 
valid also for fully weighted estimators (unsealed or 
scaled). The bias correction works for small samples too. 

When the design is informative at both levels (Table 1: 
rows 1-4, columns 2-4) and the weights are inttoduced at 
both levels (fully weighted estimators), the bias in the 
estimation of p^ is corrected. Moreover, the fully weighted 
estimators have smaller sampling variance than the 
unweighted counterpart, except for the unsealed version in 
small samples. The scaled version is preferable especially 
in small samples, since it allows to achieve an unbiased 
estimator with a substantial lower sampling variance. It 
should be noted that when the design is informative at both 
levels, the cluster-level weighted estimator is worse than the 
standard unweighted estimator. 
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Table 1 
Simulation Means and Standard Deviations (in parenthesis) of Point Estimators of the Intercept (true value 0, number of replicates ,000) 

Sampling design Unweighted estimator 

Cluster-level 
weighted 

Weighted estimators 

Unsealed fully 
weighted 

Scaled fully 
weighted 

Informative at both levels 

Fixed size n. = 38 

Prop, size n. = 0.4N. 

Fixed size n. = 9 

Prop, size n. = 0.1N. 

Informative only at cluster level (level 2) 

Fixed size n. = 38 

Prop, size n. = 0.4N. 

Fixed size n. = 9 

Prop, size n. = O.IM 

Non-informative 

Fixed size n. = 38 

Prop, size n. = 0.4N. 

Fixed size n. = 9 

Prop, size n. = O.IN. 

-0.120 (0.212) 

-0.163 (0.212) 

-0.214 (0.204) 

-0.164 (0.220) 

0.281 (0.169) 

0.274 (0.169) 

0.274 (0.187) 

0.269 (0.179) 

0.000 (0.108) 

0.003 (0.113) 

-0.007 (0.108) 

-0.002 (0.110) 

-0.411 (0.202) 

-0.453 (0.200) 

-0.512 (0.190) 

-0.450 (0.209) 

0.018 (0.168) 

0.014 (0.178) 

0.010 (0.195) 

0.007 (0.179) 

0.000 (0.114) 

0.004 (0.120) 

-0.009 (0.115) 

-0.002 (0.114) 

0.014 (0.193) 

0.018 (0.190) 

-0.062 (0.258) 

-0.074 (0.294) 

0.017 (0.170) 

0.014 (0.182) 

0.010 (0.212) 

0.007 (0.203) 

0.001 (0.115) 

0.003 (0.123) 

-0.010 (0.125) 

-0.004 (0.132) 

0.015 (0.188) 

0.021 (0.183) 

0.000 (0.185) 

0.008 (0.203) 

0.017 (0.169) 

0.014 (0.181) 

0.009 (0.196) 

0.006 (0.182) 

0.001 (0.115) 

0.003 (0.122) 

-0.010 (0.117) 

-0.003 (0.117) 

Table 2 
Simulation Means and Standard Deviations (in parenthesis) of Point Estimators of the Second Level Standard Deviation 

(true value 0.632, number of replicates 1,000) 

Sampling design Unweighted estimator 

Cluster-level 
weighted 

Weighted estimators 

Unsealed fully 
weighted 

Scaled fully 
weighted 

Informative at both levels 

Fixed size n. = 38 

Prop, size n. = 0.4N. 

Fixed size n. = 9 

Prop, size n. -O.IN. 

Informative only at cluster level (level 2) 

Fixed size n. = 38 

Prop, size n. = 0.4N. 

Fixed size «. = 9 

Prop, size n. = O.IN. 

Non-informative 

Fixed size n. = 38 
J 

Prop, size n. = 0 

Fixed size n. = 9 

Prop, size n. = 0. 

4N, 

IN. 

0.671 (0.106) 

0.673 (0.108) 

0.644 (0.145) 

0.598 (0.164) 

0.595 (0.100) 

0.582 (0.096) 

0.547 (0.121) 

0.538 (0.122) 

0.611 (0.086) 

0.609 (0.084) 

0.561 (0.105) 

0.551 (0.109) 

0.638 (0.112) 

0.636 (0.112) 

0.584 (0.172) 

0.546 (0.183) 

0.596 (0.110) 

0.582 (0.115) 

0.548 (0.135) 

0.535 (0.142) 

0.612 (0.092) 

0.606 (0.088) 

0.561 (0.112) 

0.546 (0.113) 

0.637 (0.137) 

0.645 (0.142) 

0.920 (0.289) 

1.002 (0.317) 

0.605 (0.111) 

0.603 (0.113) 

0.671 (0.144) 

0.696 (0.158) 

0.621 (0.090) 

0.626 (0.088) 

0.685 (0.119) 

0.703 (0.134) 

0.604 (0.128) 

0.592 (0.130) 

0.536 (0.222) 

0.498 (0.242) 

0.601 (0.1 II) 

0.596 (0.113) 

0.563 (0.133) 

0.551 (0.139) 

0.617 (0.091) 

0.618 (0.088) 

0.575 (0.111) 

0.559 (0.112) 

Estimation of a. 
The results in Table 2, conceming ta^, are more difficult 

to interpret (Table 2: rows 1-8, columns 2-4). FUst note that 
also in the base scenario the estimation of ra^ is biased, 
especially in small samples. Therefore the weight-based 
adjustment should be judged as effective if it is able to 
reproduce the same bias which is observed in the base 

scenario. On these grounds the behavior of the scaled fully 
weighted estimator is satisfactory in nearly all situations, 
with the exception of the small samples when the design is 
informative at both levels. In that case there is also a not 
negligible number of replications wUich yielded a zero 
estimate for cô  (4.5% for the design with fixed size and 2% 
for the design with proportional size). The unsealed fully 



100 Grilli and Pratesi: Weighted Estimation in Multilevel Ordinal and Binary Models 

weighted estimator does not suffer from the problem of null 
estUnates, but, apart from having a larger variance than the 
scaled version, tends to overestimate cô , showing a relative 
bias of about 50% in small samples when the design is 
informative at both levels. Note also that die scaled fully 
weighted estimator outperforms the cluster-level weighted 
estimator even when the design is informative only at level 
2. 
4.2.4 Additional Simulations Using the Model with 

Covariates 

Some additional simulations were conducted to assess 
the performance of the scaled fully weighted estimator in 
the model with one cluster-level covariate and one subject-
level covariate. The model is the same used in the main 
simulation plan, except for the inclusion of a covariate at 
each hierarchical level. For each covariate the values are 
generated from a standard Gaussian distribution, while the 
corresponding regression coefficient is fixed to 0.1. 

As shown by Tables 3 and 4, the scaled fully weighted 
estimator is effective in removing the bias induced by the 
informative design. Relative to the unweighted estimator 
the sampling variance is higher, especially for the subject-

• level regression coeffcient. Overall, the performance of the 
weighted estimator is satisfactory. 

Table 3 
Simulation Means and Standard Deviations (in parenthesis) of 

Point Estimators of the Regression Coefficient of the Subject-Lxvel 
Covariate (true value 0.1, number of replicates 1,000) 

Sampling design 

Fixed size n. = 38 

Prop, size n. = 0.4N. 

Fixed size n. = 9 

Prop, size n. ^O.IM 

Non 
informative 

Unweighted 
estimator 

0.101 (0.028) 

0.099 (0.026) 

0.099 (0.055) 

0.098 (0.056) 

Informative at both levels 

Unweighted 
estimator 

0.117 (0.040) 

0.117 (0.043) 

0.119 (0.083) 

0.116 (0.089) 

Scaled fully 
weighted 
estimator 

0.098 (0.050) 

0.098 (0.052) 

0.100 (0.104) 

0.098 (0.107) 

Table 4 
Simulation Means and Standard Deviations (in parenthesis) of 

Point Estimators of the Regression Coefficient of the Cluster-Level 
Covariate (true value 0.1, number of replicates 1,000) 

Sampling design 

Fixed size «. = 38 

Prop, size «. = 0.4^. 

Fixed size «. = 9 

Prop, size n, -O.lNj 

Non 
informative 

Unweighted 
estimator 

0.096 (0.119) 

0.102 (0.110) 

0.094 (0.117) 

0.094 (0.119) 

Informative at both levels 

Unweighted 
estimator 

0.117 (0.130) 

0.106 (0.133) 

0.116 (0.141) 

0.115 (0.144) 

Scaled fully 
weighted 
estimator 

0.102 (0.142) 

0.106 (0.142) 

0.105 (0.150) 

0.095 (0.158) 

4.2.5 General Remarks 

Our simulations showed that the PML approach is, in 
most cases, a simple and effective sttategy to deal with 
informative sampling designs. The only requirement is the 
knowledge of the inclusion probabilities at every stage of 
tUe sampling process (except when the informativeness 
does not concem all the levels). 

As for the regression parameters, the scaled version of 
the fully weighted estimator showed good performance in 
our simulations, achieving a low bias with a modest 
increase in the sampling variance (in some cases the 
variance even diminished). Even when weighting is 
superfluous, the loss of efficiency due to the inclusion of 
scaled weights is very low. 

While for the estimation of the regression parameters 
weighting seems to be always effective, for the variance 
component cô  attention should be paid to the sample size: 
in fact, weighting leads to satisfactory results only when the 
cluster size is high, i.e., when it allows a good represen­
tation of the complex variance stmcture. However the 
sample size is cmcial in the estimation of cô  also when all 
the basic assumptions of the multilevel ordinal model are 
satisfied. 

The differences induced by the type of clusters in the 
sample, fixed or variable size, are minimal, with equal sized 
clusters leading to slightly better estimators; however, as 
already noted, the important differences are largely due to 
the average size of the clusters in the sample. 

The results of our simulation study confirm the findings 
of Pfeffermann et al. (1998) on the random intercept linear 
model: probability-weigUted estimators are good for the 
intercept, while some relevant bias remains in the esti­
mation of the variance components when the sample is 
small. As was to be expected, when passing from a linear to 
a nonUnear model the performance of die estimators sUgUtiy 
worsen, but the direction and importance of the bias in the 
various cases are similar. Also the advantages of scaling are 
confirmed. 

The rise in the sampling variance due to the inclusion of 
the weights often has a magnitude which is in line witU the 
results of Pfeffermann etal. (1998), though in some cases 
we found a reduction in the sampling variance, notably for 
the intercept when the weights are scaled and the design is 
informative at both levels. An interesting difference with 
respect to Pfeffermatm et al. (1998) is the role of scaling in 
reducing the sampUng variance: in this respect, scaling 
seems to be more effective in the binary model than in the 
linear model. 

As already noted, the critical point in the random 
intercept binary model is the estimation of the cluster-level 
variance cô , which represents a difficult task also when the 
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design is non-informative. Using the threshold formulation 
outlined in section 2, ta^ is defined as co/o, so estimation 
of cô  involves the problems observed in the linear model 
associated with estimation of the two variance components. 
The simulations showed that the performance of the scaled 
weighted estimator of ca^ is not entirely satisfactory in the 
case of small sample sizes. A possible way to improve the 
performance of the estimator is the adoption of a different 
scaling method. Kom and Graubard (2003) investigated the 
issue of scaling in tUe context of the linear model and 
wamed that the scaling method here adopted ('scaling 
method 2' of Pfeffermann et al. 1998) may be badly biased 
under some designs, even if the sample size of clusters and 
sample sizes widUn the clusters are large. To get an idea of 
the extent of the bias we performed a short simulation study 
under the unfavorable scenario outlined by Kom and 
Graubard (2003), namely a simple random sample of 
clusters whose population sizes are all equal, and a simple 
random sample of individuals widiin each sampled cluster 
that is of size 2m or ml2 for a fixed m, depending on 
whether the observed variability of the individuals within 
the clusters tends to be large or small, respectively. In this 
case the scaled weights at subject level are all equal to 1, so 
weighting becomes ineffective. As a consequence, in the 
linear variance component model the within variance will 
be biased high. To see how this behavior extends to the 
random intercept binary model we simulated 1,000 datasets 
with 80 clusters and cluster sizes of 36 or 9 depending on 
whether the binomial variance of the responses of the 
cluster is over or under the median, respectively. Under the 
same superpopulation model as in the main simulations, the 
simulation means (and standard deviations) are -0.003 
(0.098) for p^ and 0.451 (0.144) for oô . The cluster-level 
variance is heavily underestimated, though its value is not 
so far from the worst case of the main simulations (0.498 
under the informative design with n. = O.lNj). Therefore, it 
seems unlikely to encounter situations where the bias is 
much greater than already shown by our simulations. 
Obviously, if estimation of the variance components is of 
primary interest it is important to improve the method, but 
this requires further research. 

4.2.6 Bootstrap Variance Estimation 

The estimated covariance matrix of the parameter esti­
mates obtained by inversion of the information matrix, 
yielded by default by the NLMIXED procedure, is not 
reliable when using the weighted estimators to adjust for an 
informative design. For example, the estimated standard 
error of the scaled fuUy weighted estUnator under the design 
informative at both levels witii n. = 0.4N. is 0.109 for P̂  
(compared with a Monte Carlo value of 0.183) and 0.089 
for 01̂  (compared with a Monte Carlo value of 0.130). For 

the other sampUng sizes similar downward biases arise, so 
an altemative variance estimator should be devised. 

The bootsttap procedure described in section 3.4 has 
been appUed to estimate the sampUng standard deviations 
of the weighted point estimators of p̂^ and cô . We limited 
the analysis to the scaled fully weighted estimator and to 
designs that are informative at both levels. To save compu­
tational resources we implemented a bootsttap procedure 
which omits the steps conceming the elementary units, i.e., 
only the clusters are resampled. This procedure is expected 
to produce sufficiently accurate results, given the low 
sampUng fraction (35/300) of the clusters (see section 3.4). 
Each simulation comprises 1,000 replications. For every 
repUcation the values of the response variable are generated 
through the two-stage scheme described in section 4.1 and 
200 bootsttap samples are selected. Table 5 reports, for 
each parameter, the Monte Carlo standard error of the 
sampling distribution of the scaled weighted estimator on 
1,000 repUcations of the complex design (see Tables 1 and 
2), the corresponding average bootsttap estimate and the 
relative bias. 

Table 5 
Simulation Standard Deviations of the Scaled Weighted 

Point Estimators of the Intercept and of the Second Level Standard 
Deviation and Corresponding Bootstrap Estimates 

(with 200 Bootstrap Samples Each) for Designs Informative 
at Both Levels (1,000 Replicates for Each Design) 

Sampling design 
Inform. Both levels 

Simul. 
s.d. 

P. 
Boot. 
Estim. 

Relative Simul. 
error s.d. 

" o 

Boot. 
Estim. 

Relative 
error 

Fixed size n̂ . = 38 0.185 0.175 -5.4% 0.124 0.106 -14.5% 
Prop, size n̂ . = 0.4Af. 0.183 0.173 -5.5% 0.140 0.129 -7.9% 
Fixed size n̂  = 9 0.200 0.167 -16.5% 0.234 0.599 156.0% 
Prop.sizen. =0.1Af. 0.195 0.173 -11.3% 0.247 0.538 117.8% 

Due to the exttemely long computational time, we 
limited our experiment to a specific bootsttap procedure 
based on only 200 bootsttap samples. Further work is 
needed to calibrate the number of bootsttap samples and to 
explore possible variants of the method. Nonetheless, the 
entries of Table 5 give some hints about the behavior of 
bootsttap estimators. 

The performance is better for the estimation of the 
sampling standard deviation of the estimator of p^, rather 
than of G)̂ . Especially for cô  the sample size is the critical 
factor: for smaU cluster sizes (n = 9 and n. = 0.1N.) the 
bootsttap estimate is completely unreUable. On the conttary 
with large cluster sizes (n. = 38 and n. = 0.4N.) the results 
are quite good, since for both p^ and oi^ the bootstrap 
produces a slight underestimation of the tme variance. 
Note, however, that the bad performance of the variance 
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estimator for co is not as critical since Wald tests for 
o 

variance parameters are not generally recommended in 
ordinary situations anyway. 

5. FINAL REMARKS 

The wide use of multilevel ordinal and binary models in 
many fields of application has motivated our study on the 
effects of complex sampling designs on the fitting of such 
models. In the paper we showed, by means of simulations, 
the bias induced by a two-stage complex sampling design 
on the fitting of a simple random intercept binary model 
when the clusters and/or the subjects are selected with 
probabiUties that depend on the model's random terms. The 
simulation study also showed that in such situations the bias 
can be reduced in an effective manner by the probability-
weighted estimation procedure (PML) described in the 
paper, which is easily implemented in the SAS environ­
ment. In particular, the scaled version of the weighted 
estimator achieved, for both fixed and random parameters, 
a low bias with a modest increase in the sampling variance. 
Even when weighting is superfluous, the loss of efficiency 
due to the inclusion of scaled weights seems to be very low. 

The appUcation of the proposed methodology to real life 
examples requUes an operational sttategy which depends on 
the extent of the available information on the sampling 
design. Two extteme cases can be envisaged: a) for each 
stage of the sampling plan, the probabilities of inclusion 
and the adjustments for poststtatification and nonresponse 
are exactly known; b) tbe information is limited to the final 
overall weights, which also include adjustments for post­
sttatification and nonresponse. 

In case a) the weights can be calculated at each sampUng 
stage as the reciprocals of the product of sample selection 
probabilities and response probabilities given the sample 
selection, with a further correction for a possible poststta­
tification. This is the idea behind the real life application 
presented in Pfefferman et al. (1998). 

In case b) the lack of information is critical, since, even 
in the absence of nonresponse and poststtatification, it is 
not possible to disentangle the cluster-level and the 
(conditional) subject-level weights, at least without strong 
assumptions. As a result, weighted estimation cannot be 
performed. 

Between the two extteme cases just outlined there are 
many possible intermediate situations which require ad hoc 
solutions. For example, a common case arises when the 
researcher has access to the cluster-level inclusion proba­
bilities (TT) and to the final overall subject-level weights 
{w..), which also include adjustments for poststtatification 
and nonresponse. When the poststtatification and 

nonresponse affect only the subject level, then the 
subject-level (conditional) weights can be calculated as 
w*,j = w..-n.. Another more complex situation is described 
by Kom'and Graubard (2003). 

A drawback of probability-weighted estimation is the 
need for special procedures to estimate the variabiUty of the 
estimators. In our application we adopted a bootstrap 
technique, which is conceptually simple and easy to 
program, but requires some computational effort. Our 
limited simulation study suggests that its performance is 
good only for large sample cluster sizes; however more 
simulations would be needed to fully understand the 
behavior of the bootsttap estimator. 

Another open question is the choice of the most effective 
scaling method for reducing the bias of the estimator of the 
variance components when the sample size is small. 

The PML approach described in the paper is absolutely 
general and the estimation technique based on the 
NLMIXED procedure of SAS is easy to generalize to other 
nonUnear models. Therefore it would be of interest to assess 
the performance of the method in models other than the 
random intercept binary model here considered. 

APPENDIX A 

We report the SAS code used for implementing the 
probability-weighted (PML) estimators described in the 
paper. The essential part of the code is the NLMIXED 
procedure of SAS, which is a general procedure for fitting 
nonlinear random effects models using adaptive Gaussian 
quadrature. Though the NLMIXED procedure does not 
include an option for PML estimation, it is still possible to 
insert die weights in the likelihood, using different tiicks for 
level 1 and level 2 weights. To insert level 1 weights it is 
necessary to exploit the option which allows to write down 
the expression for the conditional likeliUood of the model: 
then one should simply ttanslate in SAS programming 
statements the expression w.,. log L..(0|M) (see section 
3.1). On the other hand, level 2 weights can be inserted in 
the likeUhood through the r e p l i c a t e statement. 
Unfortunately, this statement is limited to integer weights, 
so to avoid gross approximations it is advisable to proceed 
as follows: a) inflate all tUe level 2 weights by an arbittary 
constant k (equal to 10,000 in our appUcation); b) insert the 
integer part of the inflated weights in the likeUhood through 
the r e p l i c a t e statement; c) multiply the estimated 
covariance matrix by k by means of the cf a c t o r option. 
This ttick relies on the fact that multiplying the level 2 
weights by a constant has the only effect of inflating the 
information matrix by that constant, leaving the estimates 
unchanged. Anyway, when using the weighted estimation 
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method to adjust for an informative design the estimated 
covariance matrix of the parameter estimates is not reUable. 

In the following the SAS code is reported, where the 
symbols /* and */ include the comments: 

proc nlmixed data=dataname qpoints=10 
cfactor=10,000; 
/* c f ac to r i s a cons tant mul t ip ly ing the 
est imated covariance matrix of the parameter 
es t imates */ 
parms bO=0 sd=0.5; /* initial values */ 
bounds sd >= 0; 
eta=bO+randeff*sd; 
if (yobs=l) then z=probnorm(eta); 
else if {yobs=0) then z=l-probnorm(eta); 
if (z >le-8) then ll=log(z); else ll=-lelOO; 
/*to avoid numerical problems if z becomes 
too small*/ 
ll=ll*wl_2; /* inclusion of level 1 weights 
*/ 
model yobs-general(11); 
random randeff -normal(0,1) subject=j; 
/* j is the cluster identifier */ 
replicate w2; /* inclusion of level 2 
weights (only integers) */ 
ods output ParameterEstimates=pe 
ConvergenceStatus=cs; 
run; 
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Longitudinal Analysis of Labour Force Survey Data 
GEOFF ROWE and HUAN NGUYEN' 

ABSTRACT 

The Canadian Labour Force Survey (LPS) was not designed to be a longitudinal survey. However, given that respondent 
households typically remain in the sample for six consecutive months, it is possible to reconstruct six-month fragments of 
longitudinal data from the monthly records of household members. Such longitudinal micro-data - altogether consisting of 
millions of person-months of individual and family level data - is useful for analyses of monthly labour market dynamics 
over relatively long periods of time, 25 years and more. 

We make use of these data to estimate hazard functions describing transitions among the labour market states: self-
employed, paid employee and not employed. Data on job tenure, for employed respondents, and on the date last worked, 
for those not employed - together with the date of survey responses - allow the construction of models that include 
terms reflecting seasonality and macro-economic cycles as well as the duration dependence of each type of transition. In 
addition, the LFS data permits spouse labour market activity and family composition variables to be included in the 
hazard models as time-varying covariates. The estimated hazard equations have been incorporated in the LifePaths 
microsimulation model. In that setting, the equations have been used to simulate lifetime employment activity from past, 
present and future birth cohorts. Simulation results have been validated by comparison witii the age profiles of LFS 
employment/population ratios for the period 1976 to 2001. 

KEY WORDS: Microsimulation; Censoring; Truncation; Employment dynamics. 

1. INTRODUCTION 

In recent years, diere has been Uicreased recognition of 
the importance of studying labour market dynamics using 
individual level (micro-) data. For this purpose, new panel 
surveys have been developed, for example, die Survey of 
Income and Labour Dynamics (SLID) (Statistics Canada 
1998). But, existing LFS data (Statistics Canada 2002) pro­
vides a virtuaUy untapped historical resource, in the form of 
many ftagmentary event histories. From a conventional 
standpoint, the data currentiy comprises a time series of 
more dian 300 cross-sectional surveys that were conducted 
montiily over more dian 25 years. However, from a 
longitudinal perspective, those same data consist of about 
6.5 milhon fragmentary event histories covering over­
lapping time intervals within die past quarter century and 
totalUng over 34 milUon person-mondis of observation. 

The analysis referred to in this paper was specifically 
directed towards development of Uazard models to be 
Uicorporated Ui LifePaths (Statistics Canada 2001)-a 
micro-simulation model of the Canadian population. 
Further detaUs on the LifePaths model are available from 
die Statistics Canada website at www.statcan.ca/engUsb/ 
spsd/index.htm. 

The paper is organized Ui the foUowing way. In section 2, 
we discuss some features of LFS data when reorganized as 
longitiidinal records and we present three examples com­
paring estimates derived from the resulting longitudinal file 

with corresponding estimates from odier sources. In section 
3, we focus on the use of the data to model employment 
activity for LifePaths. There, we discuss die use of LFS 
micro-data in estimating hazard equations that describe 
employment dynamics. FUiaUy, we present some iUus-
trations of estimation results and a vaUdation of LifePaths 
simulations that make use of the hazard equations. 

2. LONGITUDINAL LFS DATA: 
DISTINGUISHING FEATURES AND 

PROOF-OF-CONCEPT 

A longitudinal version of the LFS data was constmcted 
by concatenating the monthly records of individual 
respondents into a file containing one record per respondent. 
SUice an LFS respondent normaUy remains Ui the LFS 
sample for six consecutive months, we can obtain six-month 
histories for most respondents. These histories are not, by 
themselves, long enough for most longitudinal analyses. 
However, given the overlapping rotation groups that are part 
of the LFS design, these six-month fragments may be used 
in analysis of the expieriences of employment cohorts over 
decades. (In Une with the focus of the analysis below, we 
use the term "cohort" to refer to a relatively homogeneous 
group for aU of whom a specified UUtial event has occurred. 
Thus, an "employment cohort" might refer to all persons 
who started a new job widiin a specified time period or, 
more narrowly, to aU of those who started theU third job 
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within a specified time period. The data available from die 
LFS determines how narrowly such a cohort can be defined 
here). 

Figure 1, which illustrates some characteristics of the 
LFS data after they are formed into longitudinal records, 
focuses on changes in employment status for the employ­
ment cohort who started a job in January 1976. Respon­
dents who were members of this cohort and who entered the 
sample dirougb rotation 1 contribute data on the fu-st six 
months, from January 1976, when the job started, to June 
1976, when they left the LFS sample. For respondents from 
rotation 2, the six-month longitudinal data window shifts 
right one month (starting and ending one mondi later than 
those given by rotation 1). The overlapping data windows of 
respondents from subsequent rotations evolve similarly. 
Thus, the longitudinal LFS data can be seen as a combi­
nation of overlapping sets of panel data, in which re­
spondents from the same rotation constitute a conventional 
data panel. 

Successive six-month fragments of longitudinal LFS data 
can be combined to provide successive estimates of 
cumulative attrition from an initial employment cohort and, 
further, to identify new cohorts defined in terms either of a 
new job or of a period without employment. Thus, over the 
long term (currentiy up to 25 years), many different samples 
of individuals can contribute information about the same 
employment cohort observed at different poUits in time. 

Even so, month-to-month changes are observed largely 
from the same sample of individuals. The two shaded areas 
in Figure 1 illustrate this. The respondents from each of the 
rotations 2-5 contribute data for bodi die May-June and the 
June-July intervals. 

This is not the first attempt to use LFS data longitu­
dinally. Stasny (1986) and Lemaitie (1988) studied errors in 
the estimation of "gross flows" between labour force states 
{employed, unemployed and not in the labour force) over 
intervals of one month. Lemaitie found diat problems arose 
both because of response errors and because "Labour Force 
Survey concepts, designed for cross-sectional purposes, tend 
to "create" flows when consecutive months' responses are 
linked". (Examples include die treatment of on-call workers 
and of the self-employed without a business). Nevertheless, 
he concluded, "Administrative data have shown that not all 
sub-groups of status cUangers are seriously overestimated". 
Kinack (1991) examined the longitudinal consistency of 
responses to questions on job search activity that were used 
to distinguish between the categories unemployed and not in 
the labour force. He found substantial inconsistency, 
particularly when associated with proxy responses from 
different proxy respondents. These studies have shown that 
focusing on transitions between the categories employed and 
not employed {i.e., without distinguishing between 
unemployed and not in the labour force) could help reduce 
the impact of response error. 

Respondent from rotation 1 

Respondent from rotation 2 

Respondent from rotation 3 

Respondent from rotation 4 

Respondent from rotation 5 

Respondent from rotation 6 

Numbers show job 

0 1 2 ^ 

1 ? r̂  4 i"̂  r, fi 

^^M 
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Jan-76 Feb-76 Mar-76 Apr-76 May-76 Jun-76 Ju 

1 ^ 

1^ 
7 8 j , 9 

1-76 Aug-76 Sep-76 Oct-76 
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Subsequent jobs 

tenure (months). Arrows indicate the status continues at time of exiting the LFS sample 

Figure 1. Illustration of LFS fragmentary data on cohort starting jobs in January 1976 
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Cross-sectional LFS data have previously been used to 
estimate frequencies of job hiring and job separation over 
monthly intervals (Lemaitre, Picot and Murray 1992). In 
diat case, hiring was directiy observed from the frequency 
of reported job-tenures of one month or less, whUe sepa­
ration was determined residuaUy using aggregate estimates 
of employment cUange together with the estimates of hiring. 
Cross-sectional LFS data have also been used to calculate 
and compare duration statistics for syndietic-cohorts. For 
example, Corak and Heisz (1995) use retention rates from a 
single time interval to represent a hypothetical cohort's 
experience. Synthetic-cohort retention rates were obtained 
usUig the numbers of employed LFS respondents reporting 
job tenure " f" Ui mondi " m " togedier with those reporting 
tenure "f H- 1" die next mondi. Such uses of cross-sectional 
data have certain Umitations. In particular, because the 
movement of Uidividuals is not directiy observed, desti­
nation states are unknown. (Although we may estimate the 
proportion that separated from a job, we can not estimate tbe 
proportion of those that became unemployed rather than 
dropping out of die labour force or beginning another job 
immediately). Nevertheless, a time series of syndietic-co-
hort statistics - for example, the proportions of jobs that 
might last a certain duration - can serve as an index that is 
sensitive to changing labour market conditions. 

2.1 Proof-of-Concept: Selected Examples of 
Longitudinal Data Validation 

The LFS data were not intended to be used longitudinaUy 
and problems can arise with such use (Stasny 1986; 
Lemaiti-e 1988; Kinack 1991). Consequentiy, it is important 
to verify, for each analysis individually, that vaUd estimates 
can be obtaUied by month-to-mondi comparison of 

longitudUial responses. We present three examples of the 
verification of LFS longitudinal estimates below. In Figure 
2, we compare estimates of the annual number of job 
separations Ui Canada from 1976 to 1995 (separations of all 
types, permanent and temporary) based on LFS data and on 
administrative data. The latter are based on Records of 
Employment (ROE) issued by employers at the time of job 
separation for Employment Insurance purposes (Statistics 
Canada 1998). 

As may be seen, the number of transitions determined by 
month-to-month comparison of LFS data corresponds 
closely to the number from ROE data. Still, diere are dif­
ferences between die two series. Some of these differences 
could arise because of differences in coverage between the 
LFS and administrative data, as weU as periodic changes in 
the LFS design or questionnaUe. Another source of dif­
ference could arise because our counts based on LFS data 
neglect job separations of multiple job holders who 
remained employed in at least one job {i.e., we counted only 
maUi-job changes). Nevertheless, we regard the degree of 
agreement between the LFS and admitUstrative data as close 
enough to justify further analysis of die LFS micro-data. 
Both data sources imply that the annual rate of job 
separations was high: based on ROE data between 1978 and 
1995, the average annual job separation rate for males was 
over 38 percent of annual person-jobs. Further analysis of 
the LFS micro-data can shed light on these dynamics. 

Figure 3 goes ftirther in the validation of employment 
dynamics, comparing "job survival" probabUities for males 
and females who started a job in 1993, as estimated from the 
LFS data and from SLID. (Note that 1993 corresponds to 
the first year of SLID data). 

4 -
3 

1975 1980 1985 

Year 

1990 1995 

•Administrat ive Data •LFS data 

Figure 2. Estimates of Annual Job Separations 
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Figure 3. 'Job Survival' Probabilities of the Cohort Starting Jobs in 1993: Comparison of Estimates Based 
on LFS and SLID 
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Figure 4. Estimates of Births in Canada by Quarter, 1976 - 2001 

The "job survival" probabilities were estimated from 
LFS data by the chained product of average retention rates 
derived from monthly maUi-job separation rates over die 
period 1993 to 1998. Survival probabiUties from die SUD 
data were estimated Ui a similar manner usUig die reported 
job tenure and dates of job end. Both survival curves display 
die same characteristic shape; showing relatively high 
attrition for jobs of duration less than a year, but with much 
lower attiition rates at job tenures of one to five years. There 
are discrepancies between the estimates for durations of 
about sk months or less, which may be related to the one-
year recaU period of SLID mterviews and to the restriction 
of LFS job-tenure data to main-jobs. However, over periods 
as long as five years, the LFS and SLID provide very 
similar estimates. And, with the avaUable LFS data, we can 
track some employment cohorts for as long as 25 years after 
the employment spell began. 

A final iUustration of effective longitudUial use of LFS 
data involves month-to-month comparison of the number of 

chUdren aged less than one year as reported by female 
economic family heads or by the spouse of a male head. A 
mfant child that is newly reported by a woman aged 
between 15 and 50 Ukely signifies the bUth of a child. In 
order to make dUect comparisons between these LFS 
estimates and vital statistics, we made some straight­
forward adjustments to account for the proportion of births 
occurring to other women Uving Ui economic famiUes {e.g., 
teen lone parents Uving widi theh parents) and for bUths in 
the Yukon, NWT and Nunavut. A comparison of the 
resulting LFS monthly estimates of births with the 
corresponding counts of bUths registered in vital statistics 
(Figure 4) demonstrates that the LFS estimates follow 
secular trends in fertiUty as weU as capturing some of the 
month-to-month fluctuation in bUths. Taken together, these 
three examples indicate that-widi careful attention to 
survey coverage, survey concepts and the possibility of 
response error - the LFS can provide useful longitudinal 
micro-data. 
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3. USING LONGITUDINAL LFS MICRO-DATA 
FOR MODELING EMPLOYMENT ACTIVITY 

IN LIFEPATHS 

This section focuses on the use of the LFS data to 
simulate employment activity in LifePadis. Currentiy, 
LifePaths uses a 3-category classification of employment 
status - employee (E), self-employed (SE), and not em­
ployed (NE). We have not analyzed transitions involving 
unemployment (Unemployment is a complex state re-
quUing additional questions to ascertain and so, as noted 
above, unemployment transitions are particularly subject to 
response error). 

There are six transitions that can result in a change in 
employment status (as represented in Figure 5). LifePaths 
models all of these transitions. In addition, job changes diat 
do not appear to Uivolve an intermption of employment are 
also modeled by LifePadis (denoted here as E=>E). The 
LFS micro-data were used to estimate hazard equations for 
each of these seven ti-ansitions. The estimated coefficients of 
these equations became parameters Ui the LifePaths "Career 
Work" module. Below we discuss some technical issues 
that arise due to the Umitations of the LFS data, followed by 
an iUusti-ation of the estimation results and then of a 
simulation outcome. 

The fragmentary natiire of these data poses a chaUenge 
for analysis. An important question is wUether there are 
unavoidable biases that result from theU fragmentary nature. 
In general, the answer is that the Umitations of tUese data 
can be accounted for and potential sources of bias can be 
avoided with careful analysis. 

3.1 Censoring and/or Truncation of Event Histories 

One source of concem for an analyst of these data is the 
absence of retrospective employment information other than 

the length of the current employment speU. We might think 
of individual employment histories as consisting of a 
(largely unobserved) succession of contingent employment 
states (Ulusti-ated in Figure 6) widi transitions among diese 
states reflecting the process of career development. Thus, 
given only the transitions observable within the LFS 
window, die ti-ansition rates that can be estimated will 
inevitably involve pooUng data from respondents who have 
had markedly different prior careers. In contrast, panel 
surveys lUce SLID, coUect retrospective data at die first 
mterview that, although lirruted, at least permits some 
experience rating of respondents in terms of previous 
extended work interruptions or periods of part-time work. 

Anotiier concem, illustrated in Figure 6, is diat LFS 
employment spell durations may be left-tioincated and/or 
rigUt-censored. Right-censoring refers to the cUcumstance in 
which a speU ceases to be observed or a respondent ceases 
to be at risk without a ti-ansition occurring of die type being 
studied. This happens either (1) because the respondent's 
household "rotated out" of the LFS sample before any 
transition occurred, or (2) because another transition 
occurred that was not of the type under active study. 
SimUarly, these data are frequentiy left-tmncated. This 
refers to the cUcumstance Ui wUich the beginning of a spell 
is unobserved, because it happened before die respondent's 
household "rotated Ui" to the LFS sample. (These data are 
left-tinncated ratiier than left-censored, because respondents 
provide the information necessary to determine the elapsed 
duration of the current speU at the time of the first 
interview). Smce both tmncation and censoring are gen­
eraUy independent of employment event processes, neitUer 
should lead to bias in the estimation of transition 
probabUities, tf properly accounted for in die likelihood 
function. 

Self-Employed 
(SE) 

S£=>«B 

* m=>sE 
Not Employed 

(NE) 

Figure 5. Employment Status and Transitions in LifePaths 
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Figure 6. Recurrent Events and Employment Spell Durations Observable within the LFS Sample Window 

The combination of full and partial Uiformation provided 
by left-tiimcated and right-censored data can be represented 
Ui a conditional likelihood (Wang 1991). In a competing 
risks framework, die likelihood of an employment transition 
type j involving respondent i may be expressed in terms of 
die speU duration observed k mondis after / was first 
observed to be at risk of transition / Let f, denote the year 
and month of the LFS interview in which i's current 
employment state was first observed {i.e., often the first 
interview). Based on information coUected at eacU 
interview, we can determine the length of the current speU 
of employment or spell not employed (m, ) . Then 
'"i+k -"'i ••" ^ would denote the elapsed speU duration Ui 
the state as assessed k months after the first observation -
assuming no intervening events - and the UkelUiood of a 
tiwisition of typey {i.e., Lj,_+,^)can be expressed Ui terms of 
m,^.(.. Terms Ui the lUceUhood function comprise: the 
probabUity density of durations leadUig up to tiansitions of 
typey ( / ; ('"/+*))' Ills corresponding cumulative probabil­
ity (Fj (w,^^)), a bUiary variable Uidicating whether or not 
censoring has occurred (C^, +j), and a further binary vari­
able indicating whether or not the current speU was left-
truncated (LT-j). Note that, in the competing risks frame­
work, the density fj {m,^,^) relates to a latent variable - the 
waiting time leadUig specificaUy to ti-ansition y - and that we 
must assume there is one such density for each competing 
event. In principle, the completed speU duration (observed 
when a transition occurs) wiU correspond to die minimum 
of competing, latent waiting times. 

To account for left tmncation, the likelihood is expressed 
Ui terms of conditional probabUities given the speU duration 
first observed (m, ): diese probabUities take the form either 
of conditional probabiUties evaluated at the time of an 
observed transition {fj{m,^,}m,)) or of conditional 
probabUities of surviving - without the occurrence 
specifically of ttansition y'-to the observed duration 

(1 - F^ {m,^^\ m, )), dependUig on wUether or not censoring 
has occurred. 

Eijj+k = fj ('«,,+* I 'n,,) ''"*' (l - EJ ('",,,+* I 'n,,)) ' ' " 

(i- .̂Kr^ 
(1) 

This likelihood accounts for all of the Uiformation we 
have regarding the specific risk of ttansition j and can 
Uicorporate tUe effect of other competing risks by treating 
them as censoring events that are in addition to censorship 
by "rotating out" of the sample. Competing risks problems 
are commonly formulated in terms of such latent waiting 
times, especially in epidemiology and biostatistics, but also 
Ui economics {e.g., Heckman and Honore 1989). However, 
while providing a mathematically convenient motivation for 
the UkeUhood, the approach has been criticized "on the basis 
of unwarranted assumptions, lack of physical interpretation 
and identifiabiUty problems" (Prentice, Kalbfleisch, 
Peterson, Floumoy, FareweU and Breslow 1978). 

The conditional lUcelUiood (1) can be approximated by a 
Poisson UkeUhood (Holford 1980; Lakd and OUvier 1981), 
thereby also acknowledging the discreteness of the data {i.e., 
transitions are generally "observed" in the one month 
interval between successive interviews). Equation (1) can be 
re-expressed in terms of a bUiary variable (Fy,^^) diat 
represents occurrence or non-occurrence of a ttansition in a 
particular time Uiterval (note that F^,+t = ^-(^j.i,+k)-
Then, K,, +t î  treated as a Poisson random variable having 

which is an expected value equal to the hazard "/i^.,.+t 
assumed piecewise constant. Under this model, the contri­
bution from / to the log-UkeUhood over n periods (using 

•̂,,,+* = /;•('«,,+*) /(I-F;(/n,^+J) = -9ln(l - F.{m,^^^)) i dm,^^,^ 
together with (1)) is approximately: 
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ln(L,.j) = Y [yj.,^k ln(^,,,.,) - ^ , , . J . (2) 1. 
It is common practice to account for a complex survey 

design by means of a "pseudo" UkelUiood that Uicorporates 
the survey weight. Maximizing the "pseudo" likelihood 
corresponds to minimization of a weighted sum of deviance 
terms {i.e., terms representing die difference between 
estimated likelihood contributions and theU maximum 
possible values). Thus, the full-sample, conditional log-
lUcelUiood for ttansition j may be ttansformed into a 
weighted deviance Dj (note that W is derived from the 
survey weights and, since transitions are typicaUy identified 
by comparing employment states between interviews, we 
use averages of consecutive cross-sectional survey weights 
to obtain W): 

Dj = -2 

Y Y Wi,^kyj.„.k infc-,,,.J 
i \_k=l 

+ Z Z ^,.k{yj.,,.k - hj,,^.k] 

(3) 

In the analysis of each ttansition type j , we tteat odier 
events {i.e., non-j events occurring to the same population-
at-risk) as censoring, and so the deviance for a set of such 
events will be the sum of component deviances {i.e., if the 
overall hazard is the sum of competing hazards, then the 
competing risks may be tteated as independent (Prentice 
etal. 1978)). 

A more dkect motivation of die same deviance takes 
Poisson processes as its starting poUit (Borgan 1984; 
Andersen 1985; Andersen and Borgan 1985; Lawless 
1987), ratiier dian starting with postulated event-specific, 
latent, duration densities lUce /^. (m,^^). In this case, we 
can model sampled multivariate countUig processes that 
represent the number of occurrences of each specific 
ttansition in time intervals [to, t). Sample counting 
processes, represented by tbe step functions in Figure 6, are 
observable counterparts of cumulative hazard functions. The 
assumption that the underlying hazard functions are ap­
proximately piecewise constant leads dUectiy to the Poisson 
deviance as an approximation (Lindsey 1995). To Umit bias, 
the principal concems are that the population-at-risk can be 
identified, that censoring or tmncation mechanisms are 
conditionally independent of the underlying employment 
processes and that the intervals over which hazards are 
assumed constant are not too large. 

It is possible to obtain simple averaged estimates of 
employment hazard functions (such as those displayed in 
Figure 3) by impUcitiy spUcing together all available 
information on members of a defmed cohort from the 

longitudinal LFS samples. (That is, maximizing UkelUiood 
(1), but widiout considerUig any covariates). Making 
aUowance for censoring and tmncation in tUis way is a 
relatively simple example of such problems compared with 
die more complex observation schemes considered by 
AUoum and Commenges (1996). This implicU splicing of 
information is apparent in the deviance (3) which has two 
components: the first component is non-zero only at 
observed transitions, while the second component reflects 
the weighted differences between cumulative events and 
cumulative hazards (accumulated over all durations prior to 
the events or to censoring times). To the extent that the LFS 
cross-sections are representative samples for each reference 
week, then - taken together - they wiU provide an accurate 
estimate of the numbers of events occurring over die "life" 
of an employment cohort. Similarly, within samples from 
employment cohorts, we can expect to find left-tioincated 
and right-censored respondent speUs that might fill-in die 
missing prior histories of those left-tmncated spells that 
terminate with a ttansition. As such, the first component of 
the deviance wUl accurately reflect whether hazard 
estimates tend to be large over periods where observed 
events are frequent. And tbe second component, summed 
over aU respondent-mondis, may have a value similar to that 
which we might have obtained bad there been no left-
tmncation. So, for data as extensive as these, the conditional 
likelihood may be almost equivalent to an unconditional 
UkeUhood. 

3.2 Estimating Employment Transition 
Hazard Equations 

Patterns of employment ttansition differ significantiy 
among different demographic groups. For example, full-
time students are most active in the labour market during 
theU summer break, whereas die maternity leave diat an 
employed pregnant woman takes may be largely deter­
mined by Employment Insurance regulations. Accordingly, 
LifePaths distinguishes among the following groups and 
models theU employment activities separately: 

- Those who are full-time students; 
- Those who have just graduated or left school and are 

in a transition to an after-school job; 
- Pregnant women for whom a maternity-leave may 

apply; 
- Those who are in prime ages of employment; and 
- Older workers in ttansition to retirement. 

We discuss here only the estimation for the fourth group, 
comprising individuals who are in what is referred to in 
LifePaths as theU "career employment" phase (the most 
important phase Ui terms of impact on the economy). 
Particulars for the other groups are available from the 
Statistics Canada website noted above. 
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For implementation in LifePaths, our hazard model uses 
a log-linear form of regression equation - one equation for 
each of the 7 ttansitions and for each sex separately, giving 
a total of 14 equations: 

+ ^j.,^k P 
£'(^/,,+J= hj,,+k = exp (4) 

where £ () is the expectation operator, g{m) is a log-Unear 
spell duration spUne, X is a vector of time-varying 
covariates and P is a vector of regression coefficients. The 
term g{m) corresponds to a piecewise WeibuU baseline 
hazard, which, in our specification, distinguishes employ­
ment ttansition risks at durations of less than a year from 
risks at durations of more than a year. The covariates, X, 
Uiclude variables representing individual age, education, 
province of residence, presence of children by age group, 
spouse's employment status, calendar month and calendar 

year, as weU as Uiteractions among some of these factors. 
Final estimates of P and g{m) minimize the deviance (3). 

The only example of detailed results that we present here 
involves the mutual Uifluence of husband's and wife's 
employment status on each other's respective transition 
hazards. Figure 7 compares coefficient estimates from die 
seven equations that correspond to the seven ttansitions we 
specified. The two panels correspond to the separate sets of 
equations for males and females. The category "no spouse 
present" was treated as the reference category and the 
spouse's employment status was classified into "with paid 
employment", "self-employed", and "not employed". The 
estimated coefficients are presented here in terms of risk 
relative to the reference group. Thus, with other covariates 
conttoUed, the hazard of becoming self-employed for 
female employees whose husbands are self-employed is 
about 2.5 times higher dian die hazard of dieU counterparts 
who do not have a spouse (see taUest bar in the top panel). 

(a) Influence of Husband's Employment Status 
on Wife's Risk of Employment Transit ion 
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Figure 7. Impact of Spouse's Employment Status on Employment Transition Risks 
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Figure 7 shows diat the very presence of a spouse can 
work in opposite directions for males and females. The most 
frequent ti-ansitions for botii sexes are £ => £, NE => E and 
E => NE. For females, the first two of those transitions are 
less likely to occur to married women dian to sUigle women, 
while the ttansition to "not employed" is more likely. (TUe 
presence of children is not the reason for this, as their 
presence is accounted for by other terms in the equation). 
For males, the pattern is reversed. Thus, these results appear 
consistent with conventional gender roles. However, taking 
account of the magnitudes of these relative risks, we are not 
given the impression that gender roles have a particularly 
sttong influence after the Uifluence of other variables is 
credited. 

Figure 7 reveals another conspicuous pattern. FUst, the 
relative risks of a ttansition mto self-employment, for 
spouses widi husbands/wives in self-employment, stand out 
as die highest among all odier transitions. In addition, 
spouses with husbands/wives in self-employment have the 
lowest relative risks of a transition out of self-employment. 
Thus, self-employment status seems to be mutually re­
inforcing widiin families. These observations are consistent 
with forms of joint self-employment involving a family 
busUiess {e.g., a comer store) or Uivolving endogamy among 
professionals {e.g., lawyers marrying other lawyers). 

4. FROM ESTIMATED PARAMETERS TO THE 
SIMULATION RESULTS: AN ILLUSTRATION 

Our example of die role of spouse's employment statiis 
points to die need for family context Ui the simulation of 
employment activities. It is a challenge for LifePaths to 

Uitegrate these relationships into the simulation process. For 
example, if individual education progression or the effects 
of education on employment ttansitions are not modeled 
appropriately and accurately, then the consequences will 
cascade from dUect education-employment relationships to 
a chain of indUect impacts, involving relationships between 
education and marriage, fertiUty, interprovincial migration, 
etc. These impacts would then spiU over to the simulated 
spouse, as indicated above. It is not difficult to see diat, 
unless diese relationships are specified appropriately and the 
parameters are estimated with reasonable accuracy, bias 
would be spread over a wide range of simulated outcomes. 

An overall vaUdation of the LifePaths employment 
hazard equations was obtained by comparing simulated 
annual average employment/population ratios with direct 
cross-sectional estimates from die LFS. The simulated 
employment/population ratios were obtained from a syn­
thetic population whose members were exposed appro­
priately to one or other of the seven types of employment 
hazards over the course of each simulated year. The sim­
ulated employment/population ratios were calculated from 
the resulting annual person-years of employment in the 
syndietic population: diat is, these ratios are an outcome of 
simulated flows into and out of employment. The sim­
ulations necessarily involved generating appropriate distri­
butions of covariates that in tum determine the distributions 
of employment ttansition hazards. As may be seen in Figure 
8, LifePadis accurately reflects tbe age patterns of female 
employment in both 1976 and 2001 and correspondingly 
accounts for the dramatic change observed in those age 
patterns over the past quarter century. 
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5. CONCLUSIONS 

We have demonstrated that the LFS data - when 
organized into the fragmentary event histories collected over 
the six-month periods that most respondents spend in the 
sample - represents a significant longitudinal micro-data 
asset. There is sufficient sample and breaddi of content to 
provide for important analysis of labour market dynamics 
and, conceivably, of demographic processes such as 
fertiUty. Moreover, die data is monthly and spans more than 
a quarter century, so that analysis based on it has 
uninterrupted time depth that is urUque in Canada. 

In our main application (employment ttansitions), otUer 
results (not reported here) appear to confum the influence of 
a range of explanatory variables on an individual's chances 
of an employment ttansition. These covariates include age, 
job tenure (or duration not employed), educational attain­
ment, presence of young chUdren (especiaUy for women), 
province of residence, seasonaUty, and business cycles. 
However, this work is stUl in its initial stage and, to date, our 
approach to Uiference has been Urformal. Future work will 
involve extending and refming our models and estabUshing 
a more rigorous basis for evaluation of the models. 
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Contact and Cooperation in the Belgian Fertility and Family Survey 

MARC CALLENS and CHRISTOPHE CROUX' 

ABSTRACT 

Combining response data from the Belgian Fertility and Family Survey with individual level and municipality level data 
from the 1991 Census for both nonrespondents and respondents, multilevel logistic regression models for contact and 
cooperation propensity are estimated. The covariates introduced are a selection of indirect features, all out of the 
researchers' direct control. Contrary to previous research. Socio Economic Status is found to be positively related to 
cooperation. Another unexpected result is the absence of any considerable impact of ecological correlates such as urbanity. 

KEY WORDS: Nonresponse; Multilevel analysis; Fertility and Family Survey. 

1. INTRODUCTION 

The aim of this paper is to empirically assess the relative 
importance of correlates of contact and cooperation rates in 
the Belgian Fertility and Family Survey (FFS Belgium 
1991). 

The conceptual and theoretical nonresponse framework 
used in this paper has been proposed by Groves and Couper 
(GcfeC 1998). In their view, nonresponse arising from 
noncontact is dUectiy influenced by survey design features 
such as the number and the timing of calls. Conditionally on 
these survey design features, other important features such 
as physical impediments of the housing units and 
accessible-at-home patterns of the would-be respondents, 
which are indirectiy measured by various social environ­
mental and socio-demographic attributes, also play an 
important role. The decision to cooperate or to refuse is 
primarily regarded as a direct function of a dynamic social 
communicative process between the interviewer and the 
interviewee. Survey design, main interviewer, sample 
person and social environment characteristics are consi­
dered to have only an indirect influence on cooperation 
rates. 

We use both individual level and muiUcipality level data 
from the 1991 Census data, matched to the fieldwork 
outcome variable for nonrespondents and respondents of 
the 1991 Belgian FFS. In this survey, individuals are the 
sampling units. It is a face-to-face survey with low 
noncontact (4%) and moderate refusal rates (22%). We 
consider our data to be hierarchically nested with sample 
units at the lower and municipalities at the higher level. 
Including covariates at both levels, multilevel logistic 
regression models for contact and cooperation propensity 

are estimated. The covariates are a selection of indirect 
features, all out of the researchers' direct conttol. 

Some intriguing results are: (1) Socio Economic Status 
indicators like education are positively related to coop­
eration and (2) ecological factors including urbanicity are 
not correlated witii nonresponse. This is in conttast with 
findings from previous US-based research. 

2. A THEORY FOR CONTACTABILITY 
AND COOPERATION 

The process of realising an interview consists of two 
major components: the process of contacting a sample 
person and dependent on contact, the process of co­
operation with a survey request. An atttactive multi-level 
theoretical framework for studying contactability and 
cooperation Uas been proposed by Groves and Couper 
(G&C 1998). 

2.1 Contactability 

CUronologically, the process of contacting a sample 
person comes first. Some sample persons are never 
contacted by interviewers and hence never make a decision 
about their survey cooperation. Relative to the process of 
cooperation, the process of contacting a sample person is 
quite simple. 

G&C (1998) consider contactability to be a function of 
three factors: (1) whether there are any physical 
impediments that prevent interviewers to get in touch with 
the sample person, (2) when sample persons are at home 
and (3) when and how many times the interviewer tries to 
contact the sample person. The number and timing of calls 
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by the interviewer and the accessible-at-home patterns of 
tbe sample persons are the proximate causes of contacta-
biUty. The accessible-at-home pattems of the sample person 
are affected by the presence of physical impediments {e.g., 
telephone presence), socio-demographic attributes {e.g., 
commuting times) and social envUonmental attributes {e.g., 
crime). Also survey design features such as the length of the 
data collection period and die interviewer workload might 
have an influence on contact rates. 

2.2 Cooperation 

The centtal question in the survey stage following 
contact is why sample persons do or do not cooperate with 
the interviewer request. In the Groves-Couper model to 
study cooperation, the proximate causes of the decision to 
cooperate or to refuse Ue at the level of the householder and 
his or her interaction with the interviewer. Another 
component in the theoretical framework of G&C (1998) is 
the set of survey design features, such as: the agency of data 
collection, advance warning of the survey request, topic 
saliency, etc. 

G&C (1998) consider also two factors that are out of the 
conttol of the survey designer: influences of the sample 
person and social envUonmental influences. These variables 
are not considered to be dhect causal influences on 
cooperation, but indirect measures of what are essentially 
social psychological constructs. Important theoretical 
constructs in this respect are: opportunity costs, social 
exchange and social isolation. 

2.2.1 Opportunity Costs 

The notion of opportunity costs implies tUat sample 
persons weigh the opportunity costs in agreeing to spend 
their time responding to a survey interview. An important 
ingredient in the opportunity costs theory is the amount of 
discretionary time for the sample person available to 
complete the survey. Those with less discretionary time are 
less likely to feel free to participate in a survey. Some 
indUect indicators for the amount of discretionary time are: 
the inverse of the number of adults in a household and (the 
amount) of labour force participation. Of course, there are 
also obligations away from employment tasks such as 
commitments to friends and relatives that also might raise 
the opportunity costs of a survey. 

2.2.2 Social Exchange 
Social exchange theory considers the perceived value of 

equity of long-term associations between persons or 
between a person and societal institutions (Blau 1964). 
Centtal to all conceptualisations of social exchange is the 
notion that, unlike economic exchange, all social commod­
ities are part of an intuitive bookkeeping system in which 
debts {e.g., obligations) and credits {e.g., expectations) are 

taken into account (G&C 1998). The social exchange 
perspective can be applied whenever there is an ongoing 
relationship between the survey organisation and the sample 
person {e.g., government surveys). 

Those receiving fewer services from the government 
may - in considering the cumulative effect of multiple 
government contacts - feel less need to cooperate. Since 
government services are disproportional across socio­
economic sfrata, indicators of Socio-Economic Status (SES) 
should reflect exchange influences on survey participation. 
However, a major problem with social exchange theory is 
that two altemative hypotheses between SES and 
cooperation might be deduced from it (G&C 1998). First, 
one can argue that lower SES groups may have the greatest 
indebtedness to the government for the public assistance 
they may receive. Higher SES groups feel far less that they 
owe any sort of repayment. In this perspective, the 
relationship between socio-economic status and cooperation 
propensity is a negative one. Altematively, a curviUnear 
relationship between SES and cooperation may be 
hypothesised. The lowest SES groups may beUeve that they 
are disadvantaged routinely compared to more fortunate 
people. The highest SES groups feel themselves repeatedly 
targeted in terms of time and money but receive littie in 
retum. In such a hypothesis, both the highest and the lowest 
SES feel relatively deprived in the relationship with 
large-scale social institutions and tend to refuse survey 
cooperation. 

2.2.3 Social Isolation 

Closely related to the social exchange hypothesis is the 
social isolation hypothesis. Social isolates are out of touch 
with the mainstteam culture of a society: they tend to 
behave in accordance with subcultural norms or in explicit 
rejection of those of the dominant culture. They are 
beUeved to be less likely to participate in a variety of social 
and political activities, including responding to surveys 
(Couper, Singer and Kulka 1997). In terms of SES, social 
isolation theory impUes a positive relationship between SES 
and cooperation: lower SES groups are resentful of their 
dependence on the government, whereas higher SES groups 
have a greater sense of civic obligation. Such a positive 
relationship between SES and social isolation is opposite to 
the relationships predicted by social exchange theory. 

Demographic indicators of social isolation are race, 
edinicity, age and gender; with minorities, elderly and men 
in the role of the relatively isolated. Indicators of social 
isolation at the micro-level include whether the sample 
person lives in a single-person Uousehold, whether the 
sample person has any children, whether the sample person 
has moved recentiy and whether the sample person Uves in 
a large muUiunit stmcture. 
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2.2.4 Urbanicity 

At the community level contextual factors such as 
urbanicity, population density, crime rates and lack of social 
cohesion are hypothesised to influence survey cooperation. 
Residents of mral areas tend to cooperate at a higher level 
compared to residents in towns. However, it is not clear 
which mechanism is responsible for this urbanicity effect 
which might be explained in terms of greater population 
density, higher crime rates and higher social disorganisation 
that are associated with life in urban areas. Population 
density is hypothesised to reduce cooperation through the 
experience of crowding. Fear of crime may produce an 
unwillingness to provide information to sttangers. Finally, 
urban Ufe is associated with social disorganisation, charac­
terised by weakened local kinship and friendship networks 
and reduced participation in local affairs. 

3. DATA AND METHOD 

3.1 Data 

In this study we make use of both aggregated and 
micro-level data of the Belgian 1991 Census Unked to the 
response status for respondents and nonrespondents from 
the Belgian Fertility and Family Survey (FFS-Belgium 
1991) held shortly after the Census operations. 

3.1.1 The FFS Survey (1991) 

The Fertility and Family Survey in Belgium was 
organised by the Population and Family Study Centte 
(CBGS), a Scientific Institute from the Flemish Gov­
ernment. This survey was carried out between April and 
October 1991, which is very close to the decennial census 
date: April 1 in the same year. The main focus of the 
FFS-project is on reproductive behaviour, to be seen 
however in the broader context of partnership and family 
history, and the interaction between employment and 
reproduction (Cliquet and Callens 1993; Callens 1995). TUe 
target population consists of men and women of Belgian 
nationality, bom in the period 1951-1970 and with main 
residence in the Flemish Region of Belgium. 

A two-stage cluster sampling design was used for men 
and women separately. In a first stage, municipalities were 
selected from various socio-economic sttata (Vanneste 
1989). In each selected municipality, individuals were 
selected at random. In this way 2,975 women and 1,989 
men were selected to take part in the survey. A fieldwork 
method was used to compensate for non-response: sttatified 
random substitution of nonrespondents of the target sample 
by persons selected from a reserve sample (Chapman 1983; 
Vehovar 1999). 

The final sample size, i.e., including the substitution 
operation, equals 4,776 persons (2,897 women and 1,879 
men). In this study we make use of respondents and 
nonrespondent cases of both the initial target sample and 
the fieldwork substitution operation (Â = 6,847). 

Among both men and women, the nonresponse can be 
ascribed in 7 out of 10 cases to a refusal to participate in the 
survey. In 2 out of 10 cases, nonresponse is due to the fact 
that the persons selected could not be contacted, and in 1 
out of 10 cases, an interview was impossible because of 
sickness, language difficulties or some other reason. 

3.1.2 Matching 1991 Census Person-Level Data 
(1991) 

Our primary source of information on both respondent 
and nonrespondent cases is provided by the 1991 Census. 

In an effort to reconcile privacy concems and scientific 
interests, we used a simple technique to make the matching 
of person-level Census data and survey data anonymous. 
We provided a dataset to the National Institute of Statistics 
(NIS) containing only the national identification number 
and the response status for each respondent and non-
respondent case. As a result of the matching operation by 
the NIS, we received a selection of the 1991 Census data 
enriched with only two survey variables: the response status 
variable and an indicator whether a sample person belongs 
to the base or substitute sample. 

The 1991 Census individual level data we have at our 
disposal are: the individual form and the house unit form. 
The individual form contains information about: the place 
of residence, the nationality, die labour force activity status, 
the first marriage, the birth year of the-children, education 
and professional activities. The house unit form includes 
information on the housing unit of the household such as: 
the type of housing unit, the number of housing units in the 
building, ownership, building period, the number of rooms 
and corresponding squared meters, tbe presence of a 
telephone and comfort indicators such as the number of 
bath rooms. 

3.1.3 Contactability and its Determinants 

To study the process of contactability, we ideally need 
data on the outcomes of all successive attempts to contact 
sample persons. In dus study however, we do not have such 
detailed information at our disposal: we only know the final 
outcome of each survey request. Therefore, we can only 
study the probability of ever making contact with the 
sample person (coded 1 = contact and coded 0 = non-
contact) and not whether it was easy or difficult to make 
contact. Sample persons that are known not to reside 
(anymore) on the sample address we do consider contacted. 
At 241 out of 6,847 sample units (3.52%), all contact 
attempts failed. 
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The data we use are measured at two levels: the indi­
vidual level («= 6,847) and the municipality level (n = 123). 
At the sample person level, we consider three types of 
variables: physical impediments to contact sample persons, 
reasons for sample persons to be present in their Uomes and 
control variables. 

As there are no direct interviewer observations of 
physical impediments available to us, we have to rely solely 
on indicators for physical impediments available in the 
Census data. Three variables are used: whedier the housing 
unit is a single-family stmcture or not, whether the housing 
unit is large (more than 10 units) or not and whether the 
sample person has a telephone or not. 

Determinants of at-home pattems in this study are: civil 
status (unmarried, married and divorced), age (20-24, 
25-29, 30-34 and 35-39 years) and activity status (inactive 
vs. other). For women only, we also consider the number of 
children (0, 1,2 and 3-I-). For those in the labour force we 
have also detailed information about: working part-time v.$. 
working full-time, the number of weekly working hours 
(<21, 21-35, 36-42, >42 hours), employment status 
(employee vs. own-account), having a second job or not and 
working at home or not. 

We also use two conttol variables: substitution (whether 
a sample person originates from the base target sample or 
from the substitution sample) and gender (whether a sample 
person comes from the female sample or from the male 
sample). 

At the municipality level (n=123), we use five variables: 
population density (persons per square km for the residence 
of the sample person), urban status (the cities of Antwerp 
and Gent vs. other municipalities), percentage multi-unit 
stiiictures (in quartile format: <7.13, 7.13-15.14, 15.14-27 
and >27), percentage Uomes owner-occupied (in quartile 
format: <64.5, 64.5-71,71-77.7 and >77.7) and percentage 
persons of minority race (in quartile format: <0.90, 
0.9-2.22, 2.22-5.29 and >5.29). 

3.1.4 Cooperation and its Determinants 

We are interested in the probabiUty of ever getting 
cooperation (coded 1 = cooperation and coded 0 = non-
cooperation) conditionally on contact; not whether it was 
easy or difficult to get cooperation from tUe sample person. 
For 1,399 out of 6,606 contacted sample persons (21.18%), 
all attempts to get cooperation failed. 

Again, the data we use are measured at two levels: the 
individual level and the municipality level. At tUe sample 
person level, we Uave indicators for the opportunity costs 
hypothesis, the exchange hypothesis and the isolation 
hypothesis. Substitution is used as a conttol variable. 

Indicators for the opportunity costs hypothesis are: 
activity status (inactive vs. other), working part-time vs. 

working full-time, the number of weekly working hours 
(<21, 21-35, 36-42, >42 hours) and employment status 
(employee vs. own-account). 

Indicators for Socio-Economic Status in our study are: 
the surface of the living rooms (in squared meters: <65, 
65-84, 85-104, 105-124 and >I25), the number of bath­
rooms (0,1 and 2-I-) and educational level (primary, second­
ary - first stage, secondary - second stage, high - non-
university and high - university level). Other exchange 
hypothesis indicators are: whether one receives a replace­
ment income from the govemment or not and whether the 
house is owner-occupied or not. 

Indicators for the social isolation hypothesis are: gender, 
civU status (unmarried, married and divorced), age (20-24, 
25-29, 30-34 and 35-39 years), single-family stmcture of 
tUe housing unit and for women only: the number of 
children (0,1,2 and 3-I-) and the presence of children under 
the age of five years. Finally, substitution is included as a 
control variable. 

At the municipality level, we use die same five variables 
as in section 3.1.3: urban status, population density, 
percentage multiunit stmctures, percentage owner-occupied 
and percentage persons of minority race. 

3.2 Method of Analysis 

3.2.1 Bivariate x^ -Test 

In a first exploratory series of analyses of the correlates 
of contactability and cooperation, we calculate percentages 
for two-way contingency tables and include the results for 
the x^-test of independence against association. Such a 
X'̂  -test, like any significance test, indicates the degree of 
evidence for the existence of an association, not the sfrength 
of an association. When at least one variable is ordinal, 
more powerful tests of independence than the x̂  -test such 
as the linear frend test do exist, but for reasons of simplicity 
of presentation, we do not use them in this paper. 

3.2.2 Multilevel Logistic Regression 

In a second series of analyses, we use multilevel logistic 
regression to simultaneously estimate the impact of the 
various determinants (Snijders and Boskers 1999). We opt 
for the use of a multilevel metUod, because we regard our 
data as hierarchically nested with individuals at the lower 
level (level 1) and municipalities at the higher level (level 
2). 

Let p.. he the probability tUat an individual i belonging 
to municipality j is contacted (or cooperates). We will 
consider four different models for explaining this proba­
bility: the null random model, two versions of the random 
intercept model and the standard logistic regression model. 

The empty or unconditional model does not take explan­
atory variables into account. We specify the model such that 
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logit ttansformed probabilities 
distribution: 

have a normal 

logit {p.j) 1/(1 +exp{p.j)) = Yo+«07 

where y^ is the population average and «„. the random 
deviation from this average for group j . These deviations 
Mj. are assumed to be independent normally distributed 
random variables with mean zero and variance Xg. 

When there are r variables at the individual level that are 
potentially explicative for die observed outcomes, dien they 
are incorporated as a linear function in the random intercept 
model: 

logU {p.j) = Jo^Ylkhij^^oj 
h-l 

where y,,...,Y^ are the slope parameters measuring the 
effect of the explicative variables. 

If we would drop the random effects M j . then we obtain 
a standard logistic regression model: 

logU(p;.) = Jo^Yyhhij-
h-l 

By also including 5 variables at the community level, we 
get an intercept model with both level-1 and level-2 
covariates: 

logit {p.j) Yo EY;, 
h-l 

2 ^ Yjf̂ /ty + M 
k-l 

Oj-

We use SAS Proc Nlmixed (SAS Institute 1999) to 
actually estimate the parameters. In SAS Proc Nlnuxed an 
adaptive version of Gauss-Hermite Quadrature (numerical 
integration) is used to solve the maximum likelihood 
estimation problem. To test if a specific parameter equals 
zero, a LikeUhood Ratio x̂  -test is used. 

4. RESULTS 

4.1 Contactability 

Table 1 presents the bivariate results by the x^-test of the 
percentage never contacted by various indicators of 
physical impediments. One strong correlate is whether the 
housing unit is a single-family stmcture or not, the latter 
having much higher noncontact rates (8.1%) than other 
units (2.4%). Also, sample persons living in large multiunit 
housing stmctures tend to have higher noncontact rates 
(11%) than those not living in large multiunit housing 
sti^ctures (3.1%). Another sttong correlate is the presence 
of a telephone: 9.7% of those with no telephone were never 
contacted. 

Table 1 
Percentage Never-Contacted by 'Physical Impediments' Attributes 

Physical impediments attributes 

Single-Family Structure 

No 
Yes 

Large multi-unit structure (>10) 

No 
Yes 

Telephone 

No 
Yes 

Percentage 
never contacted 

8.1 
2.4 

3.1 
11.0 

9.7 
2.7 

x' 
97.6 

38.4 

88.9 

df p 

1 <0.0001 

1 <0.0001 

1 <0.000l 

Table 2 shows the bivariate results for contactability by 
'reasons to be present at home' attributes. Relatively more 
unmarried (4.4%) and divorced (6.9%) sample persons than 
married (2.9%) sample persons are never contacted. There 
are much lower rates of noncontacts among those that are 
inactive (0.9%) compared to other persons (3.5%). Having 
at least 3 or more children (0.9%) leads to low noncontact 
rates, compared to having two children (2.6%) or at most 1 
child (4%). TUose working at Uome (1.5%) and diose being 
an independent worker (1.9%) show modestly lower 
noncontact rates than those working elsewhere (3.6%) or 
those working as an employee respectively (3.6%). Age, the 
number of weekly working hours, working part-time vs. 
fuU-time and having a second job or not have no significant 
influence on contactability. 

Table 2 
Percentage Never-Contacted by 'Reasons to be Present at Home' 

Attributes 

Reasons to be present at home 

Civil status 

Unmarried 
Married 
Divorced 

Inactive vs. other 

Inactive 
Other 

Number of children" 

0 
1 
2 

3+ 

Employment place'' 

At home 
Elsewhere 

Employment status'' 

Employee 
Own-account 

Percentage 
never contacted 

4.4 

2.9 
6.9 

0.9 
3.5 

4.3 
4.0 
2.6 
0.9 

1.5 
3.6 

3.6 
1.9 

x' 
19.4 

4.0 

14.5 

4.6 

4.0 

df 

2 

1 

3 

1 

1 

P 

<0.0001 

0.04 

0.0023 

0.03 

0.05 

subsample of women only (n =4,098) 
"' subsample of active persons only (n=5,368) 
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In addition, substitution is associated with higher 
noncontact rates (5.9%) compared to the base sample 
(2.6%). No significant difference has been found for the 
male and the female subsample. 

In a multiple logistic regression model of the combined 
effects of those individual-level indicators that have some 
marginal bivariate effect on contactability only single-
famUy stmcture (x^ = 35.75,p = <0.0001), telephone {•^ = 
52.63, /7=<0.0001) and substitution (x^ =28.59, p = 
<0.0001) remain significant. 

In Table 3, noncontact rates for various environmental 
attributes are presented. Cities (6.6%) have higher non-
contact rates compared to nonurban areas (3.1%). The 
percentage never contacted is higher for high-density areas 
(5.4%) than low-density areas (1.7%). The presence of 
multiunit stmctures and tUe presence of persons of otUer 
nationalities tend to increase non-contact rates. Finally, the 
percentage of owner-occupied houses shows a negative 
association with noncontact rates. 

Table 3 
Percentage Never-Contacted by 'Environmental' Attributes 

Environmental attribute 
Percentage 
never contacted x̂  df 

Urban status 

Cities 6.6 

Other 3.1 

Population density 

Lowest quartile 1.7 

Second quartile 3.2 

Third quartile 3.8 

Highest quartile 5.4 

% Multi-unit structures 

Lowest quartile 2.0 

Second quartile 2.2 

Third quartile 4.0 

Highest quartile 5.9 

% Persons of other nationalities 

Lowest quartile 2.5 

Second quartile 2.3 

Third quartile 4.3 

Highest quartile 4.8 

% Homes owner-occupied 

Lowest quartile 6.4 

Second quartile 3.6 

Third quartile 1.6 

Highest quartile 2.7 

24.0 1 <0.0001 

34.4 3 <0.0001 

50.4 3 <0.0001 

23.1 3 <0.0001 

64.4 3 <0.0001 

We complement now the bivariate analysis with a 
multivariate analysis. In Table 4 four models for modelling 
contact relative to noncontact are presented. Model 1 is tUe 
null random model at the municipality level. Model 2 is a 
multiple logistic regression model. In this model, we have 

included the person-level effects that remained significant 
in a multivariate context {i.e., single-family stmcture, tele­
phone and substitution) and the variable activity status 
because of its dieoretical importance. Model 3 is a random 
intercept version of model 2. In Model 4, we have extended 
Model 3 with the municipality level variable multi-units 
stmctures (in %) only. 

Table 4 
Results of (Multilevel) Logistic Regression Models 

of Contactability 

Results 

Intercept 

Individual 

Characteristics 
Single-family structure 

Telephone 

Inactive vs. other 

Substitution sample 

Municipality 

Characteristics 

Muki-unit structures (%) 

Estimated variances 

Var(Intercept) 

Goodness of fit 

Deviance 

Model 1: 
Null 
Random 

4.01*** 
(0.16) 

1.03 

1,720 

Model 2: 
Logistic 
Regression 

3 08*** 
(0.73) 

1.16*** 

(0.15) 
1 IQ*** 

(0.16) 

-1.23 
(0.72) 

-0.78*** 
(0.14) 

1,658 

Model 3: 
Random 
Intercept 
Level 1 

3.68*** 
(0.77) 

] Q2*** 

(0.17) 
1.25*** 
(0.17) 
-1.34 
(0.75) 
-0.64*** 

(0.15) 

0.82 

1,606 

Model 4: 
Random 
Intercept 
Uvel 1&2 

4.15*** 
(0.79) 

0 92*** 

(0.17) 

1.26*** 
(0.17) 

-1.33 
(0.74) 
-0.62*** 

(0.15) 

-0.02* 

(0.01) 

0.79 

1,599 

Notes: Standard errors in parentheses. *p<0.05, ** p<Q.Q 1, 
***p<Q,O0l, one-tailed tests. 

The effects of the person-level covariates in Models 2, 3 
and 4 are in accordance with the findings of the bivariate 
analysis. Single-family stmcture and the presence of a 
telephone have a positive influence on contactability, while 
the effect of activity status is not significant. Tbe impact of 
field substitution is negative. We also notice a (radier small) 
reduction of the regression coefficient for single-family 
stmcture and substitution in the multilevel models 3 and 4. 
Models 3 and 4 have one variance component for the 
intercept. To test the null hypothesis that the random 
intercept variance equals zero, we use the Likelihood Ratio 
test and compare the conventional logit model (Model 2) 
with the random intercept model (Model 3). The difference 
in deviance between both models is large (52). So, there 
might be some variance in the intercept to explain by 
municipality level covariates. By inttoducing municipality 
characteristics one at a time, we can test for significant 
effects by calculating deviance differences between Model 
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4 and Model 3. The only deviance difference of importance 
noted is the case of the variable 'multi-unit stmctures' (7 
units difference). No differences in deviances are found for 
the inttoduction of the other level-two variables (urban 
status, percentage owner occupied, population density and 
persons of other nationaUties). 

We consider Model 3 and Model 4 as the better models. 
According to diese multilevel models, noncontact rates vary 
considerably across municipalities. However, the munici­
pality level covariates in our study are not able to explain 
much of this variation. 

4.2 Cooperation 

In Table 5, we present the bivariate results for the 
opportunity costs hypothesis indicators. Being inactive or 
not does not seem to have an effect on the cooperation rate. 
However, when we use indicators of discretionary time, 
such as working part-time versus working full-time or the 
weekly number of working hours, the predicted negative 
relationship does show up in the bivariate results. In 
addition, self-employed sample persons have lower co­
operation rates compared to employees. 

Table 5 
Percentage Cooperation by 'Opportunity Cost Hypothesis' 

Indicators 

Opportunity cost indicators 
Percentage 
cooperated df p 

Inactive vs. other 0.41 1 0.52 

Inactive 77.0 

Other 78.9 

Part-time Vi. Full-time" 10.04 1 0.001 
Part-time 82.3 

Full-time 77.4 

Number of working hours'' 15.3 3 0.0016 

<20 80.1 

21-35 84.7 

36-42 77.6 

>43 75.7 

Employment stains'" 4.2 1 0.04 
Employee 78.7 

Own-account 74.6 

subsample of active persons only (n=5,180) 

The predictions of the exchange hypothesis theory do not 
show up in the bivariate results presented in Table 6. SES 
indicators like the surface of the living room and the 
number of bathrooms are not negatively, but positively 
related to cooperation. Of course, these measures are not 
ideal, because we are not able to conttol for household size. 
Another indication of a positive relationship between 
cooperation and SES is the case of educational level. 

Whether one receives a replacement income or not and 
whether the house is owner-occupied or not has no impact 
on cooperation rates. 

In a multiple logistic regression model of the combined 
effects of those social exchange indicators that have some 
marginal bivariate effect on cooperation, only die effects of 
educational level (x^ =39.35, c?/=4,p <0.0001) and surface 
of the Uving room (x^=13.4, df=4, /j=0.0095) remain 
significant. 

Table 6 
Percentage Cooperation by 'Exchange Hypothesis' Indicators 

Exchange indicators 
Percentage 
cooperated X' df p 

Surface living rooms (m^) 

<65 

65-84 

85-104 

105-124 

>125 

Number of bathrooms 

0 

1 

2 

Educational level 

Primary 

Secondary, first stage 

Secondary, second stage 

High, non-university 

High, university 

Replacement income 

No 

Yes 

Owner occupied 

No 

Yes 

74.8 

77.6 

78.6 

79.9 

83.1 

74.2 

78.6 

83.5 

76.6 

74.5 

78.7 

85.1 

82.2 

78.7 

79.5 

77.4 

79.4 

26.8 

7.9 

46.7 

0.3 

3.4 

4 <0.0001 

2 0.02 

4 <0.0001 

1 0.58 

1 0.06 

In the section for the exchange hypotheses, we have 
found support for the notion that those with low SES, 
cooperate less with surveys than those in the high SES 
groups. Such a positive relationship between SES is 
predicted by tbe social isolation hypothesis. Demographic 
indicators of social isolation theory are gender, civil status 
and age (See Table 7). No effects are found for gender, civil 
status (however, divorced sample persons are probably less 
cooperative) and single-family stmcture. Age seems to have 
a negative effect on cooperation. For women only, we have 
also data on the presence of children. We find that the 
number of children has a positive effect on cooperation 
rates. The age of the children is also important: die presence 
of young children is associated with higher cooperation. 

The conttol variable substitution has a slightly negative 
effect on cooperation (x^=4.24, p =0.039) with lower 
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cooperation rates for the substitution sample (77.3%), 
compared to the base sample (79.5%). 

Table 7 
Percentage Cooperation by 'Social isolation Hypothesis' Indicators 

Social isolation indicators 
Percentage 
cooperated t df p 

Gender 

Male 

Female 

Civil status 
Unmarried 

Married 

Divorced 

Single-family structure 

No 

Yes 

Age 

20-24 

25-29 

30-34 

35-39 

Number of children* 
0 

1 
2 

3+ 

Presence of young children' 

No 

Yes 

78.1 

79.3 

79.8 

78.6 

75.4 

78.9 

77.7 

80.8 

80.7 

78.3 

75.5 

77.9 

76.3 

81.7 

84.9 

77.8 

82.8 

.56 1 0.21 

3.11 2 0.21 

0.76 1 0.38 

17.5 3 0.0006 

18.2 3 0.0004 

12.3 1 0.0005 

" subsample of women only («=3,955) 

Table 8 contains the bivariate results for social 
environmental differences in cooperation. Population 
density has a curvilinear effect on cooperation. Being a 
resident in a large mettopoUtan area has no effect. Thus, the 
evidence for the literature that crowding and high levels of 
stimulus input are negatively associated with cooperation is 
of a mixed nature. 

The effect of indicators for social cohesion is not clear. 
Only the variable percentage owner-occupied has a 
(curvilinear) effect. Tbe variables percentage persons of 
other nationalities and percentage multi-unit stmctures 
seem to have no effect. 

Finally, we present in Table 9 a series of regression 
models for cooperation similar to those in section 4.1. In 
these models, we have included four individual level 
covariates: surface of the living room (<84 , >84 m )̂, 
education (up to secondary -second stage vs. high level), 
age (20-29, 30-39 years) and substitution sample. Surface 
of the Uving room and education have been selected as the 
only significant exchange hypothesis indicators in the 
previously described multiple logistic regression model. 

Age was the only significant effect in the bivariate analysis 
on the social isolation hypothesis. Finally, substitution is 
inttoduced to conttol for possible fieldwork effects. The 
slightly negative effect of substitution in Model 2 might 
indicate that fieldwork substitution negatively influences 
cooperation. However, this effect disappears completely 
when a random intercept is inttoduced (Models 3 and 4). 
The effects of the other individual level covariates are in 
accordance with the findings of the bivariate analysis and 
do not change across Models 2 to 4. SES indicators like 
education and surface of the living room have a positive 
effect and age has a negative effect on cooperation. These 
effects rather confirm the social isolation hypothesis tban 
the exchange hypothesis. 

Table 8 
Percentage Cooperation by 'Environmental' Attributes 

Environmental attribute 
Percentage 
cooperated X' df p 

Urban status 

Cities 80.1 

Other 78.7 

Population density 

Lowest quartile 80.0 

Second quartile 79.9 

Third quartile 76.0 

Highest quartile 79.4 

% Multiunit structures 

Lowest quartile 80.1 

Second quartile 79.2 

Third quartile 77.9 

Highest quartile 78.1 

% Homes owner-occupied 

Lowest quartile 79.7 

Second quartile 76.2 

Third quartile 78.5 

Highest quartile 80.9 

% Persons of other nationalities 

Lowest quartile 77.7 

Second quartile 77.6 

Third quartile 79.6 

Highest quartile 80.2 

0.84 1 0.36 

10.7 3 0.014 

3.1 3 0.38 

12.3 3 0.0063 

5.2 3 o.ie 

The only level two variable of (modest) importance is 
multi-unit stmctures (in %) and has been kept in Model 4. 
The LUceUhood Ratio test for inttoducing this variable gives 
a difference of two units in deviance terms. The intro­
duction of one or more other second level variables gives 
Likelihood Ratio tests differences close to zero in deviance 
terms. We consider Model 3 and 4 as the most suitable 
models. The difference in deviance terms between model 3 
and model 2 is 8 units, which is significant. The variance 
for the intercept term is moderate (0.21). The inttoduction 
of second level covariates (including multi-unit structures) 
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leaves this variance term practically unchanged. Therefore, 
we may state that environmental attributes like urbanicity 
are not important for explaining cooperation. 

Table 9 
Results of (Multilevel) Logistic Regression Models of Cooperation 

Results 
Model 1: Model 2: Model 3: Model 4: 
Null Logistic Random Random 
Random Regression Intercept Intercepts 

Level 1 Level 1&2 

Intercept 

Individual 

Characteristics 

Substitution sample 

Surface living rooms 

Educational level 

Age 

Municipality 

Characteristics 

Multi-unit structures (%) 

Estimated variances 

Var( Intercept) 

Goodness of fit 

Deviance 

1 4]*** 

(0.06) 

0.21 

6,664 

1 24*** 

(0.06) 

-0.15* 

(0.07) 
Q 23*** 

(0.06) 

0.45*** 

(0.08) 

-0.23*** 

(0.06) 

6,664 

1.30*** 

(0.08) 

-0.03 

(0.07) 

0.24*** 

(0.06) 

0.47*** 

(0.08) 

-0 23*** 

(0.06) 

0.21 

6,596 

1 39*** 

(0.10) 

-0.02 

(0.07) 

0.24*** 

(0.06) 

0.47*** 

(0.08) 

-0.23*** 

(0.06) 

-0.006 

(0.004) 

0.21 

6,594 

Notes: Standard errors in parentheses. * p<0.05, 
***p<0.001, one-tailed tests. 

5. DISCUSSION 

*p<O.Ol, 

In this paper, we have used 1991 individual and munici­
pality level Census data matched to the response status 
variable of the Belgian Fertility and Family Survey to 
analyse the relative importance of correlates of contact and 
cooperation. 

We have organised our analysis according to the 
Groves-Couper conceptual framework. In the bivariate 
analysis stage, we have found essentially the same kind of 
cortelates as was predicted and actually found in an 
US-based multi-survey analysis (G&C 1998). One 
important difference between tbe present study and the 
US-results seems to be the nature of the effect of SES 
indicators {e.g., education) on cooperation. In the present 
study, we find a positive relationship; in the US-study the 
inverse relationship is found. We can imagine two 
altemative explanations for these conflicting findings. A 
first one is based on survey design effects such as topic 
saliency. The FFS-survey in Belgium might be atypical in 
being disproportionally atttactive to the higher educated 

because of the specific content of the survey. Replicating 
the present analysis for surveys about varying topics can 
easily test such a hypothesis. Another possible hypothesis 
is that effects of education on survey cooperation do vary 
across societies. Then the challenge is to find out why this 
relationship varies across countries. Such a hypothesis is far 
less easy to test in real, as data for several countties are 
needed. 

In the multilevel logistic regression analysis stage, the 
impact of all but one contextual factor completely vanished. 
Only the impact of the variable percentage of multi-unit 
stmctures shows, however only weakly, some resistance 
against ecological randomness present in the random 
intercept models. To us, this is a very inttiguing result. 
Random ecological variation at the municipality level 
seems to dominate largely even the urban-mral dichotomy. 
A possible explanation is that the variation at the 
community level is dominated by interviewer effects, not by 
ecological factors. 
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