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In This Issue

This issue of Survey Methodology contains the fourth in the annual invited paper series in honour
of Joseph Waksberg. A brief description of the series and a short biography of Joseph Waksberg were
given in the June 2001 issue of the journal. I would like to thank the members of the awards selection
committee for having selected Norman Bradburn as the author of this year’s Waksberg invited paper.

In his paper entitled *“Understanding the Question-Answer Process”, Bradburn traces the history of
conceptualization of the survey process over the past couple of decades, in which concepts from social
and cognitive psychology and linguistics have been applied to improving our understanding of this
process, and cognitive tools and approaches have been adapted for use in formulating survey
instruments. He presents a conceptual model for the survey interview, and discusses various cognitive
processes in survey response such as comprehension, retrieval, answer formulation and response. In
his concluding summary he outlines challenges and priorities for further research in this area.

In Demnati and Rao, the authors present an approach for obtaining Taylor linearization variance
estimators that is easier to apply than the usual Taylor linearization approach. The new method leads
to a unique variance estimator and is applicable in many situations and estimators. The method is
illustrated for calibration estimators, estimating equations and under two-phase sampling. For
calibration estimators, the calibration weight is automatically captured in the variance formulae thus
justifying what is commonly done in practice. Discussions of this paper are provided by Phil Kott,
Babubhai Shah, and Chris Skinner.

Isaki, Tsay and Fuller propose a new method of household weighting for the 2000 U.S. Census long
form, using quadratic programming to ensure that the weighted sums of household and individual
characteristics match control totals derived either from the Census short form or from the Accuracy
and Coverage Evaluation (A.C.E.} study. The weights are then rounded to integer values. They
propose a jackknife procedure for estimation of the variance that incorporates the effects of both
rounding and the random controls from A.C.E. Results of the proposed weighting procedures are
compared to the 1990 weighting procedures using the 1990 Census data.

The theoretical properties of the estimator through reweighting within cells are studied in the article
by da Silva and Opsomer. In contrast with numerous other studies on the subject, which involve a
response model in which the population units are homogeneous within cells, it is not necessary to
correctly specify the response model. It is necessary, however, to determine an auxiliary variable that
is correlated with the response probability. The proposed approach can thus be seen as non-parametric.
A simulation study explores the properties of the estimator being considered under various scenarios.
The authors also provide some recommendations on the size and number of reweighting cells.

Brick, Kalton and Kim deal with the estimation of variance in the presence of hot-deck imputation
within imputation cells for linear estimators. Sirndal’s decomposition (1992) and a model for the
variable of interest are used to estimate variance. The originality of the proposed approach comes from
the fact that, not only are the sampled and responding units conditioned, but also the units selected at
the time of imputation. The article also deals with estimation for domains and a simulation study is
carried out to evaluate the proposed method when certain model assumptions do not hold.

Hidiroglou and Patak study the properties of a number of small area estimators. They classify the
estimators into two types, Horvitz-Thompson and Hijek, and by the detail of auxiliary information
required. Conditional and unconditional properties of the estimators are investigated both analytically
and in a simulation study. They conclude that the Hdjek-type estimators have the best conditional
properties, both in terms of bias and coverage, but these estimators do not have the additive property
and their weights are domain dependent.



In This Issue

In their paper, Sverchkov and Pfeffermann develop prediction of finite population totals using a
model for a variable of interest conditional on the unit not being in the sample (the sample-
complement distribution) and possibly some covariates. They first describe the sample distribution and
the sample-complement distribution, and then develop semi-parametric estimation of the sample
complement model. A resampling procedure is proposed for mean-square error estimation. The
method is iHustrated by examples and it is compared to alternative approaches in a simulation study.

The article by Grilli and Pratesi considers the problem of parametric estimation for ordinal and
binary models at a number of levels for informational sample plans. The authors extend the pseudo
maximum likelihood method to deal with this problem. This method uses the inverse of the inclusion
probabilities at each degree to weight the logarithm of the likelihood function. The estimator’s
properties thereby obtained are tested in a simulation study. The bootstrap method is also used to
obtain a variance estimator.

Rowe and Nguyen explore longitudinal analysis using data from an overlapping panel survey,
specifically, the Canadian Labour Force Survey. Successive six-month longitudinal panels can be used
to provide estimates relating to cohorts of people over time, provided that cohort members can be
identified in cach panel. They develop a likelihood function for the longitudinal data observed in each
six-month window, and show how this can be used to obtain estimates of parameters of interest. They
then give an illustration of this approach for estimating transition probabilitics between employment
states and validate it by comparing simulated and observed data.

Finally, in a paper somewhat related to Bradburn’s, Callens and Croux look at individual level and
municipality level predictors of contact and cooperation in the Belgian Fertilily and Family Survey
using multilevel logistic regression models. They discuss some social theory models for contact and
cooperation that imply an important role for different indicators, and then fit models using data from
the survey. Their qualitative findings, in particular with respect to socio-economic status (SES)
indicators, seem to conflict with the results of similar studies in the literature. In this study, SES was
found to be positively related to cooperation. Some possible explanations of the observed results are
offered.

M.P. Singh
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Waksberg Invited Paper Series

Survey Methodology has established an annual invited paper series in honor of Joseph Waksberg, who has
made many important contributions to survey methodology. Each year, a prominent survey researcher will
be chosen to author a paper that will review the development and current state of a significant topic in the
field of survey methodology. The author receives a cash award, made possible through a grant from Westat
in recognition of Joe Waksberg’s contributions during his many years of association with Westat. The grant
is administered financially and managed by the American Statistical Association. The author of the paper is
selected by a four-person committee appointed by Survey Methodology and the American Statistical
Association.

The author of the Waksberg paper is announced at the annual Joint Statistical Meeting during the American
Statistical Association Presidential Address and Awards session. In this session, recipients of awards such as
Section, Chapter, Continuing Education-Excellence and other co-sponsored awards are congratulated. In
particular, the Waksberg Award for outstanding contributions in the theory and practice of survey
methodology is highlighted. Finally, the winner of the Waksberg award appears in the Awards program
booklet.

Previous Waksberg Award Winners:

Gad Nathan (2001)
Wayne A. Fuller (2002)
Tim Holt (2003)

Nominations:

Nominations of individuals to be considered as authors or suggestions for topics
should be sent by December 3, 2004 to the chair of the committee, David
Bellhouse by e-mail at: bellhouse@stats.uwo.ca or by fax (519) 661-3813,

2004 WAKSBERG INVITED PAPER
Author: Norman M, Bradburn

Norman Bradburn is the Tiffany and Margaret Blake Distinguished Service Professor Emeritus in the
University of Chicago. He has spent most of his career as a survey methodologist at the National Opinion
Research Center (NORCY} at the University of Chicago where he is currently a Senior Fellow. His research
has concentrated on the study of non-sampling errors in surveys with particular emphasis on the cognitive
aspects of the survey questionfanswer process.
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Waskberg Invited Paper Series

MEMBERS OF THE WASKBERG PAPER SELECTION COMMITTEE (2004-2005)

David R. Bellhouse, (Chair), University of Western, Ontario
Gordon Brackstone, Statistics Canada, Ontario

Wayne Fuller, Jowa State University

Sharon Lohr, Arizona State University

Past Chairs:

Graham Kalton (1999 - 2001)
Chris Skinner (2001 - 2002)
David A. Binder (2002 - 2003)
J. Michael Brick (2003 - 2004)
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Understanding the Question-Answer Process

NORMAN M. BRADBURN '

ABSTRACT

Survey statisticians have long known that the question-answer process is a source of response effects that contribute to non-
random measurement error. In the past two decades there has been substantial progress toward understanding these sources
of error by applying eoncepts from social and cognitive psychology to the study of the question-answer process. This essay
reviews the development of these approaches, discusses the present state of our knowledge, and suggests some research

priorities for the future.

KEY WORDS: Measurement errors; Response effects; Cognitive psychology; Questionnaire design,

1. INTRODUCTION

When I was in graduate school, I was deeply impressed
by Gordon Allport’s comment to the effect that the best way
to find out something was to ask a direct question. Later, as
I began to study and do research on methodological
problems in sample surveys of human populations, I
became more convinced of the wisdom on this remark. I
have even formulated it into Bradburn’s Law for Ques-
tionnaires: “Ask what you want to know, not something
else. ”

The trouble with this law is that it is extremely difficult to
put into practice for several reasons. First, it presumes that
we know what we want to know. Often when we start out to
construct a questionnaire, we are not sure what we want to
know and use the questionnaire construction process in an
iterative fashion to refine our ideas about what we want to
know. Until we have a clear understanding of what we are
trying to ask about, there is little hope that we will be able to
ask meaningful questions.

Second, even if we know what we want to know, we
need to understand how people answer questions. The
complexities of human communication make it difficult to
construct of single, standardized instrument that will enable
us to ask our questions so that respondents will understand
them in the way that we intend and that we will understand
their answers in the way they intend. Belson (1968), who
has done extensive studies on the comprehension of
questions by respondents, estimates that even with the best-
constructed questionnaires, less than half of the sample will
understand the questions the way the researcher intended.
He does not present any data on how well the researchers
understand the responses.

Even if this estimate is too pessimistic, we are faced with
a difficult problem of measurement error that comes from
the question-answer process itself, rather than from sample
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design or survey execution. The existence of this source of
measurement error has been recognized since the beginning
of scientific surveys, that is, since the development of
sampling theory and its application to human populations.
Unlike sampling theory, which rests on firm mathematical
principles, the understanding of measurement error due to
the question-answering process has not, until recently, been
based on the theoretical understanding of human commu-
nication and cognition. This situation is beginning to
change,

In the past two decades there has been substantial
progress in the conceptualization of the survey interview
applying concepts from social and cognitive psychology
(Jabine, Straf, Tanur and Tourangeau 1984, Sudman and
Bradburmn 1974, Sudman, Bradburn and Schwarz 1996,
Tourangeau, Rips and Rasinski 2000). In this essay I will
review briefly the development of these approaches, discuss
the present state of our knowledge regarding the question-
answer process, and suggest some research priorities for the
future.

Some History

The collaboration between cognitively oriented psycho-
logists and survey researchers began about 25 years ago.
Like many innovations it had many progenitors and seemed
to spring up from several independent sources. One of the
earliest, if not the earliest instance, was a seminar held in
1978 by the British Social Science Research Council and
the Royal Statistical Society on problems in the collection
and interpretation of recall data in social surveys. Parti-
cularly noteworthy was the participation of the Cambridge
cognitive psychologist Alan Baddeley whose paper, “The
Limitations of Human Memory: Implications for the Design
of Retrospective Surveys,” is perhaps the first paper by a
psychologist interested in memory directly related to survey
design (Baddeley 1979).

Norman M. Bradburn, National Opinion Research Center, University of Chicago.



Two important events occurred in the United States in
1980. The first was a workshop convened by the Bureau of
Social Science Research in connection with its work in the
redesign of the National Crime Victimization Survey. This
workshop brought together cognitive scientists and survey
statisticians and methodologists to discuss what contribu-
tions cognitive scientists could make to under standing
response errors in behavioral reports (Biderman 1980). One
of the results of this conference was to stimulate some of the
cognitive psychologists who participated to begin to study
problems in survey questions in a laboratory setting. One of
the earliest of such papers was “Since the eruption of Mt. St.
Helens has anyone beaten you up? Improving the accuracy
of retrospective reports with landmark events, ™ (Loftus and
Marburger 1985) which demonstrated experimentally the
value of using landmark events to improve the quality of
dating events in survey reports.

The second event was the establishment of a panel on the
measurement of subjective phenomena by the Committee
on National Statistics. This panel produced two large
volumes that reviewed a considerable amount of research on
response effects involved in the measurement of subjective
phenomena. It complemented the work that had been done
by the earlier seminars on measuring hehavior or more
“objective” phenomena. (Turner and Martin 1982)

A big stimulus came in 1983 when the Committee on
National Statistics with funding from NSF organized a 6-
day seminar in St. Michaels, Maryland on Cognitive
Aspects of Survey Methodology. Two papers, “Potential
coniributions of cognitive research to survey guestionnaire
design” (Bradbum and Danis 1984) and “Cognitive science
and survey methods,” (Tourangean 1984) reviewed how
new developments in cognitive psychology could contribute
to survey methodology and how developments in survey
methodology could contribute to the further development of
cognitive psychology. The conference was extraordinarily
fruitful and led to a whole new field of research in survey
methodology both as applied to objective and subjective
phenomena. The results of this conference were published
in Jabine et af. (1984),

The final instance of independent work that may be
thought of a progenitor of this field was a conference
organized by Norbert Schwarz and his associates in
Germany. Perhaps the most influential paper from this
conference was the model proposed by Strack and Martin
(1987) “Thinking, judging and communicating: A process
account of context effects in attitude surveys.” The results of
the conference are published in Hippler, Schwarz and
Sudman, Social Information processing and survey
methodology (1987).

In the ensuing years, there has been a stream of research
that has refined and elaborated the research agenda that

Bradburn: Understanding the Question-Answer Process

came from these early seminars. Some of the work
sponsored by the Social Science Research Council is
published in “Questions about questions: Inquiries into the
cognitive bases of surveys” (Tanur 1992). Subsequent
research has been updated in a series of volumes edited by
Schwarz and Sudman (1992, 1994, 1996).

A Conceptual Approach to the Survey Interview

A survey interview is a structured social interaction
between two people who play distinctive roles-the inter-
viewer and the respondent. It has been described as a
“conversation with a purpose” (Bingham and Moore 1934).
The purpose, to put it succinctly, is to get a series of
questions answered. In scientific surveys, these questions
are usually embodied in a structured questionnaire designed
by a third party, the researcher. It is this type of survey
activity that I will consider, although the analysis could be
extended to other, less structured interviews,

Like all social interactions among people from the same
culture, there are implicit rules that influence the way the
participants behave. Some of these are generat and apply to
all social interactions between social equals; some are
general to the peculiar type of interaction we call the survey
interview; some are general to this survey; and some are
idiosyncratic and apply to only this particular interview.
Thus we think of these rules as hierarchically organized
from the most general, which apply to all survey interviews,
to the particular rules involved in a particular interview.

At the most general level the interaction is govermed by
the rules for voluntary interactions between strangers. The
interaction is initiated by one party, the interviewer, who
must establish the nature of the encounter. The important
elements that must be established are: 1) that it is non-
threatening, that is the interviewer is not going to do any
harm to the respondents; 2) the purpose of the encounter,
and 3) what are the costs and benefits to the respondents if
they agree to participate in the interview. The interaction is
thus viewed as neutral, purposive, and worthwhile, As with
any structured social interaction, it is governed by the norms
related to such interactions.

What are the norms that are important for the interview?
The first is mutual respect for individuals, particularly the
privacy of the respondents. This principle has become an
important issue regarding the protection of research parti-
cipants because of a number of instances in bio-medical
research where the voluntary nature of participation was not
made clear. For high-risk research written consent to
participate is now required. In the survey interview,
however, the context of the request for an interview makes it
easy for respondents to refuse if they do not wish to
participate and written consent is superfluous. Asking for
written consent may actually raise suspicion that the
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interviewer has not been truthful about the purpose of the
interview because written consent is not normally part of a
conversation between strangers who have established that
the interaction is non-threatening,

A second important norm is truthfulness. It is part of the
role obligation of both parties to be truthful. For the inter-
viewer, this means telling the respondent pertinent facts
about the purpose of the interview, what is required of the
respondents, e.g., how much time it will take, whether they
will need to consult records, whether the questions may be
sensitive, etc. and to answer any questions the respondents
might ask. If providing some information at the beginning
of the interview might bias responses, such as who the
sponsor of the research is, the information can be given at
the end of the interview.

The purpose of the interview is to obtain the information
required by the research. The interviewer’s role is to get the
desired information and the questionnaire is the principal
instrument for accomplishing this task. A well-designed
questionnaire makes the interviewer’s job easier and
minimizes the need for the interviewer to have to answer
questions about the meaning of questions in the question-
naire. While interviewers need to be trained about the
purpose of questions and their meaning, interviewers may
become a source of uncontrotled variance if they have to
interpret questions for many respondents, Interviewers need
to be alert to cues that respondents are misunderstanding
questions and to act to correct them. The need for many
interventions by interviewers indicates a bad questionnaire.

If respondents accept the role and agree to participate in
the interview, they have the obligation, under the norm of
truthfulness, to answer the questions as accurately and
completely as possible. This norm, however, may conflict
with the general desire of individuals to be well thought of
and to present themselves in a favorable light. In many
surveys, we ask questions about potentially embarrassing,
sensitive or even illegal behavior or unpopular attitudes.
The interviewer and the questionnaire both play an
important role in minimizing this conflict and reinforce the
norm of truthfulness. The empirical evidence, however,
suggests that even with the best trained interviewers and the
best techniques of questionnaire design, it is rarely possible
1o prevent some overreporting of socially desirable behavior
and attitudes or underreporting of undesirable attitudes and
behavior (See Bradbum, Sudman and Associates 1979:
Wentland and Smith 1993).

Survey data are collected under a strong norm of confi-
dentiality. The norm is so strong that even if it is not made
explicit, respondents expect that information from inter-
views that have the form of scientific surveys, such as
public opinion polls or employee attitude surveys, will not
be identified with them. Violations of this norm such as
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occur with “sugging” (selling under the guise of a survey) or
“frugging” (fund raising under the guise of a survey)
threaten to erode public confidence in surveys and contri-
bute to the increase in rates of refusal to participate. Unless
the data are collected under “shield laws” or certificates of
confidentiality that have the force of law, confidentiality
promises, however, can be compromised by law enforce-
ment activities.

Linguists have also noted that there are basic shared
assumptions underlying conversations that facilitate the
interactions. These have been systematically described by
Grice and are referred to as Grician rules (Grice 1973, see
also Sudman et al. 1996 for their application in surveys).
According to Grice, conversations are based on a principle
of “cooperativeness” which is embodied in four maxims.
The maxim of quality enjoins speakers to be truthful and not
to say things that they lack evidence for. The maxim of
relatton indicates that the utterances are relevant to the topic
of the ongoing conversation. The maxim of quantity
requires that speakers not repeat themselves and make the
contributions to the conversation as informative as possible.
The maxim of manner requires that the speakers be as clear
as possible in their meaning. Thus, according to Grice,
speakers are expected to be truthful, relevant, informative
and clear.

These maxims apply equally to informal conversations
and to interviews that have the form of a special type of
conversation. Thus the questions asked by the interviewer
are interpreted within the same framework, that is both
questions and introductory material 10 questions are relevant
to the topic, are supposed to be informative and clear.
Violations of these maxims can lead to confusion on the part
of respondents and produce response effects that are well
documented. For example, violations of the maxim of rele-
vance when questions are obscure (see for example,
Schuman and Presser 1981} or deliberately about fictitious
issues (Bishop, Oldendick and Tuchfarber 1986) lead to
respondents trying to make sense of the question by looking
to contextual cues about the meaning of the question. This
produces what appears to be an erroneous response when
viewed from the perspective of the researcher who does not
understand the conversational assumptions of the
respondents,

One of the most well documented order effects in
surveys occurs when questions of differing levels of
specificity occur together. When one question is general,
e.g., “Taking all things together, how happy are you these
days? “ and the other is specific, e.g., “How happy is your
marriage?”’, responses to the general question are affected
by the order of the questions, while responses to the more
specific question are not. The effect appears to be the result
of the workings of the maxim of relevance. When the
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general question comes first it is interpreted as intended, that
is, respondents should include all aspects of their lives in
making the judgment about their happiness. When the
general question comes second after the specific question
about marriage happiness, the maxim of relevance suggests
that respondents should exclude from consideration their
marriages because they have already reported on them.
Thus, even though the question literally asks about “ali
things together”, it is interpreted to mean “all things except
those we have already asked about.” It is only those things
that have not been asked about that are still relevant.

What happens if the norms outlined above are not
accepted in the interview either because the respondent
rejects or redefines the role of respondent or does not
observe the maxims of conversation? Of course the easiest
form of rejection of the role of respondent is to refuse the
interview altogether. Sometimes, however, a person
sampled becomes a “reluctant respondent”, that is, they are
may feel pressured to participate in the study because of
follow-up procedures, because they do not like to refuse a
strong request from another person or for some other reason.
In such cases they may care less about being a good
respondent than just getting the interview finished. Thus
they may take less time to think about questions, make less
effort to recall information requested, or be less interested
in a truthful answer than a “don’t know” or even a false
answer. Interviewers have told me that they often feel that
the responses given by those that they have convinced to
participate in an interview after many attempts at refusal
conversion are less valid that those who participate more
willingly. Extras efforts to obtain high completion rates may
in fact produce less good data.

Respondents also may misunderstand the nature of the
survey interview, simply want to convert it into a social
conversation, or not be very skilled conversationalists, that
is not abide by the Grician maxims and thus engage in an
“inefficient” conversation. Such conversations are charac-
terized by frequent asides or changes of topic, comments on
topics of little or no relevance to the question at hand,
relating personal anecdotes that may be triggered by some
aspect of the question, or simple repetition of comments. In
such cases the interviewer must politely but firmly teach the
respondent the rules for the conversation and guide the
respondent to keep focused on the questions in the inter-
view. Skilled interviewers become experts in steening the
conversation and, by selective reinforcement, shaping the
respondents’ behavior to follow the Grician maxims.

In summary, interviews take place in social contexts that
have a structure governed by socially shared expectations
and norms. These norms may differ from society to society
and perhaps even within subcultures in the same society, but
they have powerful effects on the way interviews are
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conducted and the way questions are interpreted. Violations
of the expectations or norms may lead to “effects” that may
be interpreted as error from the perspective of the
researcher. If these norms and expectations are understood,
they can be used to avoid problems or to mitigate the
effects.

Data could also be obtained from interviewers about how
much the interview deviated from the model outlined above.
Although little research has been done assessing the quality
of interviews from this point of view, a fruitful area for
future research could be to investigate the decline in validity
of data as the conditions of the interview increasingly
deviate from the ideal model.

Cognitive Processes in Survey Response

Answering questions in a survey involves considerable
cognitive work on the part of respondents. Much of what
underlies recent advances in understanding survey response
processes derives from the application of models of infor-
mation processing to the question-answering process. While
there is still much work to be done before we have complete
and detailed understanding of how the brain processes infor-
mation, there is sufficient agreement about the general
approach to serve as the basis for a better understanding of
the response process.

The mind is conceptualized as a large information
processing system composed of a series of component
systems. The physical sensations of sound and sight enter
the system in the sensory register. The sensory register has
capacity limitations so that only a portion of the information
is transferred to short-term memory. Attention plays a large
role in determining what is brought into short-term memory.
Attention is a function of an executive monitor that enables
and controls the information processing system much the
way that programs enable what computers do. The execu-
tive system controls the entire system through goals and
plans that are organized into priorities for action.

The storehouse of the system is the long-term memory
system that has a very large capacity. Working memory
refers to the system in which active thinking takes place.
The activity here draws on short-term memory and
retrievals from long-term memory. Short-term memory has
limited capacity but rapid access, while long-term memory
has large capacity but is relatively slow in access. Long-
term memory appears to have two rather distinct sub-
systems, semantic memory and episodic memory, although
this distinction is not universally agreed upon. Semantic
memory refers to memory associated with vocabulary,
language structure, rules and abstract knowledge, while
episodic memory refers to memory for events that took
place in time and space.
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Information is represented as a list of features or concepts
that are linked together in networks. Information is stored in
memory in structures that are hierarchically organized with
more general concepts being higher in the structure than
more discrete instances of the concept or distinct features.
The term “schema” is sometimes used to refer to larger,
more complex shared and/or overlearned structures that
organize our thoughts on familiar topics and may be
retrieved as a whole rather than as individual parts.

Language is the medium through which information is
primarily communicated and thus information, to be
available for communication, must be associated with a
linguistic code. The exact relationship between language
and thought and whether or not all thoughts have verbal
representation are still subjects of debate. It is clear, how-
ever, that meaning is encoded somehow in language and
these codes play an important role in the acquisition, storage
and retrieval of information. Emotion may also be part of
the code, although its role is not well understood.

Knowledge structures facilitate and constrain patterns of
activation in the mind. What comes to mind, that is, into
consciousness, is limited and is the result of the activation of
the networks. Activation is rapid but goes along pathways
determined by the ways information is encoded. Encoding
puts information into particular categories and structures the
pathways by which the information will be retrieved. Cues
are stimuli that are related to the codes and stimulate the
activation of the networks. Activation is rapid but does take
time. The amount of time it takes for someone to respond to
a stimulus (reaction time) is often used in research as a clue
to the way information is coded.

There are number of models of the question-answering
process (Cannell, Miller and Oksenberg 1981; Strack and
Martin 1987; Tourangean and Rasinski 1988; Sudman
etal. 1996;) that, while differing in details, generally agree
on a series of processes respondents go through in
answering questions. These processes are: 1) compre-
hending the meaning of the question; 2) retrieving relevant
information; 3) formulating an answer; 4) formatting and
editing the answer to meet the requirements of the inter-
viewer and respondents self-presentation. While concept-
vally viewed as a linear sequence, it is recognized that in
reality the processes occur in the flow of a conversation and
that the different processes may go on in parallel or in rapid
cycling back and forth. For purposes of considering the
question-answer process, it is useful to consider them as if
they were separate and proceeded in an orderly sequence.

Comprehension

In order to answer a question, respondents must first
understand what they are being asked. The goal for the
researcher is for respondents to understand the question in
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the same way that the researcher does. This goal is very
difficult to reach because of the many subtleties and ambi-
guities of language. Indeed Belson (1981), who has studied
extensively respondents’ understanding of common terms
such as “weekday”, ‘“children,” “regularly” and
“proportion,” found widespread misunderstanding even in
questions using such common terms.

Comprehension begins with a percepwal process of
interpreting a string of sounds or written symbols as words
in a language that respondents understand. The string of
words is “parsed” into syntactical units that are understood,
that is, the meaning that is encoded in the linguistic units is
extracted by a process that is still poorly understood. Many
comprehension problems occur because of ambiguities
arising from words that have different meanings (lexical
ambiguity) or are used in different ways (structural
ambiguity). For example, the question “Where is the table?”
is lexically ambiguous because the word “table” can refer to
an object on which things can be placed or a set of numbers
arranged in a sheet of paper. The sentence “Flying planes
can be dangerous” is structurally ambiguous. The interpre-
tation depends on whether “flying” is understood as a verb
or as an adjective. Structural ambiguities can be resolved by
careful wording of questions. Lexical ambiguities, on the
other hand, are inherent in language and are usually
resolved by the context within which the sentences appear.

Context plays an important role not only in resoclving
ambiguities but also aids in interpreting the meaning of
words that are unfamiliar. For example, a study by Schuman
and Presser (1981) found that a question about the Monetary
Control Bill, an obscure piece of proposed legislation, was
interpreted as referring to an anti-inflationary measure when
it occurred after a series of questions about inflation, but
was interpreted as referring to controls of the international
transfer of money when it occurred after questions dealing
with the balance of payments.

The underlying psychological mechanism for these types
of context effects is priming. In order to interpret the stream
of sounds or written symbols, we have to draw on our
semantic memory that contains the store of linguistic infor-
mation that enables us to understand the languages we
know. Since this is a large store of knowledge, it takes time
to retrieve information, and some things will be more easily
accessible than others. Those bits of information that have
been recently activated are more easily accessible and will
be used first to interpret what is being said or read. Priming
activates thoughts or “schemata”, that is, organized thoughts
about objects or concepts, so that they are more accessible
to consciousness and thus more easily come into play in
interpreting the questions. In the example above, previous
questions have primed either thoughts about inflation or
about interational flows of money, so that when the
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unfamiliar concept of the Monetary Control Bill is asked
about, the thoughts that have been primed come more
rapidly to the fore and affect the interpretation of the words.

Different meanings may be differentially accessible to
different respondents because of the frequency with which
they employ them in daily life. For example, Billiet (cited in

* Bradbum 1992, page 317) observed that, in response to the

question “How many children do you have?” some
respondents offered numbers between twenty and thirty.
Further inspection of the data revealed that these
respondents were teachers who interpreted the question to
refer to the children in their classes, the meaning that was
most accessible in their memories.

Information Retrieval

Once a question has been comprehended, respondents
must retrieve from memory the information necessary to
answer the question. In almost all cases this means
retrieving the information from long-term memory. If the
question is about behavior, the relevant information is likely
to be stored in episodic memory. If the question is about
attitudes, the relevant information is likely to be stored in
semantic memory, but may require some retrieval from
episedic memory.

Remembering is a process by which the memory
starehouse is searched to retrieve a particular item that is
being sought. If we think of memory as a big storehouse, it
is clear that it must be organized in some way in order for us
to be able to retrieve things from it. Just as we must label
files when we put them in file drawers, so we must attach
some kind of labels to information in the memory
storehouse. The labeling process, often called “encoding,”
refers to various aspects of the information or the
experience, including emotional tone, attached to the item
when we stored is it memory so that we can retrieve it. (For
a more complete discussion of memory models sec
Tourangeau et al. 2000, Chapter 3).

Barsalou (1988) has proposed a theory that provides a
good framework for understanding how information about
personal events is stored in memory. He notes that infor-
mation about activities or event types in episodic memory
includes not only specific events but also extensive
idiosyncratic, generic knowledge about the events, that is,
having a generic mental image of some types of activity,
e.g., visiting a pediatrician, rather than an image of a
particular event, e.g., going to Dr. Jones about your
daughter’s rash (Brewer 1986, 1994). For activities to be
stored in memory, they must be comprehended. In other
words they must be understood within some meaning
system, usually linguistic, that brings to bear knowledge of
past activities and generic knowledge about similar event
types as well as specifics of the event itself and the context
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within which it occurred. This complex set of information
that goes into the comprehension of the event becomes
integrated into the memory of the event. The comprehension
process determines how the memories are encoded.

Information, such as the wording of the question and any
explanatory material available to respondents at the time
they are asked to recall an event, acts as retrieval cues.
Retrieval cues are any words, images, emotions, efc. that
activate or direct the memory search process. If retrieval
cues do not specify the event type, e.g., pediatrician visits,
then the event types must be inferred before the search can
begin. This inference can come from the wording of the
question or from the larger context in which the question is
asked, including the preceding questions or the introductory
material to the survey.

Retrieval is an active process that is facilitated by cues in
the question that activate the pathways of association
leading to the desired information. Because information,
both in episodic and semantic memory, is encoded in many
different ways, the cues in the question or in the context
surrounding the question including previous questions, may
facilitate or constrain the activation and produce better or
less good retrieval.

Retrieval takes time. One clear empirical finding is that
giving respondents more time to answer questions produces
more accurate reports, particularly for behavioral questions.
But time is not all there is to it. Memories for events in
one’s life appear to be organized in event sequences
(Barsalou 1988), for example, a summer vacation or a
hospitalization, which are hierarchically organized. Giving
respondents cues to remind them about the sequence is more
effective than trying to get them to retrieve information
about a specific event, For example, in questions about
alcohol consumption, giving examples of the kinds of situa-
tions in which one might drink increases consumption
Teports. .

Examples are an important aid to recall, but they are not
a panacea, Giving respondents of list of magazines that they
might have read improves reports of reading; a list of
organizational types helps respondents remember all the
organizations they belong to. While examples may help
reduce omissions, they have the effect also of being direct
cues for memory and result in greater reports for the types
of items on the list. If an important type of activity or event
is omitted from a list, the lack of a cue for that type of
activity may result in underreporting. The cuing effect of
question wording can scarcely be overestimated.

When thinking about retricval, we mostly think about
forgetting or failure to retrieve relevant information. Some
times, however, incorrect information may be retrieved that
results in overreporting behavior. The best-known example
is the phenomenon observed by Neter and Waksberg (1964)
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called “telescoping”, that is, recalling events that took place
at a time other than the time period asked about.
Telescoping occurs in response to questions about behavior
in a defined time period such as: “How many times have
you been to the doctor in the past 6 months?” Neter and
Waksberg found in analyzing data from the Consumer
Expenditure Survey that when respondents reported on
purchases in different reference periods, there was a
sysicmatic overreporting of purchases that came from
reporting purchases made in a pervious period as if they had
been purchased in the period being asked about. While the
phenomenon has been observed in a number of studies,
there had been no cognitive explanation for it untit recently.

Memory for the time of events becomes more uncertain
the further back in time the event happened, even though
there is no systematic bias in the reports. Telescoping results
from the conjunction of two processes-rounding and
bounding. Rounding refers to the fact that respondents
round their estimates for when things took place in
successively larger periods the further back in time an event
occurred. For example, events are remembered as having
occurred in “days ago” discretely up to about 7 days ago,
then they are rounded to periods such as 10 days, two
weeks, 4 weeks, 3 months, and 6 months ago. Bounding
refers to the aspect of the question that limits the time of
reports, e.g., the last 6 months. The effect of this bounding is
to truncate reports of events that are remembered as having
occurred longer ago than 6 months. Since the variance in the
memory for the dates of events becomes larger the further
back the event occurred, a larger number of events will be
incorrectly remembered as falling into the period the further
back the events occurred. This overreporting of events from
outside the period will not be offset by an underreporting of
events in the near term because events cannot be reported
that have not yet happened. Since there are no offsetting
events remembered as occurring outside the period at the
other end of the time boundary, i.e., the future, the result is a
net overreport. (For a full explication of the model sec
Huttenlocher, Hedges and Bradbum 1990).

Formulating an Answer

Taking into account the information activated by the cues
provided by the questions and the context in which they are
asked and retrieved from memory, respondents must formu-
late an answer to the question. Some information is easily
accessible. For example, if the questions are about well-
rehearsed topics, such as birthdates or marital stats, or
about topics for which the respondents have an already well-
articulated position, respondents may retrieve the answers
directly. They spring, as it were, fully formed from memory
and can be reported directly. This kind of information we
call chronically accessible.

11

On the other hand, if the questions are about behavior
that has not been thought about recently and is not well-
remembered or about attitudes that have not been well
thought out or discussed, respondents must construct
answers on the spot using all the information from whatever
source available to them in working memory. This
construction process utilizes not only chronically available
information but also, importantly, information that is
temporarily accessible because it has been activated by the
question itself, contextual cues, previous questions, or any
other aspects of the interview situation,

There are several general cognitive processes that are
pervasive strategies used to process information efficiently.
Assimilation and contrast are two such fundamental
processes that affect communications. In the study of
perception, assimilation refers to the tendency to perceive
stimuli as more alike that they actually are. Contrast refers
to the tendency to perceive stimuli as more different than
they actually are. Applying these principles to survey
answering leads to what has been called the inclusion/
exclusion model (Schwarz and Bless 1992; Sudman et al.
1996). Information that is included in the temporary
representation that respondents form of the target of the
question will result in assimilation effects because the
judgment required to answer the question is based on infor-
mation included in the representation used. If the informa-
tion is positive, the judgment will be more positive. If the
information is negative, the judgment will be more negative.
The size of the effect depends on the amount and extremity
of the temporarily accessible information

Previous questions may activate thoughts that are then
included in the representation of topics of later questions.
The impact of a given question decreases as the number of
other context questions increases. For example, answering a
question about marital happiness had a pronounced effect on
answers to subsequent questions about general life satis-
faction when respondents’ marriages were the only specific
life domain asked about. When respondents were asked
about their leisure time and their jobs in addition to
questions about their marriages before reporting on life
satisfaction, the effect was significantly reduced. (Schwarz,
Strack and Mai 1991).

Information that is excluded rather than included in the
temporary representation of the target will lead to a contrast
effect. In this case, if the information excluded is positive,
the judgment will become more negative; if the information
is negative, the judgment will become more positive.
Similarly the size of the effect depends on the amount and
extremity of the temporarily accessible information. In
effect, the excluded information is subtracted from the
representation of the attitude object.
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Excluded information, however, may play an additional
role in formulating judgments. In addition to being excluded
from the representation of the target, the information may be
used in constructing a standard or scale anchor. In this case
we speak of comparison-based contrast effects. The effect
here is not caused so much by the subtraction of the
excluded information from the evaluation of the attitude
target, but by the comparison of the target with some
standard or evaluated on some scale.

Which of these processes drives the emergence of a
contrast effect determines whether the contrast effect is
limited to the single object or generalizes across related
objects. If the contrast effect is based on simple subtraction,
the effect is limited to that particular target. If the contrast
effect is based on a comparison, the effects are apt to appear
in each judgment where that standard of comparison is
relevant.

An example of a contrast effect based on using infor-
mation from previous questions is provided in a study by
Schwarz, Muenkel and Hippler (1990). Respondents were
asked to rate a number of beverages according to how
“typically German” they were. When this question was
preceded by a question about the frequency with which
Germans drink beer or vodka, contrast effects appear in the
typicality ratings. Respondents who had estimated the
consumption of beer first (a high frequency item), rated
wine, milk and coffee as less typical German drinks than did
respondents who had estimated the consumption of vodka
first (a low frequency itern), thus showing a contrast effect
that extended across the three target drinks. This contrast
effect, however, did not appear when the preceding question
was about the caloric context of beer or vodka because the
information activated by this question was not relevant to a
judgment about typicality.

Formatting and Editing Responses

After respondents have formulated their responses, there
remains the task of fitting these answers into the response
formats that the interviewer offers. Rarely in surveys does
the researcher allow respondents to answer questions in a
free format. Open-ended questions have a multinde of
problems not least of which is the cost and difficulty of
transforming free-form answers in a format that can be
treated quantitatively. Today almost all questionnaires
depend on closed or pre-coded questions.

Research on response alternatives is less well developed
theoretically than the study of question wording and context
effects. In general, the empirically observed effects are
thought to stem from two sources-memory limitations and
cognitive elaboration stimulated by the response alter-
natives.
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Memory limitations create some order effects among
response alternatives. Primacy and recency are two well-
known effects in the memory literature. When a series of
stimuli are present visually, those that come early in the
series are remembered better than those later in the seties
(primacy). When a series of stimuli are present in an audi-
tory mode, those that come late in the series are remembered
better (recency). Thus there is an interaction between the
order in which stimuli are presented and the mode by which
they are presented.

The research literature has shown that there are
persistent, although in general samples fairly small, primacy
and recency effects in the serial position of response
alternatives depending on the mode presentation. Pomacy
effects appear when the response alternatives are presented
visually, as in show cards in personal interviewing, and
recency effects appear in telephone interviewing when the
respondents have to depend entirely on auditory memory for
the response altematives. More recent research (Knaeuper
1999; Schwarz and Knaeuper 2000), however, reveals that
the effect is very much a function of memory capacity and is
sharply increased among older respondents whose memory
is poorer and who depend more on the primacy or recency
of the stimuli as supported by mode of presentation. Among
older respondents, the primacy/recency effects can be quite
large, on the order to 20 percentage points (Schwarz and
Knaeuper 2000). Among younger respondents the effects
are small.

An intriguing theory to account for some observed
response order effects within a question is that of cognitive
elaboration. This theory draws on early work by Krosnick
and Alwin (1987) and cognitive research on persuasion
(Eagly and Chaiken 1993; Petty and Cacioppo 1986). This
theory hypothesizes that the order and mode in which
response alternatives are presented affects respondents’
opportunity to elaborate on their content. Such elaboration,
in turn, activates thoughts in response to the question and
provides retrieval cues in response to behavioral questions.
The response alternatives provide supplementary cues that
activate a range of thoughts that become temporarily
accessible and may become part of the answer formulation
process. In effect, the response alternatives are an essential
part of the question but may be processed later in time after
the question itself has been processed.

The cognitive elaboration hypothesis suggests a number
of complex predictions, few of which have yet been tested.
One example for which there is considerable evidence, is an
interaction between serial position and mode of adminis-
tration in long lists. The primacy effect evident in visvally
presented material gives respondents time and stimulus 1o
think more about alternatives early in the list before giving
an answer. The crowding out of early alternatives by the
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reading of later alternatives and recency effects evident in
lists presented in an auditory mode suggest that the later
alternatives can be more deeply processed cognitively.
These effects are more robust that the primacy and recency
effects that appear to depend more on simple memory
limitations.

Once a response alternative has been chosen in the
respondents’ mind, the respondent may still edit the
response. As mentioned earlier, the interview is a social
situation and respondents may be concerned with self-
presentation. There is ample evidence that social desirability
is an important aspect of the response process and responses
to sensitive question may be seriously distorted by
unwillingness to admit to behavior or attitudes that would
put the respondent in a bad light in the interviewer’s eyes or
by the desire to over claim socially desirable behavior
(Bradburn, Sudman and Associates 1979; Sudman and
Bradburn 1974). There are several techniques for reducing
social desirability bias, although there is no technique that
totally and reliably eliminates it. The general strategy is to
increase social distance between respondents and inter-
viewers. This can be done by changing the mode of admi-
nistration by eliminating or reducing the presence of the
interviewer. Computer Assisted Personal Interviews (CAPI)
which allow respondents to directly enter responses to
sensitive questions into the computer as part of a face-to-
face interview enable researchers to combine the benefits of
a personal interview with a self-administered questionnaire.
The use of audio enhanced CAPI (Audio-CAPI) which
enables respondents to listen to a recorded voice reading the
guestions, although somewhat more expensive, overcomes
literacy and language problems that might arise when
respondents have to read questions from a computer screen.

Research on mode effects generally indicates that self-
administration of a questionnaire, particularly in an anony-
mous, group setting, minimizes, but does not entirely
eliminate desirability bias. Interviews done on the telephone
generaly produce results that are intermediate between a
face-to-face interview and a totally anonymous self-
administration, although the results are not entirely
consistent.

In addition to reducing the social distance between inter-
viewer and respondent by altering the mode of adminis-
tration there are techniques for increasing the real or
perceived anonymity of respondents that also reduce social
desirability bias. For example, respondents may put their
responses in a sealed envelope and mail them back to a
central office so that they know that the interviewer cannot
see their responses.

Another technique is the so-calted random response tech-
nique, although it is more properly a random question tech-
nique (Greenberg, Abul-Ela, Simmons and Horvitz 1969,
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Horvitz, Shah and Simmons 1967; Wamer 1965). The
interviewer asks two questions, one sensitive and the other
non-sensitive. Both questions have the same possible
answers, “yes” and “no”. Which question the respondent
answers is determined by a probability mechanism, such as
flipping a coin or using a plastic box containing two colored
beads, e.g., red and blue beads, in differing proportions, e.g.,
70% red beads and 30% blue beads. The box is designed so
that when it is shaken by respondents a red or a blue bead
seen only by the respondent will appear in the window of
the box. If the bead is red, the sensitive gquestion is
answered; if blue, the non-sensitive question is answered.
The interviewer does not know which question is answered.
By using this procedure you can estimate the behavior of
a group on the sensitive questions, but not that of any single
individual. Thus with this method you cannot relate indivi-
dual characteristics of respondents to individual behavior. If
you have a very large sample, group characteristics can be
related to the estimates obtained from randomized
responses. For example, you could look at all the answers of
young women and compare them to all the answers of men
or young versus older age groups. On the whole, however
much information is lost when randomized response is used.
While, compared with other methods, randomized
response greatly reduces the under reporting of undesirable
behavior, it does litfle to reduce the overreporting of desir-
able behavior. It also does not entirely eliminate under-
reporting of undesirable behavior (Bradburn et al. 1979).

CONCLUSION

In this essay, I have tried to present the outlines of a
social psychological approach to the understanding of the
guestion-answer process in the survey interview. This
approach draws on theory from sociology, cognitive
psychology and linguistics, to present a comprehensive
framework for research on response effects. Much, how-
ever, remains uncertain or unknown.

While social role theory provides a good starting point
for conceptualizing the social relations among researchers,
interviewers and respondents, there is much we do not know
about how these roles are played by their respective actors
and how they may be changing. Contemporary concems
about privacy and confidentiality of data and protection of
human participants in research are changing to an unknown
degree the way respondents view surveys and social
research. Technology is changing respondents’ ability to
protect their privacy and researchers’ ability to protect
confidentiality of data. Response rates have been declining
and greater efforts are required to convince sampled persons
to respond. Interviewing is increasingly mediated by
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computer-assistance, which may change the way in which
respondents and interviewers interact and the way
respondents view the interview situation,

The cognitive processes involved in formulating an
answer are complex and not yet fully understood. The appli-
cation of our understanding of fundamental cognitive
processes to the study of question formulation and order
goes a long way toward improving our understanding of
context effects. Cognitive science is making great strides in
understanding how the brain works and how we organize
and process information. New knowledge in these areas
grows at a rapid pace. As we learn more, many of the
conceptualizations outlined in this essay will change and
either shown to be wrong or greatly elaborated.

Finally there is a great challenge to linguistics. Many of
the effects we have discussed in this essay occur because of
ambiguities in language. Understanding how meaning is
encoded in language and how we extract that meaning from
spoken and written language is a formidable challenge.
Perhaps more than anything else, our ability to resolve some
of the most fundamental problems in questionnaire
construction depends on progress in these areas.

What are the high priority areas for research? In the short
run, I would concentrate on better understanding of the
biasing effects of declining respondent participation, parti-
cularly on possible distortions of responses from reluctant
respondents. We must develop response effect models that
not only account for missing data, whether at the item level
or at the whole person level, but also for response effects
introduced by reluctant respondents who give only partial
answers or not well-considered answers. Multiple imputa-
tion meodels such as those developed by Little and Rubin
(1987) and latent variable approaches such as developed by
O’Muircheartaigh and Moustaki (1999) are promising.
More empirical work is needed on the effects of pushing
people into responding who inititially are unwilling to
participate in a survey.,

In the longer run, further research is needed on the
mechanisms by which questions and answer categories
stimulate cognitive elaboration and activate thoughts that
are -then used in answering questions. We need to know
what it is about questions that cause respondents to exclude
information in making a judgment as contrasted with those
that stimulate them to include information when they make
judgments. Progress in this area will require a close collabo-
ration between cognitive psychologists and survey metho-
dologists and involve both laboratory and field survey work.

In the end, however, fundamental understanding of the
question-answer process will only come when we under
stand how meaning is communicated between human
beings. Questions have meaning that we expect respondents
to comprehend. We can only go so far in improving the
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process of clear communication without a much deeper
understanding of the basic mechanisms of communication.
We need a concerted multidisciplinary effort by linguists,
psychologists, statisticians, and cognitive scientists and
others to crack the meaning code much as natural scientists
cracked the genetic code. It is one of the grand scientific
challenges of our time.
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Linearization Variance Estimators for Survey Data

ABDELLATIF DEMNATI and J.N.K. RAQ!

ABSTRACT

In survey sampling, Taylor linearization is often used to obtain variance estimators for calibraticn estimators of totals and
nonlinear finite population (or census) parameters, such as ratios, regression and correlation coefficients, which can be
expressed as smooth functions of totals. Taylor linearization is generally applicable to any sampling design, but it can lead
to multiple variance estimators that are asymptotically design unbiased under repeated sampling. The choice among the
variance estimators requires other considerations such as (i) approximate unbiasedness for the model variance of the
estimator under an assumed model, (ii) validity under a conditional repeated sampling framework. In this paper, a new
approach to deriving Taylor linearization variance estimators is proposed. It leads directly to a variance estimator which
satisfies the above considerations at least in a number of important cases. The method is applied to a variety of problems,
covering estimators of a total as well as other estimators defined either explicitly or implicitly as solutions of estimating
equations. In particular, estimators of logistic regression parameters with calibration weights are studied. I leads to a new
variance estimator for a general class of calibration estimators that includes generalized raking ratio and generalized
regression estimators. The proposed method is extended to two-phase sampling to obtain a variance estimator that makes
fuller use of the first phase sample data compared to traditional linearization variance estimators.

KEY WORDS: Calibration; Design weights; Estimating equations; Raking ratio estimator; Regression estimators; Two-

phase sampling.

1. INTRODUCTION

Taylor linearization is a popular method of variance
estimation for complex statistics such as ratio and
regression estimators and logistic regression coefficient
estimators. It is generally applicable to any sampling design
that permits unbiased variance estimation for linear estima-
tors, and it is computationally simpler than a resampling
method such as the jackknife. However, it can lead to
multiple variance estimators that are asymptotically design
unbiased under repeated sampling. The choice among the
variance estimators, therefore, requires other considerations
such as (i) approximate unbiasedness for the model vari-
ance of the estimator under an assumed model, (ii) validity
under a conditional repeated sampling framework. For
example, in the context of simple random sampling and the
ratio estimator, ?R =(y/x) X, of the population total ¥,
Royatl and Cumberland (1981) showed that a commonly
used lineanzanon variance  estimator, =N?
(n'-N" )s does not track the conditional variance of Y
given x, unlike the jackknife variance estimator v,. Here y
and x are the satmple means, X is the known population
total of an auxiliary variable x, 5. is the sample variance of
the residuals z, =y, - (¥/x)x, and (n, N) denote the
sample and population sizes. By linearizing the jackknife
variance estimator, v r a different linearization variance
estimator, v, (X /x) v, is obtained. This variance

estimator also tracks the conditional variance as well as the
unconditional variance, where X = X/N is the mean of x.
As aresult, v;; or v, may be preferred over v,. Yung and
Rao (1996) considered generalized regression and ratio-
adjusted post-stratified estimators under stratified
multistage sampling and obtained a jackknife linearization
variance estimator, v,, by linearizing v,. Valliant (1993)
also obtained v, for the ratio-adjusted post-stratified esti-
mator and conducted a simulation study to demonstrate that
both v, and v, possess good conditional properties given
the estimated post-strata counts. Sidrndal, Swensson and
Wretman (1989) showed that v, is both asymptotically
design unbiased and approximately model unbiased in the
sense of E (v,)= V Yg), where E_ denotes model
expectation and v ( ) is the model variance of Y under

a “‘ratio model”: Em(yk) Bxik=1,. Nandthey s are
independent with model variance Vm(yk) =a’x,, cz >0.
Thus, v, is a good choice from either the design-based or
the model-based perspective.

Binder (1996) presented an elegant “‘cookbook”
approach to Taylor linearization that leads directly to v, -
type linearization variance estimators. He applied the
method to smooth functions of estimated totals,
g(}'; - fm), generalized regression estimators and the
Wilcoxon rank sum statistic. To illustrate Binder’s method,
consider a ratio estimator

Y. = (X)X = RX,

Abdellatif Dermnati, Social Survey Methods Division, Statistics Canada, R.H, Coats Bldg, 15" Floor, Ottawa, Ontario, Canada, K1A 0T6; J.N.K. Rzo, School
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where ¥ = ):’,:lek(s) ¥ = Y(y), X = ):ﬁldk(s)xk = ¥(x) and
the d,(s) are the design weights with d,(s) = 0 if the popu-
lation element & is not in the sample s, e.g., d,(s) =
(Um)a/ls) where m, is the probability of including the
element & in the sample s, a,(s) = 1 if k€s, a,(s) = 0 other-
wise, and X denotes summation over the population
elements. The weights are assumed to provide a design
unbiased estimator ¥ of Y, ie, E(, (s)) =1 for
k=1, ..., N. Now take the total differential of Y to get

(d?R) = (dRX = 2 X [@?) - Rax), (L)
and replace all the total differentials in {1.1) by deviations
of estimators from their respective population parameters,
e.g., d¥, is changed to ¥, - ¥. Then (1.1) yields

P-¥ = Y d)s —%(Y—f?X), (1.2)

where

X .
% = } (¥, ~Rxp). (1.3)

The term Edk(s) z, in (1.2) reduces to zero, but it is
retained for variance estimation. On the other hand, the last
term of (1.2) is ignored for variance estimation. Thus,
Y - Y isrepresented as Edk(s) Z, = Y(z) for the purpose of
variance estimation. Denoting an unbiased variance esti-
matorof ¥ = F(y) as v(y), Binder’s variance estimator of ¥ R
is given by v(z). The linearization variance estimator v(z),
obtained from (1.3), agrees with v, for simple random
sampling and stratified multistage sampling if the sample is
treated as if the primary sampling units are sampled with
replacement. Note that the jackknife method is not appli-
cable generally for any samplmg de51gn

For the estimator 8 = g(Y], ¥ ) of a smooth function
oftotals, 8 =g (¥, ..., Y ), Bmder’s (1996) method leads to

f-0-= Z d(s)z, +
with
% = X (0s@)/da], )3 (14)

where ¥ = (f,...¥ ) and a= (a, ..a,). 1t follows
from (1.4) that the pama] derivatives, ag(a)laa
evaluated at ¥ to obtain z;’s, whereas in the standard
method (see e.g., Andersson and Nordberg 1994) they are
evaluated at ¥ = (¥, ..., Ym)T before getting z, and then
substituting estimates for the unknown components. For
example, for the ratio estimator Y the term X/X disappears
from z, in the standard procedure because X/X becomes 1
when X is replaced by X.

Although Binder’s (1996) approach is simple and attrac-
tive, a more rigorous and broadly applicable method is
needed. In section 2, we propose an alternative approach
that is theoretically justifiable and at the same time leads
directly to a v,, -type variance estimator for general designs.
We apply the method, in section 3, to a variety of problems,
covering regression calibration estimators of a total ¥ and
other estimators defined either explicitly or implicitly as
solutions of estimating equations, e.g., estimators of logistic
regression parameters with design weights calibrated to
known auxiliary population totals. We also obtain a new
variance estimator for a general class of calibration estima-
tors that includes generalized raking ratio and generalized
regression estimators. Section 4 extends the proposed
method to two-phase sampling to obtain a variance esti-
mator that makes fuller use of the first phase sample data
compared to traditional linearization variance estimators.

For the case of independent and identically (iid) random
variables y,, ..., y, with distribution function F(y), estima-
tion of general parameters 0 = T(F) has been studied exten-
sively in the literature (see eg. Huber 1981). A natural
estimator of 8 = T(F) is 8 = T(F), where F( y) is the empi-
rical distribution function given by F(y)=n"'Z},
Iy <ywithl(y, <y)=1ify <yand I(y, <y)=0if
¥, >y. For example, if T(F) is the population mean
fde(y), then T(F)= fde(y) =n '}y, =¥, the
sample mean. Note that £ assigns equal mass, L/n to each
of the sample values y,, ..., ¥,. I Tis* ‘sufficiently regular’
then T(F) may be linearized near F in terms of the
influence curve (or function) of 7{*) given by

IC(y,F,T) = lin(:[T((l—a)F+a8y) —T(F)]/a, (1.5)

where Sy denotes the point mass 1 at y. We have

Vn[TF) - TP = n [IC(y,F.T)dF(y) +n R,

—_ Ezk+‘/_R (1.6)

nkl

where Z, =1C(y,,F,T) and \/_ R, is aremainder term. If
Jn R, is asymptotically neghglble in the sense that \/n R,
converges in probability to zero as n-e (denoted
yn R, - ,0)thenit follows from (1.6) that n[T(F) - T(F)]
is asymptotically normal with mean 0 and variance

AR, T) = f[IC(y,F, P dF(y), (1.7)

noting that the terms Z, in (1.6) are iid random variables.
As noted by Huber (1981, page 13), ynR_ is “often”

asymptotically negligible, but the proof of this property may
not be easy for general functionals T{F). Serfling (1980,
section 6.2) gave the following two conditions for
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Jn R, 0 applicable for general random variables
Yir - ,y,1 (not necessarily iid): (i) 7(:) is “stochastically
differentiable” at F; (i) yin sup| F(y) - F(y)| is bounded in
probability, where sup is over y. Condition (ii) is satisfied
in the iid case, but it may not be easy to prove (ii) for
complex sampling designs. Condition (i) means that there
exists a functional T{F; F -F) such that T(F,) -T(F) =

n~ Xy T(F;8, -F)+R,, where R, is of lower order in
probab1hty than sup|F (y) F(y)| as the latter tends to zero.
This condition may not be easy to verify for general 7(-).
Serfling (1980) suggested that in practice it is more
effective to analyse R, directly using “the method of
differential inequalities”.

A natural estimator of the asymptotic variance A(F,T)
is

N 1 < .
AF.T) = — § UC(y,. £, DT, (1.8)

where IC(y, ﬁ', T) is the influence curve evaluated at F =F,
It follows that a linearization variance estimator of T(F) is

v [T = AF, T)/n. (1.9)

Practical 1mplementat10n of v, [T(F )] involves the compu-
tation of IC(y,, F T) for each specified 7. The latter can
be avoided by using the jackknife method. Substituting F
for F and -1/(n-1) for a in (1.5), we obtain a jackknife
estimator of IC(y,, F, T) as z,,=(n-DIT(F) - T(F_)],
where F_ (y) is the empirical distribution function
obtained when y, is omitted. The resulting jackknife
variance estimator T(F) is

v, [T(F))

ZkJ’

n(n 1) &2

i, ”_:Z [TF ) - TP, (1.10)

k=1
see e.g., Hampel, Ronchetti, Rousseeuw and Stahel (1986,
page 95). If IC(y, F, T) does not depend smoathly on F,
then the jackknife variance estimator may not be consistent
for the variance of T(F); for example, when T(F) is the
sample median.

Campbell (1980} attempted to extend the above results
for the iid case to general sampling designs, using the
design weights d,(s). The population (or census) parameter
0 is now given by & = T(F ), where F,(y) is the popu-
lation distribution function that assigns equal mass, 1/N, to
each of the N population values y,, ..., yN An empirical
distribution function is given by F(y) = .. k(s)l( Yesy,
where d, (5) =d(s)/ E,Esd (s) are the normalized design
weights, Note that F(y) assigns the mass dk(s) to the
element k€s. An estimator of 6 =T(F,) is given by
8 = T(F). For example, if T(F,) is the population mean
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dF (), then T(F) = fydﬁ(y) s Sy, 1, A (5),
the design-weighted sample mean. Campbell (1980)
followed the lmeanzatlon (1.6) for the iid case and
concluded that \/- [T(F ) - T(F,)] is asymptotically normal
with mean 0 and variance

n Var[z )7, / kz dk(s)]

kes

A(F,, T)

(1.1D)

n

n Var [Em d({@,-RIN }],
using the approximate variance of a ratio, where
R=%, 7 /N is the population mean of Z’'s and
7= IC( Yir Fy, T). Denoting the unbiased variance estima-
torof ¥ = Y(y) by d(s)y, as v(y), it follows from (1.11)

kes -
that a linearization variance estimator of T(F) is given by

v, [T(F)] = v[(z-R)INY, (1.12)
where
7 = IC(y,. £, 1), (1.13)
and
R=Y, d462z/Y,. 46 (1.14)

To avoid the computation of z,'s, Campbell (1980)
proposed a jackknife estimator of Z, for each kes. It is
given by

1-d(s)
Ly < &-() [T(F) - T(F_k)], (1.15)
where
dF(y) -d(s) _
- l-gk(s) Y= N
dF,k (y) = .
) 1.16
1-de 00 (1.16)

The resulting lincarization variance estimator is given by
v[(z, - R J)/AA( ]. Note that the proposed jackknife method is
different from the customary jackknife for survey sampling.
For example, for stratified multistage sampling, the custom-
ary jackknife deletes sample clusters in turn whereas the
Campbell method deletes elements in turn. Also, the cus-
tomary jackknife is not always applicable (e.g., unequal
probability sampling without replacement) unlike the
Campbell method which uses the unbiased variance
estimator v(y) of the total ¥ for the given design and then
replaces y by (z, - J)/N However, the computations
involved in the Campbell method can be very heavy
because it requires the computation of T(F _,) for each
element &€ 5; in large-scale surveys the number of sample
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elements can be very large, as in the Canadian Labour
Force Survey.

Deville (1999} and Berger (2002) obtained results very
similar to those of Campbell (1980). Instead of using the
natural probability measure F, they considered functionals
of the form 7(M), where M denotes a measure that
allocates the design weight d (s} to any point y, forkin s
and zero to units £ not in s. For example, M) =
f xdM(x) = £d,(s)y, if the population parameter is the
total T(M) = xd M(x) = Y, where the measure M allocates
a unit mass“to each of the N points y, in the finite
population U. Suppose that 7() is of degree o in the sense
that N "*T(-} tends to a limit for some o > 0. Typically,
=0 or 1; for example, o =1 if T(M) is the total ¥ and
a =0 if T(M) is the ratio R = ¥/X. Deville (1999) used the
following asymptotic approximation:

Jr N T - T = %Z (dg»-1)z, (117

where d,(s) =0 if k£ is not in the sample s. Further
7, = IT(M; y,) with IT denoting the influence function of
7(M) defined by

ITM; ») = lim — LT +18) - TOD]. (L18)

As noted earlier, it is not easy to justify the approximation
(1.17) for general functionals 7(-). Deville (1999)
developed rules for evaluvating IT(M;y) for selected
functionals T(M). Berger (2002) used the jackknife method
to estimate Z, = IT(M, y, ), similar to Campbell (1980).

Noting that Edk(s)zk ¥(Z) it follows from (1.17) that
a linearization variance estimator of N * T(M) is given by

N w(Z). But Z, depends on unknown parameters and the
eorrespondmg estimator, st may not be unique. For
example, suppose T(M ) = = (¥/X)X, thena =1 and Z Z, =
y, - Rx,, where R = Y/X. In this case, two poss;ble candi-
dates for z, are 7, =y, - ka and z, = (X/X) (- ka)
Thus, the choice of z, in the presence of auxiliary
information, such as a known total X, is not unique under
Deville’s approach. Unlike Deville’s approach, our method
leads to a unique choice z, and it avoids the calculation of Z,
to determine z,. Our z, satisfies desirable properties
mentioned in section 1, at least in a number of important
cases.

2. THE METHOD

To motivate the method, we start with a simple general
case where the estimator § of a parameter ® can be
expressed asa smooth function g(f) of estimated totals

=(%,.n ¥y V), where Y =X . d()y,,

i=1,..,m, is an estimator of the total ¥, =%, _, v, and
g=g(¥Y)with¥=(¥,...Y,...Y )" Wemaywnteeas
8 =fld(s), A ) and 0 f(l A ) whereA isan mx N
matrix with &  column yk (Yyps - ,yk,,. o Vi) s
k=1,..,N, d(s) = @), ... d,(s))7 and 1 is the N-vector
of 1’s. For example, if 0 denotes the ratio estimator
¥ = 2= U Ed )y WXL (D x)IX, then m=2, y, =y,
ka =x, and f(1,A4)) reduces to the total ¥, noting that
(Y/IX)X =Y. Note that Y is a function of d(s),y and x
and the known total X, but we dropped X for simplicity and
write ¥ = f(d(s),y,%).

Taylor linearization of 0 around Y gives the approxi-
mation

JnN*®-90) = % (g@/aa)’],., (F-¥) 1)

where dg(a)da = (9ga)da,, ..., dg(@)/oa,)" and N g (")
tends to a limit for some a > 0. Asymptotic normality of
JnN -2 - 0) follows from (2.1), provided a central limit
theorem for nN ~'(¥-Y) holds and g(*) has continuous
first derivatives in a neighbourhood of the mean Y.
Krewski and Rao (1981) justified (2.1) for stratified
sampling.

Let ¥Y=Xby, for arbitrary real numbers
b=(b,.. b, and g(¥) =fb,A W) = f(b). Noting that
Y=A d(s) and ¥ = A 1, we can express (2.1) as

JnN (@ -6) %(aga’)/ar) |r.pA(d()-1)

(aﬁb)/ar) ¥ -1). 22)

2%
TM:

noting that ¥ = Y is equivalent to & = 1. Now we substitute
¥, = aYlabklhl in (2.2) to get

|

S ()8, , (4691

=1

ynN =@ -0)

SEIS

T d (s -1), 2.3)

where 7 = (Z,,.... Z,) with Z, = 8f(6)}/0b,4, .,

A variance estimator of the right hand side of (2.3) is
given by (n/N?)v(Z), where w(Z) is the variance estimator
of the estimated total £d,(s)Z, = Y(Z). Since Z,’s are
unknown, we replace Z, by z,= 8f(b)/ob,|, 4 to get
(n/N?)v(z). Thus, a linearization variance estimator of 8 is
given by

v, 8 = W2INY)V(), (2.4)
which reduces to v(z) if o =1. Note that vL(B) glven by

(2.4) is simply obtained from the formula w(y) for )4 by
replacing y, by z, for kes. Note that we do not first
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evaluate the partial derivatives df(b)/0b, at b=1 to get Z
and then substitute estimates for the unknown components
of Z. Our method, therefore, is similar in spirit to Binder’s
approach. The variance estimator v,(8) is valid because z,
is a consistent estimator of Z,.

Example 2.1  Supposc 8 is the ratio estimator ?R =
X((Xd )y )/ Xd (5)x,)] of the total ¥. Then f(d) =
X[(Xb,y,)/(Xb,x,)] and

)’kZ bkxk'xkz bkyk.
(E bkxk)z

af(b)/ob, = X

Therefore,

4 = af(b)/abk|b=d(s) = %(3’& 'thk)

which agrees with (1.3). Thus, our variance estimator
v L(F ) is identical to Binder’s (1996) variance estimator,
v(z), noting that a = 1.

Qur derivation is simple and natural. On the other hand,
in the standard linearization method, 8 is first expressed in
terms of elementary components Y, .. f’ as g(f ) and
the partial derivatives dg (a)/aa are then evaluated at
a =Y. Itis interesting to note that all the components of Y
use the same weights d,(s) and our approach always takes
first derivatives of f(b) with respect to b, at b=d(s). Itis
not necessary to first express 0 in terms of elementary
components.

3. CALIBRATION ESTIMATORS

The ratio estimator can be viewed as a calibration esti-
mator, Y =Xw/(s)y,, with explicit weights w(s)=
(X/X )d, (s) and satisfying the calibration constraint
Ewk(s)xk X. Calibration estimators of a total ¥ of the
form Y Zwk(s) ¥, with explicit weights w (s) and satis-
fying the calibration constraints 2w, (s) x, = X are widely
used, where x, = (x,,, ..., qu)’" and X = (X, ...,Xq)T is the
vector of known totals of auxiliary variables X Jj=1,..,q
In subsection 3.1 we consider the generalized regression
(GREG) estimator and then study a general class of
regression calibration estimators in subsection 3.2.
Extension to estimators, , obtained as solutions of esti-
mating equations is presented in subsection 3.3. The case of
general calibration estimators is investigated in subsection
3.4.

3.1 Generalized Regression Estimator
The GREG estimator of total ¥ is given by ¥, with
calibration weights w,(s) = d,(s) g, (d(s)), where

g (d(s) =1 +(X—XA)T(de(S)Ckxk x! )_lckxk 3.1)
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with specified constants ¢, and X= 2d,(s)x, (¢f., Simdal
et al. 1989). The ratio estimator, Y x> iS2 specna.l case with
g=1(i.e., scalar x,) and c, —xk , and g (d(s)), given by
(3.1), reduces to X/X.

The GREG estimator may be expressed as a diffe-
rentiable function of estimated totals. Hence, the general
theory of section 2 is applicable and it remains to evaluate
2, = f(b)/Ob, |,y Where f(b) =2 (b, g b))y, _is
obtained by replacing di(s) by b in the formula for Y, .
Noting that dA(b)™'/0b, = -A(b)™' (3A(b)/0b, )A(b)"
where A(D) =X b WCr ¥y xk, we get

b, g, (b)/ab,
= gB) -x AB) b x,

- (X-X(BYADB) (¢, x, x,)AB) (bc,x,) (32)
and for {+ k
o(b,g,(bN13b,

= —x,A(b) ' (bc,x)

- (X -XO)AB) (e x, xDABY (b,c,x)). (3.3)
It now follows from (3.2) and (3.3), that

3 (®Yab, = gb) e, ®), (3.4)

where

e (b) =y, -x,B(b) (3.5)

with BB =A'(b)(X,b,c, x,¥,).
f (513, .y, Teduces to

= gk(d(s)) eku

where ¢, =y, -x B with B = B(d ().

The variance estimator of ¥,, resulting from (3.6),
namely w(z), takes account of the g-weights, g.(d(s)),
unlike the standard linearization variance estimator (see
e.g., Sarndal er al. 1991, page 237). It agrees with the
model-assisted variance estimator of Sirndal et al. (1989).
It also agrees with the jackknife linearization variance esti-
mator when the latter is applicable (Yung and Rao 1996).

3.2 A General Class of Regression Calibration
Weights

We now turn to a general class of regression calibration
weights of the form w,(s) = d,(s) A,(d(s5)) with

h@() =1+(X -2V 0 (e, x,+ Y., d()cyx ), BT

Therefore, z, =

(3.6)

where the ab-th element of Q is given by
. N
Gap = 2=t DS C Xy Xy * 3 Yt d(S)A[S) Cyy Xy %y
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for specified constants ¢, and c,(=c,). The class (3.7)
covers the GREG estimator as well as the “optimal” linear
regression estimator with d,(s) = (1/n,)a,(s). In the former
case ¢, = 0 while the optimal linear regression estimator
uses ¢, = (1 -m)/m, and ¢, = (m, -m 7w} m,, k=1, where
m,, is the probability of including both elements & and / in
the sample s (Montanari 1998).
The calibration weights w (s) may be rewritten as

wi(s) = d(s)+(X -X)"g™"

(dk(s)ckxk + EM dk‘,(s)ck:xl), (3.8)

where d, (s)=d,(s)d/(s)/E[d,(s)d,(5)], ck: =c, E[d (5)d(5)]
and

N N .
ap = Eﬁl AL X Xy * Zk=1 Eﬁk di (S cyx Xy

Note that Ed,(s) = | and Ed, (s} = 1. If d,(s) = (1/m,)a(s)
then d,(s) reduces to d,(s) = as)as)/m, and ¢y =
(m, - m,m )/ (r,m,). We can regard the calibration estimator
¥, resulting from (3.8) as a function of totals, by
expressing a quadratic form as a total of synthetic variables
(Sitter and Wu 2002). Therefore, we can use the method of
section 2 and write
P, = fds),dD(s),y) =Zd ) h(@dDs),  dDs))y,
where d‘'(s) = d(s) and d¥(s) is the vector of elements
d,(s), k<l, arranged in a sequence. Now, following the
derivation of (2.3), we get

F,- Y=Y, Z(d)-1)+2Y Y, 5(dfs)-1)(39)

where

Z = af(b(l)’b(z)’y)/abk|bm=],bm=]’
Ekl‘z af(b(1)’b(2)!y)/abﬂ|b(1)=1‘b(2)= 1

bV =b=(b,,..,by) and b is the vector of arbitrary
real numbers b, k <1, amranged in the same order as the
elements d, (s} in d®X(s). Using (3.9), a variance estimator
of Y _ isapproximately given by the variance estimator of
L. z,d(s) +2XX, _ 7,,d,(s), denoted by v(Z, ).

Since v(Z", %) involves the unknown values Z, and 7,
wereplace 7, by z, =9f(V, 5@, y)/0b, |, 0. =d(s), 5 < g25)
and Z,, by z,,= af(b(l) b(z),y)fab“ Ib“’ =dV(s),5® =aPs) to get
v(z",z®). Unfortunately, the variance estimator
v(z™", z@) involves third order and fourth order moments
Eld(s)d(s}d (s)] and E[d,(s)d(s)d (5)d,(s)] in addition
to the second moments E[d, (s)d,(s)], whereas the variance
estimator for the generalized regression estimator requires
only the second moments. In particular, if d,(s) =(1/r,) a,(s)
we required third and fourth order inclusion probabilities
Ty, and 7, as well as the second order inclusion proba-
bilities m, .

The calculation of z, and z,, involves the derivatives
olbh (5D, b @y {0b, for [ =k and [#k and the derivatives
a[b, h(bV, )]/ 3b,, for { =k and I # k. After simpli-
fication, we gel

= 1 + (X —X‘:)TQA_lexk] e,:
and
u = (X - Xy g’ N

where

L T o=
e =y, -x B

with B* =07 (T, d()¢, %7, + T, X, 4 () %, 7).
Note that the customary Taylor linearization variance
estimation uses (e ™), while v(z'", @) would 1nvolve the
residuals ek as well as the g-weights 1 +(X-X )TQ C. X,
and (X -X)7Q""' cpyx,. I ¢, =0 forall k= then z,, =0
and v(z",z®) reduces to v(z) with z, given by (3.6).
Thus the GREG result of subsection 3.1 is a special case.

3.3 Estimating Equations

We now tumn to a vector parameter 0 =(0,, ...,BP)T
defined either explicitly or implicitly as the solution to
“census’” estimating equatlons S (0) ENI u,(0)=0 A
calibration estimator & = (91, oy B ) with GREG calibra-
tion weights w(s) =d(s) gk(d (s)) is obtained as the
solution to sample estimating equations:

S$S@ =Y wu,d) =0 (3.10)

where u I,‘((3) and S(@) are (px1) vectors (Binder 1983).
For example for logistic regression with scalar 6, we have
uk(e) = (y;, - Pk(e))aks where Pk(e) = P(J’k=1|ak) =
exp(fa,)/ (1 +exp(0a,)) and qa, is the predictor variable.
Note that ﬁ, in this case, is the implicit solution to (3.10)
and obtained iteratively using Newton-Raphson or Fisher
scoring method.

The estimator of a ratio of totals ¥ and A= Ea
obtained as the explicit solution of (3 10) with uk((-)) =
v, -0a,: 6= Lw Oy, [ Xwisa,= Y/A. In this case, B isa
function of estimated totals and hence our method for
functions of totals is applicable. It remains to evaluate
3f(b)/db,, where f(b)=Xb,g,(b)y /Xbg (b)a, We
have

3f(b) 13k, =X, [8(b,g (b)) 19b,1 A(BY ! (v, ~f(B)a)),

where A() = Xb,g,(b) a, Now using (3.4) and (3.5), it is
easy to verify that z, reduces to

% = gdNA e
where

e, = u D) -x1 B
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with B . Obtained from B by changing y, to uk(ﬁ). Note
that the residuals e, has the same form as the GREG
residuals e, with y, changec! with uk(ﬁ).

In general, the solution @ to the estimating equations
(3.10) may not be expressable as a function of estimated
totals. We therefore follow Binder’s (1983) approach and
write the linearization estimator of the covariance matrix of &
as

v, (0) = [J®]" £ ®[FB)]", @3.11)
where Jf (0)=-3S (3)169 and ) s( 9) is the estlmated
covariance matrix v L(S(G)) E 5(0) evaluated at @ = 0.
Binder (1983) gave regularity condmons for the validity of
(3.11). Noting that $(8) is a vector of estimated totals with
GREG weights d,(s) g, (d{(s)), it follows from (3.6) and
(3.11) that

v, (8) = v(2) (3.12)

where
= [F®)] " g, (d(s)e}

T
ep) and

(3.13)
with e, = (¢e,}, --.,

e,; =@ -x, B, ;j=1,.,p

Further, ﬁj“ is obtained from B ; by changing y, to ujk(ﬁ)
and v (2) is the estimated covariance matrix of the vector of
estimated totals Z = Yd (s)z,, where u k(ﬂ) is the j®
element of u k(El) The result (3.12) agrees with the
jackknife linearization variance estimator, v ., Tor stratified
multistage sampling obtained by Rao, Yung and Hidiroglou
(2002).

The resu]t (3.12)-(3.13) may also be obtained directly by
Writing 6 as fd (s)) and evaluating z, = af(b)labkib -d(s)”
We denote @8(b)=f(b) as the solution of
Y(bg(bNu,(0)=0,ie,

Y (bg(b)u (B(b) =0,

We now take the derivative of (3.14) with respect to b, to
get

N N
Y [0Cb,5(b)) 10b,|u (B(8))+ Y (b,g(B))
=1

I=1

(31 (B®)) 18(B(8))|a(B(8)) 08, (3.15)

Substituting (3.2) and (3.3) for d(b,g,(b))/3b, in (3.15),
we obtain (3.13) after simplification. This result shows that
our method is also directly applicable to general estimators
under Binder’s (1983) regularity conditions.

3.4 A General Class of Calibration Estimators

The calibration weights, w,(s), associated with the
GREG estimator Y may not be always nonnegative. To get

3.14) |
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around this difficulty, generalized raking ratio weights are
often used. These weights are always nonnegative, but the
method can lead to some extreme weights (Deville and
Sérndal 1992).

The generalized raking weights belong to the class

w(s) = di(s) Fx| ) (3.16)

with F(a) =e®, where the LaGrange multiplier & is
determined by solving the calibration equations

Z w(s)x, = E dk(s)F(kai)xk = X.

The GREG weights correspond to F(a) =1 +a in which
case i =(de(s)xkx,]:)’](X -X).

In general, the calibration estimator ¥, = £w, (s) y, with
weights w, (s) given by (3.16) may not be expressable as a
function of estimated totals. We therefore follow Binder’s
(1983) approach and expand F(x k 1) around A, where A
denotes the probability limit of L. We get

Flxll) = Flx[a) +fxinyx] (5 - 1),

where f(a) =oF(a)/0a. Further, by expanding the
calibration equations (3.17) around ), we obtain after
simplification,

A-a=-g;'$,-x) (3.19)

where QJL ¥Yd (s)f(xkl)xkxk and S =2, d(s)
Fx W) x .- Note that both @, and S are of the form of
estimated totals. Substituting (3.19) 1nt0 (3.18) gives

Flegdy = Fey) - e[ f0](S, - X). 320
Using the approximation (3.20) in (3.16), it follows that ?w
is approximated by a differentiable function of estimated
totals. Hence, the general theory of section 2 is applicable

and it remains to evaluate z, = 0k(B)/3b,|, . =disy Where
h(b) =X b, g, (b)y, with

(3.17)

(3.18)

g (8) = F(x,3) - f(x; ) x, 0, (b) "' (S,() - X)

where 0, B)=Sb,f(x[Nx,x{ and  S,)=
b, F(x,\)x,. After 51mp11ﬁcat10n we get
= FiM)(, -x(B)) = F(x;}e,, (321)

where

B, = (¥ a0 fIDxxl)'Y do) eI R x,9,
Singh and Folsom (2000) obtained a similar result, using a
somewhat different approach.

The result (3.21) may also be obtained directly along the
lines of (3.2) and (3.3) by writing f’ as f(d(s)) and evalu-
ating z, = df(h) /Bbklbra.(s), where F»)=Xb,g(b)y,
with g,(b) = F(x, l(b)) We have
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3(b, 8,(6))/3b,=g,(B)+ b, f(x; MB))x (dMBYID,), (3.22)

and for =k

3 (b, g,(8))13b,=b, f(xA(1))x(3hb)/3b,). (3.23)

To evaluate ai(b)labk, we take the derivatives of the
calibrationn equations (3.17) with d(s) replaced by b:
Tb, Fx; i(8))x,~X = 0. This gives

= Flia®)x,+ Y, b, fle]AB)x x; (@A(B)/3b,)
or

aAByab, = (Y by foeihb)x el Fae Mo, (3.24)

Substituting (3.24) into (3.22) and (3.23), we get (3.21)
after simplification.

Deville and Sirndal (1992) showed that the asymptotic
variance of f‘w for general F(-) is equivalent to the
asymptotic variance of the GREG estimator which involves
the “census” regression coefficient B. Using this result they
obtained a vanancc estimator of Y for general F(-), by
replacing B by B = Ews)xx 3 'Ewk(s)x Yy Where
w(s)= dk(s)F(xkl). The resulting z, agrees with our z,
given by (3.21)if f(a) = F(a), i.e., in the case of generalized
raking weights. In the case of GREG esnmator, we have
F(x)=1+x, fix)=1 and l (Ed(5)x, xk) x-X). It
readily follows that F(x kl) reduces to the customary
g-weight g(d(s)=1+(X~ -4 (s)xkxk)’ x,, and
€n =Y~ xTB reduces to €,=y,-X; "B with
B=(Xd (s)xkxk) '>d,(s)x,y, Note that our z, in this
case is different from the z, of Deville and Sarndal (1992),
but agrees with a commonly used z, (Sdrndal, Swensson
and Wretman 1989).

Our method, along the lines of section 3.3, can be
extended to implicitly defined estimators, éw, obtained as
solutions to estimating equations (3.10) based on the
general calibration weights (3.16). Details are omitted for
simplicity.

4. TWO-PHASE SAMPLING

We extend our method to two-phase sampling, assurning
the estimator § of a parameter # can be expressed as 4
dlfferentlable function, g(Y £ ), of estimated totals,

Y- (Y ¥ ), from the second-phase sample and
estimated totals X“)—(X(l) v X (1))1 from the ﬁrst -phase
sample only. Here 4 2N= d () yy.i=1,...m,

XV =Ty a5 X505 = 1, Py d“’(s,) denotes the first-
phase design welght attached to the X" element with

d (s} =0 if kis not in the first-phase sample s,, and d,(s)
is the final design weight attached to the k™ element with
d,(s) =0 if k is not in the second-phase sample s. Further,

the parameter 8 =g(¥,X) with ¥=(¥, .., Ym)T and

= (X)X )T denoting the vectors of Y- and X~ totals.
For example the two-phase ratio estimator, Yp,, is of the
form 6 = g(¥, X, b'd )

~ Y ~(1) ~ ~(1)
Y., ==X~ =RX
R2 }2
2 4© Y 0
= B 0y, @.1)
Z dk(s)xk( k 1 k)

Note that ¥ = (7, 7,)" with ¥, = ¥, ¥, = X, and XV = XV,
Also, 8 =g(¥, X, X1y =Y.

For simgplicity, consider a g(-) such that N g( ) tends
to a limit. Taylor linearization of f= g(Y )) around
(Y, X) gives

6-8 = g7, XP)-g(¥,X)
= (3g(a,a)/6a) |,y oy (F-1)

+(9g(a,a®)/6a®)" |, , o (X" -X). (42)

Let Y=Xb,y, and xV= Zb(')xk for arbitrary real
numbers b =(b,, ..., by)" and b = b, ... BT Also, let
gV XD)=f(b,b",A ,A)=f(b, b‘”) where A, is an
mxN matrix  with K column x, =

C A kp}Tk 1,..,N, and A _isan pxN matrix with
£ column y, = ()’kv- 7 LN k—l » N. Now following
the derivation of (2.3) and notmg that ¥=A d(s)
Y=A,1,X7-4,d%s), X=A4,1, itcanbe shown that
(4.2) reduces to

= £7(d(s) -1) + £ (d"s,) - 1), (4.3)
where  d(s) = (d,(s), .. dpy(s)T and  dUs) =
CALCH A dm(s,))T Further, £ = (Z)s o )7 With Z, =

af(b b(”)/ab Ib Lot andf“) - (2.](1)’ (l))TWlth =) _
af e, b“’)/ab‘”b, 1,401 It follows from (4.3) that a vari-
ance estimator of @ is approximately given by the variance
estimator of the estimated total Xd (5)f, +
a7 = ¥ + V(™). We denote the latter van-
ance estimator as v(Z, 1), Now we replace 7, and Z; o by
2, =9 b, BN Bb, |y waey p0-atvsy ANA 7 = Bf B, B1Y
abk )|b,d(s) B0 respectlvely, gince zk and z,f are
unknown. This leads to a linearization variance estimator

v, (@) =v(z,2"). (4.4)

We now consider the special case of a “double
expansion” estimator Y(y) =2d d(8)y, with d,(s) = ’fu “2:41
for ks and the Horvnz-Thompson (H-T) estimator
XOx) =2dM(s))x, with d{(s))=n;; for kes,, where
m,, is the probablhty of including element X in 5, and &,
is the conditional probability of including element X in 5
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glven 5. In this case, an unbiased H-T type estimator of
Y(y) +X4 )(x) is given by
Wy,x)=Y ¥ D T T "M My % 5

kles, Ty e Ty

M, -~ x
+EE w Ty ™ [)’kﬂ+2£_¢]

kles Ty T Tu ™y
Mo " Town Ty Ve N1

EY

T T

39>

kies T

4.5)

where m, =7, T\, Ty =7, Ty, T, iS the probability of
including both elements k and / in 5, and =, is the
conditional probability of including both elements k and ! in
5 given s, . A proof of (4.5) is given in the Appendix. The
variance estimator (4 4) is obtained from (4.5) by changing y,
and x, to z, and zk respectlvely

Example 4.1 We illustrate the calculation of v(z,z™) for
the two-phase ratio estimator YRZ’ given by (4.1), for the
special case of simple random sampling af both phases: s,
is a simple random sample of size n and s is a simple
random subsample of size m from s,. In this case,
n,, =n/N and =, =m/n. Further, it follows from (4.1)
that for general two-phase design,
£ . 5 (1)
y=— 0 Rx)=—¢, (4.6)
X X

and

7 =Rx, @.7)

Under simple random sampling at both stages, (4.6) and
(4.7) reduce to z,=(x/x)e, and z,f”=(§/7c)xk, where
e, =y, ~(¥/x}x,,y and X are the second-phase sample
means of y and x respectively, and X" is the first-phase
sample mean of x. Now substituting z, and z,fl) for y and
x in (4.5) and nothing that =, =n(rn-1)/[N(N-1)],
Ty =m(m-1}/[n(n-1)], n,,, =n , and n,,,, =7, , weget

5 11 MR
VL(YM):NZ(;‘E]RZ ]2,’\'+N2(___)[xT 52

X
=
+2N2(l-i)R"Ts (4.8)
p

where
R=3/%, st=(n-17" Em, (-2,
2 - —
55, =(m-1) ‘E,m (e,-2),

Sgex = (M =1)7" res (€x € Mx, = %)
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and e is the second-phase sample mean of ¢. The formula
(4.8) agrees with the formula derived by Rao and Sitter
(1995). It is different from the customary formula
(Sukhatme and Sukhatme 1970, page 176) which fails to
make use of the full x-data {x,,k€es,}. Rao ‘md Sitter
(1995) demonstrated through simulation that vL( r2) 18
mcre efficient than the customary variance estimator. Also,
v, (¥ y =) performed better in tracking the conditional mean
squared error of Yp,; see Rao and Sitter (1995, section 3)
for details of the simulation study.

CONCLUDING REMARKS

We have presented a unified approach to deriving Taylor
linearization variance estimators and applied it to a variety
of problems. It leads directly to a variance estimator that
has some desirable properties at least in a number of
important special cases; in particular, approximate
unbiasedness for the model variance of the estimator under
an assumed model and validity under a conditional repeated
sampling framework. It would be useful to investigate
whether such desirable properties also hold for more
complex cases such as the general class of calibration
estimators (section 3.2), the estimators based on estimating
equations (section 3.3) and two-phase sampling (section 4).
We are currently investigating various extensions of our
method, including variance estimation under imputation for
item nonresponse and variance estimation from longitudinal
survey data.
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APPENDIX

Unbiased Variance Estimator of ¥( )+ b ¢ m(x)

The variance of ?( ¥) + X (“(x) is the sum of the variance
of ¥(y), the variance of X (”(x) and twice the covariance of
7y and X®(x). An unbiased H-T type estimator of
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VI¥(y)] is given by Simdal, Swensson and Wretman
(1991, chapter 9, page 348):

v[]?(y)] EZ T "™y Ve Mo

k.fes Ty Tk Ty
Mot "M an Mo Ve N Al
) - (A1)
kles Ty T,

An unbiased H-T type estimator of V(X (1)(x)] is given by
Y %

v[i(l)(x)] 23> Ta M w K K1

(A.2)
kles, Ry Ty Ty

Further,
Cov| 7). XV)| = ECov,|7(3), X V(0]
+ Cov[ E, (P, ER V)],

where E, and Cov, denote conditional expectation and
conditional covariance given s,. Noting that

E,%(y) = XV, E, X0 = P

and Covz[l}(y),)?m(x)] =0, we get
Cov[(y), V)] = Cov[R V), ¥ Vw)).

An unbiased H-T type estimator of 2Cov X “)( ), X “)(x) ]
is given by

2c0v[ 2Py, £0w)]

2y Y S

kles nk‘

The sum of (A.1), (A.2) and (A.3) equals (4.5).

T "Mk My Ve Xy

Ty Ty

(A.3)
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Comment

PHILLIP S. KOTT'

The article addresses an impressive number of contexts,
many of which have only recently been investigated in the
literature, often by Professor Rao himself. I will have little
to say here about estimating functions with calibration
weights or two-phase sampling, except (mostly) to agree
with the solutions advocated in the text. Instead, I will focus
on three applications: the ratio estimator under simple
random sampling discussed in the Introduction, the general
class of regression calibration weights from section 3.2, and
the general class of calibration estimators from section 3.4.
I will end with a question about the linearization variance
estimator in full Horvitz-Thompson form, which has
bothered me for some time.

The Ratio Under Simple Random Sampling

Before beginning, let me confess to a certain skepticism
about the general method proposed in section 2. I find that
techniques of this sort work best when you already know
what the answer is. Godambe and Thompson (1986) tried
to use estimating functions to settle a controversy then
surrounding the best variance estimator for the ratio under
simple random sampling. Using the notation in the text,
they demonstrated that (X/x)v, was the proper way to
estimate the variance of a ratio estimator, ¥, 2= (fb_c) y.
Later, Binder (1996) comrected them. He showed that when
done properly, v, =(X/x)*v, is produced from esti-
mating-function technology. It helped that he already knew
that was the better answer.

As Demanti and Rao state, v ., has both good random-
ization (design) and model-based properties (here and
hereafter I omit the qualifier, “under mild conditions which
I assume to hold”). In fact, when n/N is ignorably small,
v,, has a relative bias of O(1/n) as an estimator for the
model variance of ¥ « 1 the y, are uncorrelated, then this
is not only true when V,_ (y,) = 6%, as stated in the text,
but, more generally, when V, (y,) = of. Unfortunately, the
result is less general when n/N is rot ignorably small. In
that context, when the y, are uncorrelated and V.(y)=
czxk, a more appropriate estimator for the model variance
of ¥y is v, =[(X/x) - (/N)X/DI - (n/N)] ™y,
(Kott and Brewer 2001). As an estimator for the
randomization mean squared error of ¥ v, has a relative
bias of O(1/y/n), justlike v, and v,.

When simple random sampling is used in practice the
sampling fraction is almost always small. Thus, v, is an

! Phillip 5.Kott, USDA / NASS, 3251 OId Lee Hwy, Fairfax, VA 22030, U.S.A.

attractive variance/mean-squared-error estimator, and my
criticism of Demnati and Rao for advocating it is mild.

A General Class of Regression Calibration Weights

I would generalize the results of section 3.1 in a different
manner than the authors do in section 3.2. Following
Estavao and Sérndat (2002), replace ¢, X, in equation (3.1)
with a vector ¢, having the same dimension as x x The rest
of that section follows easily.

One choice for g, is

4oy = Y (-~ mm)x; / (),
Jjeyu

the use of which results in a variant of the randomization-
optimal regression estimator proposed by Tillé (1999).
Observe that (¥, q(])kx:)" ():Uq(mykT) =[Var(X)]!
Cov(X,Y), where Var and Cov denote randomization-
based properties.

Another choice, investigated indirectly by Demnati and
Rao and likewise resulting into a variant of the randomi-
zation-optimal estimator, is

Gop = E (ij‘“k“j)x,- f(?l:kjﬂj).
JjEs

Since g,,, is a function of the sample, the authors take us
through the complications of section 3.2. This was only
necessary for randomization-based inference. [ would have
gone a different way. Observe that dk(s)q(z)k - d(s) Ty =

O, (1//n). Replacing one for the other has an asymptoti-
cally ignorable effect on w,(s) (i.e., the relative difference
is Op(1/n)).

A General Class of Calibration Estimators

A mild generalization of equation (3.16) allows
calibration weights of the form,

w,(s) = d(s)Fgr L),

where ¢, again has the same dimension as x w For
convenience F is assumed positive and twice differentiable
around qfl. Without loss of generality, one can assume A
(the limit of 1) is 0, and £(0)>1. When P, = T, w,(s)y,
is a randomization consistent estimator, as 1 assume it is,
F{0)isequalto 1.

Paralleling the development in the text leads ultimately
to

z = F@, M)y, -x;B) = Fg e,
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where B, = [£4,()f(g; Ma,x1)" ()@ D,y
The presence of the f() in the expession of B, may be a bit
of a surprise, but, it turns out, not a meaningful one in this
context. For inference under the prediction model,
E (ylxp) = x, B, the derivative can be replaced by any
constant without asymptotic consequence; B, remains a
model unbiased estimator for B. For randomization-based
inference, since g o =0,(1/y/n) and F(0), [©>0,z,
would be unaffected asymptoucally if f (q. k ) were
replaced by 1 orby F (q f l)

Things change, however, if we push the envelop a bit.
Fuller, Loughin and Baker (1994) use calibration to adjust
for unit nonresponse by treating sample response as a
second phase of sampling. They assume that every element
k in the population has a Poisson probability of sample
response, m,,, which is independent of whether it is
actually chosen for the sample. They further assume
m,, = 1/(1 +x72), where A is unknown and implicitly
estimated by calibration. Here we generalize that and
assume m,, = /F (q{l), where F is known, positive, and
twice differentiable. In practice, g, will likely be identical
to x,, but it may be reasonable to replace one of more
components of x, with variables conjectured to be more
strongly correlated with response/ nonresponse.

Redefining s as the respondent sample and d,(s) as
(1/m,,) when kes,0 otherwzse, everythmg proceeds as
before. The difference is that f{g, 3\.) in B need no longer
need be asymptotically identical across the k Thus, the term
can matter even with a large sample.

Now V(F..) = V(Z,d(s)z,), where X d(s)z, =
T, d(s) F(g,Me,, is the double expansion estimation.
Substituting 1/F(g; &) for =, , the variance estimator for Yoo
becomes (from equation (A.1) with @, .,; =T, Ty, s,

V(Fgc) Z [(nlk_; nlkn]j)/nlkj]

kjes
d () F (g Ne,d, (5)F(g; Ve,

P> 1, ALF (@ M - (F g D) [d5) e, V-
€5

This differs from the variance estimator in Folsom and
Singh (2000} mainly because those authors assume the
original sample is chosen using a stratified multistage
design employing with-replacement sampling in the first.
That, among other things, annihilates the second summation
on the right hand side.

Not only does v(¥ ) estimate the quasi-randomization
mean squared error of Y. .— “quasi” because a response
modetl is assumed, it also estimates the model variance of
Y In fact, the relative bias of v(f‘G o) under the

G
predictionmodel, E_(y,|x,,4,) =x B, is O(1/n) whenthe y,

are uncorrelatedand V_(y,|x,.q,) = xfy, where v (like B)
need not be specified. Surprisingly, the second term in
v(f’G o) provides the model-based correction I
recommended for the ratio estimator under simple random
sampling in the absence of nonresponse.

Does the “Plug-in” Variance Estimator Really Work
for the Full Horvitz-Thompson Form?

As I wamned parenthetically early on, I have omitted the
key phrase, “under mild conditions which I assume to
hold,” repeatedly in these comments. Now, I want to turn
my attention to what may be one of those conditions. It is
standard in variance estimation to replace population {or
model) values with sample analogues since their difference
is asymptotically ignorable. That is done, for example, by
Demnati and Rao in equation (2.4 ) when they plug in z,
for Z,. The question I want to raise, and for which I do not
know the answer, is this. Suppose one is estimating a total
with a calibration estimator. The total is O(N), and
O(n) = O(N). The estimator’s model variance and
randomization mean squared error are also O(n). Is it
legitimate to plug in z, for 7,, where z, -2, = 0 (1/y/n),
when there are n(n-1)/2 terms in the Horvitz-Thompson —
or Yates-Grundy — variance/mean-squared-error estimator?
In most practical applications, this is a non-issue, because
the variance estimator can be re-expressed with O(n)
terms. What if that is not the case?

Let me conclude these remarks by thanking Drs.
Demnati and Rao for their stimulating article and Survey
Methodology for both publishing it and allowing me to
provide some comments.
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Comment

BABUBHAI V. SHAH'

This is an excellent paper that removes the mystery
underlying Taylor linearization. Most data analysis
applications use Horvitz-Thompson weights that are
reciprocals of the probabilities of selection. The simplest
prescription for deriving the linearization for an estimator )
is as follows:

L. For each observation, create a new variable
2= LY dw,, where w, is the reciprocal of the
selection probability for the i-th observation
selected in the sample. In cases where the esti-
mator 8 is defined implicitly through estimating
equations, the derivative can be computed by
differentiating the implicit equations.

2. Define weighted 7 = X w, z, total.

3 Compute the variance V of the total T based on
the sample design.

4. The variance V is the approximate variance of the
estimator €.

If the parameter 8 is a vector then the variable z; and the
total T are also vectors and V is an approximate estimate of
the variance covariance matrix of the estimator 8.

The steps (1) and (2) specified above produce the correct
linearization in the following cases:

a. Means, proportions, and ratio estimates.
b.  Generalized linear regression models.
c.  Predicted marginal for generalized lingar model.

d. Estimate of the mean from regression imputed
data.

' Babubhai V. Shah, SAFAL Institute, Inc. E-mail: babushah @earthlink.net

e. Generalized linear regression medels with
calibrated weights.

f.  Wilcoxon two sample rank sum test.

g.  Estimates of coefficients and the hazard rate in
Cox’s proportional hazard model.

h. Estimates of predicted marginal survival in
Cox’s proportional hazard model.

i.  Two-phase sample survey.

The derivation in the step (1) is uniquely defined and
does not contain the true value of the parameter 8, and does
not require substitution by the estimator 8.

The independence of step (3) for variance computation
from the linearization in steps (1) and (2) is aptly
demonstrated by the discussion on two-phase sampling in
section 4. In most cases, one assumes with replacement
sample design to estimate the variance of the total in the
step (3). Of course, a better estimate of the variance of the
total may be obtained by using all the available information
about the sample design. For the case of a two-phase
design, step (1) can be performed by using Horvitz
Thompson weights for the phase one sampling, and treating
the multipliers m, as data. The multiplier m; is equal to
zero if the observation i is not selected in phase two and is
equal to the inverse of the conditional probability nz}‘ 1+ The
resulting step (2) produces the same total as presented in the
paragraph between equations (4.3) and (4.4). The sub-
sequent discussion in section 4, describes the appropriate
way to estimate the variance of this total for a two-stage
sample design without replacement at each stage, and that
calculation is independent of the linearization.

The steps (1) and (2) generate appropriate linearization
in all known cases except where the estimator is not a
continuous function of the weights w,, e.g., quantile.
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Comment

CHRIS SKINNER!

Linearization and replication approaches provide two
broad classes of methods for variance estimation in surveys.
Both have their relative advantages and it seems important
to keep a place for both in the survey statistician’s *toolkit’.
This paper deepens our understanding of linearization
methods, proposes a general procedure to generate such
variance estimators uniquely and provides valuable
illustrations of this procedure in some important areas of
application.

A linearization method approximates the variance of a
statistic of interest by the variance of a linear statistic, for
which it is assumed a suitable variance estimator is
available. The main issue here is the method used to
determine the linear statistic. The standard approach
assumes the statistic of interest may be expressed as a
differentiable function of a vector of linear statistics (of
fixed dimension) and uses Taylor series expansion to
determine the approximation. The approach proposed in
this paper applies to a more general class of sample-
weighted statistics, illustrated by the complex examples in
sections 3.2. and 4. The variance estimator is constructed by
differentiating the statistic with respect to the sample
weights. The approach to linear approximation is closely
related to methods based upon the influence function {e.g.,
equations 1.6 and 1.13) and the paper provides a helpful
review of such methods in section 1. The authors note that
it is not easy to verify the validity of such methods for
statistics which are not smooth functions of (or a fixed
number of) linear statistics and it would be interesting to
know how far the proposed approach does indeed provide
valid variance estimators for statistics, such as quantiles,
which are not of this form.

A key feature of the proposed approach, which ensures
the unique construction of the variance estimator, is that
derivatives are evaluated at values based on the achieved
sample, without any initial evaluation of the approximating
linear statistic at theoretical population values. Such initial
evaluation may lead to non-uniqueness when auxiliary
information is available, for example on a population mean,
X, and it is assumed that this value is equal to the limiting
value of a corresponding sample statistic, x. For statistics
which are smooth functions of linear statistics, it appears
that the variance estimator generated by the proposed
method may also be constructed by conventional Taylor
series methods, provided no initial simplification of the

1
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variance estimator takes place based on such assumptions
about auxiliary information. Such construction may,
however, be less clear-cut than for the proposed approach.

Assumptions employed by linearization methods
differing from the proposed approach, such as that an
auxiliary value X is the theoretical limiting value of a
sample value x, are based upon unconditional distributions
and so it might be anticipated that the incorporation of such
assumptions into a variance estimator might damage the
method's conditional properties, especially with respect to
statistics such as x. The proposed procedure avoids
dependence upon such assumptions and, by evaluating
derivatives at achieved sample values, may be expected to
track conditional properties more closely. (There appear to
be parallels with Efron and Hinkley’s (1978) arguments in
favour of the observed versus the expected information,
although the context is rather different.)

The avoidance of dependence npon such assumptions
may not only benefit the conditional properties of the
proposed approach, but also protect the variance estimator
against possible biasing effects of non-sampling errors. The
auxiliary population information may differ from the
limiting values of the corresponding sample statistics either
because of non-response or non-coverage or because of
discrepancies in the way the auxiliary variables are
measured. In such circumstances, linearization methods
differing from the proposed approach might lead to
inconsisient variance estimation. For this reason, Fuller
(2002, page 10) recommends the use of the g-weights in
(3.6), as proposed, especially in the presence of
nonresponse (page 15). With regards to the latter case, it
seems worth noting that the validity of the proposed
procedure does not appear to depend on the requirement
that E£(d(s)) = 1, provided 1 is replaced by E(d(s)) in the
development in section 2. In particular, if s denotes vnit
respondents and non-response may be represented by
Poisson sampling with unknown response probabilities then
the proposed approach fo variance estimation may still be
consistent (when based on many standard variance
estimators for lincar statistics), even if d(s) is based only on
sampling inclusion probabilities.

Julia d’ Amrigo and I have recently studied the properties
of linearization variance estimators under nonresponse in
simulation studies as part of the DACSEIS research project
(www.dacseis.de} using data from the UK Labour Force

Chris Skinner, Southampton Statistical Sciences Research Institute, University of Southampton, Southampton 8017 1BJ, United Kingdom.
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Survey and the German Income and Expenditure Survey.
We considered various calibration estimators under Poisson
models for unit non-response which were ignorable given
the calibrating variables, using standard variance estimators
for linear statistics under stratified multi-stage sampling.
We indeed found that nonresponse could lead to serious
biases in the linearization variance estimators if they failed
to take account of the g-weights for GREG estimation
(section 3.1.) or ignored the F(x| &) term in (3.21). Such
biases were absent in the proposed approach.

We also investigated the alternative calibration
estimators discussed in section 3.4. Deville and Sirndal’s
(1992) theoretical finding that the asymptotic variance of g ”
does not depend on the form of the function F{(-) is based
on the assumption that Edk(s)x . 18 consistent for X. This
assumption may not hold under various sources of
nen-sampling error, and is not required for the proposed
approach. Hence, the appropriate approximate linear
statistic (under departures from this assumption) is defined
by (3.21) and the resulting variance estimator may depend
on the form of F{('}, even asymptotically. The standard
linearization variance estimators in which d,(s) f(x :i) in ﬁx
is replaced by d,(s) or w,(s) may be inconsistent if these
weights differ from d,(s) f(xfi). Despite this theoretical
fact, we observed little difference in our simulation study
(for each of the functions, 1 +u, exp(u), and (1L -«)™', used
for F(u)) between the statistical properties of variance
estimators based upon these three different choices of
weight, d,(s) f(x:i.), d,(s) or w(s), in the ﬁx vector in
(3.21). Others studies might produce different findings.

A disadvantage of the linearization methods considered
here compared to replication methods is the need for
analytic differentiation. It would appear from the examples
presented in this paper that the analytic differentiation
involved in the proposed method is at least as straight-
forward as that in standard methods of Taylor series
expansion of smooth functions of linear statistics.
Nevertheless, in some applications, it may be advantageous
to replace the human labour and possible human error
arising with analytic differentiation by the use of ‘numerical
differentiation’. The proposed approach might be described
as an infinitestimal jackknife method since it perturbs the
weight given to each sample observation by an infinitesimal
amount to determine the approximating linear statistic. The
derivative with respect to a weight in the proposed approach
may be approximated numerically by a finite difference
approach in which the statistic is recalculated with the
weight perturbed by a finite amount for each observation in
turn. This approach may be described as a jackknife method
of linearization. A conventional approach would be to
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change each weight to zero in turn, perhaps standardizing
for unequal weights as in (1.15). It does not seem essential
to replace the original weight by zero and, in principle, each
weight might be perturbed in some other way, for example
by reducing it by a fixed amount §, smaller than the
minimum value of d,(s). It seems likely that in many
applications the variance estimator arising from such
jackknife linearization will have very similar statistical
properties to that constructed by the proposed approach.
The choice between the estimators is likely to depend more
on practical and computational considerations.

My final comments are on terminology. There are
practical reasons why it may be helpful to give the z,
variable a name. In particular, this may be helpful for the
practitioner who, for some complex statistics, has to employ
two separate computational steps: {a) construction of the z,
variable, for example using least squares routines when
calibration weighting is used, and (b) use of standard
variance estimation software for linear statistics. Different
names are used for z, in the literature. Woodruff (1971) is
usually acknowledged as the first paper in the survey
sampling literature to draw attention to the role of z, and
Andersson and Nordberg (1994) refer to z, as the Woodruff
transformation. Woodruff and Causey (1976) refer to the
approximating linear statistic as the linear substitute and z,
as the substitute variable. In the more mainstream statistical
literature, Davison and Hinkley (1997, page 46) refer to the
z, as the empirical influence values. The term linearized
variable, as used by Deville {1999), seems to me a simple
and natural one. It is consistent with the use of the term
linearized statistic to denote the approximating linear
statistic and the term linearization for the method (which is
a more suitable general term than Taylor series method for
the broad class of approaches considered here).
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Response from the Authors

1. INTRODUCTION

We thank the three discussants, Phillip Kott, Babubhai
Shah and Chris Skinner, for their insightful comments, Qur
rejoinder will attempt to address some of the issues raised
by the discussants. The main aim of our paper was to study
variance estimation for calibration estimators of population
totals and nonlinear parameters, 8, defined as solutions to
“census” estimating equations. We proposed a new Taylor
linearization approach that provides a unique variance
estimator, by avoiding initial evaluation of the linearized
statistic at the population values. We have also shown that
the variance estimator satisfies some desirable consider-
ations, such as approximate model unbiasedness and
validity under a conditional repeated sampling frame work,
at least in a number of important cases. We have also shown
that in two-phase sampling the variance estimator makes
fuller use of the first phase sample data compared to
traditional linearization variance estimators.

Kott

Kott’s discussion focused on three applications in our
paper: (i) the jackknife linearization variance estimator,
v,;, of the ratio estimator f’R = (¥/x) X in simple random
sampling mentioned in section 1; (ii) the general class of
regression calibration weights considered in section 3.2;
(iii) the general class of calibration weights studied in
section 3.4. Regarding (i), we noted the result that v,; is
both asymptotically design unbiased and approximately
model unbiased under the ratio model E (y,) = x, and
V_(¥,) = 6°x,. Kottis correct in saying that the model bias
may not be negligible if the sampling fraction, n/¥, is not
small. If n/N is “ignorably small”, then model unbi-
asedness is, in fact, valid under a general variance function
vV, (») = cﬁ, as noted by Kott and previously by Sirndal
et al. (1989). Under the ratio model, Kott proposes a more
appropriate variance estimator, v_, that is model unbiased
even if n/N is not small and also valid under repeated
sampling. The leading terms of v and v,, are identical,
and our new approach captures only the leading term. It
should be noted that model-unblascdness of v, depends on
the validity of the assumption ok ozxk

Turning to (ii), we have shown in section 3.2 that if the
general class of regression calibration weights, (3.7), are
used, our approach leads to a variance estimator that is quite
complex, involving third and fourth order moments of the
design weights d,(s) with d,(s) =0 if the k" population
element is not in the sample 5. Kott proposes an attractive
choice of weights obtained by replacing ¢, x, in the GREG

weight (3.1) with g, =X, (r, -m7)x,/(max,). This
choice gives a variant of the “optimal” linear regression
estimator and also avoids the complexities associated with
the variance estimator based on the weights (3.7). This is an
interesting and useful proposal, but ¢, requires the
knowledge of the x-vector for all the population elements,
unlike {3.7) which depends only on the population total X,
in practice, only X may be available. Moreover, ¢,
depends on all the N(N - 1)/2 joint inclusion probabilities
m, and hence computation of gy may become
cumbersome when the sampling design is based on unequal
probability sampling without replacement.

Turning to (iii), Kott proposes a Tgenerahzatlon of the
calibration weights w,(s) =d,(s) F(x; ) in section 3.4 by
replacing x, with mstrumental” variables g, having the
same dlmensmn as x, . The conresponding z-variable in the
variance esumator v(z) is similar to our (3.21) with x x '
and xkyk in B changed to qu: and q,y, respectlvely
and F(x, )\.) changed to F(q kk) This is an useful
extension. Kott notes that B remains a model unbiased
estimation of B, if f(q kk) in B is replaced by any
constant and the resulting z, is unaffected asymptotically
under repeated sampling. However, Kott also notes that the
term f(qfl) can matter even asympiotically if the
calibration s used to adjust for unit nonresponse by treating
sample response as a second phase of sampling. Using the
result for two-phase sampling given in the Appendix, Kott
then obtains a corresponding variance estimator, v(f'Gc).
This extension for nonresponse setting is also useful. It is
indeed surprising that the second term in v( I’GC) provides
the model based correction he recommended for the ratio
estimator fR under simple random sampling in the absence
of nonresponse.

Finally, Kott raises a question on the customary
“plug-in” or “substitution” method used for variance
estimation, as done in (2.4), where we plug in z, for Z,.
He asks if it is legitimate to plug in z, for Z,, where
Z,- 7, = OP(II,/H), when they are n(n-1)/2 terms in the
variance estimator v(Z,), as in the case of Sen-Yates-
Grundy variance estimator. We are not sure if we have
understood his point correctly, but as long as O (1 H/n) is
uniform in &, say a//n, then v(2) = (%) + lower order
terms.

Shah

Shah’s prescription (steps 1-4) clearly summarizes our
method. Shah also notes that his steps 1 and 2, leading to
our z-variable, produces the “correct” linearization in many
other important applications not studied in our paper,
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including Wilcoxon two sample rank sum test and
estimation of regression coefficients and hazard rate in the
Cox proportional hazard model. Shah’s unpublished paper
(seen by courtesy of the author) spells out the z-variable for
those applications, but using design weights. Extension to
calibration weights should follow along the lines of section
3.

Shah makes an important point that step 3 for the
computation of the variance estimate is independent of the
linearization in step 1 and 2 and that it is “aptly demon-
strated by the discussion on two-phase sampling in section
4. He also notes that for two-phase sampling, linearization
(step 1) can be performed using only the first-phase H-T
weights 7], by treating the second phase weights, 75, ,
if kes and 0 if k is not in the second-phase sample s as
data, and that the resulting step 2 produces the same
approximation as given in our paper. We have verified this
equivalence result for the two-phase ratio estimator in
Example 4.1, and it is likely to hold generally. Shah’s
proposal might simplify the implementation of step 1 to
some extent.

Skinner

Skinner gives a clear appraisal of our linearization
method and raises a number of important points; (i) termi-
nology, (ii) possible extensions to non-smooth statistics
such as quantiles, (iii) modifications of the method to
handle unit nonresponse, (iv) possible use of numerical
differentiation to calculate the z,-variables.

With regard to point (i), Skinner notes that it would be
useful to give the z, variable a name since different names
have been used in the literature. He suggests that the term
linearized variable, as used by Deville (1999), is a simple
and natural one since it is consistent with the usage of
linearized statistic to denote the approximating linear
statistic and linearization for the method. We are in
agreement with Skinner’s suggestion.

Turning to point (ii), a difficulty in extending our
proposal to nonsmooth statistics f= f(d(s)), such as
quantiles, is that f(*) is not a differentiable function. A way
to get around this difficulty is to approximate 8-0bya
differentiable function and then apply our method to the
approximation. For example, in the case of the p™ quantile 6,
Francisco and Fuller (1991) and Shao (1991) established
the following asymptotic approximation valid for stratified

multistage designs:
A 1 N
0-0=-—1(F (6)-p|.
h(e){ ,(8)-p}

where F (0)=Xw, (9){(y,<0)/Tw,(s) is the calibration
estimator of the distribution function F{-) at 0, F(8)=
NT'ZI(y,s0)=p, and h(0) is the value of the density
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function h(*) at 0. The definition of A(:) requires refer-
ence to a sequence of populations (Shao and Rao 1993) or
toa superpopulation (Francisco and Fuller 1991). We used
h(*) to denote the density rather than the customary f(+)
because we used f(d(s)) to denote the estimator 8. Now,
suppose w,(s) =d,(s)g,(d(s)), where g, (d(s)) is the
GREG weight given by (3.1). We can then use (3.2) and
(3.3) to get the linearized variable z, from the above
approximation to 8 -8, by replacing #(9) with a suitable
estimator (é); for example the kernel-based estimator of
h(-} used by Berger and Skinner (2003). Similarly, one can
apply the method to general calibration weights, w,(s),
using the results of section 4, Variance estimators of a low
income proportion, say @ =F(t/2)} where t is the median
income, can also be obtained using the asymptotic approxi-
mation for A - 8 developed by Shao and Rao (1993). Berger
and Skinner (2003) studied variance estimation for a low
income proportion when generalized raking ratio weights,
w,(s5), are used. We can apply the results in section 3.2 to
this case, and the resulting linearized variable z, will
account for the calibration. Also, it will be different from
the Deville z-variable (10} in Berger and Skinner (2003).

The modification suggested in point (iii) to handle unit
nonresponse is very important, and it broadens the
applicability of our method. As noted by Skinner, Kott and
Fuller (2002), it is important to retain the g-weights in
variance estimation whenever the limiting values of the
estimators X differ from the corresponding control totals X,
as in the case of non-response or non-coverage. Our method
automatically accounts for the g-weights and may lead to
consistent variance estimators in such cases. Empirical
results of Skinner with d’ Arrigo in this context are very
interesting. The case of variance estimators for alternative
calibration estimators, studied in section 3.4, relative to
customary variance estimators that replace d,(s) f(x:i) in
the expression for éa by d,(s) or w,(s) need further study,
as noted by Skinner.

It may be noted that unit nonresponse is typically treated
as second phase sampling {e.g., Poisson sampling with
unknown response probabilities) and Skinner notes that our
method may lead to consistent variance estimators even
when the estimators are based only on the sampling
inclusion probabilities. However, control totals X are
needed to get valid estimators of the total ¥, under some
assumptions on the responsg probabilities (Fuller 2002,
equation (8.4)). We have extended our method to handle
weight adjustment for unit nonresponse and imputation for
item nonresponse when control totals are not available,
assuming uniform response within classes (Demnati and
Rao 2002). The resulting variance estimators are naturally
more ¢complex compared to Skinner’s modification for unit
nonresponse in the presence of control totals.
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Turning to point (iv) on the possible use of numerical
differentiation to calculate the linearized variables z,,
Woodroff and Causey {1976) used such a method to
calculate the derivatives dg(e)/da,|,_s givenin (1.4) when
8 =g(¥). Skinner proposes perturbing cach weight d, (s) in
turn and then recalculating 8; for example, by replacing it
by a fixed amount & smaller than the minimum value of
d,(s), kes. He conjectures that the proposed approach
should lead to variance estimators very similar to those
obtained through analytical differentiation. It would be
useful to study the statistical properties of the proposed
approach to analytic differentiation of f(d{(s)) with respect
to weights d,(s).

We hope the discussions by Kott, Shah and Skinner will
stimulate further work on the approach to variance estima-
tion presented in our paper.
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Weighting Sample Data Subject to Independent Controls

CARY T. ISAKI, JULIE H. TSAY and WAYNE A. FULLER'

ABSTRACT

In the U.S. Census of Population and Housing, a sample of about one-in-six of the households receives a longer version
of the census questionnaire called the long form. All others receive a version called the short form. Raking, using
selected control totals from the short form, has been used to create two sets of weights for long form estimation; one for
individuals and one for households. We describe a weight construction method based on quadratic programming that
produces household weights such that the weighted sum for individual characteristics and for household characteristics
agree closely with selected short form totals. The method is broadly applicable to situations where weights are to be
constructed to meet both size bounds and sum-to-control restrictions. Application to the situation where the controls are

estimates with an estimated covariance matrix is described.

KEY WORDS: Raking; Regression; Quadratic programming; Coverage adjustment; Integer weights; Weighting area,

1. INTRODUCTION

Given the availability of known characteristic totals, it is
common among survey practitioners to use such in-
formation in estimators of the post stratified, ratio and
regression type. The known characteristic totals are some-
times called independent controls because they are derived
cutside of the survey situation. Use of independent controls
tends to reduce the variance of most estimates. Independent
controls also often compensate for coverage problems in
surveys. See Deville and Simdal (1992) and Fuller (2002).

The U.S. decennial census utilizes a sample for the
measurement of selected characteristics. The questionnaire
for these characteristics is called the long form and the
sample for the long form consists of a random sample of
addresses. The long form questionnaire requests information
that is asked of all individuals (called short form infor-
mation) plus information on a set of additional charac-
teristics. In previous Censuses, raking to controls based on
short form information was used to construct weights for the
long form sample. Two sets of sample weights were created,
one for person characteristics and one for housing unit
characteristics.

The set of categories used for person weighting was a
classification of individuals by race, Hispanic origin, age
and sex, family type, and housechold size. For houscholds,
the categories were the cross classification of race by
Hispanic-origin-of-householder by tenure by household type
and size. In the 1990 Census long form weighting process,
persons and housing units were each classifted by four sets
of classifications for raking in four dimensions. When
raking was completed, the long form sample weights were
converted to integers. Integer weights are desirable because,

1

unlike real weights, integer weights provide arithmetically
consistent totals of integral characteristics. For details, see
Schindler, Griffin and Swan (1992).

Long form weighting using short form census infor-
mation is a part of the Canadian Census of population and
housing. Unlike the procedure used by the U.S. Census
Bureau (USCB), the procedure used at Statistics Canada
constructs a single set of household weights using regres-
sion estimation. See Bankier, Houle and Luc (1997). Should
the initial weights generated by the regression procedure
exceed prescribed bounds, collapsing of cells defining ex-
planatory variables is carried out. Linear dependencies and
near linear dependencies among the explanatory variables
are also removed by eliminating variables. See Bankier,
Rathwell and Majkowski (1992).

Lemaitre and Dufour (1987) used a generalized least
squares estimator (GLS) to construct weights meeting
person and household constraints. Alexander (1987) con-
siders a procedure for constructing houschold weights in the
census setting. One of his distance functions is similar to the
one used in this paper.

The use of quadratic programming to compute regression
weights in the survey context was suggested by Husain
(1969). An application of quadratic programming (QP) in a
Census environment is that in Isaki, Ikeda, Tsay and Fuller
(2000) where household weights for Census households
were obtained using person totals as controls. Motivation for
the use of various distance functions can be found in these
two papers and in Deville and Séarndal (1992} who discuss a
general class of estimators called calibration estimators.
Fuller, Laughin and Baker (1994) consider a regression
weight generation procedure that is modified so that all
weights are positive and very large weights are made
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smaller than the corresponding least squares weight.
Jayasuriva and Valliant (1996) also consider a restricted
regression. Fuller (2002) is a review of regression esti-
mation.

Our proposed long form weighting method is a type of
regression  estimation and, like the Statistics Canada
approach, provides a single set of household weights that
maintain given independent controls. We generate house-
hold weights using quadratic programming with the re-
strictions that the weights fall within a specified range and
that the weights maintain control totals. In the following, we
refer to the suggested method as the quadratic programming
method or QP.

2. THE QUADRATIC PROGRAMMING
METHOD

The purpose of quadratic programming is to produce
sample weights that i) are close to initial weights, ii) are
within reasonable bounds, iii) maintain specified control
totals and iv) produce a design consistent estimator. Apart
from the bounds on the weight, the weights from quadratic
programming are those of a simple regression estimator. We
first describe the mathematical form of the QP and then
discuss the implementation. Let

i) {W;;i=1,2,..,n} denote the set of final housing unit
weights, where i denotes the i™ long form sample
household and = is the size of the long form sample,

ii) {W,.(Z); i=1,2,...,n} denote the set of initiat housing
unit weights, )

iii) X, j =1, 2,...,md{,, i=12,...,n; denote the obser-
vation on the j© person control variable for the i
sample household,

iv)Z; j=12,...,m,, i=12,...,n,; denote the obser-
vation on the j "™ houschold control variable for the i®
sample household,

v) X;, j=1,2,..,mp, denote the /™ person control,
vi) Z, j=1,2,...,my, denote the ® household control.

The quadratic programming method seeks W, i=1,
2, ..., n, that minimize a quadratic objective function subject
to linear constraints. In our application we minimize

ew) =Y (w,-we P lwe]™, 1)
i=l
subject to
Z": WX, = X;, for j =12,.,m,, (2)
i=1

Z WZ, =Z,, for j = 1,2,..,m,, 3)

i=l

£ K 4@

where the summations are over housing units in the long
form sample. Observe that the long form household weights
are bounded below by one. This is on the basis that an
element in the sample should at least “represent” itself. In
our program, K was set equal to 48 but the bound was never
attained. The lower bound of one was attained. The
FORTRAN subroutine from IMSL was used to solve the
QP. Other programs, such as LCP of SAS®/IML, are
available.

The USCB’s current long form weighting procedure
rakes the initially weighted long form sample counts to the
census counts for the control categories. The weighting is
done by subdivisions of the country called weighting areas
and is done separately for person and household char-
acteristics. The nominal sample rates for the long form are
one-in-two, one-in-six, and one-in-gight. The nominal
sampling weights are the inverses of the nominal sampling
rates and are denoted by W, . A second set of weights,
denoted by W*, are the realized sampling rates calculated
for cells, where the cells are required to contain at least five
sample households. For details on the USCB’s procedures
see Schindler et al. (1992).

Since we intend to compare the raking and QP methods,
we use most of the USCB’s person and houschold cat-
egories as the X; and Z; control totals in the quadratic
program, but some changes were institited. For example,
while we maintained all of the age-race-sex person caf-
epories, we did not use a category based on the nominal
sampling rates.

We used the USCB’s specifications for determining
whether a cell category would be retained as a separate
control or would be combined with another cell and we used
the USCB’s procedure for determining the cells to be
combined. This capitalized on the USCB’s experience and
minimized differences between the USCB’s set of long
form control totals and the set used by the QP method. The
procedure used to define W, is given in the appendix.

Two possibilities exist for the control totals to be used in
the construction of weights for the long form of the U.S.
2000 Census. One possibility is to use controls from the
2000 Census short form. That is, the independent controls to
be maintained in long form weighting are those that are
tabulated from the Census short form. When the Census is

~used as the control, the person control (X;) categories

include a cross classification of age and sex-race/ethnicity.
Other characteristics, such as tenure, were used as additional
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controls. The majority of the household control categories
(Z; ) are defined by a cross classification of household type
(e.g., family with children under 18) and honsehold size
(e.g., number of persons in the family). The Z; also include
race/ethnicity of the householder cross-classified by tenure.

The other possible set of controls for the 2000 Census is
the set of estimates from the post enumeration survey, called
the Accuracy and Coverage Evaluation (A.C.E.} survey.
The A.CE. survey is designed to estimate person char-
acteristics only. The X; for the A.CE. include age-sex-
race/ethnicity-tenure controls.

The last step in long form weighting is to round the W; to
integers. Integer weights prevent discrepancies between sets
of estimates caused by rounding of real valued estimates.
Sample housing units were grouped by race/ethnicity of the
householder and by tenure. Then within each group, the
sample was sorted by family type by household size. The
weights were then rounded to integers using the cumulate-
and-round procedure. Table 1 illustrates the method. The
partial sums of the weights are formed (cumulated) as
shown in the column CW. The pattial sums are then
rounded as shown in the column RCW. The integer weight
for element i is the difference between successive entries
i—1and { inthe RCW column.

Table 1
Illustration of Cumulate and Round

Sample Initial Cw RCW Integer
Unit Weight Weight

1 3.333 3.333 K} 3

2 2.500 5.833 6 3

3 1.428 7.261. 7 1

4 1.250 8.511 9 2

5 1111 9.622 10 1

6 5.021 14.643 15 5

3. VARIANCE ESTIMATION

Variances of long form estimates were estimated using
the jackknife method. In the numerical results using census
controls, sixteen replicates were formed. Sixteen was chosen
for convenience and a larger number could have been used.
The long form sample was ordered by the census iden-
tification number within blocks and sixteen replicates were
formed as the sixteen one-in-sixteen systematic samples.
Sixty seven replicates were formed for the estimates using
ACE controls.
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3.1 Replicates for Census Controls

The jackknife replicate is created by deleting the in

group of elements, computing the quadratic programming
weights and rounding the weights to integers. Because of
the rounding, the usual jackknife variance estimation
procedure required modification. To isolate the effect of
rounding, we consider the replicate estimate constructed
with real-valued weights. Let

~

6, = the sample estimator with weights rounded to
integers,

b R = the sample estimator with real-valued weights,

8 r@y = Jackknife replicate estimate with i " group
deleted and real-valued weighis,

éw(i) = jackknife replicate estimate with " group
deleted weights rounded to integers,

and let

0, =r'Y 0,4, ©)

i=l
where r is the total number of replicates. Then the jackknife
deviation for the estimator with integer weights can be
decomposed as
ew(i) = -éw = B R(i) BR
+ [B w(i) w (ek(a‘) _BR) ] (6)

We assume that the error in the rounding operation is
independent of the group chosen for deletion, a reasonable
assumption, given that the deletion produces an entire new
set of weights to be rounded. Then

GO S (O
+ E{[(éw(i} _éR(i) )'“(-é-w _éﬂ)]l}' (7
Assume that the average of the énm is equal to 8 P

Then the last term of (7) is a replicate deviation for the
difference between the real and rounded estimates. Then

E{[(éw(e)*é o)~ (8, 9)]}
( ) { 9R(f}} { -6 }(8)

where V{8 w(e) ~ B r } 1 the variance due to rounding for a
sample of r - 1 groups and V{B —B } is the variance
due to rounding for a sample of r groups. In obtaining (8)
we assumed the variance due to rounding for a sample of r
groups is the varance for r—1 groups multiplied by
r~'(r=1). Thus
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E{(r—-l)‘lzr: (éw(i)-éw)z}i
i=

E{r-D", 0.}
+V{H, -6}, &
where

Vo (b} = ri(r=1) Z (B, —82)°

is the jackknife vartance estimator for the estimator with real
weights. Then an estimator of the variance due to rounding
is

2
(r_l)_lz( wii) _w)

~-r(r=1" VR{BR}

—1 Z ( w(i) "w

i=l1

ri(r-1

—r(r-p* VR{GR} (10)

Based on these results, the estimated variance for the
rounded estimator is

Vibu}= (r-D"(r-2)V (0,}

+ r"lz (éwu) —6,,,)2.

=1

(11)

3.2 Replicates for A.C.E. Controls

The replicates for estimates constructed with A.C.E.
controls were modified so that the estimated variances
contatned a component for the error in the A.C.E. estimates.
The data in a weighting area were assigned to 67 replicates
where 67 is the number of controls. The procedure requires
the number of replicates to equal or exceed the number of
controls if the covariance matrix of the estimated control
totals is to be reproduced. More replicates than controls can
be used. See Fuller (1998).

The estimator of the total of a characteristic for the long
form is a type of regression estimator using the A.C.E.
numbers as controls. We write the estimator for the total
based on real valued weights as

0, = X, 8. (12)
where X 4 is the vector of A.CE. estimates and B is the
regression coefficient computed with the long form data.

Let V,, be the r x r covariance matrix of the vector of
A.CE. controls, where \ATM is estimated as part of the

A.CEE. process, and r=67. Let A, A,,..., A, be the roots of
V,, andlet

Q’VAAQ = As

where A =diag(A,,A;,.., A, ) Ay 2R, 2..24,, and Q
is the matrix composed of the characteristic vectors of V,,
Recall that

(13)

= QAQ’

and

Ve = Y q.; ;g (14)

j=l

= Z 2., 2.;
j=l

where q;is the j" column of Qand z,, = 2}%q,,
Using result (14), controls for the r replicates were
constructed as

X (15)

where X 4 is the row vector of the original controls and c is
a constant. The constant ¢ is determined so that the ex-
pectation of the sum of the jackknife squared deviations for
the elements of the vector X are the diagonal elements of
VM . In our application, the constant ¢ is (7 — V% and

=X,+cz,,i=1,2.,r

(r=Dr™'Y c*z,; 2z,

i=l

~

=2 2,2, = Vyu
=l
Thus, if the characteristic being “estimated” is one of the
controls used in the QP, the jackknife procedure returns the
A.C.E. estimated variance for that characteristic. The z,; are
assigned at random to the r replicates.
Using the regression representation, we write the
estimator for the i rephcate as

(16

er) = X0 B(:}

~ ~ Y -

=X, B(.') +(XA(J') -X, )ﬂ(")

=0, +czl, By, )

where B & 18 the real-valued estimator computed with the

™ group deleted using X awy s the control vector B(,) is
the regression coefficient computed with the i" group
deleted, and ) ray 18 the real-valued estimator computed
with the i™ group deleted using X, as the control vector,
Then

A

. A a , 2
Opiy —9r = By — 0 +cz,; By,

Because q,; are assigned to replicates at random, the
expectation of the replicate variance estimator for the real-
valued estimator based on A.C.E. controls is
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b {r (=03 by -,07)

=]

=E{r'l (r—l)i (ém,, _én)z}

+ E{ﬁ;i)vu ﬁm} . (18)
Now, assuming E{V,,}=V . E{f}=8, and that
V4 isindependentof §,,,

E{ﬂ;f)vm ﬁ(i)} =pVub
+:r{V{|§(,.,}VM }
where tr{V,,} is the trace of the matrix. It follows that

E{"_I("—l) i (éx(.‘)_éﬂ)z}

=E{r" (r-1 Z (B4 -0, )2}
i=1

+BV, B+O(n7), (19
where we assume tr {V,,} = O(™") and [V {ﬁm 1 =
O(n™"y, where n is the sample size. The first term on the
right of the equality in (19) is the expectation of the variance
estimator for the variance due to the sampling of long forms
from the census. The second term is the contribution of the
variance of the error in the A.C.E. estimates to the total
variance. Thus, the variance estimator based on f-j,w)
estimates both components of variation. Observe that the
estimated covariance matrix for the controls is V,,, as it
should be.

4. NUMERICAL RESULTS

We used the USCB’s 1990 Census data file to illustrate
the application of the QP method to actual data. The file
provides data for households and for persons in households,
together with long form weights as developed for the 1990
U.S. Census. Hence, the file provides data appropriate for
comparing the performance of the USCB’s 1990 long form
weighting method with the QP method.

The USCB long form sample weighting is done by
weighting area, where the weighting areas usually contain
two to three thousand housing units, There were about
56,000 weighting areas in the U.S. in 1990. For our
numerical work we chose weighting area (WA) 1788 that
contains 8,034 occupied housing units and 25,145 persons.

In Table 2 we provide estimates of some person and
housing unit characteristics for weighting area 1788. The
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characteristics in the table, except the number of rented
units, were suggested by subject matter personnel at the
USCB. In Table 2, Est.(H) is the long form sample weighted
estimate computed with housing unit weights, Est.(P) is the
long form sample weighted estimate computed with person
weights. The quadratic programming estimator constructed
with Census controls is called QP in the table, while QPG is
used to denote the generalization of the quadratic pro-
gramming estimator with objective function (20). The QPG
estimator is discussed subsequently. The USCB housing
unit estimates in Table 2 that are based on person weights
were created by using the householder weight as the
housing unit weight. Every occupied unit contains a single
householder. The householder procedure is called the
principal person method by Alexander (1987). All estimates
in the table are given as a percent of the census count.

Estimates constructed by the two USCB methods can
differ by scveral percentage points with the differences
between Est.(P) and Est.(H) for rented units, persons aged 0
to 4 years, persons aged 65 and over, Hispanic, Asian, and
persons in rented units being noticeable. The Est.(H)
estimate for persons in rented units is closer to 100 than the
Est.(P) estimate.

The cell collapsing rules produced 45 person and 22
housing unit controls for WA 1788. An example of a person
control is the total number of Non-Hispanic Black males
aged 65 and over, while an example of a housing unit
control is the total number of Non-Hispanic White owned
housing units. Total Black persons is an implicit control in
WA 1788, Controls for total persons 18-44, total persons
45-64, total males, total renters and total number of rented
housing units were added to the QP. Apart from the controls
mentioned above, none of the remaining characteristics in
Tabhle 2 is also used as a control in the QP procedure.

The QP estimates and standard errors of the QP estimates
are given, as a percent of the census counts, in the fourth
and fifth columns of Table 2. The agreement between count
and QP estimates for household characteristics are
comparable to the USCB household based estimates and
superior to USCB person based estimates. For person
counts, the QP estimates are generally closer to the census
counts than either of the USCB raking estimates,

The largest difference between a QP estimate and the
census count relative to the standard error is for the estimate
of the number of households with own children present,
where the difference is about 1.6 standard errors. The
majority of the QP estimates differ from the census count by
less than one standard error. A number of the USCB person
estimates deviate from the census count by more than one
QP standard error.
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Table 2
Estimated Occupied Housing Unit and Person Characteristics for WA 1788

Census  Egp (H) Est(P)” Qp! s¢ (QP) QpGTt s¢ (QPG)
- % : %) —— (%) (% %) — (%)
Count Count (%) Count (%) Count Count Count ( Count
Housing unit characteristics
With Own Children 4,349 100.18 100.45 100.21 0.13 100.18 0.14
Not With Own Children 3,685 99.78 99.67 99.76 0.15 99.78 0.16
With 1 to 4 Persons 6,785 100.00 100.57 100.04 0.05 100.07 0.05
With 5* Persons 1,249 100.00 97.51 99.76 0.30 99.60 0.30
Rented Unit 2,559 100.00 95.97 100.00 0.19 99.92 0.16
Owned Unit 5,475 100.00 102.02 100.00 0.0% 100.04 0.08
Person characteristics

Age 04 years 2,493 101.92 97.95 98.84 1.68 99.96 0.29
Age 5-17 years 6,339 103.91 101.07 100.63 0.71 99,98 0.18
Age 18-44 years 12,711 99.50 99.69 100.01 0.05 100.00 0.06
Age 45—64 years 3,028 101.65 101.95 99.90 0.09 99.97 0.09
Age 63" years 574 81.18 93.73 10017 0.85 100.00 027
Males 12,473 95.95 99.64 100.06 0.08 99.98 0.09
Females 12,672 101.43 100.36 99.95 0.10 100.01 0.09
Hispanic 2,385 95.38 103.40 99.96 0.38 99.87 0.38
Not Hispanic 22,760 101.25 99.64 100,03 0.07 100.00 0.10
Black 1,285 101.08 101.79 100.86 1.22 99.77 0.54
White 22,372 100.69 99.91 100.03 0.07 100.00 0.10
Asian 257 92.60 80.05 96.83 2.32 99.76 0.50
Remainder 1,231 101.94 103.89 105.84 9.54 100.78 1.75
In Rented Unit 7,978 102.04 9541 100.01 0.24 99.92 0.19
In Owned Unit 17,167 100.06 102.13 100.00 0.09 100.02 0.13

*

USCB weights for households

USCB weights for persons

T QP weights with 82 constraints

" Generalized QP with 13 constraints and objective function (20)

e

Because the number of rented units, persons aged 18-44, The 45 person and 22 housing unit control totals obtained
persons aged 45-64, males, and persons in rented units were by the collapsing rules are such that a margin estimate, such
used as controls in the QP procedure, differences between  as total males, may not be constrained to agree with the
QP estimates and census totals for those categories are due  count. In addition, for different weighting areas, USCB’s
to rounding. The standard errors demonstrate that the  collapsing procedure gives different person and housing unit
rounding can lead to sizeable deviations from the controls. constraints. Thus we considered adding some margin totals
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to the set of control totals. To reduce the impact of the added
controls on the weights, we replaced the original constraints
with additional terms in the objective function. The terms
are deviations between the final estimates and the control
totals. The objective function becomes

67 2
GW)=gw)+> a}.(z WX, -xj) ., (20)

j=1 i
where g(W ) is defined in expression (1), the
{X.j=12,...,67} is the set of auxiliary variables
defining the 45 person and 22 housing unit controls, and o i
are constants to be specified. The X for category j of
household i for a person characteristic is the number of
individuals in category j in the housing unit. The X; for a
housing unit characteristic is one if the housing unit has the
characteristic and zero otherwise. In our application, the
function is minimized subject to two household conirols and
eleven person controls. The housing unit controls are rented
housing units and owned housing units. The person controls
are persons 0 to 4 years, persons 5 to 17 years, persons 18 to
44 years, persons 45-64 years, persons 65 years and over,
males, black, white, Asian, Hispanic, and renters. The & i
are 10[W @7 [cri]" , where W ® =895 is the mean of
the W*, o =P, (1-P;}, and P, is the proportion of
the population in cell j. The o; would minimize the mean
square error of an estimated total if there was a single
control vanable and the squared correlation between the
control variable and the dependent variable was about 0.9.
Thus, the function exerts considerable pressure for the final
estimate to be close to the control total.

The QP solution to (20) gives a type of regression
estimator, See Fuller (2002) and Fuller and Isaki (2001).
Rao and Singh (1997) and Bardsley and Chambers (1984)
consider related estimators.

Using G(W) of (20) and the 13 linear constraints, the
results in the final two columns of Table 2, under the
heading “QPG”, were obtained. As expected, the estimates
are close to Census totals because the Census marginals
were used as constraints. The relative percent differences
between the QP estimate and the census count for the 67
characteristics in G{W) of (20) ranged from —3.50% to
3.75% with about 50 of the differences being less than one
percent.

The sample weights obtained by the two programming
approaches are compared to those of the USCB’s household
raking method in Table 3. The number and type of controls
used under the USCB raking was not determined exactly
because the number depends on the execution of the USCB
collapsing procedure and on some preliminary files that are
not readily available. However, we believe the number to be
about 67 because the collapsing procedure used to form the
67 cells is basically that used by the USCB. The QP
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procedure used 82 controls and the QPG procedure used 90
controls. The range of weights for the two QP methods are
similar with a smaller range for raking. There are modest
differences among the three sums of squares of the weights.
The g(W) values are also similar, with the value for (20)
being the largest. The g(W) value is the quantity being
minimized by the weights of the first line of the table. The
sum of squares of the weights for the QP of (20) could be
reduced by reducing the a ; in the objective function.

We alse used data from the 1990 Census to simulate the
situation in which the controls come from adjusted census
counts. For 1990, person estimates from the 1990 Post
Enumeration Survey are available, but there are no housing
unit estimates based on that survey, We call these estimates
A.CE. estimates. Sez Hogan (1993) and Isaki, Tsay and
Fuller (2000). Estimates for WA 1788 were created by the
QP method, using the A.C.E. estimates as controls. We used
G(W) of (20) as the objective function with 63 age-race-sex-
tenure person characteristics in the second term of the
objective function and 11 person constraints. The person
constraints are persons ( to 4 years, 5 to 17 years, 18 to 44
years, 45 to 64 years, 65 and over, total males, total
Hispanic, total Black, totai White, total Asian and total
persons in rented units,

Table 3
Properties of Long Form Housing Unit Sample Weights
in WA 1788
Minimum Maximum 2

Method Weight  Weight ‘Z W e
QP with g(W) of (1) 1 26.5 78,028 126

72 constraints
QP with G (W) of (20) 1 299 78,672 383

13 exact constraints
Raking 4 22 77,000 369

Table 4 contains the estimates for WA 1788 identified as
QPG and given as a percent of the census counts. The QPG
estimates for these eleven person characteristics agree with
the A.C.E estimates, except for rounding error. The standard
errors reflect the error in the A.C.E estimates and, hence, are
much larger than the standard deviation of rounding error.
For example, the rounding error standard deviation for
persons 18 - 44 is 0.06 in Table 2, while the standard error
for the ACE estimate of persons 18 - 44 is 0.63. The QP
estimates for household characteristics seem very reason-
able. The estimated total number of households is 1.8%
larger than the census count while the A.CE. estimated
number of persons is 2.0% larger than the census count. The
quadratic programming total number of persons differs
slightly from the A.C.E. estimate because of rounding of the
weights. The difference is about 7% of the standard error.
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Table 4
The Census Count, A.C.E. Estimates and QP Estimates with A.C.E. Controls — WA 1788
Census Count ACE QPG %] 5.e. (QPG) (%)
Count Count Count
Housing unit characteristics
With Own Children 4,349 - 101.89 2.09
Not With Own Children 3,685 - 101.66 3.07
With 1 to 4 Persons 6,785 - 102.03 203
With 5 Persons 1,249 - 100.40 592
Rented Unit 2,559 - 104.57 2,62
Owned Unit 5475 - 100.47 1.50
Total 8,034 - 101.78 1.22
Person characteristics
Age 04 years 2,493 103.17 102.81 1.00
Age 5-17 years 6,339 103.09 103.08 0.96
Age 18—44 years 12,711 101.67 101.67 0.63
Age 45-64 years 3,028 100.26 100.33 0.59
Age 65%years 574 99.48 98.95 0.70
Males 12,473 102,18 102.01 0.68
Females 12,672 101.74 101.82 0.62
Hispanic 2,385 104.95 104.91 1.09
Not Hispanic 22,760 101.64 101.60 0.60
Black 1,285 104.59 104.82 1.01
White 22372 101.69 101.69 0.61
Asian 257 100.00 101.95 1.95
Remainder 1,231 104.47 102.92 1.14
In Rented Unit 7978 104.25 104.21 0.89
In Owned Unit 17,167 100.89 100.84 0.68
Total 25,145 101.96 101.91 0.57

5. CONCLUSIONS

The QP method is shown to work well on actual USCB
long form data. The QP single household weight method
possesses several advantages over the USCB separate
weights method. With one set of weights, there will be no
confusion as to which weights to use for estimating a given
characteristic. Also, estimates of relationships such as ratios
of person characteristics to household characteristics are

expected to be less variable when a single set of weights is
used for both characteristics.

Given that a single set of weights is easier to compute
and easier for analysts to use, one would only construct two
sets of weights if the weights designed for one type of
characteristic give estimates with smaller variance for that
type of characteristic. This did not seem to be the case in our
example. The single set of QP weights gave favorable
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results for both household and person characteristics when
compared with the USCB weights for the specific category.

The QP estimation module is computationally feasible
and can replace the raking estimation module in the USCB
operational setting. The QP method can produce long form
sample weights for households in an adjustment situation in
which only person controls are available,
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APPENDIX

Procedure used to define cells and initial
weights W%

We used the USCB’s procedure to determine the order in
“which cells are combined (collapsed). The cell collapsing
rules specify that each cell contain at least 5 sample
households. The procedure below is our extension of the

USCB rules for defining W, .

Let two cells under consideration be identified as Cell 1

and Cell 2,

i) Cell 1 is not to be collapsed and n' N, < B, where N,
is the Census count of households in Cell 1 and =, is
the long form sample count in Cell 1. The constant B
is provided by the sponsor and in our work, 27 is
used. For household i in Cell 1, let

W = max{1.2,W,}, (A.D)
where W,. = min{Q, W,-m, B},

O = [Z Wi(l)] Ny,

ied,
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and A, is the set of indices in Cell 1. The number 1.2
is an arbitrary lower bound chosen greater than one
and less than the minimum of W, which is two.
Note that the W,® provides reasonable estimated
totals for Cell 1. If #'N, > B, collapse cell 1 with
cell 2 as in ii) below,

ii) Cells 1 and 2 are designated for collapse, (n;+ nz)"
(Ny+N;) S B, my + mp 25, and n'N, > n;'N,.
Then for i in Cell 1, W,'® is defined by (A.1). For i in
Cell 2,

W = max(1.2, W, ),
where

W, = min{Q,W", B},

H

-l
Q, = [Z Wi(]):| (N1+N2_NI)’

€A,

and

Bo= 3w,

€A,

The W in A, UA4,, the union of cells 1 and 2,
maintains the total households in A, U A, and also
provide an estimated total for Cell 1 that is reasonably
close to the true total.

iii} Cells 1 and 2 are designated for collapse, n; + n; 2 5,
and (n; + nz)" (N1 + Ny) > B. Then it is necessary to
initiate further collapsing. The combined cell becomes
the Cell 1 of case (ii). Continue cell collapsing until
(n + no +..)'l (N) + N: +.) £ B. Case (iii) was not
observed in the study data set.

One could repeat the weight construction procedure in an
iterative manner by using the W,® as W in a second
cycle. We tried a second cycle on the data described in the
text. There was no discemable improvement in the estimates
from using a second cycle.
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Properties of the Weighting Cell Estimator Under a
Nonparametric Response Mechanism

D. NASCIMENTO DA SILVA and JEAN D. OPSOMER'

ABSTRACT

The weighting cell estimator corrects for unit nonresponse by dividing the sample into homogeneous groups (cells) and
applying a ratio correction to the respondents within each cell. Previous studies of the statistical properties of weighting
cell estimators have assumed that these cells correspond to known population cells with homogeneous characteristics. In
this article, we study the properties of the weighting cell estimator under a response probability model that does not require
correct specification of homogeneous population cells. Instead, we assume that the response probabilities are a smooth but
otherwise unspecified function of a known auxiliary variable. Under this more general model, we study the robustness of
the weighting cell estimator against mode] misspecification. We show that, even when the population cells are unknown,
the estimator is consistent with respect to the sampling design and the response model. We describe the effect of the number
of weighting cells on the asymptotic properties of the estimator. Simulation experiments explore the finite sample properties
of the estimator. We conclude with some guidance on how to select the size and number of cells for practical
implementation of weighting cell estimation when those cells cannot be specified a priori.

KEY WORDS: Finite population asymptotics; Quasi-randomization inference; Weighting cell selection.

1. INTRODUCTION

Itern and unit nonresponse occur in almost all large-scale
surveys, and proper estimation techniques need to account
for it. While item nonresponse is often dealt with through
imputation, unit nonresponse is most often accounted for
through weighting adjustments. Cell weighting adjustments
for nonresponse have been applied since at least the 1950s
in survey estimation, e.g. U.S. Bureau of the Census (1963,
page 53), and continue to be widely used in practice today,
because they have intuitive appeal and are relatively easy to
implement in practice. Reviews of common weighting
procedures are given in Kalton (1983) and Kalton and
Kasprzyk (1986). A number of authors have studied the
properties of the weighting cell estimator under a variety of
theoretical frameworks. Oh and Scheuren (1983) derive the
mean and variance of the weighting cell estimator under
simple random sampling, conditional on the sample size
and the number of respondents in each cell. See also Kalton
and Maligalig (1991). S#rndal, Swensson and Wretman

(1992, page 578) use the term “response homogeneity

group” for cells in which the nonresponse is assumed to be
constant, and derive the properties of the resulting
weighting cell estimator for general designs. The recently
introduced fully efficient fractional imputation (FEFI) of
Kim and Fuller (1999) can also be expressed as a weighting
cell estimator, and these authors derive its model properties
under the assumption that the variables are independent and
identically distributed (iid) within each cell.

While the specific assumptions vary, a common thread
among all these results is that the weighting cells are
correctly specified, in the sense that units within each cell
are indeed fully “exchangeable” (the precise definition of
this term depends on the framework selected: equal
response probabilities for randomization-based inference,
or iid observations for model-based inference). In the
terminology of Little and Rubin (2002, Chapter 1), this is
the case of observations missing at random (MAR), where
auxiliary information (i.e., cell membership in this case)} can
be used to correct the inference for the nonresponse.

In this article, we depart from this framework. We will
assume that the response mechanism depends on a known
continuous auxiliary variable, but the exact functional form
of this relationship is left almost completely unspecified
(details on this nonparametric response mechanism are
provided in the next section). Knowledge of such a variable
could be used to construct more sophisticated nonresponse
adjustments such as propensity weighting (Cassel, Sirndal
and Wretman (1983), Little (1986), and Da Silva and
Opsomer (2003)) or post-stratification, but we will instead
limit our use of this auxiliary variable to the division of the
population into weighting cells. Our primary goal with this
approach is to study the robustness of the popular weighting
cell estimator to model misspecification, and in particular,
the effect of the number of cells. Hence, in contrast to the
approach of the authors discussed above, the weighting
cells are used as a practical way to construct an survey
estimator, but they will not be assumed as part of the

! D. Nascimento Da Silva, Departamento de Estatistica, Universidade Federal do Rio Grande do Norte, Natal, RN 59072-970, Brazil. E-mail:
damiao @ccet.ufr.br; Jean D. Opsomer, Department of Statistics, lowa State University, Ames LA 50011, U.S.A. E-mail: jopsomer@iastate.edu.
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, statistical framework. This is similar to the “adjustment by
subclassification” idea proposed by Cochran (1968) for
removing the bias due to a continuous covariate in
observational studies.

We will study the properties of the estimator under
guasi-randomization, a term used by Oh and Scheuren
(1983) to denote joint inference under the sampling design
and the response mechanism. The asymptotic properties of
the estimator will be established by embedding the finite
population and the comresponding sampling design and
response mechanism in a sequence of such populations and
random mechanisms, as will be explained in later sections.
This asymptotic framework is very similar to that advocated
by Hansen, Madow and Tepping (1983) and used in Isaki
and Fuller (1982), among others.

The remainder of this paper is as follows. In section 2,
we introduce the notation and framework for the sampling
design and the nonresponse model, and discuss the
weighting cell estimator. In the following section, we derive
the asymptotic design properties of the estimator. In section
4, we report on a simulaticn study to examine the practical
behavior of the estimator, compare its practical behavior
with that predicted by the asymptotic theory, and provide
some guidance on the choice of the weighting cells.

2. THE WEIGHTING CELL ESTIMATOR

Before describing the weighting cell estimator, we
introduce our survey design framework and the response
generating mechanism. We consider a population
U={L1,2,.. N], where N is finite and known. For every
elementiinU,let ¥, = (YU., Yz,v v Yp“.)be the associated
vector of values of p characteristics of interest,
.Y, ., Yp. Likewise, let X, = (X“.,XZJ., ey Xq,‘.)be the
vector of values of g auxiliary variables, X, X,, ..., X, .
corresponding to the i unit, { € U. We assume that X is
known Vie U. If p=1, we denote ¥, by ¥, and, for
g =1, X; is used to denote X,. Let s represent a sample
drawn from U according to some sampling design p(-). This
sampling design p{) is chosen by the survey sampler and
may be based on information available in the X, ic U.

The goal of the sample survey is 1o estimate unknown
population quantities such as the population mean or total,
or a function of these quantities. To simplify the presen-
tation, we will focus on the estimation of the population
total of the Y,

t, =3 Y,
U

When there is no nonresponse, this quantity will be
estimated by a sample-based estimator of the form

ty, = Zs: w ¥, = XU: w Y, 1, (1)
where the w,, i € 5, are the sampling weights and I, is an
indicator for whether the i unit is in the sample or not. In
this article, we will assume that the sampling weights are
the inverse of the inclusion probabilities, or w, = 7, ! with
m, =Pr(ics), so that the estimator (1) is the classical
Horvitz-Thompson estimator (Horvitz and Thompson
1952). Also, let I = (I, I, ..., IN)T represent the vector of
inclusion indicators for the population.

In the context of nonresponse, it is convenient to assume
that each unit in the population is either a respondent or a
nonrespondent for the variable of interest ¥. Consider the
vector R = (R, R,, .., R,,)", where R, indicates if the "
unit is a respondent or not. The distribution of R is called
the response mechanism. In analogy to the definition of the
sample s, we use rc U to denote the (realized) set of
respondents in the population, i.e., those elements for which
R, =1. Since the distribution of r and R is typically
unknown and can in principle depend on the realized value
of I as well as on the ¥, we need to assume a model for the
response mechanism. When this assumed model is used to
develop an estimator for a population quantity, the
properties of this estimator become dependent on the
response model. Hence, a misspecified model for R has the
potential to cause significant and difficult to measure bias
in both the estimator and its associated measures of
precision, To avoid this problem, we will keep the response
mechanism quite general in this article. Specifically, we
will assume that the R, are independent Bernoulli variables
with

Pr{R, = 1|ILY} =¢, O0<g, < 1,Vie U,

and that the ¢, can be written as ¢, = ¢ (X,), with ¢(-) a
continwous and differentiable but otherwise unspecified
function of the X;. Note that this includes the uniform
response mechanism, where ¢,=¢ for all ieU, as a
special case.

When some of the selected elements do not respond, the
estimator (1)} can no longer be computed, and an estimator
that includes a nonresponse adjustment is required. In this
article, we are using the weighting cell estimator for this
purpose. For simplicity, we will describe the situation in
which both the Y, and X, are univariate variables, but the
approach can be generalized to the multi-dimensional case.
Let s, = s N r represent the subset of the selected elements
that actually respond to the survey.

Let U, g=1,..,G, represent G groups obtained by
dividing the population into groups based on the values of
the known auxiliary variable X. Specific implementations
might generate groups of equal size, or divide the range of
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X into equal-length intervals. We shall leave the
implementation unspecified for now, and state some general
assumptions about G and the size of the groups in the next
section. Note that we are considering the groups as fixed
with respect to the sampling design and the response
mechanism, which excludes the situation in which groups
are formed based on the observed sample values
{X,:ies}. This was done primarily to simplify the
theoretical derivations, and is similar to the approach of
Sirndal et el (1992) and Kim and Fuller (1999), among
others.

Let s g =S5N U ¢ be the portion of the sample that falls in
group g, and define similarly s, g =5nU o The weighting
cell estimator is defined as

G W,
rch = E Esg : Z w, Y. (2)
g=1 Z‘m Wil ies,,

From this expression, is it easy to see that in each group, the
estimator of the group total is ratio-adjusted by the inverse
of the weighted proportion of respondents in the cell. This
estimator is also the FEFI estimator of Kim and Fuller
(1999). The properties of this estimator will be studied in
next section.

3. PROPERTIES UNDER
QUASI-RANDOMIZATION

3.1 Asymptotic Framework and Assumptions

The quasi-randomization properties of the weighting cell
estimator will be studied in the usual finite population
asymptotic context, in which the population U/ is treated as
an element in an increasing sequence U, U,, ..., U, with
v ~ =, with a corresponding sequence of sampling designs
p, () (see Isaki and Fuller (1982) for an early example of
this framework). Let N, be the size of the V" population
with N, >N,_,let Y =(Y,Y,, .Y, )Tdenote the set of
values of the charactenstlc of mterest 'Y, associated with
U,. and similarly, X = (X, X,, ... X, )T We assume that
X, is known. For each v,a sample of size n Ln,2n, ) is
selected from U, according to a sampling demgn P, ( ). As
before, let I | = (Il, Ly, .1y )T be the comresponding sample
inclusion vector We w1ll denote the K™ order central
moment of the sample membership indicators/ o e I i by

K
A =E[1‘[(1i -, )]. [€)
1o dge -1 k

Itis assumed that U, can be divided into G (G, 2 G, _,)
mutually exclusive and exhaustive groups, Ug,
g =1, .., G,. These groups are constructed by sorting the
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population according to their X values and dividing the
population into G, groups. We will assume that there are at
least G distinct values among the elements of X . Let NS
represent the number of elements in U, .

As mentioned in the previous section, we are treating the
groups as fixed with respect to the population. The problem
created by this approach is that in general, there is a
non-zero chance of obtaining a group without any
respondents. We solve this problem by adding a small
constant in the denominators in each of the groups, or

G, E w;
- . Y w¥e @

h -1y .
8=l max(Es wl.,NgGvnv) V€S,

rs

Hence, the difference between f\;,c and fwc in (2) is
asymptotically negligible. This is similar to what is often
done in practice to avoid overly large weights in ratio
estimation.

Fuller and Kim (2003) give the limiting distribution of
the FEFI estimator under the assumption that the response
probabilities are constant within these cells. We will study

-the case where the response probabilities are a smooth

function of an auxiliary variable and the number of cells are
allowedtovary. Let R, (Rl, Ry ..o Ry )" be the response
indicator vector for the v populatlon We assume that the
distribution of R satisfics the nonparametric response
mechanism assumptions, specified as follows:

(R1) R, R,, .., R, are independent random variables,

[R2) Pr{R =1|1.Y)=¢,VicU,,

(R3) ¢,=9(X)VieU,, where @() is differentiable with
bounded first derivative, and the X, €[x,, x,], with
X, %) fixed constants and x, <x,,.

The remaining assumptions are technical conditions that
will be used extensively in the proofs. We assume that there
are positive constants A, A, ..., &, such that:

(A1)} A <N n, ni<7\2<m,\1ie U,, and
nN —-ne(O,l),asv—-co;

(A2} Fordistinct i, ..,i, € U, K=2,3,..,8,

if K is even

(5, v -k + 1)) n 4,

A,
(TS, v -k + ) a2, if K is 0dd

by iy

A3) lim, L5, 0,7 0, ¥g = 1.2,..G,and v 2
8
g

(A4) max;,, RABY

(AS5) A <“““an ¢, <
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(A6) 1, G, <NN, <3G, Vg=1,2,..,G,;
(A7) 1<G,<nfh, with0<y< 172,

Assumptions {Al) — (A2) imply that, asymptotically, the
sampling design is “well behaved,” in the sense that the
moments of the sample membership indicators are of the
same order of magnitude as those in simple random
sampling without replacement. This is a common
assumption in finite population asymptotic theory. (A1) also
requires that the sampling fraction converges to a constant
in the interval (G, 1). The boundedness assumption {A4) on
the observations will significantly simplify the proofs for
some of the theorems in the article, and could be relaxed to
the existence of bounded moments if desired. Similarly,
some technical regularity conditions are required to avoid
degenerate response mechanisms: {A3) provides that the
limit for the average response probability in a cell exists,
and (A5) excludes the situation in which some units might
have ¢, =0. Finally, assumptions (A6) and (A7) on the
weighting cells require that all the cells grow at a similar
rate, and that the total number of cells does not increase
“too fast” relative to the sample size.

3.2 Main Results

The approach we will use in the study of the properties
of the weighting cell estimator follows that commonly used
in the study of finite population estimators. First, we show
the asymptotic equivalence between the non-linear
weighting cell estimator and a “linearized” approximation.
Next, we derive the mean squared error properties of the
linearized estimator and consider those as the asymptotic
properties of the weighting cell estimator or, more
precisely, the properties of the asymptotic distribution of
the weighting cell estimator. See, for instance, Sirndal et al.
(1992, Chapter 5) for a description of this approach.

The following theorem formally states our first results.
The proof is in the appendix.

Theorem 3.1. Consider the sequence of populations
{U,: vz 1}. Assume that for each v, a probabilistic sample
of fixed size n (n 2 n,_,} is selected from U, according to
sampling design p (), and that the response mechanism
satisfies the conditions (R1) - (R2). F maIIy, assume that
(Al) - (A7) hold. Then, the estimator t we IS asymptoncally
equivalent to a linearized random variable ty ., in the
sense that

1
—_ (t -
N W

v

fwe) = 0,(G,n). (5)

The bias and variance of E;vvc /N, are given by

-~ G —
) — v , = n~
E|Xel.y -Lly ¥ u&](yi-yg) ©6)
v N\H?:l U, g
and '
't- 1 GV G\’
var| Y| = Y Y XY Ay Y,
NV sz g=1 g"=l Ug Ugf g 1g I8
G,
1 -2 ‘pa (P ) 2 (7
+— E Y (¥,-Y )
Nb g=1 U_!, q)g
where
- 1 - 1 ZU 9.Y;
(p = _E Y = _Z ,—
¢ Ns Uy * N U, 3 EU‘ @
and

AR AR

T, Q,

, ViEUg and Vg=12,...G,

Remark 1. The asymptotic equivalence between ’wc and
twe depends on the number of groups G, with a faster
convergence rate achieved when G, grows more slowly.
The intuition behind this result is that the goodness of the
linear approximation depends on how well the true cell ratio
response adjustments cp* are estimated by the sample-based
estimators . w,/X_w,. Since the cell ratios will be better
estimators as the sample size grows larger, this would argue
that G, should be chosen to be small, which corresponds
to the current practice in applications of weighting cell
estimation. However, as will be shown below, the MSE
properties of f;,c under the nonparametric response
mechanism improve as G, gets larger. A more detailed
discussion of the selection of the number of groups will be
provided after Theorem 3.2 below and in section 4.

Remark 2. The results in Theorem 3.1 depend on the
population groups Ug, g=1,.,G andonthe ¢, icl,
but do not rely on the fact that the response probabilities are
a smooth function of the auxiliary variable X. Hence, the
explicit expressions for the asymptotic bias and variance
can be used to derive results for other response mechanisms
that follow (R1) — (R2). In particular, results for the
response homogeneity group model (see Sirndal et al
1992, page 577) follow directly from Theorem 3.1, This is
also the model studied by Fuller and Kim (2003). Under
that model, one assumes that ¢,= P, for all
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ielU,g=1,.,G and it can easily be shown that the bias
of ‘wc is 0 and its variance is

i ]
Var| =< | =Var [ 2
NV NV

L
N

+

iMe

1 - -
Sy 0 (Y- Y2
‘Pg Ux

AN

The first term in the variance is the variance of the
estimator without nonresponse, and the second term
represents the variance inflation caused by the nonresponse
under a homogeneous within-cell response mechanism.

The following corollary follows directly from Theorem
3.1 and Fuller (1996, Theorem 5.2.1). A proof is given in
the appendix.

Corollary 3.1. Under the conditions of Theorem 3.1 with
¥ < 1/2in (A7), for any sampling design p () such that

~

¥ _v,-B,

n 12
v
Nv

v

L
- N0, V),

where B corresponding to the bias of t-;vc
Theorem 3.1 and

IN, given in

V = lim n, Var(f./N,}e(0,),

yeo

then

~

L
N

v

-112 Et _ L
Var| 2C [-35—1; -Bv) - N(O, 1).

v

Corollary 3.1 states that, whenever the linearized
estlmator ;\:vc achieves asymptotic normality, then so does
twc Since f, wc can be written as a classical expansion
estimator of the form (1), this result is quite general.

Under the nonparametric response mechanism described
in (R1) — (R3), it is possible 1o describe the effect of the
number of groups G, on the asymptotic bias and variance
of tWC The next theorern gives the asymptotic rates for the
bias and variance, and is proven in the appendix.

Theorem 3.2. Assume that (R3) and the conditions of
Theorem 3.1. Then,

1

GV

E Y o

e
N,

and
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Var ?wc
N

v

: O[L
n

v

+0 1
nVG"'

Remark 3. Theorem 3.2 shows that both the asymptotic
bias and variance of the weighting cell estimator f\:,c
become smaller as the number of groups G, increases. An
intuitive explanation of that fact is that the approximation
of the function @, = ¢(X;) by the step function @, =,
improves as the number of cells increases. The asymptotic
variance has a term that is independent of G . This
“residual variance” is due to the inherent variability of the
sampling design and the response mechanism, and cannot
be reduced by changing G,

Remark 4. As noted in Remark 1, constructing a good
linear approximation Ewc requires G, to be small, while
Theorem 3.2 states that the MSE of 7, is minimized by
taking G, as large as possible. Taken together, this can be
interpreted to mean that, once the sample size in every cell
is sufficiently large to obtain a “valid” ratio estimator for
the average cell response probability (p;, it is preferable to
increase the number of cells than to increase the sample size
per cell. The simulation experiments discussed in section 4
will further explore this recommendation.

The following corollary follows directly from Corollary
3.1, Theorem 3.2, and Chebyshev’s inequality, and
establishes the consistency of the weighting cell estimator
under the nonparametric response mechanism.

Corollary 3.2. Under the conditions of Theorem 3.2, E\;zc
is a consistent estimator for t, in the sense that for any
€>0,

fore —t
pr| | 2%

> e] -0, v—on

Remark 5. As Corollary 3.2 shows, as long as a variable X
can be found that is sufficiently related to the nonresponse,
in the sense of assumptions (R1) — (R3), construction of
weighting cells does not require knowledge of homo-
geneous response probability cells in order to construct a
consistent estimator. However, as discussed in Remarks 1
and 4, the choice of the number of cells still has an effect on
the properties of the estimator.

Remark 6. Assumption {(R3) can easily be relaxed to allow
for a small number of points of discontinuity in both ¢(-)
and its first derivative. A “small” number can mean that the
number is either fixed as v ~ o« or increases at a rate slower
than G, This would make it possible to account for
situations such as stratified designs or the presence of
domains within U . The present theory can be extended
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directly to these situations, if the values for the variable X
fall in non-overlapping segments for the different strata or
domains.

4. SIMULATION EXPERIMENTS

4.1 Description of the Experiment

In order to investigate the practical implications of the
results of section 3, we carried out a Monte Carlo
experiment on a fixed population of N = 3,000 units. We
consider the case of one covariate, X, whose population
values are generated as:

X17X2: ---1

~ iid. U(0,1),
and two different variables of interest, Y, and ¥,. We are
interested in evaluating the effects of (1) the (model)
relationship between ¥ and X, (2) the response mechanism
©(X), (3) the sample size n and (4) the number of cells G, on
the bias and on the mean square error of the f wc estimator.
Smce our theoretical results rely on the approx1manon of
tyc (Or twc) by a lmeanzed estlmator ‘wc’ we will also
compare the behavior of ‘wc /N, and twc /N, as estimators
of the population mean, Y =N, ! L, Y, Finally, we
compare fwc /N, to the “nalve estlmator of the mean,
which is defined for the variable Y as:

- EiES, wi Yi
R S
' Eiesr Wi

corresponding to a ratio adjustment of the respondent
sample to the original sample. This estimator is appropriate
under the assumption of uniform response mechanism or,
to use the terminology of Little and Rubin (2002, chapter
1), when observations are missing completely at random
(MCAR). Note that y, is equivalent to the weighting cell
estimator with a single cell.

The levels of the four factors used in the experiment are
given in Table 1. The “levels” of the variable ¥ correspond
to two populations of independent values. The variable ¥,
was generated as N(40, 58), truncated to -3 to +3 standard
deviations, corresponding to the *“white noise” case. The
variable Y, is related to X and was gencrated through the
linear model Y, =27.12 + 26.06 X + &, where € ~ N(0, 9).
The population mean and variance for the two variables
were, respectively, (39.9, 55.3) for Y|, and (40.0, 63.9) for
Y,
i The four levels of the response mechanisms contain two
different scenarios regarding the response probabilities:
constant (C1, C2), and linearly related to X (L1, L2). The
responsc probabilities are:

- @ (X) =035
- PnX) =08
- ¢, (X) =020 +0.60X

- 9,,(X) =0.65 + 030X

The levels of the linear response mechanisms were chosen
50 that the average probabilities (over X) were approxima-
tely equal to 0.5 and 0.8, respectively.

Table 1
Overview of Factors in the Simulation Experiment
Factor Levels
Y variable Y.y,
Response mechanism ¢(-) C1,C2,L1,L2
Sample size n 200, 500
Number of cells G 2,3,5,8

For a given G, the groups were created by dividing the
range of X into (& equal segments and assigning the ¢lement
i to the group g if the value X, was in the g" segment,
i=1,2,..,N and g=1,2,..,G. The simulations were
carried out through a completely randomized factorial
experiment 2x4x2x4. For each combination of the levels
of the factors in Table 1,B = 5,000 independent realizations
of the vector indicator of responses, R = (R,R, ... R N)T,
were generated according to the corresponding response
mechanism. For each one of such realizations, a simple
random sample (without replacement and of size n), s, was
selected from the overall population. Within each selected
sample, the respondents were the values of 7 € s such that
R =1.

This procedure could in principle lead to a group not
containing any sampled and responding element, in which
case the weighting cell estimator (ignoring the adjustment
in (4)y cannot be computed. If that happened, the realization
was discarded and a new sample drawn from the popu-
lation. Out of the 5,000 repetitions for each combination of
factors, this happened 13 times in the factor combination
(¥}, ¢,,,200, 8) and 15 times with (Y, ¢,,,200, 8).1t did
not occur with any of the other factor combinations. Hence,
the number of samples discarded was very small and this
has a negligible effect on the simulation results.

With n =200 and G = 8, we expect approximately 25
sampled elements in each cell, to be further reduced by the
nonresponse. Since the estimator relies on ratio estimation
in each cell, we judged this to be a reasonable lower bound
on the number of observations per cell to consider in the
simulations. In practice, a number of procedures could be
used when groups have too few elements, such as picking
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a smaller value for G or collapsing neighboring groups, We
also implemented an estimator that collapses the empty cell
with a neighboring cell as well as a version with a lower
bound on the value of the denominator in the weighting
adjustment (i.e., fv:,C }, and the results are virtually
indistinguishable from those reported below, so they will
not be further discussed here.

4.2 Results

Tables 2 and 3 show the simulated bias of the weighting
cell estimator for the variables ¥, and Y, as a fraction of
the standard deviation. As a comparison, the last column of
Tables 2 and 3 displays the bias of the naive estimator, y,.
The bias as a fraction of the standard deviation, referred to
here as the relative bias,

E(fye - Y)

RB({ ,fA) e —
M (Var(f '

was also used in Cochran (1977, page 14), where it is
shown that as the relative bias increases, inferential results
rapidly become unreliable. In a stmple simulation example,
Cochran (1977) shows that a relative bias of +0.50 or more
leads to highly inaccurate 95% confidence intervals.

For Y, (Table 2), the relative bias of the weighting cell
estimator is small and is similar to the relative bias of the
naive estimator, for all sample sizes, response mechanisms
and cells sizes considered. For the variable ¥, (Table 3),
similar results hold when the response mechanism is
uniform {C1, C2). However, when the response probabi-
lities are a linear function of X (L1, L2), the naive estimator
becomes severely biased. This relative bias decreases as the
number of cells increases, and three to five cells appear
sufficient to remove most of the bias. This finding agrees
with that of Cochran (1968) in the context of bias reduction
for observational studies.

Table 2
Relative Bias of the Weighting Cell and Naive Estimators
for the Mean ¥,
Sample Response Number of Cells Naive

size  mechanism 2 3 5 8 estimator
Ci -000 001 001 0.0t -000
Cc2 001 -000 -0.01 0.00 0.00

200 L1 -0.02 003 -004 -001 -0.00
L2 -0.00 -0.02 000 -002 -0.00
C1 -0.00 -0.01 004 -0.01 0.00

500 C2 001 002 -001 -0.01 0.00
Ll 005 002 -0.01 -0.02 0.01
L2 001 001 -0.00 -0.01 0.01
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Table 3
Relative Bias of the Weighting Cell and Naive Estimators
for the Mean of ¥,
Sample Response Number of Cells Naive

size  mechanism 2 3 5 8  estimator
Cl 001 -0.01 -0.02 002 -001
C2 -0.03 -0.00 002 001 -000

200 L1 1.16 059 022 007 3.57
L2 036 0.18 006 0.03 1.36
Cl1 001 0.01 -0.02 -0.00 0.00
C2 002 -0.00 -0.00 -0.01 -0.00

500 L1 198 096 032 0.15 5.84
12 061 029 009 0.02 2.26

Hence, when the variable of interest is totally unrelated
to the response mechanism, as in the cases of Y, under all
mechanisms considered and of Y, under the uniform
response mechanism, the bias does not depend on the
number of cells. When the variable of interest and the
response mechanism are related, multiple cells are required
to remove the bias.

The relative mean squared error (RMSE) for the two
variables of interest, defined as the MSE of the weighting
cell estimator divided by the MSE of the estimator with no
non-response,

° 2
RMSE(EWC, {y) = E(t‘fc—ty)
E(r, - 1.}’

are in Tables 4 and 5. In these tables, the last column again
corresponds to the relative MSE of the naive estimator.
Note that with the exception of the two L1 cases for
variable Y,, the Tables 4 and 5 are really variance tables,
since the bias 18 so small.

For Y, (Table 4), the variable uncorrelated with X, the
number of cells has relatively little effect on the relative
mean square error, with results around 2.3 for a 50%
response rate, and around 1.3 for the 80% rate, However, a
relatively modest increase in MSE is observed, especially
for the high nonresponse cases (C1, L1). For Y, (Table 5),
the variable correlated with X, increasing the number of
cells improves the results for all response mechanisms, but
the effect is much more pronounced when the response
mechanism is also correlated with the variable of interest.
As for the relative bias, three to five cells achieve most of
the efficiency gain, while the naive estimator is extremely
inefficient.
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Table 4
Relative Mean Squared Error of the Weighting Cell Estimator
Compared to the Estimator Without Nonresponse for Y,

Sample Response Number of Cells Naive

size  mechanism 2 3 5 8 estimator
Cl 202 213 211 221 2.08
Cc2 125 131 129 1.28 1.28

200 L1 234 232 261 270 2.08
L2 .30 1.29  1.29  1.31 1.28
Cl 225 221 219 231 223
C2 130 132 134 129 1.30

500 L1 255 257 262 270 222
I.2 1.32 135 133 134 1.31

Table 5

Relative Mean Squared Error of the Weighting Ceil Estimator
Relative to the Estimator Without Nonresponse for Y2

Sample Response Number of Cells Naive
size  mechanism 2 3 5 8 estirnatar
Cl1 133 117 110 1.07 2,07
C2 .09 105 1.02 1.02 1.26
200
L1 314 157 116 112 2632
L2 1.23 107 103 101 3.57
C1 135 1.19 110 1.09 222
C2 1.09 105 103 1.03 1.30
500
L1 660 230 123 113 69.75
L2 1.50 L14 104 1.02 7.83

The difference between the results for both variables is
surprising at first, but it can be explained using the results
from section 3. Clearly, the results for Y, follow the
asymptotic theory, in that the MSE improves as the number
of cells improves (as long as sufficient observations are
available in each cell). In the case of Y|, note first that the
bias is negligible relative to the standard deviation for all
values of G (see Table 2), so that the change in MSE is due
almost exclusively to differences in variance. It turns out
that when a variable is iid in the population and sampling is
equal-probability, the asymptotic variance in Theorem 3.1
is relatively insensitive to the number of cells. In that case,
the increase in MSE is influenced by the variability implied
in the linear approximation in Theorem 3.1, which increases
with the number of cells.

The theory described in this article applies to response
functions that can have arbitrary smooth shape. In order to
evaluate results for more complicated functions, we also

created a variable Y, =25+95X -95X%+sg, where
g ~ N(0,3), so that the Y, has mean 40.9 and variance
51.8, and two additional quadratic response mechanisms

- P (X) =0.17 + 1.96X - 1.96X*
~ ¢ X) =050 + 1.80X - 1.80X 7.

The results {not shown) broadly reflect the findings for the
previous variables. When the response mechanism and the
variables are correlated (the linear variable is correlated
with the linear response mechanism, and the quadratic
variable is correlated with the linear and quadratic response
mechanisms), significant bias occurs but can be removed by
increasing the number of cells. In the case of the quadratic
response mechanism and the quadratic variable, eight or
more cells appear to be required to remove the bias.
Similarly, the relative efficiency improves for ail response
mechanisms for both the linear (Y,) and quadratic variable,
with the most dramatic results found for the linear
variable/linear response and quadratic variable/quadratic
response cases.

In the previous sections of this article, we approximated
the weighting cell estimator by a “linearized” estimator
f;,c, and then derived the asymptotic properties of that
estimator. It is therefore of interest to compare the statistical
properties of both estimators in simulated settings. For all
the scenarios in Table 1, we calculated the relative effi-
ciencies of the weighting cell estimator compared to the
linearized estimator, These relative efficiencies were all
close to 1.00, with the largest deviation being a value of
1.08. Hence, the statistical properties of weighting cell
estimator appear to be well approximated by those of the
linearized estimator.

5. CONCLUSIONS

We have shown that the weighting cell estimator,
corresponding also to the FEFI estimator proposed by Kim
and Fuller (1999), is consistent with respect to the sampling
design and a nonparametric response model. That model
does not require the correct specification of homogeneous
response probability cells, as long as a variable related to
the response probability can be identified.

The statistical properties of the estimator depend on the
number of ¢ells used in the estimation, but the relationship
is rather complex. Asymptotically, there appears to be a
trade-off between the goodness of the approximation of the
weighting cell estimator by a linearized estimator, which
requires a small number of cells, and the mean squared
error of that linearized estimator, which is reduced when a
large number of cells are used. While useful in under-
standing the asymptotic behavior of the estimator, these
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findings only provide limited guidance for choosing the
number of cells for a particular survey. However, these
findings show that reliable inference for weighting cell
estimators will require cells with reasonable sample sizes,
because variance estimates typically rely on the variance of
the linearized estimator as an approximation of the variance
of the weighting cell estimator.

The simulation experiments show that when the variable
of interest and the response mechanism are uncorrelated,
the number of cells has virtually no effect on the design bias
of the estimator. When the variable of intcrest and the
response mechanism are uncorrelated, even the estimator
with a single weighting cell {corresponding to a simple ratio
adjustment) is essentially unbiased, while models with
multiple cells perform equally well. When the response
mechanism and the variable of interest are related, however,
the bias properties of the weighting cell estimator depend
critically on the number of cells. In particular, estimators
with a single cell are severely biased, but even a relatively
small number of cells is sufficient to reduce both the bias
and variance of the estimator. This result holds for both
linear and nonlinear relationships between the response
mechanism and the variable of interest.

The design efficiency of estimators depends on the
relationship between the variable of interest and the
variable(s) used to form weighting cells. When those two
variables are uncorrelated, the number of cells has no effect
on the efficiency of the estimator. Conversely, when those
two variables are correlated, increasing the number of cells
improves the design efficiency of the estimator. Even a
small number of cells dramatically improves the
performance of the estimator.

Overall, it appears that in the presence of nonresponse,
forming at least a small number of weighting cells based on
a variable related to the non-response provides a good
“insurance policy” against design bias and design ineffi-
ciency. This article has shown that this adjustment does not
require the assumption that the cells be based on a priori
knowledge of constant nonresponse groups. The resulting
weighting cell estimator will never perform worse than the
naive estimator with a single ratio adjustment for the whole
sample, and it might perform significantly better.
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APPENDIX

Derivations of Theoretical Results

Lemma 1. Assume that the conditions (Al) — (A3) and
(RI) = (R2) hold. For i, i, ..., i,€ U, define

k
Fn‘ i =E[H(IER,'"“,'(P,') )
1reendy o 1ty

where ¢, = 0(X,). Consider the A, iy of (3). Let A"
denotes the r-fold Cartesian product of the set A, where r is

a fixed positive integer, A=
{(GpiyeniYE U =iy =0 =i ) and A=
{(il,iz,...,ir) € Uv': exactly k components are distinct},
k=273, ..,r Then forr=8,
O(N’n%, if k=5
_ ONJn), if k=6
stnvs max (lri A ,'l)= ( ’ v..q) .
ijeig€AL g e Pee ON n, ), if k=7
o) , if k=8.

Proof of Lemma 1. See Da Silva (2003).

Lemma 2. Suppose the condltwns of Theorem 3.1 hold.
) -1
Consider  the vecz‘m"sM tgv (t 2 = 3 g) =Xy X
(l Y.R,R)I, and Iy, = (t] g,rzg 3‘g) wzth
t3 -max{tsg,N G,/n). Let L, E(t ). Then for all
=1,2,...G,

1 Ay 8 -~
— It I,

4

-t I = 0(G /).
Proof of Lemma 2: See Da Silva (2003).

Proof of Theorem 3.1: Consider the proof of (5). Let
a=(a,a,a,) €R® and h:R*-R, where hia)=
a,a,la,, a, #0. Define

@ = AV 't,) + Eh‘“( )N,

whereh“‘)(a) dh(a)/da,andlet e, = h(a) - n_ (). Note
that fy. = E N (N, 'lt ) and hence, deﬁmng the

E LN (N ' ), we can

“linearized” esnmator t ¢ Lo

write
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where

G,
- _ 1
ev—FZ;Ne W, '£))
and
G,
E (ngv(N tgv) “gv(N tgv))

v 8=l
Consider first the term 1. Observe that

<1 Sy _
In,, (N, £,,) -ngv(Ng t)| =

[AICAE )\ Ifg.g by g -

S

By (Ad4) and (AS), it is straightforward to check that A(*)
and A® (), k = 1,2,3, are O(1) when evaluated at Ng'ltgv,
for all g= 1 2,..,G,. Since by construction, we have
UN, |tn' - |$ G /nv, we conclude that [n | =
O(G In ) Thus o complete the proof of {5}, it remains to
showthat e,= OP(G n, ) Letf (a) = (.egv(a))2 Bythe C,
the inequality (Sen and Singer 1993 page 21,

15, @2 < 5* {|h@)]*+ AV, 't )]

g g

3
+§ |h(k)(Ng_ )i |ak g gvl )
Using (A1) and (Ad), stralghtforward bounding arguments
show that |h(N,'E }|*=0((n,/G)*) and that
\4 = (I) or k = 1, 2, 3. Therefore,

4

| AL R,
t,)|* =0 — |

I ;k, 4

| fen @y

Since by Lemma 2, N EI\ —t [I8 =0{(n,IG )'4) and
V] £ (N, gv) |2 is contmuous at any realization of N, tgv,
then the sequence { | fgv(N t o) |*} satisfies the condltlons
of Theorem 5.4.4 (with 1 = 1 p =4) of Fuller (1996, page

247). Therefore,
E[mv(Ng'l{*v) |2] = 0(l), Vg=1,2,..G,

Now, from the connnulty of f (*) and its derivatives up to
order three, { f (N t B satlsﬁes the conditions of
Theorem543(w1th 8 = 1 s=4and a,=0(/G, /n) of
Fuller (1996, pages 244-245). Hence,

2
-1 ~=

Ef, (N, t,,) =

0(a,) = ,Vg=1,2,..,G,

n

v

because f,, ( ) and all of its derivatives up to order three are

Zero at N t . Therefore, we conclude that

gN Ele,, (N, tgv)|

w42
v Uy

2|~

2|~

n

v

which leads to e, =0,(G,n, 1 by an application of
Markov’s mequahty

Expressions (6) and (7) are obtained by dlrect compu-
tation of the moments of the linear estimator t we under the
sampling design and the response mechanism.

Proof of Corollary 3.1: Let

1. _
Zv = 1”2 ﬂ - Yv_ Bv]
v,” LN,
and
w o= L fwe _ twe
Yoylr | N N, ’
where V, = Var('t'WC /N,). Hence,
-~ 1/2 Ak
w we 5
Var| X e Y, -B| =2Z,+W,.
N N,

Since V/n V -1,as v~ o, then,

z - 1 lefz’w_c_i;_B{._IZ
Yoy nV, v N, v v yie’

where Z~ N(0, V}. Also, (A7) with y< 1/2 implies that

n,” 0,(G,n,") = o,(1). Hence, by Theorem 3.1,
"7 P P
W, = 1 v :’2 we _ Wl _ 5 ).
viz | n,V, N, N P

The result of the corollary follows, therefore, from Fuller
(1996, Theorem 5.2.1}.

Proof of Theorem 3.2: Fix a g¢{1,2,..,G} The
conditions of the theorem imply, by the Intermediate Value
Theorem, that there exists X, , inside the interval defined by
the lowest and the highest values of X, € U such that
9, =N, EU ®, = 0(X,,)-Also, by the mean Value
Theorem vie U,

P, = tp(X,) o(

where ¢

XOg) + (pl(c *)(X,' - XOg)’
is between X; and X, . So,

XX
Kol SC—2— @)

v

o, - @,1=] 0" (¢ X, -
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for some constant C € (0, «) and, by (A5) and (A6),

: . X - X,
Bias| —<||< Chg by —_"O
N G

v ¥

Observe now that since

1le,-0,] -
|¥,|+ —_—3—EY5,|,

[? |Si_—
T; ¢, T, ¢,

then, by (Al, (A6) and (8),

N
Y Y =0l —|+0
n? n, G
Using the facts that, by {A7), N IN,=0(1/G ), by (A2)
and (A3), ): E A =0(n, /G) and, for g=g’,
X, A O(n /G %, then, the first
Var(tWCIN } is bounded by

Ll . of L.
nG,

IN,) is bounded by

YUVg=12.,G,

term of

o

n

v

Since the second terms of Var (;wc
O(l/n ), the conclusion follows.
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Variance Estimation with Hot Deck Imputation Using a Model

J. MICHAEL BRICK, GRAHAM KALTON and JAE KWANG KIM*

ABSTRACT

When imputation is used to assign values for missing items in sample surveys, naive methods of estimating the variances
of survey estimates that treat the imputed values as if they were observed give biased variance estimates. This articie
addresses the problem of variance estimation for a linear estimator in which missing values are assigned by a single hot deck
imputation (a form of imputation that is widely used in practice). We propose estimators of the variance of a linear hot deck
imputed estimator using a decomposition of the total variance suggested by Sirndal (1992). A conditional approach to
variance estimation is devetoped that is applicable to both weighted and unweighted hot deck imputation. Estimation of the

variance of a domain estimator is also examined.

KEY WORDS: Missing data; Model-assisted approach; Conditional variance estimation.

1. INTRODUCTION

The important practical problem of estimating the vari-
ance of an estimate computed from a data set in which some
of the itermns are missing and values are assigned by im-
putation has been addressed in a number of different ways
(e.g., see Rubin 1987 and Rao and Shac 1992). The ap-
proach used in this article is based on the model-assisted
approach introduced by Sirndal (1992). In the initial
application, Simdal used the model-assisted approach with
a simple random sample in which the missing data were
imputed using deterministic ratio imputation. Subsequently,
the approach has been extended to other imputation meth-
ods and sample designs (e.g., Deville and Sdrndal 1994;
Rancourt, Sarndal and Lee 1994; and Gagnon, Lee,
Rancourt and Sidrndal 1996). This article extends the
model-assisted approach to general forms of linear esti-
mators in which missing values have been assigned by hot
deck imputation within imputation cells. This form of hot
deck imputation, which replaces a missing item by the value
observed for a responding unit in the same cell, is one of the
most frequently used methods of imputing for missing items
in household sample surveys (Brick and Kalton 1996). This
paper employs a conditional approach to develop a variance
estimator for hot deck imputed estimators that is valid for
general sample designs and a variety of estimation
strategies.

In the model-assisted approach, the difference between
an imputed estimator (the term used here to denote an
estimator based in part on imputed values), @,, and the
corresponding finite population parameter, 0, is written as

6, -8y =(én_ew)+(ér"gn)a (1)

1

where Qn is the usual, approximately design unbiased,
estimator of 8, with complete response. The first term on
the right hand side of (1} is called the sampling error and
depends only on the sampling distribution of the estimator
based on the sample design used to select the full sample,
denoted by p. The second term is the imputation error; it
depends on the sampling distribution, the response mech-
anism (R) that generates the respondents from the full
sample, and the imputation mechanism (/) for filling in the
missing values. This paper is restricted to estimators ﬁ; that
involve only one variable subject to missing data.

We use a model-assisted approach that makes assump-
tions about the distribution of the variable of interest in the
population. We refer to these assumptions as a super-
population model, denoted by &. In general, the aim of
imputation is to create a multi-purpose data set that can be
validly analyzed in many different ways, potentially in-
volving the associations of a variable subject to imputation
with any of the other variables in the data set. Since a
superpopulation model is needed to impute for item non-
responses in a way that preserves such associations, it is
natural to use that approach also in variance estimation.

Under the superpopulation model, the total variance for
an imputed estimator is given by

Vior = EE, E4E, (B, - 0, @

where E,, E , E;, and E, refer to expectations with
respect to the superpopulation model, the sampling mech-
anism, the response mechanism, and the imputation
mechanism, respectively. We assume that the sample de-
sign, response mechanism, and the imputation mechanism
are unconfounded as described by Rubin (1987) and used
by Sérndal (1992) and all of the other literature cited above

1. Michael Brick and Graham Kalton, Westat, 1650 Research Blvd., Rockville, MD 20850, U.S.A. E-mail: mikebrick @westat.com; Jae Kwang Kim,
Department of Applied Statistics Yonsei University, Seoul 120-749, Korea.
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on the model-assisted approach. Essentially, unconfounded
mechanisms allow the order of the expectations to be
changed so that the expectation with respect to the model
can be taken first. Thus, the total variance can be re-written
as Vpor =E, E E/E, (@, - BN)z. Roughly speaking, uncon-
founded sampling, response, and imputation mechanisms
imply that the mechanisms are independent of the distribu-
tion of the y-value being analyzed after conditioning on
auxiliary variables (e.g., stratification variables for sam-
pling or imputation cells for imputing). Thus, for example,
we assume the value of the variable being imputed is inde-
pendent of the probability of response within each hot-deck
cell. Rubin (1987, pages 36-39) has a more detailed discus-
sion of unconfounded mechanisms.

Using the decomposition given in equation (1), Sdrndal
(1992) expressed the total variance for the imputed
estimator as

- 2
Vior =E E  ERE, (Br - GN) =Voam * Vime + 2Vix> (3)
=EE, (9 GN)2 is the sampling variance,
Vive = E E E, E (9 -0 )2 is the imputation variance, and

Mlx’E E ELE, [(9 6‘ )(B 8,1 is a mixed compo-
nent. In lhlS fonnulatlon the total variance and its com-
ponents are more apily described as anticipated variances
because they incorporate the added expectation with respect
to the superpopulation model.

The model-assisted approach to variance estimation with
imputed data used in this paper should be distinguished
from model-assisted sampling (Siérmdal, Swensson and
Wretman 1992). With model-assisted sampling, models are
used to guide the choice of efficient sample designs and
estimators, but the validity of statistical inferences is not
dependent on the validity of the models. In contrast, when
some data are missing, reliance on models for inferences is
essential, both for point estimators and for variance
estimators for them. In this paper, the general approach to
inference employs the imputation model assumptions {i.e.,
superpopulation model and unconfoundedness assump-
tions) only to the extent necessary to account for imputed
data. Both the point estimators and the variance estimators
are the standard design-based estimators when no data are
missing. Whether the variance estimators are approximately
unbiased for Vg,,, depends on the validity of the imputa-
tion model. Also, the estimators for Vi, and V,,, rely
completely on the imputation model. Thus the validity of
the model is much more critical with model-assisted vari-
ance estimation with imputed data than it is with model-
assisted sampling. Sérndal (1992) argues that if we are
willing to accept the validity of the model in point esti-
mation with imputed data, we should also be willing to
accept its validity for variance estimation.

where V

Variance estimators are obtained by conditioning on the
realized set of sampled units, responding units, and impu-
tations. We develop estimators of V(=
E,[(0,-0,) | A Ay, ]V, =E, [(§,-6,7|A, AR,d]
and Vinx =E¢ [(9 -8,) (9 B ) | A Ag.d], where A and
A, denote matnces of 1ndlccs for the sampled and re-
sponding units, respectively, and d is the set of indices for
the imputations. The conditioning is on the set of indices,
not on the values of the units. The matrix d is an
r» (n - r) matrix in which the rows refer to respondents
and the columns to nonrespondents. In this paper, we
consider only single imputation methods, in which case all
but one of the d; =0 in every column. The exception
occuts in the row of the donor respondent when d =1.

By considering the conditional expectations of V p and

Vi the estimators reflect the number of times responding
units are used as donors in the given application rather than
taking the expectation over all possible imputation out-
comes. We argue below that these are the appropriate vari-
ances to estimate in a given application. If the variance esti-
mators are conditionally unbiased, they are also, of course,
unconditionally unbiased.

A conditional approach is useful for two reasons. First,
when an estimator is conditionally unbiased and consistent
(as 8 ; is assumed to be for (:}n ), the conditional variance is
generally a more appropriate estimator for making infer-
ences from a realized sample than an unconditional vari-
ance (Holt and Smith 1979, Rao 1999, Kalton 2002). Thus,
a variance estimator that conditions on the actual number of
times each donor is used is to be preferred to a variance
estimator that averages over all possible donor selections.
Second, the results apply to any unconfounded sampling,
response, and imputation mechanisms that produce the
same set of sampled units, respondents, and imputations.
Therefore, the results given below for hot deck imputation
apply 1o any unconfounded imputation scheme that substi-
tutes observed values for missing ones and for which
E. (6)=E.(6,).

2. HOT DECK IMPUTATION

We consider a simple model for which hot deck
imputation is appropriate. Assume that the finite population
(1) is composed of G classes or cells. Within cell g(g =
1, ..., G), the elements in U are realizations of indepen-
dently and identically distributed random variables with
mean y and variance cﬁ. This cell mean model can be
written as

Y,."*i‘(pg, cz), ielU, (4)
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where “ is an abbreviation for independently and identi-
cally distributed.

A linear estimator of 0,, with complete item response
from a complex sample survey can be written as

6, =2 wy, (5)

fcA
where w; is the weight that accounts for unequal selection
probabilities and the estimation strategy. When the cell
mean model holds, a more efficient estimator of 6,, uses the
unweighted group means, ie., 8 =EEwg‘. ¥y, where
V.= Ty /1, However, the model-assisted approach
does not place complete reliance on the model; rather, it
uses the standard design-based approach to the extent
possible and the model is used only for the missing data.
The weights in (5) can be the inverse of the probability of
selection weights or calibration adjusted weights, as

described below.

The hot deck imputed value for y; is y;' =X, 7

and the imputed estimator is

0,=3 wy=% Wy * b)) w; > d; ¥ (6)

€A i€A, JEA, icA,

where y, =y, for icA, and y =y for icA,,. We
assume throughout that imputed values are selected from
respondents in the same imputation cells, and that each cell
contains at least one respondent.

This imputation formulation does not specify the way in
which denors are selected. It thus covers both unweighted
hot deck imputation in which donors are selected with equal
probabilities within each cell and weighted hot deck
imputation. Weighted hot decks are typically used when
assumptions are made only about the response distribution.
The form (6) also covers with and without replacement
imputation methods. For example, it covers the common hot
deck procedure in which a respondent is randomly selected
to be a donor within a cell, and then that respondent is not
used as a donor again until every other respondent in the
cell has been used.

While not explicitly considered here, nearest neighbor
imputation procedures that use continuous variables to
identify a small set of the most similar respondents and then
randomly select one as the donor, satisfy the above require-
ments. Furthermore, researchers often use hot deck methods
even when continuous variables are available. Little {1986)
discusses strategies for forming imputation cells using
variables that are predictive of the y-variable and notes that
imputation within cells and regression imputation should
produce similar results in many circumstances. Cochran
(1968) and Aigner, Goldberger and Kalton (1975) show
that a relatively small number of well-constructed cells
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formed from a continuous variable can capture a large
proportion of the predictive power of the variable.

The conditional bias of the imputed estimator under the
cell mean model is

E,(0,-8,|A, Ag d) =
A b))
€Ay

since  E,(y;) = E; (,ZE'EAR d;y,) = E?eAR d; E, (')’.') =
Z‘. €Ay c‘iﬁ M, =M, for j ?n cell g. This expectation is
conditioned on the indices of the sampled units, the
responding units, and the donors. However, since the
estimator is conditionally unbiased for any sample, it is also
unconditionally unbiased. Kim and Fuller {1999) also use
this conditioning argument. Estimators for each component
of the variance of the hot deck imputed estimator are given
in the next section.

3. ESTIMATION OF THE COMPONENTS OF
THE TOTAL VARIANCE

This section contains the main results about estimators
of the three components of the total variance of a linear hot
deck imputed estimator. Throughout, we assume uncon-
founded sampling, response, and imputation mechanisms
and a lincar complete sample estimator of the form (5). The
results require that the cell mean model holds and that there
is at least one respondent in each imputation cell. We begin
with the variance due to sampling, Vg,

We assume that there exists a complete sample variance
estimator, ‘Z’n, that is design unbiased for the sampling
variance of 0, , is a quadratic in the y-variable, and is of the
form

ORI I I 2L Qi ()

ijeA

for known coefficients Q. This formulation covers the
Horvitz-Thompson estimator, where the Q. are determined
by the single and joint probabilities of selection. It also
covers the linearized variance estimator for the generalized
regression (GREG) estimator. Rao, Yung and Hidiroglou
(2002) show that the linearized variance estimator for the
GREG estimator can be written by substituting g, e, for y,
in the variance estimator for the Horvitz-Thompson esti-
mator of a total. Here, g, is the sample-dependent g-weight
and e, =y, - x; B, where x; is the vector of auxiliary
variables and B is the vector of estimated regression
coefficients. Since g, is not a function of y and B is linear
in the y-variable, g, e, is linear in y. Therefore, the
linearized variance estimator for the GREG estimator is
quadratic in y and can be expressed in the form given by
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equation (7). Note that in this case the .Q'.J. may be depen-
dent on the specific sample as well as on the selection
probabilities. Deville and Sérndal (1992) show that any cal-
ibration estimator has the same asymptotic variance as the
GREG. Thus, asymptotic variance estimators for calibration
estimators in general have the required quadratic form.

The naive variance estimator treats imputed values as if
they were observed values and can be written as

=§j§ Q, 5,5 (8)
Lemma 1 gives the bias of the naive variance estimator as
an estimator for V,,,. As noted earlier, the naive variance
estimator is proposed as the estimator of V(. to be as
consistent as possible with design-based inference. An
additional practical reason for using the naive variance
estimator is to take advantage of existing software programs
that estimate the sampling variance under complex samples.

Lemma 1. Under the cell mean model with unconfounded
sampling, response, and imputation mechanisms and the
assumptions that 9 is an unbiased hot deck imputed linear
estimator given by (6) and V is an unbiased complete
sample variance estimator given by (7), then the bias of the
naive varignce estimator, VD , as an estimatorof 'V, is

G
2Y ¥ X 940 2222%% % ©

g=1 i€A, jEAM g=1 i<
2 IJEA
where ARg =AM U, AMs =AMﬂUg, and

= 2 dudy. (10)
kEAJt

For any two nonrespondents, i and j, that have the same
donor, v, =15y, =0 otherwise. By definition, v, = 1.

Proof We begin by noting that the difference between V
and V" can be written as:

‘;0 - ‘}n =) Q, (5’:2 - )’iz)

igA

+2) g 0, (%5 ;- %)
i.jejA
= Z Q; (y:z 'Yiz)

i€Ay

2 LT 0, (-0
I'EAJR.}'EAM

23X ) Qij(yf* i 'ysyf)'

i<j

(11)

ijehy

Under the cell mean model, the conditional expectation of
the first term of (11) is zero. The conditional expectation
E(y, ¥ = ¥:3,)0= Ec Ly, (¥ yj)] 0 unless respondent §
is the donor for nonrespondent j; it is thus zero when units
i and j are in different cells and is only nonzero for one i
and j in the same cell g. It may be represented by
E, [y, (yj 1= =d; cg The conditional expectation
E ( Yiy ~ ¥ y}) is zero uniess nonresponding units i and
i have the same donor, which can occur only if these units
are in the same cell It can be represented by
E.(y; Y - %%)=1;% o for i # j. Applying these results in
equation (11) gives

E,(V,-7,]A. AR,d)=2Z Y ¥ 9450

g=1 [EAR ;EAM

+2Z Y ¥ 90 (2

g= i<f
i ;EA

The proof is completed by noting that since 17" i
unbiased under the design, it is also unbiased for V,,,.
Substituting a model unbiased estimator for UZ’ say &
gives an unbiased estimator of the bias of the naive variance
estimator. Note that whenever respondents donate their
values to more than one nonrespondent, the last term in
equation (12) is positive; otherwise, it is zero.

Two simple examples illustrate applications of these
results. Consider first the estimation of a population mean
from a simple random sample selected with replacement. In
this case, 2, =n2 and Q =-n"2(n-1)" for i*j.
Assume that the cell mean model holds with hot deck
imputation and that no donor is used more than once. By
Lemma 1, the bias of ‘? is 2n%(n-1) 'nggcz,
where m, =%, A, X, Ay dl.j is the number of imputed
values in cell g In'this case, the bias of the naive variance
estimator is O, (n 2y and hence is negligible for large n.
Now suppose that every missing value in each cell is
imputed from the same donor. In this case, with
EZK}GA ¥; = mg (m, - 1)/2, the bias of V is
-n Yn-1) 1): (m +m.)o 2 which is 0,(n By andis
the same order as thc samphng variance.

As the second example, consider a simple two-stage
sample of size n = ab, in which a clusters are selected from
a population of A equal-sized clusters by simple random
sampling and b of B elements are selected by simple
random sampling within each sampled cluster. Let y ; be
the value for y for sampled unit i in cluster a.. Assume that
the first stage sampling fraction is small enough to ignore.
The estimate of the variance of the sample mean is of the
form given by equation (7) where Q_ , . =a b2 =n"?

i, BJ
for =P, and Q, ;.= -n 2(g~1)"! for a#p. These
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values can now be inserted into equation (9) to compute an
estimate of the bias. For example, suppose that all missing
values are imputed using donors from the same cluster (the
cells are the clusters) and no donor is used more than once.
In this case, the bias of the naive variance estimator is
2 m, cru, where m is the number of nonrespondents
in cluster @. Now, suppose an overall cell mean model hot
deck is used and no donor can donate more than once, but
that donors are always chosen from different clusters than
their missing values. In this case, the bias of the naive
variance estimator is -2n (a - 1)'6* £_m,. This two-
stage example shows the naive variance estimator can be
biased in either direction. In both of the cases considered,
the bias is of lower order than the variance, and if a is large
the bias will be negligible.
The second component of the total variance is the
variance due to imputation, V... Lemma 2 gives an
unbiased estimator for this component with hot deck

imputation.

Lemma 2. Under the assumptions used in Lemma 1, an
unbiased estimator of Vi, is

v -22{2 w; “2+EEWWV., g} (13)

icA

,]EAM
A2 . s . 2
where 6, isan unbiased estimator for o,

Proof. Since the variance due to imputation involves the
squared difference between the imputed and complete
response estimates, we begin by writing

(60, <[ S5
= Zwiz (y,.* _y-')z

i€A,,

Bl b o)

Noting that Eé.(y‘ - ¥ )2 = 20 for i in cell 8 and, from

above, E,[(y; -y () J’)] E(J’, Y -yl =
Y o2, it follows tht

G
VM=2Z{EWO’+EZWW'YU g} (14)

=1

EAy i<j
i,jeAMg

~

Substifuting 0:‘;, a model unbiased estimator for Gi,
establishes the lemma.

Equation (14) shows that the imputation variance has
positive contributions from each imputed value and also
from using donors more than once. For example, suppose

that the weights for all sampled cases are equal. The
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contribution to the imputation variance from cell g is then
proportional to the sum of the number of missing cases in
the cell and the number of pairs of nonrespondents that
receive values from the same donors. Limiting the number
of times donors are re-used can reduce the imputation
variance.

The third term in the total variance is V., which
previous research often considered small or negligible (e.g.,
Sdrndal 1992; Deville and Sirndal 1994). Lemma 3 gives

an unbiased estimator for V.

Lemma 3, Under the assumptions used in Lemma 1, an
unbiased estimator for V,

G
Z[E Y wwd,- Y wllE.  5)

=1 |icA, jeA jed
8 J Rx" M, i My

Proof. Begin by writing (9 - 9 )(9 -8, =

6 (9 9) 8y (9 6) Let 6,, be the ﬁmte population

total which can be wmten as eu-aYi t
Tiea Vi ) 4, Using this expression, the second

component can be expanded as
9N(9r - en) =

[ IIEADISEDD y,-)

i€l -A €A, i€Ay

)3 wj(yj*_yj)]'-

J€Ay

In taking the conditional expectation of this product, the
only nonzero contributions occur ¢ither when unit i in A,
is the donor for yj', or when unit i in A, in the first set of
parentheses is unit § m the second set. In the first case,
E [y, (yj —yj)] = a’q cg for i EAR ., J€EA,, . Inthe second
case if nonrespondent unit i in A, 1s the same as unitj in
the second term, i=j, Eg[y,. (yj y}.)] = -csg, and this
expectation is 0 otherwise. Thus,

E(6,(8,-8,)/AALd)=Y 3 wdl

g jeA“x
- E Z W, oﬁ =0.
B JEAy
The first term can be expressed as
6,(6,-9,)-

(E Wyt

icAg i€A,, JEhAy

Y wy, ) [ 2 W (yf‘ N yj)]'
Using the results for E, (y,(y;"

Vw;D<=ZG:( 2 Z ww,d; -

=1 fEA, jEA
g jo My,

- yj)) given ahove,

Yy

=1 ieA
g My

w' |t (16)

Substituting an unbiased estimator of u; proves the lemma.
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The estimator of V,;. is zero when the weights are
constant, or more generally when the weights of the donors
are equal to the weights of the missing cases to which they
are assigned. Most of the simulations in the literature (e.g.,
S#arndal 1992: Lee, Rancourt and Sdrndal 1995) have used
simple random samples so that the estimates of the mixed
term from the simulations are approximately equal to zero.

To illustrate the effect of unequal weights, consider a
stratified simple random sample selected from two equal
size strata with replacement, and suppose that the sampling
rate in stratum 2 is k times the rate in stratum 1. Let the
imputation model be the overall cell mean model] and let the
hot deck procedure select donors with simple random
sampling without replacement. For this simple situation,
Vux can be derived algebraically. Table 1 shows the
percentage contribution of the mixed term to the total
variance ( 100" 2V ;. /V,0.) for various combinations of
strata response rates. The table illustrates the fact that when
the sampling weights are unequal, the contribution of the
mixed term may be important and can be either positive or
negative. The mixed term may also be important in domain
estimation, as discussed in the next section.

Table 1
Percentage Contribution of the Mixed Term to V.

Response rate QOversampling rate in stratum 2
Stratum 1 Stratum2 k=2 k=4 k=6
100% 80% 4.3 5 13.7
100 60 8.7 10.8 18.3
100 40 13.7 18.3 17.7
104 20 19.9 28.8 29.7
60 100 -154 -34.1 -44.5
60 80 -10.4 -27.1 -37.6
60 60 =52 -19 -29.3
60 40 1 -8.8 -18.2
60 20 94 6.5 0

Now consider estimating the total variance using the
three lemmas for the hot deck estimator under the cell mean
model. To estimate V,,,, we can either use the naive vari-
ance estimator, with its bias as given in Lemma 1, or correct
for the bias with a procedure similar to that recommended
by Sirndal (1992). For a single stage sample, the bias cor-
rection given by Lemma 1 is easy to apply. However, with
multi-stage sampling the correction involving £2 may be
complicated and difficult to implement in practice. In this
case, the najve variance estimator should produce an ade-
quate approximation provided that the number of sampled
clusters is large, that no donor is used too often, and that the
percentage of missing data in each cell is not extremely
large.

For the other two components, the only unknown
quantities that must be estimated from the sample are the
cell variances, oﬁ. These parameters could be estimated
using either unweighted observations or weighted obser-
vations, where the weights are the selection weights. Fuller
(2002) recommends the use of weighted observations to
provide more robust estimates. Unbiased estimators of the
conditional variance due to imputation and the mixed
component are computed by substituting unbiased estimates
of the cell variances, 6;. Then, adding 170, I7I’MP, and
2V, gives an estimator of the total variance

G
Vior=% 22X X X W;W,-‘!f,-ﬁﬁ
g=l i<
ijEAy,

G
+23 3 Y wwd; 8. (17

=1 ied, JeA
& ¢ Rg} My

To examine this estimator, we give a few simple
examples with known solutions. All of these examples
involve samples with equal weights so the mixed com-
ponent is zero. First, assume simple random sampling with
replacement, hot deck imputation under the overall cell
mean model, and no donor used more than once. Using the
naive variance estimator for V.. the estimated total
variance is n"sy~2 +2n7'8%(1 -m™"), where sj;z =
(n - l)“'ZieA(fi - ¥, r is the number of respondents,
and m is the number of missing cases. If we use & instead
of s);z (where &% is mode] unbiased while s;z has a small
sample bias), then this simplifies to r "'&%[1 +m(r -m)n "]
Taking the expectation of this estimator gives the
unconditional variance of the without-replacement hot deck
estimator given by Kalton (1983, page 25, 2.3.1.7).

If a multiple cell mean model rather than an overall cell
mean model is used, then the estimated total variance is
nlsl+2n L] 82(n - r,), which is similar to the
result given by Tollefson and Fuller (1992).

Continuing with the simple random sampling example,
now allow donors to be used more than once with the
overall cell mean model. Again using &° instead of s};z , the
estimated total variance is approximately

n'zﬁz(n+m+22"f,-j)- (18)
i,lj:jAM

For fixed m, the variance in equation (18) is minimized
when no donor is used more often than any other donor, to
the extent possible (thereby minimizing X,_ Asze a Vi)
Therefore, an imputation scheme that uses any donor at
most once more than any other donor minimizes the total
variance.
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If donors are selected by simple random sampling with
replacement, then E,[y,.).] = r ! and the expected value of
(18) is r'&’[1 +n Ym(r-1)]. This is the expected
variance of the with-replacement hot deck estimator given
by Kalton (1983, page 26, 2.3.1.9).

These examples show that the approach produces rea-
sonable estimates for the total variance in simple cases and
highlights the conditional nature of the variance estimates.
For example, (18) is conditional on the actual number of
times donors are used rather than on the expected number
of times they are used (the unconditional result). The ap-
proach is flexible enough to allow a variety of imputation
methods, including with- and without-replacement and
weighted and unweighted versions of the hot deck.

4. DOMAIN ESTIMATION

This section considers the important problem of domain
estimation under the cell mean model with hot deck
imputed data. Previous research on this topic is limited (Lee
et al. 1995). The standard estimator with complete response
for a population total for domain v is @n = }:,.E AW Y
which may be alternatively expressed as 8, =% ‘w'y,
where w; =6, w, with 6, =1 if (€A, and 6 =0 OEher-
wise. The hot deck 1mputed estlmator is 8 =
E,“ w, 8,5, = X, ,w ;. Throughout we assume that
is known for all i€A.

The cell mean model assumes that all the elements in a
cell have the same distribution. In general, some elements
in a cell may be in the domain and others not. One version
of the model assumes a separate cell mean model for the
domain alone and then applies an appropriate imputation
scheme. The theory given in the previous section covers this
case, and it will, therefore, not be discussed further here.
While it is feasible to account for key domains in the
imputation stage, it is impossible to consider all possible
domains analysts may wish to study. Thus, the focus in this
section on domains that cut across imputation cells has
important practical implications, especially for analysis of
public use data files.

We now discuss the estimation of the three components
of VTOT , the variance of an imputed domain total. Consider
first the estimation of VS‘AM In the case of complete re-
sponse, by setting y, = 0 for "elements outside the domain,
the estimated sampling variance can be expressed in the
form of equation (P as V, =¥, _ R ,iiyr'z “2XX, PRIAA A
With domain membershlp known for all sample elements,
the conditional bias of the imputed variance estimator 170v,
following the developments in section 3 is:
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As discussed in section 3, with large samples V may be
conveniently employed to estimate V,,, using slandard
survey sampling variance esu:uanon software. It is
interesting to note that the naive varance estimator would
be unbiased if all the donors were from outside the domain
(thus, d =) and no donor was used more than once
(v; = 0)

The derivation of V’ follows directly from Lemma 2,
where the weights are treated as constants in the conditional
expectation, Replacing w/ for w, in equation (13) gives

ﬂz{zwehzzwwn4

=1 EEA Y, i<j
!}EAM
g 2 .2 2
23 [ £ v - T Twomnol
g=1 |icAy iaf
ig i fcA
LJ€E My,

Ve does not depend on whether donors come from within
or from outside the domain.
The derivation of V' MIX, also follows from section 3.

Substituting w/ for w, in equatlon (15) gives
G

Vr(nfo( Y ¥ wiw d, - Yy wj'zJ 6;

=1 icA, jeA fEA
g Ry T8y I8 %,

e

> X wow,;dy - ) sz) GE' (20)

ieAva jeAMﬂ jEAMsv

Note that the mixed component is not zero for a domain
total, even if all the original weights are equal. With equal
weights w (but not equal w'), the contribution to vﬂux is
zero when the donor is from inside the domain whereas it is
negative when the donor is from outside the domain. As a
result, VMIX —wzzg ! - “E, where [ is the number of
donors from outside the domain in ce]l g. In this case,
ignoring the mixed component with domain estimation
results in an overestimate of the total variance. With un-
equal weights, the bias due (o ignoring the mixed com-
ponent can be either positive or negative.

The total variance of a (linear) imputed domain estimator

under the cell mean model is then estimated by
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Vior, =V, E LY owiw, v, 8
i
:}EJAM

G
+222 E wwdq‘;‘:

g fGAR ]EAM

(21}

As an illustration, consider the case of equal weights
within the domain (w,, =w ) and no denor used more than
once. In this case, the second term on the right in (21) is
zero and the third term reflects the variance increase from
imputation. If all the missing values are 1mputed usmg
donors from the domain, then the third term is 2w’ Zm v &
where m,, is the number of missing items in ccll g and
domain v. On the other hand, if no units are imputed from
within the domain, then this term is zero. Thus, the total
variance is minimized when the donors are selected from
outside the domain rather than from within the domain.
This result occurs becanse imputing from outside the
domain in effect substitutes a new value for a missing value
for domain estimation, thus maintaining the original domain
sample size. On the other hand, imputing from within the
domain does not increase domain sample size and there is
also a penalty to the variance from reusing a domain
respondent’s value for the nonrespondent.

If the distribution of y varies by domain (i.e., the
imputation model is misspecified), then choosing donors
from outside the domain results in biased estimates. Since
all models are misspecified to some degree, it is therefore
generally unwise to intentionally select donors from outside
the domain in order to minimize the variance.

5. SIMULATION STUDY

A small simulation study was performed to examine the
model-assisted variance estimates for estimating an overall
total and a domain total. A sample of 40 clusters with exact-
1y 5 units in each cluster was selected from an infinite su-
perpopulation, where y,_; is the study variable for unit  in
cluster a. The y-values were generated from y  =ta +e,;,
where a and e ; are independent random draws from the
standard normal distribution. Thus, the y-values have mean
zero, variance (2 + 1), and comrelation p = /(1 + T°) if
the units are from the same cluster and p = 0 otherwise.
Values of 1 =0 and 1 = 0.5 were chosen, giving correla-
tions of (0 and 0.2, respectively. The value, p = 0.2, was
chosen to illustrate the effect of a high intraclass correla-
tion. In addition to the y-variable, an indicator variable for
domain v was generated by independent sampling with the
probability of being in the domain of 0.25. Respondents
were selected from the full sample using a uniform response

probability of (.6 and missing values were imputed using a
single-cell with-replacement hot deck. A total of 5,000
Monte Carlo samples was selected.

The simulated point estimators for the overall total and
the domain total are unbiased. The means and biases of the
model-assisted variance estimators (I?’Tb,r) are given in
Table 2 (the tabulated values are divided by N2107%).
When p =0, the relative biases of the variance estimators
for the overall and domain totals are very small. On the
other hand, when p =0.2, the variance estimators have
negative relative biases that are not negligible (a relative
bias of -13% for the overall total and -5% for the domain
total). To identify the source of the bias, Table 2 also gives
the means and biases of the three variance components. The
tabled values show that V., and Vi, are approximately
unbiased, and it is only V that has a non-negligible blas

When p =0 the cell mean model holds and V
unbiased as expected under the theory. When p = 0.2, the
correlation of the y-values within clusters implies that the
cell mean model assumption does not hold. The imputation
procedure replaces some missing values using donors from
outside the cluster, causing \70 to underestimate the sam-
pling variance due to the underestimation of the intraclass
correlation. In this particular situation, the model failures do
not result in biased estimates for the other two components.
However, these components could be biased under other
types of model failure. The simulation illustrates the
dependence of the model-assisted estimators on the model
assumptions and this is discussed further in the next section.

Table 2
Mean and Bias of Simulated Variance Estimators, with Cluster
Samplmg of 40 Clusters with 5 Elements and Response
Rate of 60 Percent*

Vior v, Vip Vi
p Mean Bias Mean Bias Mean Bias Mean Bias
0 104 0.5 50 -19 54 -1 0 1.2
0.2 126 -196 86 21 61 0 0 0.9
. 0 16 01 12 03 11 o -4 -0.2
» 02 18 416 -1 12 0l 4 -0l

¥ The values in the table are actual values divided by N* 10

Estimate

6. DISCUSSION

This paper describes a method for estimating the vari-
ance of a survey estimate when some of the values are im-
puted using hot deck imputation. The method uses a model-
assisted approach and conditions on indices for sample
members, respondents, and hot deck donors. The approach
extends the work of Deville and Sédrndal (1994) to variance
estimation for hot deck imputation, probably the most
widely used method of imputation in household surveys.
The proposed variance estimator is valid for a general
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sample design and for a variety of estimation procedures
under the superpopulation model and unconfounded as-
sumptions. The paper also extends the previous work by
handling stochastic rather than deterministic imputation and
giving conditions for the bias of the naive variance
estimator as an estimator of Vy,,, to be small.

The results focus attention on the need to take the mixed
component into account when the sample elements have
unequal weights. In particular, since domain estimates can
be treated by assigning adjusted weights of zero for sample
elements not in the domain, the mixed term needs to be
taken into account in estimating the variance of domain
imputed estimates even if the original weights were equal.
Other statistics can also be covered by the approach used
for domain estimates. For example, for the simple regres-
sion of y on x, with y including hot deck imputed values and
x complete, the regression coefficient can be expressed as
a weighted linear combination of the y's: b =
Ew,x, -x)y/Zw, (- X Y=Xw'y, where w/

w, (x -x )/Ew (x -x )2 Also the difference between
tﬂwo domain estimates, 6 and 8 2> can be expressed as
Ovl ev2 Eaevlwl ¥~ ):leﬂwr Y= Ewl Yis where Wr

forievl,w/=-w, foriev2, and w, =0 forig vl Uv2.

The last example, involving the difference between
domain estimates where imputation cells cut across
domains, highlights the importance of the model in the
imputation process. In this example, the analytic interest in
the difference between the domain statistics is incompatible
with an imputation model that assumes no difference in
y-distribution across domains within imputation cells. By
imputing across domains with a hot deck cell imputation
scheme, the sample domain means for y will be brought
closer together, thus decreasing the estimate of the differ-
ence. Thus, a good imputation model is crucial for pro-
ducing valid point estimates.

The model-assisted approach to variance estimation with
imputed data described here assumes a linear estimator, but
smooth nonlinear functions can also be included using a
Taylor series approximation. Like the Rao and Shao (1992)
adjusted jackknife method, the model-assisted method is
applicable with general sample designs and estimation
schemes. However, the adjusted jackknife method is
applicable only with a weighted hot-deck whereas, as a
result of its model assumptions, the model-assisted method
can be employed with a variety of hot deck methods,
including choosing donors with equal probability and with
probabilities proportional to their weights. The model-
assisted method of variance estimation could also be
extended to other imputation schemes such as nearest
neighbor imputation and fractional hot deck imputation
(Kalton and Kish 1984; Fay 1996; Kim 2000), a technique
which reduces the variance due to imputation.
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Implementation of the model-assisted method with hot
deck imputation requires the availability of the information
needed to compute the three components of the total
variance. Standard survey sampling variance estimation
software can be used to compute an estimate of f’o that is
approximately unbiased with large samples, but as the
simulation study illustrates the estimate may be biased if the
cell mean model does not hold. The computations of the
other components require information on the identity of the
donor for each imputed value and of the imputation cell
membership of all sample members. From this information, d
and Y, can be determined. In addition, an estimate of c |s
requu'ed

While the theory given above applies to variance
estimation with many sample designs, including multi-stage
samples, there are serious concerns about the validity of the
imputation model in many cases. In the case of multi-stage
sampling, the means of many survey variables differ across
PSUs, yet hot deck cells are seldom formed within PSUs.
Rather they are constructed in terms of other variables that
cut across PSUs. Even within these cells there may be
differences in means between PSUs. These differences may
be offsetting to some extent and not introduce substantial
biases for point estimation. However, their effect on
variance estimation may be more significant. As indicated
in the simulation, failure of the assumptions may have a
greater impact on second order statistics than first order
statistics. This issue merits more detailed investigation.

Imputation is more difficult when the goal is estimating
a function of more than one variable with missing values.
To produce an unbiased estimate of a parameter that
involves several variables subject to imputation requires the
development of an appropriate multivariate model and an
imputation procedure consistent with that model. Given an
appropriate model and a hot deck imputation that is
consistent with it, the model-assisted approach to variance
estimation can then be implemented. However, estimating
the variance becomes considerably more complex with
multivariate estimates. The development of practical
methods of imputation and variance estimation for this
situation is much needed.
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Domain Estimation Using Linear Regression

MICHAEL A. HIDIROGLOU and ZDENEK PATAK '

ABSTRACT

One of the main objectives of a sample survey is the computation of estimates of means and totals for specific domains of
interest, Domains are determined either before the survey is carried out (primary domains) or after it has been carried out
(secondary domains). The reliability of the associated estimates depends on the variability of the sample size as well as on
the y-variables of interest. This variability cannot be controlled in the absence of auxiliary information for subgroups of the
population. However, if auxiliary information is available, the estimated reliability of the resulting estimates can be
controlled to some extent. In this paper, we study the potential improvements in terms of the reliability of domain estimates
that use auxiliary information. The properties (bias, coverage, efficiency) of various estimators that use auxiliary

information are compared using a conditional approach.

KEY WORDS : Domain estimation; Auxiliary data; Conditional properties.

1. INTRODUCTION

One of the main objectives of a sample survey is to
compute estimates of means and totals of a number of
characteristics associated with the units of a finite
population U. The data are often used for analytic studies
such as the comparison of means and totals for subgroups of
the population. Such subgroups are referred to as domains of
study. Hartley’s (1959) paper is one of the first attempts to
unify the theory of domain estimation. Hartley provided the
theory for a number of sample designs where domain
estimation was of interest. His paper mostly discussed
estimators that did not make use of auxiliary information.
He did, however, consider the case of the ratio estiiator
where population totals were known for the domains. The
use of auxiliary data in the context of domain estimation has
been discussed in a number of articles. Sidrndal, Swensson
and Wretman (1992) provided a unified treatment of
domain estimation with auxiliary data. Estevao, Hidirogloun
and Simdal (1995) were the first to recognize that the
weights accounting for auxiliary data could be domain
dependent or not domain dependent. Estevao and Sirndal
{1999) discussed desirable properties of regression esti-
mators of domain totals using auxiliary data.

" The existence of multivariate auxiliary data raises a
number of questions in the context of domain estimation.
Some of those questions are as follows. What is the effect of
having auxiliary information that is not known on a popu-
lation basis for the given domain of interest? How do we
compute valid variance estimates in the context of domain
estimators that use auxiliary data? If more than one esti-
mator is possible for point estimation and/or variance esti-
mation, what criteria should be used to choose the best

estimator? Durbin (1969) supported the use of conditional
inference to do such comparisons. He stated, “If the sample
size 1s determined by a random mechanism and one happens
to get a large sample, one knows perfectly well that the
quantitics of interest are measured more accurately than
they would have been if the sample size had happened to be
small. It scems self evident that one should use the infor-
mation available on sample size in the interpretation of the
resuit. To average over variations in sample size which
might have occurred but did not occur, when in fact the
sample size is exactly known, seems quite wrong from the
standpoint of the analysis of the data actually observed”.
Holt and Smith (1979) favored conditional inference, and
apphlied it to study the properties of the post-stratified esti-
mator, given simple random sampling. Rao (1985) intro-
duced the idea of “recognizable subsets” of the population
to formalize the conditioning process. Recognizable subsets
are defined gfter the sample has been drawn. In the case of
domain estimation the number of units belonging to a par-
ticular domain is a random variable. Recognizable subsets in
that context are those where the sample size is fixed within
each domain. Comparison of the conditional statistical prop-
erties (i.e., bias, mean squared ermor) of the different esti-
mators can then be based on these subsets. The conditioning
process assumes that population totals are known for each
domain. In the case of simple random sampling, the number
of units in the population domain is assumed known.

The main purpose of this paper is to stdy the un-
conditional and conditional properties of a number of
domain estimators of totals in the presence of auxiliary data
in the context of simple random sampling without
replacement (SRSWOR). These conditional properties will
be established by conditioning on fixed sample sizes within
each domain.

Michael Hidiroglou, Business Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, K1 A 0T6; Zdenek Patak, Business Survey Methods

Division, Statistics Canada, Ottawa, Ontario, Canada, KL A 0T6.
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The paper is organized as follows. In section 2 we will
introduce several estimators of domain totals. Their
unconditional and conditional properties are provided in
section 3. In section 4, we will present the results of a
simulation study for the case of the ratio estimator of
domain totals, and provide some concluding remarks in
section 5.

2. ESTIMATORS OF DOMAIN TOTALS

We first introduce some notation to set up the
framework, under which we will be assessing the
performance of various estimators of domain totals. Let
U= {1 oN } denote the finite population. A sample
“s” is selccted from this population using a sampling plan
P(s). Let the first and second order inclusion probabilities be
given by m, and m,,. The domain total ¥, =% L Ve is the
parameter of interest for a variable “y”. A domaln v,
(d=1,..,D0) is any subpopulation of U7, for which a
separate estimate may be required, before or after the
planning stage. The number of population units in domain
U, is denoted N, and N=Y2 N, for D mutually
exclusive and exhaustive domains spanning the entire
population. The sample s is correspondingly divided into D
domains sy, ..., §;, ..., §, where s, =U,ns. The
realized sample size within s, is a random variable that we
denote n,. Note that the sum of the n,’s over non-
overlapping and exhavstive domains of the sample equals
n . An estimator of the domain total ¥, =%, y, that does
not use auxiliary data is given by l”‘d'm. =
Z.rd W, ¥i =5, W, yu where w, =7, ,and y, is equal
o y, if keU, and 0 otherwise.

Auxiliary information in the form of a p-dimensional
vector X may be available at different levels of aggregation.
It may be known for each unit in the population, or for
subsets U, c U (g =1,...,G) of the population U that may
coincide with the domains U, . We denote such known
totals X, =%, X,; they are estimated by XEHT
2, W xk A modified set of weights #, incorporating the
auxﬂlary data can be computed using either calibration or
linear regression procedures (LR). We chose the LR
approach. In the case of G population groups, the LR
estimator is given by

~ A G ~ ’A
Yy =Yim+ Y (X, - X, m)B,

&=l

(1.1)

where B =2, W X, X, /¢)7 2, w X, ¥/, and ¢,
are suitable positive constants, The use of auxiliary data in
the domain context offers a wide range of choices for
various levels at which auxiliary totals are used and
regression models are constructed. To simplify matters, we
assume that g =1 (e.g.: a single group L)), yielding the

~

simple regression estimator Y, = f‘HT +(X - XHT )B,
where Xyp =2, W, X, -

We consider six estimators for estimating the domain
population total ¥, . These estimators are based on whether
we use the domain totals X, or the population total X, and
whether we construct the regression estimator at the domain
or at the population levels. The estimators are categorized
into Horvitz-Thompson and “Héjek” types. We provide an
example of the ratio estimator that is associated with each of
these estimators.

2.1 Horvitz-Thompson Type Estimators

Casel

We assume that the auxiliary information x,, is available
at the population level U, X =3, x, and that the domain
specific v, varlables are regressed on x,, kel/. The
resulting population regression  parameter Bm
(T, %, %, /¢, )" SyX, ya /e, is estimated by B, =
(Z, wx, X, /e, T, WX, yg/c, and the resulting
estimator of the population total ¥, is

~

Yd.fq = I’}d‘,]-l']" + (X - im)'ﬁh;‘ (21)

Example: The domain ratio estimator given by Yd RAT =
XRM, where R,d = Yd ar ! X yr- This estimator was first
suggested by Hidiroglou (1991), and is discussed in more
detail in Estevao et al. (1995).

If the auxiliary data totals are available at the domain
level, X, =%, x,, then two possible estimators of ¥,
(cases 2 and 3) can be constructed, depending on how the
population regression parameter is estimated.

Case2

The population regression parameter

B, =[zud X, xl/ckj_ Zﬂd x, yi/co)

is estimated by regressing y, on x, for each domain U,
separately. Its estimator is given by

-1
B, = (EM Wy, X; x;/ck) st (Wk X yk/ck ),
and the resulting regression estimator of a domain total is
I;d,fri = };d.m +(X, - id,m*)'ﬁzd (22)

where fid =3, w, X, with x, defined similarly to y,,.

Example: The Horvitz-Thompson post-stratlﬁed estimator
given by deosm =X, R 24> Where de -—Yt“_nu}’}'('dHT
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Case 3
The population regression parameter

B, =(ZU (xk X/ ))_IZU (xk Vi /Ck)

is estimated by regressing y, on X, using all units in U.
The corresponding estimator is

B, =(ZJ w, X, XE/CJIZ, (Wk Xk yk/ck)’

resulting in the regression estimator
i}dfr = Ad ur T(X, _Xdl-["[‘)'ﬁ 2.3)

Example The alternate ratio estimator gwen by Y 4 ALTR =
Yyur +(X, de)&,where R, =Yy ! X

2.2 Hijek Type Estimators

Estimators (2.1)-(2.3) belong to the Horvitz-Thompson
family. If the known population domain size N, is also
incorporated in the estimation, then we get the “Hajek”
versions of the previously defined Horvitz-Thompson
regression estimators. The Ha_|ek regre551on estimators are
obtained by replacing Yd T Xd ur.and X, by

Y na =( d/N ) Yiurs X qua =(Nd/Nd) X
and
Xua = (N / N )XHT
where N 4 =Ls, W, and N =3, w,. The estimators are
nearly conditionally unbiased for a given n,;, whereas their
Horvitz-Thompson counterparts do not have this property.

The “B s contained within the Hijek regression estimators
correspond exactly to their Horvitz-Thompson counterparts.

Case 4
Vi =Fana + X=Xp0 By, 24)
Example The Héjek ratio estimator given by Yd RAT =
Yyua +(X = Xy )Ry,
Case 5
~ X ) B (2.5)

Example: The Hijek post-stratified ratio estimator given by
Yd rostr = Yaua (X, Xd HA )de This estimator is
identical to the Horvitz-Thompson post-stratified estimator.

Case 6

fd'.!r =Y, un + (X,

?:itr =};d aa H(X, _)A(a' m)’ﬁs- (2.6)

Emmple The Hijek alternate ratio estimator given by
YdA.LTR —Ydm +(X, XdHA)R
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3. PROPERTIES OF THE DOMAIN
ESTIMATORS

Estimators (2.1) - (2.6) may be expressed as:
Yyu =Z, We Qe Y =Z, Wa Ya 2.7

where a, is an adjustment factor that may or may not be
domain dependent. The product of the design weight w,
and the adjustment factor a, is known as the regression

- weight (or calibration weight) #,. Tables 1 and 2 provide

a summary of these factors, as well as the residuals required
for unconditional variance estimation. The population and
sample residuals are denoted as E,, and e, . The indicator
variable &, is equal to one if k€ U, and zero otherwise.

The approximate population and corresponding esti-
mated variances of the Horvitz-Thompson estimators
Viw, (i=1,2,3) are

V(.. )= L ( ](i] 8)

and

W =2 Y, [a‘”‘ o }[“—j‘%} 29)

Ry ¢

where A,=n,-m,@m,;, 7,= Pr{k,fe s} with the
appropriate E, ’s, €, 'S, a, 's defined in Table 1.

The approximate unconditional population and coirre-
spondding estimated variances of the Hajek-type estimators
Vpw, (i=1,2,3) are

4 (i;:i,fri ):
DIPINE-

Edk _(Zu Ea‘k /Nd )aa’k
T, X

[Ede _(ZU Edk /Nd )653}
T

< for j=1

{Edk ‘Eu, ][Edt ‘Eu, ]
220, Au
a T, T,

for j=2,3 (2.10)
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Table 1
Adjustment Factors and Residuals for Horvitz-Thompson Regression Estimators
Estimator Domain Dependent  Adjustment Factor: a Residuals
P! E, = -x' B
y & . WX X X de = Ydic — Xk Big
Yyt No 1+(X-Xym) (Zs__k_u_J X .
C Cx i = Yar — %k Byg
+ N\t Eyp=yp-Xz B
- - WX, X X de = Yar = Xagx B4
Yd fr. YeS Sdk 1+(Xd _Xd,HT) Z M —i . A
e R i e = Ya —Xg Bag
P E, = —X' B
. - WX X X dk = Yk — XacD3
Y, Yes Syt (Xy—-X —Tk k| & .
- at e d'm){zs Cx Ck €y = Yar —Xax B3
Table 2
Adjustment Factors and Residuals for the Hijek-type Estimators
Estimator Domain Dependent  Adjustment Factor: a, Residuals
-t E, = -x;B
~ %’ x de = Yar — Xglig
7y Yes (X XHA) [z WiXeXe | Xk .
Nd L € e = Yo — %k Big
-1 ’
& N, P WX Xy | X, Ep = Yo — Xz By
Y en Yes 8| =2 +[x,, —xdm) (Z, —hTkTk "] —£ -
Ny L ct a = Yo — Xar Boy
. ; Nl E, = —X' B
~ N A WX, X X ak = Yar ~ X3
¥ Yes B 4 (X, - Ky ) [Z, _ku] X ) -,
N, Cr Cy 25 = Yo — X B3
and . N
(x}) = (1’ (xdk — Xy, ) J
( ) ZZ u [adk € J[ 7 edf] -
T, T, yields ¥, .

forj=1,2,3  (211)  Proof We first show how to arrive at the Hijek form of the
where E"Ud =%y, Ex/N,. The appropriate E, s, ez’s, regn’-ission estima’toi'. Defining tl}e auxi‘liary dflta vector z,
and a,, ’s are defined in Table 2. Note that the form of the ~ 8s Z;, = (X, X, ), the regression estimator is
estimated unconditional variance is the same for both the . =y (Z 7 )’ B
Horvitz-Thompson and the Hajek-type estimators. o =t tie = Lyr ] B,
Result 3.1: The H4jek-type regression estimator can be  Where .

. ) . R , .

obtained as a by-product of the regression of y, on B, = (Z szkzk/ck) (Z WeZe Yy [ )’

oy =(L0x %) ).

=% 1, andZHT Z WZ,.

where X, = N~' T, x,. The resulting regression vector is If x, =1, Y‘gr is exactly equivalent to Y, =Z’ B,.
ﬁo' _(ﬁ,n B ’] Decomposing B, as
where B, =(Bo,Bx ] ,
’ -1 - ;o A
B, =([2 w,(x, -%,)x, -%,) /Ck)] X we have that ¥, =NB, +Zyx,B,, where B, =5, -
: %, B_and

j.(‘W (X _des)y IC) - - -l
z o £ Z, Wk(xk_xs)(xk"xs)

’

and ﬁ“:j"‘; (iU_i‘:) ﬁx’ with 9”3-:}‘}HT/K'r and ﬁx= X
% =X, /N €k

The regression estimator of total Y, -Nﬁ. is equal to 3w (x, -%. )Yy, - 5.)
the Hajek form ¥, =Y, +(X-X,,)B,. The various s K k 75
Hijek-type domain regression estimators can be obtained €k

using this approach. For instance, regressing y,, on Hence, the Hajek form of the regression estimator is
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?(r =‘?HA "'(Xu _f{HA)'ﬁ

x°

Regressing y, on

o5y =(1x %))

>
N
v P8

yiclds the estimated regression vector B® =

where
- JU
B = Z’wk(xk_xxxxk_xs) zm
* €, s ,

and B =7 +(X,-%) B_. Substiutng B into
Y, =NB yields the Héjek form Y,, .

Remark 3.1: (Additivity). Suppose that the domains U,

are mutually exclusive (U, NU, =0 for d,#d,) and
exhaustive (U¢=;U =U). Addltmty over such domains
means that Zdﬂle o =¥, Yd tn —Yer where

¥, =V +(X-%X,n)B.
The additive property of }'}d'eﬁ is desirable because a single
set of calibration weights, w, a,, can be used repeatedly
to produce ad hoc domain estimates. Only two out of the six
estimators, Yd ¢, and Yd t,» e additive over all such
domains,

Remark 3.2: (Calibrating on domain auxiliary data).
Estevao et al, (1999} discussed some of the estimators
provided in Tables 1 and 2 for the case of a single auxiliary
variable x, . They arrived at their estimators by controlling
on domain information, either via auxiliary variables and /or
control totals.

In what follows, we will assume that the sample s of size
#n has been selected using simple random sampling without
replacement (SRSWOR) from a universe of size N. The
estimated unconditional variance of the Horvitz-Thompson
and Hijek-type estimators for this sampling plan is:

v (};d.trj )=

W, ) E,N (- f)Z(ad&edk a,e) 2.12)

d.
i n n-1

where a,e=Y,(a, e, /n) and f=n/N is the sampling
fraction.

3.1 Unconditional Properties

The choice between the various regression estimators
should be based on the level at which the auxiliary totals are
available, as well as bias and variance. All the above esti-
mators are asymptotically unconditionally unbiased; how-
ever, their variances differ. We compare the unconditional
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population variances of the six domain regression estimators
(2.1) - (2.6) by distinguishing two cases: (i) an intercept
term is included in the regression; and (i} no intercept term
is included in the regression.

Result 3.2: Assume that an intercept is included in the
regression, ¢, =cforallke U, and N > p, where p refers
to the number of auxiliary varables. The following
inequalities hold for the population variances of the domain
regression estimators (2.1} — (2.6):

() V(YAd.frz } < V(};d,frl }s V(l;d.cr,) s V(}?d.trl) ;
may be smaller, equal or greater o V(¥ ,, )-

(ii) V(Yd ) < V¥, t) and V(T ) < V(Yd 1)}
V(Yd ¢, ) may be smaller, equal or greater to V(Yd )

V()

Proof: In the case of simple random sampling without
replacement, V(Yd o )= ALy (Ey — EU_‘)z for £=1,2,3,
where A=N2(-f)(n(N-1)) and E, =
Yy, E4/N. Given that the regression contains an
intercept, it follows that 3, E; =0 or that 2, E, =

depending on which regression estimator we use, We only
show that (i) holds: the proof for (ii) is similar. The
population variances for fd ¢ and f’d ¢, arerespectively

V(-ur.) AZ (Ya —X Bld)
and

V(dfr,) AZ (Y — X4 2d)

The population variance of Yn, o 18

ViT,, )= AT, (Es -

where
o~ _ N - —
EU, =N IZUEdk ..—_{?d)(yud - Xy, 83),

with y, =N, 'Y, Y and Xy, similarly defined.

We first show that V(Yd t ) < V(Yd ¢) - To this end, we
decompose ¥, (y, —X,B,,)* into its within domain U,
and outside domain U ; components, yielding

ZU (Y ‘xlBu)z =ZU¢ (Yax _x;Bld)z
+ Zu; (Ya — X Byy )%
Since
Zud(ydk _x;cBld)z =ZU.4 (¥ -x;B,, )
+ 2, i By ~B),

it follows that V(ﬁwz ) < V(};d‘,rI )-
Next, we show that

V)Vl

The variance V(I;M,j) can be re-expressed as
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(¥ "";:B:a)2

V)= T, _(N_i](yu -, B} |
2 4

N
The difference between V(}c’d.m ) and V(I;d,trz) 1s:
|4 (};d.hg )‘“V(fd.erz )
' , N Y- o
Zyd (()’k "kas)z)—[Td](J’u, —XU,BZ%)Z
| _ng (s _x;Bzd)z

(Bs -B,, ) (Zu X, X, )(B3 _Bzd)

=Aq
N
{ dJ()’Ud -2B'X,, ¥u, +Bix, X, B )

=Aq

N
” (B _Bld) (Zu ka:t)(BB _Bld)
- -N ( -2B3%, ¥, +Bix, X, Ba)

Noting that 3, =X B,, itfollows that:

v, —2B3%, ¥y, + B3 X, X;; B,

~2B, %, X, B,,

+ B3 Xy, deB3

[ —
=By X, %y, Bas

=(B,-B,, )'iud X, (B;—B,,)
Since
Zudxkx; - N,X, X, =ZU" (xk -X,, )(x,c -%,, )’,
the difference V (¥, ,,)—V(¥,,,) canbe expressed as:
Ve - vlais)
= A{(B3 -B,, )'(Zud XX, — N, X, Xy, )(B3 -B,, )}

= A{(Bs _BZd) ng (xk - Xy, )(xk _iud) (B3 —-B,, )}

20.

Finally, we show that V(¥ u.05) May be smaller, equal or
greater to V(Yd +) by constructing examples:

(i) V(Y“,]) < V(Yd‘,,l), if B,=B,,;

(i) V(fdfr) = V(i}d!rl)’if B, =B,

(iii) V(Y“,) > V( “r) if the fit of y, on x, is

much poorer than the fit y,, on x; for ke U.

It can also be shown that ‘V(Ydf " ) < V(Yd o )i
V(Yd o) < V(Yd ¢ )3 and V(Yaf ) < V(Yaf ) - The esti-
mator wn.h the smallest variance is Yd w, - However, if it is
assumed that the BM s are similar across all domains, and

that there are very few observations in s,, it | may be
preferable to use Yd &, Ihe choice between Yd_,, and

Y,, should not always be based on the asymptotic
variance. If there are very few observations in s, , this can
cause 31gruﬁcant bias in Yd +, and also cause the exact
variance of Yﬂ. +, 0 be larger than that of ¥, t, » SO that the
latter may be prefelred

Remark 3.3: If there is no intercept in the regression, then it
does not necessarily follow that Result 3.2 holds.
Proof: We illustrate this statement using the elementary ratio
versions of cases 1 and 2. They are respectively the Horvitz-
Thompson ratio estimator Yd rat = Yaur (X !XHT) and the
Horvztz—Thonqpson post-stratified ratio estimator Yd POSTR =

Yyur (X7 X 2.ur) - Also, suppose that the elements of the
data vector (y,.x,) are positive for all kel/. The
population  variances  for Yd RAT and f',,_,,om are
V (¥ pos) = AZU, ()’k Byyx) and  V(¥p)=
AYy (yu =By, x,)°, where B,, =Y,/X,, and B, =
Y,/X.

The difference V(fd‘RM) -V (i}d.POSTR) can be re-

expressed as:

AY,, (B =By ) xi
+2A(B,, - B,, ZU
+AZU; (ydk -8B, xk) .

Since the second term of this expression can be positive,
negative or zero, the difference V(¥, par) = V (¥4 p05ms )
can be negative.

3.2 Conditional Properties

— By X, )xk

For a given sample s, let n, be the realized sample size
of s,;. The following result can be used to evaluate the
conditional bias of estimators (2.1) to (2.6).

Result 3.3: Let z, be an arbitrary p-dimensional vector,
that is z, =(z;, .. ,z,q,) and suppose that n, =21. The
conditional expectation of Z, =n~' ¥, z, given n, can be

written as:
[fd Udzk+f (Z Ty ZU, )]

z Ind

=7, +

Y% &, -7,) @3.1)

Z, —Z
1-w, % Y

where Z, =N"'3, 2, , %, =N;' 5y, 2., wy=n,/n,

WdszlN’ fd=nd/Nd, f;an/Nd- with n5=

n—ny,and Ny=N-N,.

Proof: Rewriting Z, as

i(zﬁ z, +Z;; z,{) ,

n
we have that

1| ny, n—
E(z, |nd)——[ dzudzk+N

d
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where s;z{kes and ke s, } and

U;={keUandkeU,}.
Since 2y, Z, =Xy %,
result, that is

-2y, 2, » we obtain the required

4

= —z o Wa Wy o =
E(zs|nd)—zu +-—iT“T(ZUd —ZU).

Result 3.4: The conditional population variance of Z, given
n, ,can be written as

p)
V)= -1V, +

where

—3( 1)V,

with Z,_ = N;™' Sy 2, ,and w; =1-w,.
The estimator of the conditional population variance
V(z, In,) is given by
wi
+ — (1 - f; ) vz -

W2
v(i,[ Hg )= n_dfa‘ v

where

and

" nz: -1

. — -1 ~ -1
with Z, =n," %, 2, . %, =n; X, 7,

d
Proof. It follows using arguments similar to those used in
Result 3.3. We first illustrate how Resuit 3.3 can be used to
obtain the conditional bias for the simpler estimators of
domain totals. This includes the Horvitz-Thompson esti-
mator YdHT, as well as post-stratified ratio estimator
Ydmm =(X, J’X‘,HT)Y,“,.r Let z, be the domain vari-
able y,, . Using Result 3.3, we have that E (Yd arlng)=
Nw, 3y, , where 3, =Y¥,/N,. The conditional bias of
Yd,HT given n, is therefore Bias (Ydm. In,) =
Nw,-W,) 37” For the post-stranﬁed ratio estimator,
note that ?d,,,om Y = Yo -1 X,) X
Defining z, as y, —(Y,/X,)x,, we obtain “hat
Bias(¥, posr 114) = 0

We next proceed to evaluate the conditional bias and
variance of estimators (2.1) — (2.6). We only illustrate the
procedure for the regression estimator };d‘,,I , as the steps are
similar for the other estimators. Conditional on n,, the dis-
tribution of s, is that of an SRSWOR. This means that, for
each sample s,, n, can be considered as having been se-
lected from N,. We express Yd o, 88 Yd o= Za Ye t
N/nY, e,, where e, =y, — X, Bu and §, = x;, B
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Following Sirndal and Hidiroglou (1989), we define the
conditional regression vector B, as

, -1
s [o[£. 25 ]
k
EHZ’ o J'"" ] (32)

The estimated regression vector ﬁ, « Wwill converge to
B,, (under appropriate conditions) in conditional design
probability as #n, and N, increase.

We have that

X, X, X, X,
E kX kR

Zs |nd ZU R,
nc, ch

and

B S M2, =3, S 2,

| ne, | Y Ne,
where
_ X, X,
RC— 1 W { ZU,, ZU }
and
w, =W, [ 1 X |1 Xe Ve |
r,=——=| — - —— =0
C1-w, (Nd Z”‘ ¢ NZU ¢,

Consequently, using Result 33 and assuming that
{w, —W, )/(1-W,)=0, wehave that B, = B, .
Define the “conditional residual” for the " unit as
Ey =Ya —X, Bj,. (33
The deviation of ﬁml from the true value ¥, can be
written as
der Yd = _ZUEdt +— Z Edk :d (3-4)

where

(B8 n-5, ) o)

In equation (3.4), A, is of lower order than N/n ¥, E,,
To see this, note that
W, (,.,

[[ 2% Zuxkjlnd] W_xw‘iu),

where (w, —W,}/(1-W,) should be close to zero.

Also, as noted earlier, B,, — B, is near the vector 0 in
conditional ~design probability. Hence Ej =y, -
x; B, =y, —x; B, =E,. This implies that we can
write (3.4) as

A , N
Yo = Y4 =-ZU E, +:Z, E,. (35

The conditional expectation of }7,,,‘,,l
imately:

-Y, is approx-
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IS w,—-W, (~ —

El@,, -v|n ENY e (B _E, ) G6)

1-W, .

where E, =%, E,/N, and E, =%, E,/N.

Since ¥, =W, ¥, , the conditional expectation (3.6) can
be re-expressed as:

E[(fd.er. _Yd)l ”d]
=N w, =W,
1-W,

[70, (1 -W, )_ (iud ~Xy )’ Bla'j| . (37)

The term Y ,; E,, is constant in (3.5). Using Result 3.4,
the conditional population variance of Y,, and its

estimated value are respectively
2 2
4 (Yd.zr. s )= N |:“‘wl (1- £, )VEU', +oL (- f;)ve,,_:|
n, "’E i
and
2 2
v (I;a'.!r, |”a')= N? {& (1_fd)ve, +£ (l_f;)"e_]
nd 4 nd_ 3

where VEu, =(N, —1)_12 v, (Edk _EU, )2’

VEU; =(NE _1)_]ZU— (Ed}z _EU;)Z,

2
Ve, =(n, -U"Z,d [aa’kek “'Z %J ,

2
_ 1 Dok €
v, =l -1)'% . (“dkedk -2 -
% ng

The conditional bias and variances of the remaining five
estimators can be derived similarly. Table 3 presents a sum-
mary of these properties. The required adjustment factors
a and residual terms e, are given in Tables 1.and 2.

and

4, SIMULATION STUDY

A simulation study was carried out to illustrate the
conditional and unconditional properties of the ratio version
of estimators (2.1) — (2.6). We studied these properties using
a population of 1,000 bivariate observations (y,x). This
population resulted from the concatenation of two generated
population domains: a large domain of size 900 and a small
domain of size 100. The ( v, x) observations were generated
within each domain assuming a ratio model y, =Bx, +¢,
where E(e,)=0 and V(g,)=0c’x,. The B coefficients
were 1.0 and 3.0 in the large and small domains. The
auxiliary variable x was generated using a gamma
distribution I'(g,b), where a=3 and b=16. The
dependent variable y was also generated by a gamma
distribution, I'(A,B) such that the parameters A and B
satisfied E(y,)=Bx, =AB and V(y,)=0c"x, =AB>.
After solving for A and B, we obtained A=p’/¢® and
B=c*/p. The term o> was chosen to satisfy a set
correlation between x and y defined by

- B?

Pxy =—F—————.
M Jot 4B

The preceding equation yields the constant term

1
02 = sz(z— - l]
Px.y

of the error variance. Common correlation values p, , were
used for both domains, ranging from 0.1 to of 0.9 in steps of
0.1, resulting in nine different populations. Random samples
(M = 10,000) of size 250 were then repeatedly selected from
the populations. For each sample, estimates of domain totals
were computed using the estimators given in Table 4. We
do not include the Héjek post-stratified estimator, I';;g tr, » 85
it comresponds exactly to its Horvitz-Thompson analogue,

Yd.£r2 .

Table 3
Conditional Bias and Variance of Estimators (2.1)-(2.6)

Estimator Conditional Bias Estimated Conditional Variance

Pag N Cora =W Y0050, (W)~ o, %o T8 ) 82 [/ 0= £, + b g = 15)ve, |

Vimm ~ Almost0 (N2a-£2)/ng )st ((aﬂ ea—age) g - 1)]

R ALY (o 2= 7Y )L (o e =g fo 1)
T N Ora W)y -5, B f0-)) (¥ fwa P 02 frg )1 Fa)ve, + 03 ng )= 17w, |
Vo, ~ AlmostO W3a-fofm)Z, [(adk e —age) o -1))

oo~ Almosto (W2a- 1)/, )Zs‘ [(aa‘k ea—age) flng -1))
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Table 4
Estimators and Associated Error Terms

Estimator Ratio Version

Error Term

HT ratio: };d.tq I;d,mr = };d,HT (X/}?HT)

HT post-stratified ratio: fd’,,z ];d,POS“I“R = I;d,HT (X d / b'e 41T )
HT alternate ratio: };d,fr,

Hijek ratio: }7“,'

Hiéjek alternate ratio: f’;_,,,s

i;d,ALTR = ?d.HT +(X, —id,m)(fm/fm)

Yagar =Yapa +(X - X HA)(?d,HT [ Xur )

i;:i.ALTR = i}d,HA +(X4- Xd.HA )(};HT/)EHT)

€tk = Yax —ffw X ﬁld = fd,}{‘l‘/)?l-l't‘
€ = Yux "'ﬁZd Xt » ﬁZd = };d,HT/)Ed,HT
€k = Yk _‘§3xk ’ f?a =fm/ﬁm

€ax = Yar “ﬁuxk ' kla’ = ﬁi,m/)EHT

eq = Yo — Raxy Ry =Py [ Xy

4.1 Unconditional Results

The unconditional properties of the estimators were
assessed using two performance measures: (i) root mean
squared error (RMSE) and (ii) coverage rate (CR). They
are:

i. The RMSE is defined as

a 5 (m)
L=V IM

where fd("” is the estimated total (either Horvitz-
Thompson or Hajek type) based on sample m, and M is
the total number of samples drawn for the simulation.

il. The coverage rate CR for a given estimator Y s
defined as the ratio of the number of times that the 95%
confidence interval

7, +1.964w(¥, ")

contains the true population total to the number of
replicates. We used the unconditional variances given by
(2.12), and the error terms in Table 4 to estimate the
required variances.

The four graphs provided in Figures 1 and 2, summarize
the unconditional analysis for small and large domains. Also
shown is the impact of increasing p, , . The square root of
the average mean squared etror and coverage rates are used
to compare the estimators.

In Figure 1, we note that the RMSE decreases
substantially with increasing p, . This can be atiributed to
the decreasing dispersion of the dependent variable
conditional on the independent variable as the correlation
between the two increases. We also note that the spread of
the RMSE is narrower for the large domain than for the
small domain. The ranking of the estimators in terms of
RMSE from worst to best is as follows: (i) HT ratio (HT
RAT), (i} Hdjek ratio (HA RAT), (iii) HT alternate ratio

(HT ALTR), (iv) Hijek altemate ratio (HA ALTR), and (v)
HT post-stratified ratio (HT POSTR). This ranking is in
agreement with Result 3.2,

In Figure 2, we note that the unconditional coverage rates
are similar across all the estimators regardless of the
correlation p, . For small domains the Horvitz-Thompson
estimators exhibit a slight degradation in the coverage rate
when p, . is weak. But as the correlation increases, their
coverage rate becomes comparable to the Hijek type
estimators. The Hajek estimators have a better overall
coverage rate than their Horvitz-Thompson counterparts.

4.2 Conditional Results

The conditional properties of the estimators were studied
using: (i) average relative conditional bias and (ii) condi-
tional coverage rates. They are defined as:

i. ARB, =(100/M X" (¥{™ -Y,)/Y,, where M, is

the number of samples of size n, .

ii. The conditional coverage rate has the same definition as
its unconditional counterpart. The associated variance is

1 M, S oz
Y™ -r
M,,—l,,g( St

vi=
where

71 3 7 (m)
To=3 gyd .

Table 5 summarizes the conditional biases of the ratio
versions of estimators (2.1)—(2.4) and (2.6). They were
obtained from Table 3 using a single auxiliary variable.

The relative conditional bias and coverage rates of the
estimators are summarized in Figures 3, 4a, and 4b with
respect to the realized sample size s, for large and small
domains, and for two correlations (py, =090 and
pyy =0.60).
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Figure 4a. Conditional Coverage Rates for py y =090, B;; =1.0,and B, =3.0.
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Figure 4b. Conditional Coverage Rates for py y =0.60, B, =1.0,and B, =3.0.

Table 5
Conditional Biases of Ratio Versions of Estimators (2.1)-(2.4) and (2.6)
Estimator Conditional Bias
A o (7o -W,3y, )
HT Ratio: Y, N W
0: Yy 4 Yu, (wg =W,) Ty 1-W,)
HT post-stratified ratio: ?d. tr, Almost 0
A g Fy =y, 3u 13
HT alternate ratio: ¥, ,, N ¥y, (wy -W,) (U%'&l
U
~ W, (% - %y, )
Héjek ratio: Y, N vy (wy =W, )—/————
i} d.tn }'U‘( d d) (l—wd)fb‘

Hajek alternate ratio: ¥,

Almost 0

The conditional bias presented in Figure 3 supports the
theoretical results presented in Table 5. The three Hdjek
estimators are nearly conditionally unbiased. The magnitude
of the conditional bias of both the HT ratio estimator and the
HT alternate ratio estimator is in agreement with the
theoretical conditional bias. But it should be noted that the
conditional bias associated with the HT alternate ratio
estimator is smaller than the one of the HT ratio estimator.
Also, in larger domains, this conditional bias is less
pronounced for the HT alternate ratio estimator.

The conditional coverage rates are given in Figures 4a
and 4b. We note that the three Hijek estimators follow
closely the nominal 95% coverage probability. The cover-
age rate of the HT alternate ratio estimator is reasonable in
larger domains despite its being conditionally biased. But its
coverage deteriorates substantially in smaller domains. The
coverage rate of the HT ratio estimator is not acceptable.
But it should be noted that the coverage rates of the condi-
tionally biased estimators improve as the realized sample
siz(e ;ld approaches the expected domain sample size
Eln,).
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In summary, the simulation study identified the three
Hijek estimators, Hdjek post-stratified ratio, Hdjek
alternate ratio, and Hdjek ratio as the best estimators in
terms of their conditional and unconditional properties. Note
that even though the Hdjek ratio estimator uses the least
domain auxiliary data (it uses domain population counts
N,), its mean squared error is still reasonable. The Hdjek
post-stratified ratio is the best estimator in terms of its
conditional and unconditional properties.

5. CONCLUDING REMARKS

We have studied six possible regression estimators of
domain totals, each using various levels of auxiliary
information at the domain and/or population level. The only
estimator that has regression weights that are not domain
dependent and that also have the additive property is
Horvitz-Thompson estimator I;m. This estimator is
constructed using auxiliary information at the population
level: the domain dependent independent variable y, is
regressed on the auxiliary vector x,. However, it can be
seriously conditionally biased and the associated confidence
intervals can be understated.

The Hijek-type estimators have two the disadvantages:
(1) they do not have the additive property; and (ii) their
associated regression weights are domain dependent.
However, they have the best conditional properties. They
are nearly conditionally unbiased, and the conditional
confidence intervals associated with the estimators follow
closely the nominal coverage rate. They also have the
smaller unconditional MSE’s. The Héjek estimator that uses
the least auxiliary data at the domain level is ﬁ,,fﬁ e
requires domain population counts N,{d=1,..., D), and
the population totals X . Its conditional and unconditional
properties are reasonable.

The best Héjek estimator, 17;'3,1, uses auxiliary infor-
mation at the dormain level. The Héjek regression type esti-
mator l'f';‘t,l can be made domain independent using a single
set of regression weights as follows. Suppose that the most
important domains are Ugc;U {g=1,...G), and that
these domains are mutually exclusive and exhaustive. The
resulting Hajek estimator is

7 =i (7, + (X, ~ X, VB,
where
=,V T =, 03
and

ﬁ]g =(ng W, X, X, /e, )“ ZS, w, X, ¥, /¢,
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Prediction of Finite Population Totals Based on the Sample Distribution

MICHAIL SVERCHKOV and DANNY PFEFFERMANN'

ABSTRACT

This article studies the use of the sample distribution for the prediction of finite population totals under single-stage
sampling. The proposed predictors employ the sample values of the target study variable, the sampling weights of the
sample units and possibly known population values of auxiliary variables. The prediction problem is solved by estimating
the expectation of the study values for units outside the sample as a function of the comresponding expectation under the
sample distribution and the sampling weights. The prediction mean square error is estimated by a combination of an inverse
sampling procedure and a re-sampling method. An interesting outcome of the present analysis is that several familiar
estimators in common use are shown to be special cases of the proposed approach, thus providing them a new interpretation.
The performance of the new and some old predictors in common use is evaluated and compared by a Monte Carlo

simulation study using a real data set.

KEY WORDS: Bootstrap; Design consistency; Informative sampling; Sample-complement distribution.

1. INTRODUCTION

The sample distribution is the parametric distribution of
the outcome values for units included in the sample. This
distribution is different from the population distribution if
the sample selection probabilities are correlated with the
values of the study variable even when conditioning on the
values of concomitant variables included in the population
model. It is also different from the randomization (design)
distribution that accounts for all the possible sample
selections with the population values held fixed. The sample
distribution is defined and discussed with examples in
Pfeffermann, Krieger and Rinott {1998), and is further
investigated in Pfeffermann and Sverchkov (1999) who use
it for the estimation of linear regression models. Krieger and
Pfeffermann (1997) use the sample distribution for testing
population distribution functions and Pfeffermann and
Sverchkov (2003a) discuss its use for fitting Generalized
Linear Models. Chambers, Dorfman and Sverchkov (2003)
utilize the sample distribution for nonparametric estimation
of regression models, and Kim (2002) and Pfeffermann and
Sverchkov (2003b) apply it for small area estimation
problems.

In this article we study the use of the sample distribution
for the prediction of finite population totals under single-
stage sampling. It is assumed that the population outcome
values (the y-values) are random realizations from some
distribution that conditions on known values of auxiliary
variables (the x-values). The problem considered is the
prediction of the population total ¥ based on the sample
y-values, the sampling weights for units in the sample and
the population x-values. The use of the sample distribution

permits conditioning on all these values, which is not
possible under the randomization {design) distribution, and
the prediction of Y is equivalent therefore to the prediction
of the y-values for units outside the sample.

The prediction problem is solved by estimating the
conditional expectation of the y-values (given the x-values)
for units outside the sample as a function of the conditional
sample expectation {the expectation under the sample
distribution) and the sampling weights. The prediction mean
square error is estimated by a combination of an inverse
sampling procedure and a re-sampling method. As it tumms
out, several familiar estimators in common use and in
particular, classical design based estimators are special cases
of the proposed procedure, thus providing them a new
interpretation. The performance of the new and old
predictors is evaluated and compared by mean of a Monte
Carlo simulation study using a real data set.

2. THE SAMPLE AND SAMPLE-COMPLEMENT
DISTRIBUTIONS

2.1 The Sample Distribution

Suppose that the populaton values {y,X}=
{(3-¥x),[%,..X, 1"} are random realizations with con-
ditional probability density function (pdf) f,(y;|x;) that
may be discrete or continucus. The y-values are assumed to
be scalars but the x-values can be vectors. We consider
single stage sampling with sample inclusion probabilities

;i =Pr(ie s)=g(y,X,Z,i) for some function g, where Z
defines the population values of design variables used for
the sampling process. Note that the y-values are random and
we also consider the design variables as random so that the

Michail Sverchkov, The Bureau of Labor Statistics, Washington D.C. 20212, U.5.A.; Danny Pfeffermann, Hebrew University, Israél and University of

Southampton, U.K.



80 Sverchkov and Pfeffermann; Prediction of Finite Population Totals Based on the Sample Distribution

g-values are random as well. Let 7, =t if ie s and 7, =0,
if i € 5. The conditional marginal sample pdf is defined as,

def
£ = filxit =1

P, =1y, %) f, (0 %)

B Pr(7, =1|x,)
with the second equality obtained by application of Bayes
theorem. Note that Pr(/, =11 y,,X;) is not necessarily the
same as the actual sample selection probability =, =
g(v,X,Z,i) (see Remark 1 below). It follows from (2.1}
that the population and sample pdfs are different, unless
Pr(l, =11y, x;)=Pr(I, =11x,) for all y,, When the
sample distribution differs from the population distribution
it becomes informative, and the sampling scheme can not be
ignored at the inference process.

@2.1)

Remark 1. It is important to emphasize that the definition
and use of the sample distribution does not assume that the
sample selection probabilities are function of only ( y;.x;).
As mentioned earlier and highlighted by expressing the
selection probabilities as m; = g(y,X,Z,i), the actual
selection probabilities may depend on all the population
values (y,X,Z). However, as shown in Pfeffermann and
Sverchkov  (1999), E,(m; 1y,.x,)=Pr(l,=1ly.x;}.
Thus, although the selection probabilities may depend on all
the population values (y, X,Z), for given values (y,.x;)
they equat Pr(7, =1l y,,x,) ‘on average’. In fact, 7, may
not depend directly on y at all and only be a function of
(X,Z), and still the expectation E (n;1y,x;) equals
Pr(f; =1ly,,x,). The reason why the expectation may
depend on y, in this case is that Z may be correlated with y.
For example, the 1999 Canadian Workplace and Employee
Survey uses a disproportionate stratified sample with the
strata defined by region, activity, and the size of the
workplace. The size information is obtained from tax
records from 1998; see, Patak, Hidiroglou and Lavallée
(2000) for details. When modeling the payrolls in 1999
against the number of employees, the sampling design is
found to be informative, which is explained by the fact that
the stratification is based in part on the size obtained from
the tax records in the previous year, which are correlated
with the payroll the year after. See Fuller (2003) for details
of the analysis.

The discussion above should not be understood to mean
that 7; is never a function of (y;,Xx;) only. A classical
example for the latter case is retrospective sampling. Thus,
in a case control study, the selection probabilities of the
cases and controls usually only depend on the respective y
and x values (and often just on the y values). In the
empirical study of this paper we use a real data set where the
sample was drawn by a disproportionate stratified sample

with the strata boundaries defined by the values of the
dependent variable.

In what follows we regard the probabilities x; as random
realizations of the random wvarable g(y,X,Z,i). Let
w, =1/xn, define the sampling weight of unit i The
following relationships, established in Pfeffermann and
Sverchkov (1999) hold for general pairs of vector random
variables (u,,v,), with E , and E; defining expectations
under the population and sample pdfs respectively. (As a
special case, u; = y,, ¥; =X,).

_E, (o v f, lv,)

fwiv)= E tnfv) (2.2)
- Sl o
E,(lv)= EE(‘:TW (24)
It follows from (2.4) that 15 o
a) EJ(W,-|V,-)=W;
b) E,,(u.-)=%;
c) E (w,)= XCHE 2.5)

For a detailed discussion of the sample distribution with
illustrations, see Pfeffermann er al, (1998).

2.2 The Sample-Complement Distribution

Similar to (2.1), we define the conditional pdf for units
outside the sample as,

def
fc(J’ile) = fp(yi'xi’lt' =0)
_Pr(l, =0y, x)f, (] %,)
Pr(l; =0[x;) '
The relationships (2.2)—(2.5) and the -equality
Pr(/,=01lu,v;) =1-Pr{l, =liu,v,)=
1-E,(m;lu,;,v;) imply the following representations of
the sample-complement distribution for general pairs of
vector random variables (u,, v;).

= E.ﬂ[(l - ;r|:l.)|l.ll., vi]fp (“ilvf)
Ep[(l - n,')|vj]

(2.6

fc(uilvi)

_E M0 -mu,v] Elfv,]
E [(l-x)v,] E,[mu;,v,]

fv,) @7
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E [(w;

=B, v, 1f, v,

fetafvo E,L(w; ~D|v,]

2.8)

{Equation (2.8) follows by application of (2.5a) to the
second expression in (2.7)). Also by (2.8) and the first
equation in (2.7),

E,[(1-m)u,|v,]
E [A-m)v,]

_E,[(w,
OE,l(w -

-Duylv;]

Etulv)= Dlv,]

. (29

Remark 2. In practical applications the sampling fraction is
often very small and hence the sample selection proba-
bilities are small for at least most of the population units. If
w; <& with probability 1,

E [(-n)m,v,1f,@|v,)

A TRy oy
=f,(u; |v )+
E{E, (v, )—mJu,, v, }f, (uv,)
E,[(1-=)|v,]

=f,(u; v, }1+A) (2.10)

where —8 < A < 3/(1-5). R follows from (2.10) that for &
sufficiently small, the difference between the population pdf

and the sample-complement pdf is accordingly small, which
is not surprising.

3. OPTIMAL PREDICTION OF FINITE
POPULATION TOTALS

Let Y =3y, define the population total. The problem
considered is how to predict ¥ based on the sample data and
possibly population values of auxiliary variables. Denote the
‘design information’ available for prediction by Ds =
{(yiow,)ies; (x;,1;), j=1.N} and let Y= Y(D )
define the predictor. The MSE of Y with respect to the
population pdf given D, is,

MSE(1D,)=E,[(¥ -¥)*|D,]
=E {[Y - E,(¥|D)F|D,}+V,(¥I1D,)
=[¥ - E,(¥|D,)I

3.0

since [¥ — E,(¥1D)] is fixed given D,. It follows from
(3.1) that MSE(YID ) 1s minimized when Y=E ,Y1D,).
The latter expectation can be decomposed as,

81
i=1
= ZEp(y‘. D1, =1)+ZEP(yj DI, =0)
ies Jjes
=2V +2Ec()’j|Ds)
ies jes
=3y +ZE (]x;) (32)

(]

where in the last equality we assume that y, for je s and
D, are uncorrelated given X;. The prediction problem
reduces therefore to the estimation of the expectations
E (y,1x;). In section 4 we consider semi-parametric
estimation of these expectations.

4. SEMI-PARAMETRIC PREDICTION OF FINITE
POPULATION TOTALS

Suppose that the sample-complement model takes the
form,
y; =Cplx)+e,
E,(z,x,) =0, E (}fx;) = 0?w(x)),
E (g5, x)=0k=#j 4.1}
where Cy{x} is a known (possibly nonlinear) function of x

that depends on an unknown vecior parameter [3. The
variances o V(X;) are assumed known except for o°.

Remark 3. In actual applications the model (4.1) can be
identified by a two-step procedure, utilizing the equality
E (y,Ix,=E (r,yx;) with r,=(w,-1}/E_ [(w,-1)x,]
(follows from Equation 2.9). First, estimate £_(w,|x,) and
hence . by regressing w, against x; using the sample data.
Let 7 = (w, = D/[E, (w1 x,)=1] and transform y; = #y,.
Second, study the relationship in the sample between y,
and x; for identfying the form of Cy(x;). See
Pfeffermann and Sverchkov (1999, 2003a) for examples of
estimating £ _(w,lx;). A similar procedure can be applied
for identifying the variance function w(x,), using the
empirical residuals &, = y, — £, (7,1 x,).

The function Cg(x;) in (41) with the true vector
parameter B satisfies for all je s,

¢,x,) E [:V,-—Cg(xj)]2
X;)=arg rfuxn) A ") |xj

.~ C-(x )?
= arg min EJ nw A (42)
Glx)) v(X;)

{The second equality follows from (2.9)). Hence, by
substituting the sample expectation outside the curved
brackets by the sample mean (a straightforward application
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of the method of moments) and estimating by 7 (see
Remark 3), the vector B can be estimated as,

[y; - Cz(x))?
= | 4.
B, argmin Z[ V) ] 4.3)

€s

The predicior of the population total takes then the form,

Y, = Zy,+2c (x,).

i6es

4.4

Alternatively, it follows from (4.1) that,

Ec[[yj - Cy(x I |xj]
v(X;)

-E, ly; = Cp(x DI
WX ;)

bl .= .2
=E[[ w, -1 }[y, cg<x,)]] @3
E,w)-1| wx)

where the right hand side expectation is with respect to the
joint distribution of (y,, x ;). Thus, B can be estimated as,

- Cy(x,)P
v(x;)

- [y,

B, =argmin 3, (w, -1) 4.6)

since E (w;)=constant. The predicior of ¥ with
estimated by B, is therefore,

A Ey,+Zc (x,)

Jjes

4.7

Remark 4. A notable advantage of the use of the predictor
Y over the use of the predictor Y is that it does not require
the identification and estimation of the expectation
w(x) = E_(wIx). On the other hand, in situations where
this expectation can be estimated properly, the predictor Y
is likely to be more accurate since the weights r, =
(w; =D/E, (w,1x;)—1] will often be less variable than the
weights (w, —1). This is because the weights r, only
account for the net effect of the sampling process on the
target conditional distribution f, (y;lx;), whereas the
weights {w, —1) account for the effect of the sampling
process on the joint distribution f,(y;,x;). In particular,
when w; is a delerministic function of x; such that
w, = w(x,), the sampling process is noninformative and
fox) = f,(y1x) = f,(¥1x;). In this case the esti-
mator B, (but not B,) coincides with the optimal
generalized least square (GLS) estimator of B since r; =1
and the model (4.1) holds for the sample data. (For the data
analysed in section 7, the empirical variance of the weights

r, is 1.36, whereas the empirical variance of the weights w;,
is 2.66). In contrast to this, when the sampling weights w,
are independent of x;, the estimates [31 and ﬁz, and hence
the predictors Y, and Y are equal since w(x,) = constant.

An interesting special case of the predictor Y arises
when the working model postlated for the sample—
complement is linear with an intercept term and constant
variance. Let x; = (1, X;). As easily verified, the estimator
in this case takes the form,

Ty g = X+l +E R @-%,]  ©®
ics

X ) =[NV =n)/ Zpe, (w, =1)]
-1)(y;,¥,)] and B, is the probability weighted
but with the

where X(c)=3,, %, (Yo,
(s (w,
estimator of the vector coefficient of X
weights (w, —1) instead of w,.

Remark 5. The predictor Yz, Reg Call be obtained as a
special case of the Cosmetic predictors proposed by Brewer
(1999). Tt should be emphasized, however, that the
development of the cosmetic predictors and the derivation
of their MSE assumes explicitly #noninformative sampling.
An important property of Yz_ reg 18 that under general
conditions it is design consistent for Y, irrespective of the
true sample-complement model (see Lemma 1 below).
Many analysts view ‘design consistency’ as an essential
requirement from any predictor; see the discussion in
Hansen, Madow and Tepping (1983) and Sdmdal (1980).
The following Lemma 1 defines conditions under which the
more general predictor Y of (4.7) is design consistent for ¥.

Lemma 1. The predictor ¥, is design consistent for Y if the
working model used for the computation of 62 satisfies the
conditions, i- C (x) has an intercept term, ii- Cp(x) AIS
differentiable with respect to B in the neighborhood of f3,
and iii- v(x) = constant.

Proof: By (4.6) and condition i, ﬁz =arg rnin»|i

Tie: W, = DLy, - C5(x, ))> and by condition i, Cy(x)=
Bo +Cp, g, (X so that by condition i, 8/8[30
{Zes (W, =D [y — C~(x )] }BB =(, which implies
Zies (W, =Dy, - € (x N=0 or,

Zw ¥; _Zy, +Zwtc'3 (x,)— Zc (x;). (4.9)

The proof is completed by noting that under mild
regularity conditions X, w,y; is design consistent for ¥,
and ¥, w C']3 (x,) is design consistent for Z C (x ).
Thus, the right hand side of (4.9) converges in probablhty to
Y while the left hand side converges in probability to Y.

It is important to emphasize again that the Lemma does
not assume that the working model is the correct sample-
complement model.
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The use of the predictors fl and f’z requires a
specification of the sample-complement model. Next we
develop another predictor that only requires the iden-
tification and estimation of the sample model. The approach
leading to this predictor is a sample-complement analogue
of the ‘bias correction method’ proposed by Chambers ef al.
(2003). The proposed predictor is based on the following
relationship,

EE O, x)=2E,»,|x))

JES

+(N—n){N_n§Ec{bj_Es(yjlxj)“ xj}}
EZE,(yj| X;)

s

+<N-n){N’_nJ§Ec[y,-—Es(y,-|x,-)]} @

where in the second row we replaced the sample-
complement average of the conditional expectations
E_(y,1x;) by its expectation over the sample-complement
distribution of the x-values (n denotes the sample size). By
(2.9),

Efy, —E,(y|x;)
w; —1
=E {m[y —E,(y,|x, )]} @.11)

implying that the sample-complement mean in the second
row of (4.10) can be estimated as M, =1/n
Sies (10w, = DIW, =Dy, - E,(,1x)1}, where w,=
Y.ies W, / n. The proposed predictor therefore takes the form,

Y, Zy,+ZE(y_,|x YHN-nM,

ies

@.12)

Wlt|1 E:,"S(y ;1x;) estimated from the sample data. The use
of Y, only requires the identification and estimation of the
sample regression E (y j|x ; ), which can be carried out
using conventional regression techniques. Moreover, under
mild conditions I? is design consistent for ¥ even if the
expectation E (y JI x,;) is misspecified. This property
follows from the fact that ZJE,E,(yJI X, ) is design
consistent for ¥, E (y ;ix;) and (N - n)M is design
consistent for M, =3 [y, — E (y;1x )]

Remark 6. If the model fitted to the sample data is linear
regression with an intercept and constant residual variance,
the difference between the predictor Y2 reg defined by (4.8)
and the predictor Y3 is that }’2 Reg USES @ consistent
estimator for the regression coefficients defining the linear
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approximation to the model holding for the sample-
complement, whereas in 133 the regression coefficients are
estimated by ordinary least squares (OLS), thus estimating
the linear approximation to the sample model.

Finally, rather than only predicting the sample-
complement values as with the previous predictors, one
could instead predict all the population values by their
estimated expectations under the population model. Assum-
ing that the latter model is linear regression with an intercept
term and constant residual variance, application of (2.5b)
yields,

-x,f)?

E,lw, (0 =%, B)*)
E,(w,) '

p=argminE,(y,

= arg main (4.13)
Estimating the sample expectation in the numerator of
(4.13) by the corresponding sample mean (application of the
method of moments) and minimizing the sample mean with
respect to ]3 yields the familiar probability weighted
estimator B, = (X[, W, Xm)"(xm W,Y,), where
(X[s]!Y )={[x,..x, 1, (3.-5,)"} and W = Dlag[wl W ]
Let x)=(, ¥)). BEstimating £ LX) =%, B
B, + i;ﬁw and summing over all the populauon va]ues
yields the familiar generalized regression (GREG) estimator
(Samdal 1980),

Z'e W Y, = ["" Z wixi]
Zf&s Wi g Zr’eswi

Yoreg=N

Xp=3,_ % @.14)
Remark 7. By considering the estimation of ¥ as a
prediction problem, the use of the predictor 172' Ree 1N (4.8)
requires the prediction of (¥ - n) values whereas the use of
the GREG requires the prediction of N values. Hence, in
sitvations where both the sample-complement model and
the population model! can be approximated fairly well by
linear regression models with intercept terms (but possibly
with different vectors of coefficients for the two models),
one expects that for sufficiently large sampling fractions
n/ N the predictor 132’ will be superior (see the empir-
ical results in section 7).

Reg

5. EXAMPLES
5.1 Prediction with No Concomitant Variables

Let x, =1 forall i. By (3.2),
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I;=Zy,' +ZEC(}’j) =Z)’i

ies Jjes ies

~ w. —
N-nE|——v. | 5.1
+(N—-n) ,{Es(wj)_ly,] 5.1

Estimating the two sample expectations in the right hand
side of (5.1) by the respective sample means yields the
estimator,

=y, +(N-n)— E

ies IES S

(N—n)
= . -Dy, . 5.2
? 3w, —ng(“’ i 63
In (52), X (w ~Dy, is a ‘Horvitz-Thompson

estimator’ of X ., y;. The multiplier (¥ —n)/ T, (w; —1)
is a ‘Hajek type correction’ for controlling the variability of
the sampling weights. Notice that }95, is a special case of
the predictor ¥,y defined in (4.8), obtained by setting
x, =1 forall i. It is also a special case of the predictor ¥, if
one estimates E ;) =¥ =Zes ¥ /n. For sampling
desxgns such that ¥, w, =N for all s, or if one estimates
E (w,)=N/n, the predictor ¥, reduces to the familiar
Horvitz-Thompson estimator of the population total,

H T ™ Zres Vi

As with the GREG estimator considered in section 4,
rather than predicting the- sample-complement total ¥, =
Yjes ¥; and using the predictor Y,,, one could predict all
the population y-values by estimating their expectations
under the population model. By (2.5b), E, (y)=
E_(w,y,)/ E_(w,). Estimating the two sample expectations
by the corresponding sample means yields the familiar
Hajek estimator,

y ¥ o5 oWy,

SR (5.3)
E:‘exw" ies
Here again, we anticipate ¥, to be more precise than
YHajek as the sampling fraction increases (see also the
empirical results in section 7). Note that YE, and YHaJek are
the same and coincide with the Horvitz-Thompson
estimator for sampling designs satisfying .. . w, = N,

5.2 Optimal Prediction with Concomitant Variables,
Comparison with Optimal Predictors Under
Noninformative Sampling

Let the population model be,
=Hy(x,)+5,, E,(g]x,)=0,
E,(e]|x,)=v(x,)), E (g5, x,,x;)=0, i#j (54)

and suppose that the sample inclusion probabilities can be
modeled as,

T; =KX[J’£ 3(".‘)"‘5;], Ep(sl'j xf’)’f)=0 (5.5)

where H(x), v(x) and g(x) are positive functions and XK
is a normalizing constant. (Below we consider the special
case of ‘regression through the origin’). This sampling
scheme is considered for illustration only, although in
section 2 we mention several practical situations where the
sample selection probabilities depend directly on the y and
x-values. In particular, this is the case with the data set
analysed in section 7. Under (5.4) and (5.5). n(x,)=
E, (m]%;}= KHy(x;)g(x;). Hence, by 2.9), (5.4) and
(5.5),

E(y.|x.):E :-Ly.|x.
cr T / F l_n(xj) 4 J

{1—n(xj)—xs,.g(xj)—1<8j
r

y,-l x!]

(5.6

l—n(xj)

Kg(xv(x,)

=Ep(y]-| Xf)_ - n(x)

The last expression in (5.6) shows that E (y;Ix;}<
E,(y;1x;)=Hy(x;), which 1s clear since for the
inclusion probabilities defined by (5.5), the sample-
complement tends to include the units with the smaller
y-values for any given x-values. Note, however, that as
n/N—-0,K->0 ad E,(y]Ix;}-E(y;lx;)—>0
(see Remark 2).

As a special case of (5.4), consider the case of a single
auxiliary variable x and let Hg(x)= xp and vx)= oix
(‘regression through the origin with variance proportional to
x"). For noninformative sampling and known J, the optimal
unbiased predictor of ¥ minimizing £ [(Y Y)’1D,] is in
this case, ¥ = Yies ¥i P jesx;. In the practical case of
unknown fi, the optimal unbiased predictor of Y is the
familiar Ratio estimatar Y =N y(X /x) with ¥ denoting
the sample mean of ¥ and (%, X ) denoting the sample and
population means of x (Brewer 1963, Royall 1970).

Now let g(x)=1 in (5.5) for all x, so that =,
n(y, +6,)/ T (y; +8,). For sufficiently large N, we can
approximate T, Hn(yi +8,)/(NBX), implying that
n(x;)= E NE.? lx )~nx /[(NX). By (56), E,(y,lx;)=
xB-c x /[B(f X - —-x;})] where f= n/N is the
sampling ﬁ'actmn s0 that for known B and ¢” the optimal
predictor of Y is,

e =23 +BL, _F§f"%— 57)

Lemma 2: Let the population model be defined by (5.4)
with Hp(x)=xB and v(x)= o’x. Assume also
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E, (] 1x,) =0. Suppose that the sample units are selected
independently with probabilities defined as in (5.5), with
g(x) =1. Then,

MSEP (YE. Regl Ds )=
o* Y %~ B Y XK - x))"). (53)
Proof . By the independence of the population values and of
the sample selections,

MSE , (¥;. geg|D:)
= E,[(¥g peg — ¥)’|D, ]
=3 EAly; —E.(y | x)0 1 %),

By (6. [y, — E(,lx) = &, + )/ [1-n(x I’
where x,=Ko’x;, K=n/pNX and n(x;)=E (n,|x;)=
nx; / (NX). Hence,
E ALy, - E.(y; x|}
=E (e}|x,)+2x) [0-n(x)E, (5 ]x))

+[x; [0 = m(x NP

Now,
E.(e3)x,)
- Ep[l—nj/(l—n(xj) )aﬂxj]
=E,[l-n(x;)-Ke; K8, /(1-n(x)) ) &][x)]
= Ep(eﬂxj) =02xj
and

E,(¢,|x,)
= E,[1-7(x;)- Ke, - K8, {1 - n(x))) & [x;]
=—x; [A-n(x;)).

It follows therefore that MSE, Vs, reg | D) =07 Lo, X; —
% jes[x] f(l=n(x;N*. QED.

Remark 8: For noninformative sampling and with known
B, the prediction MSE of the optimal predictor ¥ =
Ties¥i B ecx; is, E[(f —¥)? 1D,1=0°5,x, . This
MSE is larger than the MSE obtained under the informative
sampling scheme defined by the Lemma, which is obvious
since the latter scheme tends to sample the units with the
larger y-values and hence also with the larger x-values and
the larger standard deviations.

6. MEAN SQUARE ERROR ESTIMATION

Estimating MSE(Y|D,)=E,[(¥ -Y)*1D,] for the
predictors ¥ considered in section 4 requires strict model
assumptions that could be hard to validate. This is largely
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due to the conditioning on the design information D,. In
order to deal with this problem, we propose to estimate
instead the unconditional MSE, MSE(Y) = E[(¥ ~¥)*] =
E, {E,[(f -Y)* 1D,1}, where E, =E,E, defines the
expectation over the sample distribution (given the selected
sample) and over all possible sample selections. Notice that
E,[(¥-Y)*1D,] can be viewed as a random variable
u(D,), so that MSE(Y)=E, [u(D,)] defines its ‘best
predictor’ with respect to the mean square loss function
under the distribution f;, over which the expectation E,,
is taken. By changing the order of the expectations, the
unconditional MSE can be expressed as,

MSE(F) = E,E,E,[(¥ - 1)?|y]

= E,E,[(¥ -¥)*y] (6.1)

where y ={y,; i€ U}. Estimating the unconditional MSE
of any of the predictors Y can be carried out therefore by
estimating its randomization MSE, see Pfeffermann (1993)
for further discussion. Estimation of the randomization MSE
of the various predictors has the additional advantage of
allowing their use under the design based approach.

Estimation of randomization variances of design based
estimators is considered extensively in the literature and
many diverse methods are in routine use. However, in view
of the complicated structure of some of the predictors
considered in this study and in order not to restrict to
particular sampling schemes, we propose below the use of a
two-step procedure that combines an inverse sampling
process (Step 1) and what can be viewed as a bootstrap
resampling algorithm (Step 2). A notable advantage of this
procedure is that it is general and applies ‘equally’ to all the
predictors. Also, unlike other variance estimation methods
in common use, it does not require knowledge of the pair
wise joint selection probabilities w; =Pr(i, je 5). As
discussed later, a valid application of the first step requires
sufficiently large samples. The two steps of the proposed
procedure are as follows:
Step 1- Generate a single ‘pseudo population’ by selecting
with replacement N units from the original sample with
probabilities proportional to w, =1/m,, where N is the
population size. The justification for this step is given
below, see also Remark 10. Denote by ¥, the sum of the y-
vabues in the pseudo population.
Step 2- Select independently a large number B of bootstrap
samples from the pseudo population generated in Step 1,
using the same sampling scheme as used for the selection of
the original sample, and re-estimate the population total.

Let ¥ represent any of the predictors and denote the
predictor obtained for bootstrap sample & by Y, ;,. Estimate,

n” 1 N
E (-1 = EZL @ -y )N (62)
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The performance of the estimator (6.2) in estimating the
randomization MSE depends obviously on the ‘closeness’
of the pseudo population generated in Step 1 to the actual
population from which the original sample was drawn. The
closeness of the two populations can be verified in part by
noting that the marginal distribution of y, | x; in the pseudo
population is the same as in the original population. To see
this, note that the pseudo population generated in Step 1 is a
‘sample with replacement’ from the original sample with
selection probabiliies Cw, on each draw, where
C=1/37w;. Denoting by f, (y1x;}) the marginal
pseudo population distribution we find using (2.2) and
(2.5a),

- E,(ij|yi,x'.)fs (y,.|x,.)
fpp(yile)_ E;(wa|x;)

_E, mx) £ ilx) 63)

Ep(“i|y|"xi)

= fp(Yflx;)-

Remark 9. Equation (6.3) only refers to the marginal
distribution of y,{x;. Like with the standard bootstrap
method, a successful application of the proposed procedure
requires that the original sample size is sufficiently large and
that the sample measurements are approximately inde-
pendent, Pfeffermann et al (1998) establish conditions
under which for independent population measurements the
sample measurement are ‘asymptotically independent’
under commonly used sampling schemes with unequal
selection probabilities.

Remark 10. Step 1 is similar and asymptotically equivalent
to duplicating sample unit { w, times. Notice, however, that
the use of this duplication procedure does not yield pseudo
populations of size N unless ¥, w; = N. Itis also not clear
how to establish the relationship (6.3) when using this
procedure.

7. EMPIRICAL ILLUSTRATIONS-
7.1 Description of Empirical Study

In order to illustrate the performance of the predictors
and the associated MSE estimates discussed in previous
sections we use a real data set, collected as part of the 1988
U.S. National Matemal and Infant Health Survey. The
survey uses a disproportionate stratified random sample of
vital records with the strata defined by mother’s race and
child’s birth weight; see Kom and Graubard (1995) for
details. For the empirical study in this section we considered
the sample data as ‘population’ and selected independently

1,000 samples with probabilities proportional to the inverse
of the original sampling weights, using a systematic PPS
sampling scheme. The list of ‘population units’ was
randomly ordered before every sample selection. For each
sample we predicted the population total of birth weight
(measured in grams, divided by 10,000 in the present
study), using gestational age as the auxiliary variable
(measured in weeks). The sample inclusion probabilities
depend therefore on the values of the study variable that
defines the original strata. Notice that although the original
sample was supposedly a stratified random sample, the
sampling weights actually vary within the strata, which is
why we used systematic PPS sampling for the simulation
study, We constdered three different sample sizes, n =232,
1,145, 2,429. The ‘population’ (original sample) size is
N=9948. (For n=232, 0.002 <, =Pr(ie 5) < 0.15. For
n=1145 00l<m <073. For n=2429, 003<
n, <0.99 with mean ®=0.26 and standard deviation
Std(m;}=0.29. In the latter case some of the units were
drawn almost with certainty).

Some of the predictors considered for this study (see
below) require the specification of either the sample model
or the sample-complement model. We assumed for both
models the third order polynomial regression,

¥, =Bo +Bx, +Box +Byx) +g, (7.1
with independent residuals and constant variance. This
model was found by Pfeffermann and Sverchkov (1999) to
give a good fit to the ‘population’ (original sample) data
with R? =0.61 (see Figure 1), and it was found also to fit
fairly well the sample data (with different coefficients) for
several samples selected from this ‘population’. Notice, on
the other hand, that with this strongly informative sampling
scheme, it is unlikely that the sample model, the population
model and the sample-complement model are all from the
same family even if with different parameters. The present
study enables therefore studying the performance of the
various predictors when some or all of the three models are
misspecified. This important robustness question is further
examined by fitting simple regression models instead of the
third order polynomial regressions that is, by omitting the
second and third powers of the auxiliary variable. The only
exception is the model dependent predictor 17', (Equation
44) where no coherent estimator for the expectation
E (w;|x;) could be found when restricting to simple
regression. (The method considered in Pfeffermann and
Sverchkov (1999) for the estimation of this expectation
assumes normality of the population model residuals. This
is a valid assumption when fitting the third order polynomial
regression model but is clearly violated when dropping the
second and third powers of the auxiliary variable).
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U.S. National Maternal and Infant Health Survey, 1988.
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Figure 1. Scatterplot of Birth Weight against Gestaticnal Age in ‘Population’ (original Sample), and Predicted Values

Under 3" Order Polynomial Regression.

The predictors considered for this study divide therefore
inte threg groups. The first group consists of predictors that
only use the sample y-values and the sampling weights.
Included in this group are the Homtz -Thompson estimator
Y Wt = Lies Wi ¥; » the predictor YE, defined by (5.2) and
Hajek’s estimator fHaJek defined by (5.3). The second group
consists of predictors that use the working model defined by
a.1). Included in this group are the two regression pre-
dictors Y, and Y2 Reg defined by (4 4) and (4.8) respec-
tively, the bias corrected predictor Y defined by (4.12) and
the GREG estimator defined by (4 14). The third group
contains the same predictors as the second group (except for
Y,, see above), but based on the simple regression model
(only the first power of x).

The MSEs of all the predictors considered in this study
have been estimated by use of the two-step procedure
described in section 6. However, because of computing time
limitations, the MSE estimators were only computed for a
random selection of 200 out of the 1,000 samples and are
based on only 200 hootstrap samples from each pseudo
population. For assessing the performance of the MSE
estimators we computed the corresponding empirical MSEs
based on the 1,000 samples selected from the study
population. Thus, the ‘true’ MSE of a generic predictor Y
was computed as,

MSE(¥) = — Y)?

000 (7.2)

( -

where f(,) denotes the predictor computed from the ™
sample. Notice that since the population values are fixed,
the MSE in (7.2) is the randomization MSE over all possible
sample selections, which is what the estimator (6.2) is
intended to estimate.

7.2 Results of Empirical Study

The main results of this study are exhibited in
Tables 1.1 — 1.3 (one table for each sample size). The third
column of each table shows for every predictor Y the
empirical bias, [(TX,Y, o /R)=Y], and the standard
deviation (Sid) of the empirical bias, computed as
[£%.(F,, ~ V) IRME, ¥y =ER, 7, /R, R=1000.
The next two columns show respectively the ‘true’
{empirical) RMSE (square root of Equation 7.2), and the
square root of the mean of the corresponding Bootstrap
estimators defined by (6.2).

The main conclusions from Tables 1.1 — 1.3 are as follows:
1- All the predictors considered for this study are virtually

design unbiased with all three sample sizes, irrespective
of the underlying working model. The predictor ¥, has a
statistically significant bias when tested by use of the
conventional r-statistic but the actual bias is negligible
when compared to the true population total. (The
predictor f, is the only predictor considered in this
study that is not design consistent).

The next three comments refer to the RMSE of the
various predictors,
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2- The predictors in Groups 2 and 3 that use the auxiliary
values perform much better than the predictors in Group
1, particularly for the smaller sample sizes. The pre-
dictors in Group 2 that employ the 3™ order polynomial
regression model (7.1) perform better than the corre-
sponding predictors in Group 3 that employ the simple
regression model as the working model, but the dif-
ferences diminish as the sample size increases.

3- An important result emerging from this study is that the
predictors Y2 Rep and YE, (and also Y for the larger
sample sizes), that only predict the y-values for units
outside the sample indeed perform better than the other
predictors in their respective groups (see also below). As
surmised in Remark 7, this holds particularly with the
larger sample sizes. Notice that the differences between
Yz and the GREG estimator for n=1,145 and
n=2250 are smaller under the polynomial model
(Group 2) than under the simple regression model
(Group 3), which is explained by the tight relationship
between the study variable and auxiliary variables under
the polynomial model, The predictor ¥, is less stable
than 1?2‘ reg 10T n=232 but for the other two sample
sizes the two predictors perform similarly.

4- The predictor Y2 reg Performs somewhat better than the
model dependent predictor Y that employs the
expectations F{w, { x;) to adjust the sampling weights.
We have no clear explanation for this result because as
illustrated in Pfeffermann and Sverchkov (1999) using
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the same data, adjusting the sampling weights improves
the estimation of the regression coefficients very
significantly.

Next consider the MSE estimators.

5- The MSE estimators developed in section 6 perform
very well for all the predictors and with all the sample
sizes. For the sample size n =232 there is a systematic
under-estimation of the RMSE by up to 3%, which is
explained by the fact that the psendo population is in this
case less variable than the actual study population (see
Remark 9). The MSE estimators are almost unbiased for
the other sample sizes with the largest difference
between the estimated and true RMSE being again in the
magnitude of 3%.

Another way of assessing the bias of the various
predictors and their MSE estimation is by studying the
coverage properties of confidence intervals defined by these
predictors. Tables 2.1-23 compare the empirical
percentage coverage of the standard confidence intervals
vt A ,,21/M§E with the comesponding nominal
percentages for selected values of o (one table for each
sample size). The empirical percentages are somewhat
erratic with »n =232 sample units but they stabilize as the
sample size increases, particularly with the use of the
predictors in the second and third group. The empirical
percentages are close to the nominal percentages with all the
predictors when n = 2,250.

Table 1.1
Bias, RMSE and Square Root of Mean of MSE Estimators, 7 = 232
Group Predictor Bias (Std) RMSE \/ MSE
fH_T -4.5(11.6) 365.1 355.0
1 A
Y 1529 91.1 89.8
No x-values . Ef @9
Pitsik 1.7(2.9) 93.0 91.6
2 Y, 4.4 (2.0) 64.0 63.0
3" order Y2 Reg 3.5(2.0) 63.4 62.4
polynomial A 0.3 (2.1) 65.4 65.0
regression ¥ireG 3.4(2.1) 63.6 62.6
Y2 Rep 23(2.2) 68.0 66.2
3 A
Y. 0322 68.6 674
Simple Regression . 3 22
YoreG 2.3(2.2) 68.3 66.5

True ‘population’ total= 27107
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Table 1.2
Bias, RMSE and Square Root of Mean of MSE Estimators, 7 = 1,145

YMSE

Group Predictor Bias (Std) RMSE
Yyt 9.1 (3.0) 157.1 156.1
1 Ve 0.0(1.1) 35.2 34.9
No x-values R
Yotaiek -0.1(1.3) 39.5 39.3
Y, 3.0(0.9) 276 28.1
2 -
S v, Res 2.0(0.9) 274 27.3
polynomial A 0.5(0.9) 274 277
regression Y oree 1.7 (0.9) 278 27.8
Y2 Reg 0.0 (1.0) 283 287
3 Y, 0.1(1.0) 282 289
Simple Regression N
YorEG 0.0 (2.0) 29.1 29.6
True ‘population’ total=2710.7
Table 1.3
Bias, RMSE and Square Root of Mean of MSE Estimators, #n=2,250
Group Predictor Bias (Std) RMSE VMSE
Yur 1327 82.7 80.4
1 Yo -0.2 (0.6) 185 18.8
No x-values R
ik 0.1(0.7) 235 238
¥, 1.3(0.5) 175 17.3
2 ~
6 (0. 16. 16.
3 order Yz.ﬂkes 0.6 (0.5) 6.9 6.3
polynomial ¥, -0.3 (0.5) i7.1 16.5
regression Yoreo 0.5(0.5) 179 18.3
?Q,Reg 0.3 (0.5) 17.3 16.8
3 ¥, 0.3 (0.5) 177 17.3
Simple Regression .
: Yoreo -0.2 (0.6) i8.8 18.3
True ‘population’ total= 2710.7
Table 2.1
Nominal and Empirical Percentage Coverage of Confidence Intervals, n = 232
Group Predictor 1.0 25 50 100 900 95.0 97.5 99.0
Pur 2.5 3.5 55 100 900 97.0 99.0 99.5
1 Ve 0.5 2.0 4.0 8.0 88.5 91.5 95.5 98.0
No x-values Potgjek 0.5 2.0 4.0 8.0 88.5 91.5 95.5 98.0
Y, 0.0 0.0 15 6.5 86.0 90.5 925 97.5
2 Y2 reg 0.0 0.0 20 7.0 85.0 90.5 93,5 98.0
3" order polynomial A 0.0 0.5 25 6.5 87.5 91.0 95.0 98.5
regression YoreG 0.0 0.0 2.0 7.0 85.0 90.5 935 98.0
Y2 Reg 0.0 1.0 2.5 7.0 87.0 91.5 97.5 98.0
3 A 0.0 1.0 2.5 7.0 86.0 91.5 96.5 98.0
Simple Regression Yorea 0.0 1.0 2.5 7.0 86.5 91.5 97.0 98.0
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Table 2.2

Nominal and Empirical Percentage Coverage of Confidence Intervals, n = 1,145
Group Predictor 1 2.5 50 100 900 95.0 975 99.0
. 40 7.0 90 135 955 98.0 985 99.5
1 Yer 3.0 5.0 8.0 125 925 95.5 99.5 100.0
No x-values Yotgik 35 5.0 9.5 12,5 92.5 96.0 99.5 100.0
Y, 0.5 2.0 5.0 7.5 86.5 93.5 96.0 97.0
2 Y2, Reg 0.5 3.0 6.0 9.0 86.5 94.5 96.5 97.0
3 order polynomial A 0.5 2.0 6.0 9.5 88.0 94.0 97.0 98.0
regression YeoreG 0.5 3.0 5.0 90 865 94.0 96.5 98.0
Y2 Reg 0.5 3.0 6.0 110 900 93.0 97.0 99.5
3 A 05 25 55 10.5 90.0 94.0 97.0 99.5
Simple Regression YoreG 1.0 3.0 6.0 110 905 94.0 97.5 99.0

Table 2.3

Nominal and Empirical Percentage Coverage of Confidence Intervals, # = 2,250
Group Predictor 1.0 2.5 5.0 100 900 95.0 97.5 99.0
Pur 0.5 1.0 55 110 950 97.5 99,0 99.5
1 . 1.0 3.0 55 90 915 96.0 99.0 99.5
No x-values Fitzje 1.0 2.5 5.5 90  93.0 97.0 98.5 99.5
14 0.5 2.0 5.0 90 910 94.5 96.5 97.5
2 ¥, Reg 0.5 2.5 6.5 10.5 90.5 94.5 96.5 98.0
3 order polynomial A 0.5 2.0 75 12,5 91.5 95.5 96.5 97.5
regression YorEG 0.5 2.0 6.0 10 9.0 94.5 96.0 98.0
¥, Reg 1.0 3.0 6.0 110 910 95.0 97.5 99.0
3 A 1.0 2.0 6.0 120 900 95.0 97.5 98.0
Simple Regression YorEG 0.0 1.5 5.0 115 91.5 95.0 97.5 99.0

As implied by the theoretical developments of this article
and illustrated in the empirical study, predicting only the y-
values for units outside the sample employing the sample-
complement model yields better predictors for the
population total than predicting all the population values by
use of the population model, as implicitly implemented
when using the GREG or Hajek’s estimators. Clearly, the
differences are only appreciable when the sampling
fractions are not negligible.

In order to highlight this point further, we present in
Table 3 the mean prediction error (mpe) in the original scale
(grams}) over the 1,000 samples when predicting the sample-
complement values;

mpe = X5, 9, =y ) -] 1000
where S, defines the ™ selected sample. The mpe’s are
shown for three predictors, all utilizing the working model
(7.1)- and thus having the general form, §, 6 =B,+
Bix; +B,x: +Pyx;, jes. For the first predictor the
vector B =By, B> B, Bs) is estimated by OLS, which
corresponds to the use of the sample model; for the second
predictor P is estimated by the probability weighted
estimator B e that corresponds to the use of the population
mode] whereas for the third predictor B is estimated by the
estimator f?e which is computed similarly to ﬁpw but with
weights (w; —1), that corresponds to the use of the sample-
complement model.
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Table 3
Mean Prediction Errors and Std of Means (in brackets) Under Three Prediction Models

Sample size Sample Model Population model Sample-Complement model
232 329.0 (2.2} 103 (2.3) 43(23)
1,145 375009 37.7(1.1) 24(L.1)
2,250 387.5 (0.6) 85.8 (0.7) 0.9 (0.8)

The clear conclusion emerging from Table 3 is that the
use of either the population model or the model holding for
units in the sample for the prediction of y-values of units
outside the sample can result in appreciable biases. Notice
that the bias induced by use of the population model
increases as the sampling fraction increases, which agrees
with the previous discussion asserting that the difference
between the sample and sample-complement models only
shows up with relatively large sample sizes (see Comment
2).

8. CONCLUDING REMARKS

In this article we use the sample and sample-complement
distributions for developing design consistent predictors of
finite population totals. Known predictors in common use
are shown to be special cases of the present theory. The
MSEs of the new predictors are estimated by a combination
of an inverse sampling algorithm and a resampling method.
As supported by theory and illustrated in the empirical
study, predictors of finite population totals that only require
the prediction of the outcome values for units outside the
sample perform better than predictors in common use even
under a design based framework, unless the sampling
fractions are very small. The MSE estimators are shown to
perform well both in terms of bias and when used for the
computation of confidence intervals for the population
totals. Further experimentation with this kind of predictors
and MSE estimation is therefore highly recommended.
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Weighted Estimation in Multilevel Ordinal and Binary Models
in the Presence of Informative Sampling Designs

LEONARDO GRILLI and MONICA PRATESI'

ABSTRACT

Multilevel models are often fitted to survey data gathered with a complex multistage sampling design. However, if such a
design is informative, in the sense that the inclusion probabilities depend on the response variable even after conditioning
on the covariates, then standard maximum likelihood estimators are biased. In this paper, following the Pseudo Maximum
Likelihood (PML.} approach of Skinner (1989), we propose a probability-weighted estimation procedure for multilevel
ordinal and binary models which eliminates the bias generated by the informativeness of the design. The reciprocals of the
inclusion probabilities at each sampling stage are used to weight the log-likelihood function and the weighted estimators
obtained in this way are tested by means of a simulation study for the simple case of a binary random intercept model with
and without covariates. The variance estimators are obtained by a bootstrap procedure. The maximization of the weighted
log-likelihood of the model is done by the NLMIXED procedure of the SAS, which is based on adaptive Gaussian
guadrature. Also the bootstrap estimation of variances is implemented in the SAS environment.

KEY WORDS: Informative design; Muitilevel ordinal model; Multistage sampling; Pseudo Maximum Likelihood;

Weighting.

1. INTRODUCTION

Multilevel models for ordinal responses, including
binary responses as a special case, are frequently used in
many areas of research for modelling hierarchically
clustered populations. In fact, both in human and biological
sciences, the status or the response of a subject may often
be classified in two categories or in a set of ordered
categories (ordinal or graded scale). At the same time,
subjects are observed clustered in groups (e.g., schools,
firms, clinics, geographical areas). The hierarchical popu-
lation structure is often also employed to design multistage
sampling schemes, with unequal selection probabilities at
some or all the stages of the sampling process. In the
multilevel analysis of survey data, complex sampling
schemes are often ignored even if they may cause the
violation of the basic assumptions underlying multilevel
models. In fact, in complex sampling designs both the
subjects and the clusters at all levels could be selected with
prababilities that, even conditionally on the covariates, do
depend on the response variable; in other words, the
sampling design might be informative.

For data that are clustered and obtained by multistage
informative designs, proposals for fitting multilevel models
have been formulated mainly for the case of continuous
response variables. In particular, Pfeffermann, Skinner,
Holmes, Goldstein and Rasbash (1998) propose proba-
bility-weighting procedures of first and second level units
that adjust for the effect of an informative design on the

estimation in two-level models with a continuous response
variable. The method, known as Pseudo Maximum
Likelihood (PML), consists in writing down a closed form
expression for the census likelihood, estimating the
log-likelihood function and then maximizing the estimated
function numerically. The method needs the sampling
weights for the sampled elements and clusters at all levels,
The authors also develop appropriate ‘sandwich’ estimators
for the variances of the estimators.

The work of Pfeffermann et al. (1998) is mainly
concerned with the implementation of the PML principle in
the IGLS (Iterative Generalised Least Squares) algorithm
{Goldstein 1986), which is suitable for linear muttilevel
models. The probability-weighted IGLS algorithm is
available in the widespread package MLwiN (Rasbash,
Browne, Goldstein, Yang, Plewis, Healy, Woodhouse and
Draper 1999). However, the extension to nonlinear models
is not trivial. For the nonlinear case the developers of
MLwiN implemented a weighting procedure that parallels
the one used for linear models with some ad hoc solution
for the level 1 variation: for example, for binary responses
the subject-level weights are included in the binomial
denominator. The proposed method is straightforward to
implement, but its properties have not been investigated yet.
Moreover Renard and Molenberghs (2002) report the case
of an application where the aforementioned algorithm for
weighting in multilevel binary models did non converge or
yielded implausible results.
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The simulation study which we will use to judge the
performance of the PML estimators will closely follow the
lines of Pfeffermann ef af. (1998), since they use a similar
approach for the linear model, so that some interesting
comparisons are possible. However, when making the
comparisons it should always kept in mind that, while in the
two-level linear model the two variance components can be
estimated separately, in the two-level binary model only a
ratio of the two variance components is estimable, as
discussed further on.

A recent paper which deals with the estimation of
variance components is Kom and Graubard (2003}, whose
work is motivated by the substantial bias showed in small
samples by several weighted estimators of variance compo-
nents proposed to adjust for informative designs (Graubard
and Ko 1996). Though the topic is same, the work of
Kom and Graubard is different from ours in many respects:
a) As Pfeffermann et al. {1998), they consider only the
linear multilevel model. b) In the context of the linear
multilevel model, they focus on unbiased estimation of the
variance components in small samples: in fact they propose
some estimators for the variance components and only
sketch how to derive similar estimators for the linear model
with covariates, but without testing their performance.
Anyway, the extension to nonlinear multilevel models is not
trivial. ¢) The main estimators proposed by Korn and
Graubard (2003), which are in closed form, showed good
performance even in small samples. However they rely on
the pairwise joint inclusion probabilities. When such proba-
bilities are not available, which is often the case in practice,
the authors propose a variant whose bias is substantial when
the number of sampled clusters is moderate (33 in their
simulation plan). In contrast, the PML method adopted in
our work do not require joint inclusion probabilities. d) The
informative design used by Korn and Graubard (2003} for
their simulation study is quite different from ours: in fact, in
their design the undersampling of the units depends on
whether the model’s random errors are greater than a
certain threshold in absolute value, while in our design the
criterion depends on whether the random errors are high or
low. Therefore a comparison of the results is difficult.

The wide use of nonlinear multilevel models in many
fields of application urges for a general and reliable
weighted estimation method, which should be both effect-
ive and simple to implement, preferably in the framework
of a standard statistical software. The present paper
represents a contribution in this direction.

It is worth to note that the PML method we exploit is
quite general, so it can be applied to a wide range of
models. In the paper the focus is on models for ordinal and
binary responses, since they are very common and can be
represented as a linear model for the latent response

endowed with a set of thresholds (see section 2), facilitating
the comparison with the existing results for the linear
model, However the description of the PML approach is
absolutely general and the estimation technique based on
the NLMIXED procedure of SAS (reported in Appendix A)
is easy to generalize.

The structure of the paper is as follows. Basic definitions
for the multilevel ordinal model are set out in section 2,
while in section 3 the general PML approach is described,
along with some details for fitting the model using SAS
NLMIXED. In section 4 the properties of the various
estimators for the random intercept binary model are
evaluated by a simulation study. Section 3 concludes with
some final remarks.

2. THE MULTILEVEL ORDINAL MODEL

In order to ease the comparison with the results
concemning the linear model (Pfeffermann ef al. 1998; Korn
and Graubard 2003), it is useful to write the ordinal model
in terms of a latent linear model endowed with a set of
thresholds. Suppose that an observed ordinal response
variable ¥, with k = 1,2,...,K levels, is generated, through
a set of thresholds, by a latent continuous variable Yy
following a variance component model (Hedeker and
Gibbons 1994):

Y, = Px; rou e 0))

withi=1,2,.., N] elementary units (subjects) for the j-th
cluster (j = 1,2,..., M). In{1) x,, is a covariate vector and
is the corresponding vector of slopes; the random variables € ;
and u , are the disturbances, respectively at the first
(subject) and second (cluster) level; and o? is the second
level variance component.

For the disturbances of mode! (1) we make the standard
assumptions, i.e., a) the 9,;.-75 are iid with zero mean and
unknown variance o*; b) the uj’s are Gaussian iid with
zero mean and unit variance; c) the sij’s and uj.’s are
mutually independent.

Note that model (1) leads to the simplest case of a multi-
level ordinal model, with just two levels and a single
random effect on the intercept; the extension to three or
more levels and to multiple random effects is straight-
forward in principle (Gibbons and Hedeker 1997), but the
complications in the formulae suggest to consider only the
simplest case, which is sufficient for the discussion of the
main conceptual issues.

The observed ordinal variable Y is linked to the latent
one Y through the following relationship:

(Y, = &} ={y,,< ¥, <y,
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where the thresholds satisfy - =y <y s..<y, <
Y = +=. Therefore, conditional on U the model proba-
bility for subject i of cluster j is

P(Y, = k|lu) =Py, <V, <v,]u)
=P(?1‘j5 7&'“,:') - P(?ij s Yk-lluj)’ @

with

P(¥, sy fu) =P, sy, - [B'x, + ou]|u)

Y |
=F(Yc.k_[Bc:xij+mo ”j])’ )

where F(-) is the distribution function of the standardized
first level error term €,./c. All the model parameters are
defined in terms of the unknown o, the standard deviation
of the first level error term, so only the ratios of the model
parameters to the standard deviation of the first level error
term are identifiable; we use the notation vy, to indicate that
the latent model parameter v is in ¢ units, i.e., y_ = y/c.
Note that F(-) is also the inverse of the link function of the
ordinal model: for example, the standard Gaussian
distribution function yields the ordinal probit model.

As for identification, if B includes the intercept, the
estimable thresholds are X -2; so it is customary to set
Yo, = 0. Alternatively, if the intercept is fixed to zero all
the K - 1 thresholds are estimable.

Now let @ denote the vector of all estimable parameters,
which include ¥, and K-2  thresholds
{You k=2, ,K-1} (v, is fixed to zero to insure
identifiability). The conditional likelihood for subject i of
cluster j is

K
L;(®u) - H [P(Y-'fkf"j)]dw’ )

where P( Y =k|u}.) is defined by (2) and (3), while d,.jk is
the indicator function of the event {YU =k}. Then the
marginal likelihood for cluster j is

N}
L,®) <[ 711 1,000,

where ¢ is the standard Gaussian density function. Finally,
the overall marginal likelihood is

M
L(®) = 11 L,(®). §)

95

3. PROBABILITY-WEIGHTED ESTIMATION
3.1 Psevdo Maximum Likelihood (PML) Estimators

Suppose that the whole population of M clusters {level 2
units) with N}. elementary units (subjects or level 1 units)
per cluster is not observed; instead the following two-stage
sampling scheme is used:

— first stage: m clusters are selected with inclusion
probabilities nj(j =1,..,.M);

— second stage: n; elementary units are selected within
the j-th selected cluster with probabilities
ni|j(i= 1,...,Nj).

The unconditional sample inclusion probabilities are
then WS W

‘When the sampling mechanism is informative, i.e., the m;
and/or the 1t ” depend on the model disturbances and hence
on the response variable, the maximum likelihood estimator
of the parameters of the multilevel ordinal model defined in
section 2 may be seriously biased.

A standard solution to this problem is provided by the
Pseudo Maximum Likelihood (PML) approach (Skinner
1989). However in the context of multilevel models the
implementation of the PML approach is complicated by the
fact that the population log-likelihood is not a simple sum
of elementary unit contributions, but rather a function of
sums across level 2 and level 1 units. This can be seen by
writing the logarithm of the likelihood (5) as tollows:

N,
exp{ﬁ log L;,.j(G }u)}
i=1

A design consistent estimate of the population log-
likelihood (6) can be obtained applying the Horvitz-
Thompson principle, i.e., replacing each sum over the level
2 population units j by a sample sum weighted by w ;= U
and each sum over the level 1 units { by a sample sum
weighted by W = lmt.| ;'

o (u)du. (6)

M
logL(8)=Y 1ogf
j=1 -

10gf(9)=
) wf]"gf_:
J

where X’ denotes a sum over sample units.

Note that inserting the weights in the log-likelihood
implies the use of a design consistent estimator of the
population score function. In fact, the population score
function U(0)=0/00 log L(B) can be written as

eu)du, (7)

exp{z w,log L, (0 lu)}
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i1 00

N,
) {Z iloth.j}cp (u)du

(8)

N;

J=1 - j
f exp{z log L‘.j}cp (w)du

i=1

where L, = Lij(0|u), whose corresponding Horvitz-
Thompson estimator {/(8) is

s f:., exp{Z W.-L,-IOEL,-j} {E W;u‘a%IOgsz}‘U(“)d“

2w, , ©)
J f_:"exp{ - wylog Lij}w(u)du

which equals the score obtained by differentiating the
probability-weighted loglikelihood (7).

Under mild conditions, the solution ém;. to the esti-
mating equations U (8)=0 is design consistent for the
finite population maximum likelihood estimator 6 which,
in turn, is model-consistent for the super-population para-
meter 8: therefore éPML is a consistent estimator of & with
respect to the mixed design-model distribution
(Pfeffermann 1993).

Note that general probability-weighted estimators for
nonlinear multilevel models can also be devised by
weighting suitable estimating functions, as in the work of
Singh, Folsom and Vaish (2002) in the context of small area
estimation.

The implementation of the PML approach requires the
knowledge of the inclusion probabilities at both levels.
Using only second level weights or only first level weights
may be insufficient or may even worsen the situation, as
shown by our simulations.

3.2 Scaling the Weights

A controversial issue discussed in Pfeffermann et al.
(1998) and Korn and Graubard (2003) is the scaling of the
weights to obtain estimators with little bias even in small
samples. Obviously, scaling is not relevant for the level 2
weights, since from (7) and (9) it is clear that multiplying
the w,’s by a constant does not change the PML estimates
(it simply inflates the information matrix by that constant).
On the contrary, scaling the level 1 weights may have
important effects on the small sample behavior of the PML
estimator. In the simulation study discussed in section 4 we
present the results for the following type of scaling (named
‘scaling method 2’ in Pfeffermann et al. 1998):

W, .
wip = =L, (10)

w,
i

where w, = (ijiu)/"j’ so that, for the j-th cluster, the sum
of the scaled weights equals the cluster sample size n,. In
the present paper we do not wish to discuss the relative
merits of the various scaling methods, so we limit our
simulations to scaled weights (10), which have an intuitive
meaning and showed good performance in the study of
Pfeffermann er al. (1998), although they may yield a
substantial bias with certain designs, as discussed in Korn
and Graubard (2003). The topic will be broached again in
section 4.

3.3 Estimation Technique

The maximization of the weighted log-likelihood (7)
involves the computation of several integrals which do not
have a closed-form solution, so a numerical approximation
technique is required. When the dimensionality of the
integrals is low, a simple and very accurate technique is
Gaussian quadrature, which is based on a summation over
an appropriate set of points. The NLMIXED procedure of
SAS (SAS Institute 1999) is a general procedure for fitting
nonlinear random effects models using adaptive Gaussian
quadrature. Various optimization techniques are available
to carry out the maximization; the default, used in the
simulations of secticn 4, is a dual quasi-Newton algorithm,
where dual means that the upgrading concermns the Cholesky
factor of an approximate Hessian (SAS Institute 1999).

Though the NLMIXED procedure does not include an
option for PML estimation, it is still possible to insert the
weights in the likelihood, using different tricks for level 1
and level 2 weights, as explained in Appendix A.

3.4 Variance Estimation

In standard maximum likelihood the estimation of the
covariance matrix of the estimators is obtained by inverting
the information matrix. However this conventional esti-
mator is not appropriate when using the PML method since
it does not take into account the variability stemming from
the sampling design. To get a more reliable covariance
matrix Skinner (1989) proposed the use of a robust
‘sandwich’ estimator, which is employed also by
Pfeffermann et al. (1998).

As noted in section 3.3, the NLMIXED procedure of
SAS allows to fit the mode] with the PML approach, but the
estimated covariance matrix, which is obtained by inverting
the information matrix, is likely to be misleading in order to
appreciate the actual variability of PML estimators. In the
SAS framework the derivation of ‘sandwich’ estimators is
not trivial. However, a simple and effective solution,
requiring a bit of programming, is to empirically estimate
the variance through the bootstrap technique for finite
populations (Sirndal, Swensson and Wretman 1992), which
consists of the following steps: a) using the sample data, an
artificial finite population is constructed, assumed fo mimic



Survey Methodology, June 2004

the real population; b) a series of independent bootstrap
samples is drawn from the artificial finite population and
for each bootstrap sample an estimate of the target
parameter is calculated; ¢) the bootstrap variance estimate
is obtained as the variance of the observed distribution of
the bootstrap estimates.

The artificial finite population can be generated in the
following way: 1) for the j-th sampled cluster, each of the n,
sampled elementary units is replicated Wi times, rounding
the weight to the nearest integer, obtaining an artificial
cluster of about N. elementary units; ii) each of the m
artificial clusters is replicated w; times, rounding the weight
to the nearest integer, obtaining an artificial population of
about M clusters. Then the samples are selected from the
artificial population in the following way: i ) m clusters are
resampled with probability proportional to n; ii) for the
J-th resampled cluster, n; elementary units are resampled
with probability proportional to L

When the sampling fraction m/M is low, most of the
variance is due 10 the sampling of the clusters, so the
bootstrap procedure described above could be simplified by
omitting the steps concerning the elementary units, i.e., step
1) in the construction of the artificial population and step ii)
in the resampling process.

A simpler resampling technique for variance estimation,
considered by Kom and Graubard (2003), is the jackknife.
In the case of clustered designs the technique entails the
calculation of the variance from the sct of point estimates
obtained by deleting one cluster at a time, though the
performance of the jackknife with correlated data is not
always satisfactory (Shao and Tu 1995). In our simulation
study the jackknife variance estimator seems unreliable, so
it is not used. Further research is needed to fully evaluate
the potentialities of the jackknife by testing some suitable
modifications of the technique.

4. SIMULATION STUDY

4.1 Design of Experiment

The experiment reflects the two-stage scheme assumed
for the observed variables: first, the finite population values
are generated from the adequate superpopulation model
(stage I) and then an informative or non-informative sample
is selected from the finite population (stage II), with one
sarnple per population. The two-stage selection scheme was
repeated 1,000 times for each combination of sample size
and type of informativeness. In order to compare our results
with the ones obtained for the multilevel linear model, the
experiment has been designed following the example of
Pfeffermann et al. (1998, section 7).
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The simulation study focussed on a simple instance of
the model defined in section 2, namely the random intercept
probit binary model, which has only two categories for the
response variable (ie., K=2) and one cluster-level
Gaussian random error. To parallel the study of
Pfeffermann et al. (1998) the main simulation plan refers to
the model without covariates, but some additional
simulations are conducted 1o assess the performance of the
cstimators in the model with one cluster-level covariate and
one subject-level covariate.

The values of the binary response variable Ya‘j were
generated using the following two-stage scheme which
parallels the one of Pfeffermann et al. (1998):

- Stage L population  values Y,
(j=1,.,M;i=1,.,N, ) were obtained by first
generawlg a value from the superpopulatlon latent
model Y} [3+uJ-1-r:J with ", ~ NO, ®*) and
g, ~NO, o 2}, and then putting Y. =0 if YJ s0or
Y =1if ¥, i >0 (recall that the émary model has
only one threshold which is set to zero to guarantee
identifiability). The latent model parameter values
employed in the simulation are p =0, ®” =0.2 and
o =0.5, so that the parameters estimable from the
binary model are B, = B/0=0 and w, = a/c =0.632
(see expression (3)). The hierarchical structure of the
population comprises M = 300 clusters, while the
cluster sizes N, were determined by N. = 75exp (u ),
with i, generated from N(0, ®?), truncated be]ow
by -1.5® and above by 1.5w. As a result, in our
population N lies in the range [38, 147] with mean
around 80.

Finite

— Stage II. Once the finite population values were
obtained, we adopted one of the following sampling
schemes:

(a) Informative at both levels: first, m clusters were
selected with probability proportional to a
‘measure of size’ Xj, Le., T = ij/Z:':IX the

measure Xj was determined in the same way as Nj

but with &; replaced by u;, the random effect at
level 2. The elementary units in the j-th sampled
cluster were then partitioned into two strata
according to whether £,>0 or £, 50 and simple
random samples of sizes 0.25n; and 0.75n, were
selected from the respective strata. The sizes n 2

were either fixed, n; =y, or proportional to Nj.

(b) Informative only at level 2: the scheme is the
same as the previous one, except that simple
random sampling was employed for the selection
of level 1 units within each sampled cluster.
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(c) Non-informative: the scheme is the same as the
previous one, except that the size measure X;
was set equal to N,

The simulation study included samples with m = 35
clusters and varying numbers of elementary units: large
samples with fixed size n;=ny = 38 and propoitional
allocation n ;= 0.4N i and small samples with fixed size
n; = ny =9 and proportional allocation #; = 0.1N, (mean of
about 9).

The simulation study was carried out entirely within the
SAS System (SAS Institute 1999), writing specific code
with the macro language. The models were fitted with the
NLMIXED procedure (sce Appendix A), using 10-point
adaptive Gaussian quadrature with a dual quasi-Newton
algorithm, which reached convergence in a few iterations.
As explained in Appendix A, to avoid gross rounding errors
the level 2 weights were pre-multiphied by a factor
k = 10,000 and the estimated covariance matrix was then
multiplied by the same factor.

4.2 Results

The results of the simulations are shown in Tables 1 and
2. For each sampling design the behavior of the point esti-
mators of the intercept B, and the second level standard
deviation @, is summarized by the mean and standard
deviation of their Monte Carlo sampling distribution. The
point estimators under study are the standard maximum
likelihood unweighted estimator and the following three
weighted versions of it: a} cluster-level weighted: the
weights are only at level 2 (i.e., varying wj’s and constant
w;; S); b) unscaled fully weighted: the weights are at both
levels and the level 1 weights are unscaled; ¢) scaled fully
weighted: the weights are at both levels and the level 1
weights are scaled according to (10), i.e,, ‘scaling method
2" of Pfeffermann et al. (1998).

Our results are shown and discussed according to the
following three scenarios: 1) Base scenario: the sampling
design is non-informative. In this situation all the basic
assumptions undertying the random intercept binary model
are fulfilled, so this case can be assumed as a benchmark
for judging the subsequent results. 2) Informative/
Unweighted scenario: the sampling design is informative,
while the estimator is unweighted. In this situation the basic
assumptions underlying the random intercept binary model
are violated because of the informativeness of the design
and no adjustment is used. 3) Informative/Weighted
scenario:. the sampling design is informative and the esti-
mator is weighted. Also in this case the basic assumptions
underlying the random intercept binar model are violated,
but the weights are introduced as a tentative adjustment for
the bias of the standard estimator,

4.2.1 Base Scenario

When the sampling design is non-informative the
standard maximum likelihood unweighted estimator is
asymptotically unbiased (Tables 1 and 2: rows 9-12,
column 1). However for smali samples (n; = 9 and
n;0.1N,) there is an appreciable negative bias in the esti-
mation of ©_.

If the weights are introduced when there is no need to
adjust for the effect of the design (Tables 1 and 2: rows 9-
12, columns 2-4), we face a slight increase in the variability
of the estimators, which is more pronounced when the
unscaled fully weighted estimator is used in small samples.
Note that, still in small samples, the unscaled fully weighted
estimator of @ is upward biased.

4.2.2 Informative/Unweighted Scenario

The informativeness of the sampling design produces
biased and unstable estimates. The bias is still evident for
large samples (Tables 1 and 2: rows 1-8, column 1). The
conclusions are the same for both types of informative
designs, though the bias tends to have a different sign.
Moreover the informativeness of the design inflates the
variability of the standard estimator with respect to the base
scenario: in particular, when the design is informative at
both levels the standard error of the estimator of B_ is
doubled.

4,2.3 Informative/Weighted Scenario

Estimation of B

The results in Table 1 show that, when the design is
informative, the weighted-based adjustment is effective in
removing the bias in the estimation of B_.

Particularly, when the design is informative only at level
2 (Table 1: rows 5-8, columns 2-4) and the weights are
introduced only at this level (cluster-level weighted
estimator), the bias in the estimation is corrected with no
important increase in the sampling vartance. The result is
valid also for fully weighted estimators (unscaled or
scaled). The bias correction works for small samples too.

When the design is informative at both levels (Table 1:
rows 1-4, columns 2-4) and the weights are introduced at
both levels (fully weighted estimators), the bias in the

‘estimation of B, is corrected. Moreover, the fully weighted

estimators have smaller sampling variance than the
unweighted counterpait, except for the unscaled version in
small samples. The scaled version is preferable especially
in small samples, since it allows to achieve an unbiased
estimator with a substantial lower sampling variance. It
should be noted that when the design is informative at both
levels, the cluster-level weighted estimator is worse than the
standard unweighted estimator.
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Table
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1

Simulation Means and Standard Deviations {in parenthesis) of Point Estimators of the Intercept (true value 0, number of replicates 1,000)

Sampling design Unweighted estimator

Weighted estimators

Cluster-level

Unscaled fully

weighted

weighted

Scaled fully
weighted

Informative at both levels
Fixed size n; = 38

Prop. size n; = 0.4N;
Fixed size n; = 9

Prop. size n, = O.INj

Informative only at cluster level (level 2)
Fixed size n =38

Prop. size n; = 04N,

Fixed size n, =9

Prop. size n; = U.]Nj

Non-informative
Fixed size n; = 38
Prop. size n; = 0.4N,
Fixed size n = 9
Prop. size n; = 0.1N,

0,120 (0.212)
-0.163 (0.212)
0.214 (0.204)
0.164 (0.220)

0.281 (0.169)
0.274 (0.169)
0.274 (0.187)
0.269 (0.179)

0.000 (0.108)
0.003 (0.113)
-0.007 (0.108)
-0.002 (0.110)

0.411 (0.202)
-0.453 (0.200)
-0.512 (0.190)
-0.450 (0.209)

0.018 (0.168)
0.014 (0.178)
0.010 (0.195)
0.007 (0.179)

0.014 (0.193)
0.018 (0.190)
-0.062 (0.258)
-0.074 (0.294)

0.017 (0.170)
0.014 (0.182)
0.010 (0.212)
0.007 (0.203)

0.015 (0.188)
0.021 (0.183)
0.000 (0.185)
0.008 (0.203)

0.017 (0.169)
0.014 (0.181)
0.009 (0.196)
0.006 (0.182)

Table
Simulatior Means and Standard Deviations (in parenthesis) of

0.000 (0.114) 0.001 (0.115) 0.001 (0.115)
0.004 (0.120) 0.003 (0.123) 0.003 (0.122)
0.009 (0.115)  -0.010 (0.125)  -0.010 (0.117)
0002 (0.114)  -0.004 (0.132)  -0.003 (0.117)

2

Point Estimators of the Second Level Standard Deviation

(true value 0.632, number of replicates 1,000)

Sampling design Unweighted estimator

Weighted estimators

Cluster-level Unscaled fully Scaled fully

weighted

weighted

weighted

Informative at both levels
Fixed size n = 38

Prop. size n, = 0.4Nj
Fixed size n; = 9

Prop. size n; = O.INJ.

Informative only at cluster level (level 2)
Fixed size n, = 38

Prop. size n; = 0.4N,

Fixed size n;= 9

Prop. size n; = 0.1NJ.

Non-informative
Fixed size n = 38
Prop. size n, = 0.4N,
Fixed size n = 9
Prop. size n, = 0.1¥,

0.671 (0.106)
0.673 (0.108)
0.644 (0.145)
0.598 (0.164)

0.595 (0.100)
0.582 (0.096)
0.547 (0.121)
0.538 (0.122)

0.611 (0.086})
0.609 (0.084)
0.561 (0.105)
0.551 (0.109)

0.638 (0.112)
0.636 (0.112)
0.584 (0.172)
0.546 (0.183)

0.596 (0.110)
0.582 (0.115)
0.548 (0.135)
0.535 (0.142)

0.612 (0.092)
0.606 (0.088)
0.561 (0.112)
0.546 (0.113)

0.637 (0.137)
0.645 (0.142)
0.920 (0.289)
1.002 (0.317)

0.605 (0.111)
0.603 (0.113)
0.671 (0.144)
0.696 (D.158)

0.621 (0.090)
0.626 (0.088)
0.685 (0.11%)
0.703 (0.134)

0.604 (0.128)
0.592 (0.130)
0.536 (0.222)
0.498 (0.242)

0.601 (0.111)
0.596 (0.113)
0.563 (0.133)
0.551 (0.139)

0.617 (0.091)
0.618 (0.088)
0.575 (0.111)
0.559 (0.112)

Estimation of ©.

The results in Table 2, concerning ©_, are more difficult
to interpret (Table 2: rows 1-8, columns 2-4). First note that
also in the base scenario the estimation of @_ is biased,
especially in small samples. Therefore the weight-based
adjustment should be judged as effective if it is able to
reproduce the same bias which is observed in the base

scenario. On these grounds the behavior of the scaled fully
weighted estimator is satisfactory in nearly all situations,
with the exception of the small samples when the design is
informative at both levels. In that case there is also a not
negligible number of replications which yielded a zero
estimate for ©_ (4.5% for the design with fixed size and 2%
for the design with proportional size). The unscaled fully
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weighted estimator does not suffer from the problem of nult
estimates, but, apart from having a larger vartance than the
scaled version, tends to overestimate w,, showing a relative
bias of about 50% in small samples when the design is
informative at both levels. Note also that the scaled fully
weighted estimator outperforms the cluster-level weighted
estimator even when the design is informative only at level
2.

4.2.4 Additional Simulations Using the Model with

Covariates

Some additional simulations were conducted to assess
the performance of the scaled fully weighted estimator in
the model with one cluster-level covariate and one subject-
level covariate. The model is the same used in the main
simulation plan, except for the inclusion of a covariate at
each hierarchical level. For each covariate the values are
generated from a standard Gaussian distribution, while the
corresponding regression coefficient is fixed to 0.1,

As shown by Tables 3 and 4, the scaled fully weighted
estimator is effective in removing the bias induced by the
informative design. Relative to the unweighted estimator
the sampling variance is higher, especially for the subject-

- level regression coeffcient. Overall, the performance of the
weighted estimator is satisfactory.

Table 3
Simulation Means and Standard Deviations (in parenthesis) of
Point Estimators of the Regression Coefficient of the Subject-Level
Covariate (true value 0.1, number of replicates 1,000)

Sampling design Non Informative at both levels
informative
Unweighted  Unweighted Scaled fully
estimator estimator weighted
estimator
Fixed size n, = 38 0.101 (0.028) O0.117 (0.040) 0.098 (0.050)
Prop. size 1, = 04N, 0.099 {0.026) 0.117 (0.043) 0.098 {0.052)
Fixed size n, = 9 0.099 (0.055) 0.119 (0.083) - 0.100 (0.104)
Prop. size n; = 0.1, 0.098 (0.056) 0.116 (0.089) 0.098 (0.107)

Table 4
Simulation Means and Standard Deviations (in parenthesis) of
Point Estimators of the Regression Coefficient of the Cluster-Level
Covariate (frue value 0.1, number of replicates 1,000)

Sampling design Non Informative at both levels
informative
Unweighted  Unweighted Scaled fully
estimator estimator weighted
estimator
Fixed size n, = 38 0.096 (0.119) 0.117 (0.130) 0.102 (0.142)
Prop. size n, = 0.4, 0.102 (0.110) 0.106 (0.133) 0.106 (0.142)
Fixed size #; =9 0.094 (0.117) 0.116 (0.141) 0.105 (0.150)

Prop. size n; = 0.1¥; 0.094 (0.119) 0115 (0.144) 0.095 (0.158)

4.2.5

Our simulations showed that the PML approach is, in
most cases, a simple and effective strategy to deal with
informative sampling designs. The only requirement is the
knowledge of the inclusion probabilities at every stage of
the sampling process (except when the informativeness
does not concern all the levels).

As for the regression parameters, the scaled version of
the fully weighted estimator showed good performance in
our simulations, achieving a low bias with a modest
increase in the sampling variance (in some cases the
variance even diminished). Even when weighting is
superfluous, the loss of efficiency due to the inclusion of
scaled weights is very low.

While for the estimation of the regression parameters
weighting seems to be always effective, for the variance
component @ _ attention should be paid to the sample size:
in fact, weighting leads to satisfactory results only when the
cluster size is high, i.e., when it allows a good represen-
tation of the complex variance structure. However the
sample size is crucial in the estimation of w  also when all
the basic assumptions of the multilevel ordinal model are
satisfied.

The differences induced by the type of clusters in the
sample, fixed or variable size, are minimal, with equal sized
clusters leading to slightly better estimators; however, as
already noted, the important differences are largely due to
the average size of the clusters in the sample.

The results of our simulation study confirm the findings
of Pfeffermann er af. (1998) on the random intercept linear
model: probability-weighted estimators are good for the
intercept, while some relevant bias remains in the esti-
mation of the variance components when the sample is
small. As was to be expected, when passing from a linear to
a nonlingar model the performance of the estimators slightly
worsen, but the direction and importance of the bias in the
various cases are similar. Also the advantages of scaling are
confirmed.

The rise in the sampling variance due to the inclusion of
the weights often has a magnitude which is in line with the
results of Pfeffermann et al. (1998), though in some cases
we found a reduction in the sampling variance, notably for
the intercept when the weights are scaled and the design is
informative at both levels. An interesting difference with
respect to Pleffermann ez al. (1998) is the role of scaling in
reducing the sampling variance: in this respect, scaling
seems to be more effective in the binary model than in the
linear model.

As already noted, the critical point in the random
intercept binary model is the estimation of the cluster-level
variance o_, which represents a difficult task also when the

General Remarks
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design is non-informative. Using the threshold formulation
outlined in section 2, w, is defined as /o, so estimation
of w_ involves the problems observed in the linear model
associated with estimation of the two variance components.
The simulations showed that the performance of the scaled
weighted estimator of @, is not entirely satisfactory in the
case of small sample sizes. A possible way to improve the
performance of the estimator is the adoption of a different
scaling method. Korn and Graubard (2003) investigated the
issue of scaling in the context of the linear model and
warned that the scaling method here adopted (‘scaling
method 2’ of Pfeffermann er al. 1998) may be badly biased
under some designs, even if the sample size of clusters and
sample sizes within the clusters are large. To get an idea of
the extent of the bias we performed a short simulation study
under the unfavorable scenario outlined by Korn and
Graubard (2003), namely a simple random sample of
clusters whose population sizes are all equal, and a simple
random sample of individuals within each sampled cluster
that is of size 2m or m/2 for a fixed m, depending on
whether the observed variability of the individuals within
the clusters tends to be large or small, respectively. In this
case the scaled weights at subject level are all equal to 1, so
weighting becomes ineffective. As a consequence, in the
linear variance component model the within variance will
be biased high. To see how this behavior extends to the
random intercept binary model we simulated 1,000 datasets
with 80 clusters and cluster sizes of 36 or @ depending on
whether the binomial variance of the responses of the
cluster is over or under the median, respectively. Under the
same superpopulation model as in the main simulations, the
simulation means (and standard deviations) are -0.003
(0.098) for B, and 0.451 (0.144) for ©_. The cluster-level
variance is heavily underestimated, though its value is not
so far from the worst case of the main simulations (0.498
under the informative design with # ;= O.INJ.). Therefore, it
seems unlikely to encounter sitvations where the bias is
much greater than already shown by our simulations.
Obviously, if estimation of the variance components is of
primary interest it is important to improve the method, but
this requires further research.

4.2.6 Bootstrap Variance Estimation

The estimated covariance matrix of the parameter esti-
mates obtained by inversion of the information matrix,
yielded by default by the NLMIXED procedure, is not
reliable when using the weighted estimators to adjust for an
informative design. For example, the estimated standard
error of the scaled fully weighted estimator under the design
informative at both levels with n,=0.4N, is 0.109 for B,
{compared with a Monte Carlo value of 0.183) and 0.089
for o, (compared with a Monte Carlo value of 0.130). For
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the other sampling sizes similar downward biases arise, so
an alternative variance estimator should be devised.

The bootstrap procedure described in section 3.4 has
been applied to estimate the sampling standard deviations
of the weighted point estimators of B, and @_. We limited
the analysis to the scaled fully weighted estimator and to
designs that are informative at both levels. To save compu-
tational resources we implemented a bootstrap procedure
which omits the steps concerning the elementary units, i.e.,
only the clusters are resampled. This procedure is expected
to produce sufficiently accurate results, given the low
sampling fraction (35/300) of the clusters (see section 3.4).
Each simulation comprises 1,000 replications. For every
replication the values of the response variable are generated
through the two-stage scheme described in section 4.1 and
200 bootstrap samples are selected. Table 5 reports, for
cach parameter, the Monte Carlo standard error of the
sampling distribution of the scaled weighted estimator on
1,000 replications of the complex design (see Tables 1 and
2), the corresponding average bootstrap estimate and the
relative bias.

Table 5
Simulation Standard Deviations of the Scaled Weighted
Point Estimators of the Intercept and of the Second Level Standard
Deviation and Corresponding Bootstrap Estimates
(with 200 Bootstrap Samples Each) for Designs Informative
at Both Levels (1,000 Replicates for Each Design)

Sampling design By T,
Inform. Both levels

Simul. Boot. Relative Simul. Boot. Relative

sd. Estim. error s.d. Estim. error

Fixedsize ;=38  0.185 0.175 -54% 0.124 0.106 -14.5%
Prop. size n; =O.4Nf. 0.183 0.173 -55% 0.140 0.129 -1.9%
Fixed size n, = 9 0.200 0.167 -16.5% 0234 0599 156.0%
Prop. size n =0.le 0.195 0.173 -113% 0247 0538 1178%

Due to the extremely long computational time, we
limited our experiment to a specific bootstrap procedure
based on only 200 bootstrap samples. Further work is
needed to calibrate the number of bootstrap samples and to
explore possible variants of the method. Nonetheless, the
entries of Table 5 give some hints about the behavior of
bootstrap estimators.

The performance is better for the estimation of the
sampling standard deviation of the estimator of B_, rather
than of w . Especially for o, the sample size is the critical
factor: for small cluster sizes (nj =9 and n; = O.INJ.) the
bootstrap estimate is completely unreliable. On the contrary
with large cluster sizes (nj =38 and n = 0.4}\3.) the results
are quite good, since for both B, and o  the bootstrap
produces a slight underestimation of the true variance.
Note, however, that the bad performance of the variance
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estimator for @ is not as critical since Wald tests for
variance parameters are not generally recommended in
ordinary situations anyway.

5. FINAL REMARKS

The wide use of multilevel ordinal and binary models in
many fields of application has motivated our study on the
effects of complex sampling designs on the fitting of such
models. In the paper we showed, by means of simulations,
the bias induced by a two-stage complex sampling design
on the fitting of a simple random intercept binary model
when the clusters and/or the subjects are selected with
probabilities that depend on the model’s random terms. The
simulation study also showed that in such situations the bias
can be reduced in an effective manner by the probability-
weighted estimation procedure (PML) described in the
paper, which is easily implemented in the SAS environ-
ment. In particular, the scaled version of the weighted
estimator achieved, for both fixed and random parameters,
a low bias with a modest increase in the sampling variance.
Even when weighting is supertluous, the loss of efficiency
due to the inclusion of scaled weights seems to be very low.

The application of the proposed methodology to real life
examples requires an operational strategy which depends on
the extent of the available information on the sampling
design. Two extreme cases can be envisaged: a) for each
stage of the sampling plan, the probabilities of inclusion
and the adjustments for poststratification and nonresponse
are exactly known; b) the information is limited to the final
overall weights, which also include adjustments for post-
stratification and nonresponse.

In case a) the weights can be calculated at each sampling
stage as the reciprocals of the product of sample selection
probabilities and response probabilities given the sample
selection, with a further correction for a possible poststra-
tification. This is the idea behind the real life application
presented in Pfefferman er al. (1598).

In case b) the lack of information is critical, since, even
in the absence of nonresponse and poststratification, it is
not possible to disentangle the cluster-level and the
(conditional) subject-level weights, at least without strong
assumptions. As a result, weighted estimation cannot be
performed.

Between the two extreme cases just outlined there are
many possible intermediate situations which require ad hoc
solutions. For example, a common case arises when the
researcher has access to the cluster-level inclusion proba-
bilities (7;} and to the final overall subject-level weights
(w,), which also include adjustments for poststratification
and nonresponse. When the poststratification and

nonresponse affect only the subject level, then the
subject-level (conditional) weights can be calculated as
wirf = w,; ', Another more complex situation is described
by Korn and Graubard (2003).

A drawback of probability-weighted estimation is the
need for special procedures 1o estimate the variability of the
estimators. In our application we adopted a bootstrap
technique, which is conceptually simple and easy to
program, but requires some computational effort. Qur
limited simulation study suggests that its performance is
good only for large sample cluster sizes; however more
simulations would be needed to fully understand the
behavior of the bootstrap estimator.

Another open question is the choice of the most effective
scaling method for reducing the bias of the estimator of the
variance components when the sample size is small.

The PML approach described in the paper is absolutely
general and the estimation technique based on the
NLMIXED procedure of SAS is easy to generalize to other
nonlinear models. Therefore it would be of interest to assess
the performance of the method in models other than the
random intercept binary model here considered.

APPENDIX A

We report the SAS code used for implementing the
probability-weighted (PML) estimators described in the
paper. The essential part of the code is the NLMIXED
procedure of SAS, which is a general procedure for fitting
nonlinear random effects models using adaptive Gaussian
quadrature. Though the NLMIXED procedure does not
include an option for PML estimation, it is still possible to
insert the weights in the likelihood, using different tricks for
level 1 and level 2 weights. To insert level 1 weights it is
necessary to exploit the option which allows to write down
the expression for the conditional likelihood of the model:
then one should simply translate in SAS programming
statements the expression Wi log LU(G |u#) (see section
3.1). On the other hand, level 2 weights can be inserted in
the likelihood through the replicate statement.
Unfortunately, this statement is limited to integer weights,
s0 to avoid gross approximations it is advisable to proceed
as follows: a} inflate all the level 2 weights by an arbitrary
constant k (equat to 10,000 in our application); b) insert the
integer part of the inflated weights in the likelihood through
the replicate statement; ¢) multiply the estimated
covariance matrix by & by means of the cfactor option.
This trick relies on the fact that multiplying the level 2
weights by a constant has the only effect of intlating the
information matrix by that constant, leaving the estimates
unchanged. Anyway, when using the weighted estimation
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method to adjust for an informative design the estimated
covariance matrix of the parameter estimates is not reliable.

In the following the SAS code is reported, where the
symbols /* and */ include the comments:

proc nlmixed data=dataname gpoints=10
cfactor=10,000;

/* cfactor is a constant multiplying the
estimated covariance matrix of the parameter
estimates */

parms b0=0 sd=0.5; /* initial values */
beounds sd >= 0;

eta=bl+randeff*sd;

if (yobs=1} then z=probnorm(eta);

else if (yobs=0) then z=l-prcbnorm(eta);

if (z »le-8) then ll=log(z); else 1l=-1el00;
/*to avoid numerical problems if z becomes
too small*/

11=11*wl_2; /* inclusion ¢f level 1 weights
*/

model yobs~general (11} ;

random randeff ~normal (0,1} subjectsj;

/* j is the cluster identifier */
replicate w2; /* Iinclusion of level 2
welghts (only integers) */

ods output ParameterEstimates=pe
ConvergenceStatus=cs;
run;
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Longitudinal Analysis of Labour Force Survey Data

GEOFF ROWE and HUAN NGUYEN'

ABSTRACT

The Canadian Labour Force Survey (LFS) was not designed to be a longitudinal survey. However, given that respondent
households typically remain in the sample for six consecutive months, it is possible to reconstruct six-month fragments of
longitudinal data from the monthly records of household members. Such longitudinal micro-data — altogether consisting of
millions of person-months of individual and family level data — is useful for analyses of monthly labour market dynamics
over relatively long periods of time, 25 years and more.

We make use of these data to estimate hazard functions describing transitions among the labour market states: self-
employed, paid employee and not employed. Data on job tenure, for employed respondents, and on the date last worked,
for those not employed — together with the date of survey responses — allow the construction of models that include
terms reflecting seasonality and macro-economic cycles as well as the duration dependence of each type of transition. In
addition, the LFS data permits spouse labour market activity and family composition variables to be included in the
hazard models as time-varying covariates, The estimated hazard equations have been incorporated in the LifePaths
microsimulation model. In that setting, the equations have been used to simulate lifetime employment activity from past,
present and future birth cohorts. Simulation results have been validated by comparison with the age profiles of LFS
employment/population ratios for the period 1976 to 2001.

KEY WORDS: Microsimulation; Censoring; Truncation; Employment dynamics.

1. INTRODUCTION

In recent years, there has been increased recognition of
the importance of stadying labour market dynamics using
individual level (micro-) data. For this purpose, new panel
surveys have been developed, for example, the Survey of
Income and Labour Dynamics (SLID} (Statistics Canada
1998). But, existing LFS data (Statistics Canada 2002) pro-
vides a virtually untapped historical resource, in the form of
many fragmentary event histories. From a conventional
standpoint, the data currently comprises a time senes of
more than 300 cross-sectional surveys that were conducted
monthly over more than 25 years. However, from a
longitudinal perspective, those same data consist of about
6.5 million fragmentary event histories covering over-
lapping time intervals within the past quarter century and
totalling over 34 mitlion person-months of observation.

The analysis referred to in this paper was specifically
directed towards development of hazard models to be
incorporated in LifePaths (Statistics Canada 2001)-a
micro-simulation model of the Canadian population.
Further details on the LifePaths model are available from
the Statistics Canada website at www.statcan.cafenglish/
spsdfindex.htm.

The paper is organized in the following way. In section 2,
we discuss some features of LFS data when reorganized as
longitudinal records and we present three examples com-
paring estimates derived from the resulting longitudinal file
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with corresponding estimates from other sources. In section
3, we focus on the use of the data to model employment
activity for LifePaths. There, we discuss the use of LFS
micro-data in estimating hazard equations that describe
employment dynamics. Finally, we present some illus-
trations of estimation results and a validation of LifePaths
simulations that make use of the hazard equations.

2. LONGITUDINAL LFS DATA:
DISTINGUISHING FEATURES AND
PROOF-OF-CONCEPT

A longitudinal version of the LFS data was constructed
by concatenating the monthly records of individual
respondents into a file containing one record per respondent.
Since an LFS respondent normally remains in the LFS
sample for six consecutive months, we can obtain six-month
histories for most respondents. These histories are not, by
themselves, long enough for most longitudinal analyses.
However, given the overlapping rotation groups that are part
of the LFS design, these six-month fragments may be used
in analysis of the experiences of employment cohorts over
decades. (In line with the focus of the analysis below, we
use the term “cohort” to refer to a relatively homogeneous
group for all of whom a specified initial event has occurred.
Thus, an “employment cohort” might refer to all persons
who started a new job within a specified time period or,
more narrowly, to all of those who started their third job
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within a specified time period. The data available from the
LFS determines how narrowly such a cohort can be defined
here).

Figure 1, which illustrates some characteristics of the
LFS data after they are formed into longitudinal records,
focuses on changes in employment status for the employ-
ment cohort who started a job in January 1976. Respon-
dents who were members of this cohort and who entered the
sample through rotation 1 contribute data on the first six
months, from January 1976, when the job started, to June
1976, when they left the LFS sample. For respondents from
rotation 2, the six-month longitudinal data window shifts
right one month (starting and ending one month later than
those given by rotation 1). The overlapping data windows of
respondents from subsequent rotations evolve similarly.
Thus, the longitudinal LFS data can be seen as a combi-
nation of overlapping sets of panel data, in which re-
spondents from the same rotation constitute a conventional
data panel.

Successive six-month fragments of longitudinal LFS data
can be combined to provide successive estimates of
cumulative attrition from an initial employment cohort and,
further, to identify new cohorts defined in terms either of a
new job or of a period without employment. Thus, over the
long term (currently up to 25 years), many different samples
of individuals can contribute information about the same
employment cohort observed at different points in time.

Even so, month-to-month changes are observed largely
from the same sample of individuals. The two shaded areas
in Figure 1 illustrate this. The respondents from each of the
rotations 2-5 contribute data for both the May-June and the
June-July intervals.

This is not the first attempt to use LFS data longitu-
dinally. Stasny (1986) and Lemaitre (1988) studied errors in
the estimation of “gross flows™ between labour force states
(employed, unemployed and not in the labour force) over
intervals of one month. Lemaitre found that problems arose
both because of response errors and because “Labour Force
Survey concepts, designed for cross-sectional purposes, tend
to “create” flows when consecutive months’ responses are
linked”. (Examples include the treatment of on-call workers
and of the self-employed without a business). Nevertheless,
he concluded, “Administrative data have shown that not all
sub-groups of status changers are seriously overestimated”.
Kinack (1991) examined the longitudinal consistency of
responses to questions on job search activity that were used
to distinguish between the categories unemployed and not in
the labour force. He found substantial inconsistency,
particularly when associated with proxy responses from
different proxy respondents. These studies have shown that
focusing on transitions between the categories employed and
not employed (i.e., without distinguishing between
unemployed and not in the labour force) could help reduce
the impact of response error.

Respondent from rotation 1

Respondent from rotation 2 1

Respondent from rotation 3
Respondent from rotation 4
Respondent from rotation 5

Respondent from rotation 6

Jan-76 Feb-76 Mar-76 Apr-76 May-76 Jun-76 Jul-76 Aug-76 Sep-76 Oct-76

----n-c-_n--.n»

EEEENEEEENENEEES Notemployed
Subsequent jobs

Legend e ——Jobs started in January 1976

Numbers show job tenure (months). Arrows indicate the status continues at time of exiting the LFS sample

Figure 1. Illustration of LFS fragmentary data on cohort starting jobs in January 1976
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Cross-sectional LFS data have previously been used to
estimate frequencies of job hiring and job separation over
monthly intervals (Lemaitre, Picot and Murray 1992). In
that case, hiring was directly observed from the frequency
of reporied job-tenures of one month or less, while sepa-
ration was determined residually using aggregate estimates
of employment change together with the estimates of hiring.
Cross-sectional LFS data have also been used to calculate
and compare duration statistics for synthetic-cohorts. For
example, Corak and Heisz (1995) use retention rates from a
single time interval to represent a hypothetical cohort’s
experience. Synthetic-cohort retention rates were obtained
using the numbers of employed LFS respondents reporting
job tenure “ ¢ in month “ m > together with those reporting
tenure “‘t+ 17 the next month. Such uses of cross-sectional
data have certain limitations. In particular, because the
movement of individuals is not directly observed, desti-
nation states are unknown. {Although we may estimate the
proportion that separated from a job, we can not estimate the
proportion of those that became unemployed rather than
dropping out of the labour force or beginning another job
immediately). Nevertheless, a time series of synthetic-co-
hort statistics — for example, the proportions of jobs that
might last a certain duration — can serve as an index that is
sensitive to changing labour market conditions.

2.1 Proof-of-Concept: Selected Examples of
Longitudinal Data Validation

The LFS data were not intended to be used longitudinally
and problems can arise with such use (Stasny 1986;
Lemaitre 1988; Kinack 1991). Consequently, it is important
to verify, for each analysis individually, that valid estimates
can be obtained by month-to-month comparison of
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longitudinal responses. We present three examples of the
verification of LFS longitudinal estimates below. In Figure
2, we compare estimates of the annual number of job
separations in Canada from 1976 to 1995 (separations of all
types, permanent and temporary) based on LFS data and on
administrative data. The latter are based on Records of
Employment (ROE) issued by employers at the time of job
separation for Employment Insurance purposes {(Statistics
Canada 1998).

As may be seen, the number of transitions determined by
month-to-month comparison of LFS data corresponds
closely to the number from ROE data. Stll, there are dif-
ferences between the two series. Some of these differences
could arise because of differences in coverage between the
LFS and administrative data, as well as periodic changes in
the LFS design or questionnaire. Another source of dif-
ference could arise because our counts based on LFS data
neglect job separations of multiple job holders who
remained employed in at least one job (i.e., we counted only
main-job changes). Nevertheless, we regard the degree of
agreement between the LFS and administrative data as close
enough to justify further analysis of the LFS micro-data.
Both data sources imply that the annual rate of job
separations was high: based on ROE data between 1978 and
1995, the average annual job separation rate for males was
over 38 percent of annual person-jobs. Further analysis of
the LFS micro-data can shed light on these dynamics.

Figure 3 goes further in the validation of employment
dynamics, comparing “job survival” probabilities for males
and females who started a job in 1993, as estimated from the
LFS data and from SLID. (Note that 1993 corresponds to
the first year of SLID data).
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Figure 2. Estimates of Annual Job Separations
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Figure 4. Estimates of Births in Canada by Quarter, 1976 - 2001

The “job survival” probabilities were estimated from
LES data by the chained product of average retention rates
derived from monthly main-job separation rates over the
period 1993 to 1998, Survival probabilities from the SLID
data were estimated in a similar manner using the reported
job tenure and dates of job end. Both survival curves display
the same characteristic shape; showing relatively high
attrition for jobs of duration less than a year, but with much
lower attrition rates at job tenures of one to five years. There
are discrepancies between the estimates for durations of
about six months or less, which may be related to the one-
year recall period of SLID interviews and to the restriction
of LFS job-tenure data to main-jobs. However, over periods
as long as five years, the LFS and SLID provide very
similar estimates, And, with the available IFS data, we can
track some employment cohorts for as long as 23 years after
the employrment spell began.

A final illustration of effective longitudinal use of LES
data involves month-to-month comparison of the number of

children aged less than one year as reported by female
economic family heads or by the spouse of a male head. A
infant child that is newly reported by a woman aged
between 15 and 50 likely signifies the birth of a child. In
order to make direct comparisons between these LFS
estimates and vital statistics, we made some straight-
forward adjustments to account for the proportion of births
occurring to other women living in economic families {e.g.,
teen lone parents living with their parents) and for births in
the Yukon, NWT and Nunavut. A comparison of the
resulting LFS monthly estimates of births with the
cotresponding counts of births registered in vital statistics
(Figure 4) demonstrates that the LFS estimates follow
secular trends in fertility as well as capturing some of the
month-to-month fluctuation in births. Taken together, these
three examples indicate that- with careful attention to
survey coverage, survey concepts and the possibility of
response error — the LFS can provide useful longitudinal
micro-data.
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3. USING LONGITUDINAL LFS MICRO-DATA
FOR MODELING EMPLOYMENT ACTIVITY
IN LIFEPATHS

This section focuses on the use of the LFS data to
simulate employment activity in LifePaths. Currently,
LifePaths uses a 3-category classification of employment
status —employee (B), self-employed (SE), and not em-
ployed (NE). We have not analyzed transitions involving
unemployment. (Unemployment is a complex state re-
quiring additional questions to ascertain and so, as noted
above, unemployment transitions are particularly subject to
response error}.

There are six transitions that can result in a change in
employment status (as represented in Figure 5). LifePaths
models all of these transitions. In addition, job changes that
do not appear to involve an interruption of employment are
also modeled by LifePaths (denoted here as E=> E). The
LFS micro-data were used to estimate hazard equations for
each of these seven transitions. The estimated coefficients of
these equations became parameters in the LifePaths “Career
Work” module. Below we discuss some technical issues
that arise due to the limitations of the LFS data, followed by
an illustration of the estimation results and then of a
simulation outcotme.

The fragmentary nature of these data poses a challenge
for analysis. An important question is whether there are
unavoidable biases that result from their fragmentary nature.
In general, the answer is that the limitations of these data
can be accounted for and potential sources of bias can be
avoided with careful analysis.

3.1 Censoring and/or Truncation of Event Histories

One source of concem for an analyst of these data is the
absence of retrospective employment information other than

E=>F
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the length of the current employment spell. We might think
of individual employment histories as consisting of a
(largely unobserved) succession of contingent employment
states (illustrated in Figure 6) with transitions among these
states reflecting the process of career development. Thus,
given only the transitions observable within the LFS
window, the transition rates that can be estimated will
inevitably involve pooling data from respondents who have
had markedly different prior careers. In contrast, panel
surveys like SLID, collect retrospective data at the first
interview that, although limited, at least permits some
experience rating of respondents in terms of previous
extended work interruptions or periods of part-time work.

Another concern, illustrated in Figure 6, is that LFS
employment spell durations may be left-truncated and/or
right-censored. Right-censoring refers to the circumstance in
which a spell ceases to be observed or a respondent ceases
to be at risk without a transition occurring of the type being
studied. This happens either (1) because the respondent’s
household “rotated out” of the LFS sample before any
transition occurred, or (2) because another transition
occurred that was not of the type under active study.
Similarly, these data are frequently left-truncated. This
refers to the circumstance in which the beginning of a spell
is uncbserved, because it happened before the respendent’s
household “rotated in” to the LES sample. (These data are
left-truncated rather than left-censored, because respondents
provide the information necessary to determine the elapsed
duration of the current spell at the time of the first
interview). Since both truncation and censoring are gen-
erally independent of employment event processes, neither
should lead to bias in the estimation of transition
probabilities, if properly accounted for in the likelihood
function.

Employee

h 2

Self-Employed

Not Employed

(SE) N

NE=>5E

(NE)

Figure 5. Employment Status and Transitions in LifePaths
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Figure 6. Recurrent Events and Employment Spell Durations Observable within the LFS Sample Window

The combination of full and partial information provided
by lefi-truncated and right-censored data can be represented
in a conditional likelihood (Wang 1991). In a competing
risks framework, the likelihood of an employment transition
type j involving respondent i may be expressed in terms of
the spell duration observed k months after i was first
observed to be at risk of transition j. Let ¢, denote the year
and month of the LFS interview in which i’s current
employment state was first observed (i.e., often the first
interview). Based on information collected at each
interview, we can determine the length of the current spell
of employment or spell not employed (m,). Then
m, ., =m, +k would denote the elapsed spell duration in
the state as assessed & months after the first observation —
assuming no intervening events — and the likelihood of a
transition of type j (i.e., L,, ,. )can be expressed in terms of
m, ,,. Terms in the likelihood function comprise: the
probability density of durations leading up to transitions of
type j ( f;(m,,,)), the corresponding cumulative probabil-
ity (F;(m, ), a binary variable indicating whether or not
censoring has occurred (C, ,, ), and a further binary vari-
able indicating whether or not the current spell was left-
truncated ( LT;;). Note that, in the competing risks frame-
work, the density f,(m, ,,) relates to a latent vaniable - the
waiting time leading specifically to transition j — and that we
must assume there is one such density for each competing
event. In principle, the completed spell duration (observed
when a transition occurs) will correspond to the minimum
of competing, latent waiting times.

To account for left truncation, the likelihood is expressed
in terms of conditional probabilities given the spell duration
first observed (m, ): these probabilities take the form either
of conditional probabilitics evaluated at the time of an
observed transition (f,(m, . /m,)) or of conditional
probabilities of surviving - without the occurrence
specifically of transition j-to the observed duration

{1-F i (mr,- il m, )), depending on whether or not censoring
has occurred.
C I vk
ml'.‘ )) :

_ ff' (m-'i+k }I_C“”* (1 - Fj (m“+k ))Cmﬂ .
- L7, -
(1 - Fj (mr,- )) M

This likelihood accounts for all of the information we
have regarding the specific risk of transition j and can
incorporate the effect of other competing risks by treating
them as censoring events that are in addition to censorship
by “rotating out” of the sample. Competing risks problems
are commonly formulated in terms of such latent waiting
times, especially in epidemiology and biostatistics, but also
in economics (e.g., Heckman and Honoré 1989). However,
while providing a mathematically convenient motivation for
the likelihood, the approach has been criticized “‘on the basis
of unwarranted assumptions, lack of physical interpretation
and identifiability problems” (Prentice, Kalbfleisch,
Peterson, Flournoy, Farewell and Breslow 1978).

The conditional likelihood (1) can be approximated by a
Potsson likelihood (Holford 1980; Laird and Olivier 1981),
thereby also acknowledging the discreteness of the data (i.e.,
transitions are generally “observed” in the one month
mterval between successive interviews). Equation (1) can be
re-expressed in terms of a binary variable (Y, ., ) that
represents occurrence or non-occurrence of a transition in a
particular time interval (note that Y, ., =1-C, ).
Then, Y;, ., is treated as a Poisson random variable having
an expected value equal to the hazard “A;, ., " which is
assumed piecewise constant. Under this model, the contri-
bution from i to the log-likelihood over r periods (using
By = S0m, ) 1= Fy(m, ) = =dIn(l = F,(m, ) / Om, _,
together with (1)) is approximately:

m ) - F

L =T (mr,-+k f+k
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n

ln(Li,j) = Z {Yj,:,»-v—k ln( ﬁj..',+k) - };j,r,-+k}' (2)

k=1

It is common practice to account for a complex survey
design by means of a “pseudo” likelihood that incorporates
the survey weight. Maximizing the “pseudo” likelihood
corresponds to minimization of a weighted sum of deviance
terms {i.e., terms representing the difference between
estimated likelihood contributions and their maximum
possible values). Thus, the full-sample, conditional log-
likelihood for tramsition j may be transformed into a
weighted deviance D; (note that W is derived from the
survey weights and, since transitions are typically identified
by comparing employment states between interviews, we
use averages of consecutive cross-sectional survey weighis
to obtain W)

Z{Z’ W,j+ij.I;+fc ln@ih*" )]
k=1

i

+ Z[Z W:,-+k [Yj,ri+k - h’\j.:;+k]i|

D, ~ -2 (3)

i

In the analysis of each transition type j, we treat other
events (i.e., non-j events occurring to the same population-
at-risk) as censoring, and so the deviance for a set of such
events will be the sum of component deviances (i.e., if the
overall hazard is the sum of competing hazards, then the
competing risks may be treated as independent (Prentice
etal 1978)).

A more direct motivation of the same deviance takes
Poisson processes as its starting point (Borgan 1984;
Andersen 1985; Andersen and Borgan 1985; Lawless
1987), rather than starting with postulated event-specific,
latent, duration densities like f,(m, ). In this case, we
can model sampled multivariate counting processes that
represent the number of occurrences of each specific
transition in time intervals [f, ). Sample counting
processes, represented by the step functions in Figure 6, are
abservable counterparts of cumulative hazard functions. The
assumption that the underlying hazard functions are ap-
proximately piecewise constant leads directly to the Poisson
deviance as an approximation (Lindsey 1995). To limit bias,
the principal concerns are that the population-af-risk can be
identified, that censoring or truncation mechanisms are
conditionally independent of the underlying employment
processes and that the intervals over which hazards are
assumed constant are not too large.

It is possible to obtain simple averaged estimates of
employment hazard functions (such as those displayed in
Figure 3) by implicitly splicing together all available
information on members of a defined cohort from the
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longitudinal LFS samples. (That is, maximizing likelihood
(1), but without considering any covariates). Making
allowance for censoring and truncation in this way is a
relatively simple example of such problems compared with
the more complex observation schemes considered by
Alioum and Commenges (1996). This implicit splicing of
information is apparent in the deviance (3) which has two
components: the first component is non-zero only at
observed transitions, while the second component reflects
the weighted differences between cumulative events and
cumulative hazards (accumulated over all durations prior to
the events or to censoring times). To the extent that the LFS
cross-sections are representative samples for each reference
week, then — taken together — they will provide an accurate
estimate of the numbers of events occurring over the “life”
of an employment cohort. Similarly, within samples from
employment cohorts, we can expect to find left-truncated
and right-censored respondent spells that might fill-in the
missing prior histories of those left-truncated spells that
terminate with a transition. As such, the first component of
the deviance will accurately reflect whether hazard
estimates tend to be large over periods where observed
events are frequent. And the second component, summed
over all respondent-months, may have a value similar to that
which we might have obtained had there been no left-
truncation. So, for data as extensive as these, the conditional
likelihood may be almost equivalent to an unconditional
likelihood.

3.2 Estimating Employment Transition
Hazard Equations

Patterns of employment transition differ significantly
among different demographic groups. For example, full-
time students are most active in the labour market during
their summer break, whereas the maternity leave that an
employed pregnant woman takes may be largely deter-
mined by Employment Insurance regulations. Accordingly,
LifePaths distinguishes among the following groups and
models their employment activities separately:

— Those who are full-time students;

— Those who have just graduated or left school and are

in a transition to an after-school job;

— Pregnant women for whom a maternity-leave may

apply;

— Those who are in prime ages of employment; and

—  Older workers in transition to retirement.

We discuss here only the estimation for the fourth group,
comprising individuals who are in what is referred to in
LifePaths as their “career employment” phase (the most
important phase in terms of impact on the economy).
Particulars for the other groups are available from the
Statistics Canada website noted above.
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For implementation in LifePaths, our hazard model uses
a log-linear form of regression equation — one equation for
each of the 7 transitions and for each sex separately, giving
a total of 14 equations:

~

g(mj,r,+k )

= exp .
+ X, b

ElY, . )= A @

i itk

where E () is the expectation operator, g(m) is a log-linear
spell duration spline, X is a vector of time-varying
covariates and f is a vector of regression coefficients. The
term g{m) corresponds to a piecewise Weibull baseline
hazard, which, in our specification, distinguishes employ-
ment transition risks at durations of less than a year from
risks at durations of more than a year. The covariates, X,
include variables representing individual age, education,
province of residence, presence of children by age group,
spouse’s employment status, calendar month and calendar

year, as well as interactions among some of these factors.
Final estimates of [§ and g{m) minimize the deviance (3).
The only example of detailed results that we present here
involves the mutual influence of husband’s and wife’s
employment status on each other’s respective transition
hazards. Figure 7 compares coefficient esamates from the
seven equations that correspond to the seven transitions we
specified. The two panels correspond to the separate sets of
equations for males and females. The category “no spouse
present” was treated as the reference category and the
spouse’s employment status was classified into “with paid
employment”, “self-employed”, and “not employed”. The
estimated coefficients are presented here in terms of risk
relative to the reference group. Thus, with other covariates
controlled, the hazard of becoming self-employed for
female employees whose husbands are self-employed is
about 2.5 times higher than the hazard of their counterparts
who do not have a spouse (see tallest bar in the top panel).

Relative Risk

E=>E NE=>E E=>NE

{(a) Influence of Husband's Employment Status
on Wife's Risk of Employment Transition

SE=>E
Labour Force Transition

SE=>NE E=>SE NE=>3E

E Husband with paid employment EHusband seif-employed B Husband not employed

Relative Risk

NE=>E

E==NE

(b) influence of Wife's Employment Status A
on Husband's Risk of Employment Transition

SE=>E
Labour Force Transition

SE=>NE E=>5E NE=>SE

[E Wife with paid employment ElWife self-employed BWife not employed

Figure 7. Impact of Spouse’s Employment Status on Employment Transition Risks
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Figure 7 shows that the very presence of a spouse can
work in opposite directions for males and females. The most
frequent transitions for both sexes are E => F, NE => E and
E => NE. For females, the first two of those fransitions are
less likely to occur to married women than to single women,
while the transition 10 “not employed” is more likely. (The
presence of children is not the reason for this, as their
presence is accounted for by other terms in the equation).
For males, the pattem is reversed. Thus, these results appear
consistent with conventional gender roles. However, taking
account of the magnitudes of these relative risks, we are not
given the impression that gender roles have a particularly
strong influence after the influence of other variables is
credited.

Figure 7 reveals another conspicuous pattern. First, the
relative risks of a transition into self-employment, for
spouses with husbands/wives in self-employment, stand out
as the highest among all other transitions. In addition,
spouses with husbands/wives in self-employment have the
lowest relative risks of a transition out of self-employment.
Thus, self-employment status seems to be mutually re-
inforcing within families. These observations are consistent
with forms of joint self-employment involving a family
business (e.g., a corner store) or involving endogamy among
professionals (e.g., lawyers marrying other lawyers).

4. FROM ESTIMATED PARAMETERS TO THE
SIMULATION RESULTS: AN ILLUSTRATION

Our example of the role of spouse’s employment status
points 1o the need for family context in the simulation of
employment activities. It is a challenge for LifePaths to

113

integrate these relationships into the simulation process. For
example, if individual education progression or the effects
of education on employment transitions are not modeled
appropriately and accurately, then the consequences will
cascade from direct education-employment relationships to
a chain of indirect impacts, involving relationships between
education and marriage, fertility, interprovincial migration,
etc. These impacts would then spill over to the simulated
spouse, as indicated above. It is not difficult to see that,
unless these relationships are specified appropriately and the
parameters are estimated with reasonable accuracy, bias
would be spread over a wide range of simulated outcomes.

An overall validation of the LifePaths employment
hazard equations was obtained by comparing simulated
annual average employment/population ratios with direct
cross-sectional estimates from the LFS, The simulated
employment/population ratios were obtained from a syn-
thetic population whose members were exposed appro-
priately to one or other of the seven types of employment
hazards over the course of each simulated year. The sim-
ulated employment/population ratios were calculated from
the resulting annual person-years of employment in the
synthetic population: that is, these ratios are an outcome of
simulated flows into and out of employment. The sim-
ulations necessarily involved generating appropriate distri-
butions of covariates that in turm determine the distributions
of employment transition hazards. As may be seen in Figure
8, LifePaths accurately reflects the age patterns of female
employment in both 1976 and 2001 and correspondingly
accounts for the dramatic change observed in those age
patterns over the past quarter century.

EPR

Fem ale Em ployment/Pop Ratios:
LFS Estim ates and LifePaths Sim uliations

LFS 2001

'LifePaths 1976
rLifePaths 2001

Figure 8. Validating hazard equations using LifePaths
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5. CONCLUSIONS

We have demonstrated that the LFS data — when
organized into the fragmentary event histories collected over
the six-month periods that most respondents spend in the
sample — represents a significant longitudinal micro-data
asset. There is sufficient sample and breadth of content to
provide for important analysis of labour market dynamics
and, conceivably, of demographic processes such as
fertility. Moreover, the data is monthly and spans more than
a quarter century, so that analysis based on it has
uninterrupted time depth that is unique in Canada.

In our main application {employment transitions), other
results (not reported here) appear to confirm the influence of
a range of explanatory variables on an individual’s chances
of an employment transition. These covariates include age,
job tenure (or duration not employed), educational attain-
ment, presence of young children (especially for women),
province of residence, seasonality, and business cycles.
However, this work is still in its initial stage and, to date, our
approach to inference has been informal. Future work will
involve extending and refining our models and establishing
a more rigorous basis for evaluation of the models.
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Contact and Cooperation in the Belgian Fertility and Family Survey

MARC CALLENS and CHRISTOPHE CROUX'

ABSTRACT

Combining response data from the Belgian Fertility and Family Survey with individual level and municipality level data
from the 1991 Census for both nonrespondents and respondents, multilevel logistic regression models for contact and
cooperation propensity are estimated. The covariates introduced are a selection of indirect features, all out of the
researchers’ direct control. Contrary to previous research, Socio Economic Status is found to be positively related to
cooperation. Another unexpected result is the absence of any considerable impact of ecological correlates such as urbanity.

KEY WORDS: Nouresponse; Multilevel analysis; Fertility and Family Survey.

1. INTRODUCTION

The aim of this paper is to empirically assess the relative
importance of cormrelates of contact and cooperation rates in
the Belgian Fertility and Family Survey (FFS Belgium
1991).

The conceptual and theoretical nonresponse framework
used in this paper has been proposed by Groves and Couper
(G&C 1998). In their view, nonresponse arising from
noncontact is directly influenced by survey design features
such as the number and the timing of calls. Conditionally on
these survey design features, other important features such
as physical impediments of the housing units and
accessible-at-home patterns of the would-be respondents,
which are indirectly measured by various social environ-
mental and socio-demographic attributes, also play an
important role. The decision to cooperate or to refuse is
primarily regarded as a direct function of a dynamic social
communicative process between the interviewer and the
interviewee, Survey design, main interviewer, sample
person and social environment characteristics are consi-
dered to have only an indirect influence on cooperation
rates.

We use both individual level and municipality level data
from the 1991 Census data, matched to the fieldwork
outcome variable for nonrespondents and respondents of
- the 1991 Belgian FFS. In this survey, individuals are the
sampling units. It is a face-to-face survey with low
noncontact (4%) and moderate refusal rates (22%). We
consider our data to be hierarchically nested with sample
units at the lower and municipalities at the higher level.
Including covariates at both levels, multitevel logistic
regression models for contact and cooperation propensity

are estimated. The covarates are a selection of indirect
features, all out of the researchers’ direct control.

Some intriguing results are: (1) Socio Economic Status
indicators like education are positively related to coop-
eration and (2) ecological factors including urbanicity are
not correlated with nonresponse. This is in contrast with
findings from previous US-based research.

2. ATHEORY FOR CONTACTABILITY
AND COOPERATION

The process of realising an interview consists of two
major components: the process of contacting a sample
person and dependent on contact, the process of co-
operation with a survey request. An attractive multi-level
theoretical framework for studying contactability and
cooperation has been proposed by Groves and Couper
(G&C 1998).

2.1 Contactability

Chronologically, the process of contacting a sample
person comes first. Some sample persons are never
contacted by interviewers and hence never make a decision
about their survey cooperation. Relative to the process of
cooperation, the process of contacting a sample person is
quite simple.

G&C (1998) consider contactability to be a function of
three factors: (1) whether there are any physical
impediments that prevent interviewers to get in touch with
the sample person, (2} when sample persons are at home
and (3) when and how many times the interviewer tries to
contact the sample person. The number and timing of calls
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by the interviewer and the accessible-at-home patterns of
the sample persons are the proximate causes of contacta-
bility. The accessible-at-home patterns of the sample person
are affected by the presence of physical impediments (e.g.,
telephone presence), socio-demographic attributes (e.g.,
commuting times) and social envirenmental attributes (e.g.,
crime). Also survey design features such as the length of the
data collection period and the interviewer workload might
have an influence on contact rates.

2.2 Cooperation

The central question in the survey stage following
contact is why sample persons do or do not cooperate with
the interviewer request. In the Groves-Couper model to
study cooperation, the proximate causes of the decision to
cooperate or to refuse lie at the level of the householder and
his or her interaction with the interviewer. Another
component in the theoretical framework of G&C (1998) is
the set of survey design features, such as: the agency of data
collection, advance warning of the survey request, topic
saliency, etc.

G&C (1998) consider also two factors that are out of the
control of the survey designer: influences of the sample
person and social environmental influences. These variables
are not considered to be direct causal influences on
cooperation, but indirect measures of what are essentially
social psychological constructs. Important theoretical
constructs in this respect are: opportunity costs, social
exchange and social isolation.

2.2.1 Opportunity Costs

The notion of opportunity costs implies that sample
persons weigh the opportunity costs in agreeing to spend
their time responding to a survey interview. An important
ingredient in the opportunity costs theory is the amount of
discretionary time for the sample person available to
complete the survey. Those with less discretionary time are
less likely to feel free to participate in a survey. Some
indirect indicators for the amount of discretionary time are:
the inverse of the number of adults in a household and (the
amount) of labour force participation. Of course, there are
also obligations away from employment tasks such as
comrmitments to friends and relatives that also might raise
the opportunity costs of a survey.

2,22 Social Exchange

Social exchange theory considers the perceived value of
equity of long-term associations between persons or
between a person and societal institutions (Blau 1964).
Central to all conceptualisations of social exchange is the
notion that, unlike economic exchange, all social commod-
ities are part of an intuitive bookkeeping system in which
debts (e.g., obligations) and credits (e.g., expectations) are

taken into account (G&C 1998). The social exchange
perspective can be applied whenever there is an ongoing
relationship between the survey organisation and the sample
person (e.g., government surveys).

Those receiving fewer services from the government
may — in considering the cumulative effect of multiple
government contacts - feel less need to cooperate. Since
government services are disproportional across socio-
economic strata, indicators of Socio-Economic Status (SES)
should reflect exchange influences on survey participation.
However, a major problem with social exchange theory is
that two alternative hypotheses between SES and
cooperation might be deduced from it (G&C 1998). First,
one can argue that lower SES groups may have the greatest
indebtedness to the government for the public assistance
they may receive. Higher SES groups feel far less that they
owe any sort of repayment. In this perspective, the
relationship between socio-economic status and cooperation
propensity is a negative one. Aliernatively, a curvilinear
relationship between SES and cooperation may be
hypothesised. The lowest SES groups may believe that they
are disadvantaged routinely compared to more fortunate
people. The highest SES groups feel themselves repeatedly
targeted in terms of time and money but receive little in
return. In such a hypothesis, both the highest and the lowest
SES feel relatively deprived in the relationship with
large-scale social institutions and tend to refuse survey
cooperation.

2.2.3 Social Isolation

Closely related to the social exchange hypothesis is the
social isolation hypothesis. Social isolates are out of touch
with the mainstream cuiture of a society: they tend to
behave in accordance with subcultural norms or in explicit
rejection of those of the dominant culture. They are
believed to be less likely to participate in a variety of social
and political activities, including responding to surveys
(Couper, Singer and Kulka 1997). In terms of SES, social
isolation theory implies a positive relationship between SES
and cooperation: lower SES groups are resentful of their
dependence on the government, whereas higher SES groups
have a greater sense of civic obligation. Such a positive
relationship between SES and social isolation is opposite to
the relationships predicted by social exchange theory.

Demographic indicators of social isolation are race,
ethnicity, age and gender; with minorities, elderly and men
in the role of the relatively isolated. Indicators of social
isolation at the micro-level include whether the sample
person lives in a single-person household, whether the
sample person has any children, whether the sample person
has moved recently and whether the sample person lives in
a large multiunit structure.
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2.2.4 Urbanicity

At the community level contextual factors such as
urbanicity, population density, crime rates and lack of social
cohesion are hypothesised to influence survey cooperation.
Residents of rural areas tend to cooperate at a higher level
compared to residents in towns. However, it is not clear
which mechanism is responsible for this urbanicity effect
which might be explained in terms of greater population
density, higher crime rates and higher social disorganisation
that are associated with life in urban areas. Population
density is hypothesised to reduce cooperation through the
experience of crowding. Fear of crime may produce an
unwillingness to provide information to strangers. Finally,
urban life is associated with social disorganisation, charac-
terised by weakened local kinship and friendship networks
and reduced participation in local affairs.

3. DATA AND METHOD

3.1 Data

In this study we make use of both aggregated and
micro-level data of the Belgian 1991 Census linked to the
response status for respondents and nonrespondents from
the Belgian Fertility and Family Survey (FFS-Belgium
1991) held shortly after the Census operations.

3.1.1 The FFS Survey (1991)

The Fertility and Family Survey in Belgium was
organised by the Population and Family Study Centre
(CBGS), a Scientific Institute from the Flemish Gov-
ernment. This survey was carried out between April and
October 1921, which is very close to the decennial census
date: April 1 in the same year. The main focus of the
FFS-project is on reproductive behaviour, to be seen
however in the broader context of partnership and family
history, and the interaction beiween employment and
reproduction (Cliquet and Callens 1993; Callens 1995). The
target population consists of men and women of Belgian
nationality, born in the period 1951-1970 and with main
residence in the Flemish Region of Belgium.

A two-stage cluster sampling design was used for men
and women separately. In a first stage, municipalities were
selected from various socio-economic strata (Vanneste
1989). In each selected municipality, individuals were
selected at random. In this way 2,975 women and 1,989
men were selected to take part in the survey. A fieldwork
method was used to compensate for non-response: stratified
random substitution of nonrespondents of the target sample
by persons selected from a reserve sample (Chapman 1983;
Vehovar 1999).
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The final sample size, i.e., including the substitution
operation, equals 4,776 persons (2,897 women and 1,879
men). In this study we make use of respondents and
nonrespondent cases of both the initial target sample and
the fieldwork substitution operation (N = 6,847).

Among both men and women, the nonresponse can be
ascribed in 7 out of 10 cases to a refusal to participate in the
survey. In 2 out of 10 cases, nonresponse is due to the fact
that the persons selected could not be contacted, and in 1
out of 10 cases, an interview was impossible because of
sickness, language difficulties or some other reason.

3.1.2 Matching 1991 Census Person-Level Data
(1991)

Our primary source of information on both respondent
and nonrespondent cases is provided by the 1991 Census.

In an effort to reconcile privacy concerns and scientific
interests, we used a simple technique to make the matching
of person-level Census data and survey data anenymous.
We provided a dataset to the National Institute of Statistics
(NIS) containing only the national identification number
and the response status for each respondent and non-
respondent case. As a result of the matching operation by
the NIS, we received a selection of the 1991 Census data
enriched with only two survey variables: the response status
variable and an indicator whether a sample person belongs
to the base or substitute sample.

The 1991 Census individual level data we have at our
disposal are: the individual form and the house unit form.
The individual form contains information about: the place
of residence, the nationality, the labour force activity status,
the first marriage, the birth year of the-children, education
and professional activities. The house unit form includes
information on the housing unit of the household such as:
the type of housing unit, the number of housing units in the
building, ownership, building period, the number of rooms
and corresponding squared meters, the presence of a
telephone and comfort indicators such as the number of
bath rooms.

3.1.3 Contactability and its Determinants

To study the process of contactability, we ideally need
data on the outcomes of all successive attempts to contact
sample persons. In this study however, we do not have such
detailed information at our disposal: we only know the final
outcome of each survey request. Therefore, we can only
study the probability of ever making contact with the
sample person {(coded 1 = contact and coded 0 = non-
contact) and not whether it was easy or difficult to make
contact. Sample persons that are known not to reside
{anymore) on the sample address we do consider contacted.
At 241 out of 6,847 sample units (3.52%), all contact
attempts failed.
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The data we use are measured at two levels: the indi-
vidual level (n= 6,847) and the municipality level (n=123).
At the sample person level, we consider three types of
variables: physical impediments to contact sample persons,
reasons for sample persons to be present in their homes and
control variables.

As there are no direct interviewer observations of
physical impediments available to us, we have to rely solely
on indicators for physical impediments available in the
Census data. Three variables are used: whether the housing
unit is a single-family structure or not, whether the housing
unit is large (more than 10 units) or not and whether the
sample person has a telephone or not.

Determinants of at-home patterns in this study are: civil
status (unmarried, married and divorced), age (20-24,
25-29, 30-34 and 35-39 years) and activity status (inactive
vs. other). For women only, we also consider the number of
children (0, 1, 2 and 3+). For those in the labour force we
have also detailed information about: working part-time vs.
working full-time, the number of weekly working hours
(<21, 21-35, 36-42, >42 hours), employment status
(employee vs. own-account), having a second job or not and
working at home or not.

We also use two control variables: substitution (whether
a sample person criginates from the base target sample or
from the substitution sample) and gender (whether a sample
person comes from the female sample or from the male
sample).

At the municipality level (7=123), we use five variables:
population density {persons per square km for the residence
of the sample person}, urban status (the cities of Antwerp
and Gent vs. other municipalities}, percentage multi-unit
structures (in quartile format: <7.13, 7.13-15.14, 15.14-27
and >27), percentage homes owner-occupied (in quartile
format: <64.5, 64.5-71, 71-77.7 and >77.7) and percentage
persons of minority race (in quartile format: <0.90,
(0.9-2.22, 2.22-5.29 and >5.29).

3.1.4 Cooperation and its Determinants

We are interested in the probability of ever getting
cooperation (coded 1 = cooperation and coded (0 = non-
cooperation) conditionally on contact; not whether it was
easy or difficult to get cooperation from the sample person.
For 1,399 out of 6,606 contacted sample persons (21.18%),
all attempts to get cooperation failed.

Again, the data we use are measured at two levels: the
individual level and the municipality level. At the sample
person level, we have indicators for the opportunity costs
hypothesis, the exchange hypothesis and the isolation
hypothesis. Substitution is used as a control variable.

Indicators for the opportunity costs hypothesis are:
activity status (inactive vs. other), working part-time vs.

working full-time, the number of weekly working hours
(<21, 21-35, 36-42, >42 hours) and employment status
(employee vs. own-account).

Indicators for Socio-Economic Status in our study are:
the surface of the living rooms (in squared meters: <65,
65-84, 85-104, 105-124 and >125), the number of bath-
rooms (0, 1 and 2+) and educational level (primary, second-
ary — first stage, secondary — second stage, high — non-
university and high — university level). Other exchange
hypothesis indicators are: whether one receives a replace-
ment income from the government or not and whether the
house is owner-occupied or not.

Indicators for the social isolation hypothesis are: gender,
civil status (unmarried, married and divorced), age (20-24,
25-29, 30-34 and 35-39 years), single-family structure of
the housing unit and for women only: the number of
children (0, 1, 2 and 3+) and the presence of children under
the age of five years. Finally, substitution is included as a
control variable.

At the municipality level, we use the same five variables
as in section 3.1.3: urban status, population density,
percentage multiunit structures, percentage owner-occupied
and percentage persons of minority race.

3.2 Method of Analysis
3.2.1 Bivariate y* -Test

In a first exploratory series of analyses of the correlates
of contactability and cooperation, we calculate percentages
for two-way conlingency tables and include the results for
the ¥*-test of independence against association. Such a
+* -test, like any significance test, indicates the degree of
evidence for the existence of an association, not the strength
of an association. When at least one variable i1s ordinal,
more powerful tests of independence than the y*-test such
as the linear trend test do exist, but for reasons of simplicity
of presentation, we do not use them in this paper.

3.2.2 Multilevel Logistic Regression

In a second series of analyses, we use multilevel logistic
regression to simultancously estimate the impact of the
various determinants (Snijders and Boskers 1999). We opt
for the use of a multilevel method, because we regard our
data as hierarchically nested with individuals at the lower
level (level 1) and municipalities at the higher level (level
2).

Let p,; be the probability that an individual i belonging
to municipality j is contacted (or cooperates). We will
consider four different models for explaining this proba-
bility: the null random model, two versions of the random
intercept model and the standard logistic regression model.

The empty or unconditional model does not take explan-
atory variables into account. We specify the model such that
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logit transformed probabilities Py have a normal
distribution:

logit (P;j) = 1/(1 "'exP(P;j)) = ot Uy

where v, is the population average and Uy, the random
deviation from this average for group j. These deviations
u,, are assumed to be independent normally d;stributed
random variables with mean zero and variance ;.

‘When there are r variables at the individual level that are
potentially explicative for the observed outcomes, then they
are incorporated as a linear function in the random intercept
model:

logit (p;;) = ¥~ PIEA Xnij * Wo;
i1

where ¥, ...,v, are the slope parameters measuring the
effect of the explicative variables.

If we would drop the random effects u,; then we obtain
a standard logistic regression model:

,
logit (p;;) = v, + hE VnXnij
=1

By also including s variables at the community level, we
get an intercept model with both level-1 and level-2
covariates:

r s
logit {p;) = ¥, * IR Thij + T Xeij * Hoy:
hel k=1

We use SAS Proc Nlmixed (SAS Institute 1999) to
actually estimate the parameters. In SAS Proc Nlmixed an
adaptive version of Gauss-Hermite Quadrature (numerical
integration) is used to solve the maximum likelihood
estimation problem. To test if a specific parameter equals
zero, a Likelihood Ratio y*-test is used.

4. RESULTS

4.1 Contactability

Table 1 presents the bivariate results by the ¥2-test of the
percentage never contacted by various indicators of
physical impediments. One strong correlate is whether the
housing unit is a single-family structure or not, the latter
having much higher noncontact rates (8.1%) than other
units (2.4%). Also, sample persons living in large multiunit
housing structures tend to have higher noncontact rates
(11%) than those not living in large multiunit housing
structures (3.1%). Another strong correlate is the presence
of a telephone: 9.7% of those with no telephone were never
contacted.
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Table 1
Percentage Never-Contacted by ‘Physical Impediments” Attributes
Percentage
Physical impediments atiributes never contacted 2 df P
Single-Family Structure 976 1 <0.0001
No 8.1
Yes 24
Large multi-unit structure (>10) 384 1 <0.0001
No 3.1
Yes 1.0
Telephone 889 1 <0.0001
No 9.7
Yes 2.7

Table 2 shows the bivariate results for contactability by
‘reasons to be present at home’ attributes. Relatively more
unmarried (4.4%?) and divorced (6.9%) sample persons than
married (2.9%) sample persons are never contacted. There
are much lower rates of noncontacts among those that are
inactive (0.9%) compared to other persons (3.5%). Having
at least 3 or more children {0.9%) leads to low noncontact
rates, compared to having two children (2.6%) or at most 1
child (4%). Those working at home (1.5%) and those being
an independent worker (1.9%) show modestly lower
noncontact rates than those working elsewhere (3.6%) or
those working as an employee respectively (3.6%). Age, the
number of weekly working hours, working part-time vs.
full-time and having a second job or not have no significant
influence on contactability.

Table 2
Percentage Never-Contacted by ‘Reasons to be Present at Home®
Attributes
Percentage
Reasons to be present at home  never contacted 2 df p
Civil status 194 2 <0.0001
{nmarried 4.4
Married 29
Divorced 6.9
Inactive vs. other 40 1 004
Inactive 0.9
Other 35
Number of children® 145 3 00023
Q 43
1 4.0
2 26
3+ 0.9
Employment place® 46 1 003
At home 1.5
Elsewhere 3.6
Employment status® 40 1 005
Employee 3.6
Own-account 1.9

subsample of women only (1=4,098)

b subsample of active persons only (#=5,368)



120 Callens and Croux: Contact and Cooperation in the Belgian Fertility and Family Survey

In addition, substitution is associated with higher
noncontact rates (5.9%) compared to the base sample
(2.6%). No significant difference has been found for the
male and the female subsample.

In a multiple logistic regression model of the combined
effects of those individual-level indicators that have some
marginal bivariate effect on contactability only single-
family structure (3 = 35.75, p = <0.0001), telephone (%% =
52.63, p=<0.0001) and substitution (y*=28.59, p-=
<0.0001} remain significant.

In Table 3, noncontact rates for various environmental
attributes are presented. Cities (6.6%) have higher non-
contact rates compared to nonurban arecas (3.1%). The
percentage never contacted is higher for high-density areas
(5.4%) than low-density areas (1.7%). The presence of
multiunit structures and the presence of persons of other
nationalities tend to increase non-contact rates. Finally, the
percentage of owner-occupied houses shows a negative
association with noncontact rates.

Table 3
Percentage Never-Contacted by ‘Environmental’ Attributes

Percentage

Environmental attribute never contacted ¥ df P
Urban status 24.0 1 <(.0001
Cities 6.6
Other 3.1
Population density 34.4 3 <0.0001
Lowest quartile 1.7
Second quartile 32
Third quartile KR ]
Highest quartile 54
e Muiti-unit structures 504 3 <0.0001
Lowest quattile 2.0
Second quartile 2.2
Third quartile 4.0
Highest quartile 5.9
% Persons of other nationalities 231 3 <0.0001
Eowest quartile 25
Second quartile 23
Third quartile 4.3
Highest quartile 4.8
% Homes owner-cccupied 644 3 <0.0001
Lowest quartile 64
Second quartile 3.6
Third quartile 1.6
Highest quartile 2.7

We complement now the bivariate analysis with a
multivariate analysis. In Table 4 four models for modelling
contact relative to noncontact are presented. Model 1 is the
null random model at the municipality level. Model 2 is a
multiple logistic regression model. In this model, we have

included the person-level effects that remained significant
in a multivariate context (i.e., single-family structure, tele-
phone and substitution) and the variable activity status
because of its theoretical importance. Model 3 is a random
intercept version of model 2. In Model 4, we have extended
Model 3 with the municipality level variable multi-units
structures (in %) only.

Table 4
Results of (Multilevel) Logistic Regression Models
of Contactability
Meodel 1@ Model 2:  Model 3: Model 4:
Results Null Logisttc ~ Random Random
Random Regression Intercept Intercept
Level1  Level 1&2
Intercept 4.01%%% JO8kkk  q gREAE 4 | Sk
0.16) 0.73) 0737 (0.79)
Individual
Characteristics
Single-family structure 116%%*  1.02%%*  (.92%*
(0.15) (0.17) 0.17)
Telephone L1g%%+ [ 25%% ] 20%+
(0.16) .17 0.17)
Inactive vs. other -1.23 -1.34 -1.33
0.72) 075  {0.74)
Substitution sample <078 R (),64%%% 620 H%
(0.14) (0.15) {0.15)
Municipality
Characteristics -0.02+*
Multi-unit structures (%) 00N
Estimated variances
Var(Intercept) 1.03 0.82 0.79
Goodness of fit
Deviance 1,720 1,658 1,606 1,599
Notes:  Standard errors in parentheses. *p<(.05, ** p<0.01,

***p<0.001, one-tailed tests.

The effects of the person-level covariates in Models 2, 3
and 4 are in accordance with the findings of the bivariate
analysis. Single-family structure and the presence of a
telephone have a positive influence on contactability, while
the effect of activity status is not significant. The impact of
field substitution is negative. We also notice a (rather small)
reduction of the regression coefficient for single-family
structure and substitution in the multilevel models 3 and 4.
Models 3 and 4 have one variance component for the
intercept. To test the null hypothesis that the random
intercept variance equals zero, we use the Likelihood Ratio
test and compare the conventional logit model (Model 2)
with the random intercept model (Model 3). The difference
in deviance between both models is large (52). So, there
might be some variance in the intercept to explain by
municipality level covariates. By introducing municipality
characteristics one at a time, we can test for significant
effects by calculating deviance differences between Model
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4 and Model 3. The only deviance difference of importance
noted is the case of the variable ‘multi-unit structures’ (7
units difference). No differences in deviances are found for
the introduction of the other level-two variables (urban
status, percentage owner occupied, population density and
persons of other nationalities).

We consider Model 3 and Model 4 as the better models.
According to these multilevel models, noncontact rates vary
considerably across municipalities. However, the munici-
pality level covariates in our study are not able to explain
much of this variation.

4.2 Cooperation

In Table 5, we present the bivariate results for the
opportunity costs hypothesis indicators. Being inactive or
not does not seem to have an effect on the cooperation rate.
However, when we use indicators of discretionary time,
such as working part-time versus working full-time or the
weekly number of working hours, the predicted negative
relationship does show up in the bivariate results. In
addition, self-employed sample persons have lower co-
operation rates compared to employees.

Table 5
Percentage Cooperation hy ‘Opportunity Cost Hypothesis”
Indicators
Percentage
Opportunity cost indicators cooperated 2 df p
Inactive vs. other 0.41 1 032
Inactive 7.0
Other 78.9
Part-time vs. Full-time® 1004 1 0.001
Part-time 82.3
Full-time T7.4
Number of working hours® 15.3 3 00018
<20 80.1
21-35 847
36-42 7.6
>43 75.7
Employment status® 42 1 0.04
Employee 78.7
Own-account 74.6

® subsample of active persons only (n=5,180)

The predictions of the exchange hypothesis thecry do not
show up in the bivariate results presented in Table 6. SES
indicators like the surface of the living room and the
number of bathrooms are not negatively, but positively
related to cooperation. Of course, these measures are not
ideal, because we are not able to control for household size.
Another indication of a positive relationship between
cooperation and SES is the case of educational level.
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Whether one receives a replacement income or not and
whether the house is owner-occupied or not has no impact
on cooperation rates.

In a multiple logistic regression model of the combined
effects of those social exchange indicators that have some
marginal bivariate effect on cooperation, only the effects of
educational level (% =39.35, df=4, p <0.0001) and surface
of the living room (y*=13.4, df=4, p=0.0095) remain
significant.

Table 6
Percentage Cooperation by ‘Exchange Hypothesis’ Indicators
Percentage
Exchange indicators cooperated ¥ df p
Surface living rooms {m?) 268 4 <0000
<65 74.8
65 -84 71.6
85-104 78.6
105 - 124 79.9
> 125 83.1
Number of bathrooms 79 2 002
0 74.2
1 78.6
2 835
Educational level 46.7 4  <0.0001
Primary 76.6
Secondary, first stage 74.5
Secondary, second stage 78.7
High, non-university 85.1
High, university 82.2
Replacement income 03 I 058
No 78.7
Yes 79.5
Owner occupied 34 1 006
No 77.4
Yes 79.4

In the section for the exchange hypotheses, we have
found support for the notion that those with low SES,
cooperate less with surveys than those in the high SES
groups. Such a positive relationship between SES is
predicted by the social isolation hypothesis. Demographic
indicators of social isolation theory are gender, civil status
and age (See Table 7). No effects are found for gender, civil
status (however, divorced sample persons are probably less
cooperative) and single-family structure. Age seems to have
a negative effect on cooperation. For women only, we have
also data on the presence of children, We find that the
number of children has a positive effect on cooperation
rates. The age of the children is also important: the presence
of young children is associated with higher cooperation.

The control variable substitution has a slightly negative
effect on cooperation (y*=4.24, p=0.039) with lower
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cooperation rates for the substitution sample (77.3%),
compared to the base sample (79.5%).

Table 7
Percentage Cooperation by ‘Social isolation Hypothesis’ Indicators
Percentage
Social isolation indicators cooperated ¥ df p
Gender 1.56 1 021
Male 78.1
Female 79.3
Civil status 3.11 2 02
Unmarried 79.8
Married 78.6
Divorced 754
Single-family structure 0.76 1 038
No 78.9
Yes 77.7
Age 175 3 0.0006
20-24 80.8
25-29 80.7
30-34 783
35-39 75.5
Number of children® 18,2 3 0.0004
0 77.9
! 76.3
2 81.7
3+ 84.9
Presence of young children® 123 1 0.0005
No 778
Yes 82.8

* subsample of women only (n=3,955)

Table 8 contains the bivariate results for social
environmental differences in cooperation. Population
density has a curvilinear effect on cooperation. Being a
resident in a large metropolitan area has no effect. Thus, the
evidence for the literature that crowding and high levels of
stimulus input are negatively associated with cooperation is
of a mixed nature.

The effect of indicators for social cohesion is not clear.
Only the variable percentage owner-occupied has a
(curvilinear) effect. The variables percentage persons of
other nationalities and percentage multi-unit structures
seem to have no effect.

Finally, we present in Table 9 a series of regression
meodels for cooperation similar to those in section 4.1. In
these models, we have included four individual level
covariates: surface of the living room (<84 , >84 m?),
education (up to secondary -second stage vs. high level),
age (20-29, 30-39 years) and substitution sample. Surface
of the living room and education have been selected as the
only significant exchange hypothesis indicators in the
previously described multiple logistic regression model.

Age was the only significant effect in the bivariate analysis
on the social isolation hypothesis. Finally, substitution is
introduced to control for possible fieldwork effects. The
slightly negative effect of substitution in Model 2 might
indicate that fieldwork substitution negatively influences
cooperation. However, this effect disappears completely
when a random intercept is introduced (Models 3 and 4).
The effects of the other individual level covariates are in
accordance with the findings of the bivariate analysis and
do not change across Models 2 to 4. SES indicators like
education and surface of the living room have a positive
effect and age has a negative effect on cooperation. These
effects rather confirm the social isolation hypothesis than
the exchange hypothesis.

Table 8
Percentage Cooperation by ‘Environmental” Attributes
Percentage
Environmental attribute cooperated ¥ df p
Urban status 0.84 I 036
Cities 80.1
Other 78.7
Population density 10.7 3 0014
Lowest quartile 80.0
Second quartile 79.9
Third quartile 76.0
Highest quartile 79.4
% Multiunit structures 3.1 3 038
Lowest quartile 80.1
Second guartile 792
Third quartile 77.9
Highest quartile 78.1
% Homes owner-occupied 12.3 3 0.0063
Lowest quartile 79.7
Second quartile 76.2
Third quartile 785
Highest quartile 80.9
% Persons of other nationalities 52 3 016
Lowest quartile 779
Second quartile 77.6
Third quartile 79.6
Highest guartile 30.2

The only level two variable of (modest) importance is
multi-unit structures (in %) and has been kept in Model 4.
The Likelihood Ratio test for introducing this variable gives
a difference of two units in deviance terms. The intro-
duction of one or more other second level variables gives
Likelihood Ratio tests differences close to zero in deviance
terms. We consider Model 3 and 4 as the most suitable
models. The difference in deviance terms between model 3
and model 2 is 8 units, which is significant. The vanance
for the intercept term is moderate (0.21). The introduction
of second level covariates (including multi-unit structures)
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leaves this variance term practically unchanged. Therefore,
we may state that environmental attributes like urbanicity
are not important for explaining cooperation.

Table 9
Results of (Multilevel) Logistic Regression Models of Cooperation

Model 1: Model 2:

Model 3: Model 4:

Results Null Logistic =~ Random Random
Random Regression Intercept Intercepts
Level 1  Level 1&2
{ntercept 1AT*EF | 24% % 1.30%%% ] 39%**
(0.06) (0.06) (0.08) 0.10)
Individual

Characteristics
Substitution sample -0.15% -0.03 -0.02
{0.07) (0.07) (0.07)
234k 24%A% () D4Rk
{0.06} (0.06) (0.06)
0.45%k% D 4Tex () 470k

(0.08)  (0.08)  (0.08)

Surface living rcoms

Educational level

Age 023w (J23ERE () DFEks
{0.06) (0.06) (0.06)

Municipality ‘
Characteristics -0.006

Multi-unit structures (%) (0.004)
Estimated variances

Var{Intercept) 0.21 0.21 (.21
Goodness of fit

Deviance 6,664 6,664 6,596 6,594
Notes: Standard errors in parentheses. * p<0.05, ** p<0.01,

*#% n<().001, one-tailed tests.

5. DISCUSSION

In this paper, we have used 1991 individual and munici-
pality level Census data matched to the response status
variable of the Belgian Fertility and Family Survey to
analyse the relative importance of correlates of contact and
cooperation.

We have organised our analysis according to the
Groves-Couper conceptual framework. In the bivariate
analysis stage, we have found essentially the same kind of
correlates as was predicted and actually found in an
US-based muilti-survey analysis (G&C 1998). One
important difference between the present study and the
US-results seems to be the nature of the effect of SES
indicators {e.g., education} on cooperation. In the present
study, we find a positive relationship; in the US-study the
inverse relationship is found. We can imagine two
alternative explanations for these conflicting findings. A
first one is based on survey design effects such as topic
saliency. The FFS-survey in Belgium might be atypical in
being disproportionally attractive to the higher educated
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because of the specific content of the survey. Replicating
the present analysis for surveys about varying topics can
easily test such a hypothesis. Another possible hypothesis
is that effects of education on survey cooperation do vary
across societies. Then the challenge is to find out why this
relationship varies across countries. Such a hypothesis is far
less easy to test in real, as data for several countries are
needed.

In the multilevel logistic regression analysis stage, the
impact of all but one contextual factor completely vanished.
Only the impact of the variable percentage of multi-unit
structures shows, however only weakly, some resistance
against ecological randomness present in the random
intercept models. To us, this is a very intriguing result.
Random ecological variation at the municipality level
seems to dominate largely even the urban-rural dichotomy.
A possible explanation is that the vanation at the
community level is dominated by interviewer effects, not by
ecological factors.
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