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In This Issue

This issue of Survey Methodology opens with a discussed paper by Paul Biemer. He provides
evidence of reduced accuracy due to the redesign of employment questions in the Current Population
Survey (CPS). This is an extension of the previous study by Biemer and Bushery (2000). In the
current paper, the author attempts to trace the source of the error through extended analysis of the CPS
data before and after the redesign. A new approach, using Markov Latent Class Analysis, is presented.
This work aims at providing guidance for further investigation into the root causes of the errors in the
collection of labour force data in the CPS. Discussions of this paper are provided by Jeroen Vermunt,
Stephen Miller and Anne Polivka, and Clyde Tucker.

In their paper, Gunning and Horgan propose a new algorithm for the construction of stratum
boundaries in skewed populations. Their algorithm uses an auxiliary variable and achieves equal
coefficients of variation for this auxiliary variable in each stratum. The method is based on the
assumption that the auxiliary variable is uniformly distributed. One advantage of the method is that it
is very easy to apply in practice. In an empirical study, the authors show that the proposed algorithm
compares favourably with the cumulative root frequency method of Dalenius and Hodges (1957} and
to the Lavallée and Hidiroglou (1988) algorithm.

Hedlin and Wang consider the problem of bias coming from feeding back information from sample
surveys to frames. They investigate the bias incurred by updating deaths on a frame that is used for
future occasions of the same survey. They quantify this bias and develop an unbiased estimator for
this situation. The theoretical results presented in the paper are illustrated through a simulation study.

In their paper, Mudryk and Xie present the Quality Assurance (QA) and Quality Control (QC)
aspects of the Intelligent Character Recognition operation of the 2001 Canadian Census of
Agriculture. They show how an effective QA and QC plan was developed to ensure the highest quality
data from the data capture operation of the Census. Results from an analysis of the Average Qutgoing
Quality of the data indicate the importance of a QA/QC plan.

In Park and Lee, the design effects for the weighted mean and total estimators are investigated for
complex surveys. In particular, they decompose the design effect for the weighted mean and total
estimators under a two-stage design. Given this decomposition, they illustrate several common
misconceptions about the design effects for the weighted mean and total estimators through several
examples using commonly used designs.

In their paper, Beaumont and Alavi investigate a robust generalized regression estimator. They look
at alternatives to the optimal Best Linear Unbiased (BLU) estimator that are robust to design
ignorability and/or model misspecification. In the situation where the design ignorability assumption
may not hold, they propose a least squares estimator that is obtained by shrinking the design weights
to their mean, To deal with model misspecification, they propose a weighted generalized M-estimator
to reduce the influence of units with large weighted population residuals. Their theoretical results are
illustrated with a simulation study.

Zheng and Little propose a non-parametric model-based alternative to Horvitz-Thompson
estimation of a total in the case of two-stage sampling with pps sampling at the first stage. This is an
extension of their earlier work in which an outcome variable y,; is modeled as a smooth function of
the inclusion probability 7, . They show how to fit the model and estimate the total using a penalized
spline, and also develop alternative variance estimation procedures. Simulations are used to compare
the proposed method to the Horvitz-Thompson estimator and to a model-assisted estimator.
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Liang and Kuk consider an alternative to the standard approach for regression estimation in a finite
population. Instead of the usual linear model they use an arbitrary smooth function te allow for a non-
lingar regression, and then they apply Bayesian neural networks to the problem. The advantage of the
neural network approach is that the problem of model misspecification is avoided. Liang and Kuk
place a prior on each network connection instead of on the number of hidden units as is usually done.
This permits a unified approach to the selection of the network structure and the selection of the
auxiliary variables. Finally, they handle outliers by introducing a heavy tail distribution to model the
disturbances of the data. '

In the last paper of this issue, Reiter uses multiple imputation to handle simultaneously both
missing data and disclosure limitation. The basic idea is to fill in the missing data first to generate m
completed datasets and then replace sensitive or identifying values in each completed dataset with r
imputed values. Then, the author develops new combining rules for obtaining valid inferences from
such multiply-imputed datasets. These rules take into account both sources of variability in the point
estimators.

Finally, the Editorial Board met this past summer at the Joint Statistical Meectings in Toronto. A
suggestion was made at that meeting to have a Short Communications section in the journal. These
would be shorter papers, typically around four Survey Methodology pages. Possible topics of short
communications would include presentation of new ideas without the full development of a regular
paper, brief reports of empirical work, and discussions or supplements to other papers published in the
journal. All short communications would be refereed, although the reviewing process may be
streamlined. I hope that this new format will be attractive to many authors, and look forward to
receiving your submissions.

M_.P. Singh
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An Analysis of Classification Error for the
Revised Current Population Survey Employment Questions

PAUL P. BIEMER '

ABSTRACT

The reduced accuracy of the revised classification of unemployed persons in the Current Population Survey (CPS) was
documented in Biemer and Bushery (2000). In this paper, we provide additional evidence of this anomaly and attempt to
trace the source of the error through extended analysis of the CPS data before and after the redesign. The paper presents an
novel approach decomposing the error in a complex classification process, such as the CPS labor force status classification,
using Markov Latent Class Analysis (MLCA). To identify the cause of the apparent reduction in unemployed classification
accuracy, we identify the key question components that determine the classifications and estimate the contribution of each
of these question components to the total error in the classification process. This work provides guidance for further
investigation into the root causes of the errors in the collection of labor force data in the CPS possibly through cognitive

laboratory and/or field experiments.

KEY WORDS: Survey redesign; Measurement error; Latent class analysis; Unemployment rate; Specification error.

1. INTRODUCTION

The Current Population Survey (CPS) is a monthly
survey of approximately 60,000 households conducted by
the U.S. Bureau of the Census for the Burcau of Labor
Statistics (BLS). The primary purpose of the survey is to
provide estimates of employment, unemployment, and other
characteristics of the general U.S. labor force population.
Estimates of the size, composition, and dynamic charac-
teristics of the labor force are published each month by BLS
and comprise one of the Nation’s key economic indicators.

In January 1994, a revised questionnaire was introduced
in the CPS to address the recommendations by the Levitan
Commission in the late 1970s to convert the mode of
interview for the CPS from paper and pencil questionnaire
to computer-assisted interviewing methods, to clarify some
of the questions on employment, as well as for a number of
other reasons described in Rothgeb (1994). The overall
objective of the redesign was to improve the guality of the
data collected in the CPS. The CPS questionnaire had
remained essentially unchanged since the last major revision
in 1967.

The revised CPS questionnaire was introduced after
considerable research and testing that began in the mid-
1980s. The purpose of the testing was (0 evaluate the quality
and operational feasibility of various redesign options
including moving the CPS from a paper and pencil
questionnaire format to computer assisted interviewing.
During these years of testing, more than 100,000 persons
were interviewed in the various studies that were conducted
(Rothgeb 1994). The CPS redesign research program

1

culminated in a large national study (referred to in the
literature as the CATI/CAPI Overlap or CCO Field Test)
that was conducted in 1993. The key component of this test
consisted of a computer assisted survey of approximately
12,000 households implementing revised CPS interviewing
procedures and the revised questionnaire. This survey,
referred to in this report as the Parallel Survey, was
conducted from July 1992 to December 1993 concurrently
with the ongoing CPS survey which used the original
questionnaire. This type of split panel design makes it
possible to estimate the effect of the redesign changes on the
CPS labor force estimates.

A number of papers and reports were published
documenting the findings from the CCO Field Test
(Cohany, Polivka and Rothgeb 1994; Rothgeb 1994;
Polivka 1994; Kostanich and Cahoon 1994; Miller 1994;
Thompson 1994; Dippo, Polivka, Creighton, Kostanich and
Rothgeb 1994). One key finding from this research was that
the Parallel Survey unemployment rate and the labor force
participation rate were higher than in the CPS. The higher
unemployment and labor force participation rates associated
with the revised questionnaire were explained primarily by
changes in the definition of employment. The revised
questionnaire has a broader approach to both work and job
search activities, which would tend to classify more persons
as “in the labor force” and, thus, more persons who are not
working as unemployed rather than out of the labor force
(see, for example, Polivka 1994 and Rothgeb 1994).

The increase in the unemployment rate due to the new
design was originally estimated at about one-half percentage
point. However, further analysis of the Parallel Survey data

Paul P. Biemer, 3040 Cornwallis Road, PO Box 12194 Research Triangle Park, NC 27709-2194, U.S. A.
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called that estimate into question and subsequently a report
was release estimating the increase to be less than one-tenth
percentage point {(Polivka and Miller 1994). The concemns
raised in the subsequent reports regarding the utility of the
Parallel Survey data for assessing the effect of the redesign
are discussed further below and will be considered in our
analysis of these data.

An independent analysis conducted by Biemer and
Bushery (2000) revealed an anomaly in the revised CPS
labor force data that had not been detected by any of the
previous research on the CPS redesign. Using a Markov
latent class analysis (MLCA) approach, Biemer and
Bushery compared the accuracy of labor force classify-
cations under the original and revised designs by estimating
and comparing the error rates using the 1993 CPS data and
the 1995 and 1996 CPS data. They defined labor force
classification accuracy as the probability that a person who
is truly in some labor force category, say category a, is
classified as being in a by the CPS; ie., Pr{classified in a |
truly in a). For example, the classification accuracy for
unemployment is the probability a person who is truly
unemployed, according to the CPS definition, is correctly
classified as unemployed by the CPS classification rules.

In Tabie 2 of their paper, Biemer and Bushery report that
the classification accuracy for unemployment dropped by
5.7 percentage points, from approximately 81.8 percent
(s.e.=0.90) in 1993 to 76.1 (s.e. = 1.2) in 1995 and 744
percent (s.e. = 1.2) in 1996, These resulis suggest that the
redesigned CPS misclassifies the true unemployed at a
higher rate than the old CPS design. The authors first
considered that this resuit could be an artifact of the MLCA
methodology. As shown below, MLCA does not require a
true or “gold standard” measurement of employment to
estimate classification error. Rather the method relies a
model describing the true month to month changes in
employment status and as well as for the process of
classifying individuals into labor force categories. It is
possible that labor force transitions that deviate from the
model specification could be regarded as misclassifications
in the estimation process.

To check the validity of the MLCA results, the authors
conducted a series of analyses using traditional estimation
approaches, analysis of the error by population groups,
comparisons of the error estimates to other published esti-
mates, and simulations to assess the effect of model failure
on the results. As an example, there is evidence that the test-
retest reliability of the unemployment category decreased
after the redesign. Prior to the redesign, the index of
inconsistency (The index of inconsistency is a measure of
unreliability traditionally used at the Census Bureau. It is
equal to 1 —k where k is Cohen’s kappa coefficient (Cohen
1960) for the unemployed labor category averaged 30

percent for the period 1992—1993. Following the redesign,
the index of inconsistency increased to almost 40 percent for
the period 1995-1996. These analyses support their claim
that the accuracy of the CPS methodology for classifying
unemployed persans declined after the redesign.

In their discussion of the results, the authors speculated
that the drop in classification accuracy could indicate a
problem with the revised unemployment questions. That is,
the revised unemployment questions may be subject to
greater classification emror and, thus, less classification
accuracy. Another possibility they considered is change in
the characteristics of the unemployed populations from
1693 to 1995 and 1996. Since the unemployment rate
dropped from 1993 to 1996, it is possible that persons who
would be more accurately classified by the CPS system left
the ranks of the unemployed, leaving persons who would be
less accurately classified in the category. This hypothesis
could be tested by estimating the accuracy rates for the two
methodologies for the same time period. The Parallel
Survey offers a means to conduct such an analysis.

The current paper continues the investigation of the
reduction in MLCA unemployment classification accuracy
rates observed by Biemer and Bushery. The current analysis
uses MLCA models very similar to those used by Biemer
and Bushery for estimating the classification accuracy for
the original and revised versions of the CPS questionnaire.
However, the time period considered here is expanded to
include thel5 months prior to and following the introduction
of the revised questionnaire: a total of 30 contiguous
months. In addition, data from the Parallel Survey from the
period January 1993 through December 1993 is used to
compare the employment accuracy for original and revised
questionnaire for the same time period.

Our analysis focuses on a labor force classification
variable that is derived from a number of questions on the
employment section of the CPS questionnaire. This variable
is often referred to as a “recoded” labor force variable since
it is determined by mapping a pattern of CPS responses to
questions about employment onto particular labor force
categories such as employed — at work, employed — not at
work, unemployed — looking for work, and so on. Biemer
and Bushery used a three-category employment classi-
fication variable: employed (EMP), unemployed (UEM)},
and not in the labor force (NLF). For the present analysis, a
four-category variable is used that subdivides the UEM
category into unemployed-on layoff (UEM-LAYOFF) and
unemployed-locking for work (UEM-LOOKING). This is
done as a first step toward isolating the source of the
apparent inaccuracy in unemployment classification. How-
ever, further decomposition of these categories will be
necessary to arrive at the root source of the error as will be
shown subsequently.
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In section 2 we describe the CPS labor force concepts
that are most relevant to our study and the structure of the
data sets in the analysis. In section 3 we review the MLCA
estimation methodology and models used by Biemer and

Bushery in their analysis and describe the application of -

their methodology for the present purposes. In section 4 we
present the results of our analysis and what they suggest
regarding the source of the classification error in the new
questionnaire. Finally, section 5 provides a summary of the
key findings and our conclusions from the study.

2. DATA AND CONCEPTS

2.1 The Data Sets for Our Study

Except for the Parallel Survey, the CPS data in our
analysis were downloaded from the National Bureau of
Economic Research (NBER) website (www.nber.org). This
website contains microdata for the CPS for every month
from January 1976 through December 2004. The MLCA
approach was applied directly to these microdata without
the need for supplementary data or data external to the CPS.

In the preliminary analysis, we investigated the CPS
classification accuracy for a six-year period: January 1992
throngh December 1997. That analysis was aimed at
determining whether the anomaly first noted in Biemer and
Bushery (2000) is a transient phenomenon affecting only the
months immediately following the introduction of the new
questionnaire or whether it persisted for some years after the
new questionnaire was introduced. If temporary or transient,
the anomaly might be related to problems during the phase-
in of the new design; for example, interviewer training or
issues related to the startup of data collection. However,
evidence of a persistent, continuing effect could suggest
problems with the survey design; for example, the question-
naire, interviewing procedures, or the recoding algorithm.

By applying MLCA across all months from 1992
through 1997 we determined that, although the magnitude
of the reduction in accuracy vartes somewhat from month to
month, it does indeed persist for all months following the
introduction of the revised questionnaire. The results
confirmed Biemer and Bushery's conjecture of a systemic
effect possibly linked to the new unemployment questions
introduced in January 1994,

Due to space considerations, in this paper we preseni
results from a somewhat shorter time frame than considered
in the preliminary analysis, viz., the years 1992, 1993, 1994,
and 1995. This time period covers two years of the CPS
using the original questionnaire and two years using the
revised questionnaire. In addition, we will also present some
results from an MLCA of the 1993 Parallel Survey data that
can be compared with results from the main CPS.

129

The data sets in our study are quite large. Each estimate
of classification error we obtain is based upon all house-
holds that were interviewed in the CPS for three consecutive
months. Across the four years in our analysis, the total
number of households responding for all three months in
any three-month period varies from about 37,000 to more
than 40,000. For the 1993 Parallel Survey, the number of
households satisfying this criterion is approximately 10,000,
The estimates we produce are appropriately weighted for
probabilities of selection and other post-survey adjustments
and, therefore, reflect the response probabilities of the
published CPS estimates. Weights were constructed by
taking an average weight across the three consecutive
months that were combined to form a longitudinal record
for the analysis (unweighted analyses were also conducted
and the results were very similar to the weighted analysis.
This suggests the choice of weights has little effect on the
study outcomes).

Because of a problem in the identification variables
required for linking households for the months June 1995
though December 1995, it was not possible to include these
months in our analysis. Further, since our conclusions
would not change by including data from the 1996 or later
vears of the CPS, we confine our analysis to 15 months
prior and 15 months following the introduction of the
revised questionnaire. Thus, for most of the analysis to
follow, we will provide averages of estimates from August
1992 through December 1993 for the original questionnaire
and from January 1994 through May 1995 for the revised
questionnaire (note that since our estimates are based upon a
moving average of three consecutive months, seasonal
variations in the labor rates and transitions probabilities are
accounted for in the estimates of classification error).

2.2 Labor Force Concepts

The revised CPS questionnaire was introduced in 1994 to
improve the overall quality of labor market information
through extensive question changes and through the use of
computer technology in the data collection. In the following,
we describe a few concepts that were affected by the
questionnaire redesign and that are relevant. for the current
analysis.

Employed. The labor force questions in the original
questionnaire began with the question “What were you
doing most of LAST WEEK (working, keeping house,
going to school, or something else)?” Interviewers were
allowed to modify the parenthetical part of this question
according to the age of the respondent, In some cases, the
word “work” or “working” was not part of the question. As
an example, if the respendent looked of student-age, the
interviewer was allowed to leave out the word “working.”
The revised questionnaire replaced this question with two
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questions: “Does anyone in this household have a business
or a farm?” and “LAST WEEK, did you do ANY work for
(either) pay (or profit)?” where the parenthetical parts of the
question are read if anyone in the response to the first
question is “yes.” Further, additional questions were added
to clarify whether earnings or profits were received from the
family business or farm. Thus, the revised questionnaire
concept of employment appears to be somewhat broader
and better defined than the original questionnaire concept.

Unemployed. The definition of unemployment was
slightly modified in the revised questionnaire. In the original
questionnaire, persons waiting for a new job to start were
classified as unemployed. Under the revised questionnaire
definition, a person is unemploved only if all of the
following are true: (1) without a job, (2) actively seeking
work or on layoff from a job and expecting recall within the
next six months, and (3) currently available to take a job
{except for a possible temporary illness).

On Layoff. Persons on layoff are defined as persons
separated from a job and who are awaiting a recall to return
to that job. The original questionnaire did not consider or
collect information on the expectation of recall. This was
problematic because to most people, the term “layoft” could
mean permanent termination from the job rather than the
temporary loss of work economists are trying to measure,

Job Search Methods. To be counted as unemployed and
looking for work, a person must have engaged in an active
job search during the four weeks prior to the survey. The
revised questionnaire includes a somewhat broader question
about job search methods with expanded and restructured
response categories to allow interviewers to more easily
record and distingnish between active and passive job
search activities. In addition, it provides additional followup
questions for those who respond “nothing” or “don’t know.”

Reference Week. While the original questionnaire
referred to LAST WEEK, the reference period was never

explicitly defined. The revised questionnaire provides
specific dates of the reference week.

We will refer to these changes later in the report when
we discuss the differences in the classification error and
specification emor between the revised and original
questionnaires.

As previously noted, Biemer and Bushery focused on a
three-category labor force recoded variable with categories:
employed (EMP), unemployed (UEM), and not in the labor
force (NLF). For the present analysis, we used an expanded
recoded variable also available on the CPS public use data
files. This variable divides the UEM category into two
categories corresponding to persons on layoft (LAYOFF)
and persons looking for work (LOOKING). The seven-
category variable also divides the EMP and NLF categories
into subcategories; however, this level of detail in the EMP
and NLF categories is not needed in our analysis. Thus, the
seven-category variable will be collapsed to a four-category
variable comresponding to EMP, UEM-LOOKING, UEM-
LAYOFF, and NLF. The comespondence between the
three- and four- category variables is shown in Figure 1.

3. LATENT CLASS MODELS FOR CPS
CLASSIFICATION ERROR

Markov latent class models were first proposed by
Wiggins (1973} and refined by Poulsen (1982). Van de Pol
and de Leeuw (1986) established conditions under which
the model is identifiable and gave other conditions of
estimability of the model parameters. In this section we
describe the basic model proposed by Biemer and Bushery
(2000) and its extensions for application in the current
analysis.

Let the CPS target population be divided into L groups
(such as age, race, or sex groups) and let the variable G be
the label for group membership. For example, G, =1 if the

Original Seven-Variable Category Four-Category Three-
Old Questionnaire New Questionnaire Analysis Variable Category
Analysis
Variable
1. Working—at work l. Employed—at work ] 1. EMP 1. EMP
2. With job—not at work 2. Employed —absent
3. Unemployed —on layoft 3. Unemployed—on layoff 2. UEM-LAYOFF 2. EM
4. Unemployed—looking for work' 4. Unemploved —locking 3.  UEM—LOOKING
5. Working without pay (less than 15 hoursina 5. Retired—not in labor force 4. NLF 3, NLF
family farm or business} or temporarily
absent from a without pay job
6. Unavailable to take a job if one had been 6. Disabled —not in labor force
offered
7. Not in the labor force 7. Other—not in labor force

! Note: In the original questionnaire, categories 3 and 4 are reversed compare to corresponding categories in the revised

questionnaire.

Figure 1. Association of the Seven-Category Employment Recode Variable with the Three- and Four-Category Variables

Used in the Analysis



Survey Methodology, December 2004

i population member is in group 1, G; =2 for group 2 and
soon Let X .Y, and Z, denote the true labor force

gi*t g
classifications for the ' person in group G=g (for

g=L...,Land i=1,...,n,) where X is defined as

1 if person {g,f}is employed in time period 1
2 if persen (g,{) is unemployed —

on layoff in time period |
3 if person (g,{)is unemployed —

looking in time period 1

4 if person (g,7)is not in the labor force

in time period 1

with analogous definitions for ¥, and Z, for periods 2
and 3 respectively. Consistent with the conventions of the
LCA literature, we will drop the subscripts from the
variables to simplify the notation.

Let m,,, denote P(X =x,Y=y,Z=2|G=3g), ket
M, denote Pr(Y=y|X=x,G=g)and let m,
denote Pr(Z=7z|Y =y, X =x,G=g). Then, the probabi-
lity that an individual in group g has labor status x in period
1, ¥ in period 2, and z in period 3 is © which may be
written as

ayzlg

Tavele = Talg Tl Ty )
Finally, under the first order Markov assumption, which is a
necessary condition for model identifiability (see Van de

Pol and de Leeuw 1986), we assume
Moy = Mgy @

i.e., at period 3, the true status of an individual does not
depend on the pericd | status, once the period 2 status is
known. An alternate interpretation is that the current status,
given the prior period’s status, does not depend upon the
prior period’s transition.

Now, consider the observed labor force classifications
from the CPS denoted by A,;, B,;,, and C,; for periods 1,
2, and 3, respectively, where

8i?

[ 1 if person (g,i)is classified as EMPin time
period 1

2 if person (g,#)is classified as UEM —
LAYOFFin time period 1

3 if person (g,i)is classified as UEM —
LOOKING ir time period 1

4 if person (g,{) is classified as NLF in

B

time period 1
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with analogous definitions for the response indicators, B,
and C, for periods 2 and 3, respectively. Using an
extension of the notation established above, we denote the
response probabilities in each of these classifications as
Waer =Pr(A=a| X =Xx), with analogous definitions for
My, and m,, . Thus, 7, ., is the probability that the
CPS classifies a person in group g as employed (A=1)
when the true status is unemployed — on layoff (X =2).
Likewise, m,_5, ., is the probability that the CPS correctly
classifies a person in group g as unemployed — on layoff.

Finally, we assume

Mabdgaryz = Fagr Nilgy Mgz A3)
or that classification error in the observed labor force status
is independent across the three months.

The CPS labor force classifications for each month of a
three consecutive month interval are the outcome variables
in our analysis. Let A, B, and C denote the observed
classifications and let X, ¥, and Z denote the (unobserved)
true classifications for Month 1, Month 2, and Month 3,
respectively. Let & denote some grouping (or stratification)
variable to be defined later in the analysis. Under these
assumptions, we can write the probability for classifying a
CPS sample member in cell (g, a, b, ¢} of the GABC table as
follows:

T gabe = E Ty Mgy T plex Toley Talgr Tpfgy Wefge- (4
¥z

Extensions to more than one grouping variable are
straightforward.

Under multinomial sampling, the likelihood function for
the GABC table is

P(GABC)=C [] == (5)

g.abe
g.a.b.e

where C is the multinomial constant and I1 denotes the
product of the terms over the subscripts g, a, b, and ¢. Under
the assumptions made previously, the model parameters are
estimable using maximum likelihood estimation methods.
Van de Pol and de Leeuw (1986) provide the formula for
applying the E-M algorithm to estimate the parameters of
this model and describe the conditions for their estimability.
The ¢EM software (Vermunt 1997) was used to fit the
MLCA models.

In their investigations of the validity of MLCA estimates
for analyzing CPS labor force classification error, Biemer
and Bushery analyzed CPS data collect during the first
quarter of each of three years — 1993, 1995, and 1996. They
also conducted several types of analysis using the CPS un-
reconciled reinterview data for the same time period. The
reinterview analysis provided another approach for
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estimating CPS classification error as well as evidence of
the validity of the MLCA approach. Their evaluation of
MLCA validity considered five criteria: (1) model diag-
nostics, (2) model goodness of fit across years of CPS, (3)
agreement between the model and test-retest estimates of
respanse probabilities, (4) agreement between the model
and test-retest estimates of inconsistency, and (5) plausi-
bility of the patterns of classification error. The MLCA
method performed well in all five test. For example, the
same model provided the best fit of the data for each year
analyzed, there was good agreement between the latent class
estimates of reliability and those derived from traditional
test-retest methodology; and the estimated error rates were
consistent with those of previous studies — for e.g., Chua
and Fuller 1987, Abowd and Zellner 1985; Porterba and
Summers 1995; and Sinclair and Gastwirth 1998,

Ostensibly, the Markov assumption seems very unlikely
to hold for labor force data. As an example, persons who are
unemployed in months.1 and 2 of a consecutive three-
month period may not have the same probability of being
unemployed in a month 3 as persons who just became
unemployed in month 2. The former group could contain
more chronically unemployed persons than the group
entering unemployment in month 2. Further, the group just
entering unemployment in month 2 could contain a higher
proportion of people temporarily out of work while
changing jobs. Biemer and Bushery considered the
consequences for the MLCA estimates of misclassification
when the Markov assumption is violated.

Using simulation, Biemer and Bushery found that the
bias in MLCA estimates of classification probabilities
depends upon the severity of the departures of the CPS data
from the Markov assumption. They defined two parameters,
A, and A,, which are ratios of conditional probabilities. A,
is the ratio of the probability of being employed in period 3
for a person with an (EMP, UEM) pattern for periods 1 and
2, respectively, divided by the probability of being
employed in period 3 for a person with a (EMP, EMP)
pattern. Similarly, A, is the ratio of the probability being
employed in period 3 for a person with an (UEM, UEM)
pattemn to the probability of being employed in period 3 for
a person with a (EMP, UEM) pattern. Note that when
A, =4, =1 the Markov assumption holds exactly and
greater departures of &, and A, from 1 correspond to
greater departures of the data from the Markov assumption,
Biemer and Bushery found that over a fairly wide range of
values for A, and A,, the absolute bias in the MLCA
estimates of unemployment classification accuracy never
exceeded 3 percentage points. For example, in the extreme
case of a Markov assumption violation, the expected value
of an MLCA estimate of unemployment accuracy would be
77 percent when the true parameter value is 80 percent.

Biemer: An Analysis of Classification Error for the Revised Current Population Survey Employment Questions

Their results suggest that, for the CPS application, MLCA is
fairly robust to failures of the Markov assumption to hold.

Although it is virtually impossible to prove their validity,
MLCA error estimates can be quile useful for identifying
survey questions that are prone to classification error; ie.,
flawed questions. For example, Biemer (2004) and Biemer
and Wiesen (2002) demonstrate the utility of MLCA
methodology for identifying question problems and
classification process deficiencies in large scale surveys.
Notwithstanding that the MLCA assumptions may be
violated to an unknown extent, its usefulness as a tool for
exploring a number of important questionnaire design issues
has been well-documented. For the present application,
MLCA will be used to develop and test hypotheses
regarding the sources of the anomaly reported by Biemer
and Bushery for 1994 CPS redesign.

The MLCA model use in the present analysis is
essentially the same model selected by Biemer and Bushery
for their analysis. To account for population heterogeneity,
they considered a number of demographic and other
explanatory variables that might be highly correlated with
classification error. The best performing variable a proxy or
self-response indicator variable dencted by P where

1 if all three interviews ar¢ conducted by self
response (SELF)

2 if two of the interviews are conducted by
self response (MOSTLY SELF)

3 if two of the interviews are conducted by
proxy response (MOSTLY PROXY)

4 if allthree interviews are conducted by

L proxy response (PROXY).

Their empirical findings showed this variable to be strongly
related not only to reporting accuracy, but also current
employment status and month to month employment
transitions. For example, responses for the PROXY group
were considerably less accurate than for the SELF group
and, further, the PROXY group had somewhat higher
unemployment than the SELF group.

The MLCA model also allows transition probabilities to
vary by P (referred to as group heterogeneity) as well as by
time periods (referred to as non-stationary transitions). In
addition, the model assumes that response probabilities
Tgors Mypes and 7y, are group-heterogeneous but are
equal for all three months in the time interval. This leads to
the following model for describing the cell probabilities in
the PABC table:

AlPX _APX _AlPX (6)

Rpabe = an Tp Tl ooy Rafpx Tolpy Toipe
X2
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where njt¥ =Pr(A=b|P=p,X = y) with similar defini-
tions for nﬂ;f and 11:3‘;" . That is, the three sets of response
probabilities are equal to 4 .

Note that for the present analysis, interest is focused on
the overall response probabilities associated with the revised
and original questionnaires and net the variation in error
rates across proxy groups. Therefore, our analysis focuses
on the overall accuracy of response, i.e., nj,‘llf or the mean

response probability for the four levels of P combined.

4. COMPARISON OF REVISED AND ORIGINAL
QUESTIONNAIRE CLASSIFICATION ERROR
PROBABILITIES

4.1 Reduction in UEM Classification Accuracy for
the Revised Questionnaire

As mentioned in section 2, the CPS data sets for this
analysis are monthly samples from August 1992 through
May 1995. Figure 2 shows how this the time interval was
divided into 30 overlapping three-month intervals: 15 for
the original questionnaire and 15 for the revised question-
naire. The intervals are numbered in the table for later
reference. For example, time interval 1 covers the period
from August 1992 through October 1992 in which the
original questionnaire was in use. Therefore, this time
interval can provide one estimate of the response
probabilitis, 7% . for the model in (6). Since there are 30
time intervals across the entire 34—month period in our
analysis, 30 estimates of ¥ can be formed from these
consecutive overlapping time intervals: 15 estimates for the
original questionnaire and 15 estimates for the revised
questionnaire.

To obtain a more stable estimate of n’" for each
questionnaire, the 15 estimates corresponding to the 15 time
periods per questionnaire in Figure 2 were averaged. These
estimales are shown in Tables 1 and 2. Since they are based
on simple random sampling assumptions, the standard
errors in the tables do not account for the unequal weighting
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and clustering effects of the CPS. Since the average CPS
design effect is about 1.5 for estimates of unemployment,
the standard errors in the tables are probably understated by
20 percent or less. This level of bias in the standard errors is
inconsequential for the purposes of this paper due to the
extremely large sample sizes in the analysis.

Table 1 compares the MLCA estimates of the classifica-
tion error probabilities for the original and revised question-
naire versions for the three-category labor force classify-
cation scheme used by Biemer and Bushery. The first
column of the table is the true (or latent) category, the
second column is the observed (or CPS) category, and the
cell entries are the response probabilities estimated from the
MLCA using model {6}. For each true class (EMP, UEM, or
NLE), the accuracy rate is the cell corresponding to the
observed category with the same label. For example, the
accuracy of classifying persons who are truly employed is
98.68 percent (for the original questionnaire) and 98.84
percent for the revised questionnaire, Note that this entry
corresponds to the celt where both the true category and the
observed category are EMP. The other cells for EMP in
column 1 are the error rates for EMP. For example, the
MLCA estimate of the probability CPS classifies a person
as UEM who is truly EMP is 042 for the original
questionnaire and (.39 for the revised questionnaire. The
other cell entries are interpreted analogously.

Consistent with Biemer and Bushery’s findings, the
accuracy of the classification of unemployed persons is
substantially and highly significantly lower for the revised
questionnaire: 79.06 percent versus 73.50 percent, a
difference of 5.6 percentage points. Further, the increase in
classification error for unemployed persons is due to
misclassifications in both the EMP and NLF force
categories with slightly more misclassification in the latter
category. Our estimates differ slightly from theirs since, as
noted carlier, we are analyzing more months of data and
using weighted estimates rather than unweighted as in their
analysis.

Months Using Old Aug. Sept. Oct. Nov. Dec. Jan. ..'  Aug. Sept. Oct Nov.  Dec
Questionnaire 1992 1992 1992 1992 1992 1993 1993 1993 1993 1993 1993
Month Using New Jan. Feb. March Apr., May June ..7 Jan. Feb. March Apr. May
Questionnaire 1994 1994 1994 1994 1994 1994 1995 1995 1995 1995 1995
Interval

L (Old}), 16 (New) X X X

2 (OId), 17 (New) X X X

3 (Old), 18 (New) X X X

4 (Pld), 19 (New) X X X .

13 (Old), 28 (New) X X X

14 (Old), 29 (New) X X X

15 (Old), 30 (New) X X X

" The ““...” symbol is used in this table to indicate that the pattem established for the preceding months continues for the remaining months.
Figure 2. The 30 Three-Month Time Intervals Analyzed for the Revised and Original Questionnaires
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Table 1
Comparisen of CPS Labor Force Response Probabilities for the Original and Revised Questionnaires

True Class Observed QOriginal Revised Original — Revised
Class (1992-1993)  (1994—1995) Diff SE.
EMP EMP 93 .68 98 .84 —0.15 0.40
UEM 0.42 0.39 0.03 0.40
NLF 0.90 0.78 0.13 0.16
UEM EMP 823 10.57 -234 045
UEM 79.06 73.50 5.56" 0.54
NLF 12.71 15.93 -3.32 0.26
NLF EMP 2.14 1.99 0.15 0.36
UEM 1.43 1.56 -0.13 0.33
NLF 96.43 96.45 -0.02 0.13
* Significant at a = 0.001.
Table 2

Comparison of Two Unemployed Subcategories for the Original and Revised Questionnaires

True Class Observed Class Original Revised Original — Revised
(1992—-1993)  (1994—1995) Diff S.E.
UEM—-LAYOFF EMP 16.32 26.67 -10.35 0.91
UEM - Layoff 61.30 55.63 5.66° 1.03
UEM - Locking 17.61 841 9.20" 0.45
NLF 4717 9.29 -4.52" 0.28
UEM-LOOKING EMP 7.03 7.51 048 0.29
UEM - Layoff 1.03 0.65 038 0.26
UEM — Lookling 78.00 74.61 3.397 0.21
NLF 13.94 17.23 -3.29" 0.18

* Significant at ¢ = 0.001.

Table 2 shows the same set of estimates for the truly
employed population only in somewhat greater detail. In
this table, we considered the two primary subclassifications
of unemployed: UEM-LAYOFF and UEM-LOOKING.
This table provides information regarding the source
difference in accuracy rates between the two questionnaire
versions. We first consider the misclassification of true
LAYOFF persons (top half of the table) and then consider
the LOOKING persons {bottom half of the table).

For persons on layoff, classification accuracy appears to
have dropped an average of 5.66 percentage points with the
introduction of the revised questionnaire; from 61.30
percent to 55.63 percent. However, the pattemns of classify-
cation error also changed. For the original questionnaire, the
probability that a person on layoff is misclassified as
looking for work is estimated at about 18 percent. The
corresponding estimate for the revised questionnaire is less
than half that: 8.5 percent. In addition, the data suggests that
misclassification of unemployed persons on layoff as either
employed or not in the labor force increased by 10.35 and
4.52 percentage points, respectively.

Now consider persons who are truly looking for work in
the bottom half of Table 2. According to the MLCA model,
classification accuracy for the redesigned CPS decreased
significantly from 78.00 to 74.61 percent. Most of the
misclassification is attributed t0 misclassifying persons

looking for work as NLF. This result would arise, for
example, if the questions regarding active and passive job
search activities are prone o error. To further investigate
this finding, we conducted an analysis of each of the
questions used to determined the LOOKING recode. In the
next section, we first consider the sources of error in the
LAYOFF classification and then investigate the sources of
error for the LOOKING classification.

4.2 Specific Questions Responsible for the
Reduction in LAYOFF Accuracy

4.2.1 Decomposition of the LAYOFF Recode

Individuals in the CPS are classified as LAYOFF on the
basis of their responses to five questions in the original
questionnaire and eight questions in the revised question-
naire. These questions are listed in Figure 3. Initially, we
consider which questions or combinations of questions
contribute most to the error rate observed in Table 2 for the
LAYOFF recoded variable and then show how MLCA
models can be applied to estimate the contributions to
classification error of individual questions that are used to
classify an individual as LAYOFF. The methodology
employed for this is similar to the MLCA approach used
previously for estimating the aggregate classification error.
We will describe this technique in terms of the LAYOFF
classification, but it will be applied subsequently to
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decompose the error in both the LAYOFF and LOOKING
classification processes.

First, we combine the questions in Figure 3 using the
logical operators such as “and,” “or,” “if-then-else,” etc. to
form a set of dichotomous “compound” questions with the
property that each compound question must be answered
positively in order for an individual to be classified as
LAYOFF by the CPS classification process. Let
O, k=1,...,K denote the outcomes to the K compound
questions that were formed for the LAYOFF classification,
where (, =1 denotes a positive outcome and Q, =2
denotes a negative outcome. Then an individual in the CPS
is classified as LAYOFF if and only if Q, =1 for
k=1,...,K. In Figure 4, we define a set of four compound
questions for original questionnaire, labeled O1-04, and
five compound questions for the revised questionnaire,
labeled N1-NS5,

For each classification, (O, there is a corresponding true,
unobservable (latent) classification, 7, defined in analogy
10 @,; ie., an individual is truly on layoff by the CPS
definition if and only if 7, =1, k=1,...,K. Next, we will
use MLCA to estimate the misclassification error rates for
each compound question @, by treating these as indicators
for the unknown true latent characteristics, T,.

The probability of an error in the classification of
LAYOQFF can be written as

Pr(Q, =2forsome k. k=1,....K|T, =1, k=1...,K) (7)

which is the probability that an individual who is truly on
layoff answers at least one the K compound questions
negatively.

Next, we define the latent variable, W, as the number of
compound questions for which the true response is positive,
ie,
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0 if T,=2,T,=2,..Tg =2
W= if T,=1,T,=2,..T¢=2 (8
e,
K if 7,=LT,=1,..,T, =1

For example, W =0 if a person’s true response pattern to
the questions O1-04 is (2,2,2,2), W =1 if the true response
pattern is (1,2,2,2), and so on. Note that W=K
corresponds to a true layoff. Thus, for the originai
questionnaire, W =0,...,4 and for the revised
questionnaire, W =0, ..., 5.

To decomposing the probability in (7) into individual
components for the compound question, @,, we rewrite (7)
in terms of the error probabilities associated with each
compound question. Thus, it can be shown that (7) can be
rewritten as

K
> PO =1,...,0,, =LO, =2|W=K). (9

k=1

The k" term in the sum may be interpreted as the
contribution of question {, to probability of being
misclassified given a true LAYOFF.

To estimate the components of (9) using MLCA, we
define a classification variable, R, which is defined in
analogy to W for the observed values of Q,,; ie.,

0 if 0,=20,=2...0 =2
1
R= if 0 =1,0,=2..0, =2 (10)

...elc...
K if Q=1,0,=1.,0 =

Original Question Wording

Questionnaire

Q19 What were you doing most of LAST WEEK?

Q20 Did you do any work at all LAST WEEK not counting work around the house?

Q21 Did you have a job or business from which you were temporarily absent or on layvoff LAST WEEK?

Q21A Why were you absent from work LAST WEEK?

Q22E Could you have taken a job LAST WEEK if one had been offered?

Revised

Questionnaire

Q20 LAST WEEK, did you do ANY work (either) for pay (or profit)?

Q20B-a LAST WEEK, (in addition to the business,} did you have a job, either full or part time? Include any job from which you
were temporarily absent.

Q20B-b LAST WEEK, were you on layoff from a job?

Q20B-1 ‘What was the main reason vou were absent from work LAST WEEK?

Q2 Has you emiplover given you a date to retumn to work?

Q21A Have you been given any indication that you will be recalled 1o work within the next 6 months?

Q21A-1 Could you have reumned to work LAST WEEK if you had been recalled?

Q21A-2 Why is that?

Figure 3. Primary Components of UEM for the Original and Revised Questionnaires
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Compound | Source Question(s) from the CPS Questionnaire Compound Question Response is Positive
Question if Source Question Response is....
Number

Original Questionnaire

01 Q19: What were you doing most of LAST WEEK? QI19: Any response except working

or and
Q20: Did you do any work at all LAST WEEK not counting work aoumd Q20: No
the house?

02 Q21: Did you have a job or business from which you were temporarily Yes

absent or on layoff LAST WEEK?

03 Q21A: Why were you absent from work LAST WEEK? Temporary layoff (Under 30 days) or
Indefinite layoff (30 days or more or no
definite recall date)

Od Q22E: Could you have taken a job LAST WEEK if one had been offered? Yes

Revised Questionnaire

N1 Q20: LAST WEEK, did you do ANY work (either) for pay (opr profit)? No

N2 Q20B-a: LAST WEEK, (in addition te the business,) did you have a job, Any response except “‘retired,” “disabled”,

either full or part time? Include any job from which you were temporarily or “unable to work”
absent.
N3 Q20B-a: LAST WEEK, were you on layoff from a job? Q20B-b: Yes
or Or
(Q20B-1: What was the main reason you were absent from work LAST Q20B-1: “On layoff'” or ““slack
WEEK? work/business conditions”
N4 (Q21: Has your employer given you a date to return to work? Q21: Yes
or or
Q21 A: Have you been given any indication that you will be recalled to work | Q21: No and
within the next 6 months? Q21A: Yes
NS Q21A-1: Could you have returmed to work LAST WEEK if you had been Q21A-1: Yes
recalled? or
or Q21A-1: Noand
Q21 A-2: Why is that? Q21A-2: Own temporary illness

Figure 4. Compound Questions Used in the LAYOFF Recode for Original and Revised Questionnaire Versions

Let mf)y denote Pr(R=k|W =K). Then for k>0 we
may write

af¥ =Pr(Q, =1,....Q,., =1.Q, =2|W=K). (11)

Thus, the contributions to error of each LAYOFF question
can be obtained from the probabilities in (11).

To estimate the probabilities 7 we fit MLCA models
to the same data from the 1993 and 1994 CPS as used in the
previous analysis and replicated the analysis on the 1993
parallel survey data. Data from the 1992 and 1995 CPS
were not part of this analysis. The MLCA models used were
similar to those described in the analysis for Tables 1 and 2.
That is, we used three consecutive months of data and
estimated the components in (10} for 10 consecutive,
overlapping intervals for each year (i.e., January—March,
February—April, and so on to October—December). For the
original questionnaire, the model specified three latent
variables corresponding to the three months within a time
period, each with K +1=35 latent classes. For the revised
guestionnaire, we use an identical model except each latent
variable had K +1=6 latent classes,

As before, the best MLCA model for this analysis
incorporated the proxy-self grouping variable, P, and
specified non-stationary  transitions, equal response

probabilitics within time period, group heterogencous
transition probabilities, and heterogeneous response proba-
bilities. The model provides an adequate fit to the data for
all months in the analysis (i.e., p > 0.05).

Table 3 provides a summary of the results from this
analysis. In the column labeled “percent of total” we report
P ¥ 100 percent where

klK (12)

is the proportion of the classification error due to compound
question k in Figure 4 and where #f are the MLCA
estimates of [y .

The contribution to total error presented in Table 3
{(Percent of Total column) is estimated by p, X
Pr(A#2|X =2) where p, is given by (12) and
Pr(A=2| X =2) is estimated from Table 2 as 1 minus the
accuracy rate for LAYOFF. For the original questionnaire,
the components that contribute most to LAYOFF
classification emor are question O2 (64.2 percent) and
question O1 (27.2 percent). These two questions taken
together explain more than 90 percent of the error in the
LAYOFF classification.
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For the revised questionnaire, estimates from the 1994
CPS indicate that more than 90 percent of the error in the
LAYOFF classification arises from two components: NI
and N4.

The analysis for the revised questionnaire was repeated
on the Parallel Survey with very similar results. The same
two components emerge as contributing more than 90
percent of the error. As mentioned in section 2, the utility of
the 1993 Parallel Survey as an indicator of data quality for
the revised questionnaire is in doubt. Nevertheless, the
agreement of the results from the Parallel Survey and the
1994 CPS adds strength to the findings from the 1994 CPS
analysis

Thus, reduction in LAYOFF classification accuracy for
the revised questionnaire appears to be due primarily to
error in the responses to two compound questions: N1, the
revised global question “LAST WEEK, did you do ANY
work (either) for pay (or profit)?” and N4, which determines
whether an individual reporting some type of layoff has a
date or indication of a date to return to work. The MLCA
estimates indicate that aimost 60 percent of the error in the
revised LAYOFF classification maybe attributed to N1
while about 34 percent may be attributed to N4.

4.2.2 Decomposition of the LOOKING Recode

The estimation process described for LAYOFF was also
applied to the LOOKING recode. Note that compound
question O1, 02, N1, and N2 defined in Figure 5 for
LOOKING are the same questions as defined in Figure 4 for
LAYOFF. Since Ol, 02, and N1 appeared to be
problematic for LAYOFF, we might expect that they might
also be problematic for LOOKING.

Following the approach used for LAYOFF, for each
survey year, we defined a latent variable, W in (8) and an
indicator variable, R in (9). As we did in the LAYOFF
analysis, we fit MLCA models to the data and determined
that the best MLCA model for the analysis is the model
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incorporating the proxy-scif grouping variable, P, and
specifying non-stationary transitions, equal response proba-
bilities within time period, group heterogeneous transition
probabilities, and heterogeneous response probabilities. This
model provides an adequate fit to the data for all months in
the analysis (i.e., p > 0.05). As before, we include the results
from the Parallel Survey for comparison with the 1994 CPS
results; however, the latter results will be emphasized.

Table 4 displays the values of p, defined in (11) for the
LOOKING classification. For the original questionnaire, the
major contributors to classification error appear to be
questions Ol and O3, which contribute 31.5 and 56.3
percent of total classification error, respectively. Question
02, which was quite problematic for the LAYOFF popu-
lation, appears less so for the LOOKING population. While
it contributes 64.2 percent of the LAYOFF error estimate
(or 24.8 percentage points to the error rate), O2 only
contributes 11.3 percent of the LOOKING error estimate (or
2.5 percentage points to the error rate).

For the revised questionnaire, the results from the
analysis of the Parallel Survey and the 1994 CPS are again
quite similar. The component N1 appears to be an important
source of error for LOOKING as it was for the LAYOFF
analysis. However, its contribution to LOOKING is smaller:
10 percentage points compared with 25 percentage points
for LAYOFF. The biggest contributor to LOOKING etror
seems to be question N3 which contributes 64.5 percent of
the error based on the CCO analysis and 51.1 percent based
on the 1994 CPS analysis.

Thus, the initial labor force question appears to be
problematic for both questionnaire versions. The MLCA
suggesls that persons who are looking for work as well as
persons who are on layoff experience some difficulty
responding to the question “LAST WEEK, did you do ANY
work (either) for pay (or profit)?”’. The changes made to this
question in 1994 do not appear to have improved the
accuracy of this question for the either population.

Table 3
Percent Contributions to Error in LAYOFF Classifications for Compound Questions for the 1993 CPS, Parallel Survey,
and the 1994 CPS

Question 1993 CPS Parallel Survey 1994 CPS (Revised Version)
{Original Version) {Revised Version)
0ld Questionnaire Ermror Rate Percent of Total ~ Error Rate Percent of Total ~ Error Rate Percent of Total
Ol 1053 27.20 - - - -
02 24.84 64.19 - - - -
3 2.35 6.08 - - - -
o4 0.67 1.74 - - - -
New Questionnaire
N1 - - 23.19 52.26 25.34 57.12
N2 - - 0.00 0.00 0.00 0.00
N3 - - 276 6.22 3.06 6.90
N4 - - 18.42 41.52 15.07 33.98
N5 - - 0.00 0.00 0.89 2.00
Total 38.39 100.00 44.37 100.00 44.37 100.00
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Table 4
Percent Contributions to Error in LOOKING Classifications by Compound Questions for the 1993 CPS, Parallel Survey,
and the 1994 CPS

Question 1993 CPS Parallel Survey 1994 CPS (Revised Version)
{Original Version) {Revised Version)
Old Questionnaire Error Rate Percent of Total Error Rate Percent of Total Error Rate Percent of Total
0Ol 6.93 3151 - - - -
02 249 11.34 - - - -
03 12.39 56.33 - - - -
04 0.18 0.83 - - - -
New Questionnaire
N1 - - 8.38 33.00 10.00 39.40
N2 - - 0.00 0.00 0.00 0.00
N3 - - 16.38 64.5 12.97 51.08
N4 - - 046 1.81 2,27 8.96
N5 0.18 0.71 0.14 0.56
Total 22.00 100.00 25.39 100.00 25.39 100.00
Compound | Source Question(s) from the CPS Questionnaire Compound Question Response is Positive
Question if Source Question Response is....
Nuinber
0ld Questionnaire
01 Q19: What were you doing most of LAST WEEK? QI19: Any response except working
or and
Q20: Did you do any work at all LAST WEEK not counting work aournd Q20: No
the house?
02 Q21: Did you have a job or business from which you were temporarily No
absent or on Jayoft LAST WEEK?
03 Q22: Has ... been looking for work during the past 4 weeks? Q22: Yes or response to 19 was LK
and (LOOKING)
(Q22A: What has ... been doing in the last 4 weeks to find work? and
Q22A; Response other than *“nothing”™
04 Q22E: Could ...have taken a job 1.LAST WEEK if one had been offered? Yesor

No, and reason is “ Already has job” or
“Qwn temporary illness”

New Questionnaire
N1 Q20: LAST WEEK, did you do ANY work (either) for pay (opr profit)? Q20: No
N2 Q20B-a: LAST WEEK, (in addition to the business,) did you have a job, (20B-a:No'
cither full or part time? Include any job from which you were temporarily
absent.
N3 22: Have you been doing anything to find work during the last 4 weeks? Yes
N4 Q22A: What are all the things you have done to find work during the last 4 Mention of at least | active activity.
weeks?
Or
Q22A-DK: You said you have been trying to find work. How did you go
about looking? And
Q22A-DK1: Can you tell me more about what you did to search for work?
N5 LAST WEEK, could you have started a job if one had been offered? Yes

Note: Inafew cases, N2 was positive if response to Q20B-a was “Disabled”” or “Unable” and response to Q20A-1: “Does you disability
prevent you from accepting any kind of work during the next six months?” was “No”.

Figure 5. Compound Questions Used in the LOOKING Recode for Original and Revised Questionnaire Versions

The key difficulty for the LOOKING category appears to : 5. CONCLUSIONS
be determining whether persons who are truly looking for
work have made efforts of any type (either passive or Biemer and Bushery (2000) provides some evidence that

active) in the past four weeks to find work. If a respondent is ~ unemployment classification accuracy rates in the 1994 CPS
classified correctly as having made some effort, the next  redesign survey were smaller than for the original survey
step in the process — viz., determining whether the efforts  design used prior to 1994. This paper provides additional
satisfy the definition of active looking — is not problematic ~ evidence of their findings based upon a more extensive
according to the estimates in Table 4. analysis of CPS data from 1992 through 1994. Our results
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indicate that the probability of correctly classifying
unemployed persons decreased from 79.1 percent to 73.5
percent — a difference of 5.6 percentage points. We estimate
that roughly 60 percent of the reduction (3.4 percentage
points) is due to an increase in the classification error for
persons on layoff while the remainder (2.2 percentage
points) is due to an increase in the classification error for
persons looking for work.

For the revised questionnaire, both LAYOFF and the
LOOKING classifications are each based upon five
compound questions. For LAYOFF, two compound
questions emerged as being problematic. One is the initial
labor force question, which asks “LAST WEEK, did you do
ANY work (either) for pay (or profit}?” The contribution of
this component to LAYOFF misclassification is estimated
to be approximately 57 percent which is more than double
the corresponding rate for this question in the original
questionnaire. In addition, a large error rate is estimated for
the compound question formed by two questions: “Has your
employer given you a date to retumn to work?” and “Have
you been given any indication that you will be recalled to
work within the next 6 months?” Approximately 34 percent
of the estimated LAYOFF error rate is due to this combina-
tion. Since there are no corresponding questions in the
original questionnaire, most of the emor in classifying
persons on layoff in the revised questionnaire may be linked
to these two questions.

For classifying persons who are looking for work in the
redesigned survey, two questionnaire components appear to
contribute most to classification error: “LAST WEEK, did
you do ANY work (either) for pay (or profit}?” and “Have
you been doing anything to find work during the last 4
weeks?/What has...been doing in the last 4 weeks to find
work?” The error rates for both questions are slightly larger
for the revised questionnaire than for the original question-
naire. These increases, therefore, explain the slight increase
in LOOKING classification error observed for the revised
questionnaire.

The error in CPS unemployment classification is well-
documented; for example, see Chua and Fuller 1987;
Abowd and Zellner 1985; Porterba and Summers 1995; and
Sinclair and Gastwirth 1998. A widely accepted measure of
reliability for the CPS -~ wiz, index of inconsistency
computed CPS reinterview — shows the reliability of the
CPS unemployment classification decreased after the
redesign. Results provided in this paper are consistent with
these prior studies and help determine the source of the error
in the CPS classification of the unemployed. At a minimum,
our results provide a basis for further investigation into the
root causes of the errors in the collection of labor force data
in the CPS. Through cognitive laboratory experiments and
field experiments, we may identify causes of the error in the
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unemployment questions that would suggest ways to
improve the questions. Such improvements could be
implemented in a future redesign of the CPS.
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Comment

JEROEN K. VERMUNT '

1. INTRODUCTION

[ enjoyed very much reading this very well written paper.
The topic addressed by Paul Biemer — classification errors
in the measurement of employment status — is a very
important one. Employment statistics belong to the most
important macro-economic indicators and, actually, we
would wish they would be free of error. It, however, tums
out to be impossible 10 measure a person’s employment
without error. The best that can be done is design the data
collection in such a manner that the classification errors at
the individual level are minimized as much as possible. The
current paper contributes to this objective.

An earlier study by Biemer and Bushery (2000) indicated
that the 1993 changes in the measurement procedure that
intended to reduce classification errors actually increased
measurement error. In the current paper, Paul Biemer
replicates these former analyses with a longer time series
and with an extra employment category obtained by
splitting the unemployed group into “on layoff” and
“looking for work”, The reported results confirm the earlier
conclusions that the new procedure is worse than the old
procedure. In a second step, Biemer tries to disentangle the
sources of measurement error for the two unemployed
categories by modeling the separate questions that are used
to determine whether a person is “on layoff” and “looking
for work™, respectively. Sources of error are identified that
point at possible improvements in the questionnaire.

Because of my background, my commentary will mainly
concern methodological and statistical issues. More
precisely, I will discuss some methodological problem
related to application of the LC Markov model, as well as
indicate how the statistical analysis could be somewhat
refined. It is, however, not clear whether such a more
elegant modeling will yield very different conclusions. I
want to stress ones more that this is a great paper. My
critical remarks are only meant to stimulate the discussion.

2, LATENT CLASS MARKOV: METHODOLOGY

The main engine of the study performed by Paul Biemer
is the LC of hidden Markov model. Several assumptions
that may affect the encountered results have to be made

when - as in this study — the model is applied with a single
indicator per occasion. The assumption that is discussed in
detail by Biemer is the first-order Markov process
assumption. Simulation studies by Biemer and Bushery
showed that, fortunately, estimates of classification error are
not very sensitive to this assumption. Another assumption
that is needed here for model identification is that the
measurement error is constant over time. This assumption
does not seem to be very problematic in the current study
since we are looking for a single time-constant measure for
classification error, Moreover, there is no good reason to
assume that the quality of the measurement procedure
changed over time while the procedure itself did not change
(of course, apart from the questionnaire redesign). I am
much more concemed about the third assumption; that is,
the assumption of independent classification errors (ICE)
over time (Bassi, Hagenaars, Croon and Vermunt 2000). s
it realistic to assume that the occurrence of a certain type of
classification error at time point ¢ does not affect the
probability of making the same mistake at time point ¢ + 17
In my opinion, this assumption is not realistic in the current
application. For example, a respondent who makes a
mistake because (s)he did not understand one of the
questions will most probably (or at least be more likely than
others) make the same error again at the next occasion. In
my opinion, it is necessary to conduct a simulation study to
determine the sensitivity of the estimated classification
errors for violations of the ICE assumption.

I have another critical remark concerning the use of the
LC Markov model for quantifying measurement error in a
person’s employment state, According to the model, there is
a probabilistic relationship between an individual’s true and
observed states. What is, however, the true state”? Is it the
true employment state occupied at a particular time point, or
the state that would have been recorded with an error-free or
gold-standard instrument? Or is it the state a person would
have occupied under “normal conditions™? That is, if also
randomness in his/her behavior is filtered out.

[ will illustrate my point with a small example. Suppose
that there is two types {two latent segments) of coffee
consumers; consumers who prefer brand A and consumers
who prefer brand B, and that I belong to the brand B
segment, which means that under normal circumstances I
buy brand B coffee. In an interview, 1 am asked which

Jeroen K. Vermunt, Department of Methodology and Statistics, Tilburg University, The Netherlands.
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brand I bought last week. Suppose T report that T bought a
brand A package of coffee, and that am neither lying nor
making a mistake. In other words, there is no classification
error in the sense of making a mistake: I really bought brand
A this week (the researcher doesn’t know that of course).
On the other hand, my behavior from this week is
inconsistent with my preference, which means that in terms
of measurement of my preference there is a classification
error. This example illustrates that there are two types of
“errors” that can be made: an etror in the reporting and an
“error” in the behavior. The “error” in my behavior of this
week may have many causes, such as “brand B was sold
out”, “brand A was offered at a lower price this week”, “I
could not find the brand B package because of changes in
the arrangement of the supermarket”, ezc. The LC Markov
model is not able to distinguish such randomness in the
behavior that is uncorrelated across time points from real
classification etrors.

What does this imply for the employment application? It
implies that an individual’s true state may be “on layoft”,
but for some reason (by chance) this particular month {s)he
has worked. If this “some reason” is uncorrelated with other
“some reasons” for being in the “wrong™ observed state at
other occasions, it will be labeled classification error by the
LC Markov model. While in the case of the measurement of
preferences based on revealed (or stated) preferences
correcting for randomness in behavior seems to be exactly
what we wish to accomplish, this is clearly not the case in
the measurement of employment status. I, therefore, have
the strong feeling that the error rates reported by Biemer
might be somewhat overestimated because of randomness
in employment behavior, for instance, caused by random-
ness in the functioning of the labor market.

A well-known consequence of modeling individual
change by means of a LC Markov model is that the
estimated number of latent transitions is much smaller that
the corresponding observed numbers. The reason for this is
that both independent classification errors and independent
random behavior is filtered out; that is, part of the observed
change is attributed to these phenomena.

3. LATENT CLASS MARKOV: MODEL
SPECIFICATION

Paul Biemer estimated a separate three-occasion LC
Markov model for each of the 30 three—month data sets.
Interview mode was used as a grouping variable in order to
take into account some of the heterogeneity in the true
employment distributions and classification errors. The
reported error rates in the tables are averages over interview
modes and rotation groups.

I would have set up the model in a somewhat more
elegant and less ad hoc manner. Instead of munning a
separate analysis for each of the rotation groups, I would
have tried to build a simultancous model for all rotation
groups. The main problem of doing a series of separate
analyses is that parameters that should actually be equated
across rotation groups are now estimated without
constraints. For example, the employment distribution in
March 1994 should be the same in the rotation groups that
were interviewed between January and March, February and
April, and March and May, respectively. Moreover, the
transition probabilities between March and April should be
the same in the February—-April and March-May rotation
groups. This has also implications for the Parallel Survey
groups: their time-specific latent distributions and
transitions should be assumed to be equal to the ones of the
standard CPS. That would have been a much better manner
to test whether measurement error differ between the two
questionnaires. Especially for the period in which the
questionnaire forms overlap, it is crucial to assume equal
latent distributions in order to be able to prevent that
differences in measurement error appear partially as
differences in true states,

A similar problem of the separate analyses applies for the
estimation of the classification errors. These are assumed to
be time-constant within the 3-month period that a rotation
group is interviewed, but are allowed to differ across
rotation groups, even if they are interviewed in the same
month, It would, of course, be much better to impose
equality comstraints across rotation groups. A consistent
apphication of the time-homogeneity assumption would
imply that — both for the old and the new questionnaire form
— the measurement errors are constant within the full
investigation period.

What we, actually, need is a LC Markov model covering
all 30 months; that is, a model for 30 instead of 3 time
points. Such a simultanecus model for all rotation groups is
as easily specified as a model for 3 time points. Of course,
for each rotation group, only 3 of the 30 months are
observed, which means that the other time points have to be
treated as missing values. This is not a problem in the
maximum likelihood estimation of the model parameters
since we can simply assume that the data are missing at
random (Vermunt 1997). Questionnaire type (old/new)
serves as grouping variable (in addition to interview mode)
and affects the time-homogenous classification error
probabilities. In other words, we estimate only two sets of
classifications errors, one for the old and one for the new
questionnaire. Transition probabilities may change over
time, but will be equal across rotation groups interviewed at
the same occasions. Moreover, the initial state probabilities
of a rotation group are not estimated as separate parameters
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since they are defined by the current state of the latent
Markov chain.

A practical problem of the simultaneous modeling is that
with so many time points it no longer possible to estimate
the model parameters with the standard EM algorithm, With
a variant of EM called the Baum-Welch algorithm,
however, the model can also be applied with many fime
points (Vermunt 2003; Paas, Bijmolt and Vermunt 2003).
This algorithm is implemented in an experimental version of
the Latent GOLD program {Vermunt and Magidson 2000,
2003) and will be available in a next version of this
program.

An alternative way to implement a simultaneous model is
as a LC Markov model for 3 occasions in which rotation
group serves as grouping variable and in which the relevant
across rotation group equality restrictions are imposed on
the classification errors, transition probabilities, and initial
state probabilities. The most complicated part of this
approach is that it requires the use of restrictions on
marginal probabilities (Vermunt, Rodrigo and Ato-Garcia
2001). More precisely, the initial state probabilities should
be in agreement with the marginal class sizes in the rotation
groups that are interviewed at the same occasion.

Other aspects of the modeling that could be refined are
the treatment of missing values and the coding of the
interview mode. It is not necessary to eliminate cases with
missing values from the analysis as is done by Paul Biemer
because ML estimation with missing values is straight-
forward. As far as the interview mode is concerned, it would
be much more elegant to work with only two categories —
proxy and self — instead of four categories and let the
interview mode vary across occasions within cases. In other
words, interview mode could be used as a time-varying
covariate. Vermunt, Langeheine and Bickenholt (1999)
proposed such a latent class Markov model with time-
varying covariates.

4. MODEL FOR RESPONSE PROCESS

It is a very nice idea to try to disentangle which questions
in the questionnaire are causing the classification errors by
modeling the response process itself, This may yield lots of
valuable information for redesigning the questionnaire. I,
however, think that the extended models for the employ-
ment statuses “on layoff’ and “looking for work™ are
formulated in an overly complicated manner.

The form of the created variable R is the same as of the
outcome variable in a sequential choice analysis or in a
discrete-time survival analysis. Answering the next question
is fully determined by whether the cumrent one is answered
positively or not. The information we have is how many
steps a person takes, which is conceptually equivalent to a
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discrete survival time. A person “surviving” till the end is
classified as being “on layoff” (“looking for work™).

In my opinion, it is not very helpful to treat this vaniable
as being generated by K latent variables (Ts). This only
makes sense if theoretically there should be a response
hierarchy at the latent level, which, however, because of
measurement error, is not encountered at the manifest level,
That is, if at the manifest level there are 2° instead of K
possible responses. Even if is the case, it often suffices to
conceptualize the model as a model with a latent vanable
with K + 1 classes and K indicators, a structure that is
sometimes referred to as a probabilistic Guttman model.

Paul Biemer recognizes the complexity of the K latent
and K manifest variables formulation and decides to
simplify the model. However, I assume because of his
starting point, he decided to keep K + 1 latent classes. I do
not see why so many latent classes are needed. There are not
even so many employment states. More logical would be to
have only two classes — “on layoff” and “not on layoff”
{“looking for work™ and “not looking for work™) - since the
questions are only intended to make this particular
distinction. It can, of course, happen that the questions turn
out to be informative about the type of “not on layoff” (“not
looking for work™) status, in which case an extra latent class
might be needed. What is clear to me is that K + | classes
are far too many.

I was wondering how many persons were classified as
“on layoff” (“looking for work™) at the various time points
in the analysis with composite variable R as indicator. Are
these numbers, as well as the number of transitions into and
out off this state similar to the ones obtained with the
standard four-state LC Markov model. In my opinion, this is
a requisite for the validity of the calculation performed to
obtain the figures presented in Tables 3 and 4.

A final thing that occurred to me is the following. Why
not building a LC Markov model using the full
questionnaire information as is done in the second part of
the analysis. In other words, an alternative to using the
observed constructed classification consisting of 4 employ-
ment categories would be to use the full set of CPS
employment questions answered by the respondents. Such
an analysis with multiple indicators would not only be much
more informative, it would also make it possible to test and
relax some of the assumptions that were made in the current
analysis. For example, the ICE assumption could be relaxed
for some of the questionnaire items.
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Comment

STEPHEN M. MILLER and ANNE E. POLIVKA '

1. INTRODUCTION

We are grateful for the opportunity to comment on this
interesting paper, We will focus most of our comments on
the empirical findings about the 1994 Current Population
Survey (CPS) redesign, rather than a technical discussion of
the Markov Latent Class Analysis (MLCA) methodology
itself,

In his article, “An Analysis of Classification Error for the
Revised Current Population Survey Employment
Questions,” the author applies MLCA models in an effort to
trace the source of what he believes to be the “reduced
accuracy of the revised classification of unemployed
persons” after the redesign. In the CPS individuals are
considered to be unemployed either because they are
classified as being on layoff or because they are classified as
looking for work. The author reports a particularly large
reduction in the accuracy of the measurement of persons on
layoff. Consequently, we will focus our attention on the
classification of individuals on layoff, although similar
comments can be made about the change in the measure-
ment of those looking for work. In examining the accuracy
of the measurement of those on layotf, the author assumes
that those classified as on layoff were conceptually the same
before and after the 1994 redesign, and that these
individuals should exhibit the same labor force flows
month-to-month. There are, however, many reasons why the
improved measurement embodied in the redesign should
conceplually change who is classified as on layoff. In
addition, there are several factors unrelated to changes in
question wording that could affect the composition of those
classified as on layoff. Therefore, what the author describes
as a reduction in accuracy due to the redesign more
appropriately could be attributed to conceptual changes in
those classified as on layoff, and the fact that what was
being measured by the CPS before the redesign is not the
same as what is being measured by the CPS after the
redesign,

2. IMPROVED MEASUREMENT

One of the main reasons for the CPS redesign was to
more accurately measure official definitions and concepts.

Layoff was found to be an especially problematic concept,
in that its meaning in general usage in the 1990°’s — a
permanent job separation — was very different from the
official CPS definition — a temporary job separation with the
expectation of recall. When the questions were originally
written in the 1940’s, the term layoff was commonly used to
refer to temporary spells of unemployment due to retooling
or slowing of business conditions. Consequently, recall
expectations were not asked about in the pre-redesign
questionnaire. Research conducted in the 1980s and early
1990s in preparation for the redesign indicated that
respondents’ interpretation of layoff had become consider-
ably broader than the official definition. Focus group
interviews and large scale respondent debriefings found that
between 30 and 50 percent of those who said they were on
layoff did not expect to retum to their former employers
(Rothgeb 1982; Palmisano 1989; Polivka and Rothgeb
1993) Also, in 1993, 5.4 percent of those classified as on
layoff had last worked 1 to 5 years ago, and another 0.6
percent had not worked in the last 5 years. This lack of
recent work experience further supports the notion that
many of those classified as on layoff prior to the redesign
had no expectation of recall.

To better measure the official CPS definition of layoff,
two questions were added in the revised questionnaire
asking about individuals’ recall expectations — “Has your
employer given you a date to return to work?” and *Have
you been given any indication that you will be recalled to
work within the next 6 months?” Individuals for whom the
answer is “yes” to either of these questions are classified as
on layoff if they are available for work; all others are
excluded from being classified as on layoff (these indivi-
duals can be classified as unemployed later in the question-
naire if they meet the active job search and availability
criteria).

As a resuft of the addition of these direct questions, a
somewhat different group of people would be expected to
be classified as on layeff. Prior to the redesign, a substantial
proportion, if not the majority, of individuals classified as on
layoff were in fact permanently separated from their
employers. After the redesign, those classified as on layoff
had to expect to be recalled to their former employers; thus
the vast majority of these individuals should be only
temporarily separated from their employers. It is not

Stephen M. Miller and Anne E. Polivka, U.S. Bureau of Labor Statistics, 2 Massachusetts Ave. NE, Room 4985, Washington, D.C. 20012.



146 Biemer: An Analysis of Classification Error for the Revised Current Population Survey Employment Questions

surprising that these two groups of individuals would
exhibit different month-to-month flows between labor force
groups. It is reasonable to expect that individuals who
expect to be recalled to their job would be more likely than
those who are permanently separated to go from being
temporarily on layotf to employed in consecutive months,
Further, compared with permanently separated workers,
those in industries in which temporary layoffs are prevalent
would be more likely to be on layoff one month, employed
the next month, and then laid off again.

Month-to-month gross flows of individuals between
labor force stales indicate that there was an increase in the
proportion of the unemployed who went to employment
after the 1994 redesign. Specifically, in 1994, 26.6 percent
of those who were unemployed in the first month were
employed in the second month, compared with 23.7 percent
in 1993,

The aathor’s MLCA estimates of a supposed decrease in
the accuracy of those classified as on layoff after the
redesign because more individuals are classified as
employed subsequent to being on layoff, in reality is exactly
in accord with what would be expected with a tightening of
the definition of on layoff, and is consistent with the
increase in the month-to-month gross flows between un-
employment and employment (although the increased flow
also is in accord with a declining unemployment rate that
was observed during the time period covered by the author’s
study). The MLCA’s smaller, but still significant, estimated
decrease in accuracy due to more individuals on layoff
being classified as not in the labor force after the redesign
also is consistent with the tightening of the definition of on
layoff through the requirement that individuals expect to be
recalled in the next six months, given that individuals may
adapt or change their recall expectations over time. For
instance, when first interviewed, individuals may expect to
be recalled in the next six months. However, in subsequent
months, as the time from the initial separation increases,
these individuals may no longer say that they expect to be
recalled. If, at the same time, these individuals have not
started searching for altemative employment, perhaps
because they are still eligible to receive unemployment
insurance payments, these individuals would transitton to
being not in the labor force. Alternatively, individuals may
initially expect to be recalled; however; in subseguent
months due either to poor weather conditions or a deterio-
rating economic situation for their former employers these
individuals may become more uncertain about the proba-
bility of being recalled and thus they may not say that they
expect to be recalled. If in later months, economic condi-
tions for their former employers improve or the weather
becomes less inclement, these individuals again may
correctly feel that they will be recalled. The existence of

changing expectations could generate a three month pattern
where individuals truly were on layoff in the first month, not
in the labor force the second month, and on layoff again in
the third month. Those who were permanently separated
from a job and were incorrectly classified as on layoff in the
unredesigned survey would be unaffected by changing
recall expectations. Consequently, individuals who were
permanently separated from their jobs probably would be
more likely to report themselves as on layoff in consecutive
months with the unredesigned survey. The MLCA model
would interpret this greater stability as indicating that those
on layoff were more accurately measured prior to the
redesign. However this greater “accuracy” would only be
amongst those who were incorrectly classified because they
used too broad a definition.

The author concludes that 60 percent of the misclassi-
fication of those on layoff in the redesigned survey is due to
the question “LAST WEEK, did you do ANY work for
pay?”’ This actually is consistent with more people being on
temporary layoff and being recalled by their former
employers in the redesigned survey (although if individuals
on layoff engage in temporary employment while waiting to
be recalled to their former employers, an increase in transi-
tions (o employment after 1994 may also be at least partially
attributable to the broader employment question used in the
redesigned survey). Similarly, the author concludes that 40
percent of the misclassification of those on layoff in the
redesigned survey is due to the expectation of recall
questions (“Has your employer given you a date to return to
work?” and “Have you been given any indication that you
will be recalled to work within the next 6 months?”). This is
consistent with changing recall expectations and a slight
increase in the flow between on layoff and not in the labor
force. The author is obtaining different MLCA estimates of
those classified as on layoff before and after the redesign
because the composition of those groups has been changed,
and the composition of the groups have changed in a
manner that was desired and intended by those who
redesigned the questionnaire.

Further evidence of the different composition of those
classified as on layoft can be found in a comparison of data
that were collected to determine the effect of the redesign on
labor force estimates generated from the CPS. Prior to
January 1994, the redesigned questionnaire was admi-
nistered to 12,000 houscholds monthly from late 1992 to
December 1993. After the new questionnaire was imple-
mented in 1994, the old questionnaire was administered
monthly from January 1994 to May 1994 to 12,000 house-
holds drawn from the same sample. The experimental
administration of the old and redesigned questionnaires has
been referred to as the “Parallel Survey”. Parallel Survey
estimates from before 1994 using the new methodology and
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after 1994 using the old methodology were generated to
compare to official CPS estimates using the unredesigned
CPS procedures prior to 1994 and the redesigned proce-
dures after 1994, Polivka and Miller (1998) illustrate the
importance of using both parts of the Parallel Survey to
obtain a complete picture of the effects of the redesigned
survey. For instance, if just the first part of the Parallel
Survey were used, it would have been estimated that the
redesign increased the unemployment rate by 0.5 percentage
point, In fact, when both parts of the Parallel Survey were
used, the redesign was estimated to have no statistically
significant effect on the unemployment rate.

Using both parts of the Parallel Survey and the official
CPS estimates, Polivka and Miller estimate that the
redesigned CPS decreased the proportion of unemployed
men who were on layoff by a little less than 7 percent, while
it increased the proportion of unemployed women classified
as on layoff by almost 7 percent (although the latter estimate
was not statistically significant at a 5 percent level). These
estimates imply that the redesign would decrease the
proportion of those on layoff who were male and increase
the proportion who were female compared to the pro-
portions that were obtained prior to the redesign, if all else
were equal. Comparison of annual averages for those over
the age of 20 support this notion, since they indicate that, in
1993, 67.2 percent of those on layoff were male, compared
to 63.6 percent of those on layoff in 1994 (although in
addition to questionnaire changes these proportions could be
affected by changes in economic conditions).

The industry distribution of those classified as on layoff,
using data from both parts of the Parallel Survey and the
official CPS, reveals other compositional changes in those
classified as on layoff before and after the redesign.
Examination of estimates from the redesigned survey to the
official CPS estimates for January to May 1993 and from
the unredesigned survey to official CPS estimates for
January to May 1994 reveals particularly dramatic differ-
ences for these in the durable manufacturing industry. The
proportion of those on layoff who were formerly employed
in durable manufacturing when the unredesigned questions
were used was almost half the proportion obtained when the
redesigned questions were used (for January to May 1993
the proportion of those on layoff who were formerly
employed in durable manufacturing averaged 16.8 percent
among those who received the unredesigned questions and
9.8 percent among those who received the redesigned
questions. For January to May 1994 the proportions were
8.7 percent among those who received the unredesigned
questions and 15.5 percent for those who received the
redesigned questions). At the same time the proportion of
those on layoff who were in construction was 10 to 15
percent larger when the redesigned questions were used
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compared to when the unredesigned questions were used
(for January to May 1993 the proportion of those on layoff
who were formerly employed in the construction industry
averaged 33.3 percent for those who received the redesigned
questions and 27.4 percent for those who received the
unredesigned questions. For January to May 1994 the pro-
portions were 33.3 percent and 25.9 percent respectively).
Averaging the average difference between the first part
of the Parallel Survey and the CPS for January 1993 to May
1993 (which is equal to the new method effect plus the
Parallel Survey effect) with the average difference between
the CPS and the second part of the Parallel Survey for
Janvary 1994 to May 1994 (which is equal to the new
method effect minus the Parallel Survey effect) indicates
that the redesign decreased the proportion of those classified
as on layoff who were formerly employed in the durable
manufacturing industry by 7.3 percentage points and
increased the proportion classified as formerly employed in
the consttuction industry by 3.7 percentage points
(averaging the average difference between the first part of
the Paralle]l Survey and the CPS with the average difference
between the CPS and the second part of the parallel survey
is in the spirit, albeit a simplified version, of the main-
effects lincar models estimates using generalized least
squares that were presented in Polivka and Miller),
Individuals in different industries could have very
different true labor force transition pattems which in turn
could be influencing the MLCA estimates. For instance,
given that a substantial proportion of employment in the
construction industry is sensitive to weather conditions and
may be more project-oriented than other types of
employment, it is not unreasonable to expect that workers in
construction might truly be more likely to be temporarily
laid off in the first of three consecutive months, employed
on a short term basis in the second month (either because
the weather improved in the second month or because a
short term construction project was undertaken), and then
temporarily laid off again in the third month (either because
weather conditions deteriorated or the project for which they
were hired was completed). On the other hand, employment
in the durable manufacturing industry has been steadily
declining since the 1970’s (for example, comparing non-
recession years, it was estimated that in 1971 14.9 percent of
U.S. workers as measured by BLS’s establishment survey
were employed in the durable manufacturing industry,
compared (0 9.2 percent in 1993 and 8.5 percent in 2000).
This long term decline in employment makes it likely that a
large proportion of workers in the manufacturing industry
classified as “on layoff” prior to the redesign were perma-
nently separated from their emplovers (the change in the
industry distribution when the expectation of being recalled
was imposed is consistent with this notion). Being
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permanently separated from a job in combination with the
relatively high wages workers in durable manufacturing
received may increase the likelihood of these individuals
being unemployed in three consecutive months, because it
takes time to find employment in another industry at a
similar wage.

Comparison of MLCA maodel estimates before and after
the redesign without accounting for differences in industry
composition of those classified as on layoff could cause
analysts to mistakenly conclude that the redesign decreased
the accuracy of labor force classifications. In reality, the
increase in transitions that were measured after the redesign
represented a true increase in transitions to employment
after layoff was properly asked about in the CPS question-
naire, Failure to account for the fact that the redesigned CPS
questionnaire intentionally classified a somewhat different
group of individuals on layoff than did the unredesigned
questionnaire could lead to incorrect conclusions being
drawn from the MLCA models. Workers permanently
separated from their employers who were classified as on
layoff using the unredesigned questions are appearing to be
more accurately classified in MLCA models, but they are
more stable in a classification that was incorrect in the first
place. Further, a proportion of individuals who are correctly
classified as on layoff according to the official definition
inherently could have less stable employment histories due
either to their personal tastes or the industries with which
they are associated.

In addition to compositional changes related to differ-
ences in question wording, the author alse may have inad-
vertently captured in his estimates several other composi-
tional changes unrelated to wording differences. These
include differences in the time periods the author used for
his estimates, as well as technological changes in the data
collection process and economic conditions.

3. SEASONALITY

The first inadvertent compositional difference the author
may have introduced is related to seasonality and the
different time frames the author used for estimation. The
number of individuals classified as on layoff in the CPS has
a great deal of seasonal variability, with typically a larger
number of individuals being on layoff early in the year. For
instance, there were 338 individuals who were classified as
on layoff in January 1995 who matched to February and
March, while there were 294 individuals classified as on
layoff in March 1995 who matched to April and May, and
only 188 people classified as on layoff in June 1995 who
matched to July and August. This means that there were 18
percent more people initially classified as on layoff in
January 1995 than in March 1995 and 47 percent more

individuals classified as initially on layoff in January 1995
than in June 1995. Using three month moving averages
generated with the same calendar months probably would
help to mitigate the effects of seasonality. However, the
author did not use the same monthly tite spans to generate
his three-month moving averages to estimate the MLCA
models before and after the redesign. The majority of the
author’s pre-redesign estimates were generated using data
from August 1992 through December 1993, while the
majority of his post-redesign estimates were generated using
data from January 1994 to May 1995. Using these time
spans means that the author only has, for instance, one
January to March matched set of data for the pre-redesign
estimates, while he has two January to March matched sets
of data for the post-redesign estimates.

4, TECHNOLOGICAL CHANGES IN DATA
COLLECTION

A second reason that the composition of the groups in
various labor force states may be different for data collected
with the unredesigned and the redesigned methodology is
related to the ability to match individuals’ data from month
to month and the quality of these matches. The vast majority
of data collected using the unredesigned methodology either
in the official CPS prior to January 1993 or in the Parallel
Survey from January 1994 to May 1994 were recorded
using a paper form, and interviewers were required to
transcribe by hand household and person identification
numbers from master files to the paper survey forms. All of
the data collected using the redesign methodology, either in
the official CPS after January 1994 or in the Parallel Survey
in 1993, were collected using an automated instrument that
was loaded onto either a laptop computer or on a centralized
computer. As part of the computerized data collection
process, household and person identification numbers were
automatically and consistently carried forward month to
month. Using paper forms and transcribing data by hand has
the potential to introduce errors and cause researchers to
eliminate as non-matches individuals who actually are the
same individuals and thus true matches.

Using the same public-use data that the author used, in
combination with additional information about whether an
individual had moved (that is periodically collected in the
CPS), Madrian and Lefgren (1999) estimated that,
depending on the stringency of the match criterion used,
between 64 and 87 percent of those who were eliminated as
an invalid maich probably legitimately did match. Further,
Madrian and Lefgren noted that there was a substantial
decline between 1993 and 1996 in the fraction of invalid
matches that probably should have been retained in the data
set based on the criterion of whether an individual had
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moved (since Madrian and Lefgren were using publicly
released data, they were not able to investigate the validity
of matches for 1994 to 1995 and 1995 to 1996 because the
ability to match this data was suppressed to protect
individuals’ confidentiality). Madrian and Lefgren suggest
that the increased number of valid matches for 1996 onward
was due to improvements attributable to the redesign (it
should be noted that, although a better match can be
obtained using data intemnal to BLS and the Census Bureau
in which information has not been suppressed, the quality of
a match using internal data still will be atfected by the data
collection methodology. Thus the quality of the match will
be better after the redesign than before the redesign). In their
research, Madrian and Lefgren also found that individuals
who were incorrectly excluded from the matched data sets
were much more likely to be young and have their
information provided by another member of the household
(a proxy responder}. These individuals are also the ones that
Biemer argues are more likely to have classification errors
in their labor force status. Consequently, by potentially
including more of these individuals in his smdy due to the
improved quatity of the match, the author could be
obtaining a decrease in the accuracy of his measures that he
incorrectly is attributing to the questionnaire.

5. ECONOMIC CONDITIONS

Economic conditions may also contribute to differences
in the composition of the groups classified as on layoff
before and after the redesign. From 1992 to 1995, the period
which the author uses for the majority of his MLCA
modeling, the unemployment rate was steadily declining.
Specifically, in 1992 the annual average unemployment rate
was 7.5 percent while in 19935 it was 5.6 percent.

At a higher unemployment rate, it is likely that the
proportion of individuals who remain unemployed month to
month is larger than at lower unemployment rates. As the
economy improves and the unemployment rate declines, it
is not unreasonable to expect an increase in the proportion
of individuals who transition from being on layoff to
employment. With the increase in these transitions to
employment, the proportion of individuals who transition to
temporary jobs might also increase. Indeed, although
undoubtedly related to many factors, the number of
individuals employed in the temporary help supply industry
(as defined under the NAICS coding system) increased 44
percent between 1992 and 1995 — from 1.1 percent to 1.5
percent of the U.S. establishments’ payrolls (as measured by
the BLS's establishment survey).

In addition, as the unemployment rate declines, the type
of individual classified as unemployed may change.
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Specifically, those who remain unemployed when the
unemployment rate is low tend to find it more difficult to
become steadily employed and are more likely to transition
quickly between labor force states. This is the logic behind
studies that analyze the effects of different types of
employment separations on subsequent labor force
outcomes. For instance, in a study comparing individuals
who were separated from their employers due (o slack
business conditions as opposed to complete plant shut
downs, Gibbons and Katz (1991) found that, with regard to
both duration of joblessness and earnings, workers who
were separated from their employers due to slack business
conditions did significantly worse than did those who were
separated due to a plant closing. Gibbons and Katz argue
that these differences were due to employers being able to
dismiss their least productive workers, while retaining their
more productive workers, when business conditions were
slack, as opposed to employers having to dismiss both their
least productive and most productive workers when a plant
was completely shut down. Similarly, Darby, Haltiwanger
and Plant (1985) argue that as economic conditions worsen,
the duration of unemployment increases as a result of a
change in the composition of those who are unemployed.
This is because in more adverse economic conditions, the
proportion of the unemployed who are high-skill workers
(who also are less used to being unemployed and more
likely to be able and willing to hold ocut for a more satis-
factory job) will increase and the proportion of the
unemployed who are less skilled and who frequently transi-
tion between labor force states will decrease.

It is important to note that the majority of the author’s
pre-redesign estimates were generated using 1992 and 1993
data, when the unemployment rate averaged 7.0 percent,
while the majority of the redesigned estimates were gener-
ated using data from 1994 and 1995, when the unemploy-
ment rate averaged 6.0 percent. Changes in general
economic conditions, and corresponding changes in the
composition of the unemployed, may be affecting the
supposed accuracy of the author’s estimates in a way that is
unrelated to the questionnaire. For instance, between 1992
and 1995, the proportion of the unemployed who were
teenagers steadily increased from 14.8 percent to 18.2
percent, while the overall unemployment rate steadily
declined from 7.5 percent to 5.6 percent. Similarly, the
proportion of the unemployed who were Hispanic steadily
increased from 13.6 percent to 15.4 percent between 1992
and 1995, though some of this may be due to the increasing
proportion of Hispanics in the population (which rose from
8.8 percent to 9.4 percent). Both teenagers and Hispanics
tend to be lower skilled workers who historically have been
more likely to become unemployed or withdraw from the
labor market. It should be noted that, regardless of the
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source, an increase in the proportion of the unemployed
drawn from groups with less stable labor force histories will
influence the MLCA model estimates of accuracy if the
change is not accounted for in the modeling.

6. DIFFERENTIAL VALIDITY OF THE MARKOV
ASSUMPTIONS

In addition to differences in the composition of those
classified as on layoff affecting the estimates generated by
the MLLCA models, differences in the composition of the
various labor force groups before and after the redesign
could affect the validity of the underlying assumptions of
the MLCA models. As the author notes, a key assumption
when implementing MLCA models is that an individual’s
transition from the second to third month is independent and
thus uninfluenced by how the individual was classified in
the first month. When estimating MLCA models for
individuals’ labor force states this obviously is untrue, and
the validity of the assumption will likely differ amongst the
various labor force categories. For instance, an individual
who is employed in the first month is much more likely to
be employed in the third month than is an individual who
has never worked. More importantly, an individual cannot
be classified as on layoff in either the redesigned or
unredesigned questionnaire if he or she has not previously
worked. Addition, under the official definition of layoff that
was implemented in the redesign, individuals also have to
expect to be recalled. This leads to a much tighter
relationship between employers and workers across months
using the redesigned questionnaire. Given that individuals
on layoff under the redesign are much more likely to be
recalled and thus employed than under the unredesigned
questionnaire, the likelihcod of an individual’s labor force
status in the third month depending on their initial labor
force status in the first month is much higher. Consequently,
not only is it likely that the Markov assumptions are often
violated in labor force studies; it is much more likely that
the Markov assumptions are violated after the redesign. This
differential violation of the model’s assumptions could be
fundamentally influencing the author’s results.

7. CONCLUSION

In summary, although the author believes that he
identified a problem that was introduced into the CPS with
the 1994 redesign, the supposed increase in misclassi-
fication of those on layoff in reality reflects the greater

precision of the survey questions. Rather than identify a true
error, we believe the author may have failed to recognize
that the composition of the groups identified as on layoff
before and after the redesign were different due to both
intentional changes (such as the definition of on layoff being
built into the questionnaire or improved quality of matches
obtained because of computerization of the survey) and to
uncontrolled changes such as developments in the overall
economy. Finally, we would like to see further work in this
area which combines the MLCA modeling approach along
with a careful consideration of the economic concepts being
measured, the time periods being examined and the
assumptions being made. We believe this could lead to a
more accurate understanding of the effects of the 1994 CPS
redesign, and more useful application of the MLCA
modeling approach in general.

ACKNOWLEDGEMENTS

Any opinions expressed in this paper are those of the
authors and do not constitute policy of the Bureau of Labor
Statistics. The authors would like to thank Sharon Cohany,
U.S. Bureau of Labor Statistics, for helpful commentary on
this discussion.

REFERENCES

DARBY, M.R., HALTIWANGER, J. and PLANT, M. (1985).
Unemployment rate dynamics and persistent unemployment under
rational expectations. American Economic Review, 75, 614-637.

GIBBONS, R., and KATZ, LF. (1991). Layoffs and Lemons.
Journal of Labor Economics, 9, 351-380.

MADRIAN, B.C., and LEFGREN, L.J. (1999). A Note on
Longitudinally Matching Current Population Survey (CPS)
Respondents. Technical Working Paper 247, Narional Bureau of
Economic Research Technical Working Paper Series.

PALMISANO, M. (1989). Respondents’ Understanding of Key
Labor Force Concepts Used in the CPS. Proceedings of the
Section on Survey Research Methods, American Statistical
Association, Alexandria VA,

POLIVKA, AE., and MILLER, $.M. (1998). The CPS After the
Redesign: Refocusing the Economic Lens. In Labor Statistics
Measurement Issues, (Eds., J. Haltiwanger, M.E. Manser and R.
Topel). National Bureau of Economic Research Studies in Income
and Wealth, Chicago: University of Chicago Press, 60, 249-286.

POLIVKA, A.E.,, and ROTHGERB, J. {1993). Overhauling the Current
Population Survey: Redesigning the Questionnaire. Monthiy
Labor Review, 116, 10-28,

ROTHGEB, J. (1982). Summary Report of July Follow-up of the
Unemployed. U.S. Bureau of the Census Memorandum,
Washington D.C.



Survey Methodology, December 2004

151

Comment

CLYDE TUCKER '

1. INTRODUCTION

I first would like to congratulate Paul Biemer for offering
an innovative approach to the study of measurement error in
surveys. Although he chose to illustrale his approach with
the employment series in the Current Population Survey
(CPS), the method can be applied to many surveys. My
comments largely will be conceptual in nature, but I will
supplement these comments with examptes from the same
data that Biemer analyzed.

Using Markov Latent Class Analysis (MLCA), the
Biemer paper relies on an evaluation of the consistency over
tme of respondents’ answers to the questions in the
employment series. The increase in inconsistency found in
the new series as compared to the old one, after controlling
for self versus proxy reports, may serve as an indicator of
one type of measurement error in the assignment of labor
force status. Presumably, this error is the result of the failure
of the new questions (at least, compared to the old ones) to
collect the correct information for classifying an individual
into the right labor force category. Thus, the error can be
attributed to poor question design. Because the analysis
indicates that the errors tend to be in one direction more than
in the other — the misclassification of truly unemployed
individuals into a different category — some might interpret
the result to be a bias in the unemployment rate.

I will argue that not only has bias not been introduced but
also that the new series, while certainly not perfect, reduces
error, providing a more accurate picture of the employment
situation. It does this by taking into account the economic
realities of today in a way that the old series did not. This is
accomplished by not only better question wording but also
by the inclusion of follow-up questions and probes that
capture more detailed information for determining a
respondent’s true employment status. The use of follow-up
questions and probes is facilitated by the intreduction of a
computerized survey instrument. As a result of these
innovations, I believe that the new employment series
reduces the amount of specification error that existed with
the old series. By specification error, I mean the error
arising from using questions that do not measure what they
are intended to measure. I also will explain why I do not
believe that Biemer’s method is appropriate for use in this
particular case.

2. RECOGNITION OF THE NEED FOR A NEW
EMPLOYMENT SERIES

The last major revision of the CPS prior to 1994 took
place in 1967. In the ensuing years, the labor market under-
went a great ransformation. The number of women in the
labor force dramatically increased. The number of part-time
jobs and multiple job holdings escalated. The relationship
between the worker and the employer became more
tenuous. Startling technological developments changed the
way Americans did work and resulted in the creation of new
types of jobs requiring new kinds of skills. Perhaps most
importantly, the economy gradually became more service
oriented and less manufacturing oriented.

Just one result of these developments that needed to be
taken into account in the CPS was the change in the
accepted meaning of “layoff” as so ably described by Miller
and Polivka (2004), but there were others, as enumerated by
Bregger and Dippo (1993). Better information was needed
about discouraged workers (those who have given up
looking for work), multiple jobholders, marginal workers
(e.g., unpaid workers in a family business), and job-
changing patterns, In addition, during the 1970s and 1980s,
concern mounted about the various types of nonsampling
errors that could be affecting CPS estimates as well as about
respondent burden and its detrimental effect on data quality.

Until the 1980s, the technology to tackle these problems
was not available. However, as Bregger and Dippo (pages
4-5) note, things began to change:

“...in the early 1980s, the introduction of two
new survey methodologies provided the
means for understanding and reducing
measurement error. These included the
application of behavioral science methods and
theory — more commonly referred to as the
cognitive aspects of survey methodology -
and computer-assisted interviewing. It is
through the blending of these two methodo-
logies that a new collection procedure, which
focuses on reducing measurement error, was
made possible.”

Cognitive methods (including focus groups and in-depth
interviewing} made it possible to develop questions that

! Clyde Tucker, U.S. Bureau of Labor Statistics, 2 Massachusetts Ave., NE, Room 1950, Washington, D.C. 20212.
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could accurately measure the more complex economic
behaviors that the tmes required. Furthermore, these
techniques were able to uncover problems in the existing
labor force series (See Polivka and Rothgeb 1993). The
accurate measurement of the more complex behaviors also
required a more complicated survey insirument. One so
complicated that interviewers, left to their own devices,
would have difficulty navigating. This is where computer-
assisted interviewing played an important role. With a
computerized survey instrument, interviewers could easily
navigate through the complex skip patterns necessary to
obtain answers to questions for measuring the wide variety
of economic behaviors of interest.

3. CONSIDERATION OF NONSAMPLING
ERRORS IN BOTH THE OLD AND NEW CPS
EMPLOYMENT SERIES

Let me begin this section by detailing my reasons why
MLCA is not an effective tool for evaluating the new CPS
design relative to the old one. MLCA can be a good method
for detecting measurement error within a constant series of
questions by looking for inconsistencies in response over
several administrations to the same respondent. In the case
of the CPS, the method might be appropriate, given a
careful examination of a well-chosen set of diagnostics, for
examining problems in the old employment series and the
new employment series independently of one another. How-
ever, let me add a caveat here about examining incon-
sistencies even within the same employment series. Labor
force status, in itself, is inherently inconsistent over time.
While the employed and not-in-the-labor-force (NILF)
categories are relatively stable, the unemployed category is
not. Those in that category are trying to get out. Controlling
for seasonal effects by looking at March-May of either 1993
or 1994, it turns out that, on average, aimost 90% of those in
the employed and NILF categories did not move from one
month to the next. On the other hand, over half of those in
the unemployed category did. Thus, the unemployed are a
particularly difficult group for MLCA to handle.

As for comparing the two series, the use of MLCA is
problematic because the two series were designed to
measure different things. There were some significant
changes made in the employment series in the hopes of
reducing specification error. Although I do not want to
dwell on the measurement of layoff (Miller and Polivka
have covered this topic well.), I do want to use it as a case in
point for explaining why the comparison of the old and new
instrument is a difficult one to make. Apart from what
Miller and Polivka have said, I have my own reasons for
doubting Biemer’s conclusions.

The changes in the layoff questions were designed to
reduce the specification error discovered in qualitative
research on the meaning of “layoff,” as alluded to by Miller
and Polivka. In the attempt to eliminate specification error,
two additional questions were added. One asked whether a
date for recall had been given, and the other inquired about
the possibility of returning to the job within the next 6
months. Only those who were given a recall date or
expected to return to work within the 6-month period were
classified as truly “on layoft.”

Clearly, this altered the characteristics of the group
classified as unemployed as a result of layoff as well as
those asked the remaining questions in the employment
series, but I believe there also were more subtle reasons why
inconsistencies in respondents’ answers could have
increased and still not have contributed to measurement
error to the extent argued by Biemer. In the first place,
respondents had to answer more questions, which would
have increased the probability that at least one false
inconsistency would arise from one month to another. This
might add to measurement error compared to the old series,
but specification error, considered to be the greater problem,
still would be reduced. Furthermore, false inconsistencies
arising from these questions should be minimized for two
reasons, These questions are much more specific than the
single layoff question in the old series, and they had been
well tested (Esposito, Campanelli, Rothgeb and Polivka
1991). Moreover, given that more specific questions were
asked, there would be an increased chance that true change
had taken place in the state of at least one of them in the
intervening month. Finally, and of greatest interest to me, is
the fact that these questions attempt to capture information
on relatively nuanced changes. For instance, a respondent
may have changed his or her mind about the possibility of
being recalled in the next 6 months based on little concrete
information. With the uncertainties in today’s job market, it
would be difficult to say that the respondent had given the
Wrong answer.

T now want to address Biemer’s concerns about the initial
question in the new employment series asking about
whether any work was done last week for “either pay or
profit” His results indicate that this question may be
contributing to the amount of error he finds in both the
“layoff”’ and “looking” series. The change in this question
(as well as the addition of a question on the existence of a
family-owned business or farm) was prompted by the
concern that the old questions were not stated broadly
enough, so that marginal workers, especially those working
for profit at home, were not being classified as working. For
example, the Parallel Survey showed the percentage of part-
time workers in the new CPS was 1.098 times larger than in
the old CPS, and, coincidentally, the employment to
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population ratio for women 65 and older also increased by
about the same amount (Polivka and Miller 1998). The
same is true when comparing 1993 to 1994, It stands to
reason that the increased precision in the identification of
these marginal workers, who are more likely to be
inconsistent in their answers from month to month than
other workers, might be mistaken for measurement error.
The fact is the more narrow “what were you doing last
week”” question could lead these respondents to consistently,
but inaccurately, report they were unemployed.

Finally, let me tm to the other section of the
employment series in which Biemer found a problem — the
“looking for work” questions. One important change in this
series involved clarifying the differences in “active” and
“passive” job search in order to reduce misclassification
rates in these categories. Studies conducted in the 1980s
found that interviewers were confused about what
constituted an active (versus a passive) job search (Polivka
and Rothgeb 1993). In the redesigned questionnaire,
interviewers were given an explicit list of both active and
passive job search methods.

Comparisons of the results of the old and new questions
are complicated by the fact that different subpopulations
were asked these questions in the two series. Those finally
defined as looking (and, thus, considered unemployed) in
the two ditferent employment series could have arrived
there in quite different ways. Half of those considered
looking in 1993 received that designation by volunteering
they were looking in the first question (“What were you
doing most of last week?”); none of those who were looking
in 1994 followed that path. Those retired and 50 or older in
1994 never got the chance to say they were looking. In
1993, none of those who said they were on layoff were
asked the looking question, so they had no chance to be
classified as NILF in a given month. Then there were the
two different levels of information given to the interviewers
for coding active and passive methods. One difference
uncovered in an analysis of the two groups from 1993 and
1994 was that a higher proportion of those looking in 1994
were women compared to 1993 (454% vs. 41.2%).
Referring to the above discussion on the first employment
question, increases in the inconsistency in reports to the
locking questions could be the result of capturing more
marginal workers using the revised employment series.
Sometimes these individuals would be looking and
sometimes not.
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4. CONCLUSIONS

Paul Biemer has made a bold attempt to investigate the
error structure in the CPS employment series; however, his
findings do not take into account the reasons for the revised
questions. Taking these into account would help explain the
month-to-month inconsistencies that he found. Not only
might these inconsistencies be real, but they could provide
evidence of a reduction in specification error. For instance,
controls other than for self/proxy could be included in the
model to take into account some of the changes in
methodology, and measurement error within more limited
subpopulations. More exploration of the utility of MLCA
with inherently inconsistent classifications also should be
undertaken,
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Response from the Author

PAUL P.BIEMER }

1. INTRODUCTION

My sincere thanks to all four discussants for their
thoughtful, thorough and constructive comments. They have
added considerably to our understanding of the complex
issues surrounding Markov Latent Class Analysis (MLCA)
and the Current Population Survey (CPS) labor statistics.
All four discussants raise a number of important issues that I
will try to address to the extent I can. Some issues will
require more work and deserve much greater consideration
than is possible here. More complete responses to those
issues will have to await the results of future research.

Considering all the comments collectively, there seems to
be agreement that Markov latent class analysis has
considerable potential as a tool for evaluating and exploring
the sources of measurement error in the CPS. However,
there is some skepticism that it has identified real problems
in the CPS questionnaire. Dr. Vermunt, who is also the
author of the software T used for this analysis (viz., {EM),
provides a number of valuable suggestions for improving
the models and investigating the validity of the model
assumptions. The three other reviewers (Drs. Miller,
Polivka, and Tucker) are quite familiar with the CPS since
they are employed by the federal agency that sponsors the
survey where they played important moles in the 1994
redesign. Their comments remonstrate the various ways in
which the MLLCA model assumptions could be violated for
these data. In addition, they contain valuable information
regarding details of the CPS (both pre- and post-redesign)
and the construction of the CPS labor force variable, The
comments and suggestions of all the discussants should be
carefully considered by labor force economists and
statisticians who are conducting research in the area of
employment measurement error, particularly those using
MLCA.

JEROEN YERMUNT’S COMMENTS

I first address the comments of Dr. Yermunt and then the
comiments of the other three reviewers. 1 share Dr.
Vermunt’s concern that the ICE assumption may not hold
for these data. As he points out, if respondents

1

misunderstand the labor force questions in the same way
from one maonth to the next, they may make the same errors
each month creating correlated errors across the months. As
an example, a person who is truly in the UEM category at
both Times 1 and 2 may be more likely to be misclassified
at Time 2 if they were also misclassified at Time 1. This can
be stated probabilistically as

_P(B#2|Az2andX=Y=2)
P P(Bz2|A=2and X =¥ =2)

1>0. ¢))]

The numerator probability of the quantity p is the
probability that the Time 2 classification (B) is in error
given the Time 1 classification (4) is also in error and the
true classification at both time points is UEM. The
denominator probability is similar except for the condition
that no error is made at Time 1 {i.e., A = 2}. Under the ICE
assumption, p = Q. Therefore, if the p > O (which is the
likely direction of the correlated error), the ICE assumption
is violated. Dr. Vermunt suggests a simulation study be
conducted to study the sensitivity of the estimated classi-
fication errors to violations of this assumption. Of course,
determining the extent to which the ICE assumption fails for
the CPS data is not possible via simulation. Nevertheless, it
is still useful for assessing the potential for correlated error
to bias the MILCA classification error estimates.

Following his suggestion, I conducted a small simulation
study to gain some insight as to the consequences p > 0 for
MLCA using CPS data. A sequence of artificial populations
was generated using parameters consistent with those for the
CPS (see for example, Table 1 in the main paper) except
that p was increased in small increments from 0 to its
empirical maximum — ie., the largest value of p that is
feasible without violating the other model assumptions.
Maintaining the other model assumptions in the analysis is
necessary so that the consequences of violating just the ICE
assumption can be isolated.

The largest feasible value of p was determined empiri-
cally to be 0.7. At this value of p, the MLCA estimate of the
probability a correct classification of UEM went from 79%
10 85% and the misclassification error rate dropped from
21% to 15%. For mild departures from the ICE assumption,

Paul P. Biemer 3040 Cornwallis Road, PO Box 12194 Research Triangle Park, NC 27709-2194, U.S.A.
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say 0 < p < 0.3, the emor rates changed by less than 3
percentage points. These results illustrate that if the ICE
assumption fails to hold due to positive between interview
comelations, the error rates estimated by MLCA will be
somewhat underestimated. However, mild departures from
the ICE assumption should have little effect on the
classification error probabilities for these data. A similar
analysis was conducted for the two other labor force
categories (i.e., EMP and NLF) but the change in the
classification error estimates was negligible. This result was
anticipated due to the relatively small error rates for these
categories.

The results suggest that mild departures from the ICE
assumption should have little or no effect the conclusions of
the analysis. Extreme departures might affect the conclu-
sions in the unlikely event that errors are highly comelated
for original questionnaire and essentially uncorrelated for
the revised questionnaire. Under that scenario, the original
questionnaire would appear to have smaller UEM classi-
fication error than the revised questionnaire. However, there
is no practical reason to expect this condition to hold since
both questionnaires present questions that respondents may
misunderstand consistently across interviews.

Although these simulation results, as well as those in
Biemer and Bushery (2001) for investigating the cones-
quences of violations of the Markov assumption, are quite
useful for studying the sensitivity of the estimates to
violations of the MLCA model assumptions, they provide
no direct evidence of the validity of the MLCA estimates.
Biemer and Bushery (2001) illustrate how the {empirical)
validity of latent class estimates can be established using
external data and alternative approaches for estimating
classification error. A similar analysis based upon test-retest
reinterview data will be provided in the sequel.

For the purpose of identifying potential areas where the
CPS questionnaire can be improved, it is not essential to
establish unequivocally that the MLCA model assumptions
hold since model validity is of secondary importance.
Instead, the primary issue for questionnaire evaluation work
is whether the method of analysis used is successtul at
identifying questions that have large measurement errors
and are in need of revision. In other words, the validity of
the model is established by its ability to find important flaws
in the questionnaire, Determining whether there truly is
error in the UEM classification as suggested by MLCA
requires an - evaluation using other methods such as
cognitive laboratory research. Cognitive interviews could be
used to investigate encoding, comprehension, recall, and/or
social desirability issues that generate errors in the responses
to the UEM questions. If these investigations uncover
important problems in questions, then the utility of MLCA
for identifying flawed questions will be supported even
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though the validity of the MLCA modeling assumptions
may never be known.

Dr. Vermunt’s other suggestions on ways the modeling
framework could be improved are quite reasonable and [
hope to investigate them further in the future. However, the
current software for fitting MLCA models is somewhat
limited and the estimation of complex models such as those
he suggests may not be feasible. He also notes that problems
can arise when fitting large models with the EM algorithm.
As an example, initially we attempted to use the proxy/self-
response variable as a time-varying covariate in the MLCA

. models, but encountered problems in the estimation process

such as “division by ("’ errors and persistent convergence to
local maxima. We ultimately had to abandon the approach
in favor of the single, time invariant proxy/self grouping
variable used in the current analysis. As new and more
general software becomes available, the options for MLCA
with time varying covariates as well as other model
enhancements mentioned by Dr. Vermunt will be feasible.

COMMENTS OF THE BLS DISCUSSANTS

T will address the comments of Drs. Miller and Polivka
and those of Dr. Tucker together since the reviewers are
from the same agency (BLS) and their comments raise
similar concerns about the analysis. The following five
points summarized their main concerns:

1. The modifications introduced in the new question-
natre capture more transitions than the old question-
naire. MLCA wrongly interprets these as errors when
in fact they are not error.

2. Respondents may change their minds from month to
month about whether their employers truly indicated
that they might be recalled to work. These changes
should not be classified as a response error.

3. The Markov assumption does not hold in labor force
studies and it is violated to an even greater extent
after the redesign than before the redesign. This
differential violation of the model’s assumptions
could be fundamentally influencing the MLCA
results.

4, The differences in the estimates of LAYOFF
classification ervor before and after the redesign are
due to the composition of the groups comprising this
category. This composition changed after the
redesign in a manner that was desired and intended
by those who redesigned the questionnaire.
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5. The increased inconsistency in reports to the
LOOKING questions for the revised questions could
be explained by more marginal workers being
identified using the revised questions. Sometimes
these individuals would truly be looking for work
and sometimes not. MLCA misinterprets these
ostensibly random changes as response error when
they are not.

Point 1 describes an issue that should not pose any diffi-
culties for MLCA. The MLCA model assumes that each
individual occupies a true labor force state which may
change from month to month. No assumption is made that
the transition probabilities are the same for both question-
naires, The true initial labor force probabilities as well as the
month-to-month transition probabilities are estimated inde-
pendently for each questionnaire. In fact, although not
discussed in main paper, the model estimates of the true exit
probabilities for LOOKING and LAYOFF are in fact
greater for the revised questionnaire than for the original
questionnaire. Thus, a greater number of flows from one
labor category to another for the revised questionnaire does
not necessarily bias the estimates of classification error for
that category in either direction.

Point 2 suggests that whether an individual is truly on
layoff depends upon that individual’s apinion about whether
he or she was given an indication of possibly being recalled.
However, this in not how the revised questionnaire defines
the concept. An individual’s true layoff status depends upon
whether or not the employer truly provided an indication of
being recalled. Although the respondent’s opinion about
what the employer indicated may change from month to
month, the true layoff status does not change according to
the respondent’s opinion. Flows in and out of the LAYOFF
category due to the respondent’s opinion should be inter-
preted as error by the model.

Points 3, 4, and 5 could be made for any analysis
employing MLCA. They essentially concem the potential
bias in the MLCA estimates when month-to-month
transitions do not behave according to the MLCA model
and consequently real changes are misinterpreted as
classification errors. As the reviewers note, there are at least
three ways this can occur:

a) the Markov assumption does not hold (point 3),

b) there is unobserved or unexplained heterogencity in
the population (point 4), and

¢) employment-related behaviors for two consecutive
months are not correlated for some persons; thus, for
those persons, past month status does not predict the
current month’s status (point 5 as well as a point made
by Dr. Vermunt).

The implications of (a) were considered in a simulation
analysis in Biemer and Bushery (2001). Their results
suggest that, for the CPS data, the estimates of classification
error are quite robust to violations of the Markov
assumption. It is unlikely, then, that non-Markov transitions
explain the findings of higher classification error for the
revised questionnaire. Still, additional research is needed to
more thoroughly understand the implications of non-
Markov transitions for our results.

For (b), it is quite possible for MLCA estimates to be
biased when the compositions of the unemployed popu-
lations are substantially different under the original and
revised questionnaires and those differences are not
explained by the grouping variables used in the model.
Likewise (c) may be regarded as a special case of (b). For
(c), the transition probabilities for some population sub-
group are uncorrelated with the prior month’s employment
status; instead it is correlated with other unobserved
variables. In Jeroen Vermunt’s coffee drinker example, the
unobserved variable is the availability of a specific brand of
coffee at the market. At this stage of the research, we have
not conducted simulation studies to quantify the effects of
unobserved heterogeneity on the estimates, but this
possibility will be examined in future work.

However, this issue as well as the general plausibility of
the MLCA estimates can be investigated to some extent by
comparing the MLCA estimates with independent estimates
from an estimation approach that is not affected by (a)
through (c). If the findings from the alternative analysis are
consistent with the MLCA findings, the MLCA findings
gain credibility, As an example, test-retest reliability for the
CPS employment classifications can be estimated both pre-
and post-redesign using the CPS reinterview data (see for
example Biemer and Forsman 1992 for a description of CPS
reinterview program and these data). The validity of the
estimates of test-retest reliability does not depend upon the
Markov assumption or group homogeneity assumption; the
ICE assumption, however, is still relevant for reliability
estimation.

Table 1 shows estimates of Cohen’s kappa measure of
reliability for three time periods: 1992-1993, 1995-1997,
and 2002-2003. As shown in the table, the reliability of the
CPS classifications of unemployment dropped after the
redesign from about 68% to 65%. The most recent estimates
of kappa indicate reliability has dropped to below 60%.
These results are consistent with the results from the MLCA
that classification error in the CPS unemployment statistics
has worsened after the redesign. It is possible that the
reliability estimates in Table 1 are biased since they also
rely on the validity of the ICE assumption. But as discussed
previously, in order to the results in the table to be explained
by the failure of the ICE assumption, the ICE assumption
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would have to hold for the revised questions but not for the
original questions. That condition is very unlikely to occur.

Table 1
Estimates of Cohen’s Kappa for the CPS Before and After the
Redesign
Year n Cohen’s ¥

1992 — 1993’ 28,063 67.8

1995 — 19972 22,429 64.6

2002 - 2003° 19,205 58.8

! From Biemer and Bushery 2000.

% Bushery and McGovemn (1999).
* Personal communication with Bac Tran at the U.S, Census
Bureau

Given the evidence presented here and in the main paper,
it seems reasonable to consider the possibility that CPS
unemployment classification error increased after the
redesign. The next step is to conduct additional research to
evaluate these findings and explore the possible causes for
the error. Rather than to focus on the validity of the MLCA
or test-retest reinterview models, the focus of the future
research should be the revised CPS questions, particularly
those used in the LAYQFF classification.

I have already mentioned the possibility of using
cognitive interviews to investigating the problems in the
response process associated with the revised questions. As
an example, one question identified in the MLCA as being
potentially flawed is: “Have you been given any indication
that you will be recalled to work within the next 6 months?”
Some of the issues that could be investigated in the
cognitive laboratory for this question include:

— How well do unemployed subjects understand the
meanings of terms such as “any indication” and
“recalled?”

— Do subjects who were recently separated from
employment have difficulty remembering what their
employers said about being recalled when they were
terminated?

— An employer may say, “If business improves, we
may call you.” Do respondents answer the question
correctly in this sitmation?

— Do respondents who initially respond that they will
be recalled later change their responses to this
question as the months pass by and they have not
been recatled?

SPECIFICATION ERROR AND MEASUREMENT
ERROR

Finally, I will address an important issue raised by Dr.
Tucker regarding specification error, measurement error and
their net effects. As Dr. Tucker explains, the original
questionnaire suffered from specification error bias caused
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by measuring the wrong concept. The revisions to the labor
force questions introduced in 1994 were designed to
eliminate the specification error bias by refining the
concepts of employment and unemployment and modifying
the survey questions to reflect these refinements. These
modifications, while reducing specification error, added
more complexity 10 the survey questions which could have
increased the measurement error bias in the labor force
estimates. Dr. Tucker suggests that while this may be the
case, the measurement bias in the new employment series
may be less than the combination of specification bias and
measurement bias in the old series. To determine whether
this could be true, the specification error bias (B5) and
measurement error bias (B,,) were separately estimated
using the MLCA estimates provided in the paper as
described below.

Let p denote the CPS estimate of UEM and let P denote
the expectation of p with respect to sampling and
measurement error distributions. Let w denote the true value
of the characteristic under the definitions of UEM implied
by the specific questionnaire (i.e., without regard to possible
specification error). Therefore, n=P - B,,, ie., the value
of P in the absence of measurement error bias.

As noted above, specification error bias is the bias in P
due to a wrong concept or definition of unemployment
implied by the questions and/or labor force classification
process. For the revised questionnaire design, we assume
that the specification error in p is 0 since it will be regarded
as the gold standard for estimating the specification error
bias in the original questionnaire.

let n,, and =, denote the n-parameter for the
original and revised questionnaires, respectively. Then the
specification error bias in the pre—1994 estimates of the
unemployment rate is

BS ST~ Moew - (2)

For each questionnaire, the estimate of P is p, the
weighted estimate from the CPS. The estimate of 7 is
obtained by correcting p for classification emror bias vsing
the response probabiliies from the MLCA. let p'=
(p), P2, p;) where p,, p,, p; denote the estimates of the
proportions in EMP, UEM, and NLF, respectively. Let
be the probability that an observation that truly belongs to
the i"™ category is assigned to the i category and let m
denote the true proportion in the population in the i"
category. Then

E(py=Q'n €)

where t=(m,,n,,n;)" and Q=[w,] is the 3 x 3 matrix
with elements ;. It follows that an estimator of @ is

a=(@)p (@)
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where Q is a MLCA estimate of €. For each question-
naire, £ was estimated by the average of the 10 MLCA
estimates (January—March through October—December)
using the 1993 CPS for the original questionnaire and 1993
Parallel Survey for the revised questionnaire.

Table 2 shows the results of this analysis. For UEM, p =
6.38 for the original and 6.98 for the revised questionnaire,
If the unemployment rates are corrected for measurement
bias using (4), unemployment rate increases to 7.09 percent
for the original questionnaire and 8.03 percent for the
revised questionnaire. Thus, an estimate of the measurement
bias for the original survey is 6.38 — 7.09 = - 0.7] and for
the revised survey is 6.98 — 8.03 = -1.05. Note that the
measurement biases are negative for both the original and
revised questionnaires, indicating that UEM as well is
underestimated by both questionnaire versions.

For the revised questionnaire, the specification bias is
assumed to be Q. For the original questionnaire, it is
estimated by the difference 7.09 — 8.03 = — 0.94 percent. An
estimate of the net bias, B, =B, +B;, is —-071 +
(- 094) = -1.65 percent for the old series compared with
-1.05 + 0 = -1.05 percent for the new series. Thus, while it
is subject to greater measurement error bias, the new series
has smaller estimated net bias assuming B, = 0.

Several limitations of these results should be mentioned.
First, as noted in the main paper, the estimates for revised
questionnaire from the Parallel Survey may not be
representative of the revised CPS series. Second, the

analysis assumes that the revised questionnaire is the pold
standard for estimating the specification error bias in the
original questionnaire. This assumption could also be
challenged. Finally, no standard errors were provided for the
estimates in Table 2 and the hypothesis of smaller overall
bias in the revised question was not formally tested. Despite
these limitations, the results suggest the possibility that the
new unemployment series could have substantially lower
net bias than the old series.

Table 2
Comparison of Original and Revised Questionnaire Biases for the
CPS Unemployment Rate Based Upon Estimates from the 1993
CPS and the Parallel Survey

P T By B By

1993 CPS 638 709 -071 ~094 -1.65

803 -1.05 o' -1.05

'Note: Spectfication error bias is assumed to be O for the revised questions.

Parallel Survey 6.98
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A New Algorithm for the Construction of Stratum Boundaries in Skewed
Populations

PATRICIA GUNNING and JANE M. HORGAN '

ABSTRACT

A simple and practicable algorithm for constructing stratum boundaries in such a way that the coefficients of variation are
equal in each stratum is derived for positively skewed populations. The new algorithm is shown to compare favourably with
the cumulative root frequency method (Dalenius and Hodges 1957) and the Lavallée and Hidiroglou {1988) approximation

method for estimating the optimum stratum boundaries.

KEY WORDS: Efficiency; Geometric progression; Neyman allocation; Stratification.

1. INTRODUCTION

A stratified random sampling design is a sampling plan
in which a population is divided into mutually exclusive
strata, and simple random samples are drawn from each
stratum independently. The essential objective of strati-
fication is to construct strata to allow for efficient esti-
mation. In what follows X represents the known strati-
fication or auxiliary variable while ¥ represents the
unknown study variable. Suppose there are L strata, con-
taining N, elements from which a sample of size s, is to
be chosen independently from each stramum (12 <L). We
write N=YF_ N, and n=3f_,n,. In the case of the
stratified mean estimate,

L
- N, _
V=2 2 T (1

where ¥, is the mean of the sample elements in the A
stratum, we need to choose the breaks in order to minimise
its variance

L 2 52
{CAED) [%] [l—%]n—:” @

where

is the standard deviation of ¥ restricted to stratum and &, and
= 1 &
7,=—Sv,,
h Nh g hi

is the mean.

Dalenius (1950) derived equations for determining
boundaries when stratifying variables by size, so that (2) is
minimised, but these equations proved troublesome to solve
because of dependencies among the components. Since then
there¢ have been numerous attempts to obtain efficient
approximations to this optimum solution. The first such
approximation, suggested by Dalenius and Hodges
(1957, 1959), constructs the strata by taking equal intervals
on the cumulative function of the square root of the
frequencies; this method is still often used today. Eckman’s
rule (1959) of iteratively equalising the product of stratum
weights and stratum ranges was found to require arduous
calculations, and is less used than the method of Dalenius
and Hodges method (Nicolini 2001). Lavallée and
Hidiroglou (1988) derived an iterative procedure for
stratifying skewed populations into a take-all stralum and a
number of take-some strata such that the sample size is
minimised for a given level of reliability. Other recent
contributions include Hedlin (2000) who revisited Ekman’s
rule, Dorfman and Valliant (2000) who compared model-
based stratified sampling with balanced sampling, and
Rivest (2002) who constructed a generalisation of the
Lavallée and Hidiroglou algorithm by providing models
accounting for the discrepancy between the stratification
variable and the survey variable.

In the present paper we propose an algorithm which is
much simpler to implement than any of those currently
available. It is based on an observation by Cochran (1961),
that with near optimum boundaries the coefficients of
variation are often found to be approximately the same in all
strata. He concluded however that computing and setting
equal the standard deviations of the strata would be too
complicated to be feasible in practice. In what follows we
show that, for skewed distributions, the coefficients of
variation can be approximately equalised between strata
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using the geometric progression. This new algorithm is
derived in section 2. Section 3 compares the efficiency of
the new approximation with the cumulative root frequency
and the Lavallée and Hidiroglou approximations. We
summarise our findings in section 4.

2. ANALTERNATIVE METHOD OF STRATUM
CONSTRUCTION

To stratify a population by size is to subdivide it into
intervals, with endpoints k, <k, <...,<k,. Ideally, the
division should be based on the survey variable Y. Such a
construction is of course not possible since Y is unknown; if
it were known we would not need to estimate it. In practice
therefore we use a known auxiliary variable X, which is
comrelated with the survey variable.

In order to make the breaks (k. %,,....k;} for any
given k, and k,, we seek to make the CV, =5, /X, the
same for h=1,2,..., L

ta
[
=
~
o
&

=== ===, (3)

Now S, is the standard deviation and X, the mean of X in
stratum A: If we make the assumption that the distribution
within each stratum is approximately uniformly distributed
we may write

—  k +k
X, 2%’ )
1
Si ==t —k,_,) ©)

Jz

As an approximation to the coefficients of variation, this
gives

V. = (kk _kh—l)/JE

= (6)
" (k)2
with equal CV, therefore we must have
kk+l_kh_kh_kh—l (7)

ky otk kytk,,

This new and exotic recurrence relation reduces however to
something familiar:

ki =k, ko1 (8)
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the stratum boundaries are the terms of a geometric
progression.

k,=ar" (h=0,1,., L) )

Thus a=k;, the minimum value of the variable, and
ar =k, the maximum value of the variable. It follows
that the constant ratio can be calculated as r = (k, /k;)"'".
For a numerical example take

L=4; ky=5; k, =50,000: (10)
thus &, =5.10"(h =0, 1, 2, 3, 4) and the strata form the
ranges

5-350; 50-500; 500 - 5,000; 5,000-50,000. (11)

This is clearly an extremely simple method of obtaining
stratum breaks.

The relationship in (8) depends on the assumption that
the distributions within strata are uniform. This may be
justified by the following heuristic argument. When the
parent distribution is positively skewed, then the low values
of the variable have a high incidence, which decreases as the
vanable values increase, which makes it appropriate to take
small intervals at the beginning and large intervals at the
end. This is what happens with a geometric series of
constant ratio greater than one. In the lower range of the
variable, the strata are narrow so that an assumption of
rectangular distribution in them is not unreasonable. As the
value of the variable increases, the stratum width increases
geometrically. This coincides with the decreased rate of
change of the incidence of the positively skewed variable,
so here also the assumption of uniformity is reasonable.

This algorithm will of course not work for normal
distributions. Also since the boundaries increase geo-
metrically, it will not work well with variables that have
very low starting points: this will lead to too many small
strata; the rule breaks down completely when the lower end
point is zero. We expect the best results when the
distribution is highly positively skewed and the upper part
contains a small percentage of the total frequency,

3. THE PERFORMANCE OF THE ALGORITHM

3.1 Some Real Positively Skewed Populations

To test our algorithm, we implement it on four specific
populations, which are skewed with positive tail:

Our first population (Population 1) is an accounting
population of debtors in an Irish firm, detailed in Horgan
(2003). In addition, we use three of the skewed populations
that Cochran (1961) invoked to illustrate the efficiency of
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the cumulative root frequency method of stratum
construction. These are:

— The population in thousands of US cities
(Population 2);
The number of students in four-year US colleges
(Population 3);
The resources in millions of dollars of a large

commercial bank in the US (Population 4).

There were five other populations in the Cochran paper,
which tumed out to be unsuitable for use with our
algorithm. In three cases the variable was a proportion:
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agricultural loans, real estate loans and independent loans
expressed as a percentage of the total amount of bank loans.
Another, a population of farms in which the variable ranged
from 1 to 18, was essentially discrete. Yet another, a
population of income tax returns, was not sufficiently
skewed: it owed its skewness to the top 0.05% of the
population, and when this was removed, or put in a take-all
stratum, the skewness disappeared.

These four populations are illustrated and summarised in
Figure 1 and Table 1 in decreasing order of skewness.
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The new algorithm is implemented on these populations,
and compared with the cumulative root frequency
(cum /¥ ) and the Lavallée-Hidiroglou methods of stratum
construction.

3.2 Comparison with the Cumulative Root
Frequency Method

We first compare the performance of the new algorithm
with cum ﬁ by dividing the populations summarised in
Table 1 into L = 3, 4 and 5 strata, using both methods to
make the breaks. The results are given in Tables 2, 3 and 4.

A cursory examination of the coefficients of variation in
Tables 2, 3 and 4 suggests that, in most cases, the geometric
method is more successful than cum \f? in obtaining near-
equal strata CV,. For example in Population 1, which has
the greatest skewness, the CV, differ substantially from
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each other when cum ./ f is used to make the breaks, while
the geometric method appears to achieve near-equal CV), in
all cases of 3, 4 and 5 strata: the best results are obtained
with L = 3. In the other three populations, the CV, are not
as diverse with cum ﬁ , but they still appear more
variable than those obtained with the geometric method of
stratum construction.

The CV, with the geometric method are more
homogeneous when L = 4 or 5 than when L = 3; this is to be
expected since the validity of the assumption of uniformity
of the distribution of elements within stratumn is strength-
ened with increased number of strata.

A more detailed analysis of the variability of the CV,
between strata is given in Table 5, where the standard
deviation of the CV, is calculated for each design.

Table 1
Summary Statistics for Real Populations
Population N Range Skewness Mean Variance
1 3.369 40 - 28,000 6.44 838.64 3,511,827
2 1,038 10 - 200 2.88 32.57 924
3 677 200 - 10,000 2.46 1,563.00 3,236,602
4 357 70 - 1,000 2.08 225.62 36,274
Table 2
The Geometric vs the Cum ﬁ : Stratum Breaks with L=3 and n = 100
Stratification Stratum
Population Method CcV 1 2 3
1 Geometric 0.0600 ks 354 3,i52
N, 233 1288 189
, 9 46 45
cv, 0T 0.68 0.64
Cum f 00600 Kk, 558 2236
Ny, 2,339 735 295
ny, T 17 64
v, 070 042 0.76
2 Geometric 0.0270 ky, 26 72
N, 701 243 94
iy 36 29 35
cv, 028 0.23 033
Cum ff 00209 &, 28 66
Ny, 729 208 101
n, 40 22 38
cv, 029 0.25 0.34
3 Geometric 0.0317 ky 726 2,645
‘A 253 321 103
g 9 38 53
cv, 032 0.37 0.39
Com JFf 00282 &, LIT9 3629
Ny 456 152 69
ny 37 35 28
v, 041 031 0.27
4 Geometric 0.0184 ky, 168 405
N 211 93 53
ny, 27 27 46
v, 023 0.24 0.30
Cum Jf 00198 &, 162 441
N, 207 107 43
i 25 39 36
cv, 023 030 027
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Table 3
The Geometric vs the Cum ﬁ : Stratum Breaks with L =4 and n = 100
Stratification Stratum
Population Method [ 1 2 3 4
1 Geometric 0.0430 ky, 205 1,057 5,443
N, 1416 1382 483 88
ny 6 22 40 32
CVy 045 0.44 048 0.50
Cum f 00480 & 558 LU7 2795
Ny 2,339 483 325 222
g 23 5 10 62
cv, 0.70 .19 0.27 0.69
2 Geometric 0.0194 ky 20 43 93 200
Ny 459 398 130 51
ny, 22 31 25 2
cV, 0.22 0.20 022 0.22
Cum Jf 00213 Kk 19 38 85
N, 393 428 155 62
ny, 15 26 30 29
cv, 020 0.17 0.25 0.26
3 Geometnic 0.0214 ' 526 1,386 3,653
Ny 138 343 127 69
ny 5 27 26 42
Cv), 0.27 0.26 0.26 0.27
Cum Jf 00230 &k 690 2,160 500
Ny 235 119 75 48
"y 13 43 21 23
CVy 0.31 0.33 0.29 0.19
4 Geometric 0.0142 ky 134 261 504
N, 156 109 63 29
, 20 23 29 28
CcV, 0.18 0.9 0.19 0.20
Com f 00143 &, 162 255 488
Ny 207 58 57 35
h 33 9 23 35
CVy, 0.23 0.11 .18 .24
Table 4
The Geometric vs the Cum ﬁ ; Stratum Breaks withL=5and n = 100
Stratification Stratum
Population Method cv 1 2 3 4 5
1 Geometric 0.0360 ky, 147 549 2,037 7552
Ny, 1,054 1,267 732 265 51
Hy 2 14 27 13 24

v, 037 038 040 037 04l
Cum yJf 00349 kK, 279 838 1677 4193

Ny, 1644 1,010 332 249 134
ny, 9 14 7 15 35
Cv, 0.52 0.30 0.20 0.25 0.57
2 Geometric 0.0144 ky, 17 32 59 108
Ny 364 418 130 87 39
ny 18 28 17 20 17
cv, 0.18 0.14 0.15 0.16 0.15
cum ff 00186 &, 28 38 57 104
Ny 729 92 89 88 40
n,, 58 4 7 16 15
vy 0.28 0.08 0.1 0.16 0.16
3 Geometric  0.0184 k, 433 941 2,043 4,434
Ny 100 255 1,989 74 56
n, 2 16 27 20 35
CVYy, 0.22 0.21 0.24 0.21 0.21
Cum ﬁ 0.0212 ky 1179 1,669 3,139 6,079
ny, 50 3 17 15 (5
cv, 040 0.09 0.20 019 013
4 Geometric 0.0110 ky, 118 200 339 576
N, 14 16 64 39 24
ny 12 20 24 18 24

v, 014 014 047 012 0.I6
Cum 5 0019k, 162 255 395 627
Ny 207 58 37 36 19

CV, 0.23 0.11 0.10 0.13 0.11
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Table 5
The Variability of the ¢V, for the Geometric and the Cum ﬁ Methods

Strata Population
1 2 3 4
3 Geometric 0.035 0.050 0.036 0.038
Cum ff 0.181 0.045 0.072 0.035
4 Geometric 0.027 0.010 0.006 0.008
Cum ff 0.276 0.042 0.062 0.059
5 Geometric 0.018 0.015 0.013 0.020
Cum ff 0.166 0.076 0.119 0.054

We see from Table 5 that, with just two exceptions, the
standard deviations of the CV, are substantially lower with
the geometric method of stratum construction than with cum

f. In the two cases where the cumulative root has a lower
standard deviation than the geometric, the differences
between them is not great, and occur with the smallest
number of strata, L=23, in Populations 2 and 4. We may
conclude therefore that the new algorithm is successful in
breaking the strata in such a way that the CV, are near
equal.

What remains is to investigate whether the geometric
breaks lead to more efficient estimation than cum ﬁ . To
do this, the two methods are compared in terms of the
relative efficiency or variance ratio obtained with n = 100
allocated optimally among the strata using Neyman
allocation (Neyman 1934):

n, = #S‘-’—‘-’l-— n (12)
Zs: 1 N f'Sr"
The relative efficiency is defined as
Vonl®,)
&1 Feumseom = T2, a3)
e Vgcorn (x.r: )

where V(%) and V,,(X,) are the variances of the
mean respectively with the cumulative root frequency and
the geometric methods, with # = 100 and n, allocated as
in (12) for each of the stratification methods. In sample size
planning the relative efficiencies may be interpreted as the
proportionate increase or decrease in the sample size with
cum ﬁ to obtain the same precision as that of the
geometric method with n = 100.

The variance calculations are based on the auxiliary
variable X, and since this is assumed to be highly correlated
with the unknown survey variable ¥, we can assume the
relative efficiency e ff, given in (13), will be a reasonable
approximation of the relative efficiency of Y.

Table 6 gives the variance ratio when the number of
strata L =3,4 and 5.

From Table 6 we see that, while this new method is not
always more efficient than the cumulative root frequency
method of stratum construction, when it is, it is substantially

so, and when it is not it is only marginally worse. For
example, large gains in efficiency are observed when L = 5
in Populations 2, 3 and 4: here the relative efficiencies are
1.69, 1.33 and 1.17 respectively indicating that samples of
sizes n = 169, 133 and 117 are required with cum ﬁ to
obtain the sample precision as that of the geometric method
withn = 100.

Table 6
Efficiencies of the Cum J—f_ Relative
to the Geometric Method
Population
Stata 573 g

3 097 099 079 116
4 .23 119 116 104
s 094 169 133 117

We also see from Table 6 that while there are four cases
where the relative efficiency is less than 1, with one
exception, all are greater than 0.9. The exception is
Population 3 with L = 3, the smallest number of strata; the
relative efficiency in this case is 0.79.

3.3 Comparison with the Lavallée and Hidiroglou
Algorithm

With the Lavallée-Hidiroglou algorithm, the optimum
boundaries k,,k,---k,_, are chosen to minimise the
sample size » for a given level of precision. The requirement
on precision is usually stated by requiring the coefficient of
variation to be equal to some specified level between 1% —
10%. Obtaining the minimum # is an iterative process, and
the SAS code used for implementing it was obtained from
the web at http:iwvww.ulval.ca/pages/ipr/.

To compare the performance of the new method with
Lavallée-Hidiroglou, the CVs from the geometric algorithm
given in Tables 2, 3 and 4 are used as input for the Lavallée-
Hidiroglou algorithm, and the sample sizes required to
obtain the same precision as that of the geometric method
with = 100 are computed. The results are given in Table 7.

The first thing to notice from Table 7 is that the sample
size required with the Lavallée-Hidiroglou aigorithm to
obtain the same precision as the geometric method is greater
than 100 in all but four cases. In Population 2 with 5 strata,
it is necessary to increase the sample size by 36% to
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n = 136, to obtain the same precision as the geometric
method with n = 100. With three and four strata, sample
sizes of # = 121 and 113 are required in Population 1, and
samples sizes of n = 123 and n = 117 are required in
Population 2, to obtain the same precision as the geometric
method. When the sample size falls below n = 100, the
drop is not as large. In Population 4, with four and five
strata, # = 93 and n = 99 respectively, and in Population 1
with 5 strata a sample size of n = 90 will suffice with the
Lavallée-Hidiroglou algorithm to obtain the same precision
as the geometric method.

The results in Table 7 might appear to indicate that the
geometric method outperforms the Lavallée-Hidiroglou
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method in terms of the minimum sample size required for a
specified precision. We observe however that the geometric
method does not give a take-all stratum. If this is required it
is more appropriate to use the Lavallée-Hidiroglou to obtain
the strata. Often, in financial applications the top stratum is
decided judgementally; for example US state taxing
authorities typically decide their take-all stratum based on a
total percentage of purchase amounts (Falk, Rotz and
Young 2003). If afier such a take-all stratum has been
removed the skewness remains, the geometric method is
probably the easier and more efficient way of obtaining the
remaining strata.

Table 7
Boundaries and Sample Size Required with the Lavallée-Hidiroglou Method to Obtain the Same
CV as the Geometric Method when n = 100

; 3 Strata
Population n cv | 2 3
1 121 0.0600 ky 1,248 8,676
N, 2867 464 38
ny 42 4] 33
v, 0.87 0.57 0.37
2 123 0.0270 kp 35 102
Ny 795 202 4]
nh 47 35 41
CV, 031 0.31 0.17
3 107 0.0317 ky 1398 4,197
Ny 481 135 61
ny, 28 18 61
vy 041 0.30 .24
4 100 0.0184 ky 172 361
Ny 212 85 60
ny 22 18 60
CVy 0.23 0.21 0.32
4 Strata
1 2 4
| 113 0.0430 ky, 442 1,828 8411
Ny 2,086 915 327 41
My 16 21 35 41
CV, 0.64 041 0453 38
2 117 0.0194 ky 19 37 95
Ny 393 420 176 49
ny 13 21 34 49
Ccv, 0.19 0.16 0.28 0.21
3 103 0.0214 ky, 740 1,505 3819
Ny 256 234 118 69
Hy 9 10 15 69
cv, 0.32 0.18 0.25 0.27
4 93 0.0142 kp, 117 188 359
Ny 111 112 74 60
ny 7 9 17 60
CV;, 0.14 0.12 019 0.32
5 Strata
1 2 3 5
1 90 0.0360 ky, 342 1,153 3,431 10,301
Ny 1,846 993 357 147 26
ny, 12 14 17 21 26
CV, 0.58 0.34 031 0.31 0.32
2 136 0.0144 ky 14 21 35 80
Ny, 189 270 336 164 79
y, 4 7 16 30 79
CVy 0.12 0.10 0.2 0.24 Q.30
3 105 0.0i84 ky 512 869 1,577 3.675
Ny, 133 180 185 110 69
Ty 4 5 10 17 69
cv, 0.27 .15 0.16 0.23 0.27
4 99 0.0E19 ky 99 130 189 339
Ny 70 68 85 71 63
ny, 4 4 8 20 63
CV, 0.10 0.08 0.10 0.18 0.33
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4. SUMMARY

This paper derives a simple algorithm for the
construction of stratum boundaries in positively skewed
populations, for which it is shown that the stratum breaks
may be obtained using the geometric distribution. The
proposed method is easier to implement than approxi-
mations previously proposed. Comparisons with the com-
monly used cumulative root frequency method using four
positively skewed real populations divided into three, four
and five strata, showed substanttal gains in the precision of
the estimator of the mean; the greatest gains occurring when
the number of strata was five. Comparisons with the
Lavallée-Hidiroglou method indicated that a greater sample
size was required to obtain the same precision as the
geometric method is most cases; the greatest increase in the
required sample size occurred with the largest number of
strata. One limitation of the new algorithm compared to the
Lavallée-Hidiroglou method of stratum construction is that
it does not determine a take-all top stratum.
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Feeding Back Information on Ineligibility from Sample Surveys
to the Frame

DAN HEDLIN and SUQJIN WANG !

ABSTRACT

It is usually discovered in the data collection phase of a survey that some units in the sample are ineligible even if the frame
information has indicated otherwise. For example, in many business surveys a nonnegligible proportion of the sampled units
will have ceased trading since the latest update of the frame. This information may be fed back to the frame and used in
subsequent surveys, thereby making forthcoming samples more efficient by avoiding sampling ineligible units, On the first
of two survey cccasions, we assume that all ineligible units in the sample (or set of samples) are detected and excluded from
the frame. On the second occasion, a subsample of the eligible part is observed again. The subsample may be augmented
with a fresh sample that will contain both eligible and ineligible units. We investigate what effect on survey estimation the
process of feeding back information on ineligibility may have, and derive an expression for the bias that can occur as a
result of feeding back. The focus is on estimation of the total using the common expansion estimator. An estimator that is
nearly unbiased in the presence of feed back is obtained. This estimator relies on consistent estimates of the number of
eligible and ineligible units in the population being available.

KEY WORDS: Dead unit; Feed back bias; Overcoverage; Permanent random number sampling; Panel survey,

Coordinated samples.

1. INTRODUCTION

To facilitate estimation of change, consecutive samples
in a repeated survey arc usually overlapping. If several
surveys draw samples from the same frame, it is often
desirable to spread the response burden out by making sure
that samples for different surveys are not overlapping to a
greater extent than necessary. This is particularly desirable if
the frame is moderately large and used for many continuing
surveys, which is a situation that many national statistical
institutes face when conducting business surveys. Stratified
simple random sampling is a very comrmon design for busi-
ness surveys. The skewed distribution of businesses calls for
large sampling fractions in many strata, which aggravates
the response burden for medium size and large businesses.
Both estimation of change and response burden issues are of
paramount importance in official business statistics. There-
fore, sampling systems have been constructed that allow the
organisation to co-ordinate samples, either positively or
negatively (i.e. to create overlap or to make sure that there is
little overlap).

For example, the Office for National Statistics (ONS) in
the United Kingdom uses the Permanent Random Number
(PRN) technique, which is a widely used method for
drawing samples from lists. A PRN from the uniform distri-
bution on [0,1] is attached to each frame unit independently
of each other and independently of the unit labels and any
variables associated with the units. Each unit will retain the

PRN throughout its existence. The units can be ordered
along a line starting at 0 and ending at 1 and we refer to this
line as the PRN line. To draw a simple random sample
without replacement, an S, with a predetermined sample
size n, a point is selected (randomly or purposively) on the
PRN line and the # units to the right (say) are included in the
sample. Two Sls are fully co-ordinated if they are drawn
from the same interval. For overviews and further details
see Ohlsson (1995) and Emst, Valliant and Casady {2000).
Samples for repeated surveys can also be selected with a
panel technique where a set of rotation groups are selected
at the first wave and one, say, of the groups is replaced with
a fresh rotation group at the second wave and the other
groups are retained in the sample. The difference between
PRN sampling and panel sampling is more about the way to
control overlaps than having different sampling designs.
There are in principle two main sources of data that are
used to maintain a frame: administrative ones and surveys.
Various administrative bodies send tapes to the ONS on a
regular basis with information on, e.g., births and deaths of
businesses. While these tapes are sent to the ONS very
freqquently, the distribution of the time it takes for a new unit
or an alteration of an old unit to be registered on the frame is
highly skewed. This is partly due to frame maintenance
procedures, e.g. to avoid duplicates. There is also very often
a considerable difference in time between the actval and
formal termination of a business. Therefore, most of the
ONS’s business surveys share the information on deaths
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they obtain through their samples with other business
surveys to speed up the information process. We examine
the effects of using sample surveys to update a frame that is
used for repeated surveys. This is in principle how infor-
mation on dead umits is treated in business surveys at the
ONS, Statistics Sweden, and some other national statistical
institutes.

It would seem natural that this new information should
be made available to other sample surveys, which otherwise
may include the dead units in their samples and therefore
lose precision. However, as pointed out by Srinath (1987)
among others, such a procedure may cause bias. We refer to
this as feed back bias, which results whenever the sampling
mechanism is not independent of the feed back procedure.
For example, consider a situation where all dead units are
found and deleted at the first wave of a panel survey. If no
further deaths have occurred up to the second-wave obser-
vation of the panel units, the second-wave sample contains
only live units. Without knowledge of the total number of
live units in the population at the time of the second wave,
an unbiased estimator of the total cannot be constructed.
While more information about the population has been
gathered when the deaths were recorded at the first wave,
there is actually less information in the second wave-sample
on the proportion of live units in the population. We show
how an estimate of the number of live units in the popu-
lation can be used to construct an approximately unbiased
estimate of the population total.

A safe recommendation would be that no information on
deaths from sample surveys, other than from completely
enumerated strata, may be used to update the frame when
samples are co-ordinated over time (¢f. Ohlsson 1995, page
168, and Colledge 1989, page 103). However, to prohibit
feeding back seems to deny oneself the use of all available
information, We obtain an expression for the feed back bias
and show that the feed back bias can be estimated and used
to adjust conventional estimators. Schiopu-Kratina and
Srinath (1991) adjust the sampling weights to counter an
expected too low proportion of dead units in the rotating
sample of the Survey of Employment, Payroll and Hours
conducted by Statistics Canada. Hidiroglon and Laniel
(2001) discuss the feed back issue briefly. A general discus-
sion of frame issues is given by Colledge (1995) and over-
views of issues associated with continuing business surveys
include College (1989), Hidiroglou and Srinath (1993),
Srinath and Carpenter (1995), and Hidiroglou and Laniel
(2001}.

Instead of the terms eligible and ineligible we use the
more emotive words dead and live, although our reasoning
does cover all kinds of ineligibility. The discussion is
confined to the estimation of the total

FEDIH 4)]

of some study variable y"=(y,,¥,,..., yy) On a popu-
lation ¢/ with unit labels {1, 2, ..., N'}.

When the sampled units are cbserved, we assume that gl
dead units in the sample are classified as dead and the frame
is updated with this information. This may be difficult in
practice. In some surveys, however, the eligibility of all
nonresponding units can be correctly identified.

Section 2 introduces the necessary notation and concepts
and gives expressions for the feed back bias when esti-
mating a total. Section 3 discusses three strategies that may
be used in the presence of feed back and compares these in a
simulation study. The paper concludes with a discussion in
section 4.

2. EXPRESSIONS FOR FEED BACK BIAS

2.1 Introduction and Notation

We assume throughout that a dead unit is always out of
scope and that the value of the study variable of a dead unit
is always zero. (It is conceivable that dead units are eligible
in some surveys; for example, a business survey collecting
data on production may have defined businesses that were
alive at least part of the reference period as eligible.) We
adopt the design-based view that the survey population and
the study variable are fixed and non-stochastic at any given
point in time. The situation we address is as follows. One or
more samples are drawn from the frame which comprises
the original survey population, U,. Let the set of samples
drawn from U, be denoted by s;. For convenience we
assume that the frame units and population units are of the
same type. We refer to the updated frame, where all dead
units that have been included in samples from U/, have been
excluded, as the current survey population, U, For
example, two surveys may simultaneously work with a
sample each, and after they have fed back, U, has shrunk to
Us. We disregard births of new units and other deaths than
those deleted through samples from U,. We will also
disregard undercoverage, nonresponse and measurement
errors. In practice, administrative sources will provide
information on deaths. They work independently from the
sampling procedures employed by the statistical agency and
will therefore not contribute to feed back bias. These units
are dead by administrative sources. We can think of these
dead units as being excluded from the population. See
Hidiroglou and Laniel (2001) for a discussion of estimation
in the presence of units deathed by administrative sources.
While the sampling design here is assumed to be S, it can
readily be extended to stratified simple random sampling.
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Let U, 4 and U be the two subsets of the current survey
population, U = U, , WU, , that consist of dead and live
units, respectively. All units in U, and U,; are assumed to
be flagged as live. Units that are flagged as dead but for
which the independence of detection and the sampling
mechanism cannot be assured are called dead by sample
survey sources. In our set-up, these are the dead units
detected in samples taken from U}, Let the set of these units
be denoted by 5,4 and we have the relationship U, =
U, us,, . Figure 1 displays the sets and their relationships.
Let N and r with a proper subscript be the size of the
comesponding population and sample(s), respectively. Then
N=N>+ g and N, = Nz‘; + NZA‘ At the time when samples
are drawn from Uy, N; and n, 4 are known numbers, whereas
N, and N, are unknown. Moreover, n, 4, N2, and N, could
be viewed as random depending on feed back results, while
N, is fixed. Following principles of Durbin (1969) and
more recently in Thompson (1997), we would in many
situations prefer to condition on n, 4 For example, if it is
seen that n,4=0, then it does not seem appropriate to
include in the inference the possibility that n, ; could have
been large. However, to analyse the development of the feed
back bias over a series of waves in a panel survey when
planning the survey, unconditional analysis would be
preferable. We also provide an expression for the
unconditional feed back bias.

Denote by s, the live part of s, ie., the part of U/, that
was covered by the previous sample(s} drawn from U); see
Figure 1. Clearly, s, is a random set and we have
85, €U,,. Let the nonsampled part of U, be denoted by
Uz e (‘wd’ for ‘with dead units”). It is also a random set and

4
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encompasses all of U,y and part of L/, We have U, =
Ut 511

Let 5, be an S taken from {/,. Estimators based on s; will
suffer from feed back bias unless special information is at
hand, such as knowledge about N, ,, which is not usually the
case, To derive an expression for the feed back bias we shall
first obtain the inclusion probabilities. To do this, it is useful
to consider the two sample parts of s; separately: the sample
part s, , of size ny, taken from s;; through PRN sampling or
a panel sampling technique, and the remaining part s,
taken from I/, If the sampling is done with a panel
technique, the sample parts s,, and s5;, are the old and new
rotation groups, respectively. If the sample is drawn with
PRN sampling, s2, and s, consist of units with PRN’s that
fell in 5, or did not fall in 5, respectively. Whether the
sample was drawn through PRN sampling or a panel
sampling technique, the sample parts can be viewed as two
fixed size samples, each drawn with the S design from their
respective subpopulation. We condition on n;, and ny,
throughout without making it explicit in formulae. With the
notation (k€ s,,) we refer to the event that a unit is first
included in the first-wave sample(s) from U/, and then in the
second-wave sample taken from what remains of the first-
wave sample(s) after dead units have been taken out. The
notation (k€ s,,) is analogous. Let f(ke s, )=1 when
unit & is included in s5;,, otherwise I(kes,,)=0. To
derive the overall bias it is convenient to analyse the biases
from the sample parts s,, and s,,. We derive an expression
for each of these in section 2.2 and section 2.3, respectively,
and in section 2.4 the bias expressions will be amalgamated.

524

526

S g S

Uy

rf———

¢ U2.wd

%
Lt

U,

[
™

Figure 1. The original survey population, U;, and its subsets. The grey area represents s,, the sample from U5,
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2.2 Feed Back Bias from a Sub-sample from the
Original Sample

Suppose a sub-sample s, is faken from s, the live part
of the first-wave sample(s). Recall that y, =0 if kis a dead
unit and that U = U, , wU,,. Thus we have Z, y, =
ZUz.. ywilkes, )=2y yilkes,,). Assume that Ny, > 0.
Then we obtain that Prlke s,,|n 1=n,,/N,,, since a
sample of size m, is effectively selected from a population
of size N,; with the SI design (through an SI sample from
U, followed by an SI sample from I/, ). Note that a unit & in
52, must be alive since Uy, consists solely of live units.

Denote the bias of an estimator 6 for the parameter 0 by
B(é 8). Then with respect to the population total ¢,
2, y,t , the conditional bias of a general linear esnmator

Alsys)

1,7 =%, w,y, basedon sy, withanygiven w, s, is

B(f;.s“), L, |n1,d )= ZU“ {Wk Pr[k € 51, |nl,d ]_ 1} Y

_Z wk"Za
U Yk

Wi laa

=2, (— })’k- @)

For the sample part s,,, the naive expansion estimator
that ignores feed back bias would have weighls w, = Na/na .
From (2) the bias of the estimator 7y’ =N, /n,,, ., Y
is

~{52.4) _ .
B( £l | nLd)—- t. (3)
21

2.3 Feed Back Bias from a Sample Taken Afresh
from the Current Survey Population

Next, we derive the bias arising from the sample part s,
of size ny;, taken from U, through U, , see Figure 1. First
note that

H
Prlk € s3] k€ Uy puy my =22 @)
N‘Z.\m’
From (4) we obtain that the conditional expected value of
Ey(su) = Zs“ Wy, is

~(825)
o

n
”I.d)=E[NM Zum Wi ¥k |”1,d}
2,wd

M, Nyj—my
= Wi V-
Nywa Ny Euz

The second equation above is due to the fact that
givenn, 4, all N,, live units in U, are equally likely to be in
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U, wa» Wwhich has N} ;—n, live units. Therefore, the
conditional bias of 7, i

Ny —m,

B 1 )= 2 (TV"“ L —l]yk- ©
2md 24

For the expansion estimator t(”"‘}

N, /n,, the bias is

with weights w, =

B(f;f-”,ty|nl‘d)= Bt (6)
where

N, Ny -y
Nows  Nu

_ Nz(Nz,f _"1,1)_N2.1(N2 _"u)
Nowi Ny

b= -1

RALYLY,
N2,1N2.W\d

N ("1 _"1.d).
Nz,.'(Nl_"l)

The bias is always non-positive since B £0. It is easy to
see that B is an increasing function of n , since
Ny, =N ,—m,, where Ny, is the fixed number of all
dead units in U). It is also readily seen that the maximum of
B is attained when s, , encompasses all dead units in U,,
that is, when n; ;=N s and consequently N, , =0.

2.4 Feed Back Bias from Sample Parts Combined

Combining (6) with (3) we obtain the overall bias of
fﬂ =N,/n, ¥, y, tobe

B(tﬂ,ty|n,'d)= E(f, |m)-t,

Nu["za Pap My

Ny Lm ny Njw

Jty =7 t,. ()

The bias in the expansion estimator is really down to not
knowing the correct population size. In (3) the bias stems
from multiplying the sample average over live units with N
rather than the unknown N, ;. The bias from the sample parts
52, and 55, will in absolute terms be less than (3) and (6),
respectively, if some of the dead units in the samples from
U, have not been identified as dead and therefore have not
been weeded out. This would happen, for example, if the
status of nonresponding units is difficult to determine.

An unconditional analysis in the presence of feed back
can be obtained directly by taking expectation of (7) with
respect to #, , . Thus, unconditionally, we have
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N
T
Nia _E(n‘l.d) Mg Tap My _E(”l.d)
_ Ny, ] m Ny .
- ¥
Ry
——Vin
PN 3N i ( Ld)
=ty ®)

where E(n ,)=nN,,/N and V(n,}=nN ,N,, /N

Lavallée (1996) took an interesting approach to a similar
problem with panel survey data. In that paper, the problem
of frame update using panels with rotation is addressed
among other issues. Our approach is different from the ap-
proach of that paper in that we consider the two conditional
probabiliies Pr[kes,,|m,] and Prlkes,,|n ]
separately.

3. THREE SIMPLE STRATEGIES AND A
SIMULATION STUDY

3.1 Strategies in the Presence of Feed Back

A strategy, which is referred to as Strategy | here, is to
feed back, delete the set 5, , from the frame and accept the
feed back bias. However, the size of the bias is seldom
known. The estimator for Strategy 1 under SI is [, =
N,/m%, v, where 5; is a sample taken from 0/ To
obtain Strategy 2, note that if consistent estimates of Ny,
and N,; are available these may be plugged into (7) or (8)
and an estimator with favourable properties is obtained:

f;" =fﬂ(1+é)", ®
where
6=(&2.d /&Z.i')[nla Iny={n,, (ny—n ) Hny (N =n))}]

for both the conditional and unconditional cases since the
term 1y, Vi(m )Ny Ny )" in (8) is almost always neg-
ligible. The estimates N,, and N,, of the sizes of the
domains U ; and U; can be obtained from a sample from
the original or current survey population. If more than one
sample is drawn, each can provide an unbiased estimate of
Ny 4 (or Nyy), all of which can be combined. The minimum
variance combined estimator is the sum of the estimators
weighted with the reciprocals of their variances. As the
following argument shows, we do not expect the bias of (9)
to be large:

E,)= gk, 0+8)" = B(, )+ )

=t,(l+c)l+c) =,

171

Another strategy, here denoted by Strategy 3, is to feed
back the information that certain units are dead, but to retain
them on the frame and allow them to be sampled. The
resulting estimator is unbiased, but the disadvantage of this
strategy is that the precision will suffer as part of the sample
is lost on ineligible units. The estimator of Strategy 3 is
f;u =N,/n, ¥, y,, where ris a sample from the original
survey population U;.

3.2 A Simuiation Study

A simulation study may shed some light on which of the
Strategies 1-3 is to be preferred. Natural measures for
comparing the strategies are bias and variance. In business
surveys, estimates for subpopulations (industries) are often
more interesting than the whole population. To simulate a
subpopulation, a frame consisting of 1,000 units was created
to form the original survey population. A gamma distributed
value, Y1, was associated with each unit. We used the same
gamma distribution as the one that generated Population 12
in Lee, Rancourt and Sidrndal (1994, page 236). The coef-
ficient of variation (population standard deviation divided
by the mean) was (1.57. Another study variable, Y2, was
created by performing independent Bernoulli trials, one for
each population unit, which obtained value | with proba-
bility equal to (0.5 and value O otherwise. Unlike in Lee
etal., some of the units were dead. Each unit was inde-
pendently of other units classified as dead with a probability
Paeaa. All dead units were assigned zero values for both Y1
and Y2. A set of Y1 and Y2 were simulated for each of four
values of Pyaq: 0.03, 0.05, 0.2, and 0.5. These sets contained
29, 34, 201 and 494 dead units, respectively.

A PRN was attached to each unit and the units were laid
out along a PRN line. The first sample, s5,, was drawn by
identifying the 500 units with the smallest PRNs. All dead
units in s; were flagged as ‘dead by sample survey sources’.
Hence, sy covered approximately the first half of the PRN
line. The frame with the units flagged as dead by sample
survey sources excluded made up the current survey
population. The estimates of Ny, and N, used in Strategy 2
were based on s;. A second sample, denoted by S2cumen, Was
drawn by taking 100 units to the right of a starting point,
start 2, disregarding units dead by sample survey sources.
Another sample of 100 units was selected from start 2, but
units dead by sample survey sources were this time allowed
to be included in this sample. Hence, this sample was drawn
from U, and we denote it by $uig. The sample Szuren 18
pertinent to Strategies 1 and 2 while 55,4, will be used for
Strategy 3.

The procedure described in the preceding paragraph was
repeated 1,000 times. That is, for each of the values of Py
mentioned above and for each of three starting points of s,
to be defined, 1,000 sets of PRNs were generated and
attached to the units. The frame was reordered for each new
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set of PRNs, and three samples were drawn for each
reordering (51, Szcurens AN $2ig). Two values of seart 2, 0.0
and 0.7, were chosen so as (0 make the proportion of Sacumen
that fell in 5;; 100% and 0%, respectively. That is, n,, /.
was set to 100% and 0%. Further, to make n;,/n; on aver-
age 50% under each of the chosen Pgeq, appropriate values
of start 2 were derived. They are 0.448, 0.447, 0.438, and
0.4 for the Py..q values 0.03, 0.05, 0.2, and 0.5, respectively.
In summary, the population and samples sizes, the study
variables Y1 and Y2, and which of the units that were dead
were held fixed in our study. For twelve combinations of
Pieag and nz ,/n;, the reordering of the units on the PRN line
through the simulation of new PRNs made the following
factors vary:
which of the units that were included in 5|, $acument
and $2origs
how many and which of the dead units that were
dead by sample survey sources;
which of the units that belonged to 5, ; and U ..
Thus the quantities 5,4 N,y and N, vary in the
simulations. It seems practical to let them do so rather than
controlling them in an experiment with more factors than
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Pyt and n,,/m;. Hence the results are unconditional, in
accordance with (8).

3.3 Results

Table 1 shows the empirical relative bias of Strategies 1
and 2, compuied as the straight average of the 1,000
differences between the estimate and the parameter in terms
of the percentage of the total obtained in the simulation.
Strategy 3 is unbiased and is therefore not included in Table
1. The empirical bias of Strategy 3 that nevertheless ap-
peared in the simulations reflects the simulation error; it was
at most 0.5%. As seen in Table 1, Strategy 2 is virtvally
unbiased as well. Note that the simulated empirical bias
under Strategy 1 is what (8} predicts (with allowance for
simulation error). This bias is appreciable in nearly all cases
and if the proportion of dead (or ineligible) units is high the
bias can be very severe indeed. Figure 2 shows the condi-
tional bias given n 4 for Py =050 and n,, /n, =0%.
Note that the bias given by (6) is locally weli described by
the regression line in the figure defined by the OLS fit of the
bias conditional on n, 4. For example, if n, 4= 220, then both
N,,/N,, and (n, —n /(N —n) equal 0.56 and B =
-0.31.

Table 1
Bias, % of Total of Y!. The First Entry in Each Cell is the Bias Under
Strategy 1, the Second is the Bias Under Strategy 2.

Average of n,In

Piead 0% 50% 100%
0.03 —1.6 0.1 0.4 04 1.5 0.0
0.05 2.8 0.0 04 0.4 29 0.0
0.20 -102 -0.2 1.5 04 12.7 0.1
0.50 -24.6 0.2 12.5 03 49.0 0.2
0.1
0.0 F-------- e
a
8
E
3 !
= .
g .
[}
-0.4 ] i
0.5
-0‘6 ’ T i 1 L} T
220 230 240 250 260 270 280

Number of units dead by sample survey sources

- Figure 2. The simulated conditional bias plotted against the number of units dead by
sample survey sources, n g for Pyaq=0.50 and n,,/n, =0%. An OLS
regression line shows the local trend of the conditional bias as a function of 1 4.
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To assess the bias it helps to look at the coverage
probabilities. Table 2 shows the empirical coverage proba-
bilities, based on symmetric ‘confidence intervals’ with a
width of two times the simulated empirical standard
deviation of each side of the point estimate. While Strategy
2 gives in all cells coverage probabilities close to the
targeted 95%, Strategy 1 achieves that in general only for
the population with 3% dead units. The coverage probability
under Strategy 1 tends also to be acceptable for populations
with a larger proportion of dead units, if half of the sample
is taken from the part of the PRN line where dead units have
been weeded out, and the other half from the part of the
PRN line where the original proportion of dead units has
been retained, as the negative bias from the first half of the
sample tends to cancel out the positive bias from the second
half.
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The vanance of the simulated estimates was computed.
Tables 3 and 4 show the variance comparisons for Y1 and
Y2, respectively, under Strategies 2 and 3 relative to that of
Strategy 1. As expected, in all cases Strategy 1 gave a
smaller variance than did Strategy 3. Strategy 2 performed
well in most cases, but considering the extra complexity of
this strategy, the feed back Strategy 1 seems preferable for
populations with a small proportion of ineligible units, say
3% or less. However, if this proportion is larger than, say,
5%, the bias of Strategy 1 may cause poor coverage proba-
bilities and misleading estimates. The variance of Strategy 2
is no worse than that of Strategy 3; in most cases Strategy 2
is superior. The non-monotone variance ratios in the bottom
row of Table 3 is due to the estimation of M., and Ny,
combined with the specific details of the simulation.

Table 2
The Coverage Probability in Percentage for Estimating Total of Y 1. The First Entry
in Each Cell is the Coverage Probability Under Strategy 1, the Second is the
Coverage Probability Under Strategy 2.

Average of n,/n

_Piead 0% 50% 100%
0.03 94.6 94.3 94.6 94 .8 94.3 95.1
0.05 93.3 95.2 94.4 9319 90.8 95.0
0.20 659 94.5 93.8 948 46.1 94.6
0.50 21.2 95.1 78.4 947 0.0 94.8
Table 3

Variance Ratio of the Estimator of the Total of Y1. The First Entry in Each Cell
is the Variance Under Straiegy 2 Relative to that of Strategy 1, the
Second is the Variance Under Strategy 3 Relative to Strategy 1.

Average of ngIn

_Poena 0% 50% 100%
0.03 1.04 1.04 1.00 1.06 0.98 1.08
0.05 1.08 1.08 0.98 1.14 0.95 1.15
0.20 1.28 1.28 0.85 1.27 (.83 1.46
0.50 1.85 1.85 0.52 1.34 (.58 2.24
Table 4

Variance Ratio of the Estimator of the Total of Y2. The First Entry in Each Cell
is the Variance Under Strategy 2 Relative to that of Strategy 1, the
Second is the Variance Under Strategy 3 Relative to Strategy 1.

Average of n,in

Paeas 0% 50% 100%
0.03 1.03 103 100 103 097 1.03
0.05 1.06 106 099 104 095 1.06
0.20 1.25 125 092 115 080 119
0.50 1.80 181 0.65 140 050 1.36
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4. DISCUSSION

This paper gives conditional and unconditional expres-
sions for the feed back bias when the total is estimated with
the common expansion estimator. We have shown that the
feed back bias can be large. With as little as 5% ineligible
units on the frame, feeding back information of these from
sample surveys can result in about 2-3% bias. However, a
small-scale simulation study indicates that if the proportion
of ineligible units is 3% or less, the feed back strategy does
not seem to create problems in terms of bias and variance.

‘We have also derived a virtually unbiased estimator. The
simulation study shows that this estimator compares
tavourably in terms of variance with the alternative strategy
of retaining ineligible units on the frame and letting them be
included in further samples. This estimator relies on the
availability of consistent estmates of the number of eligible
and ineligible units in the population. These estimates may
be obtained from an earlier sample through the unbiased
strategy of letting units that have been found dead be
included in the sample.

In order to facilitate the theoretical development, we have
made simplifying assumptions. The most important of these
is the assumption that ali dead units have been found in
earlier sample surveys and have been fed back to the frame.
We have envisaged a frame with one ‘white’ area, where all
ineligibles have been flagged as such, and one ‘black’ area,
where no ineligibles have been touched. In practice, this is
not likely to happen. If the frame is moderately large and
used for many continuing surveys, some of which may feed
back to varying intensity, the frame will turn ‘grey’ rather
than ‘black and white’. The feed back bias will then be less
severe than in the ‘black and white’ situation. It has not,
however, been in the scope of this paper to quantify the bias
for a ‘realistically grey’ frame. In this sense, what has been
examined in this paper is a worst case scenario.
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Application of Quality Control in ICR Data Capture:
2001 Canadian Census of Agriculture

WALTER MUDRYK and HANSHENG XIE '

ABSTRACT

Intelligent Character Recognition (ICR) has been widely used as a new technology in data capture processing. It was used
for the first time at Statistics Canada to process the 2001 Canadian Census of Agriculture. This involved many new
challenges, both operational and methodological. This paper presents an overview of the methodelogical tools used to put in
place an efficient ICR system. Since the potential for high levels of error existed at various stages of the operation, Quality
Assurance (QA) and Quality Control (QC) methods and procedures were built into this operation to ensure a high degree of
accuracy in the captured data. This paper describes these QA / QC methods along with their results and shows how quality
improvements were achieved in the ICR Data Capture operation. This paper also identifies the positive impacts of these

procedures on this operation.

KEY WORDS: Data Capture; Intelligent Character Recognition (ICR); Quality control; Quality improvement;

Statistical process control.

1. INTRODUCTION

The data capture of the 2001 Canadian Census of
Agriculture was conducted between July and November
2001, uvsing relatively new technology called Intelligent
Character Recognition (ICR). This approach to data capture
combines Automated Machine Capture which uses optical
character, mark and image recognition, with Manual
Capture by operators who ‘key from image’ using a heads-
up data capture technique. The heads-up data capture
technique is applied only to fields that can not be recognized
by the optical system with a sufficiently high degree of
confidence (that is pre-specified).

The ICR system offered many benefits to the data
capture operation, in terms of resource savings and
productivity gains. At the same time, accuracy became an
extremely important consideration for processing a large
number of documents since the potential for unacceptable
levels of error existed at various stages of the process. In the
literature, the quality of ICR applications has been studied
by a few authors; see, e.g., Kalpic (1994) and Pasley (2000),
among others. Kalpic discussed the coding algorithm and
the results for the 1991 Census Coding Operation in Croatia
and Bosma-Herzegovina, using intelligent optical readers.
Pasley pointed out that the quality of a scanned image
usually depends on the quality of the source document, the
precision of the scanner, the skill of the scanner operator and
the resclution at which the document was scanned. With
quality improvement in mind, QA and QC procedures were
built into the data capture operation for the 2001 Canadian
Census of Agriculture to ensure a high degree of accuracy in
this operation.

Quality Control activities for the ICR Data Capture
Operation were focused in three main stages of processing,
namely: document preparation, scanning calibration, and
data capture of the questionnaires. This was done since each
of these stages was dependent on one another and each had
the potential to contribute significant errors down the line.
Therefore, each component should ideally have its own
control system.

It is the purpose of this paper to describe the QA/QC
methodology and procedures associated with each of the
main stages of the ICR Data Capture Operation, summarise
the results obtained from their application and show how
ongoing quality improvements were achieved in the ICR
Data Capture operation.

2. QUALITY PROGRAM OVERVIEW

To better understand the rationale behind the QA/QC
procedures, it is worthwhile to give an overview of their
objectives and methodologies.

2.1 Objectives

The overall quality objective for this project was to
measure, control and improve the quality of the entire ICR
Data Capture Operation on a continuous basis. This would
be achieved by implementing a series of QA/QC procedures
at each crtical stage of the operation. The specific
objectives for each stage were as follows:

a) Document Preparation: to ensure that only highly
readable documents would reach the scanning stage.

Walter Mudryk and Hansheng Xie, Business Survey Methods Division, Statistics Canada, Ottawa, Canada K1A OT6.
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b) Scanning Calibration: to ensure optimal machine set-up
and calibration prior to the start of production.

¢) Quick Capture (Machine Capture) and Quick Key
(Manual Capture): to ensure a high level of quality of
data capture during production.

2.2 QA/QC Methodologies

Each major stage of processing was operationally unique
and therefore, had different quality requirements. As a
result, QA procedures were applied to the Document
Preparation operation, and QC procedures to the Scanning
Calibration, Quick Capture and Quick Key operations. A
flowchart is given in the Appendix, which shows the various
stages of the ICR Data Capture Operation and exactly where
these procedures were applied.

2.2.1 Document Preparation

The document preparation operation was essentially
divided into five sub-processes, specifically: sorting,
transcription, batching, cutting and storage. This operation
was responsible for preparing the questionnaires and as-
sociated batches for scanning by the ICR equipment and
was performed manually by clerical staff, It included
activities such as separating the contents of the received
envelopes by document type (Sorting), re-transcribing dam-
aged or illegible questionnaires (Transcription), grouping
questionnaires into batches for registration (Baiching),
cutting the spine of each booklet questionnaire with an
electric cutter (Curting) and filing questionnaires in the
archive (Storage). One of the most important aspects of this
operation was the identification and isolation of problematic
questionnaires so that they would not advance undetected to
the scanning and data capture stages. These problematic
questionnaires were labeled as ‘outlier’ questionnaires since
they had problems such as questionnaires being X ed out or
written over fields, extraneous markings, illegible entries,
tom, crumpled or taped documents, efc.

The potential for error in this operation could lead to
some problems being experienced at the scanning stage. It
was felt that QA procedures would be appropriate to ensure
quality at this stage since many of the clerical functions
were also subject to various automated system cross-checks.
The systemn cross checks ensured that the documents had a
valid ID, correct number of pages, and that the pages, once
cut, were aligned and in sequential order. The QA
procedures consisted of a series of on-going random spot
checks for each of the five sub-processes. The results of
each spot check were recorded on a control form and
summarized for the supervisor to identify if the work was
being done comrectly. Feedback would then be given to the
individual clerk or group on a regular basis, and corrective
actions would be taken when necessary. For example, if the

work was not being performed well, some re-training would
take place and/or an increase in the frequency of spot-
checks was done until favorable results were obtained. If
exiensive problems were identified, the supervisor could
also decide on the amount of re-work required, based on the
seriousness of the problem observed.

For the sorting, batching, cutting and storage operations,
the quality measure selected was “percent of questionnaires
in error’ (ie., in keeping with the assumptions required for a
simple sampling unit). For the transcription operation, the
probability of multiple independent errors occurring within
a questionnaire was extremely high and therefore the quality
measure selected was ‘Defects per Hundred Units, DPHL"
(i.e., in keeping with the assumptions required for a com-
plex sampling unit}.

2.2.2 Scanning Calibration Check

Experience has shown that if the scanning equipment is
not properly configured, the potential for generating poor
quality images increases substantially. It is therefore im-
perative that the scanning equipment be optimally set prior
to production and well maintained throughout the scanning
operation. To ensure this, a QC procedure called the
Scanning Calibration Check was developed to review the
machine settings and calibration on an ongoing basis.

Since the equipment settings of the scanning system
would tend not to fluctuate too greatly, it was felt that
Statistical Process Control (SPC) methods would be
appropriate for controlling this portion of the operation. This
would essentially be an ongoing spot check of the
calibration settings performed on a daily basis prior 1o the
start of production. The calibration check consisted of re-
scanning a test batch and comparing the results with the
corresponding pre-benchmarked results for the same batch.
The differences between the actual and expected results
would be compared and error rates computed. These error
rates were then plotted on SPC control charts to determine if
the process was operating at an acceptable level. If this test
batch failed, the scanning process would not be allowed to
start productton until the machine was re-calibrated and
subsequently re-tested successfully.

In the Scanning operation, machine recognition could
substitute wrong values when poor quality images are
produced. Poor images could be the result of many factors
such as dirty read heads, smeared optical windows, mis-
alignment, mis-registration of fields, poor contrast /
brightness levels, paper feed problems, efc. Since a specific
quality standard was established for each field type, a
separate p control chart was used to evaluate the substitution
emror rate for each type (specifically, alpha, alphanumeric,
numeric, tick boxes and bar codes). The acceptable quality
standard for each field type was previously established on a
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field type basis by the client area so therefore, the quality
measure used was ‘percent of fields in error’, ie., the
substitution error rate by field type for each scanner.

Based on SPC control chart theory, a decision for each
scanning calibration test was made as follows:

— If each of the sample error rates for the five field types
was respectively lower than their corresponding upper
control limit (UCL), it was concluded that the scanning
system was functioning properly and was ready for
scanning production.

- Otherwise, it was concluded that a problem existed with
the scanning equipment, and corrective action must be
taken before the start of regular production.

The test batches were constructed with minimum sample
size requirements in mind for each field type, such that the
producer’s confidence level would be at least 95%. This was
then used as a guide in selecting the actual questionnaires
for each of the test batches. The minimum size was required
for each field type in order to achieve the high efficiency of
decisions in the scanning calibration test, while the
Producer’s Confidence Level referred 1o the likelihood that
the scanning system would pass the test for that field type
when the system was functioning at the acceptable target
level. The Upper Control Limit for each field type was
computed assuming a +26 variability. This limit is lower
than the customary +3¢ Upper Control Limits since the
scanning calibration check was designed to be more
sensitive in detecting smatler shifts at start-up than during
normal production.

2.2.3 Quick Capture and Quick Key

Once the questionnaires had been scanned, the system
would produce a digital image of each field along with an
interpretation of its value and an associated confidence level
for its recognition. The actual data capture then consisted of
two processes: Quick Capture and Quick Key. Quick
Capture was the automatic recognition by the system of all
field images whose confidence levels were above a pre-
specified threshold valve. Quick Key consisted of the heads-
up manual capture (by keyers working on terminals) of field
images whose conftdence levels were below the pre-set
threshold value.

Since under ideal circumstances, these two processes
were expected to be relatively stable, the QC Procedures
were again based on SPC principles and were developed to
measure and monitor the quality of each of the processes.
This QC approach consisted of a small sample check from
the output of a sample of batches taken systematically over
time and computing the error rates for each sample. These
error rates would then be compared to rejection levels that
were calculated by the system based on the expected quality
standard and the sample size for that observation. A
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decision was then made as to the acceptability of each of
these sample measurements relative to the expected quality
standard for that process.

In the case of the Quick Capture operation, the machine
may interpret a different value from the actual value for that
field, and therefore, substitution rates were used to evaluate
this process. These substitution errors are particularly
serious since, if left unchecked, they may affect the
recognition rate for many fields for a long period of time. In
the case of the Quick Key operation, operators may make
keying errors for many reasons such as lack of skill, poor
training, fatigue, etc., and therefore, keying error rates were
used to evaluate this manual process. For both of these
processes, the quality measure was defined as ‘percent of
fields in error’, across all field types combined.

Within the two capture operations, there were two
distinct categories for processing the scanned documents:
Regular questionnaires and Outlier questionnaires. QC
procedures were put in place for each category. A separate
sample was required for each process, one for Quick
Capture and one for Quick Key. The system could
distinguish between Quick Capture and Quick Key fields in
each sample questionnaire and maintain separate counts of
these fields that had been captured under each process.
These field counts eventually became the sample size for
each sample. Each sample was then compared to its own
threshold rejection rate, which was a function of the
number of fields observed (i.e., the effective sample size)
and the expected quality standard or target for that process.
A decision would then be made to accept or reject the
sample. The threshold rejection rate was equivalent to the
standard Upper Control Limit (UCL) that would be
calculated on a standard p control chart. If the sample error
rate exceeded this level, the process was rejected and the
QC Reviewer proceeded to investigate and implement
comective actions as appropriate; otherwise the process was
accepted.

The sampling was done on an individual scanner basis
for Quick Capture and an individual operator basis for
Quick Key. Some operators required more questionnaires to
be sampled from time to time, and others less, based on their
actual performance. Since the actuwal observations were
based on samples, a customary +3G varability was
permitted above the expected quality standard (i.e., the
centerline of a p control chart) for each process. The batch
decisions for these sample observations were made by the
system during QC verification and these results were then
plotted on a p control chart for each scanner and operator,
after the fact and updated weekly.

For a detailed description of these QA/QC procedures
and their rationale, please refer to Mudryk, Bougie and Xie
(2001).
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3. QUALITY IMPROVEMENTS

Two essential elements were included in the quality
improvement strategy for the ICR Data Capture Operation.
These consisted of feedback of QA/QC results and the
implementation of corrective and preventive actions when
required. These two elements enabled various staff to play
an active role in improving the quality of each process
through the additional insight into the problems that were
identified and through the subsequent corrective or
preventive actions that were taken.

Using QC data analysis as the base, all processes were
examined to determine if they were operating efficiently.
QC meetings were held with operations staff on a weekly
basis to review the ongoing progress of the entire operation.
Problems that had impacted any of the processes were
addressed and recommendations made to treat their root
causes and prevent their re-occurrence. The involvement of
operational staff in resolving these problems played an
important part in facilitating quality improvements on a
continuous basis. The following examples illustrate some of
the more significant corrective actions that were taken
during the operation that led to quality improvements at
various stages.

Example 1: Filiering Process for Detecting Outlier
Documents

During the first few weeks of production, it was noticed
that some documents were causing a high concentration of
errors from things like large X's across a page, 0's and
dashes in various fields, etc. These documents were causing
high error rates for both operations but especially for the
Quick Capture process. Since these documents were very
different from the majority of the regular documents, a
procedure was introduced to sort these documents for spe-
cial treatment and processing after the fact. Some docu-
ments in fact had to be re-transcribed at this stage prior to
processing them by ICR.

Example 2: Adjusting System Settings for Scanning &
Recognition

The highlights of the QC weekly summaries indicated
that both scanners made errors frequently on Pages 3 and 14
of the questionnaires during the first few weeks of
processing. An investigation was conducted and it was
found that there was a template reading problem on Page 3
and the pre-set recognition threshold level for the numeric
fields on Page 14 were set too low. After the system settings
on both scanners were adjusted, the system showed
substantial improvements in the scanning of these two
pages.
Example 3: Retraining Operators with High Error Rates

During the keying operation, the QC results showed that
certain keyers were experiencing above average difficulties
with the ‘key from image’ process and that their error rates

remained high for several weeks. Focusing on continuous
improvement, these keyers were offered retraining on an
ongoing basis. As a resull, many keyers made significant
improvements (week by week) in their keying performance.

4, QC EVALUATION AND ANALYSIS

Throughout the operation, many QC reports, charts and
estimates, were produced to provide information about the
incoming and outgoing quality levels and to evaluate the
output of each production process. These reports were used
o analyse the quality of each process by week and across
weeks.

4.1 Document Preparation

For each of the five sub-processes of the document
preparation, individual QA procedures were applied at
different frequencies and both corrective and preventive
actions were taken on an on-going basis as dictated by the
results. The information coltected and the feedback that was
provided as a result of these QA procedures helped
significantly in improving the scanning, imaging, recog-
nition and capture of the questionnaires. In the first few
weeks of production, it was discovered from the QC results
that problematic documents (iLe., outliers) were causing
most of the substitution errors (i.e., machine errors) in the
Quick Capture process. From that point on, a new procedure
was introduced into the Sorting process of the Document
Preparation operation to separate these documents for
special treatment from the regular documenis (i.e., labeled
them for subsequent 100% verification). In general, better
quality documents reached the scanning stations while
poorer documents were either re-transcribed or processed
separately with the addition of post processes such as 100%
verification.

4.2 Scanning Calibration Check

In an effort to ensure optimal scanner settings and
calibration, a Scanning Calibration Check was initially
conducted twice a day, and subsequently once a day, prior
to production processing. Many test batches were scanned
during the operation with a relatively high rejection rate
encountered by each scanner. On average, approximately
2-3 tests per day (with corresponding re-calibrations) were
required for optimising the set-up of each of the two
scanners. This demonstrates the need for re-calibration
between processing periods. It should be noted that some
rejections occurred due to problems identified with the test
batches which were fixed later on. This is definitely an area
where some procedural improvement is required in the
future.
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Both scanners exhibited reasonably high variability
during this test. The high number of tests required, high rate
of rejection and high variability across processing periods
for many of the field types demonstrate the need to calibrate
the scanning equipment properly prior to production.
Otherwise, the scanners could be inadvertently set up to
produce poor images right from the start, which would
make good quality capture very difficult. Once a test batch
failed, problems were usually identified and subsequent
maintenance and corrective actions taken. This included
actions such as: re-configuring the scanning equipment,
replacing old light bulbs, fixing software problems, cleaning
dirty read heads, efc. Using this test, the scanners were dble
© be calibrated and maintained at optimum levels of
performance, between production runs.

4.3 Quick Capture and Quick Key

For the Quick Capture process, over the entire 18 weeks
of processing the Regular questionnaires, the overall
weekly substitution error rates decreased steadily from 4.3%
t0 0.8%, resulting in a grand overall substitution error rate of
2.0% (across all field types) for both scanners. The
substitution error rates measured during production were
maintained very near the Target levels that were established
for each field type. These were as follows: Alpha (2.1%
relative to a target of 2.0%); Alphanumeric (3.2% vs. 3.5%);
Bar Code (0.0% vs. 0.2%), Numeric (2.8% vs. 2.0%) and
Tick Boxes (0.8% vs. 0.4%). In comparison, processing the
outlier questionnaires had a much higher substitution error
rate and greater weekly variability than the corresponding
regular questionnaires (j.e., ranged from a high of 22.4%
a low of 1.3%). Although the substitution error rate did tend
to reduce substantially over time, it did remain relatively
high throughout the process and was measured at 7.0%
overall, which was significantly higher than the rate for
regular questionnaires (i.e., 2.0%).

For the Quick Key process, the keying error rate for
processing the regular questionnaires was relatively high
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throughout the entire processing period (ie., mostly over
3%). This was partially due to the fact that this operation
was a heads-up keying process and these keyers typically
processed the most difficult cases. Over the entire 18 weeks
however, the weekly keying error rates generally decreased
from 5.6% to 1.6%, with an overall average of 3.4%. The
keying was also subject to high levels of variability among
operators, with individual error rates ranging 1.7% to 7.5%.
It is interesting that keying the outlier questionnaires had a
similar keying error rate to the comesponding regular
process (ie., 3.4% vs. 3.7%) and ranged from a high of
5.7% to a low of 1.6%.

4.4 Estimates of Average Qutgoing Quality

The primary purpose of the QA/QC procedures was to
identify problems and to prevent them from occurring again.
However, these procedures also had a corrective component
in the sense that, errors that were discovered were always
rectified. It is therefore possible to estimate the overall
Average Outgoing Quality (AOQ) for the data capture
component after the application of the QC procedures.

Estimates of AOQ were calculated for each of the two
data capture processes. For a sampled outlier batch, all the
questionnaires (i.e., sampled and remainder) in that batch
would be subjected to subsequent 100% verification, while
for a regular batch, only the sampled questionnaires would
be verified. This affects the calculation of AOQ since it can
be assumed that the outgoing error rate for all verified
questionnaires is 0.0%. The overall estimate for each
component was based on the information obtained from
both the regular and outlier documents, considering
estimates of incoming quality and corrections made during
verification. In the calculation, any documents reprocessed
through either Quick Capture or Quick Key were included
in the count.

Table 1 provides estimates of the AOQ for the Quick
Capture and Quick Key processes.

Table 1
Estimates of AOQ for ICR Data Capture
Estimated
No. Questionnaires  No. Fields in  No. Fields Verified Incoming Error  AQQ (%)

Process in Population Population and Corrected (%)
Quick Capture

Regular 273,818 21,248,277 170,249 201 1.99

Outlier 12,702 1,044,358 1,044,358 6.99 0.00

Overall 286,520 22,292,635 1,214,607 295 1.90
Quick Key

Regular 281,502 6,376,020 234,253 341 3.28

Outlier 25,788 686,734 686,734 3.67 0.00

Overall 307,290 7,062,754 920,987 3.45 297
Combined

Regular 27,624,297 404,502 2.82 229

Outlier 1,731,092 1,731,092 5.09 0.00

Qverall 29,355,389 2,135,594 3.24 2.16
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It can be seen that the overall AOQ for the Quick
Capture process was estimated at 1.90% and for the Quick
Key process at 2.97%. This was down considerably from
their corresponding estimates of incoming quality of 2.95%
and 3.45% respectively. The overall AOQ for both
processes was estimated at 2.16% (relative to an overall
incoming error quality of 3.24%). It should be noted that the
AOQ for outlier documents was assumed to be 0% since all
outlier documents were subsequently 100% verified.

4.5 QC Summary

The above results clearly indicate the need for the
QA/QC procedures at the different stages of processing. It
also shows how they collectively contributed to controlling
the outgoing quality and generating quality improvements
into all phases of the ICR data capture operation.

The QC results clearly showed that the outlier documents
had a greater negative impact on the Quick Capture process
(ie., 7.0% substitution error rate) than the Quick Key
process (i.e., 3.7% keying error rate). This indicates that the
filtering process for special treatment of outlier documents
was an important step to take. The QC results also showed
that if the documents were in good shape for scanning and
the machines were well calibrated, the automated system
was capable of capturing the data faster and with better
quality than the manual key from image process. This is
quite an important observation, since there are obvious
savings implied with a corresponding improvement in data
capture quality (i.e., 2.0% vs. 3.4%). To the defence of the
keyers, however, they did process the more difficult cases,
thus partially explaining their higher error rates. Overall, it
was estimated that about 77% of the fields were captured
through the Quick Capture process and 23% were captured
through the Quick Key process.

It should also be noted that the regular feedback of the
QC information collected from the various stages of the ICR
process was essential in identifying the root causes of many
problems and in helping to resolve them. This provided the
opportunity for many quality improvements to be generated
into the various stages, on an on-going basis.

For a detailed description of these QA/QC results, please
refer to Mudryk and Xie (2002).

5. CONCLUSIONS

It is clear from the results obtained in this analysis, that
the QA/QC procedures were extremely valuable and had a
very positive impact on the entire operation. The QA
procedures that were applied in the Document Preparation
process were effective in preventing many poor documents
from reaching the scanning stations and those that did were

then labeled for special weatment and subsequent 100%
verification.

The QC procedures were then able to optimize the
machine set-up by applying the Scanning Calibration Check
prior to production. Furthermore during production, QC
samples were also able to identify problems with the auto-
matic recognition and key from image processes, so that
they could be improved as required.

In all cases, early warning. signals were obtained from
objective measurements at each stage of processing, and
corrective and preventive actions were implemented as
needed. Extensive feedback was provided to all stages of the
ICR process on an ongoing basis from which continuous
quality improvements were generated.

APPENDIX
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Design Effects for the Weighted Mean and Total Estimators
Under Complex Survey Sampling

INHO PARK and HYUNSHIK LEE '

ABSTRACT

We revisit the relationship between the design effects for the weighted total estimator and the weighted mean estimator
under complex survey sampling. Examples are provided under various cases. Furthermore, some of the misconceptions

surrounding design effects will be clarified with examples.

KEY WORDS: Simple random sample; pps sampling; Multistage sampling; Self-weighting; Poststratification;

Intracluster correlation coefficient.

1. INTRODUCTION

The design effect is widely used in survey sampling for
developing a sampling design and for reporting the effect of
the sampling design in estimation and analysis. It is defined
as the ratio of the variance of an estimator under a complex
sampling design to that of the estimator under simple
random sampling with the same sample size. An estimated
design effect is routinely produced by compuier software
packages for complex surveys such as WesVar and
SUDAAN. Tt was originally intended and defined for the
weighted (ratio) estimator of the population mean (Kish
1995). However, a common practice has been to apply this
concept for other statistics such as the weighted total

estimator often with success but at times with confusion and -

misunderstanding. The latter situation occurs particularly
when simple but useful results derived under a relatively
simple sampling design are applied to more complex
problems. In this paper, we examine the relationship
between the design effects for the weighted total estimator
and the weighted mean estimator under various complex
survey sampling designs. In section 2, we briefly review the
definition of the design effect and its practical usage while
discussing some of the misconceptions surrounding design
effects for the weighted total and mean estimators.
Subsequently, in section 3, we analyze the difference
between the design effect for the weighted total estimator
and that for the weighted mean estimator under a two-stage
sampling design followed by a discussion regarding the
design effects under various two-stage sampling designs and
some more general cases in section 4. We try to clarify
some of the misconceptions with these examples. Finally,
we sumnmarize our discussion in section 5.

2, A BRIEF REVIEW ON DEFINITION AND USE
OF DESIGN EFFECT IN PRACTICE

A precursor of the design effect that has been
popularized by Kish (1965) was used by Cornfield (1951).
He defined the efficiency of a complex sampling design for
estimating a population proportion as the ratio of the
variance of the proportion estimator under simple random
sampling with replacement (srswr) to the corresponding
variance under a simple random cluster sampling design
with the same sample size. The inverse of the ratio defined
by Cornfield (1951) was also used by others. For example,
Hansen, Hurwitz and Madow (1953, Vol. I, pages
259 —270) discussed the increase of the relative variance
of a ratio estimator due to the clustering effect of cluster
sampling over simple random sampling without
replacement (stswor). The name, design effect, or Deff in
short, however, was coined and defined formally by Kish
(1965, section 8.2, page 258) as “the ratio of the actual
variance of a sample to the vartance of a simple random
sample of the same number of elements” (for more history,
see also Kish 1995, page 73 and references cited therein).

Suppose that we are interested in estimating the
population mean (¥) of a variable y from a sample of
size m drawn by a complex sampling design denoted by
p from a population of size M. Kish’s Deff for an
estimate (¥, )} is given by

_Y0,)
(1-f)S2/m
where V,, denotes variance with respectto p, f =m/M is

the overall sampling fraction, and §2 = (M -1)"
Y¥ (y, —¥)? is the population element variance of the

Deff 2.1
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y-variable. Although the design effect was originally
intended and defined for an estimator of the population
mean (Kish 1995), it can be defined for any meaningful
statistic computed from a sample selected by a complex
sampling design.

The Deff is a population quantity that depends on the
sampling design and refers to a particular statistic estimating
a particular population parameter of interest. Different
estimators can estimate the same parameter and their design
effects are different even under the same design. Therefore,
the design effect includes not only the efficiency of the
design but also the efficiency of the estimator. Sirndal,
Swensson, and Wretman (1992, page 54) made this point
clear by defining it as a function of the design ( p) and the
estimator (8) for the population parameter (6 =0(y)).
Thus, we may write it as

vV, @
Vrswor 8

where & is the usual form of an estimator for 6 under
srswor, which is normally different from 8. For example, to
estimate the population mean, one may use the weighted
(ratio) mean 6=3, w,y, (2, w, with sampling weights
w, but 8" would be the simple sample mean ¥, y, /m,
where the summation is over the sample s. We will see the
effect of particular estimators & on the design effect in the
later sections.

Kish (1995) later advocated using a somewhat different
definition, which is called Deft and uses the srswr variance
in the denominator on the ground that without-replacement
sampling is a part of the design and should be captured in
the definition. He also reasoned that Deft is easier to use for
making inferences and that it is better to define the design
effect without the finite population comrection factor (1- f)
because the factor is difficult to compute in some situations.
The new definition is given by

Deff , (8) =

v,()

Deft (6) = 4
eft ,(8) V@

r (8. Survey data software
such as WesVar and SUDAAN produce Deft® instead of
Deff. We will use this definition in this paper.

When the population parameter is the total (Y), the
unbiased estimator is the weighted sample total, namely,
Y= 2 W, ¥,. When the population mean is the parameter
of interest, it is usually estimated by the weighted mean, that
is, ¥=%,w,y, /T, w,. Itis a special case of the ratio
estimator, ¥, w, ¥, /X, w, x,, where x, =1 forall kes.

One common misconception about the design effects for
Y and ¥ is that they are similar in values. However, it has
been observed that the design effect for f, Deftf, (f),

or Deft} @)=V, @)/V,

tends to be much larger than that for f" , Deftf, (}% }. This
was also noted in, for example, Kish (1987) and Barron and
Finch (1978). Some explanation can be found in Hansen
etal. (1953, Vol. 1, pages 336 — 340) who showed that the
difference arises from the relative variance of the cluster
sizes. More recently Simdal et al. (1992, pages 315 - 318)
showed that contrary to the case of ¥, the design effect
for ¥ depends on the (relative) variation of the y-variable.
In fact, even the design effect for ¥ may depend on the
(relative) variation of the y-variable, which we will discuss
in section 4. This dependence contradicts what the design
effect is intended to measure as Kish (1995) explicitly
described:

“Deft are used to express the effects of sample design
beyond the elemental variability (§ f‘ /m), removing both
the units of measurement and sample size as nuisance
parameters. With the removal of § v the units, and the
sample size m, the design effects on the sampling errors
are made generalizable (transferable) to other statistics
and to other variables, within the same survey, and even
to other surveys.”

. His statement may be loosely true for the weighted mean
Y as expressed in the frequently used sample approximate
formula for Deft? ( p,¥) given by Kish (1987):

Deft? (7) ={1+p@-D Hi+ev2)  (22)

where the sample design p contains complex features such
as unequal weighting and cluster sampling, p=p () is the
intraclass correlation coefficient {often called within cluster
homogeneity measure), 1 is the average cluster sample
size, and cv? is the sample relative variance of the weights.
Strictly speaking, this formula is not independent of the
y-variable because p is dependent on the y-variable. Also,
the design effect may not be free of the unit of measurement
unless V, (Y) is expressed in a factorial form of Sﬁ Im.
See Park and Lee (2002). This formula (2.2) is valid only
when there is no correlation between the sampling weights
and the survey variable y. However, if the correlation is
present, the formula may need to be modified as studied by
Spencer (2000) and Park and Lee (2001). In the following
section, we elaborate this aspect in detail for two-stage
sampling and we will also examine this point further in
section 4.1.

3. DECOMPOSITION OF THE DESIGN EFFECT
UNDER TWO-STAGE SAMPLING

We consider a sampling design conducted in two stages.
Suppose that a population U={k:k=1,..., M} with M
elements is grouped into N clusters of size M, such that
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M=3¥ M, The first stage sample s, ={i:i=1,...,n}
of n clusters (primary sampling units, or PSUs in
abbreviation) is selected with replacement from N clusters
with probabilities p,, where X, p, =1. Let p, =Pr(s,)
denote the first stage sampling design. The second stage
sample s,, ={j:j=1,...,m;} of m, elements (secondary
sampling units or SSUs in abbreviation) is then selected
independently from each PSU i selected at the first stage
according to some arbitrary sampling design, say p,; =
Pr(s,; |s,) where i€ s,. Denote the total sample of ele-
ments and the overall sampling design by s=u,., s,; and
p = Pr(s), respectively. Associated with the ;™ element in
the /™ cluster is a survey characteristic y;,j=1...,M,,
i=1,...,N. Foragiven i€ s,, let w;, bethe second stage
samphng weights such that an estimator of the form ¥, =
pIyH w”, ¥y, is unbiased for the cluster total Y, = ZM 1 ¥y
that is, E, (¥,)=Y,, where E, represents the expectation
with respect to the second stage sampling. Let w, =1/(np,)
be the first stage sampling weights and let Y =3, be
the population total. It is easy to show that E_ (Y,/p;)=Y.
Assuming that Y, are known for i€ s,, Xi.,w; Y, is the
average of »n unbiased estimators of Y so that
E,(Z.,w, Y,)=Y, where E, denotes the expectation with
respect to the first stage sampling design. Note that both
stages are sampling with replacement. Accordingly, it is
possible that the same sampling unit (either cluster or
element) is selected more than once but they are treated
differently. Define the overall samp]ing weights by
wy =w,wy,. Clearly, ¥ = £1_, T ,wu v is unbiased for
Y, that is, E(Y)—E E,(Y)=E, (Zl.,w, Y )=Y,

where E, represents the expectation w1th respect to p. The
variance of Y can be written as

v, (Y)=V0Eb(Y)+EaVb(l"")

= i w, (Y, —p.¥)? + i wV, (¥)

i=l i=l

3.
where Vp,Va and V, represent variances defined with
respect to the overall, the first stage, and the second stage
sampling, See Sirndal et al, (1992, pages 151 — 152),

A commonly used estimator for the population mean
Y/IM is the weighted (ratio) estimator given by
YIM where M =3/, T% w,. Using Taylor linear-
ization, as shown in Stimdal er al. (1992 pages 176 - 178),
can be approximated as

Y=7+M™'D
where D= 2l 2 is an unbiased estimator of the
population total D Z, ,ZJ dy of dy=y;- -7, which
represents the deviation of y, from the population mean
Y. Note that D=0. Denoting D, = Y, =Y,-MY

and D 2wy d,j, we obtain the apprommate variance
of ¥ from expression (3.2) as

H

'-<|>N s |
fl

(3.2)
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& 1| & M, . A
AV, (Y)_EI_Z ; wl.(Yl. —VYJ +§ W, Vb(D,.)]. 33)

If a simple random sample of size m=3/.,m is
selected with replacement from the population U, then a
sample mean ¥ =2y, /m and its expansion

%Z, Vi

would serve as the estimators of the population mean ¥
and total ¥, respectively, under srswr, where f=m/M is
the overall sampling fraction. Their variances under this

V. =M%, = (3.4)

sampling design are given as srsM,r( e M*E Voowe Fors s
where mw, (Fo)=m"' S and  S2=(M -7
(¥, —Y)*. We note that m is the achleved sample size,

which is a random quantity in general. From (3.1), (3.3), and
above expressions with m replaced by its expected value m’
with respect to the overall samplmg design p, ie,

m=E ,(m), the design effects for Y and ¥ can be written

: {Zw[——p,] +§WV[ ]} 65
it}

where CV2=S§2/¥? represents the population relative
variance of the y-vanable From these expressions, the
difference in design effects for ¥ and ¥ can be written as
follows.

Deft (Y)—

and

Y ¢ N Y
Deft? (V)= {Z W, ( )
R %

i=1

Deft? () - Deft® (V)= A, +4,, 3.7)

where

and

n g {Z {u{3 ) [P”"m

The two components A, and A, in expression (3.7)
reflect the differences arising from the respective sources of
variation from the first and second stages of sampling. Of
course, the second component disappears if all the elements
in selected clusters are observed since it becomes a single-
stage design or if a simple random sample is selected in the
second stage. This is because both variances V,,(P,.) and
Vb(f),.) are equivalent under the aforementioned conditions,
that is, 1) V,(¥)=V,(D,)=0 if w,, =1 forall i and j, and
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2) V, %)=V, (D,)20 if w,; =M /m, forall i and j. In
other words,
A, =0 if wy =c, foralliand j, (3.8)

where ¢; are nonnegative constants and not necessarily
equal for different clusters. Meanwhtle, we can show that

0 if p;eM,,
A, = Ap(y) if Y,eeM,, (39
-A,(y) if p,=<V,

i

for all i, where A (y)=(m'/CV)ZL w,(p,—-M IM)".
Note that A, (y} is a nonnegative quannty and also that the
conditions in expression (3.9) can be restated, respectively,
as p, =M /M,Y, =Y, and p,=Y,/Y, where ¥, =Y,/M,
forall i=1,..., N. This result reveals the effect of cluster
sampling on the precision of the two estimators. For
example, if p,=M,/M, cluster sampling makes no
difference in the prec151on of the two estimators. On the
other hand, if p, =Y,/¥,¥ becomes more efficient than ¥
in precision under cluster sampling, whereas the cluster
sampling favors ¥ over ¥ in terms of precision if ¥, =¥
forall i.

Now, let us consider some examples of the conditions of
(3.8) and (3.9).

Example 3.1 For one or two-stage cluster design with pps
cluster sampling using p, =M, /M and w;, =c; for all
i-] , N, we have from (3.8) and (3.9) that A,

= 0 that is, there is no difference in the design effects for
Y and ¥ .

The same result as given in example 3.1 can be achieved
by ¥=MY. This estimator is the ratio estimator, which
can be used if M is known. The case that overall sampling
weights are a constant for all the elements (ie., self-
weighting sampling design} is a well known special case.
We will come back to this in section 4.

Example 3.2 One-stage simple random cluster sampling or
two-stage sample design with srs for both stages. Under
these designs, we have w,;, =¢; and p, =I/N forall i and
Jj and thus, it follows from (3.8) and (3.9) that A, =0 and

{
0 if M, =M, foralli,
CVy . o
A, =i oV if ¥, are all equal, (3.10)
CV2
- CVZ if ¥, are all equal,

where m'=m'In, CV2 =My, (M,—M)*IN denotes
the relative variance of cluster sizes M, and M =M /N
denotes the average size of clusters. The conditions in (3.10)
also satisfy the conditions in (3.9) and therefore, (3.10) is a
special case of (3.9). Note that the quantity A,(y) in

expression (3.9) approximately reduces to 7 - CV,, /CV]
when p, =1/N foralli.

Example 3.2 shows that when unequal cluster sizes are
not reflected in the sampling design, the relative efficiency
of ¥ over ¥ depends in part on the relative variability of
cluster sizes. If the cluster means are all equal then cluster
sampling makes ¥ more efficient than Y, vice versa if all
the cluster totals are equal. On the other hand, if all clusters
are equal in size, no difference in the design effects arises by
simple random sampling of clusters.

In section 4, we utilize the results derived in this section
to discuss other examples used in the sampling literature.

4. EXAMPLES ON THE DESIGN EFFECT IN THE
SAMPLING LITERATURE

4.1 Unequal Probability Element Sampling

Consider an unequal probability element sampling design
without clustering. The discussion in section 3 applies to
this example with M, =1 for all i=1,...,N and thus,
m=n. For brevity’s sake, we use lower cases y, to denote
the value of the y-variable, and we also assume that ¥ is
large so that N/(N-1)=1. Due to the absence of the
second stage sampling variation, the design effects for y
and ¥ given in expressions (3.5) and (3.6) reduce to

N
2 P i pY)?
Deft? (F)= @.1)
2 Ny -7)?

and
N
) Z pr(yi-
2 = — =
Deft, (¥)= T—_' 4.2)
2N, -1’
i=1
Further let us consider an example where the survey
variable y is not correlated with the selection probability p,.

Example 4.1 Unequal probability element sampling with no
correlation between y; and p,. When y, and p; are not
correlated, we can approximate Z, opT (v =F) by
nW TN ,(y -¥)?, where W=N"3¥ w,. Note that
E,(n'Saw)=NinE, (n” S, w/y=NW/n and
E, (n7' Siwi)/EL(n™ Zi,w,)=nW/N. Thus,

Deft? (¥)=nW /N

=, [ 3 w) e b

It is easy to show that nW/N =1 using the Cauchy-
Schwarz inequality {(Apostol 1974, page 14). In addition,
routine calculations show from (4.1) and (4.2) that

" w,). (43
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Deft2 (F) - Deft? (¥)

ECV;Z{ P (=P =2y iy~ (pi- p)}
=CV (nW [N -1),

where p=N"'Y¥,p,=l/N. The latter expression is
obtained from ¥, p7'(p,—-P)  =nW/N-1 and XV,
P (v, —¥)p,-P) =0 because y, and p; are uncorre-
lated. Consequently,

_Defti(F)-Deftf,(?) =CV;’ {Deftf,(F)—l}
or

Deft? ()= (1+CV,?) Deft? F)-CvR @

From (4.4), it is clear that Deft (Y) 2 Deft (Y) if
Deft (Y)=1 and the equahty holds lf Deft (Y)—l or
W= N/n Also, Deft? (Y)< Deft? (Y) if 1/(1+CV )<
Deft? (Y)<1

Example 4.1 shows that ¥ tends to have a larger design
effect than Y if the correlation between y, and p, is weak
and Deft? (Y )zl

The customary quantification of the effect of unequal
weights on the design efficiency shown in (2.2} is due to
Kish (1965, 11.7). He considered cases where the unequal
weights arise from “haphazard” or “random™ sources such
as frame problems or non-response adjustments. Assuming
that (1) a random sample of size n selected with replacement
is divided into G weighting classes such that the same
weight w, is assigned to n, sampling units within class g
and n=3%5 n,, and that (2) all G weighting class
variances are equal to the unit variance of y, ie., S2, =5
forall g =1, ...,G, he proposed a quantity given as

2
2 g S
Deft}, (Y)=nD n, w;/ [Z n, wg} , @5
g=1 g=!

to measure the increment in the variance of ¥ in
comparison with the hypothesized variance under srswr of
size n. The rationale behind the above derivation is that the
loss in precision of ¥ due to haphazard unequal weighting
can be approximated by the ratio of the variance under
disproportionate  stratified sampling to that under the
proportionate stratified sampling.

In (4.5), letting n, =1 for all g and thus, n=G, Kish
(1992) later proposed a well-known approximate formula
given as

2
Deftyy X)=n) w} (Z w,] =l+cvi, (46)
i=l i=1
where cv2 =n7'Y (w,—W)? /%W is the sample relative
variance and W is the sample mean of w,. Note that (4.6)
is a sample approximate of (4.3). For a sampling design
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which is inefficient for estimation of ¥, the inefficiency
diminishes with the ratio estimation. Next, we consider the
opposite case where the y-variable is correlated with the
selection probability p,, where the efficiency of 4
increases.

Example 4.2 Unequal probability element sampling where
y; is correlated with p;. Suppose that y; is linearly related
with p; by y, = A+Bp, +e;,, where A and B are the least-
square regression coefficients of the model for the (finite)
population and ¢, is the corresponding residual. Further-
more, assume that the regression model fits well to the
population data and the error variance is roughly homo-
geneous so that R, =0 and R, =0, where R, and
R, denote the populamn correlatlons of pairs (e;,w; ) and
(ef ,w ), Tespectively. For example, R, =T,

(e,~E)w,—W)/{(N-1)S,S,), where E=3[¢/N;
S, and §,, are the population standard deviations of e, and
w;, respectively. Then the design effects given by (4.1) and
(4.2) reduce to

Deft’, (¥) = (nW/N)(1- R.)

W/N -1 Ry 1)
HW/N = cv “ov, @7

and
Deft? (¥) = (nW/N) (1-R2,)

2
+(nW/N - l{cv ] , (4.8)

respectively, where R, is the population comelation
between y; and p, and CV,, is the population coefficient
of variation of p, (see Park and Lee (200]) for proof ). It
follows from (4.7) and (4.8) that Deft? (Y) > Deft? (Y ) if
and only if

< ey, jov,, “9)

where the equality holds if and only if 2R, =CV /CV,.
Also, the inequality is reversed when the inequality in (4.9)
becomes opposite.

The condition (4.9) indicates that .P tends to be less
efficient in terms of precision than ¥ whenever R, is
small. Thus, we see that R, plays an important role in
determining the design efﬁCIency of unequal probability
sampling on ¥ and ¥ and their relative efficiency.

In an atternpt 1o develop an approximate expression to
the design effect when y, is correlated with p;, Spencer
{2000} proposed a sample approximate formula for ¥ and
compared it with Kish’s approximate formula (4.6) for the
special case of RW =0. As seen in example 4.2, the two
design effects (4.7) and (4.8) are not equal unless
W =N/n (see Park and Lee (2001) for more discussion
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and some numerical examples). In addition, this special case
provides the same condition as for example 4.1 and thus, the
two approximate design effect formulae (4.7) and (4.8} are
equivalent to (4.4) and (4.3), respectively.

4.2 One-Stage Cluster Sampling

Consider a one-stage cluster sampling, where every
element in a sampled cluster is included in the sample, i.e.,
m, =M, for all ies,. Due to the absence of the second
stage sampling variation, the variance of ¥ takes only the
first term of expression (3.1) and it can be decomposed as

Zw(y pY)? = M(N D

— S+ Z w,Q,¥, (4.10)
where S5, =(N-DT'ZL M (T -7 ad Q=
M,M,-pM) for i=1,...,N. Note that @, =0 if
p, =M. /M, thatis, p, is proportional to the cluster size
M.. Also, note that § :3 is the between-cluster mean square
deviation in an analysis of variance. Denoting the within
cluster mean square deviation as Szw =(M-N)'3¥

Sy, — —¥), write S, =SI{1+3(M - NY(N-1)
with 8=1- SjWIS2 Since the expected sample size is
m’=nM, the design effect for ¥ can be written from
(4.10) as

Deftf,(?):[N'lj[HM Na]
N N-1

— 2
LM EN: W'Q'[ ) 4.11)

cv o oM?

Similarly, the design effect for ¥ canbe expressed as

Deft? (V) E[N_IJ [1+M'N 6)
p N N -1

N 2
Wills 4.12
;f’-z. [r] @12

We observe that the design effect for ¥ differs from that for

Y in the second term containing D, = T, (y;—Y) instead
of ¥,. In addition, we note that the quantity =29 () is
the adjusted coefficient of determination (RZ;) in the
regression analysis context. It may be called a homogeneity
measure. For more discussion on &, see Sidrndal etal
(1992, pages 130~131) and Lohr (1999, page 140).

Example 4.3 One-stage simple random sampling of
clusters. In this example, if p,=1/N forall i=1,...,N,
the two design effects in (4.11) and (4.12) reduce,
respectively, to

Deft? (¥) = N-TV  M=Ns
? N N-1

=2
Y.
M, -3 il @3
chy?;( )[ J(Y) @1
and
Deftf,(?)s[N‘l](nM Na)
N N-1

R oo

where M=MIN. Since Deft’(¥)-Defi(¥)er

M, (M M)(2Y Y),the mequallty between desngn
ef'fects for ¥ and ¥ depends on the joint distribution of ¥,
and M,.

Example 4.4 One-stage simple random sampling of clusters
of equal-size. In this case, we have M, =M, and
p;=1/N for all i=1,...,N and both design effects in
(4.13) and (4.14) can be approximated by the same quantity

given as
[—N _1] [1 LN M, -1 6}, (4.15)
N N-1

since M,-M =0 forall i=1,...,N.

To introduce the clustering effect on variance estimation,
one often uses the simplest form of one-stage simple
random cluster sampling as in example 4.4. For example,
see Cochran (1977, section 9.4), Lehtonen and Pahkinen
(1995, page 91), and Lohr (1999, section 5.2.2). Although
these authors adopted a without-replacement sampling
scheme, we compare their formulae with our formulae with
the with — replacement sampling assumption for the sake of
both simplicity and consistency. Furthermore, the compar-
ison is valid because their formulae are defined with the
finite population correction incorporated in both numerator
and denominator so that its effect is basically cancelled out.
Cochran (1977, section 94) derived

Deft? (¥) = L1+ a1, -]

M (N 1)
=1+ (M, —Dp, (4.15b)

where p is called the intracluster correlation coefficient
defined by

N Mg - —
23 3 5, -Dy, -1
p=——_ . (4.15¢)

N M, _
My ~DS 3 (3, -7)*

=l j=I
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Rewriting ¥ 1[ZT"1 (ys=0) = o(N -Ds%,  and
i Xph (= V) =(NM,—1)S2=(N-1)S}; + N(M,~1)
Sy, itiscasy to show that

N My _ —
22 Z (yfj -Y)(yp = Y)

i=l k=l

N | Mp _ 2 N My —_
=Z |:Z(yjj_Y)] _Z Z (yfj_Y)z

=1 | j=1 =l j=l

=M, - D{(NM, —1)S? = NM 2w

and, thus, from (4.15¢), p=1-{NM, /(NM,-1)}
($%,/82)=8 assuming M,=M, for all i=1,..,N,
NM , {(NM ,—1)=1. Therefore, further assuming (N -1)/
N=1 and (NM,-D)M;'(N-1)" =1, both design effect
formulae (4.15a) and (4.15b) are approximately equivalent
to 1+(My—013. Other authors arived at the same
approximate formula. This is because & and p essentially
measure the same thing, which is the cluster homogenelty
Under this situation, two estimators ¥ and ¥ have the
same design effect as discussed in example 3.2. Note that
this is a simple case of a self-weighting sampling design.

Sirndal eral. (1992, section 8.7) compared the design
effects for the two estimators under the setting of example
4.3, They also derived a simplified expression 1+ (M —1)8
for (4.13) and (4.14), assuming the covariances of M, with
M, Y;* and M, D] are ignorable. Their discussion on the
difference between total and mean estimators boils down to
A, in example 3.2. They also noted that the design effect
can be much more severe for the population total than for
the population mean because more is lost through sampling
of clusters when the total is estimated than when the mean is
estimated.

A common practice to handle unequal cluster sizes is to
use a more efficient sampling method that incorporates the
size difference such as pps sampling of clusters. Expressions
(4.11) and (4.12) can be applied to arbitrary selection
probabilities p,, where p, are set to be proportional to
some size measures Z; 20. The difference between the
design effects for ¥ and ¥ is explained by A, in (3.9), or
alternatively

The term @, in (4.16) represents the effect of p, on the
variance estimation when size measures other than the
actual cluster sizes M, are used. Thomsen, Tesfu, and
Binder (1986) considered the effect of an out-dated size
measure among other factors under two-stage sampling with
simple random sample of element at the second stage. We
will come back to this in section 4.4,

mr N Win E 2 5{ 2
= oV VINVE li[-}_j-] —(?] :l (4.16)
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4.3 Self-Weighting Designs

In a self-weighting sample, every sample element has the
same weight. This leads to simple forms for both total and
mean estimators. They are given by Y=y/f and
Y = y/m, where f=m/M is the overall sampling fraction
and y=3p, Z%, y, is the sample total. Then just like
simple random sampling as shown in (3.4), the two
estimators have the same design effect.

A self-weighting sampling design can be implemented in
various ways by synchronizing the first stage sampling
method with the second stage sampling method (e.g., Kish
1965, section 7.2). For example, if equal probability
sampling is used for the first stage sampling, then the
second stage should be sampled by an equal probability
sampling method with a uniform sampling fraction for all
PSUs. As a special case of this, where an srs of PSUs of
equal size (ie., M,=M, for all i) is selected, Hansen
et al. (1953, Vol. I1, pages 162 — 163) showed

cv? (?)E%CV)?[I + (i - 1)), @.17)
where CV2(¥) =V (F)/F? is the relative variance of ¥
under the sampling design p and p is the intracluster
correlation coefficient as defined in (4. lSc) Since the
relative variance of ¥ under srswr is m™ C‘~/2 the well
known approximate design effect formula for ¥ under a

self-weighting design follows immediatety as

Deft? (V) =1+ p( - ). @.18)

For one-stage cluster designs, we showed similar forms
given in (4.15a) and (4.15b) (see also Yamane 1967, section
8.7). Hansen et al, (1953, Vol. 1. page 204) further showed
CV )= CV (Y) for a sample design that employs
Slmple random samplmg at both stages. This implies that ¥
and ¥ have the same design effect.

44 Two-Stage Unequal Probability Sampling
Let us first consider the following example.

Example 4.5 A two-stage sampling design where n PSUs
are selected with replacement with probability p; and an
equal size simple random sample of m,22 eclements is
selected with replacement from each selected PSU. With
routine calculations and simplification, we can show that

Deft? (F) = 1+ (m, —1)t+W;, 4.19)
where
(N-1)S%, +Z (my-1)"' S,
1= . (4.20)
(N-DSk +Z (M, -1S%,
52 -(M =D7'E (v - W, WfVmw(Ym)=

(mQICV YIN Q. pMYE, IY) (]+CV2 /my), and
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CVE,» = Sf,. /7% denotes the within-cluster relative variance
of the y-variable. Similarly,

Deft? (V) =1+ (m, — )yt + W, “.21)

where W =W /Vmw,( )= (mD /CV r (Q/p, M)
(D, /Y)2(1+C\fj /my), and D, and CV:, are defined
with the transformed variable d(d,;=y,—Y) analogously
to ¥, and CVi, respectively. (Detailed derivations of
expressions (4.19) and (4.21) are available from the
authors.) For the case with m; =m, for all i, the difference
in the design effects given in (4.19) and (4.21) reduces to
(3.7) or (4.16). There is no contribution from the second
stage sampling to the difference.

Coming back to Thomsen et af. (1986) who studied the
effect of using an outdated measure of size on the variance,
the above discussion on ¥ parallels with their discussion.
The only difference is that they assumed a without-
replacement sampling scheme at the second stage. Note,
however, that the definition of 1 in Thomsen et al. (1986) is
slightly different from (4.20) and from & in section 4.2,
However, there is a close connection between them. To see
this, let us write the T as a function of some quantities b,’s
associated with PSUs as follows:

(N-1S3; - sz v
b, )=

(N-DSZ +Z (M, -1)S;
i=l

Then the 7 in Thomsen ez al. (1986) is obtained with b, =1,
the 1 in example 4.5 with —1/(m, —1), and & in section 4.2
with (M, -DHZY, (M, -1 /(N - D}. Equating Kish’s
formula (4.18) for Y to (4.19) for ¥, they obviously over-
looked that the design effects for ¥ and ¥ can be very
different.

For more general cases, Kish (1987) proposed the
following popular formula for ¥ :

G
nY g W,

Deftl,, (V)=—21—

S

g=I

[1 + p( - 1)]

=(1+cv)l+p@E@-1].

This was obtained by applying (4.5) (or (4.6)) and (4.18)
recursively to incorporate the effects of both clustering and
unequal weights. Gabler, Haeder and Lahiri (1999) justified
the above formula for ¥ using a superpopulation model
defined for the cross-classification of N clusters and G
weighting classes. However, the difference between the
design effects for ¥ and ¥ cannot be exposed by such a
model-based approach, since y, is treated as a random
variable while w, as fixed. Under this approach, Deft} (Y}

differs from Defti(? ) only by a factor of (M /M),
although the actual difference can be much more
proncunced as we have showed in this paper (e.g.,
expressions (3.7) and (4.23)).

4.5 More General Cases

Weighting survey data involves not only sampling
weights but also various weighting adjustments such as
post-stratification, raking, and nonresponse compensation.
We consider these general cases here.

We can rewrite the first-order Taylor approximation to
the weighted mean estimator V=v/m given in (3.2) as
(¥ - /Y= (Y 15124 +(M M)/M. Taking variance
on both sides,

CV2(F)=CV2(¥)+CVi(M)

+2R, (7, M)CV,(F)CV, (M), (4.22)

where CV? (Y) cv; (Y) cv; (M) are the relative vari-
ances of Y , and M respectlvely, and R, (Y M ) is the
correlation coefficient of ¥ and M w1th respect to the
complex sampling design p and any weighting adjustments.
Since the relative variances of simple sample total and mean
Y, and . are CV2, (¥, )=CVZ, (F,)=m"'CV]

under srswr of size m, it follows from (4.22) that

Deft? (7) = Deft? (¥)
+2R, (¥, M)V , (y)Deft, (¥)+V2(y), (4.23)

where V (y)=CV,(M}/CV,,,, (J,,) is nonnegative.
As an illustration, consider a binary variable y, where
CV:=(1-¥)/Y and, thus, V,(y) can be arbitrarily
large as ¥ approaches 1 or small as ¥ approaches zero
assuming CVP(M )#0. When V (y) is near zero, the
two design effects are nearly equal. Otherwise, one is larger
than the other depending on the values of V (y) and
R, (Y M). When the sampling wmghts are benchmarked
to the known populatlon size M, Y and ¥ have the same
dGSlgn effect since M =M and Cv, (M }=0. In this case,
¥ is not affected by the benchmarkmg but ¥=M Y

which is a ratio estimator. Note that poststratification or
raking procedures may be used if population size infor-
mation is available at subpopulation level and we also get
equwalent desugn effects. Tn general, however, we have
Deft Yy Deft (Y )y if

Rp(?,M)z—l—V”(yl
2 Deft, (¥)

R0z _LEV, ) (4.24)
2¢v, ()

and vice versa.
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It is illuminating to look at some spemﬁc situations. For
example, if R, (¥, M) 2 0, then Deft? (Y)>Deft (Y)
however, a negatlve correlation (ze R, (Y M ) <0}
doesn’t necessarily lead to Deft? (Y )<Deft (Y). For a
special case of R, (¥, M)=0, the d1fference is given by

V(M)
cv2

SISWT (ySTS)

Deft? () - Deft? (V) = (4.25)
Figure | shows graphically the relation between the two
design effects. The exEressmn in (4.23) is plotted for some
fixed values of R ¥, M) and V (y) The solid line
passing through the origin which represents equal design
effects is the reference line. As the graphs show, the
companson is not clear-cut. When R, (Y M) <0,
Deft (Y) 2 Deft? (Y) for small Deft (Y ) but the relation
flips overas Deft’, (Y ) grows larger.

Hangen et al. (1953 Vol. 1, pages 338 —339) indicated
that R, (Y M) would often be close to 0. Under this
51tuat10n , expression (4 25) is alsg written as Deft (Y) =
Deft? (Y) [1+CV (M)ICV (Y)] from which we get
Deftf = Deftzp(Y ). This spemal case was smdied by
Jang (2001) However, this doesn’t seem necessary as can
be seen in the following example.

Example 4.6 To illustrate the relationship between the
design effects for ¥ and ¥, we used a data set for the
adults collected from the U.S. Third National Health and

3
5
8
]
=
2
¢
[a]
2 4 ] B‘ 10 12
Design efiect for mean
(@) V,(»=10
Figure 1.

191

Nutrition Examination Survey (NHANES II), which is
given as a demo file in WesVar version 4.0. NHANES 11T is
a nationwide large-scale medical examination survey based
on a stratified multistage sampling design, for which the
Fay’s modified balance repeated replication (BRR) method
was employed for variance estimation. (See Judkins 1990
for more details on Fay's method.) We used only 19,793
records with complete responses 1o those characteristics
listed in Table 1. Note that the weight in the demo file is
different from the NHANESIII final weight that was
obtained by poststratification. For more detaiied information
on the demo file, see Westat (2001). .

Table 1 presents the design effects for Y and ¥, and
component terms of (4.23) for the selected characteristics.
Note that V, (y) monotomcally decreases in CV, given
that m=19, 793 and cv, (M)=3.2%. Although V O
tends to be the detergnnmt factor in the difference of the
design effects, R, (¥, M) can be important when it is
negative. For example, for two race/ethnicity characteristics,
African American and Hispanjc the negative values, —0.67
and -0.24 of R, r, M ) were respon51ble for Deft? (Y) <
Deft ). Some design effects for Y are huge. Thls is not
the case with the NHANES I poststratified final weights,
with which ¥ and ¥ have the same design effect. This
illustrates the importance of benchmarking weight
adjustments for total estimates.
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Design effect for mean

) V,(»=25

Plots of Defi? (Y) versus Deft? (Y ) for(a) V (y)—l oLV p(¥}y=2.5. The solid line corresponds to

Deft? (Y) Deft (Y) Othcrlmcs correspondto R (Y M)—-09 05,-02,0,02,0.5,09, respectively.
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Table 1
Comparison of the design effects for the weighted total and mean using a subset of the adult data file from the U.S.
Third National Health and Nutrition Examination Survey (NHANES III)

Mean
. 2
Characteristic Estimate Deft cv
Has smoked 100+ Yes 053 413 00M4
cigarettes in life?
Has diabetes? Yes 0.05 1.75 0.040
No 0495 1.75 0.002
Has hypertension/ Yes 0.23 342 0.024
high blood pressure? No 0.77 342 0007
Race/Ethnicity African American®*  0.12 7.64 0.054
:, Hispanic* 005 6.70 0.079
Ciender Male 048 1.40 0.009
Female .52 1.40 0.008
Number of cigarettes
- 525 642 0037

smoked per day

Population Size - — - —

Total .
. 2 . eV, (M
Estimate Deft® cv cvy 1 {(Y.M) Vp(y) - -
2cv » (¥)
98,397,795 3131 0038 0944 020 483 -0.58
9,783,307 192 0042 4246 —034 107 -0.31
176,341,218 39347 0033 0236 ¢34 1935 -5.53
42930866 796 0037 1826 -0.18 250 -0.37
143,184,660 78.44 0.034 0.548 0.18 832 —1.22
21,567,028 421 0040 2762 067 165 —-0.11
9,550,326 648 0078 4300 024 106 -0.08
88,725967 19.18 0033 1048 0.1 435 —~1.55
97,398,559 2539 0.034 0954 011 477 =170
977225826 1051 0047 204 =009 223 —0.17
186,124,526 - 0.032 — - - -

Note: * denotes the cases where the design effect for ¥ is smaller than that for ¥,

5. CONCLUSION

We studied the design effects of the two most widely
used estimators for the population mean and total in sample
surveys under various with-replacement sampling schemes.
We do not think the employment of with-replacement
sampling is necessarily a serious limitation because we can
see things more clearly without muddling the math with
probably unnecessary complications with without-replace-
ment sampling schemes. Furthermore, the effect of the finite
population correction is largely canceled out in our
formulation of the design effect and so the results are quite
comparable with traditional design effects for without-
replacement sampling. Therefore, our findings should be
useful in practice. We summarize our key findings below.

Kish's well-known approximate formulae for the design
effect for (ratio type) weighted mean estimators are not
easily generalized in their form and concepts to more
general problems, especially weighted total estimators
contrary to what many people would perceive. In fact, ¥
and ¥ often have very different design effects unless the
sampling design is self-weighting or the sampling weights
are benchmarked to the known population size. In addition,
the design effect is in general not free from the distribution
of the study variable even for the mean estimator, let alone
the total estimator. Furthermore, the correlation of the study
variable with the weights used in estimation can be an
important factor in determining the design effect. Therefore,
apart from its original intention, the design effect measures
not only the effect of a complex sampling design on a
particular statistic but also the effects of the distribution of

the study variable and its relations to the sampling design on
the statistic. As complex survey software packages routinely
produce the design effect, it seems appropriate to warn the
user of the packages of these rather obscure facts about the
design effect.
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Robust Generalized Regression Estimation

JEAN-FRANCOIS BEAUMONT and ASMA ALAVI'

ABSTRACT

The Best Linear Unbiased (BLU) estimator (or predictor} of a population total is based on the following two assumptions: i)
the estimation model underlying the BLU estimator is correctly specified and ii) the sampling design is ignorable with
respect to the estimation model. In this context, an estimator is robust if it stays close to the BLU estimator when both
assumptions hold and if it keeps good properties when one or both assumptions are not fully satisfied. Robustness with
respect to deviations from assumption (i) is called model robustness while robustness with respect to deviations from
assumption (ii) is called design robustness. The Generalized Regression (GREG) estimator is often viewed as being robust
since its property of being Asymptotically Design Unbiased (ADU) is not dependent on assumptions (i} and (ii). However,
if both assumptions hold, the GREG estimator may be far less efficient than the BLU estimator and, in that sense, it is not
robust. The relative inefficiency of the GREG estimator as compared to the BLU estimator is caused by widely dispersed
design weights. To obtain a design-robust estimator, we thus propose a compromise between the GREG and the BLU
estirnators, This compromise also provides some protection against deviations from assumption (i). However, it does not
offer any protection against outliers, which can be viewed as a consequence of a model misspecification. To deal with
outliers, we use the weighted generalized M-estimation technique to reduce the influence of units with large weighted
population residuals. We propose two practical ways of implementing M-estimators for multipurpose surveys; either the
weights of influential units are modified and a calibration approach is used to obtain a single set of robust estimation weights
or the values of influential units are modified. Some properties of the proposed approach are evaluated in a simulation study
using a skewed finite population created from real survey data.

KEY WORDS: Design robustness; Model robustness; M-estimator; Outliers; Shrunk weights; Best linear unbiased

predictor.

1. INTRODUCTION

In classical theory, sample data can be viewed as being
randomly drawn from an infinite population and assump-
tions are made about the unknown distribution of the infinite
population. In other words, a model is postulated and the
interest lies in the estimation of model parameters. In this
context, an estimator & of a model parameter 6 is robust if
it stays close to the maximum likelihood estimator of 6
when the model assumptions hold and if it keeps good
properties when the model assumptions are not fully satis-
fied. The unknown distribution of the infinite population is
often assumed to be the normal distribution and, as a result,
the maximum likelihood estimator reduces to the usual
least-squares estimator.

The presence of outliers in the sample can be viewed as a
consequence of a deviation from a model assumption. The
majority of the sample could be assumed to come from the
selected model but some units, called outliers, could be
thought of as coming from a different model. Therefore, the
presence of such outliers in the sample may introduce hias
and increase the variance of the least-squares estimator of
the selected mode! parameters. Outliers could also be the
consequence of a highly skewed distribution. In this case,
the least-squares estimator is not biased but may be highly

1

inefficient due to a deviation from the usual normality
assumption. The presence of outliers in the sample could
also be the result of measurement errors. However, it is
assumed in the rest of this paper that the data have been
verified and comrected, if necessary, and that there is no
measurement error left in the data. Qutlier-robust estimation
for infinite populations has been studied extensively (for a
review, see Huber 1981; or Hampel, Ronchetti, Rousseeuw
and Stahel 1986),

In survey sampling theory, the interest usually lies in the
estimation of finite population parameters such as the total,
1, =2y Yy of a variable of interest y for a finite popu-
lation U of size N. Because it is usually not possible to
observe the variable y for all population units, the usual
practice consists of selecting from the finite population a
random sample s of size n according to some probability
sampling design p(s|Z) . The matrix of design information
Z contains N rows with its ™ row equal to z;,and z is a
vector of auxiliary variables available at the design stage.
This does not preclude the finite population itself to be
assumed to come from a model, as it is explicitly the case
when it is chosen to make model-based inferences. Under
this type of inference, Royall (1976) derived the Best Linear
Unbiased (BLU) estimator (or predictor) £, of 7, (see also
Valliant, Dorfman and Royall 200§, Chapter 2). It is based
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on the following two assumptions: i) the estimation model
underlying the BLU estimator ;' is correctly specified and
i) the sampling design is ignorable with respect to the
estimation model. In this context, an estimator fy of the
finite population total 1, is robust if it stays close to the
BLU estimator 7] when both assumptions hold and if it
keeps good properties when one or both assumptions are not
fully satisfied. Robustness with respect to deviations from
assumption (1) is called model robustness while robustness
with respect to deviations from assumption (ii) is called
design robustness.

Although we consider robust estimators that are con-
structed from a model-based viewpoint, we prefer eval-
vating their properties as much as possible with respect to
the sampling design. This allows us to choose the constants
on which robust estimators depend and to evaluate their
quality without having to rely on a model and, more
specifically, without having to rely on a medel for the
outliers. This also provides an objective framework for
comparing estimators derived under different models. This
preference of evaluating properties of model-based esti-
mators with respect to the sampling design is also shared by
Little (1983) who notes that design-based asymptotics may
be more useful for assessing estimators than model-based
asymptotics, particularly when the data set is large.

The Generalized Regression (GREG) estimator of ¢, is
often viewed as being robust since its property of being
Asymptotically Design Unbiased (ADU) is not dependent
on assumptions (i} and (ii); that is, the GREG estimator is
bias-robust even though its form can be justified by an
estimation model. However, if both assumptions hold, the
GREG estimator may be far less efficient than the BLU
estimator and, in that sense, it is not robust. The relative
inefficiency of the GREG estimator as compared to the
BLU estimator is caused by widely dispersed design
weights. The fact that variable design weights may increase
the variance of an estimator is well known (see, for
example, Rao 1966; DuMouchel and Duncan 1983; Kish
1992; Pfeffermann 1993; Kom and Graubard 1999, Chapter
4; Elliott and Little 2000; and Kalton and Flores-Cervantes
2003) and is not uncommon in household surveys due to the
presence of many weight adjustments before calibration
{Kish 1992; and Kalton and Flores-Cervantes 2003). This
problem is often treated by truncating the larger design
weights (Potter 1988, 1990, 1993; and Stokes 1990).

To obtain a design-robust estimator when the design
weights are highly variable, we propose a compromise be-
tween the GREG and the BLU estimators based on the
weighted Least-Squares (LS} technique. This compromise
estimator has a smaller design bias than the BLU estimator
when the ignorability assumption is not satisfied and, at the
same time, is more efficient than the GREG estimator when

this assumption holds. It also provides some protection
against deviations from ‘model assumptions. Balanced
sampling (Royall and Herson 1973) and nonparametric
calibration (Chambers, Dorfman and Wehrly 1993) are
other methods that provide protection against certain types
of model misspecifications (see also Valliant, Dorfman and
Royall 2000, Chapter 3, 4 and 11). However, none of these
methads offer any protection against outliers, which can be
viewed as a consequence of a model misspecification. In a
model-based framework, the idea underlying the
M-estimation technique has been proposed to develop
outlier-robust alternatives to the BLU estimator (Chambers
1986; Lee 1991; and Welsh and Ronchetti 1998). In a
design-based framework, the M-estimation technique has
also been used to develop outlier-robust alternatives to the
GREG estimator (Gwet and Rivest 1992; Hulliger 1995
1999; Duchesne 1999, and Zaslavsky, Schenker and Belin
2001). M-estimation is also discussed in the review paper by
Lee (1995) and an empirical comparison of several outlier-
robust estimators can be found in Gwet and Lee (2000).

Finite population parameters are often very sensitive to
the presence of outliers in the population. This is to be
contrasted to model (infinite population) parameters, which
are usually insensitive (o outliers. The problem of outlier
robustness is therefore different for finite and infinite pop-
ulations. As noted in Chambers (1986), it is the sampling
error (or the prediction error in a model-based framework)
of an estimator which must be insensitive to outliers in finite
populations and not necessarily the estimator itself. For
instance, when a simple random sampling design is used,
the sample median is robust in the classical sense. As a
result, its design variance is essentially unaffected by the
presence of an outlier in the finite population, no matter how
large is that outlier. However, the sampling error and the
design bias of the sample median, when used as an
estimator of the finite population mean, take an arbitrarily
large value when one or more population unit takes an
arbitrarily large value. This is explained by the fact that the
finite population mean itself takes an arbitrarily large value
in such a case. Unlike the sample median, the sample mean
is design unbiased but it is not robust in the classical sense.
The sampling error and the design variance of the sample
mean can thus be very affected by the presence of an outlier
in the finite population. This illustrates why outlier-ro-
bustness for finite populations is often viewed as a trade-off
between bias and variance and why outliers must usually
have an influence, at least to some extent, on estimators,
The Mean Squared Error (MSE) is therefore a useful cri-
terion for evaluating the quality of outlier-robust estimators
of finite population parameters.

The real goat of this paper is to find a robust alternative
to the commonly-used GREG estimator of ¢ y- However, it
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is more natural to discuss robusiness issues by first intro-
ducing the optimal (BLU) estimator. Therefore, the assump-
tions underlying the BLU estimator are discussed in section
2. We also give additional conditions under which the BLLU
estimator has a negligible asymptotic design bias. Section 3
deals with design robustness and the weighted LS estimator
is introduced. In section 4, model robustmess (more speci-
fically, outlier robustness) is discussed and the weighted
generalized M-estimation technique is suggested to reduce
the influence of units with large weighted population
residuals. The proposed estimator is census-consistent in the
sense that it is equal to the finite population total ¢, when a
census is conducted. We propose two practical ways of
implementing M-estimators for multipurpose surveys; either
the weights of influential units are modified and a cali-
bration approach is used to obtain a single set of robust
estimation weights or the values of influential units are
modified. Mean Squared Error (MSE) estimation is dis-
cussed in section 5. In section 6, some properties of the
proposed approach are evaluated in a simulation study using
a skewed finite population created from real survey data.
Finally, some concluding remarks are made in the last
section,

2. THE BEST LINEAR UNBIASED ESTIMATOR

Let us assume that we have a vector of auxiliary
variables x available for all units of the sample s and for
which population totals, t, =%, _, x, , are known. Let us
also denote by X, the matrix containing ¥ rows with its K"
row equal to X; . The vector X may or may not contain
some variables in the vector z of design variables. Before
discussing robustness, we first describe the two assumptions
(see Al and A2 below) with respect to which robustness is
desired. Then, we briefly explain how to validate them.

Al) The following estimation model m holds: y, given X,
for ke U, are independently distributed with mean
E,(y|X)=x(p and variance V,(y,|X}=0"v,,
where p and o® are unknown model parameters,
v, =X, A and A is a vector of known constants. The
subscript “m” indicates that expectations and variances
are evaluated with respect to model m.

A2) The sarnpling design is independent of y after condi-
tioning on X; that is, p(s|y,X)= p(s]|X), where y is
a vector containing N elements with its " element
equal to v, .

Assumption (Al) describes the estimation model m,
which specifies the distribution of y conditional on X,
Standard techniques can be used to validate this mode] (see,
for example, Draper and Smith 1980, Chapter 3). The
linearity assumption E,_(y,|X}=x/B is an important

197

assumption underlying the estimation model m. There are
many ways of assessing the validity of this assumption. A
graph of residuals e, =y, —x,B versus x.p, for some
m-unbiased estimator ﬁ of B, is often suggested for this
purpose. Any trend in this graph is an indication that the
relationship between y and x is not linear. To obtain ro-
bustness against a deviation from the linearity assumption, a
poststratification model can be used when it is possible to
partition the population into homogeneous and mutually
exclusive groups. An example of the importance of careful
modeling in sample surveys can be found in Hedlin, Falvey,
Chambers and Kokic (2001).

Assumption (A2) is a sufficient condition for the
ignorability (Rubin 1976} of the sampling design with
respect to the distribution of y conditional on X. In other
words, it means that the distribution of y is independent of s
after conditioning on X. Using assumption (A1), ¥ can be
split into a fixed term XB and a random error lermn
€=y - Xp. Consequently, if the sampling design is inde-
pendent of € after conditioning on X; that is, if
p(s|e,X) = p(s| X), then assumption (A2) is satisfied and
the sampling design is ignorable. Since we only consider
sampling designs of the form p(s|Z), an obvious way to
make the sampling design ignorable is achieved by
including all design variables z into the estimation model.
Examples of such design variables may include the
variables used to form the strata, the variable used as a size
measure if probability-proportional-to-size sampling is used
and so on. The design weights may also provide a useful
summary of the design information. Note that it may not be
necessary to include alt design variables into the estimation
model (see Sugden and Smith 1984). Design variables that
are independent of y (or £} after conditioning on X should
not be included. To assess the validiﬂty of assumption (A2), a
graph of the residuals, ¢, = y, —x, B, versus design weights
w, (or any design variable) may be useful (see Pfeffermann
1993). Any trend in this graph suggests that the design
weights are comrelated with the random error £ and that the
sampling design is not ignorable with respect to the
estimation model. More formal tests can also be performed
to assess the validity of this assumption (see, for example,
DuMouchel and Duncan 1983; Graubard and Kom 1993
and, for more references on this topic, Pfeffermann 1993).

Under the estimation model m and the ignorability
assumption (A2), it is easy to show that the BLU estimator
(Royall 1976) ¢ of ¢, takes the simple projection form
i} =t,B”, where B is implicitly defined by the equation

> (o -xB%) e =0, @
kes Vi

The BLU estimator can also be written as i) =
SiesWe V., where the BLU estimation weights w/ are
given by
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(2.2)

-1
’ ’,
X X, X
wf=—"[§ ok "] 1.

vk kes vk

The model variance Vm{(ff—ty)|s,X} of fyB is the
smallest for every possible sample among all linear m-
unbiased estimators of ¢,. A direct consequence of this
result is that the anticipated variance E, {E, (¢, —1,)* | X}
of ff is also the smallest among all linear m-unbiased esti-
mators of f where the subscript p indicates that the
expectation is evaluated with respect to the sampling design.
Under the additional assumption that y, given X follows a
normal distribution, B? is also the maximum likelihood
estimator of the vector of model parameters J .

In general, the BLU estimator #,” is not ADU. However,
under the estimation model 1, the ignorability assumption
(A2) and the following additional assumption (A3), the
BLU estimator has the property of being Asymptotically
Design Unbiased in Probability (ADUP) in the sense that its
relative design bias E (i, —¢,)/1, converges in probabil-
ity to 0 as n and & increase without bound.

A3) T E {w) I} o} =O(N), Ty X,B=O(N) and
Yiv 0. =O(N), where 57 =a’v, and 1, is a dum-
my random variable indicating whether unit & is
selected in the sample (7, =1) ornot (7, =0).

Assumption (A3) describes the asymptotic behaviour of
three population quantities. In particular, requiring that
3 et EP{(wf)zlk} oi = O{N) essentially means that none
of the BLU estimation weights becomes too large as the
sample size and the population size increase. For instance, if
X, =v, =1 and if a sampling design of fixed size n is used,
then condition ¥, E,{(wf) I, }oi = O(N) is equivalent
to assuming that the weights w. = N/n remain bounded as
both # and N grow. The proof that ff is ADUP is given in
the appendix and does not require that v, =x 2. As a
result, the BLU estimator is ADUP even when the model
varance V,, (y, | X) is misspecified.

As pointed out above, the BLU estimator is efficient
when the estimation model #: and the normality assumption
hold as well as the ignorability assurnption (A2}. Under
these assumptions and the additional assumption (A3), the
BLU estimator is also ADUP, Consequently, a first step
towards robustness consists of selecting and validating an
estimation model such that these assumptions are satisfied
as much as possible. However, they are rarely fully satistied
in practice. For example, one can be reluctant to include all
strata identifiers into the estimation model when the number
of strata is very large. In such a case, the ignorability as-
sumption might not fully hold. Alse, the estimation model,
including the normality assumption, may not hold for every
variable of interest. Consequently, the non-critical use of the
BLU estimator fyB of ¢, is not always appropriate and
robust estimators may be needed.

3. DESIGN ROBUSTNESS

Using the fact that v, = x, A, it can be easily shown (see
Sirndal, Swensson and Wretman, 1992, page 231) that 7,
can be expressed as ¢, = t; B, where B is implicitly defined
by the equation

3 (3, - x.B) ’;—" =0, 3.1)
k

kel
The vector B would be the LS estimator of §§, under the
estimation model =, if a census could be conducted. Since
t, is known, the objective of finding an estimator of the
population total £, is thus equivalent to finding an estimator
of B. In the design-based theory, a natural estimator B® of

B is implicitly defined by the equation

sag. X
Zwk(yk—kaG) -vi=0,

kes k

(3.2)

where w,, the design weight of unit &, equals to the inverse
of the selection probability =, . The use of BE leads to the
GREG estimator fyG =t;]§G of ¢,. The GREG estimator
fyc takes a simple projection form because v, =x A (see
Sdrndal ef al. 1992, page 231). It can also be written as
£ =%, Wy, , where the GREG estimation weights wy
are given by

(33)

’ y N1
wf =w, x—“(Zwk M] t,.
Vi \ kes Vi

As pointed out in the introduction, the GREG estimator is
bias-robust since its property of being ADU is not
dependent on the validity of the estimation model m and the
ignorability assumption. However, the GREG estimator is
not vartance-robust since it may be far less efficient than the
BLU estimator when both assumptions hold. The ineffi-
ciency of the GREG estimator is due to widely dispersed
design weights. In household surveys, this situation is not
uncommon because of many weight adjustments before
calibration. Also, practical considerations for the choice of a
sampling design combined with limited information avail-
able at the design stage often lead to sampling designs that
are approximately ignorable. In household surveys, for in-
stance, geographic information is often the main auxiliary
information available to construct the strata. Unless the
number of strata is very large, such information is usually
weakly comelated with quantitative variables of interest,
such as expenditures or income, and their corresponding
population residual variable E=y—xB. As a result, the
design weight variable w is also weakly correlated with E .
This suggests that the ignorability assumption may
approximately hold. This also suggests that the design
weights act more or less as a random noise when estimating
B using (3.2) and that their influence could be significantly
reduced. To obtain a design-robust estimator when the
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design weights are highly variable, we thus propose to
shrink the design weights towards their mean and to use the
LS estimator ,> =t,B", where B'® is implicitly defined
by

> (y —x, BY) T =0 (34)
kes Vi
and where w, is the shrunk weight of unit & given by
E Wy
w, kes g(w,;a). (3.5

) Zg(wk;a)

kes

The reason for the ratio in the right side of (3.5) is simply
to ensure that ¥, W, =2, w, and the role of the function
g(w,;a) is to obtain shrunk weights W, that are less
variable than the design weights w,. This function is
assumed to be monotone in the constant a, with
1< g(w;0)Sw,. The BLU and GREG estimators are
therefore extreme special cases of the LS estimator obtained
when o is such that g(w,;a)=1 and g(w,;@)=w,
respectively. To obtain a simple compromise between these
two extreme estimators, we suggest using g(w ;a)=w, ,
with 0<a<l. The choice a=0 leads to the BLU
estimator while the choice a=1 leads to the GREG
estimator. In fact, this suggestion was proposed by Kish
(1992, page 198). Other functions g(w, ;o) and other ways
of reducing the variability of design weights can be found in
the literature (see, for example, Elliott and Little 2000).
Truncating large design weights (g(w,:a)=min(w,,0),
with a>0) is a common approach that deals with this
problem. This approach may be useful when assumptions
(A1) and (A2) are not fully satisfied and when there are
some abnormally large design weights. A better approach
may be 1o truncate large weighted residuals. The weighted
generalized M-estimation technique discussed in the next
section can be used for this purpose.

The LS estimator 7° can also be written as

a

15 =%, Wy, , where the LS estimation weights w,*
are given by

’ s 3!

.~ X - X X

we =, | >, "J t,. (3.6)
Vi \kes Vi

Note that the estimation weights w,” , including w; and

wf as special cases, are calibrated on the known population

totals t, in the sense that they satisfy the calibration

equation ¥, w°x, =t, (see Deville and Sérndal 1992),

4. MODEL (OUTLIER) ROBUSTNESS

As pointed out in the introduction, the LS estimator 7,
provides some protection against deviations from the
ignorability assumption and also against deviations from
maodel assumptions. However, it does not offer any
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protection against outliers, which can be viewed as a cones-
quence of a model misspecification, including a deviation
from the normality assumption. For instance, the GREG
estimator is ADU no matter the validity of the estimation
model. However, its design variance may be very large in
the presence of outliers in the finite population because they
may greatly influence its sampling error when they are
selected in the sample. This problem may be amplified
when the design weights are widely dispersed. For the
Horvitz-Thompson estimator, this was well illustrated in the
circus example of Basu (1971). Of course, the use of effi-
cient auxiliary variables at the estimation stage can control
the impact of outliers on estimates. However, such auxiliary
variables are often not available and outlier-robust esti-
mators may provide significant gains over the LS estimator.

Using the Taylor linearization technique (see, for
example, Sidrndal et al 1992, page 235) and given that
1,=t B, it is well known and easy to show that the
sampling error of the GREG estimator can be approximated
as follows: 7] —t, =Y, ,w,E, , where E, =y, -x,B is
the population residual for unit k. As a result, a large design
weight associated with a large population residual (or
outlier) may have a substantial impact on the quality of the
GREG estimator. Moreover, it is straightforward to show
that the sampling error of the LS estimator can be expressed
as i,° —t, =Y, wy E, . Therefore, a large estimation
weight associated with a large population residual may
greatly influence the sampling error and the quality of the
LS estimator. To deal with this problem, we use the
Schweppe version (Hampel ez al. 1986, pages 315 - 316) of
the weighted generalized M-estimation technique to reduce
the influence of units with large weighted population
residuals. This leads to the M-estimator BM of B, which is
implicitly defined by

E /M
Ty AEE D % o
kes hk Q \/Z

where E, (BM) =(y —x;ﬁM)/E, Q is a positive
population scale parameter and /, is a weight that may
depend not only on x, but also on z,. The role of the
function y(.) consists of reducing the influence of units
with a large hkg',c (B). From the above considerations,
v, or h =w,.fv, is a natural choice. In the
former case, the influence of large w:‘S E, is reduced while,
in the latter case, the influence of large W, E, is reduced.
The choice k&, = wi‘sﬁ may be preferred to &, = cc»k\/q
when there are outliers in the auxiliary variables x or when
o is not close to 1 (assuming g(w,:a)=w} ). The main
point here is that 4, should depend on survey weights w;®
or w, and that both choices suggested above should
perform better than simpler choices that do not take into

(4.1)

_ LS
h, =w,
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account the auxiliary variables z such as kA, = v, or
A, =1, which reduce the influence of large unweighted
residuals. Also, it should again be noted that the interest is in
finding a robust estimator for the vector of population
parameters B and not for the vector of model parameters B .
In fact, B is itself not robust (in the classical sense) for B
since it may be highly affected by the presence of outliers in
the finite population. As a result, outliers must have a
certain influence on B™ .

Equation (4.1) can be written in the weighted linear
regression form:

T H B0 (3 -xBY) =0, @42
kes vk
where
~ h
w, (B, Q)= wln)
i
and
_ hE,BM
k= 4 -
Q

We propose the following modification of the popular
function y(.) of Huber (1964) that makes the adjusted
weights ﬁ:(ﬁM,Q) always greater than or equal to 1:
w(r) =rn, if |nl<e, ad () = sign(r)
max(| r, |/ W,, ¢), otherwise, where ¢ is a positive
constant. This leads to adjusted weights

W if |r|< o,

—~ ﬁM, - ~
w,.(B™.Q) max[l,wki,

|’k|

otherwise . (4.3)

The Iterativety Reweighted Least-Squares (IRLS)
algorithm (Beaton and Tukey 1974) is often used to solve
(4.2) and (4.3). At a given iteration i, the adjusted weights
w, (B, 0%y are first calculated using (4.3) and then
B is obtained by solving (4.2) with w; (B¥,Q) and B™
replaced by W, (B“™”,0"") and B" respectively. To
obtain B, an estimate of Q is usually calculated at each
iteration of the IRLS algorithm. In the simulation study of
section 6, we have used

0 =1.483
x weighted sample
median of(‘hkfk (B“'”)| ke s), 4.4

where the weighted sample median is calculated using the
weights w, / k. Equation (4.4) reduces to the proposal of
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Hulliger (1999) when A, =1 and g{w,;0)=w, . We sug-
gest using B = B'S as the vector of starting values since
B is easy to obtain. The iterative procedure is normally
repeated until convergence is reached. To reduce computer
time, especially if a resampling method is used for MSE
estimation, a single iteration of the IRLS algorithm can be
performed. In section 6, it is shown empirically that per-
forming a single iteration yields an estimator of the popu-
lation total that has properties similar to the fully-iterated
estimator. This point has also been noted by Lee (1991).
The M-estimator of 7, is given by r =t ﬁ” With the
restriction that W, (BM,Q) =1, where Q is an estimator of
{, the estimators BM and ty are census-consistent in the
sense that they are exactly equal to B and ¢, respectively,
no matter the value of ¢ and «, when a census is con-
ducted (mt, =1, for ke U/ ). This restriction might be useful
for controllmg the design bias of t when there are shrunk
weights W, close to 1. Note that the estimators BM and
i) reduce to B'S and 7° respectwely when @ =oo
(y(r)= r;‘) The M- esnmator t can also be expressed as
1) =y, Wy ¥, Where the M-estimation weights w!’ are
gwen by

-1
w = (BM, 0y 2k [Z i (BM,0) """"} t,. (45)
Vi \kes "
The estimation weights w,’ are still calibrated on the
known population totals t, (¥,.,wi x, =t, ).

In order to determine appropriate values for o and ¢,
the MSE of the M-estimator )" can be estimated for
different choices of o and ¢ using past or current sample
data. Then, the values of o and ¢ that give the smallest
estimated MSE can be chosen. Estimation of MSE is dis-
cussed in section 5. As noted in Hulliger (1995), choosing
adaptively o and ¢ by minimizing the estimated MSE
with current sample data leads to an estimator 7} that does
not require estimating the scale parameter Q. Also, this
procedure controls the magnitude of the design bias of 7
without requiring the use of additional constants, However,
it is likely to provide less efficiency than using the optimal
(although unknown) values of a and @ .

In multipurpose surveys, different values of o and ¢ are
likely to be obtained for different variables of interest. If
multiple sets of weights are to be avoided, some form of
compromise is needed. As a first step towards a compro-
mise, a common value of «, satisfactory for the most
important variables of interest, can be determined. Then, we
propose two practical ways of implementing the
M-estimator 7, without having to find a compromise value
for @ ; either the weights of influential units are modified
and a calibration approach is used to obtain a single set of
robust estimation weights or the values of influential units
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are modified. The former is discussed in section 4.1 while
the latter is discussed in section 4.2.

4.1 Modification of the Weights of Influential Units

Let us now assume that it is desired 1o estimate the
population totals of a vector of g variables of interest
y= (y,, Yoy eers yq)' A vector of g M-estimators t)' =
G ) of t, =2, ¥, can be obtained, WIth
potentially different va]ues of ¢ for different variables. To
simplify the notation, we denote the adjusted weights
associated with variable y, by W,(y,), for i=1,2,...g
Since the adjusted weights W, (y,) depend on the variable
of interest y;, we obtain ¢ sets of weights, even if a
common value of ¢ is chosen.

Gwet and Rivest {1992), Duchesne (1999) and Hulliger
(1999) suggested using the adjusted weights #,(y)=
mm(wk(y,) Wk()’z)’ ,w,c(yq)) to obtam a unique set of
weights. Then, estlmatlon welghts wi (¥) are calculated by
replacing W, (B ,Q) by w, (y) in (45) and t, is
estimated by Y. wi (y)y,. Although the estimation
weights w,’ (y) are calibrated on the known population
totals t_, they are not calibrated on the vector of estimates
ET , which are believed to be our best estimates in the sense
of minimizing the estimated MSE. Moreover, the use of
Ties Wi (¥) ¥y likely leads to a larger design bias than &'
although it controls the design variance. To cope with these
issues, we propose computing the estimation weights
w4 (y) by replacing #; (BM,0) by the adjusted weights
W, (y) in (4.5), and by augmenting the vector of auxiliary
variables x and the known population totals t, using ¥
and tM respectively. As a result, the estimation weights

(y) arecallbrated on t, and tM and t, is estimated
by =Y ies wk ¥y, Of course, there may be a limit
on the number of variables that can be used for calibration
purposes. This may somewhat restrict the applicability of
this method when g is very large.

4.2 Modification of the Values of Influential Units

Another way of implementing the M-estimator t)' in
practice consists of modifying the values of the van'ables of
interest y and using the LS estimation weights w;*® for all
variables. This can be done separately for each variable of
interest, so we return to the case of only one variable of
interest in this section.

Let us first denote by 5, the random set of all sample
units & for which w, (B Q) # w, . In other words, s, is
the random set of units that have been detected as being
influential. Let also B™® be implicitly defined by the
equation

Zwk(y,* —XRBM') v_ =0,

kes - Yk

4.6
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where y,, =y,,if ke s—s,,and y,, =y, , otherwise. The
quantity y, is a modified value for the influential unit & that
is used to replace y, . Note that BM* =B if y, =y, , for
k€ s. The population total 7, can then be estimated by

M*—t BM™. It is also easy to show that " =
Zkeswk Yar -

y

The idea here consists of finding modified values y, , for
ke s,, as close as possible to the original values y, and
that satisfy the constraint B™" =B™ . Under this constraint,
it is obvious that £}" =Y. A possible implementation of
this idea is obtained by minimizing the distance function

Ties, Wy —¥,)" /v, subject to the' constraint BM =
B™ . This leads to the modified values

-1
* 4 wk 4
Ye =Y +Xk(z_xkxk]

kes, Vi

(Zixkx;](ﬁlﬂ _BS),

kes Vi

4.7

This idea is essentially equivalent to reverse calibration
proposed by Ren and Chambers (2002), except that these
authors used the constraint fyM = ff instead of BM" = BM.
We prefer the latter since it leads to modified values that
better preserve the relationships between the variable of
interest y and the auxiliary variables x.

Other ways of determining modified values that satisfy
the constraint BM" =BY can be found. For example, it is
straightforward to show that this constraint is satisfied when
the following modified values are used:

ye =y, +(1-a)x BM, (4.8)
where a, =w,(B™,0)/%,. The modified values in
equation (4.8) have a simple interpretation: they are a
weighted average of the robust prediction x,BY and the
observed value y,. Less weight is given to the observed
value y, when it has a smaller value of a, and, therefore,
when it is highly influential.

5. MEAN SQUARED ERROR ESTIMATION

Estimation of the MSE of 7, can be used for three
different purposes: i) finding appropriate values for o and
@ using past or current sample data, ii) evaluating the qual-
ity of estimates and iii) making inferences about unknown

population quantities. Using the fact that E (t , it
can be easily shown that the MSE of r can be approx-
imated by

MSE,(:)")=V,@")

+E, (7Y -1y -v, @) -£0). (5.0)
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The last two terms of (5.1} are equal to (E, (? 1
They represent the square of the design blas of t .As
suggested in Gwet and Rivest (1992), a potential esumator
of MSE ,(z,") is given by

mse (t }= V (r )
+max(0 , @) —18)? —'\}P(fyM —ff)), (5.2)
where V (t ) and \Y (t t Sy are estimators of

v, (r ) and V (r —tG) respectlve]y

Smce the eshmator t” has a complex structure, re-
sampling variance esnmauon methods provide a convenient
way of estimating V,(i)) and V(7' —7%). The jack-
knife, the bootstrap and the balanced repeated replications
methods are described and evaluated in Rao, Wu and Yue
(1992) for stratified multistage sampling designs, where the
primary sampling units are assumed io have been selected
with replacement. They have shown in an empirical study
that the jackknife variance estimator can have a large bias
when estimating the variance of a non-smooth estimator,
such as the sample median. Therefore, the jackknife vari-
ance estimator might be more biased for estimating the vari-
ance of the M-estimator than the balanced repeated rep-
lication or the bootstrap method when, at each iteration of
the IRLS algorithm, Q is estimated using a non-smooth
estimator such as {4.4). Gwet and Lee (2000) studied empir-
ically the performance of the jackknife and the bootstrap
methods for some robust estimators. In general, they found
encouraging results. It is important to note that the estimator

;” should be recomputed for each resample. This includes
repeating the procedure used to estimate o and ¢ if they
are estimated using current sample data.

When the goal of MSE estimation is only to find
appropriate values for @ and ¢, it may be convenient to
consider simplified MSE e¢stimators in order to reduce
computer time. We now propose four different ways of
simplifying MSE estimation:

i)  Only a single iteration of the IRLS algorithm could be
done for each resample even if a fully-iterated
M-estimator is used. This might yield reasonable
variance estimates since the singly-iterated and fully-
iterated M-estimators seem to have similar properties
{see section 6.4).

ii} Some quantities could be assumed fixed (not random)
for MSE estimation. This is likely to lead to an
underestimation of the MSE but it may be useful if the
goal of MSE estimation is only to find appropriate
values for o and ¢ . For example, the adjusted weights
W, (BM Q) could be assumed fixed. This approxima-
tion was in fact suggested in Hulliger (1999). Alter-
natively, if the M-estimator is implemented using the
methodology in section (4.2), the modified values in

Beaumont and Alavi: Robust Generalized Regression Estimation

{4.7) or (4.8) could be treated as true values for MSE
estimation.

iii) The term V, (/' —7¥) in (5.2) could be omitted. This
would lead to the MSE estimator: mse p (IA}'."' )=
\% (t )+ (r ff )% . Note that this approach leads to
an overestlmatlon of the MSE.

iv) A combination of two of the above three propositions
could be considered. For example, the adjusted weights

(BM Q) could be assumed fixed and the term

V (t —t %) in (5.2) could be omitted. In such a case,
an esumator for V, (t ) could be obtained by noting
that V (t )=t V (B""l Jt, and by using the well
known Taylor lmeanzanon technique of Binder (1983)
to estimate V, (BM) . After some straightforward alge-
bra, we obtain the MSE estimator

mse (t )=

(ny —mm,) s
22w -x, BYw! (y, —x/BY)
kes les Ty

+ (£ —£9)?, (5.3)
where m,, is the joint probability of selection of units &

and [,

6. SIMULATION STUDY

We performed a simulation study to evalvate some
properties of the LS estimator and the M-estimator for a
skewed finite population. In particular, we compared a
version of the M-estimator that reduces the influence of
large weighted population residuals to another one that
reduces the influence of large unweighted population
residuals. We also compared the performance of the singly-
and fully-iterated M-estimators. Section 6.1 describes the
population and the sampling design, and sections 6.2 to 6.4
discuss results from the simulation.

6.1 Population and Sampling Design

The data from Statistics Canada’s 1998 Survey of
Household Spending (SHS) are used to serve as the popu-
lation. This survey uses a stratified multi-stage design and
contains information about 15,457 households on several
variables. The variable Renovation/Repair is chosen as the
variable of interest y. This variable is considered for its
greater potential of having very large values. A vector x of
three binary auxiliary variables have been created by
dividing the variable Income into three categories (Jncome <
30,000, 30,000 < Income < 60,000 and Income > 60,000)
and we have chosen v, =1, for all ke U . In other words,
we have considered a poststratification estimation model,
which should give us robustness against deviations from the
linearity assumption. The population coefficient of
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determination { R? ) for this estimation model is 0.13. This
is a typical R” in household surveys.

From this population, 5,000 samples of expected sample
size 300 have been selected using Poisson sampling. We
wanted to give households quite dispersed probabilities of
selection resulting in variable design weights. We thus
assigned probabilities of selection such that they were
proportional to the inverse of the SHS design weights
(which include a nonresponse adjustment factor). The
selection probabilities are thus given by =xn,=
(300/ Ly ;) 70, » where w0, , for ke U, is the reciprocal
of the design weight (including a nonresponse adjustment
factor) from the SHS data.

Table 6.1 gives some summary statistics for this pop-
ulation. We note that the population residuals are very
skewed and that the skewness increases when the residuals
are multiplied by the design weights. Figure 6.1 shows a
graph of the population residuals versus the design weights.
First, we note that there is a clear outlier with a residual
greater than 50,000 and with a design weight not close to 1.
Fortunately, the most extreme design weights are not asso-
ciated with large population residuals. Also, although this
graph may be misleading because of the huge number of
points that are overlapping, there does not seem to be any
clear relationship between the population residuals and the
design weights. In fact, the coefficient of correlation be-
tween the design weights and the population residuals is
0.0049. Such a small coefficient of correlation is not atyp-
ical in household surveys, for reasons discussed in section 3,
and suggests that the ignorability assumption may hold
approximately.

Table 6.1
Summary Statistics about the Population
Standard
Variable Mecan Deviation Skewness
Renovarion/Repair 367 1,124 12.6
Population Residual 0 1,104 12.8
Design Weight 177 170 1.8
Weighted Population Residual 922 295,685 15.0
[ -
I 59,000
v 49,000 4
;é' 39,000 O
£ 29,0001 i -
g
-g ]9,0“} ,.,-‘.l' : ¢ — [
5 .
[=9 LT - g —— e —— -—
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Figure 6.1. Graph of the population residuals versus the design
weights
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For each of the 5000 samples, estimates of the
population total for the Renovation/Repair variable have
been calculated for both the LS estimator and two versions
of the M-estimator; one that reduces the influence of large
weighted population residuals (4, =W, ) and another one
that reduces the influence of large unweighted population
residuals (k, =1). For the i" sample, the relative error in
percentage of any estimate 7, of ¢, is defined as
A, =100%x(fy,- —-t,)/¢,. The Relative Bias (RB) and the
Relative Root Mean Squared Emor (RRMSE) of any
estimator fy , expressed as a percentage of the population
total, can thus be estimated by RB = T3 A, /5,000 and
RRMSE =/T3% A2 /5,000 respectively. Another mea-
sure of interest is the Maximum Absolute Relative Error
(MARE) in percentage given by MARE=
max(| A, |; i=1, 2,.., 5000). This measure may be
useful to assess the sensitivity of an estimator to the
presence of influential units in the sample. ‘

6.2 The LS Estimator: Design Robustness

In this section, we evaluate the properties of the LS
estimator. Figure 6.2 illustrates the RB, RRMSE and
MARE of the LS estimator for 11 values of o {a=0, 0.1,
0.2,03,04,05,06,0.7,08,09, 1) when g(w,;a)=w;.
On the one hand, the BLU estimator (¢=0) has an
RRMSE close to the minimum and the smallest MARE
among these 11 values of a but, as expected, leads to the
largest RB (in absolute value). Its RB is equal to ~13.05%,
which is not negligible. Given that a poststratification model
is used, this suggests that the ignorability assumption is not
fully satisfied even though the correlation between the
design weights and the population residuals is small. On the
other hand, the GREG estimator { @ =1) has a very small
RB but has the largest RRMSE and MARE due to the
variability of the design weights. When a =02, the LS
estimator is biased, with an RB of —9.11%, but has a value
of MARE relatively close 10 the smallest value and has the
smallest RRMSE (17.94%) among the values of o
considered. This is a substantial reduction in comparison
with the RRMSE of the GREG estimator (34.77%). In
general, values of a between 0.2 and 0.5 provide a
reasonable compromise estimator with respect to RB,
RRMSE, and MARE. Nate that, for larger expected sample
sizes, we expect that the minimum MSE be reached for
larger values of o because the bias of the LS estimator may
dominate its variance.

We have also considered the LS estimator obtained by
choosing adaptively, for each selected sample, the value of
a that leads to the smallest estimated MSE among the set of
11 values of o considered above. The MSE has been
estimated using equation (5.3). The average value of o over
the 5,000 selected samples is 0.43. This is slightly larger



204

than the value of « (0.2) that leads to the smallest MSE (see
figure 6.2}, This may be due to the simplification made to
obtain (5.3), which omits a component of the square design
bias when estimating the MSE. Nevertheless, this LS
estimator shows a significant improvement over the GREG
estimator in terms of RRMSE (26.05%) and MARE
(217.99%). This LS estimator shows also a significant
improvement over the BLU estimator in terms of RB
(—6.24%). Therefore, it seems that choosing adaptively the
value of o leads to a useful compromise between the
GREG and BLU estimators. However, there is a price to
pay in terms of RRMSE by estimating o instead of using
the optimal (although unknown) value of «.
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Figure 6.2. RB, RRMSE and MARE of the LS estimator

6.3 The M-estimator: Qutlier robustness

We have compared two versions of the M-estimator; one
that reduces the influence of large weighted population
residuals (4, =w,) and another one that reduces the

Beaumont and Alavi: Robust Generalized Regression Estimation

influence of large wunweighted population residuals
{ h, =1). For the weighted version, we chose 7 values of ¢
(@ =10, 25, 50, 100, 150, 200, o=} and for the unweighted
version, we chose 9 values of ¢ (9=2,5, 8,11, 14, 17, 20,
30, ce). We have only considered the case a =1, as we did
not want to confound the effects of changing the constant o
with the effect of changing the constant ¢ . Of course, a
more efficient estimator could be found by an appropriate
choice of both constants. It is to be noted that the results are
based on a single iteration of the TRLS algorithm using
B =B as the vector of starting values.

It can be seen from figures 6.3 and 6.4 that the weighted
version (h, =w,) has a better potential for reducing the
RRMSE and the MARE of M-estimators than the
unweighted version (k, =1). Both graphs of RRMSE
present a U-shaped curve. The RRMSE curve for 4, =w,
shows that a value of ¢ between 50 and 150 leads to an
RRMSE between 25% and about 27%, while the RRMSE
of the GREG estimator (last point on the graphs) is equal to
34.77%. The RRMSE curve for A, =1 shows that the
RRMSE is around 30% for values of ¢ between 8 and 20.
In the area where the RRMSE is close to its minimum
value, the MARE is smaller when #, =w, . This suggests
that h, =w, may control influential units better than
h, =1. As expected, the RB in both figures decreases as ¢
increases.

We have also considered the weighted and unweighted
versions of the M-estimator obtained by choosing
adaptively, for each selected sample, the value of ¢ that
leads to the smallest estimated MSE (using equation 5.3)
among the sets of values of ¢ considered above. The
average value of ¢ over the selected samples is 72.34 for
the weighted verston and 10.58 for the unweighted version.
Calculation of these averages excludes samples for which
¢ =oo (13 samples for &, =w, and 1 sample for 4, =1).
Both averages are close to the optimal values of ¢ found in
figures 6.3 and 6.4 (100 for A, =w,, and 11 for 4, =1).
The weighted version of the M-estimator has an RB of
—-10.24%, RRMSE of 28.07% and MARE of 197.86%.
The unweighted version of the M-gstimator has an RB of
—8.26%, RRMSE of 28.18% and MARE of 232.57%.
Therefore, both versions of the A-estimator lead to a
significant improvement over the GREG estimator in terms
of RRMSE and MARE at the expense of an increase in RB
(around -10%). The MARE is smaller for the weighted
version, which again indicates that it controls influential
units better than the unweighted version. However, the
difference in the RRMSE between these two estimators is
very small. Curiously, it seems that there is no increase in
MSE due to estimating ¢ instead of using the optimal value
when the unweighted version is used. This observation is
somewhat difficult to explain.
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Figure 6.3.RB, RRMSE and MARE of the M-estimator when
hk =|

6.4 Comparison of the Singly-iterated and Fully-
iterated M-estimators

We now compare the singly- and fully-iterated
M-estimators when o =1. We only consider the following
two cases: i) A, =1 and ¢=11; and ii) 4, =w, and
¢ =100. Most of the time, the IRLS algorithm converged
quickly in the fully-iterated case (average number of
iterations for convergence is 7.53 for &, =1, and 7.29 for
h, =w, ), but in some of the 5,000 samples (64 for &, =1,
and 75 for h, =w,) it did not converge. When this situation

Phi Values

Figure 6.4.RB, RRMSE and MARE of the M-estimator when
by = Wy

occurred, we kept the M-estimate from the last iteration of
the IRLS algorithm. From table 6.2, it is evident that the
RB, RRMSE and MARE of the singly- and fully-iterated
M-estimators are very close to each other. A point worth
noting is the slightly smaller RBs for singly-iterated
M-estimators. This point has also been observed by Lee
(1991) and is likely due to the fact that we used B = B®
as the vector of starting values for the IRLS algorithm,
which is ADU for B.
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Table 6.2
Comparison of Singly- and Fully-iterated M-estimators

Singly-iterated

Estimator

Fully-iterated

RB RRMSE MARE RB RRMSE MARE
M-estimator (b, =1, @=11) —-6.94% 29.28% 235.07% -7.93% 2927% 235.07%
M-estimator( b, = w,, ¢=100) -8.14% 2536% 197.86% -8.27% 2533% 196.73%

7. CONCLUSION

In this paper, we considered robust alternatives to the
optimal {BLU) estimator. We first proposed a compromise
between the GREG and BLU estimators, the LS estimator,
to deal with deviations from the ignorability assumption.
The LS estimator is obtained by shrinking the design
weights toward their mean. Tt is expected to be more stable
than the GREG estimator when the ignorability assumption
holds approximately and less biased than the BLU estimator
when this assumption is not fully satisfied. This was
confirmed in a simulation study using a population created
from real survey data. The LS estimator also offers some
protection against deviations from model assumptions.

To deal with outliers, we suggested using the weighted
generalized M-estimation technique to reduce the influence
of units with large weighted population residuals, We found
in a simulation study that significant gains in MSE could be
obtained with this method. We also found that an
M-gstimator obtained using a single iteration of the IRLS al-
gorithm performed similarly to a fully-iterated M-estimator.
Finally, we proposed implementing M-estimators for multi-
purpose surveys by modifying either the weights of influ-
ential units or their values. We believe that both approaches
are useful and contribute to bridge a small gap between
theory and practice.
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APPENDIX

In this proof, we remove the conditioning on X when
taking expectations and variances with respect to model m
in order to simplify the notation. Using Slutsky’s theorem,
to show that E (r7 1 }/¢, converges in probability to 0,
as the sample size n and the population size N tend to
infinity, under assumptions (A1), (A2) and (A3), it suffices
to show that:

a) E_ (@, /t,B)=¢,/t, B converges in probability to
1 and

b) E,(i}/t,B) converges in probability to .

To show (a), note that

and

t 1 1
vl 1 s
"'[t;ﬂ} N oy 2%/

By Chebychev’s inequality, r,/t;B converges in
probability o | under model m, as N increases, if
t.p=O(N) and T, 6. = O(N) (assumption A3).

To show (b), we first note that E_E ()= E,,Em(-| 5)
provided that the set of all possible samples does not depend
on which population was generated by model m.
Consequently, if assumption (A2) holds, it is
straightforward to show that E_E (i’ /t,B)=1. Then, we

note that
18 r8 18
Vi £ =V,E, = +E,V, . (Al
t.p, t.p t.p

As aresult, VE (12 /t,B)<V, (i} /t;B) since the
two terms on the right side of (A.1) are greater than or equal
to (. By the previous inequality and Chebychev’s inequality,
E, ( f /t.B) converges in probability to 1 under model m,
as n and N increase, if lim, V., (ff /t.B)=0. Using
assumption (A2), it is straightforward to show that

V”’"[ffsﬂ}% oy Seblet

Consequently, lim,,_N_,mep(f; ICB)=0 if tp=
O(N) and ey E  {(w))?1,} o = O(N) (assumption

A3). This completes the proof.
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Penalized Spline Nonparametric Mixed Models for Inference about a

Finite Population Mean from Two-Stage Samples

HUI ZHENG and RODERICK J.A. LITTLE '

ABSTRACT

Samplers often distrust model-based approaches to survey inference because of concemns about misspecification when
maodels are applied to large samples from complex populations. We suggest that the model-based paradigm can work very
successfully in survey settings, provided models are chosen that take into account the sample design and avoid strong
parametric assumptions. The Horvitz-Thompson (HT) estimator is a simple design-unbiased estimator of the finite
population total. From a modeling perspective, the HT estimator performs well when the ratios of the outcome values and
the inclusion probabilities are exchangeable. When this assumption is not met, the HT estimator can be very inefficient. In
Zheng and Little (2003, 2004} we used penalized splines (p-splines) to model smoothly - varying relationships between the
outcome and the inclusion probabilities in one-stage probability proportional to size (PPS) samples. We showed that
p-spline model-based estimators are in general more efficient than the HT estimator, and can provide narrower confidence
intervals with close to nominal confidence coverage. In this article, we extend this approach to two-stage sampling designs.
We use a p-spline based mixed model that fits a nonparametric relationship between the primary sampling unit (PSU) means
and a measure of PSU size, and incorporates random effects to model clustering. For variance estimation we consider the
empirical Bayes model-based variance, the jackknife and balanced repeated replication (BRR) methods. Simulation studies
on simulated data and samples drawn from public use microdata in the 1990 census demonstrate gains for the maodel-based
p-spline estimator over the HT estimator and linear model-assisted estimators. Simulations also show the variance
estimation methods yield confidence intervals with satisfactory confidence coverage. Interestingly, these gains can be seen
for a commen equal-probability design, where the first stage selection is PPS and the second stage selection probabilities are
proportional to the inverse of the first stage inclusion probabilities, and the HT estimator leads to the unweighted mean. In

situations that most favor the HT estimator, the model-based estimators have comparable efficiency.

KEY WORDS: Weighting; REML; Empirical Bayes estimation.

1. INTRODUCTION

In a sample survey, let y; denote the value of an
outcome Y for unit i, and let § denote the set of sampled
units. The Horvitz-Thompson (HT) estimator (Horvitz and
Thompson 1952) Yy = Ses ¥, /7, where m, is the
probability of selection of unit i, is a design-unbiased
estimator of the finite population total (and of the mean
when divided by the known population count A'). It can also
be regarded as a model-based projective estimator (Firth and
Bennett 1998) for the following linear model relating y; to
T

i

¥, =Pn; +me,;,

where &, is assumed to be i.i.d. normally distributed with
mean zero and variance o’

In Zheng and Little (2003, 2004), we proposed a
nonparametric model

yi=f(n)+e;,€ ~ind N(O’niucz)’

using penalized splines to model mean of outcome y, as a
smoothly-varying function f of the inclusion probabilities

Hui Zheng, Department of Health Care Policy,

Harvard Medical

m,. We showed in Zheng and Little (2003) that the
nonparametric model-based estimators are more efficient
than HT for general one-stage probability-proportional-to-
size (PPS) samples and not much less efficient than HT
when the data are generated using a model that favors HT.
In this article we consider two-stage sampling. In the first
stage, a subset of m primary sampling units (PSUs) is drawn
from a population with # PSUs with unequal probabilities
m, ., k=1, .., H Letus number the included PSUs from |
to m. In the second stage, a simple random sample (srs) of
n, out of N, secondary sampling units (S§SUs) is drawn
from the sampled PSU labeled k with probability x, ,. The
overall selection probability for unit { in PSU £ is
T, =m ,m, ,, and the HT estimator of the mean of an
outcome Yis y, =3, X v, /(m,,7,,)/ N, where y,;
is the value of ¥ for unit { in PSU A and N is the known total
number of units (SSUs) in the whole population. In a
commonly adopted design, the first stage selection
probabhility is proportional to an estimate of the PSU size,
and the second stage inclusion probabilities are proportional
to the inverse of the first stage inclusion probabilities so that
the overall inclusion probabilities n, are equal for all SSUs.
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The inverse probability weighted mean in this case equals
the simple sample mean y =37, 37 v, / Zio iy

We assume throughout this article that the selection
probabilities 7, , are known for all the PSUs A= 1, ..., H.
In sections 2 and 3, we assume the PSU counts N, are also
known for all the PSUs in the population. In section 4, we
discuss the common situation where N, is only known for
sampled PSUs, but the N, for nonsampled PSUs can be
estimated using a regression model based on auxiliary
variables known for all PSUs in the population.

Samdal, Swensson and Wretman (1992) discussed
model-assisted alternatives to the HT estimator for two-
stage samples with auxiliary information available at the
PSU or SSU level. In the first case, let x, denote a vector of
PSU-level auxiliary variables for PSU k. The PSU totals
t, =¥y, areassumed to be related to x, according to a
linear model:

E(t, | x,)=xiB. Var(t,) =0}, h=1,.., H

(Samdal et al. 1992). B is estimated by the probability-
weighted regression

m T
§=(Z-"ﬁx§ /(Ginl.h)] pIEAN I(oiﬂlv")’

h=1 h=1
where t; 2 ¥/, ,, leading to the projected totals
f,=xIB, h=1,... H. Tn practice, estimates &, either
S1mp1y assumed (e.g., o, proportional to a measure of size
of stratum k) or estimated, replace o in the above formula.
The generalized regression (GR) estimator of the grand total
is
i ;: — ; 5)
h=|

R H
TA=Z P

i=

and the estimate for the mean is ’f“A /N. The term
Y {ty, —1,)/m, , isabias calibration term that makes the
estimator design- consistent.

In the second case where auxiliary information is known
at the SSU level, let x,, denote the set of auxiliary variables
for SSU ¢ in PSU &, h=1..,H;i=Ll..,N, The
relationship between the outcome and the auxiliary
information is modeled by

E()’hfl xhi)=x}:ﬁ B,....Var(y,)
=02, k=L, .., H,i=1,.,N,
The probability weighted regression estimate for B is

", -l momy
(kzg k:xha (Uiinhl')J szm‘ yhs"’(c’i“m)’

h=1 i=1
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where m,, is the probability for unit (%, i) to be included in
the sample. The GR estimator for the grand total is

4 Nn L ( l ]
TB Zzym_l_zz Yui = Vi) ,
A=l izl A=l i=l T

where ¥, = xLﬁ‘ . The estimator for the mean is f‘,, IN.

These two methods do not account for the within-PSU
correlations of outcome. These correlations can be modeled
by treating PSU means as random effects in a hierarchical
model. For the case where PSU-level information x, is
available for all PSUs, one such model is:

ind
)’r.s' B, ~ N(Pm 02)
P”NH(‘P, D) )

where p=(,, oy )y @=(@), o )" Where p, is
the mean outcome in PSU &, o, =x,’:[3, and D is the
covariance matrix of the PSU means. The model-based
estimator of ¥ is given by

E(Y |y,x,)=
L(S™ 10,5, + N, —m) 3,145 N,
N h=1 My Y BT ) My h=r+l M fs
where {i, = E(y, |¥,x,),and y is the vector of outcomes
in the sample.

Different assumptions about ¢ and D in (1) lead to the
following models:

Exchangeable random effects (XRE): (Holt and Smith
1979; Ghosh and Meeden 1986; Little 1991; Lazzaroni and

Little 1998): @, =p,,h=1,..., Hand D=11,;
Autoregressive (AR1): (Lazzaroni and Little 1998):
¢, =u,,kh=1,..,H and D=r?{pt};

Linear (LIN). (Lazzaroni and Little 1998y ¢, =
a+PBx,, k=1, .., H and D=1%1,;

Nonparametric: (Elliott and Litle 2000y ¢, =
fx )y h=1..,H and D=0.

The nonparametric models in Elliott and Little {2000)
assume nonparametric mean function relating the outcome
to the design variables. By assuming D=0, the PSU
means are modeled to equal the mean function finstead of
varying around it. Nonparametric mixed models relax the
assumptions on D (e.g., D =11, ) and serve as a natural
extension of the Elliott and Little {2000) model and linear
mixed models with a parametric mean structure.
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It is worth pointing out that some estimators in the above
family of models comespond to standard design-based
estimators. For example, in an equal-probability design
where n, are approximately constant across PSUs, the
unweighted mean corresponds to the special model-based
estimator that assumes ¢, is constant.

2. ESTIMATION FOR THE P-SPLINE MIXED
MODEL

The linear structure of ¢ in LIN model is subject to
misspecification when the actual mean structure is non-
lingar. The non-lingarity problem can be partially solved by
adding polynomial terms {e.g., quadratic or cubic terms) to
the fixed effects part in the LIN model. P-spline
nonparametric mixed models (Lin and Zhang 1999,
Brumback, Ruppert and Wand 1999; Coull, Schwartz and
Wand 2001) are even more flexible, since they replace
polynomials by smooth nonparametric functions. We
propose the following p-spline nonparametric mixed model
for inference about the population mean:

P-spline nonparametric mixed model (PMM):

(ph =f(xﬁ)’h=1!"'sH; D=T21H1

where f is a nonparametric degree p spline function:

f(xB B0+ZB i* +ZBl+p ]f’

Jj=1

where Kk, <..<k, are K fixed knots, B,, .., B,., are
coefficients to be estimated and (x)? = x"I{x 2 0).

A naive way of estimating B, ..., B, is to treat them
as fixed and estimate them together with the variance
components g° and 1° by fitting a linear mixed model.
However this method can yield estimates of f with too
much roughness and variability. To avoid overfitting, the
roughness of the estimation f can penalized by adding a
penalty term to the sum of squared deviations, so that the
solution ﬁo, ﬁ p 1S minimizes

Z(f(xh) Hh) +U~ZBr+p-

=l

This is achieved in the context of the model by assigning
Bos s B, flat priors, (B, - BP+K) a normal prior
N, (0, cﬂ), and letting o=t f(‘ip The result is a
penallzed spline ( p-spline} model.

When p=1, f is piecewise linear and the coefficients
Bgs «s By and 02,6§ and 1° are estimated by fitting the
linear mixed model:
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y=XP+X,u+e, (2)
where y = (y,,, yl'Z" o Yo ) B = (Bo By Y, u=
(B vver Brgars s oo ”m) )
]
1 x
X
X2
X, = ;
X3
| ox, |
[, —k,), o (K —Ke), 1 O . 0]
(x, =%;), o (x-xe), t 0
(X, K)o (Xy=Ke), 0 1
X,= ’
(X, =k}, o (—x, ), 0 1 .0
00 ]
L(xp =KD e (X, kgD, 0 0 L T

where x, in X, and (x, —x,), in X, are both repeated
n, times. The random terms # and € are mutually
independent with

u=(l32’ e 131(+I! Uyyon

Go ogly, O .
0 121,,,
Variance components 02,c§ and 1 can be estimated by
fitting model (2) by restricted maximum likelihood
(REML).
The predicted means of PSUs included in the sample
are given by: i = XB + X,it, where B=(xIvV-'x g7

Nx-q-m (0! G)s

;
s Uy ) ™

X'y, i=GXIV'5-Xx,B), whee V=
X, GXT+0 ¥, T=diag{(1/n,};, and y=
.. ,ym) The predicted mean for a PSU h that is not

selected in the first stage is i, = x,,B where
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x, =[x, (x =), o (x, _KK)+]T

and

~ -~

[§'=[|30 BI! ’ '§K+I]T‘

Combining the predictions, we obtain the model-based
estimator of the population mean

E(i’—ly,x,,)=

I (m o o . .
—1\7(2"“ 73 + (N =) Hy ] +Zf=m+l N, Pﬁ)'

3. VARIANCE ESTIMATION METHODS
3.1 Empirical Bayes Model-based Variance

Model (2) can be interpreted as a Bayes model in which
the parameters = (B, ..., By s ¥;» ..e» H,)' have multi-

variate normal prior N, (0, G), and B,, B,, o7,
o and t° all have the flat priors. This leads
to the Bayes posterior varance for the vector
(Bos Bys s Byors Uy - 4, ) conditional on o7, 0}
and 1% as
Var((By, Bi. s Byars s oons 8,)7 |67, 63, T ¥)
=o' (XX +A)"
where X =[X, X,] and
00 0 0
Aj00 0 0
10 0 o*fopiy o
00 0 ot

where [, andl, are (KxK)
matrices, respectively.

The empirical Bayes posterior variance for
(Bos By s Brars g5 oo #,,)7 is calculated by replacing
cz,cé and 7% with their maximum likelihood (ML) or
restricted maximum  likelihood (REML) estimates
8%,6 and %%, respectively. The empirical Bayes
method underestimates the true posterior variance, but the
underestimation is not severe for the sample sizes
encountered in many survey settings. A fully Bayes solution
is also possible, but is not covered here.

_The predicted population mean is Tpmd/ N, where
T, =T +’I‘2 , Iy =%rn,y, is the sample total, and T

is the estimated total for units not included in the sample,

T, =3, (N

and (mxm} identity

”~ H -
» =) By +}|_Z!]thh

PO T
=NPXP[B0 Bi-- By ”1---”-":] ; (3)
where
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NP=[(N1_n1)---(N,,,—n,,,)N,,,+|...NH],
and
X,=
I ox (m-k), - (=%, 1 0 - 0
01 0 0
. 0o .
. 0 0 1 0
1 «x, (x,—Kk), - (x. k), O 0 1
T X Fpu — ¥y (X, —Kg), O o oo O
I xy {xy — k), (xy =K, O -+ o 0O
The empirical Bayes posterior variance for Y= f‘pm, /N is

Var(}% | cz,cs,tz,X,XP) =
o2 (N, X (XTX + A XTNTY/N2.

3.2 The Jackknife Method

A jackknife variance estimator is developed for the PMM
esttmator. The jackknife replicates are constructed by
dividing the set of PSUs into G equal—s;zed subgroups and
computing the g" pseudovalue as Y =GY - (G—])Y(g),
where ¥ is the original PMM esumator and Y, is the
same estimator calculated from the reduced sample obtained
by excluding the elements from the PSUs in the g"
subgroup.

The jackknife variance estimate of Y is

A

v

@) G(G 1) é(
where ¥ =X.,¥, /G . In order to balance the distribution
of the selection probabilities across the subgroups, sampled
units are stratified into »/G strata each of size G with sirmilar
first stage inclusion probabilities, and the G subgroups are
constructed by randomly selecting one element from each
stratum. To save computation, estimates &2, &; and i* are
not recomputed for each replicate. That is, we compute
pscudovalues of (By, By, oo Brars #1s o #,,)  based on

the variance components estimated from the whole sample.
Miller (1974) and Shao and Wu (1987, 1989) proved
asymptotic properties of the jackknife estimator and
jackknife variance estimation in the case of multiple linear
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regression. Zheng and Little (2004) provided a theoretical
justification for the jackknife method for the p-spline model-
based estimator in the case of one-stage designs. Numerical
simulations in section 4 suggest the above described
jackknife method also works well for the two-stage design.
Improved performance might be achieved using the
weighted jackknife proposed by Hinkley (1977).

3.3 The Balanced Repeated Replication Method

The BRR method can be applied in stratified designs
with two units sampled in each stratum. For designs with
one PSU per stratum, strata are often collapsed (Kalton
1977) for BRR variance estimation. In our application we
assume the PSUs are sampled systematically from a
randomly ordered list. This can be viewed approximately as
a stratified design with n sirata each consisting of PSUs with
cumulative measures of approximate size ¥ z, /n, where
z; are the measures of size for the PSUs . One PSU is
sampled from each of the n strata. Assuming # is even, the
design can be approximated by a stratified design with n/2
strata with measures of size 2T z,/n, and two units
sampled per stratum. Balanced repeated half samples are
constructed by selecting one PSU from each stratum, with
the selection scheme based on Hadamard matrices (Plackett
and Burman 1946). Let ¥, be the p-spline estimator
computed from the 4™ half sample, using the same knots as
used in the computation using the full sample — the number
and placement of knots needs to allow the spline model to
be fitted on each half-sample. The BRR estimator is given
by v ¥)=1/B T2 (¥, -¥)*. This estimate of the
variance is subject to some bias, because it treats the design
as if it was stratified with two PSUs per stratum.

4. WHEN SOME PSU COUNTS ARE NOT KNOWN

In sections 2 and 3 we assumed that the PSU counts N,
are known for sampled and non-sampled PSUs. In this
section we discuss the situation where N, is only known
exactly for the sampled PSUs (labeled 1 through m). We
also assume that values M, ,h=1,., H of an auxiliary
variable predictive of N, are known for the whole
population. For example, the M, may be PSU counts
estimated from outside sources such as a census. We
conduct a regression of N, on M, using the sampled
PSUs and replace the counts N, in (3) for nonsampled
PSUs with predictions N,,h=m+1,...,H from this
regression. The resulting estimate of the total is

il L ~ H " A
T=T,+), (N,—n)ii,+y,.  Ni,.

The variance estimate of T needs to incorporate the
additional va{iability in N, . In particular, a model-based
variance for T is
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Var(T | n,,M,)=Var(E(T |N,.1,,M,))
+E(Var(T | N,.x,,M,)),

where

-~ A m " -
E(T | Nj'nnh’Mﬁ):Zh:i(Nh _nh)uh +2h=m+] Nh ”h
and

=1 A 2 /a7 T -1 T T
Var(T |N,. 7, , M) =c*(N, X p(X" X +A)"' X N;),

Ne={(N-n)..\N,-n )N, ..Ngl,and X, X,
and A are defined as in (3).

If the models for p, and N, are both correctly
specified, the above variance can be estimated according to
the corresponding models.

5. SIMULATIONS

5.1 Simwulation Design

Two simulations are conducted to compare the inverse
probability weighting method, the model-assisted method
(Samdal et al. 1992) and the PMM method in the case of
two-stage samples.

In our first simulation, artificial populations are generated
with different mean functions f(n,,)of the first stage
inclusion probabilities. Four different mean functions are
simulated: 1) NULL, a constant function; 2) LINDOWN, a
linearty decreasing function; 3) EXP, an exponentially
increasing function; and 4} SINE, a sine function.

Two combinations of values for variance components are
simulated: 1)o=0.1 and t=0.2; 2)0=0.2 and t=0.1.
Only normal errors around the mean functions are simulated
while both normal and lognormal within-PSU errors are
simulated.

The population consists of 500 PSUs, and in the first
stage 48 PSUs are sampled systematically with probability
proportional to size (PPS) from a randomly-ordered list. The
PSU sizes are uniformly distributed with values ranging
from 4 to about 400. The SSU count in each PSU is
generated from a distribution with mean equal to 1.05 times
the measure of size and log-normal errors with standard
deviation 30.

Two types of second-stage sampling plans are studied: 1)
within-PSU simple random sampling (srs) with inclusion
probabilities proportional to the inverse of the first stage
inclusion probabilities, resulting in an equal inclusion
probability for all 58Us.; 2} within-PSU simple random
sampling with the same sampling rate across sampled PSUs,
sor that the resulting inclusion probabilities for the SSUs in
PSU 4 are proportional to x, , .
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For each sample drawn under both sampling plans, the
following methods are applied:

A. The HT estimator.

B. The model-assisted estimation method. We use a linear
movdel regressing the outcome y,, on the first stage
inclusion probabilities, which are treated as elemeni-
level information. The GR estimator is computed by the
formula given in section 1.

C. The PMM method, with the first-stage inclusion
probabilities m , as the covariate. We use 20 equal
percentiles of m,, of the sampled PSUs as the knots for
p-spline regression.

D. The PMM method with the PSU means p, estimated
the same way as in C, but using estimated PSU counts
from a simple linear regression of N, on the measures
of size, which are proportional to m,,. This part of the
simulation is conducted to study the method described in
section 4.

Estimates of ¥ from methods A-D are calculated for
each of the 500 samples drawn repeatedly from the artificial
populations (each artificial population is generated only
once). For the PMM estimator, we compute the empirical
Bayes, the jackknife (K=8) and BRR variance estimators
for each repeated sample. The mean estimate for the

variance of PMM and the coverage rate of the
comresponding 95% confidence interval are used to judge the
quality of inference. For method D, we study the empirical
bias of the model-based variance estimator described in
section 4, together with coverage rates of associated
confidence intervals.

In the second simulation study, we draw samples of
household income data from the 5% public use microdata
sample (PUMS) for the State of Michigan in the 1990 US
Census, which we treat as a finite population. This
simulation is more realistic than the previous simulation in
that the outcome values are drawn from a real rather than
stmulated distribution. The PSUs we simulate are based on
the natural geographical clusters called “Public Use
Microdata Areas” (PUMASs),which are typically counties
and places. There are 67 PUMAs in the Michigan 5%
PUMS, with counts of families ranging from around 1,300
to over 10,000. We increase the number of available PSUs
by dividing each PUMA into 5, resulting in 335 PSUs. The
PSU counts ranges from 134 to 3,058. Figure 1 gives the
scatter plot of one sample of the average household income
versus sampled PSU sizes together with the regression curve

~
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Figure 1. P-spline Regression Curve {dotted line) and the Average Household Income (stars) in Sampled PSUs
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Five hundred two-stage samples are drawn, each
consisting of 30 PSUs and 20 SSUs (families) from each
selected PSU. The first stage sampling is systematic PPS
where the measures of size are equal to the PSU counts. The
second stage sample is simple random sampling with
inclusion probabilities proportional to the inverse of the first
stage inclusion probabilities. In the estimation of the mean,
we use the true PSU counts as variable x,, with values
proportional to the first-stage inclusion probabilities, We
apply the p-spline nonparametric mixed model formulated
in (2). We use 10 equally spaced sample percentiles of the
PSU counts as the knots in the p-spline.

5.2 Results

Table 1 gives the empirical bias and root mean squared
error (RMSE) from four estimation methods of the finite
population mean applied to equal probability sample from
populations generated with both normal and log-normal
within-PSU errors and two (o,t) combinations. The
empirical bias and RMSE are estimated by the mean bias
and squared error from the 500 repeated samples.

Table 1 suggests the PMM based methods give
estimators with small biases. In the case of equal probability
sampling, the PMM estimator is roughly as efficient as HT
estimator when the mean function f is constant. In the
more general cases such as NULL and LINDOWN, where
f 18 linear but not constant, the linear model-assisted and
PMM method are comparable and both are more efficient
than the HT estimator in terms of root mean squared error.
For populations EXP and SINE, whose mean functions are

215

not linear, the PMM method is superior to both the HT and
the linear model-assisted estimators. The improvement of
efficiency requires the knowledge of complete design
information including probabilities m,, and PSU counts
N, for the whole population. When using estimated PSU
counts N » inthe place of N, , the resulting estimator is less
efficient than in the case with known N,, but the PMM
estimator can still outperform the HT when the mean
function is nor-constant. Comparisons on populations with
normal or log-normal within-PSU errois result in similar
findings.

Similar gains for the PMM method are seen in Table 2,
for the case of unequal probability sampling. This suggests
that the key to improved efficiency is the better prediction
given by the nonparametric models. Tables 1 and 2 both
suggest that the p-spline model-based estimators have very
small empirical design-biases. We believe this is because
the flexible mean functions yield good predictions of the
PSU means.

Table 3 compares point estimation and coverage of 95%
confidence intervals from three variance estimation methods
for PMM: the empirical Bayes model-based method, the
Jackknife method and the BRR method. The empirical
Bayes method is generally satisfactory but tends to
underestimate the true variance of PMM estimator, resulting
in under-coverage in some cases. The jackknife and the
BRR methods tend to yield more robust estimates for the
variance. In general, PMM yields estimates with improved
efficiency over the traditional HT and linear model-assisted
estimators and satisfactory design-based inferences.

Table 1
Empirical Biases and RMSE of PMM, HT, GR and PMM with Estimated &, for Samples Under Equal Probability Designs
PMM Horvitz-Thompson Linear Model- PMM with
; Assisted Estimated &,
x10™) BIAS RMSE BIAS RMSE BIAS RMSE _ BIAS _ RMSE

Normal NULL 1.1 297 0.8 30.0 0.8 299 1.3 30.1
Errors LINDOWN 35 30.7 36 36.4 37 30.7 2.3 304
=02 EXP —-4.4 29.1 -94 53.0 -93 36.7 —473 29.1
o=0.1 SINE 48 325 2.1 42.0 -03 359 52 343
Normal NULL 5.7 220 6.6 225 6.6 22.1 5.5 223
Errors LINDOWN 0.5 204 -0.6 27.1 -0.3 20.5 1.6 206
t=0.1 EXP 09 23.1 1.9 50.3 ~4.2 31.7 0.4 234
=02 SINE 7.0 223 6.5 349 38 264 8.0 264
Log-normal NULL 1.7 323 09 32.3 0.7 323 L5 325
Errors LINDOWN 2.9 31.9 KX} 394 2.7 321 32 320
=02 EXP -0.6 284 -59 51.5 -6.9 364 -0.3 285
6=0.1 SINE 6.9 338 1.5 43.7 -19 39.0 -3.1 35.0
Log-normal NULL 8.5 305 9.6 31.3 9.2 31.0 9.1 30.8
Errors LINDOWN 3.6 323 1.9 375 3.6 3241 6.4 33.1
t=0.1 EXP 39 29.0 6.8 53.8 1.0 344 3.7 294
o=02 SINE -29 30.1 -89 44.7 -12.0 384 -38 359
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Table 2
Empirical Biases and RMSE of PMM, HT, GR and PMM with Estimated N, for Samples Under Unequal Probability Designs
PMM Horvitz-Thompson Linear Model- PMM with
\ Assisted Estimated NV,
(<10")  BIAS RMSE BIAS RMSE BIAS RMSE  BIAS  RMSE
Normal NULL -45 293 -37 336 -32 305 —-4.5 29.3
Errors LINDOWN -0.9 27.0 37 355 1.8 27.7 -0.7 26.9
=02 EXP 5.8 320 1.9 56.8 04 394 14.1 344
c=0.1 SINE 7.1 30.1 6.1 39.5 KX 328 5.3 304
Normal NULL -T7.7 21.3 -7.7 249 —-6.6 21.1 -7.6 212
Errors LINDOWN 1.1 20.7 32 30.6 1.2 20.7 35 21.1
t=0.1 EXP -23 20.9 -6.5 53.3 -72 30.0 -3.0 209
c=0.2 SINE 5.6 20.9 6.9 36.2 4.0 28.6 4.3 211
Log-normal NULL -05 28.5 -2.0 30.6 =21 29.5 -0.3 28.5
Errors LINDOWN 54 32.6 5.0 39.0 37 34.1 6.0 32.7
=02 EXP -13 28.6 -7.6 62.6 -7.1 36.8 -93 30.3
c=01 SINE a7 312 2.3 43,1 0.1 36.1 1.6 31.0
Log-normal NULL 36 228 57 28.8 5.7 24.2 3.6 227
Errors LINDOWN 6.0 26.8 9.3 375 7.5 27.3 2.5 26.0
=0.1 EXP 0.8 26.3 -23 50.8 -35 33.1 11.5 29.0
a=0.2 SINE 37 26.9 2.9 37.6 -0.1 30.2 22 278
Table 3

Variance Estimation and Empirical Coverage Rates of 95% C.1. Using the Model-based, Jackknife and BRR Methods

Empirical Empirical Bayes Jackknife(X = 8) BRR
variance Model-based
Estimate Estimate Estimate

Shape  (x107%) (x107%) % x10°%) % (x107%) %

Notmal NULL 88 74 92.8 94 96.4 96 94.4
Errors LINDOWN 94 73 89.6 94 94.6 98 94.2
t=02 EXP 85 70 914 88 94.6 85 934
c=0.1 SINE 83 &7 91.6 90 95.8 85 944
Normal NULL 48 45 93.8 48 96.0 49 938
Errors LINDOWN 42 45 96.8 51 96.2 51 96.8
=01 EXP 53 54 95.0 61 97.2 59 95.2
o=02 SINE 44 46 95.8 55 96.6 49 96.0
Log-normal NULL 104 83 91.8 104 94.8 100 93.6
Errors LINDOWN 102 98 93.6 106 95.6 107 95.0
=02 EXP 81 77 93.4 97 96.4 89 94.8
6=0.1 SINE 92 99 94.8 97 95.2 92 934
Log-normal NULL 93 97 942 100 96.2 99 95.2
Errors LINDOWN 104 101 036 106 96.0 102 9238
t=0.1 EXP 84 81 94,6 84 95.2 82 95.0
=02 SINE 110 96 04.4 o8 93.6 9 930

Tables 4 and 5 give the empirical variance of the PMM

estimator when the non-sampled PSU counts N, are
estimated. They also give the mean estimated variance of
this estimator and corresponding coverage rates by the 95%
C.L. The confidence intervals are calculated by the usual
normal theory intervals based on our point and variance
estimators. These two tables show the inference method
discussed in section 5 tends to underestimate the true
variance of PMM estimator using N x> iving in occasion
under-coverage of the population mean. It remains to be
studied in the future whether the JRR and BRR methods
also yield satisfactory inferences for this method.

For the simulation study using 5% PUMS data, the
simple mean has bias = —50.9 and RMSE =2,600 and the
p-spline nonparametric mixed model based method has
bias = —41.9 and RMSE =2,153.Thus both methods have
small bias and the model-based estimator has a RMSE 17%
less than the RMSE of the simple mean. This improved
efficiency is due to the fact that the average household
income decreases for as the number of families in the PSUs
increases (figure 1). The PMM method exploits this
relationship in its predictions.
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Table 4
Variance Estimation and Empirical Coverage Rates of 95% C.I. Using P-spline and Estimated PSU
Counts, Population Simulated with Normal Errors

c=0.1 and =02 g=02 and t=0.1
Empirical Estimated Empirical Estimated
Variance Variance Coverage Variance Variance Coverage
(x107) (x107%) Rate (x10) (x107) Rate
NULL 90 76 91.8 50 46 93.2
LINDOWN 93 74 90.4 43 46 95.6
EXP 85 72 93.0 35 56 96.2
SINE 110 08 94.8 50 55 97.6
Table 5

Variance Estimation and Empirical Coverage Rates of 95% C.1. Using P-spline and Estimated PSU
Counts, Population Simulated with Log-normal Errors

=01 and =02 ¢=02 and 1=0.]
Empirical Estimated Empirical Estimated
Vanaflsce Vanansce Coverage Vananscc Vanansce Coverage
(x107) (x107) Rate (x107) (x107) Rate
NULL 105 84 91.8 05 99 94.8
LINDOWN 103 98 94.4 110 102 94 .4
EXP 81 79 94.6 87 83 94.2
SINE 110 150 96.4 91 130 958
6. DISCUSSION unknown counts can still provide sound estimates of the

i ] _ population mean, if the model tracks the true PSU counts
Previous _pmmcmg model-bgsed mf_erence mel;h‘_)dS precisely enough. The model relating these counts to the
have been criticized mainly for their potentially large design auxiliary variable was treated parametrically here, but this

biases when the model is misspecified. In our nonparametric  could also be specified nonparametrically without much
models, the linearity assumption is replaced by a much difficulty.

weaker assumption of a smoothly-varying relationship. As a We believe p-spline nonparametric mixed models can be
result, the model-based estimators are more robust, having  applied to more complex designs such as stratified and
small biases for a variety of population shapes. multi-stage designs. We also believe without much more

Design information such as inclusion probabilities plays  effort our methods can be generalized for binary or ordinal
a key role in the model-based inference. Inverse-probability  utcomes.

weighted methods imply simple assumptions about the
relationship between the outcome variables and the design

variables. With the method we propose, the gain in ACKNOWLEDGEMENTS
efficiency is realized by applying nonparametric models that
relax these assumptions. This research was supported by grant DMS 0106914

Our study has an interesting finding that the model-based ~ from the National Science Foundation.
estimators can be more efficient than the simple mean for an
equal probability design. In other studies, we also find gains

. . . . . . REFERENCES

in efficiency from p-spline nonparametric mixed model in

estimating post-stratum means in post-stratified samples. BRUMBACK, B.A., RUPPERT, D. and WAND, M.P. (1999).
The empirical Bayes method, the jackknife and BRR Comment to variable selection and function estimation in additive

nonparametric regression using data-based prior. Journal of the

methods all give good confidence coverage with confidence American Statistical Association 94, 794797,

intervals that are namower than those given by the

traditional methods. However, we expect the ernpirical COULL, BA, SCHWARTZ, J. and WAND, MP. (2001)
.. . Respiratory health and air pollution: Additive mixed model

Bayes method to be sensitive to model assumptions on the analyses. Biostatistics, 2(3), 337-349.

variance components (e.g., constant within-PSU variances). ELLIOTT, MR, and LITTLE, RJA. (2000). Model-based

When the PSU counts are not known for the sample but not alternatives to timming survey weights. Joumal of Official

for the whole population, model-based estimates of the Statistics, 16, 191-209.



218 Zheng and Little: Penalized Spline Nonparametric Mixed Models for Inference

FIRTH, D., and BENNETT, K.E. (1998). Robust models in
probability sampling. Journal of the Royal Statistical Society, B,
60, 3-21.

GHOSH, M., and MEEDEN, G. (1986}. Empirical Bayes estimation
of means from stratified samples. Jowrnal of the American
Statistical Association, 81, 1058-1062.

HINKLEY, D.V. (1977). Jackknifing in unbalanced situations.
Technometrics, 19, 285-292.

HOLT, D., and SMITH, T.M.F. (1979). Poststratification. Journal of
the Royal Statistical Society, A, 142, 33-46.

HORVITZ, D.G., and THOMPSON, D.J. (1952). A generalization of
sampling without replacement from a finite universe. Journal of
American Statistical Association, 47, 663-685.

KALTON, G. (1977). Practical methods for estimating survey
sampling ermors. Bulletin of the International Statistical Institute,
47,495-514,

LAZZARONI, L.C, and LITTLE, RJ.A. (1998). Random effects
models for smoothing poststratification weights. Journal of
Official Statistics, 14, 61-78.

LIN, X., and ZHANG, D. (1999). Inference in generalized additive
mixed models using smoothing splines. Journal of the Royal
Statistical Society, B, 61, 381-400.

LITTLE, R.I.A. (1991). Inference with survey weights. Jowmal of
Official Statistics, 7, 405-424.

MILLER, R.G. (1974). Ari unbalanced jackknife. Annals of Statistics,
2, 880-891.

SARNDAL, C.-E., SWENSSON, B. and WRETMAN, J. (1992,
Model Assisted Survey Sampling, Springer-Verlag.

SHAOQ, J., and WU, CEI (1987). Heteroscedasticity-robustness of
jackknife variance estimators in linear models. Annals of Statistics,
15, 1563-1579.

SHAQ, 1., and WU, C.FJ. (1989). A general theory for jackknife
variance estimation. Annals of Statistics, 17, 1176-1197.

U.S. CENSUS (1990). Dept. of Commerce. Census of Population and
Housing, [United States] :mpublic use microdata sample: 5- percent
sample Computer file]. 3" release. Washington, DC: U.S. Dept. of
Commerce, Bureau of the Census [producer], 1995. Ann Arbor,
MI: Inter-University Consortium for Political and Social Research
[distributor], 1996.

ZHENG, H., and LITTLE, R.J.A. (2003). Penalized spline model-
based estimation of the finite population total from probability-
proportional-to-size samples. Journal of Official Statistics, 19, 99-
117.

ZHENG, H., and LITTLE, R.J.A. (2004). Inference for the population
total from probability-proportional-to-size samples based on
predictions from a penalized spline nonparametric model. To
appear in Journal of Official Statistics.



Survey Methodology, Dacember 2004
Vol. 30, No. 2, pp. 219-234
Statistics Canada

219

A Finite Population Estimation Study with Bayesian Neural Networks

FAMING LIANG and ANTHONY YUNG CHEUNG KUK '

ABSTRACT

In this article, we study the use of Bayesian neural networks in finite population estimation.We propose estimators for finite
population mean and the associated mean squared error. We also propose to use the student t-distribution to model the
disturbances in order to accommodate extreme observations that are often present in the data from social sample surveys.
Numerical results show that Bayesian neural networks have made a significant improvement in finite population estimation

over linear regression based methods.

KEY WORDS: Bayesian model averaging; Bayesian neural network; Evolutionary Monte Carlo; Finite population;

Markov Chain Monte Carlo; Prediction,

1. INTRODUCTION

Regression estimation is widely used in sample surveys
for incorporating auxiliary population information (Cochran
1977) with the underlying model

ye=PBo+x, B +...+x,B,+e,, t=12,...,n (I}

where y, is the survey variable for the " element of a
population, x, =(x,,...,X,) is the vector of auxiliary
variables associated with y,,B,.B,,....p, are the
regression coefficients, and €, is the independent distur-
bance with zero mean and common variance. Although this
model generally performs well, it has several inherent
limitations. First, the model is specified linearly and thus
can not capture some types of nonlinear relationship, which
may be essential in some applications. Second, the least
squares estimate, which is widely used for the model (1},
may not be reliable in the presence of collinearity among the
auxiliary variables. In this case, techniques, such as
condition number reduction (Bankier 1990), ridge

regression (Bardsley and Chambers 1984), and various

variable selection procedures (Silva and Skinner 1997),
have to be used to improve the poor prediction performance
of the model. Third, in the presence of outliers, the least
squares estimate may be severely affected by the outliers.
There are attempts to lessen the dependence of estimators
on the linear model (1). Firth and Bennett (1998) identify a
sufficient “internal bias calibration’ condition under which a
model-based esumator is automatically design consistent,
regardless of how well the underlying model fits the popu-
lation. The condition is met by certain estimators based on
linear models, certain canonical link generalized linear
models and nonparametric regression estimators constructed
from them by a particular style of local likelihood fitting.

Bias can also be calibrated externally, if not internally.
Chambers, Dorfman and Wehrly (1993) stant with a
predictor of the population mean based on a heteroscedastic
linear model and adjust for its bias using nonparametric
regression. Kuk and Welsh (2001) propose a robustified
model-based approach whereby a working model is first
fitted using robust methods and subsequently the condi-
tional distributions of the residuals given x are estimated
nonparametrically to account for local model departure or
outliers in localized regions.

Another way of incorporating auxiliary information into
an estimator into an estimator in a design consistent manner
is the model-calibrated approach first proposed by Deville
and Sidrmdal (1992). The basic idea is to choose weights that
satisfy certain calibration equations and are closest to the
normal Horvitz-Thompson design weights according to
some distance measure. Theberge (1999) applies the cali-
bration technique to estimate population parameters other
than the means. More recently, Wu and Sitter (2001)
extends the calibration approach to deal with nonlinear as
well as generalized linear models by vsing the fitted values
under these working models to set up the calibration
equations. The model-calibration approach can be classified
as “model-assisted” because while the efficiency of the
model-calibrated estimator depends on the validity of the
model, consistency does not.

There is certainly a growing trend in the survey literature
in using nonlinear and nonparametric regression. Instead of
model (1), one considers,

y, =gl{x,)+e,,

where the regression function g(-) can be any arbitrary
smooth function. Dorfman (1992) estimates g uvsing the
Nadaraya-Watson kemel estimator g to result in the
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following model-based estimator or predictor of the finite
population mean,

n N
= {3+ e

t=] t=n+l
where it is assumed without loss of generality that the
sample consists of the first # elements of the population.
Kuk (1993) makes use of kernel method to estimate the
conditional distribution of y given x as a way of incorpo-
rating auxiliary information in the estimation of the finite
population distribution of y. For the case of scalar x, Breidt
and Opsomer (2000) estimates g using local polynomial
regression with design weights incorporated to account for
the sampling design used and propose a generalized
difference estimator,

n — b N n
Sur =N"{Z—y' £, ¥ é(x,)} - N“'{Z w,y,},
1=l n: 1=l =1
where @, is the sample inclusion probability. It can be
shown that the weights w, are calibrated to match the totals
of x up to the g™ order, where g is the order of the local
polynomial. As a consequence, ¥, is exactly model-
unbiased if the true regression function is a polynomial of
degree ¢ or less. Breidt and Opsomer (2000) also show that
¥, is asymptotically design-unbiased and consistent under
mild conditions. For more discussions on nonlinear and
nonparametric methods, see Valliant, Dorfman and Royall
(2000) (chapter 11).

In this paper, another nonlinear regression method,
Bayesian neural network (BNN), is applied to the problem.
BNN has an important advantage of being able to handle
multivariate auxiliary variables and model selection with
ease, which is not the case for many other nonlinear and
nonparametric techniques. BNNs were first introduced by
Buntine and Weigend (1991) and MacKay (1992), and were
further developed by Neal (1996}, Miiller and Insua (1998),
Marrs (1998), Holmes and Mallick (1998), and Liang and
Wong (2001). But the BNN proposed in this paper is
different from those cited above in one important respect: A
prior is put on each network connection, instead of only on
the number of hidden units as done in the literature. This
allows us {0 treat the selection of network structure and the
selection of input variables (auxiliary variables) uniformly.
The network is trained by sampling from the joint posterior
of the network structure and connection weights. The
sampled network has often a sparse structure, which
effectively prevents the data from being overfitted. A heavy
tail distribution, such as the student -distribution, is
proposed to modet the disturbances of the data with outliers.
Numerical results show that BNN models have offered a
significant improvement over the linear regression based
models in finite population estimation.

The remaining part of this article is organized as follows.
In section 2, we describe the BNN models and the
associated estimators for finite populations. In section 3, we
present our numerical results for one finite population
example with two choices of auxiliary variables and
comparisons with various linear regression based models. In
section 4, we present our numerical results for another finite
population example demonstrate how a cross-validation
procedure can be applied to determine the parameter setting
for BNN models. In section 5, we conclude the paper with a
brief discussion.

2. FINITE POPULATION ESTIMATION WITH
BAYESIAN NEURAL NETWORKS

2.1 Bayesian Neural Network Models

Suppose we have data palrs D={(x, ¥ )....(x,,¥,)}
which were generated from the relationship

y.=8x)+e, @

where y e R',x, =(x,,....,x,)ER",g() is the tue
regression function of unknown form, and €, /6 ~ 1(v) with
v >2 being a known degree of freedom of the ¢-distribution.
Here g(-) may be highly nonlinear, and o is an unknown
scale parameter. We use the student ¢-distribution, instead of
the Gaussian distribution as usual, to model the disturbances
in order to accommodate extreme observations that are often
present in the data from social sample surveys.

Before describing our BNN model, we first give a brief
description for feed-forward neural networks. Figure 1
illustrates a one-hidden layer feed-forward newral network.
It consists of four types of units, bias units, input units,
hidden units, and output units. The unit to which the input
features are presented is referred to as the input unit. The
bias unit is a special type of input units with a constant
input, say, 1. The unit where the network output is formed is
referred to as the output unit. The hidden unit is so called
because its input and output are only used for internal
connections and are unavailable to the outside world. In a
feed-forward neural network, each hidden unit inde-
pendently processes the values fed to it by the units in the
preceding layer and then presents its output to the units in
the next layer for further processing. It has been shown by
several authors (Cybenko 1989; Funahashi 1989; Hornik,
Stinchcombe and White 1989) that neural networks are
universal approximators in that a one-hidden layer feed-
forward neural network with linear output units can approxi-
mate any continuous functions arbitrarily well on compact
sets by increasing the number of hidden units. To survey
regression, this is an important advantage of neural network
models over other regression models. In the survey regres-
sion literature, whether model-assisted or model-based,
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there is usually considerable attention paid to the conse-
quences of model misspecification. The neural network
model avoids this consideration partially due to its specific
property of universal approximation. In section 2.2.1, we
show that as the sample size is large, the unknown
regression function g() in (2) can be well approximated by
BNN models, regardless of the true function form of g(-).
Essentially, BNN falls into the class of data-driven methods.

Cutput Unit

Hidden Units

Bias Unit

Input Units

Figure 1. A fully connected one hidden layer feed-forward neural
network with 4 input units, 3 hidden units and 1 output unit.
The arrows indicate the direction of data feeding.

In our BNN model, the function g(-} in model (2} is
approximated by a tunction of the form

P
glx oBy)=a,d, +> xal,

i=1
M P
DN RN DIER I ETEL YA NC)
Jj=1 =1

where [ is an indicator function which indicates the
effectiveness of the connection {; M denotes the maximum
number of hidden units which is specified by uvsers; o,
denotes the bias term of the output unit, @,...,a, denote
the weights on the connections from the input units to the
output unit; B,,...,B, denote the weights on the
connections from hidden units to the output unit; ¥,
denotes the bias term of the j"' hidden unit, v Y
denote the weights on the connections from the input units
to the j™ hidden unit; and w() denotes the activation
function. Sigmoid and hyperbolic tangent functions are two
popular choices for the activation function. We set
y(z) = tanh(z) for all examples of this paper.

Let A be the vector consisting of all indicators of model
(3). Note that A specifies the structure of the corresponding
network. Let a=(0g,0ap,...,0, ), B=@....B4), 1,;=
(Tjo!'--s'Y_ip)’V=(71s'“17M ), and 8=(a,,B,,¥,.07),
where @, ,p, and v, denote the non-zero subsets of a,
and v, respectively. Thus, the model (3) is completely
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specified by the tuple (8,A). For simplicity, in the
following we will use 0, to denote a BNN model and use
&(x,,0,) to re-denote the function g(x,,a.B,y). Also,
we let 0, =(8,A), and use 9, and (0,A) exchangeably.
To conduct a Bayesian analysis for model (3), we have the
following prior distributions:  «, ~ N(0,02)  for
a,€ 0,3 B,~N(©O,05) for B,eB,;y; ~N(©003) for
Y;i€Ya and f (6%) ~ 1/ o>, The total number of effective
connections in A is m=3%[, 1’uti + ):’}L IﬁJS(Z{’:O ln_‘_)+
PR Il where 8(z)=1 if z>0 and 0 otherwise.
The model A is subject to a prior probability that is
proportional to the mass put on m by a truncated Poisson (&)
with rate 3,

] lm
P(A)= Eﬁ’ m—3,4,,U
0, otherwise

where U =(M +1)(p+1)+ M is the number of connec-
tions of the full model in which all [/, =1; and
Z =Y en " /m!l. Here we let Q denote the set of all
possible models with 3<m<U. We set the minimum
number of m to three based on our views: neural networks
are usually used for complex problems, and three has been a
small enough number as a limiting network size. In these
prior distributions, 65,63,6; and A are hyper-parameters to
be specified by users (discussed below). Furthermore, we
assume that these pror distributions are independent
a priori. Thus, we have the following log-posterior (up to an
additive constant),

logn(6, |D)= Constant — [g + 1J loga?- 1_;_1 Z

1=l
5 2
log[H (v, = £(x,,04)) )

[logcr; +i—§}
B
—-l—ii i I, [log ol +ﬁJ—Elog(ln)
250= 77 ! 0': 2
+mlogh— log(m?). (4)

Our BNN model is different from other BNN models
existing in the literature in two important respects. First, the
input variables of our BNN mode] are selected automati-
cally by sampling from the joint posterior of the network
structure and weights. Second, the structure of our BNN
model is usually sparse and its performance less depends on
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the initial specification for the input patterns and the number
of hidden units. The sparse is in the sense that only a small
number of connections are active in the network. So our
BNN model avoids the problem of overfitting in a more
natural way.

For data preparation and hyperparameter setting, we have
the following suggestions. To avoid some weights that are
trained to be extremely large or small (in absolute value) to
accommodate different scales of input and output variables,
we suggest that all input and output variables be normalized
before feeding to the networks. In all examples of this
article, the data is normalized by (y, —¥y)/S,, where y
and §, denote the mean and standard deviation of the
training data, respectively. Based on the belief that a
network with a large weight variation usually has a poor
generalization performance, we suggest that ci,o; and 03
are chosen for moderate values (o penalize a large weight
variation. For example, we set ol =oj =o; =5 for all
examples of this article. The setting should also be fine for
the other problems. The value of & reflects our belief on the
network size needed for the data under consideration. Here
we follow the suggestion of Weigend, Huberman and
Rumelhart (1990) to choose A such that the number of
connection weights is about one tenth of the size of the
training sample. In one simulation, we assessed the
influence of & on BNN model size and predictionability.
The numerical results suggest that the prediction ability of
BNN models is rather robust to the variation of A, although
the BNN model size increases slowly as A increases.

To sample from the posterior (4), a Monte Carlo
algorithm, so called the reversible jump evolutionary Monte
Carlo (RJEMC) algorithm, is developed. This algorithm
extends the evolutionary Monte Carlo algorithm (Liang and
Wong 2001) to sample from a variable dimensional space
by incorporating some reversible jump moves proposed in
Green (1995). For details of the algorithm, please refer to
the support documents and software for the paper. They are
available at http://www.stat.tamu.edu/~fliang.

2.2 Finite Population Estimation with Bayesian
Neural Networks

2.2.1 Bayesian Model Averaging

In this subsection, we review some basic results of
Bayesian model averaging and show one theorem for BNN
models, which form the theoretical basis for the estimators
described in section 2.2.2. Suppose that we are interested in
estimating the quantity p(8,), which is a function of both
A and 0. The Bayesian estimator of p(8,) can be written as

K
Ep®,)=> P(A|D) jp(e,c ADRO0,|A, . DYS,, (5}
k=0

where X denotes the total number of models under consi-
deration, 8, denotes the parameters associated with model

A, and (8, |A,,D) denotes the posterior density of @,
conditional on model A,. Madigan and Raftery (1994)
argued for this estimator thalt Bayesian model averaging
(averaging over all the models in this fashion) accounts for
the model uncertainty, and provides better predictive ability,
as measured by the logarithmic scoring rule, than using any
single model A,. See Hoeting, Madigan, Raftery and
Volinsky (1999} for a tutorial on Bayesian model averaging.

Suppose that samples (8,,A,),...,(8,,.A,, ) have been
drawn from the posterior distribution 7(8,{D) by a MCMC
algorithm, then p(@, ) can be estimated by

. 1 ¥ .
p(ﬂ,\)uﬁé p®,,) (6)

where 8, =(8,,A;). Applying the standard Markov chain
theory (Tiemney 1994; Roberts and Casella 1999), under
regularity conditions we have the following results. If
£, | p(o,) |< e, then

1 M

— Y p0,) > Ep@,), as, N
M i=1

as M — oo, Furthermore, if E_|p(8,)|* < for some

6 >0, then

1 M
M”Z{HZ p(8, ) — E.p(@, )} - N(0,7%), (8)
i=]
for some positive constant T as M —» eo, and the conver-
gence is in distribution.
Similar to (7) and (8), we have the following theorem for
BNN models, of which proof is presented in Appendix.

Theorem 2.1 Let D={(x,,v,),...,{x.,¥,)} denote a
simple random sample drawn from a population which can
be modeled by model (2). Let (0,,A)),...,(0,,A,)
denote the sample drawn from the posterior distribution
1(0,|D), given in (4), by a MCMC method. Then, for any
x, drawn from the same distribution with the observations
D, we have

(@)
E, |8(x0,0,) " <o, )
forsome 8 >0, as n — oo,
(b)
1 &,
— > 8(x0,8,) > g(xy), as, (10
M i=l
as n—coand M — oo,
{c)

Muz[ﬁi g“(xo,()m)—g(xo)}—>N(0,Tf), (11)
i=1

Jor some positive constant T} as n—>oeand
M — o, and the convergence is in distribution.
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To show some properties of moments of 1/ MY,
§(x0,0,\f_), we need the following theorem (Billingsley
1986, page 348, Corollary),

Theorem 2.2 Let r be a positive integer. If X,, =X in
distribution and sup_ E|X |**<es, where 8>0, then
E|X'<= and EX — EX".

Following from (9), (11) and Theorem 2.2, we know
1 & o,
ME| HZg(xo,e,\;)—g(xo) -1, (12)
i=l
as n—oe and M — oo, Itimplies that
LS 50,00 )-8 (x) ——Ti+o[ij (13)
Mg 0sYs, ) — 81X Y] Y;

holds as n and M are both large.

Note we have shown that (11) and (13) hold as the
sample size n —co. In the context of finite population,
especially for a small finite population, a more precise
expression for (11) and (13) would be

M112|: Zg(xo,

and

1 ¥, P 1
E[HZ g(xo,e,\i)—E(yoln,xo)} =;‘,-+o(ﬁ} (15)

i=l

)~ E(lD, xo)] - N©,), (14)

where E(y,|D,x,) denotes the prediction of y, which is
the survey variable comresponding to x,,. The equations (14)
and (15) take into accounts the possible bias of the sample
D. In the case that the population constitutes many exact
copies of the sample D,E(y,|D,x,)=g{x,) holds, and
equations (14) and (15) are reduced to (11) and (13),
respectively.

2.2.2 BMA Estimators in Finite Populations

Consider a finite population of N distinguishable
elements. Associated with the i™ elements are the survey
variable y, and the auxiliary variables x;,. The values
X,....,x, are known for the entire population, while y,
is known only if the i™ unit is selected in the sample.
Suppose a simple random sample D=
{(x,,¥),....{x,,¥,)} has been drawn from the finite
population, a BNN model has been built for the sample, and
®,,A)),....0,,,A,,) have been drawn from the
posterior distribution of the BNN model, the BMA
estimator for the mean of the finite population is

Yon = f}""—z Zg(x,,ﬁ )
1-] r=n+l

where ¥ is the sample mean of y,,...,y,, and f=n/N
is the sample fraction. About this estimator, we have the
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following comments. First, y,.. is a model-based esti-
mator, so that all the inference is with respect to the model
for the y,’s, not the survey design. As long as the model
holds, the BNN estimator will have the mean squared error
properties described below for any ignorable sampling
design. Second, this estimator is identical to that proposed in
Dorfman (1992), except that the BNN is replaced by a
kernel-based regression. Third, this estimator can be used to
estimate the mean of a finite population as long as each of
the unsampled elements has the same distribution as the
sample D.

The accuracy of an estimate can be measured by its mean
squared emor E{Ygyy -Y)?, where ¥ denotes the true
population mean. To estimate E(ygpg — ¥)?, we first

consider
E[Gam -7 1D, X2,
R 2
WZ > f(x,.0,)
=By DR Ip.x 2,
-— 2 (glx)+e))
N2,
1 M N 2
N —n)? M(N-n)3 &
( Nz) E ( n) im rear ‘D Xn+|
g(x, .0, )—— Zg(x
N =+l
—-n
+ YD var(g, )
- - _
Z Zg(x,,EIA)
(N._n)2 M(N n) i=l t=n+1
=TE<_E(yuIDXn+I) g DX;:—I
+E(3,|D, X)) - E(3,)
N-n
—_
N? var(g, )
2
T e
=24 (- f) {EG)ID. X2 - EG,)
-
+ Nf var(g, ), (16)
where X~ =(x,,,,...,x,) denotes the set of auxiliary

vectors of the unsampled elements; ¥, denotes the
averaged survey value of the unsampled elements, and

E(y)=—— Z g(x,).

t=n+l
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The last approximation of (16) follows from (15), that is, as
M is large,

2 2
{ Z Zg(x,,ﬁ,\) (1-f)E(7,|D, Xn+.)} M

:—l t=n+l

for some positive conmstant 13, The term
E(y,ID,X} Y- E(3,) is the prediction bias due to the
randomness or sampling bias of D. Following from (16), we
have

2

— F
E(Fann - 7)’ =%+(l—f)2
1—f
N

EEG, 1D, XX -EGOf +—Lvare,).  am

The quantity 73 can be estimated by the batch means
method (Roberts 1996) as follows, Run the Markov chain
for M =rs iterations, where s is the batch size and is
assumed suffciently large such that

yBNNk_fy+_ 2 Zg(x,,ﬂ,\)

sN i=(k=1}s+1 1=n+l

is  approximately  independently N(fy+d-5)
E(y,|D,XY,), 1} /5. Therefore 15 can be approximated
by

%?) r_lz (Fanns = yBNN) (18)
which can be substituted into (17) in lieu of E1%. Under
the assumption €, /& ~ #(v), the BMA estimator var(e,) is

(19

Under the assumption that the population is made up of
exact copies of the training data, we have
E3,|D.X})-E(3,)~ 35—, where $ denotes the fitted
sample mean, and

[

EG-7)?=E {Z} —var(e) 20)

where € =¥ §(x,,8, )/M ~ y, is the residual of the 1™
element of D, and €,’s are assumed to be iid and
E@€,)=0. Under the true model, we have var§€,)=
var(e,). Hence, we suggest E{E(y,|D, XY )- E(3,))?
be estimated by
Bias? = — Jar(e ). 21

1s
n

In summary, E(Fz — Y )’ can be estimated by

A2

E(Fgn - 70 =22 +(1- f)? Bias®
M
1-f . 2 o1-f.
+ ar(g, ) = —=+—=— var(g,). (22)
N varg, ) o p var(g,)

As M — o wehave

—f Yar(e,). (23)

n

n o _ = 1
E(¥aun ‘Y)2 =

We note that this estimate is identical in form to that given
by Cochran (1977) for the linear regression estimator.

3. FIRST SIMULATION STUDY

3.1 TheData

Our simulation population comprises 426 records for
heads of household surveyed using the sample (long)
questionnaire during the 1988 Test Population Census of
Limeira, in So Paulo state, Brasil. This test was carried out
as a pilot survey during the preparation for the 1991
Brazilian Population Census. For a detailed description for
the test census, see Silva and Skinner (1997). We followed
Silva and Skinner (1997) to consider the total monthly
income as the main survey variable (¥) together with 11
potential auxiliary variables, namely,

X indicator of sex of head of household equal male;

X2 indicator of age of head of household less than or equal to 35;

X3 indicator of age of head of household greater than 35 and less
than or equal to 55;

X4 total number of rooms in household;

Xs total number of bathrooms in household;

X indicator of ownership of household;

x; indicator that household type is house;

X3 indicator of ownership of at least one car in household;

X indicator of ownership of color TV in houschold;

Lo years of study of head of household,

Xi1 proxy of total menthly income of head of household.

Figure 2, the scatter plots of y versus the 11 auxiliary
variables, shows that a linear regression model is not
appropriate for the data. Although y and x,, are strongly
linearly correlated, the scatter plots of y versus some other
auxiliary variables, say x,,x; and x,,, suggest that their
relationships can not be well modeled by a linear regression.
In addition, if the data is modeled by a linear regression, the
outlier, the 53" element, may have a high influence on
fitting and prediction of the model. More precisely, if the
element is included in the training data, the fitted response
curve will have a up-drift comparing to the true curve and as
a result the finite population mean will be overestimated; if
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the element is not included in the training data, prediction
will proceed as though there were not outliers and as a result
the finite population mean will be underestimated. The
presence of the strong influence element also mounts a great
challenge on BNN models and other data analysis strategies.

We followed Silva and Skinner (1997) to construct two
altemative sets of auxiliary variables for simulations. The
first set contains x,,...,x, and x,;, which includes the
proxy variable x,, and has a reasonable explanatory power
in predicting y. The second set contains x,,..., x,q, Which
has a weaker explanatory power than the first one due to the
exclusion of x,. So these two sets illustrate the predictive
performances of BNN models with strong and weak
auxiliary variables, respectively. As in Silva and Skinner
(1997), 1,000 sample replicates of size 100 from this
simulation population are selected by simple random
sampling without replacement. The following computation
were performed on the 1,000 replicates.

For each replicate, say k, it was analyzed by BNN
models and various linear regression based strategies
(reviewed below), For any strategy, the population mean
estimate and its estimated mean squared error for the
replicate k are denoted by y(k) and V(¥(k)}, respectively.
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The computational results were summarized by computing
the mean (MEAN), bias (BIAS), mean square error (MSE)
and average of mean squared error estimates (AVMSE)
from the set of the 1,000 replicates, given respectively by

S

MEAN =

k=

Y(k) IS,

BIAS=MEAN-Y;

MSE=Y [5t)-1]"/s;

S
k=l

5
AVMSE = Z V{yn!Ss,

k=L
where S is the total number of sample replicates under
consideration, and ¥ = 19434 for the simulation
population. Empirical coverage rates for 95% confidence
intervals based on asymptotic normal theory were also
computed for each strategy and thesc rates, expressed as
percentages, are presented in the last columns of Tables |
and 3.

i gt g1 B
i ’i. g g
8 8 R g
-8 1 -8t -8 K
8 | g 8 ; g
al; & ] Bl -.ipjiteigc -
-l | i Zl I HHEE
g i 8 g
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B g 8 B
-.g ..g . .5 - "';ﬁ_
g ' SRR I Bli &1
H g H 813
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° 1 2 - a - L oa L~ 04 . oa o8 ] o0 o2 o4 , o8 a8 o ao o o4 - L) oa o
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Figure 2. Scatter plots of the response variable y versus the auxiliary variables. In the plot of y versus x; the “+”

represents the 53 element of the population.
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3.2 Review of the Linear Regression Based
Strategies

The linear regression based strategies that have been
considered by Silva and Skinner (1997) are listed as
follows.

SM) Sample mean estimator, with no auxiliary variables (¥, V;).
Fs)  Forward selection of auxiliary variables with (¥,, V).
Fd)  Forward selection of auxiliary variables with (¥,,V,).
Fg)  Forward selection of auxiliary variables with (y,, Vel

Bs)  Best subset selection from all subsets of auxiliary variables with

(¥rr Vo)

Bd)  Best subset selection from all subsets of auxiliary variables with
(yrn Va)

Bg) Best subset selection from all subsets of auxiliary variables with
(7 Vo).

FI}  Fixed subset of auxiliary variable with (y,,V,).
88)  Saturated subset of auxiliary variable with (¥,,V,).
FR) Forward subset selection using SAS PROC REG, with (¥,,V,}.

CN) Condition number reduction subset selection procedure with
(3. Vs)

RI}  Ridge regression estimator proposed by Dunstan and Chambers
(1986).

To facilitate the description for the above strategies, we
define the following notations. Let U ={l,..., N} denote a
finite population of N distinguishable elements, Dc U
denote a sample replicate of n elements drawn from U by
simple random sampling without replacement, x.=
(%;15+.-,%;, )" be the vector of auxiliary variables assomated
with the T element, and B=(B,....5,). Let X=
N7 . x, be the vector of populatlon means, X =
n'Yepx; be the vector of sample means,
y= n"Z,EDy, be the sample mean ofﬁ the response
variable, S, =n"'Y, ,(x~E)(x, —x) S,=n"Tup
-0, - g =l+X-%) S (x; —x)the so-called
g- welghts (Siimdal, Swensson and Wretman 1989), and
|3 S S the least squares estimator of B The regression
estimator of ¥ is

3, =y+(x -x)p.
The V..V, is and V_ are three estimators of the mean

squared error of ¥,. The V, is given by Cochran (1977,
page 195),

Vv, = LZ éz,
nin—p-1)ip
where &,=(y, -¥)~(x,—%)B and f=n/N is the
sample fraction. The V, is generalized (from p=1 to
p >1) from one estimator studied by Deng and Wu (1987)
and it is expected to have a smaller bias than V, (Silva
1996),

1-f

nn—1)icp

— ~2
d = O €,

where

a,=(g} -2g.f + F)
{a-pli-@, -58x, - in-1)}

The V_ is modified from one estimator given by Sirndal
et al. (1989), and it has a similar performance to V,,

PO

£ n(n p=Dip

The best subset selection strategy (Bs, Bd and Bg) is to
choose one subset which has the smallest mean squared
error estimate among all 27 possible subsets. The forward
selection strategy (Fs, Fd and Fg) starts with the sample
mean as an estimator, then adds the variable which
minimizes the mean squared error estimate, and the
procedure is repeated until the mean squared error estimate
starts to increase. Refer to Silva and Skinner (1997} for
details of the implementations of the strategies CN and RI,

3.3 Illustration on One Sample Replicate

To understand the behavior of ¥y, in presence of
outliers and the role played by v in robust inference, we
focus on one particular sample. The training data comprises
the first 100 elements of the population, and the auxiliary
variables include x,,...,x, and x,, as the first explanatory
set. Note that the 53" element has been included in the
fraining data.

For BNN models, we set =5 and M =8 which
produces 62 connections for the full BNN model, and tried
v =25, 50, 100, 200 and +o-, where ¥ =400 is equivalent
to the assumption €, ~ N(0, 6*). For each setting, RTEMC
was run as follows: the network connections were first set to
some random numbers drawn from N(0, 0.01), and then
were updated for 1,000 iterations in the parameter space of
the full model, ie., all indicator vartables are set to 1 in
those iterations. After the initialization process, 4,000
iterations of RJEMC were run, and 800 samples were
collected from these iterations at the lowest temperature
level with an equal time space. The convergence of RIEMC
can be diagnosed using the Gelman-Rubin statistic R
(Gelman and Rubin 1992) based on multiple independent
runs. Figure 3 shows R values computed from 10 inde-
pendent runs. For each sample replicate of the simulation
population, RIEMC converges (R < 1.1) very fast, usually
within the first 500 iterations (100 BNN samples). We
discarded the first 200 samples for the burn-in process, and
used the remaining 600 samples for the further inference.
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For comparison, the linear regression modei (1) was also
applied to this sample replicate.

13 1.4

1.2

Gelman-Rubin R.

H—

0 0 08 &0 o0
time

1.0

Figure 3.Gelman-Rubin statistic R. The curve was computed
based on 10 independent runs of RIEMC. The random
errors are assumed to be distributed according to #(100).

Figure 4 shows the original data together with the fitted
and predicted values produced by various models. The BNN
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results were all obtained in one run of RJEMC. It can be
seen that the linear regression model is not appropriate for
this population as some fitted and predicted values produced
by the model are negative for this sample replicate. Also, the
fitted response curve (the solid curve in Figure 4(a) and
4(b)} is strongly influenced by the 53" element and lies
above almost two-thirds of the data points. A similar
phenomenon occurs for the prediction of unsampled values,
see Figure 4(c) and 4(d). As a result, the population mean is
overestimated (Figure 5). Comparing to that of the linear
regression model, the results of the BNN models are less
affected by the 53" element, especially for those computed
with small values of v. Figure 5 shows that as v decreases,
the estimated population mean by BNN models gets closer
and closer to the true value, and the estimated 95%
confidence interval of the population mean becomes
narrower and narrower, It indicates that the influence of the
53" element on these estimates becomes weaker and weaker
as v decreases. This is not surprising as the use of a heavily
tailed error distribution is known to make the inference
more robust.

(b)
=
=]
©F [ =7 BNM2s)
8 vess NN = 100)
2 o~ we  BNN +Normal
1
o
% =
e &
o
=] ’ ‘
Q 100 200 300 400 500
proxy
(d)
o
F
=)
2
m
=
4 =
g .
Least squares
(== - o e BNN4i25)
~~~~~~ BNN +1(100)
S == BNN-Nomul

0 50 100 150 200 250 300

proxy

Figure 4. Fitted and predicted response curves by various models. The curves are plotted against the proxy variable, and the true response values
are shown by points. {a} The fitted response curves for the sampled elements. (b) The amplification of the square region of (a). (¢) The
predicted response curves for the unsampled elements. (d) The amplification of the square region of (), and for cleamess only every

fourth elements are plotted in the order of sorted proxy values.
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Figure 5. Estimated population mean and the associated 95%
confidence interval by various models. The dotted line shows
the true population mean which is 194.34.

3.4 Numerical Results on More Sample Replicates

BNN mwodels were applied to analyze the 1,000 sample
replicates. For each sample replicate of the first explanatory
set, we set v = 100, A = 5 and M = 8 which produces 62
connections for the full BNN model. RTEMC was run as
described in section 3.3. In each run 600 BNN samples were
obtained for the inference. The computational results were
summarized in Table 1. It shows that BNN models have
ntade a significantly improvement over the linear regression
based models in population mean estimation for the first
explanatory set. Although the BNN estimate is slightly
biased (The relative bias is about 2.5% in terms of absolute
values and is still acceptable.), it has the smallest MSE value
among all estimates in Table I and the highest nominal
coverage probability among the estimates with smaller MSE
values (the boldfaced rows). As discussed in the last sub-
section, we expect ypyy 10 behave differently for samples
containing and not containing the outlying element 53.
When averaged over only those samples that contain
element 53, Yy, with v = 50 performs very well with bias
1.51 and 99.6% coverage. The result is obviously not as
good as for those samples not containing element 53 due to
the inevitable underestimation of the finite population mean.
Frankly, there is not much one can do if there are outliers in
the population but none in the sample. No statistical method
based on sample information alone will be able to predict
the occurrence of outliers in the non-sample. We believe
that ¥y will perform very well for populations without
outliers due to the universal approximation property of
neural networks and the technique of Bayesian model
averaging.

Let x,, denote the average of proxy values of the
elements in one sample replicate. To see how the perfor-
mance of the BNN medels varied with X, , we ordered the
1,000 sample replicates accerding to their values of ,, and

Liang and Kuk: A Finite Population Estimation Study with Bayesian Neural Networks

divided them into 20 groups of 50 replicates, the first group
comtaining the 50 replicates whose X,, are smallest, and so
forth. For each group, we calculated MEAN, MSE and
AVMSE. Figure 6 shows these conditional values. From
Figure 6(a) it is easy to see that BNN models possess one
good property, namely, the population mean estimate is not
sensitive to the value of X,,. From Figure 6(b) it is easy to
see that AVMSE provides an essentially unbiased estimate
tor MSE regardless of averaged proxy values.

To assess the influence of v, M and A on BNN model size
and prediction ability for the first explanatory set, we
conducted three groups of experiments. In the first group of
experiments, we fixed M = 8 and A = 5, and varied the value
of v, v = 50, 100 and 150. In the second group of experi-
ments, we fixed v= 100 and A = 5, and varied the value of
M, M =6, 8 and 10. In the third group of experiments, we
fixed v = 100 and M = 8, and varied the value of A, A =4, 5
and 6. For each setting, RIEMC was run as described in
section 3.3 for the 1,000 sample replicates. The compu-
tational results were summarized in Table 2. It shows that
the averaged model size produced by each setting is about
the same, although it increases slowly as M and ) increase.
The results of the first group of experiments show clearly
that for BNN models there is a trade-off between BIAS and
MSE or AVMSE by choosing the value of v. The results of
the second and third group of experiments show that BIAS,
MSE, AVMSE and the coverage probability are rather
stable to the variation of M and , although the latter three
statistics have a slow tendency to increase as M and A
increase. The increasing trend of these statistics is due to the
fact that the neural networks tend to be overfitted as M and A
increase.

Table 1
Bias, mean squared error, average of mean squared error estimates
and empirical coverage of various estimation strategies for the
population mean using x;,...,x; and x,; as auxiliary variables.
Figures other than BNN are reproduced from Silva and Skinner

(1997).
Estimation strategy BlAS MSE  AVMSE  Coverage’
(%)
SM) Sample mean (¥, V;) 025 62009 619.05 91.8
CN) Cond. num. red. (3, V) 034 50733 48363 89.8
RI) Ridge 212 30495 25707 825
Fs) Forward (y,,V;) 040 23378 23962 82.7
Fd) Forward (¥,,V,) -125 188.08 196.88 82.0
Fg) Forward (¥,,V,) -1.28 18838 192.73 81.1
Bs) Best (y,,V,) 044 23690 23949 82.7
Bd) Best (¥,, V) -122 190.52 196.84 82.0
Bg) Best (5,,V,) -1.24 190.83 19271 81.1
FI) Fixed (y,,V;) 029 22790 241.24 833
55) Saturated (3,, V) 030 23358 24232 82.5
FR) Proc REG (¥,.V;) 0.38 23586 240.26 825
BNN) 1(100) -491 13811 127.14 84.8

“ Neminal 95% coverage.
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Figure 6. MEAN (panel (a)), MSE and AVMSE (Panel (b)) conditional on the averaged proxy values. The 1,000 sample replicates
are ordered on x;; and divided into 20 groups of 50 samples.

for the first explanatory set. For convenience of comparison, the results of the setting v = 100,
M =8 and A = 5 were repeated in panels B and C.

Table 2
Assessment of the influence of v, M and A on BNN model size and prediction ability

Experiment v M A Size® BIAS MSE AVMSE  Coverage’ (%)
A 50 8 5 1053 -6.78 131.78 50.08 82.0
100 8 5 1070 -491 138.11 127.14 84.8
150 8 5 1079 -381 15655 160.28 85.5
B 100 & 5 9352 -490 136.72 122.58 84.1
100 8§ 5 1070 -491 13811 127.14 84.8
100 10 5 1183 -514 14013 132.20 86.4
C 100 8 4 942 -494 138.04 12599 852
100 8 5 1070 -491 13811 127.14 84.8
100 8§ 6 1183 -492 139.62 128.64 85.7
sSize= 3% 5 m(A,)/ M /1,000, where m(A,;) is the number of connections of the neural network A;.

5 Nominal 95% coverage.

The above experiments also address the issue of model
misspecification. Note the BNN model proposed in this
paper is specified by the three parameters, v, M and A. Table
2 shows that the BNN model can still perform well even
when the parameter setting has some departures from the
optimal setting. In practice, the setting of v, M and A can be
determined by a cross-validation experiment. This will be
demonstrated in the second simulation study.

Finalty, we consider the weaker set of auxiliary variables
X,...,%,. For each sample replicate, we set v=100,A =5
and M = 8 which produces 107 connections for the full
BNN model. RIEMC was run as in section 3.3. The

computational results were summarized in Table 3. It shows
clearly that BNN models continue to provide a significant
improvement over the linear regression based models in
population mean estimation when the strongest predictor
x,, is excluded. The BNN estimate has the smallest MSE
value among all estimates in Table 3, and has the smallest
bias and the highest nominal coverage probability among
the estimates with smaller MSE values (the boldfaced
rows).

To assess the influence of v, M and A on BNN model
sizes and prediction abilities for the second explanatory set,
we conducted the same three groups of experiments as for
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the first explanatory set. The computational resulis were 4. SECOND SIMULATION STUDY
summarized in Table 4. Panel A shows again the trade-off
between BIAS and MSE or AVMSE made for BNN models In the first simulation study, we show that the BNN

by the value of v. Panels B and C show that BIAS, MSE, ~ model works well for the data sets with outliers. In this
AVMSE and the coverage probability have an even more  simulation study, we show that the BNN model works even
stable performance across different choices of M and X than  better for the data sets without oudiers. In this study, we also

that of the first explanatory set. demonstrate how a cross-validation procedure can be
applied to determine a setting for the parameters v, M and A
Table 3 of the BNN model.
. avie . The simulation population comprises the records of the
Bias, mean squared error, average of mean squared error estimates . . . o
and empirical coverage of various estimation strategies for the serious crimes of 141 large standard Metropolitan Statistical

population mean using X, ,..., X, as auxiliary variables. Figures Areas (SMSAs) in the United States. A SMSA includes a
other than BNN are reproduced from Silva and Skinner (1997). city (or cities) of specified population size. The data

Estimation stratcgy BIAS MSE AVMSE Coverage®  geperally pertains to the years 1976 and 1977, and is

prV— = 500 61908 ;T”.)s available in Neter, Kutner, Nachtsheim and Wasserman
CN; Camj ¢ mme;y ' _sl 3'49 562'91 450'36 87'3 (1996). We consider the total number of serious crimes in
-one. im. 162 . ¥s) ) ’ ' ’ 1977 as the survey variable (y) and the following 9 variables
RI) Ridge 1.05 480.18 47282 89.4 as potential auxili variables
Fs) Forward (F,.V,) 006 46846 397.99 86.7 P ary '
Fd) Forward (%,,V;) -812 4327 33890 8L = Land area (in square milcs),
Fg) Forward (¥,,V,) -790 43371 32846 81.6 X3 Estimated 1977 total population (in thousands);
Bs) Best (¥,.V;) 0.00  466.16  397.39 86.6 X3 Percent of 1976 SMSA population in central city or
Bd) Best (¥, Vy) ~790 43454 33688 81.5 g“es; £ 1976 SMS Lt 1
Bg) Best (5,,V,) ~7.60 43326 32605  8L6 ¥ heemio 1976 SMSA population 65 years old or
FI) Fixed (y,.V;) 045 45049 4618  89.0 xs Number of professionally active nonfederal physicians
§8) Saturated (y,,V;) 020 46271 413.17 86.9 as of December 31, 1977,
FR) Proc REG (F,,V,) ~-0.07 46613 39934 26.4 Xg Total number of beds, cribs, and bassinets during 1977;
BNN) £(100) 578 39525 323.12 86.5 X7 Percent of adult population (persons 25 years eld or
older) who completed 12 or more years of school,
“ Nominal 95% coverage. according to the 1970 Census of the Population;
Xg Total number of persons in civilian labor force (persons
16 years old or older classified as employed or
unemployed) in 1977 (in thousands);
Xy Total current income received in 1976 by residents of
the SMSA from all sources (in millions of dollars).
Table 4

Assessment of the influence of v, M and X on BNN model size and prediction ability for the
second explanatory set. For convenience of comparison, the results of the setting v= 100, M = 8
and A= 5 were repeated in panels B and C of the table.

Experiment v M A Size® BIAS MSE AVMSE Covcrageb (%)
A 50 8 5 1487 =930 39411 270.09 825
100 8 5 1506 -5.78 395.25 323.12 86.5
150 8 5 15.17 -4.38 41256 34675 87.1
B 100 6 5 1380 -5.77 39479 319.13 86.0
100 8 5 1506 -578 39525 323.12 86.5
160 1o 5 1605 -591 39627 327.86 87.1
C 100 8 4 1323 -5.62 39765 323.68 864
100 8 5 1506 -5.78 39525 323.12 86.5
100 8 6 1676 =578 39645 321.98 86.6

“Size= T2 5 m(A;)/ M /1,000, where m(A,;) is the number of connections of the neural network A;.

b Nominal 95% coverage.
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Figure 7: Scatter plots of the response variable y versus the auxiliary variables for the second simulation study.

Table 5

Cross-validation experiments for the SMSA example, For convenience of comparison, the results of the setting
v= 100, M =3 and A= 5 were repeated in panels B and C.

Experiment v M A Size BIAS (x10°) MSE(x10% AVMSE (x10%  Coverage” (%)
A 50 3 5 1068  —0472 4.78 4.19 91
100 3 5 1074 -0527 5.04 4.24 92
o 3 5 1074 -0.543 4.76 421 92
B 100 1 5 729  -0.466 4.63 3.66 89
100 2 5 942  —0.500 461 3.91 90
100 3 5 1074 -0527 5.04 4.24 92
100 4 5 1166  -0.480 474 4.47 91
C 100 3 4 956  -0434 4.68 4.12 92
100 3 5 1074 -0527 5.04 4,24 92
100 3 6 1182  -0.455 4.66 4.28 93
“ Nominal 95% coverage.

Figure 7, the scatter plot of y versus the 9 auxiliary
variables, suggests that a linear regression model may not be
appropriate for the data set. There is a strong nonlinear
relationship between y and x,,x;,x, and x;. Also, the
explanatory variables x,,x;,xg,x; and x, are highly
correlated. First, we demonstrate how a cross-validation
procedure can be applied 1o determine the setting for the
parameters v, M and A of the BNN model. We treated the
first 70 records as a small finite population, generated 100
sample replicates of size 50 from these 70 records by the
method of simple random sampling without replacement,
and then conducted the following experiments. In the first
group of experiments, we fixed M =3 and A = 5, and varied
the value of v, v = 50, 100 and o, where v = 0 is just an

indicator which indicates the normality assumption for the
disturbance. Note M = 3 results in a full model of 43
connections, which has been large enough for the data set.
In the second group of experiments, we fixed v = 100 and
A =353, and varied the value of M, M = |, 2, 3, 4. In the third
group of experiments, we fixed v = 100 and M = 3, and
varied the value of A, A = 4, 5, 6. For each setting, RIEMC
was run as in the first simulation study. The computational
results were summarized in Table 5. It shows that the
performance of the BNN model is rather stable to the
variation of the settings. It also suggests that the setting
v=100, M =3 and A = 4 probably be a good setting for this
simulation population by a synthetical considerations on all
values of BIAS, MSE, AVMSE and coverage probability.
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In the further analysis, we generated 500 sample
replicates of size 70 from all the 141 records by the method
of simple random sampling without replacement. For each
replicate, RIEMC was run as in the first simulation study.
The computational results were summarized in Table 6. It
shows that the BNN model also works well for this
population. We also tried the other settings given in Table 5
for the 500 sample replicates. The computational results are
all similar.

Table 6
Computational results for the second simulation study with
v=100,M=3and A=4

Size BIAS MSE AVMSE  Coverage®
(x10% {x10% (x10% (%)
9.20 -0.512 3.36 325 926

* Nominal 95% coverage.

5. DISCUSSION

In this article, we studied the use of Bayesian neural
networks in finite population estimation. The numerical
results show that it has made a significant improvement
over the linear regression based methods. The improvement
is not from Bayesian model averaging, but mainly from
BNN models. We also applied the linear regression based
Bayesian model averaging method (Liang, Truong and
Wong 2001) to the same problem, and the improvement
over Silva and Skinner {1997) is only marginal. Although
our implementation for BNN models is not specific to finite
populations, we do not think this is a shortcoming of our
method. The generality of our method suggests its wide
applications, for example, in nonlinear regression and
nonlingar time series (the program is available by an request
from the first author). Of course, a further research on how
to use the known auxiliary variable information for a finite
population in BNN training is also of interest.

APPENDIX

Before proving Theorem 2.1, we give one formula which
will be used in the proof.

Formula 5.1 (Laplace’s method)
[£(8) exp{-nh(8) )0

=(2n/n)P“*|Z|“2exp{—nh(é)}b(é){1+O(n")}, (24)

as n — oo, where b(-) is a general function which does not
depend on n, h(0) is a constant-order function of n as
n-3ee, pis the dimension of 9, O is the maximizer of
—h(©) and T = (Dzh(é))_] is the inverse of the negative
Hessian matrix evaluated at § .
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For the general formulation of Laplace’s method, see Kass
and Vaidyanathan (1992).

Proof of Theorem 2.1

Proof: Part (a) By definiion of
E_ |g(x,,0,)|*"® can be written as

expectation,

E,| g(x,.9,)

K
2+8 =Z P(Ale)
k=0

2+8

fletxo.0,) (0, A, D)ab,.

Following from the normality of the posterior distributions
(0, | A,,D) (Walker 1969) and the fact that the activation
function y(-) in (3) is bounded, we know (9) holds. Walker
(1969) showed that the posterior distribution is Gaussian in
the limit of infinite tratning data,

Part (b). For a given observation x,, E,$(x,,0,) can be
written as

E, =§(x.0,)=

2 P(A) [(xo,8,) exp(—nh(8,))7(8,, | A)ab,

AeQ (25)
> P(A) [exp{-nh(8,)}7(®, | A)db ,
AeQd
where
2
log 78, |A) = —logc? ——i [logc +a_2]
o-ﬂ
] M Bz
—=> 1,8 ZI loga) +—%
25" S

£ Yii
_521: élpjlu[logc +-L£ ]
j=l i

- %log@n) +mlogh—log(m!), (26)

and

h(ﬂh)=%[%logcz Z log[l+ f (x ) H
l his 2 v+ l (yl f(x ))
n[2l Z Vol }

v+l
+——E
v’ 8¢

- £(x,,0,))’

[EG, —gx ) +(ex)-8(x,,0,00], @D
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where the first approximation follows from the Taylor
expansion, log(l+z) =z, when z lies in a neighbourhood
of zero; and the second approximation foflows from the
weak law of large numbers by assuming that n is large. Note
v is often set to a large number, say, a number greater than
30. In the first example of this paper, we set v = 100. The
equation (27) implies that the minimum of #(8,) is
attained  when  g(x,)=g(x,,0,) holds, that i,
8(x,.0,)=g(x,), where 0, =argmin, h(0,).

By applying Laplace’s method to the numerator of (25)
with b(-) = §(x,,0,)7%(8, | D}, we have

2 P(A) [8(x0.0,)exp(—tH (8,170, | A)d0,

Ae2

- ZP(A)(Zn/n)mH|ZA ||.'2

Al
exp{-nh(®,)}§(x,,0,)%@® , | D)
= g(x,) Y. P(A)Q2aim)™? |3 |12

A
exp{-nh(8,)}7(8 , | D), (28)

where the first approximation follows from the Laplace
formula (24), and the second approximation follows from
the equality #(x,.8,)= g(x,). Here we assume that the
number of hidden units of each A is suffiently large such
that g() can be approximated arbitrarily well by the
network with propetly adjusted weights. Otherwise, that
term will take a small value and is negligible in the last
approximation of (28).

Similarly, by applying the Laplace’s method to the
denominator of (25) with b(-) =70, | D), we have

2 P(A) fexp(-nh(8,)}7(®,, | A)d8,,

Ael}

= 2 PU@n/my™? [E "7 exp{-nh(®, )18, ID).29)

AeQ

Following from (28), (29), and the approximation accuracy
(O(n™")) of Laplace’s method, we have

E §(x0.0,) - g(x,), (30)

as n — oo. Following from (7}, (9) and (30), we have
1 M
E;’ g(xu’e-"i ) - g(x()), a.s.,

asn—oo and M — oe.

Part (c). It follows from (8), (9), (30) and Slutsky’s
Theorem (Casella and Berger 2002). The proof is
completed.

233
ACKNOWLEDGEMENTS

The authors would like to thank Chris Skinner for
providing the test census data set, and thank the anonymous
referees, the associate editor and editor Dr. M.P. Singh for
their constructive comments which have led to a significant
improvement of this paper.

REFERENCES

BANKIER, M.D. (1990). Two step pgeneralized least squares
eslimation. Ottawa: Statistics Canada, Social Survey Methods
Divison, Intemal reports.

BARDSLEY, P., and CHAMBERS, R.L. (1984). Multipurpose
estimation from unbalanced samples. Applied Statistics, 33, 290-
299

BILLINGSLEY, P. (1986). Probability and Measure (Second
Edition), New York: John Wiley & Sons, Inc.

BREIDT, F.J., and OPSOMER, J.D. (2000). Local polynomial
regression estimators in survey sampling. Annals of Staristics, 28,
1026-1053.

BUNTINE, W.L., and WEIGEND, A.S. (1991). Bayesian back-
propagation. Complex Systems, 5, 603-643.

CASELLA, G., and BERGER, R.L. (2002). Satistical Inference
(Second Edition). United States: Thompson Leaming.

CHAMBERS, R.L., DORFMAN, A H. and WEHRLY, T.E. (1993).
Bias robust estimation in finite populations using nonparametric

calibration. Journa! of the American Statistical Association, 88,
268-277.

COCHRAN, W.G. (1977). Sampling techniques (3" Ed.). New York:
John Wiley & Sons, Inc.

CYBENKO, G. {1989). Approximations by superpositions of a
sigmeidal function. Mathematics of Control, Signals and Systems,
2,303-314.

DENG, L.Y., and WU, C.F.}. (1987). Estimation of variance of the
regression  estimator. Jowmal of the American Stavistical
Association, 82, 568-576.

DEVILLE, J.-C., and SARNDALL, C-E. (1992). Calibration
estimators in survey sampling. Journal of the American Statistical
Association, 87, 376-382.

DORFMAN, A.H. (1992). Non-parametric regression for estimating
totals in finite populations. In Proceedings of the Section on
Survey Research Methods, American Statistical Association,
Alexandria, VA. 622-625,

DUNSTAN, R., and CHAMBERS, R.L. (1986). Model-based
confidence intervals in multipurpose surveys. Applied Statistics,
35, 276-280.

FIRTH, D. and BENNETT, K.E. (1998). Robust models in
probability sampling. Journal of the Roval Statistical Society B,
60, 3-21.

FUNAHASHI, K. (1989). On the approximate realization of
continuous mappings by neural networks. Newral Networks, 2,
183-192,

GELMAN, A, and RUBIN, D.B. (1992). Inference from iterative
simulation using multiple sequences (with discussion). Statistical
Science, 7,457-472.



234 Liang and Kuk: A Finite Population Estimation Study with Bayesian Neural Networks

GREEN, P.J. (1995). Reversible jump Markov chain Monte Carlo
computation and Bayesian model determination. Biometrika, 82,
T11-732.

HOETING, J.A., MADIGAN, D. RAFTERY, AE and
VOLINSKY, C. (1999). Bayesian model averaging: a tutorial
(with discussion). Statistical Science, 14, 382-417.

HOLMES, C.C., and MALLICK, B.K. (1998). Bayesian radial basis
functions of variable dimension. Neural Computation, 10, 1217-
1233,

HORNIK, K., STINCHCOMBE, M. and WHITE, H. (1989).
Multilayer feedforward networks are universal approximators.
Neural Networks, 2, 359-366.

KASS, RE., and VAIDYANATHAN, S. (1992). Approximaie
Bayesian factor and orthogonal parameters, with applications to
testing equality of two binomial proportions. Jownal of the Royal
Statistical Society B, 54, 129-144.

KUK, AY.C. (1993). A kemel method for estimating finite
population distribution functions using auxiliary information.
Biometrika, 80, 385-392.

KUK, A.Y.C., and WELSH, A_H, (2001). Robust estimation for finite
populatons based on a working model. Journal of the Royal
Statistical Society B, 63,277-292.

LIANG, F., TRUONG, Y.K. and WONG, W.H, (2001). Automatic
Bayesian medel averaging for linear regression and applications in
Bayesian curve fitting. Statistica Sinica, 11, 1005-1029.

LIANG, F., and WONG, W.H. (2001). Real parameter evelutionary
Monte Carlo with applications in Bayesian mixture models.
Journal of the Amerian Statistical Association, 96, 653-666.

MACKAY, D.UJ.C. (1992). A practical Bayesian framework for
backprop networks. Neural Computation, 4, 448-472.

MADIGAN, D., and RAFTERY, A E. (1994). Model selection and
accounting for model uncertainty in graphical models using
Occam’s window. Journal of the American Statistical Association,
89, 1535-1546.

MARRS, A.D. (1998). An application of reversible-jump MCMC to
multivariate spherical Gaussian mixtures. In Advances in Neural
Information Processing Systems 10, San Mateo, CA: Morgan
Kaufmann. 577-583.

MULLER, P., and INSUA, D.R. (1998). Issues in Bayesian analysis
of neural network models. Neural Computation, 10, 749-770.

NEAL, R.M. (1996). Bayesian Learming For Neural Networks. New
York: Springer-Verlag.

NETER, J, KUTNER, MH, NACHTSHEMM, C.J. and
WASSERMAN, W. (1996). Applied Linear Statistical Models
(Fourth Edition). Chicago: Irwin.

ROBERTS, CP,, and CASELLA, (. (1999). Monte Carlo Statistical
Methods. New York: Springer.

ROBERTS, G.0. (1996). Markov chain concepts related to sampling
algorithms. In Markov Chain Monte Carlo in Practice (Eds. W.R.
Gilks, 8. Richardson and D.J. Spiegelhalter). London: Chapman &
Hall/CRC. 45-57.

SARNDAL, C.-E., SWENSSON, B. and WRETMAN, 1. (1989). The
weighted residual technique for estimating the variance of the
general regression estimator of the finite population total.
Biometrika, 76, 527-537.

SILVA, P.L.D. (1996). Some asympiotic results on the mean squared
error of the regression estimator under simple random sampling
without replacernent. Southampton: University of Southampton,
Center for Survey Data Analysis Technical Report 6-2.

SILVA, PL.D, and SKINNER, C. (1997). Variable selection for
regression estimation in finite populations. Survev Methodology,
23,23-32,

THEBERGE, A. (1999). Extensions of calibration estimators in
survey sampling. Journal American Statistical Association, 94,

635-644,

TIERNEY, L. (1994). Markov chains for exploring posterior
distributions (with discussion). Annals of Sraristics, 22, 1701-
1786.

VALLIANT, R., DORFMAN, AH. and ROYALL, R.M, (2000).
Finite Population Sampling and Inference: A Prediction
Approach. New York: John Wiley & Sons, Inc.

WALKER, AM. (1969). On the asymptotic behaviour of posterior
distributions. Journal Royal Statistics Society, B, 31, 80-88.

WEIGEND, A.S., HUBERMAN, B.A. and RUMELHART, D.E.
(1990). Predicting the future: A connectionist approach. nt. J.
Neural Syst. 1, 193-200.

WU, C., and SITTER, R.R. (2001). A model-calibration approach to
using complete auxiliary information from survey data. Journal
American Statistical Association, 96, 185-193.



Survey Methodology, December 2004
vol. 30, No. 2, pp. 235-242
Statistics Canada

235

Simultaneous Use of Multiple Imputation for Missing Data and
Disclosure Limitation

JEROME P, REITER '

ABSTRACT

Several statistical agencies use, or are considering the use of, multiple imputation to limit the risk of disclosing respondents’
identities or sensitive attributes in public use data files. For example, agencies can release partially synthetic datasets,
comprising the units originally surveyed with some collected values, such as sensitive values at high risk of disclosure or
values of key identifiers, replaced with multiple imputations. This article presents an approach for generating multiply-
imputed, partially synthetic datasets that simultaneously handles disclosure limitation and missing data. The basic idea is to
fill in the missing data first to generate /m completed datasets, then replace sensitive or identifying values in each completed
dataset with r imputed values. This article also develops methods for obtaining valid inferences from such multiply-imputed
datasets. New rules for combining the muitiple point and variance estimates are needed because the double duty of multiple
imputation introduces two sources of variability into point estimates, which existing methods for ebtaining inferences from
multiply-imputed datasets do not measure accurately. A reference ¢-distribution appropriate for inferences when m and r are
moderate is derived using moment matching and Taylor series approximations.

KEY WORDS: Confidentiality; Missing data; Public use data; Survey; Synthetic data.

1. INTRODUCTION

Many statistical agencies disseminate microdata, ie.,
data on individual units, in public use files. These agencies
strive to release files that are (i) safe from attacks by ill-
intentioned data users seeking to leam respondents’
identities or attributes, (1i) informative for a wide range of
statistical analyses, and (iii) easy for users to analyze with
standard statistical methods. Doing this well is a difficult
task. The proliferation of publicly available databases, and
improvements in record linkage technologies, have made
disclosures a serious threat, to the point where most
statistical agencies alter microdata before release. For
example, agencies globally recode variables, such as
releasing ages in five year intervals or op-coding incomes
above $100,000 as “$100,000 or more” (Willenborg and de
Waal 2001); they swap data valves for randomly selected
units (Dalenius and Reiss 1982); or, they add random noise
to continuous data values (Fuller 1993). Inevitably, these
strategies reduce the utility of the released data, making
some analyses impossible and distorting the results of
others. They also complicate analyses for users. To analyze
properly perturbed data, users should apply the likelihood-
based methods described by Little (1993) or the mea-
surement error models described by Fuller (1993). These are
difficult to use for non-standard estimands and may require
analysts to leam new statistical methods and specialized
software programs.

An alternative approach to disseminating public use data
was suggested by Rubin (1993): release multiply-imputed,

synthetic datasets. Specifically, he proposed that agencies (i)
randomly and independently sample units from the
sampling frame to comprise each synthetic data set, (ii)
impute unknown data values for units in the synthetic
samples vsing models fit with the original survey data, and
(iii) release multiple versions of these datasets to the public.
These are called fully synthetic data sets. Releasing fully
synthetic data can protect confidentiality, since iden-
tification of units and their sensitive data is nearly
impossible when the values in the released data are not
actual, collected values. Furthermore, with appropriate
synthetic data generation and the inferential methods
developed by Raghunathan, Reiter and Rubin (2003) and
Reiter (2004b), it can allow data users to make valid
inferences for a varety of estimands using standard,
complete-data statistical methods and software. Other
attractive features of fully synthetic data are described by
Rubin (1993), Litle (1993), Fienberg, Makov and Steele
(1998), Raghunathan et al (2003), and Reiter (2002,
2004a).

No statistical agencies have released fully synthetic
datasets as of this writing, but some have adopted a variant
of the multiple imputation approach suggested by Little
(1993). release datasets comprising the units originally
surveyed with some collected values, such as sensitive
values at high risk of disclosure or values of key identifiers,
replaced with multiple imputations. These are called
partially synthetic datasets. For example, the U.S. Federal
Reserve Board protects data in the U.S. Survey of
Consumer Finances by replacing monetary values at high
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disclosure risk with multiple imputations, releasing a
mixture of these imputed values and the unreplaced,
collected values (Kennickell 1997). The U.S. Bureau of the
Census and Abowd and Woodcock (2001) protect data in
longitudinal, linked data sets by replacing all values of some
sensitive vartables with multiple imputations and leaving
other variables at their actual values. Liu and Little (2002)
present a general algorithm, named SMIKe, for simulating
multiple values of key identifiers for selected units.

All these partially synthetic approaches are appealing
because they promise to maintain the primary benefits of
fully synthetic data—protecting confidentiality while
allowing users to make inferences without leamning
complicated statistical methods or software — with decreased
sensitivity to the specification of imputation models (Reiter
2003). Valid inferences from partially synthetic datasets can
be obtained using the methods developed by Reiter (2003,
2004b), whose rules for combining point and variance
estimates again differ from those of Rubin (1987) and also
from those of Raghunathan et al. (2003).

The existing theory and methods for partially synthetic
data do not deal explicitly with an important practical
complication: in most large surveys, there are units that fail
to respond to some or all items of the survey. This article
presents a multiple imputation approach that handles
simultaneously missing data and disclosure limitation. The
approach involves two steps. First, the agency uses multiple
imputation to fill in the missing data, generating m multiply-
imputed datasets. Second, the agency replaces the values at
risk of disclosure in each imputed dataset with r multiple
imputations, ultimately rmeleasing mr multiply-imputed
datasets. This double-duty of multiple imputation requires
new methods for obtaining valid inferences from the
multiply-imputed datasets, which are derived here.

The paper is organized as follows. Section 2 reviews
multiple imputation for missing and partially synthetic data.
Section 3 presents the new methods for generating partially
synthetic data and obtaining valid inferences when some
survey data are missing. Section 4 shows a derivation of
these methods from a Bayesian perspective, and it discusses
conditions under which the resulting inferences should be
valid from a frequentist perspective. Section 5 concludes
with a discussion of the challenges to implementing this
multiple imputation approach on genuine data, with an aim
towards stimulating future research.

2. REVIEW OF MULTIPLE IMPUTATION
INFERENCES

To describe multiple imputation, we use the notation of
Rubin (1987). For a finite population of size N, let /; =1 if
unit § is selected in the survey, and 1 i = 0 otherwise, where

Reiter: Multiple Imputation for Missing Data and Disclosure Limitation

J=12, . N Let I=(1,..1,). Let R, beapx]1 vector
of response indicators, where R " =1 if the respense for
unit j to survey item & is recorded, and R, =0 otherwise.
Let R=(R,,...,Ry). Let Y be the N x p matrix of survey
data for all units in the population. Let ¥, =(Y,,. .Y, ) be
the n X p matrix of survey data for the n units with 7, =1;
Y, is the portion of ¥, that is observed, and Y, is the
portion of Y. that is missing due to nonresponse. Let X be
the N x d matrix of design variables for all N units in the
population, e.g., stratum or cluster indicators or size
measures. We assume that such design information is
known approximately for all population units, for example
from census records or the sampling frame(s). Finally, we

write the observed dataas D=(X,Y,,../,R).

2.1 Multiple Imputation for Missing Data

The agency fills in values for ¥, with draws from the
Bayesian posterior predictive distribution of (¥, | D), or
approximations of that distribution such as those of
Raghunathan, Lepkowski, Van Hoewyk and Solenberger
(2001). These draws are repeated independently /= 1,...,m
times to obtain m completed data sets, D@ =(D,Y%).
Multiple rather than single imputations are used so that
analysts can estimate the variability due to imputing missing
data.

In each imputed data set D', the analyst estimates the
population quantity of interest, {, using some estimator ¢,
and estimates the variance of g with some estimator . We
assumne that the analyst specifies g and « by acting as if each
DY was in fact collected data from a random sample of
(X, Y) based on the original sampling design /, i.e., g and u
are complete-data estimators,

For I=1,...,m, let ¢ and u" be respectively the
values of g and u in data set D’. Under assumptions
described in Rubin (1987), the analyst can obtain valid
inferences for scalar @ by combining the ¢ and u®.
Specifically, the following quantities are needed for
inferences:

g =3 q"Im M
I=]
b =3 (q" =Gy fm=1) @
=1
Z,=3u"/m 3)
I=1

The analyst then can use g, to estimate O and
T, =(+1/m)b, +u, to estimate the variance of g,.
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Inferences can be based on f-distributions with degrees of
freedom v = (m— 1)1+, ({L+1/m)b,))".

2.2 Multiple Imputation for Partially Synthetic Data

when Y, =Y.

=Y,

Assuming no missing data, i.e, Y, =Y,., the agency
constructs partially synthetic datasets by replacing selected
values from the observed data with imputations. Let Z, =1
if unit J is selected to have any of its observed data replaced
with synthetic values, and let Z; =0 for those units with all
data left unchanged. Let Z =(Z|, ... Z ). Let Y. be all

the imputed (replaced) values in the " synthetic data set,

and let Y, be all unchanged (unreplaced) values of ¥, .
The Y,,, are assumed to be generated from the posterior

predictive  distribution of (¥, epi |D,Z), or a close
approximation of it. The values in Y, are the same in all
synthetic data sets. Each synthetic data set, d,, then
comprises (X.Y.,;. nmp, 1,Z). Imputations are made
independently i=1, ..., r imes to yield r different partially
synthetic data sets, which are released to the public. Once
again, multiple imputations enable analysts to account for
variability due to imputation.

The values in Z can and frequently will depend on the
values in D. For example, the agency may simulate sensitive
variables or identifiers only for units in the sample with rare
combinations of identifiers; or, the imputer may replace
only incomes above $100,000 with imputed values. To
avoid bias, the imputations should be drawn from the
posterior predictive distribution of Y for those units with
Z; = 1. Reiter (2003) illustrates the problems that can arise
when imputations are not conditional on Z,

Inferences from partially synthetic datasets are based on
quantities defined in Equations (1) —(3). As shown by Reiter
(2003), under certain conditions the analyst can use g, to
estimate @ and T, =b, /r+u, to estimate the variance of
g, . Inferences for scalar Q can be based on #-distributions
with degrees of freedom v, = (r—1)(1+,/(b,/r))* .

3. PARTIALLY SYNTHETIC DATA
WHEN Y, #Y,,

When some data are missing, it seems logical to impute
the missing and partially synthetic data simultaneously.
However, imputing Y, and ¥, from the same posterior
predictive distribution can result in improper imputations.
For an illustrative example, suppose univariate data from a
normal distribution have some values missing completely at
random (Rubin 1976). Further, suppose the agency seeks to
replace all values larger than some threshold with
imputations. The imputations for missing data can be based
on a normal distribution fit using all of Y, . However, the
imputations for replacements must be based on a posterior
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distribution that conditions on values being larger than the
threshold. Drawing Y, and Y, from the same distri-
bution will result in biased inferences.

Imputing the Y. and Y, separately generates two
sources of variability, in addition to the sampling variability
in [}, that the user must account for to obtain valid
inferences. Neither 7, nor 7, correctly estimate the total
variation introduced by the dual use of multiple imputation.
The bias of each can be illustrated with two simple
examples. Suppose only one value needs replacement, but
there are hundreds of missing values to be imputed.
Intuitively, the variance of the point estimator of Q should
be well approximated by 7. and 7, should underestimate
the variance, as it is missing a 4, . On the other hand,
suppose only one value is missing, but there are hundreds of
values to be replaced. The variance should be well
approximated by T,, and 7, should overestimate the
variance, as it incluclcs anextra &, .

To allow users to estimate the total variability correctly,
agencies can employ a three-step procedure for generating
imputations. First, the agency fills in ¥, ;, with draws from
the posterior distribution for (Y, | D), resulting in m
completed datasets, D™, ..., D' _Then, in each D", the
agency selects the units whose values are to be replaced, i.e.,
whose Z; D=1, m many cases, the agency will impute
values for the same units in all DY (o avoid releasing any
genuine, sensitive values for the selected units. We assume
this is the case throughout and therefore drop the superscript
! from Z. Third, in each D, the agency imputes values
Y, for those units with Z, =1, using the posterior
distribution  for (¥, |[D,Z). This is repeated
independently i=1,...,r times for I=1,...,m, so that a
total of M=mr datasets are generated. Each dataset,

d = (X,Y,,,. Y5, Y0 LR Z), includes a label
1nd:catmg the { of the D) from which it was drawn, These
M datasets are released to the public. Releasing such nested,
multiply-imputed datasets also has been proposed for
handling missing data outside of the disclosure limitation
context (Shen 2000; Rubin 2003).

Analysts can obtain valid inferences from these released
datasets by combining inferences from the individual
datasets. As before, let g be the analyst’s estimator of @, and
let u be the analyst’s estimator of the variance of g. We
assume the analyst specifies g and u by acting as if each
d" was in fact collected data from a random sample of
{(X,Y) based on the origina] sampling design 1. For
I=1,..,mandi=1,...,rlet g and u" be respectively
the values of ¢ and 1 in data set 4. The following

quantities are needed for inferences about scalar Q:

qu D fimr) = Zq“’/m @

=li=t
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by = iﬁ’,(qf” gy [m(r-1

t=1i=1

=ib[l)/m (5)
i=1

B, =3 (3" -7, [tm-1) ®
I=1

i, = i iu,‘” J(mr). )
I=ii=1

The 7% is the average of the point estimates in each
group of datasets indexed by /, and the g, is the average of
these averages across L. The b is the variance of the point
estimates for each group of datasets indexed by /, and the
b,, is average of these variances. The B,, is the variance of
the 7% across synthetic datasets. The #,, is the average of
the estimated variances of g across all synthetic datasets.

Under conditions described in section 4, the analyst can
use g, to estimate . An estimate of the variance of g,,

182
T, =(1+1/m) B, —by, [r+iiy. (8)

When n, m, and r are large, inferences can be based on
the normal distribution, (Q -g,,)~ N¥(0.T,,}. When m
and r are moderate, inferences can be based on the
-distribution, (Q—g,, ) ~ L, (0,T,,), with degrees of
freedom

VM=[((1+1/m)BM)2+ (b /7Y J o

(m=-1)72  m(r-1)T}

The behavior of 7,, and v, in special cases is
instructive. When r is very large, T,, =T . This is because
the 7 = ¢¥, so that we obtain the results from analyzing
the D, When the fraction of replaced values is small
relative to the fraction of missing values, the &,, is small
relative to B,,, so that once again T,, =T, . In both these
cases, the v,, approximately equals v,,, which is Rubin’s
(1987) degrees of freedom when imputing missing data
only. When the fraction of missing values is small relative
to the fraction of replaced values, the B,, = b, /r, so that
T, is approximately equal to 7, with M released datasets.

4. JUSTIFICATION OF NEW COMBINING RULES

This section presents a Bayesian derivation of the
inferences described in section 3 and describes conditions
under which these inferences are valid from a frequentist
perspective. These results make use of the theory developed

in Rubin (1987) and Reiter (2003). For the Bayesian
derivation, we assume that the analyst and imputer use the
same models.

Let D" ={DW:{ =1,..,m} be the collection of all
multiply-imputed datasets before any observed values are
replaced. For each D%, let ¢ and u™ be the posterior
mean and variance of 3. As in Rubin (1987, Chapter 3), let
B, be the variance of the ¢ obtained when m = oo,

Let d¥ ={d":i=1,..,r;l=1,..,m} be the collection
of all released synthetic datasets. For each d{, let g be
the posterior mean of g"’. For each , let B be the
variance of the g obtained when r=ce, Lastly, let B be
the average of the B obtained when m = oo,

Using these quantities, the posterior distribution for
(Q|d™) can be decomposed as

f@ld*)=| f@ld*,p",B,,B)
f(p™,B_|d",B)
f(B|d")dD"dB_dB. (10)

The integration is over the distributions of the values in D
that are missing and the values in each DY that are
replaced with imputations; the observed, unaltered values
remain fixed. We assume standard Bayesian asymptotics
hold, so that complete-data inferences for Q can be based on
normal distributions.

4.1 Evaluating f(Q|d",D™,B_,B)

Given D™, the synthetic data are irrelevant, so that
f(@ld".p".B_,B)= f(Q|D",B.). This is the poste-
rior distribution of @ for multiple imputation for missing
data, conditional on B_. As shown by Rubin (1987), this
posterior distribution is approximately

(Q| D™, B.)~ N(@,,.(1+1/m)B_ +i,) (11

where ¢, and iu,, are defined as in (1) and (3). In multiple
imputation for missing data, we integrate (11) over the
posterior distribution of (B_ | D™). This is not done here,
since we integrate over (B, |d "y,

4.2 Evaluating f(D",B_|d",B)f(B|d")

Since the distribution for @ in (11) relies only on g¢,,,
#,,and B, it is sufficient for f(D",B, |d¥,B) to

ms v

determine
fg,.u,. B, |d‘",B)=
f@nH,|d" B, BYf(B.|d",B).
Following Reiter (2003), we first assume replacement

imputations are made so that, for all i, the sampling
distributions of each q‘_(f} and ur.“) are,
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(qgr) |D“},BU)) - N(q“), B(”) (12)

@’ | D9, By ~ (", << BY). (13

Here, the notation F ~ (G, <<H) means that the random
variable F has a distribution with expectation of G and
variability much less than . In actuality, u," is typically
centered at a value larger than #®, since synthetic data
incorporate uncertainty due to drawing values of the
parameters. For large sample sizes n, this bias should be
minimal. The assumption that E(g" | D’,B“)=¢" and
the normality assumption should be reasonable when the
imputations are drawn from comect posterior predictive
distributions, f(Y,, | D", Z), and the usual asymptotics
hold.

Assuming flat priors for all ¢ and v*, standard
Bayesian theory implies that

(q(”|dM, B“’)~ N(c?“’,B‘”/r) (14)
Lt g, B0)- (7, << B0r) (15)
[(r;#ﬁ d”’B"’] %y (16)

where 5 is defined in (5). We next assume that B = B
for all L. This should be reasonable, since the variability in
posterior variances tends to be of smaller order than the
variability of posterior means. Averaging across {, we obtain

(Eml d",B)~ N (g,,, B/rm) a7

(Eml " B)~ (@, << Bfrm) (18)

where g,, is defined in (4) and #,, is defined in (7). The
posterior distribution of (B_, | d M ,B) s

(m—l)BM M 2
med)r,

where B,, is defined in (6).
Finally, the posterior distribution of (B|d™ ) is

(%| dM ) -~ xfn(’_l) (20)

where b,, is defined in (5).

4.3 Evaluating f(Q|4d")

We need to integrate the product of (11) and (17) with
respect to the distributions in (19) and (20). This can be
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done by numerical integration, but it is desirable to have
simpler approximations for users.

For large m and r, we can replace the tertns in the
variance with their approximate expectations: the B_ =
By, —Bir,and the B '—-EM - Hence, for large m and r, the
posterior distribution of ) is approximately:

(] 2¥)
~ N(G,y, 0+ 1/m)(By, =By /r)+ by [mr+i7,)

=N(g,.(1+1/m)B, -b, [r+7,,)
=N{(gy.T,). @n

When m and r are moderately sized, the normal
distribution may not be a good approximation, T derive an
approximate reference t-distribution, we use the strategies of
Rubin (1987) and Barnard and Rubin (1999). That is, we
assume that for some degrees of freedom v, to be
estimated,

VMTM M 2
a" |~ 22
(EM +(1+1/m)BM+B/mrI J X @2)

so that we can use a t-distribution with v,, degrees of
freedom for inferences about . We approximate v,, by
matching the first two moments of (22) to those of a chi-
squared distribution. The details showing that v, is
approximated by the expression in (9) are provided in the
appendix.

The inferences based on (4) — (9) have valid frequentist
properties under certain conditions. First, the analyst must
use randomization-valid estimators, g and «. That is, when g
and u are applied on D to get ¢, and u, , the
(Qobs|X1Y)~N(Q,U) and (uobs|X1Y)~(Ua<<U)1
where the relevant distribution is that of 7. Second, the
imputations for missing data must be proper in the sense of
Rubin (1987, Chapter 4). Essentially, this requires that
inferences from the imputations for missing data be
randomization-valid for ¢, and u_ , under the posited
non-response mechanism. Third, the imputations for
partially synthetic data must be synthetically proper in the
sense of Reiter (2003). This requires that the inferences
from the replacement imputations associated with each D
be randomization valid for the ¢“* and 1.

In general, it is difficult to verify that imputations for
missing data are proper in complex samples (Binder and
Sun 1996). They may be proper for some analyses but not
for others. As a result, some confidence intervals centered
on unbiased estimators may not have nominal coverage
rates; see Meng (1994) for a discussion of this issue. These
difficulties exist for the multiple imputation approach used
here, and indeed may be compounded because of the
additional imputation of synthetic data.
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5. CONCLUDING REMARKS

There are many challenges to using partially synthetic
data approaches for disclosure limitation. Most important,
agencies must decide which values to replace with
imputations. General candidates for replacement include the
values of identifying characteristics for units that are at high
risk of identification, such as sample uniques and duplicates,
and the values of sensitive variables in the tails of
distributions. Confidentiality can be protected further by, in
addition, replacing values at low disclosure risk (Lin and
Little 2002). This increases the variation in the replacement
imputations, and it obscures any information that can be
gained just from knowing which data were replaced. As
with any disclosure limitation method (Duncan, Keller-
McNulty and Stokes 2001), these decisions should consider
tradeoffs between disclosure risk and data utility. Guidance
on selecting values for replacement is a high priority for
research in this area.

There rerain disclosure risks in partially synthetic data
no matter which values are replaced. Users can utilize the
released, unaltered values to facilitate disclosure attacks, for
example via matching to external databases, or they may be
able to estimate actual values of Y, from the synthetic data
with reasonable accuracy. For instance, if all people in a
certain demographic group have the same, or even nearly
the same, value of an outcome variable, the imputation
models likely will generate that value for imputations.
Imputers may need to coarsen the imputations for such
people. As another example, when vsers know that a certain
record has the largest value of some Y, , that record can be
identified when its value is not replaced.

On the data utility side, the main challenge is specifying
imputation models, both for the missing and replaced data,
that give valid results. For missing data, it is well known
that implausible imputation models can produce invalid
inferences, although this is less problematic when imputing
relatively small fractions of missing data (Rubin 1987,
Meng 1994). There is an analogous issue for partially
synthetic data. When large fractions of data are replaced, for
example entire variables, analyses involving the replaced
values reflect primarily the distributional assumptions
implicit in the imputation models. When these assumptions
are implausible, the resulting analyses can be invalid.
Again, this is less problematic when only small fractions of
values are replaced, as might be expected in many
applications of the partially synthetic approach.

Certain data characteristics can be especially challenging
to handle with partially synthetic data. For example, it may
be desirable to replace extreme values in skewed dis-
tributions, such as very large incomes. Information about
the tails of these distributions may be limited, making it
difficult to draw reasonable replacements while protecting

confidentiality. As another example, randomly drawn
imputations for highly structured data may be implausible,
for instance unlikely combinations of family members’ ages
or marital statuses. These difficulties, coupled with the
general limitations of inferences based on imputations, point
to an important issue for research: developing and
evaluating methods for generating partially synthetic data,
including semi-parametric and non-parametric approaches.

We note that building the synthetic data models is
generally an easier task than building the missing data
models. Agencies can compare the distributions of the
synthetic data to those of the observed data being replaced.
When the synthetic distributions are too dissimilar from the
observed ones, the imputation models can be adjusted.
There usually is no such check for the missing data models.

It is, of course, impossible for agencies to anticipate
every possible use of the released data, and hence
impossible to generate models that provide valid results for
every analysis. A more modest and attainable goal is to
enable analysts to obtain valid inferences using standard
methods and software for a wide range of standard analyses,
such as some linear and logistic regressions. Agencies
therefore should provide information that helps analysts
decide what inferences can be supported by the released
data. For example, agencies can include descriptions of the
imputation models as attachments to public releases of data.
Users whose analyses are not supported by the data may
have to apply for special access to the observed data.
Agencies also need to provide documentation for how to use
the nested data sets. Rules for combining point estimates
from the multiple data sets are simple enough to be added to
standard statistical software packages, as has been done
already for Rubin’s (1987) rules in SAS, Stata, and S-Plus.

As constructed, the multiple imputation approach does
not calibrate to published totals. This could make some
users unhappy with or distrust the released data. It is not
clear how to adapt the method — or, for that matter, many
other disclosure limitation techniques that alter the original
data — for calibration.

Missing data and disclosure risk are major issues
confronting organizations releasing data to the public. The
multiple imputation approach presented here is suited to
handle both simultaneously, providing users with
rectangular completed datasets that can be analyzed with
standard statistical methods and software. There are
challenges to implementing this approach in genuine
applications, but, as noted by Rubin (1993) in his initial
proposal, the potential payoffs of this use of multiple
imputation are high. The next item on the research agenda is
fo investigate how well the theory works in practice,
incloding comparisons of this approach with other
disclosure limitation methods. These comparisons should
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focus on measures of disclosure rigsks, obtained by sim-
ulating intruder behavior, and on measures of data utility for
estimands of interest to users, including properties of point
and interval estimates.

APPENDIX: DERIVATION OF APPROXIMATE
DEGREES OF FREEDOM

Inferences from datasets with multiple imputations for
both missing data and partially synthetic replacements are
made using a ¢-distribution. A key step is to approximate the
distribution of

Var Do

(EM +(1+1/m) B, + Bimr

as a chi-squared distribution with v,, degrees of freedom.
The v,, is determined by matching the mean and variance
of the inverted y° distribution to the mean and variance of
(23).

Let a=(B, +Bir)iB, , and let y=Bib, . Then,
(@’|d”,B) and (y'|d") have mean squarc dis-
tributions with degrees of freedom m—1 and m (r—1),
respectively. Let f=(01+1/m)B, /u, , and let g=
/)b, /u,, . We can write (23) as

| d’"J (23)

+(l+m)B, +Bimr i, (l+of —yg)

To match moments, we need to approximate the expectation
and variance of (24).
For the expectation, we use the fact that

1+af —vg
=ElE l"'f—_g|d"4,3 |dM . 25)
1+af —vg
We approximate these expectations using first order Taylor

series expansion in o™ and y~' around their expectations,
which equal one. As a result,

E(E[w—_g‘d“ ,BJ| d“J
l+af —yg

=E(1+f_gidm]zl_ (26)
1+ f-vg

For the wvariance, we use the conditional variance
representation
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El Var _Ltf___'g_ dM,B |dM
1+0of —vg

I+ f-¢g
+V3{E(—1+uf—vg d”,BJ‘d“]. (27

For the interior variance and expectation, we use a first
order Taylor series expansion in o' around its expectation.
Since Var(a™ |d", B)=2/(m-1), the expression in (27)

equals approximately

E[ 21+ f - g)* f* 4|dMJ
(m-=D{1+ f —vg)

1 -
+Va{—+f 8 d”J. (28)
I+f-7¢8
We now use first order Taylor scries expansions in ¥~

around its expectation to determine the components of (28).
The first term in (28) is,

00+ F-glf* |
Ehm—ﬂﬁ+f—vﬂ‘k J
2f2
NCE Y @)

Since Var(y']|d'")=2/(m(r—1)), the second term in

(28)is
[1+f g| J
1+ f-vg
2g2
m{r-1)(1+f-gf"

Combining (29} and (30), the variance of (23) equals
approximately

(30)

2f?
(m—1)(1+f -g)
2g° .
m-D+f-gf OV

Since a mean square random variable has variance equal to
2 divided by its degrees of freedom, we conclude that

f? N g’ -1
[(t‘f¢~l)(l+f‘-g]2 m(r—l)(1+f_g)2J' (32)
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Erratum:

In the June 2004 issue, we published a paper by D.N. Da Silva and Jean D. Opsomer on “Properties of the Weighting Cell
Estimator Under a Nonparametric Response Mechanism” (pages 45-55). We would like to apologize for having incorrectly
spelled out Dr. Da Silva’s name. It should have read D. Nobrega Da Silva. Please note also that the corrected version appears
on Statistics Canada’s Web site.
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Any appendix should be placed after the acknowledgements but before the list of references.

Abstract

The manuscript should begin with an abstract consisting of one paragraph followed by three to six key words. Avoid
mathematical expressions in the abstract.
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Style

Avoid footnotes, abbreviations, and acronyms.

Mathematical symbols will be italicized unless specified otherwise except for functional symbols such as “exp(:)”
and “log(-)”, eic.

Short formulae should be lefi in the text but everything in the text should fit in single spacing. Long and important
equations should be separated from the text and numbered consecutively with arabic numerals on the right if they are
to be referred to later.

Write fractions in the text using a solidus.

Distinguish between ambiguous characters, (e.g., w, ; 0,0, (; 1, 1).

Italics are used for emphasis. Indicate italics by underlining on the manuscript.

Figures and Tables

All figures and tables should be numbered consecutively with arabic numerals, with titles which are as nearly self
explanatory as possible, at the bottom for figures and at the top for tables.

They should be put on separate pages with an indication of their appropriate placement in the text. (Normally they
should appear near where they are first referred to).

References

References in the text should be cited with authors’ names and the date of publication. If part of a reference is cited,
indicate after the reference, e.g., Cochran (1977, p. 164).

The list of references at the end of the manuscript should be arranged alphabetically and for the same author
chronologicatly. Distinguish publications of the same author in the same year by attaching a, b, ¢ to the year of
publication. Joumal titles should not be abbreviated. Follow the same format used in recent issues.






