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In This Issue 

This issue of Survey Methodology opens with a discussed paper by Paul Biemer. He provides 
evidence of reduced accuracy due to the redesign of employment questions in the Curtent Population 
Survey (CPS). This is an extension of the previous study by Biemer and Bushery (2000). In the 
current paper, the author attempts to ttace the source of the error through extended analysis of the CPS 
data before and after the redesign. A new approach, using Markov Latent Class Analysis, is presented. 
This work aims at providing guidance for further investigation into the root causes of the errors in the 
collection of labour force data in the CPS. Discussions of this paper are provided by Jeroen Vermunt, 
Stephen Miller and Anne Polivka, and Clyde Tucker. 

In their paper. Gunning and Horgan propose a new algorithm for the construction of sttatum 
boundaries in skewed populations. Their algorithm uses an auxiliary variable and achieves equal 
coefficients of variation for this auxiliary variable in each sttatum. The method is based on the 
assumption that the auxiliary variable is uniformly distiibuted. One advantage of the method is that it 
is very easy to apply in practice. In an empirical study, the authors show that the proposed algorithm 
compares favourably with the cumulative root frequency method of Dalenius and Hodges (1957) and 
to tiie Lavallee and Hidiroglou (1988) algoritiim. 

Hedlin and Wang consider the problem of bias coming from feeding back information from sample 
surveys to frames. They investigate the bias incurred by updating deaths on a frame that is used for 
future occasions of the same survey. They quantify this bias and develop an unbiased estimator for 
this situation. The theoretical results presented in the paper are illustrated through a simulation study. 

In their paper, Mudryk and Xie present the Quality Assurance (QA) and Quality Control (QC) 
aspects of the Intelligent Character Recognition operation of the 2001 Canadian Census of 
Agriculture. They show how an effective QA and QC plan was developed to ensure the highest quality 
data from the data capture operation of the Census. Results from an analysis of the Average Outgoing 
Quality of the data indicate the importance of a QA/QC plan. 

In Park and Lee, the design effects for the weighted mean and total estimators are investigated for 
complex surveys. In particular, they decompose the design effect for the weighted mean and total 
estimators under a two-stage design. Given this decomposition, they illusttate several common 
misconceptions about the design effects for the weighted mean and total estimators through several 
examples using commonly used designs. 

In their paper, Beaumont and Alavi investigate a robust generalized regression estimator. They look 
at alternatives to tiie optimal Best Linear Unbiased (BLU) estimator that are robust to design 
ignorability and/or model misspecification. In the situation where the design ignorability assumption 
may not hold, they propose a least squares estimator that is obtained by shrinking the design weights 
to their mean. To deal with model misspecification, they propose a weighted generalized M-estimator 
to reduce the influence of units with large weighted population residuals. Their theoretical results are 
illusttated with a simulation study. 

Zheng and Little propose a non-paramettic model-based alternative to Horvitz-Thompson 
estimation of a total in the case of two-stage sampling with pps sampling at the first stage. This is an 
extension of their earlier work in which an outcome variable y, is modeled as a smooth function of 
the inclusion probability Ji,. They show how to fit the model and estimate the total using a penalized 
spline, and also develop alternative variance estimation procedures. Simulations are used to compare 
the proposed method to the Horvitz-Thompson estimator and to a model-assisted estimator. 



126 In This Issue 

Liang and Kuk consider an alternative to the standard approach for regression estimation in a finite 
population. Instead of the usual linear model they use an arbitrary smooth function to allow for a non­
linear regression, and then they apply Bayesian neural networks to the problem. The advantage of the 
neural network approach is that the problem of model misspecification is avoided. Liang and Kuk 
place a prior on each network connection instead of on the number of hidden units as is usually done. 
This permits a unified approach to the selection of the network structure and the selection of the 
auxiliary variables. Finally, they handle outiiers by introducing a heavy tail distribution to model the 
disturbances of the data. 

In the last paper of this issue, Reiter uses multiple imputation to handle simultaneously both 
missing data and disclosure limitation. The basic idea is to fill in the missing data first to generate m 
completed datasets and then replace sensitive or identifying values in each completed dataset with r 
imputed values. Then, the author develops new combining rules for obtaining valid inferences from 
such multiply-imputed datasets. These rules take into account both sources of variability in the point 
estimators. 

Finally, the Editorial Board met this past summer at the Joint Statistical Meetings in Toronto. A 
suggestion was made at that meeting to have a Short Communications section in the journal. These 
would be shorter papers, typically around four Survey Methodology pages. Possible topics of short 
communications would include presentation of new ideas without the full development of a regular 
paper, brief reports of empirical work, and discussions or supplements to other papers published in the 
journal. All short communications would be refereed, although the reviewing process may be 
streamlined. I hope that this new format will be atttactive to many authors, and look forward to 
receiving your submissions. 

M.P. Singh 
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An Analysis of Classification Error for the 
Revised Current Population Survey Employment Questions 

PAUL P. BIEMER' 

ABSTRACT 

The reduced accuracy of the revised classification of unemployed persons in the Current Population Survey (CPS) was 
documented in Biemer and Bushery (2000). In this paper, we provide additional evidence of this anomaly and attempt to 
trace the source of the error through extended analysis of the CPS data before and after the redesign. The paper presents an 
novel approach decomposing the error in a complex classification process, such as the CPS labor force status classification, 
using Markov Latent Class Analysis (MLCA). To identify the cause of the apparent reduction in unemployed classification 
accuracy, we identify the key question components that determine the classifications and estimate the contribution of each 
of these question components to the total error in the classification process. This work provides guidance for furtlier 
investigation into the root causes of the errors in die collection of labor force data in die CPS possibly Uirough cognitive 
laboratory and/or field experiments. 

KEY WORDS: Survey redesign; Measurement error; Latent class analysis; Unemployment rate; Specification error. 

1. INTRODUCTION 

The Current Population Survey (CPS) is a montiily 
survey of approximately 60,000 households conducted by 
the U.S. Bureau of the Census for the Bureau of Labor 
Statistics (BLS). The primary purpose of the survey is to 
provide estimates of employment, unemployment, and other 
characteristics of the general U.S. labor force population. 
Estimates of the size, composition, and dynamic charac­
teristics of the labor force are published each month by BLS 
and comprise one of tiie Nation's key economic Uidicators. 

In January 1994, a revised questionnaUe was inttoduced 
in the CPS to address the recommendations by the Levitan 
Commission in die late 1970s to convert the mode of 
interview for the CPS from paper and pencU questionnaUe 
to computer-assisted interviewing methods, to clarify some 
of the questions on employment, as well as for a number of 
otiier reasons described Ui Rothgeb (1994). The overall 
objective of the redesign was to improve die quaUty of the 
data collected in tiie CPS. The CPS questionnaire had 
remained essentially unchanged since the last major revision 
in 1967. 

The revised CPS questionnaUe was inttoduced after 
considerable research and testing that began in the mid-
1980s. The purpose of the testing was to evaluate die quality 
and operational feasibiUty of various redesign options 
including moving the CPS from a paper and pencil 
questionnaire format to computer assisted interviewing. 
During diese years of testUig, more tiian 100,000 persons 
were interviewed in the various studies that were conducted 
(Rothgeb 1994). The CPS redesign research program 

culminated in a large national study (referred to in tiie 
Uteramre as tiie CATI/CAPI Overiap or CCO Field Test) 
that was conducted in 1993. The key component of this test 
consisted of a computer assisted survey of approximately 
12,000 households implementing revised CPS interviewing 
procedures and the revised questionnaire. This survey, 
referred to in this report as the Parallel Survey, was 
conducted from July 1992 to December 1993 concurrentiy 
with the ongoing CPS survey which used the original 
questionnaire. This type of split panel design makes it 
possible to estimate the effect of the redesign changes on the 
CPS labor force estimates. 

A number of papers and reports were published 
documenting tiie findings from die CCO Field Test 
(Cohany, PoUvka and Rotiigeb 1994; Rotiigeb 1994; 
PoUvka 1994; Kostanich and Gaboon 1994; Miller 1994; 
Thompson 1994; Dippo, Polivka, Creighton, Kostanich and 
Rothgeb 1994). One key finding from this research was that 
tiie Parallel Survey unemployment rate and tiie labor force 
participation rate were higher than in the CPS. The higher 
unemployment and labor force participation rates associated 
with the revised questionnaUe were explained primarily by 
changes in the definition of employment. The revised 
questionnaire has a broader approach to botii work and job 
search activities, which would tend to classify more persons 
as "m the labor force" and, thus, more persons who are not 
working as unemployed ratiier than out of tiie labor force 
(see, for example, Polivka 1994 and Rothgeb 1994). 

The increase in the unemployment rate due to the new 
design was originally estimated at about one-half percentage 
point. However, further analysis of tiie Parallel Survey data 

Paul P. Biemer, 3040 Comwallis Road, PO Box 12194 Research Triangle Park, NC 27709-2194, U.S.A. 
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called that estimate into question and subsequentiy a report 
was release estimating die increase to be less than one-tenth 
percentage poUit (Polivka and Miller 1994). The concerns 
raised in the subsequent reports regarding the utility of the 
Parallel Survey data for assessing the effect of the redesign 
are discussed further below and will be considered in our 
analysis of these data. 

An independent analysis conducted by Biemer and 
Bushery (2000) revealed an anomaly in the revised CPS 
labor force data that had not been detected by any of the 
previous research on the CPS redesign. Using a Markov 
latent class analysis (MLCA) approach, Biemer and 
Bushery compared the accuracy of labor force classify-
cations under die original and revised designs by estimating 
and comparing tiie error rates usUig the 1993 CPS data and 
die 1995 and 1996 CPS data. They defined labor force 
classification accuracy as the probabiUty that a person who 
is truly in some labor force category, say category a, is 
classified as beUig Ui a by tiie CPS; i.e., Pr(classified m a \ 
truly in a). For example, the classification accuracy for 
unemployment is the probabUity a person who is truly 
unemployed, according to tiie CPS definition, is correcfly 
classified as unemployed by the CPS classification rules. 

In Table 2 of theU paper, Biemer and Bushery report that 
tiie classification accuracy for unemployment dropped by 
5.7 percentage points, from approximately 81.8 percent 
(s.e. = 0.90) Ui 1993 to 76.1 (s.e. = 1.2) m 1995 and 74.4 
percent (s.e. = 1.2) in 1996. These results suggest diat the 
redesigned CPS misclassifies the true unemployed at a 
higher rate than the old CPS design. The authors first 
considered diat this result could be an artifact of the MLCA 
methodology. As shown below, MLCA does not requUe a 
true or "gold standard" measiu-ement of employment to 
estimate classification error. Rather die metiiod reUes a 
model describing tiie true month to month changes in 
employment status and as well as for the process of 
classifying Uidividuals Uito labor force categories. It is 
possible tiiat labor force ti^nsitions tiiat deviate from die 
model specification could be regarded as misclassifications 
in the estimation process. 

To check the validity of the MLCA results, the authors 
conducted a series of analyses using traditional estimation 
approaches, analysis of the error by population groups, 
comparisons of the error estimates to other published esti­
mates, and simulations to assess the effect of model faUure 
on the results. As an example, there is evidence that the test-
retest reliability of the unemployment category decreased 
after the redesign. Prior to the redesign, tiie index of 
inconsistency (The index of inconsistency is a measure of 
unreliabiUty traditionally used at the Census Bureau. It is 
equal to 1 - K where K is Cohen's kappa coefficient (Cohen 
1960) for die unemployed labor category averaged 30 

percent for the period 1992-1993. Following the redesign, 
the index of inconsistency increased to almost 40 percent for 
the period 1995-1996. These analyses support theU claim 
that the accuracy of the CPS methodology for classifying 
unemployed persons declined after the redesign. 

In tiieU discussion of the results, the authors speculated 
that the drop in classification accuracy could indicate a 
problem with the revised unemployment questions. That is, 
the revised unemployment questions may be subject to 
greater classification error and, thus, less classification 
accuracy. Another possibiUty diey considered is change in 
the characteristics of die unemployed populations from 
1993 to 1995 and 1996. Since the unemployment rate 
dropped from 1993 to 1996, it is possible that persons who 
would be more accurately classified by the CPS system left 
the ranks of the unemployed, leaving persons who would be 
less accurately classified in the category. This hypothesis 
could be tested by estimating the accuracy rates for the two 
methodologies for the same time period. The Parallel 
Survey offers a means to conduct such an analysis. 

The current paper continues tiie Uivestigation of the 
reduction in MLCA unemployment classification accuracy 
rates observed by Biemer and Bushery. The current analysis 
uses MLCA models very similar to those used by Biemer 
and Bushery for estimating the classification accuracy for 
the original and revised versions of the CPS questionnaire. 
However, the time period considered here is expanded to 
include die 15 months prior to and following the inttoduction 
of the revised questionnaire: a total of 30 contiguous 
months. In addition, data from the ParaUel Survey from the 
period January 1993 through December 1993 is used to 
compare the employment accuracy for original and revised 
questioimaire for the same time period. 

Our analysis focuses on a labor force classification 
variable that is derived from a number of questions on the 
employment section of the CPS questionnaUe. This variable 
is often referred to as a "recoded" labor force variable since 
it is determined by mapping a pattern of CPS responses to 
questions about employment onto particular labor force 
categories such as employed - at work, employed - not at 
work, unemployed - looking for work, and so on. Biemer 
and Bushery used a three-category employment classi­
fication variable: employed (EMP), unemployed (UEM), 
and not Ui the labor force (NLF). For tiie present analysis, a 
four-category variable is used that subdivides die UEM 
category Uito unemployed-on layoff (UEM-LAYOFF) and 
unemployed-lookUig for work (UEM-LOOKING). This is 
done as a first step toward isolating the source of the 
apparent inaccuracy in unemployment classification. How­
ever, further decomposition of these categories will be 
necessary to arrive at the root source of the error as will be 
shown subsequentiy. 
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In section 2 we describe the CPS labor force concepts 
tiiat are most relevant to our study and the structure of die 
data sets in die analysis. In section 3 we review die MLCA 
estimation methodology and models used by Biemer and 
Bushery in their analysis and describe die application of 
tiieU methodology for the present purposes. In section 4 we 
present tiie results of our analysis and what diey suggest 
regarding the source of die classification error in the new 
questionnaire. Finally, section 5 provides a summary of the 
key findings and our conclusions from the study. 

2. DATA AND CONCEPTS 

2.1 The Data Sets for Our Study 

Except for the Parallel Survey, the CPS data in our 
analysis were downloaded from the National Bureau of 
Economic Research (NBER) website (www.nber.org). This 
website contains microdata for the CPS for every month 
from January 1976 tiirough December 2004. The MLCA 
approach was applied directiy to these microdata without 
the need for supplementary data or data external to the CPS. 

In die preliminary analysis, we investigated the CPS 
classification accuracy for a six-year period: January 1992 
dirough December 1997. That analysis was aimed at 
determining whether the anomaly first noted in Biemer and 
Bushery (2000) is a ttansient phenomenon affecting only the 
montiis immediately following the Uittoduction of the new 
questionnaUe or whether it persisted for some years after the 
new questionnaUe was inttoduced. If temporary or ttansient, 
the anomaly might be related to problems during tiie phase-
in of the new design; for example, interviewer ttaining or 
issues related to the startup of data collection. However, 
evidence of a persistent, continuing effect could suggest 
problems with die survey design; for example, tiie question­
naUe, interviewing procedures, or the recoding algorithm. 

By applyUig MLCA across all montiis from 1992 
dirough 1997 we determined that, aldiough die magnitude 
of the reduction in accuracy varies somewhat from month to 
month, it does indeed persist for all mondis foUowing the 
inttoduction of die revised questionnaUe. The results 
confirmed Biemer and Bushery's conjecture of a systemic 
effect possibly linked to the new unemployment questions 
inttoduced in January 1994. 

Due to space considerations, in this paper we present 
results from a somewhat shorter time frame than considered 
in die preliminary analysis, viz., the years 1992, 1993, 1994, 
and 1995. This time period covers two years of die CPS 
using the original questionnaUe and two years using the 
revised questionnaire. In addition, we will also present some 
results from an MLCA of the 1993 Parallel Survey data that 
can be compared with results from the main CPS. 

The data sets in our study are quite large. Each estimate 
of classification ertor we obtain is based upon all house­
holds that were interviewed in the CPS for three consecutive 
mondis. Across die four years in our analysis, die total 
number of households responding for all diree mondis in 
any tiiree-month period varies from about 37,000 to more 
dian 40,000. For die 1993 Parallel Survey, die number of 
households satisfying this criterion is approximately 10,000. 
The estimates we produce are appropriately weighted for 
probabiUties of selection and other post-survey adjustments 
and, tiierefore, reflect die response probabilities of die 
published CPS estimates. Weights were constructed by 
taking an average weight across the three consecutive 
months that were combined to form a longitudinal record 
for the analysis (unweighted analyses were also conducted 
and die results were very similar to die weighted analysis. 
This suggests the choice of weights has little effect on the 
study outcomes). 

Because of a problem in the identification variables 
requUed for UnkUig households for the months June 1995 
diough December 1995, it was not possible to include diese 
months in our analysis. Further, since our conclusions 
would not change by including data from the 1996 or later 
years of the CPS, we confine our analysis to 15 months 
prior and 15 mondis foUowing die inttoduction of the 
revised questionnaUe. Thus, for most of the analysis to 
follow, we wUl provide averages of estimates from August 
1992 through December 1993 for die original questionnaire 
and from January 1994 dirough May 1995 for die revised 
questiormaire (note that sUice our estimates are based upon a 
moving average of three consecutive months, seasonal 
variations in die labor rates and ttansitions probabilities are 
accounted for Ui the estimates of classification ertor). 

2.2 Labor Force Concepts 

The revised CPS questionnaire was inttoduced in 1994 to 
improve die overall quality of labor market information 
dirough extensive question changes and through the use of 
computer technology in the data collection. In the following, 
we describe a few concepts diat were affected by die 
questiormaire redesign and that are relevant for die current 
analysis. 

Employed. The labor force questions in the original 
questionnaire began with die question "What were you 
doing most of LAST WEEK (working, keeping house, 
going to school, or something else)?" Interviewers were 
allowed to modify the parendietical part of diis question 
according to the age of the respondent. In some cases, die 
word "work" or "working" was not part of die question. As 
an example, if the respondent looked of student-age, the 
interviewer was allowed to leave out the word "working." 
The revised questionnaUe replaced this question with two 

http://www.nber.org
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questions: "Does anyone in this household have a business 
or a farm?" and "LAST WEEK, did you do ANY work for 
(eidier) pay (or profit)?" where die parenthetical parts of the 
question are read if anyone Ui the response to the first 
question is "yes." Further, additional questions were added 
to clarify whether earnings or profits were received from the 
family busmess or farm. Thus, the revised questionnaire 
concept of employment appears to be somewhat broader 
and better defined than the original questionnaUe concept. 

Unemployed. The definition of unemployment was 
slightiy modified in die revised questionnaUe. In die origmal 
questionnaUe, persons waiting for a new job to start were 
classified as unemployed. Under die revised questionnaUe 
definition, a person is unemployed only if all of the 
following are tioie: (1) without a job, (2) actively seeking 
work or on layoff from a job and expecting recall within the 
next six months, and (3) currently available to take a job 
(except for a possible temporary ilUiess). 

On Layoff. Persons on layoff are defined as persons 
separated from a job and who are awaiting a recall to return 
to that job. The original questionnaUe did not consider or 
collect Uiformation on the expectation of recall. This was 
problematic because to most people, the term "layoff could 
mean permanent termination from the job rather than the 
temporary loss of work economists are trying to measure. 

Job Search Methods. To be counted as unemployed and 
looking for work, a person must have engaged Ui an active 
job search during the four weeks prior to the survey. The 
revised questionnaUe Uicludes a somewhat broader question 
about job search methods with expanded and restructured 
response categories to allow interviewers to more easily 
record and distinguish between active and passive job 
search activities. In addition, it provides additional foUowup 
questions for those who respond "nodiing" or "don't know." 

Reference Week. While the original questionnaire 
referred to LAST WEEK, the reference period was never 

expUcitiy defined. The revised questionnaUe provides 
specific dates of the reference week. 

We will refer to diese changes later in the report when 
we discuss the differences in the classification error and 
specification error between the revised and original 
questionnaires. 

As previously noted, Biemer and Bushery focused on a 
three-category labor force recoded variable with categories: 
employed (EMP), unemployed (UEM), and not in the labor 
force (NLF). For the present analysis, we used an expanded 
recoded variable also available on the CPS public use data 
files. This variable divides the UEM category into two 
categories corresponding to persons on layoff (LAYOFF) 
and persons looking for work (LOOKING). The seven-
category variable also divides the EMP and NLF categories 
Uito subcategories; however, tins level of detail in die EMP 
and NLF categories is not needed in our analysis. Thus, the 
seven-category variable wUl be collapsed to a four-category 
variable correspondUig to EMP, UEM-LOOKING, UEM-
LAYOFF, and NLF. The correspondence between the 
diree- and four- category variables is shown in Figure 1. 

3. LATENT CLASS MODELS FOR CPS 
CLASSIFICATION ERROR 

Markov latent class models were first proposed by 
WiggUis (1973) and refined by Poulsen (1982). Van de Pol 
and de Leeuw (1986) estabUshed conditions under which 
the model is identifiable and gave other conditions of 
estimabihty of die model parameters. In this section we 
describe the basic model proposed by Biemer and Bushery 
(20(X)) and its extensions for application in the current 
analysis. 

Let the CPS target population be divided into L groups 
(such as age, race, or sex groups) and let the variable G be 
the label for group membership. For example, G, = 1 if the 

1. 
2. 
3. 
4. 
5. 

6. 

7. 

Origmal Seven-Variable Category 
Old Questiomiaire New Questionnaire 

Working—at worlc 
With job—not at worlc 
Unemployed—on layoff' 
Unemployed—looking for work' 
Working witiiout pay (less than 15 hours in a 
family farm or business) or temporarily 
absent from a without pay job 
Unavailable to take a job if one had been 
offered 
Not in the labor force 

1. 
2. 
3. 
4. 
5. 

6. 

7. 

Employed—at work 
Employed—absent 
Unemployed—on layoff 
Unemployed—looking 
Retired—not in labor force 

Disabled—not in latrar force 

Other—not in labor force 

1. 

2. 
3. 
4. 

Four-Category 
Analysis Variable 

EMP 

UEM-LAYOFF 
UEM-LOOKING 
NLF 

Three-
Category 
Analysis 
Variable 

1. EMP 

2. EM 

3. NLF 

' Note: In the original questionnaire, categories 3 and 4 are reversed compared to corresponding categories in the revised 
questionnaire. 

Figure 1. Association of the Seven-Category Employment Recede Variable with the Three- and Four-Category Variables 
Used in the Analysis 
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/ population member is in group 1, G, = 2 for group 2 and 
so on. Let X„:,Y^,, and Z . denote die true labor force 
classifications for die / person in group G = g (for 
g = l,...,L and i-l,...,n) where X „, is defined as 

^ . = 

1 if person (^,0 is employed in time period 1 

2 if person {g,i) is unemployed -

on layoff in time period 1 

3 if person {g, i) is unemployed -

looking in time period 1 

4 if person {g,i) is not in the labor force 

in time period 1 

with analogous definitions for Y^. and Z ,̂ for periods 2 
and 3 respectively. Consistent with the conventions of the 
LCA literature, we will drop the subscripts from die 
variables to simplify the notation. 

Let 71̂ ^̂ 1̂  denote Pr{X ^x,Y = y,Z = z\G^g), let 
Tt̂ l̂ ^ denote Pr{Y ^ y\X =x,G = g)and let TI^,^^^ 

denote Pr(Z = z\Y = y, X ^x,G = g). Then, die probabi­
lity that an individual Ui group g has labor status x in period 
1, y in period 2, and z in period 3 is n^^^^^ which may be 
written as 

'^xyz\g -^x\g '^y\gx ^ z\gx,'• (1) 

Finally, under the fÛ t order Markov assumption, which is a 
necessary condition for model identifiabiUty (see Van de 
Pol and de Leeuw 1986), we assume 

'^zlg.O' ^z\gy (2) 

i.e., at period 3, die true status of an individual does not 
depend on die period 1 status, once die period 2 statijs is 
known. An alternate interpretation is diat die current stams, 
given die prior period's status, does not depend upon the 
prior period's transition. 

Now, consider the observed labor force classifications 
from die CPS denoted by A ,̂., 5^,, and Ĉ , for periods 1, 
2, and 3, respectively, where 

1 if person {g,i) is classified as EMP in time 

period 1 

2 if person {g,i) is classified as UEM -

LAYOFF in time period 1 

3 if person {g,i) is classified as UEM -

LOOKING in time period 1 

4 if person {g,i) is classified as NLF in 

time period 1 

with analogous definitions for the response Uidicators, B ,., 
and Cj, for periods 2 and 3, respectively. Using an 
extension of the notation established above, we denote die 
response probabiUties in each of diese classifications as 
^a\gx -^^(^-a\X =x), widi analogous definitions for 
Tt̂ ^̂ and Tt̂ ĵ. Thus, Jt„̂ ||ĝ 2̂ '̂  the probability that die 
CPS classifies a person in group g as employed (A = 1) 
when die true statiis is unemployed - on layoff {X -2). 
Likewise, n^,^2\g..K=2 î  die probability that die CPS correctiy 
classifies a person Ui group g as unemployed - on layoff. 

Finally, we assume 

^a.b.4g..x.y.z - ' t a l g x ^*|«>' ^c\gz (3) 

or that classification error in the observed labor force status 
is independent across die three months. 

The CPS labor force classifications for each month of a 
three consecutive month interval are the outcome variables 
in our analysis. Let A, B, and C denote the observed 
classifications and let X, Y, and Z denote the (unobserved) 
true classifications for Month 1, Montii 2, and Mondi 3, 
respectively. Let G denote some grouping (or stratification) 
variable to be defined later in the analysis. Under diese 
assumptions, we can write the probability for classifying a 
CPS sample member in cell {g, a, b, c) of die GABC table as 
follows: 

gabc = Y-s ̂•Ag ^ylgx z\gy "^algx '^h\gy T^c\gz- (4) 

Extensions to more than one grouping variable are 
sttaightforward. 

Under multinomial sampling, die likelihood function for 
die GAfiC table is 

Pr(GABC) = C Yin 
g.a.b.c 

gabc 
g.a.b.c (5) 

where C is the multinomial constant and H denotes die 
product of die terms over the subscripts g, a, b, and c. Under 
the assumptions made previously, the model parameters are 
estimable using maximum Ukelihood estimation mediods. 
Van de Pol and de Leeuw (1986) provide die formula for 
applying die E-M algorithm to estimate the parameters of 
this model and describe die conditions for dieir estimability. 
The ^EM software (Vermunt 1997) was used to fit die 
MLCA models. 

In dieU investigations of die validity of MLCA estimates 
for analyzing CPS labor force classification error, Biemer 
and Bushery analyzed CPS data collect during die first 
quarter of each of diree years - 1993, 1995, and 1996. They 
also conducted several types of analysis using the CPS un­
reconciled reinterview data for the same time period. The 
reinterview analysis provided anodier approach for 



132 Biemer: An Analysis of Classification Error for the Revised Current Population Survey Employment Questions 

estimating CPS classification error as weU as evidence of 
the vaUdity of the MLCA approach. TheU evaluation of 
MLCA vaUdity considered five criteria: (1) model diag­
nostics, (2) model goodness of fit across years of CPS, (3) 
agreement between the model and test-retest estimates of 
response probabiUties, (4) agreement between the model 
and test-retest estimates of inconsistency, and (5) plausi­
bility of die patterns of classification error. The MLCA 
mediod performed well Ui aU five test. For example, the 
same model provided the best fit of the data for each year 
analyzed, there was good agreement between the latent class 
estimates of reUability and diose derived from ttaditional 
test-retest methodology; and the estimated error rates were 
consistent widi those of previous studies - for e.g., Chua 
and FuUer 1987; Abowd and ZelUier 1985; Porterba and 
Summers 1995; and SUiclair and GastwUth 1998. 

Ostensibly, the Markov assumption seems very unlikely 
to hold for labor force data. As an example, persons who are 
unemployed in months 1 and 2 of a consecutive three-
month period may not have die same probabiUty of beUig 
unemployed Ui a month 3 as persons who just became 
unemployed in month 2. The former group could contain 
more chronically unemployed persons than the group 
entering unemployment in montii 2. Furdier, the group just 
entering unemployment Ui mondi 2 could contain a higher 
proportion of people temporarily out of work while 
changing jobs. Biemer and Bushery considered the 
consequences for the MLCA estimates of misclassification 
when the Markov assumption is violated. 

Using simulation, Biemer and Bushery found that the 
bias in MLCA estimates of classUication probabiUties 
depends upon the severity of the departures of the CPS data 
from die Markov assumption. They defined two parameters, 
A,, and Xj, which are ratios of conditional probabiUties. X^ 
is the ratio of the probabiUty of being employed in period 3 
for a person with an (EMP, UEM) pattem for periods 1 and 
2, respectively, divided by the probability of beUig 
employed Ui period 3 for a person with a (EMP, EMP) 
pattem. Similarly, ^2 is die ratio of die probability being 
employed Ui period 3 for a person with an (UEM, UEM) 
pattem to die probabiUty of beUig employed Ui period 3 for 
a person widi a (EMP, UEM) pattem. Note diat when 
^1=^2=1, the Markov assumption holds exactly and 
greater departures of ^, and ^2 ^o™ ^ correspond to 
greater departures of the data from the Markov assumption. 
Biemer and Bushery found that over a faUly wide range of 
values for ^| and ^2, die absolute bias in the MLCA 
estimates of unemployment classification accuracy never 
exceeded 3 percentage poUits. For example, in die extteme 
case of a Markov assumption violation, the expected value 
of an MLCA estimate of unemployment accuracy would be 
77 percent when the true parameter value is 80 percent. 

TheU results suggest that, for the CPS appUcation, MLCA is 
faUly robust to failures of the Markov assumption to hold. 

Although it is vUtually impossible to prove their validity, 
MLCA error estimates can be quite useful for identifying 
survey questions that are prone to classification error; i.e., 
flawed questions. For example, Biemer (2004) and Biemer 
and Wiesen (2002) demonsttate die utUity of MLCA 
methodology for identifying question problems and 
classification process deficiencies in large scale surveys. 
NotwithstandUig diat die MLCA assumptions may be 
violated to an unknown extent, its usefulness as a tool for 
exploring a number of important questionnaire design issues 
has been weU-documented. For the present appUcation, 
MLCA will be used to develop and test hypodieses 
regarding the sources of the anomaly reported by Biemer 
and Bushery for 1994 CPS redesign. 

The MLCA model use in the present analysis is 
essentially the same model selected by Biemer and Bushery 
for dieU analysis. To account for population heterogeneity, 
they considered a number of demographic and other 
explanatory variables that might be highly correlated widi 
classification error. The best performing variable a proxy or 
self-response indicator variable denoted by P where 

1 if all three interviews are conducted by self 

response {SELF) 

2 if two of the interviews are conducted by 

self response {MOSTLY SELF) 

3 if two of the interviews are conducted by 

proxy response {MOSTLY PROXY) 

4 if all three interviews are conducted by 

proxy response {PROXY). 

TheU empUical findings showed this variable to be sttongly 
related not only to reportUig accuracy, but also current 
employment status and month to month employment 
transitions. For example, responses for the PROXY group 
were considerably less accurate dian for the SELF group 
and, further, die PROXY group had somewhat higher 
unemployment than the SELF group. 

The MLCA model also allows ttansition probabilities to 
vary by P (referred to as group heterogeneity) as well as by 
time periods (referred to as non-stationary transitions). In 
addition, the model assumes that response probabilities 
^a\px''^b\px' and n^^^ are group-heterogeneous but are 
equal for all three months in the time interval. This leads to 
die following model for describUig the cell probabilities in 
die PABC table: 

Z „ „MPX „A\PX „A\PX /y-x 

^P ^x\p T^y\pxT^z\py^a\px ^b\py ^c\pz W 

P^ 
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where TÎ '̂ ^ = Pr(A = b\P = p,X = y) widi similar defini­
tions for Tt̂ i'™ and n '̂™. That is, die diree sets of response 
probabilities are equal to 71'*'̂ .̂ 

Note that for the present analysis, interest is focused on 
the overall response probabiUties associated with the revised 
and original questionnaires and not the variation in error 
rates across proxy groups. Therefore, our analysis focuses 
on the overall accuracy of response, i.e., 71̂ '̂ ^ or die mean 
response probability for die four levels of F combined. 

4. COMPARISON OF REVISED AND ORIGINAL 
QUESTIONNAIRE CLASSIFICATION ERROR 

PROBABILITIES 

4.1 Reduction in UEM Classiflcation Accuracy for 
the Revised Questionnaire 

As mentioned in section 2, the CPS data sets for this 
analysis are monthly samples from August 1992 through 
May 1995. Figure 2 shows how this the time interval was 
divided into 30 overlapping three-month Uitervals: 15 for 
the original questionnaUe and 15 for die revised question­
naUe. The intervals are numbered in the table for later 
reference. For example, time Uiterval 1 covers the period 
from August 1992 through October 1992 Ui which the 
original questionnaire was in use. Therefore, diis time 
interval can provide one estimate of the response 
probabiUties, Tt'*'̂ , for the model in (6). SUice there are 30 
time intervals across the entUe 34-month period in our 
analysis, 30 estimates of TT'̂ '̂  can be formed from these 
consecutive overlapping time intervals: 15 estimates for die 
original questionnaUe and 15 estimates for the revised 
questionnaire. 

To obtaUi a more stable estimate of TT'̂ ''* for each 
questionnaire, die 15 estimates corresponding to the 15 time 
periods per questionnaUe in Figure 2 were averaged. These 
estimates are shown in Tables 1 and 2. Since they are based 
on simple random sampUng assumptions, the standard 
errors in the tables do not account for the unequal weighting 

and clustering effects of die CPS. Since the average CPS 
design effect is about 1.5 for estimates of unemployment, 
the standard errors in die tables are probably underetated by 
20 percent or less. This level of bias in the standard errors is 
Uiconsequential for the purposes of this paper due to the 
exttemely large sample sizes in the analysis. 

Table 1 compares the MLCA estimates of the classifica­
tion error probabiUties for die original and revised question­
naUe versions for the three-category labor force classify-
cation scheme used by Biemer and Bushery. The first 
column of the table is the true (or latent) category, the 
second column is die observed (or CPS) category, and die 
cell entries are the response probabilities estimated from the 
MLCA using model (6). For each true class (EMP, UEM, or 
NLF), die accuracy rate is the cell corresponding to the 
observed category with the same label. For example, the 
accuracy of classifying persons who are truly employed is 
98.68 percent (for the original questionnaUe) and 98.84 
percent for the revised questionnaire. Note that this entty 
corresponds to die cell where both the true category and the 
observed category are EMP. The odier cells for EMP in 
column 1 are the error rates for EMP. For example, the 
MLCA estimate of die probability CPS classifies a person 
as UEM who is truly EMP is 0.42 for die original 
questionnaUe and 0.39 for die revised questionnaire. The 
other ceU entries are interpreted analogously. 

Consistent widi Biemer and Bushery's findings, die 
accuracy of the classification of unemployed persons is 
substantially and highly significantly lower for the revised 
questionnaire: 79.06 percent versus 73.50 percent, a 
difference of 5.6 percentage points. Furdier, die increase in 
classification error for unemployed persons is due to 
misclassifications in bodi the EMP and NLF force 
categories with slightiy more misclassification in die latter 
category. Our estimates differ slightiy from theirs since, as 
noted earUer, we are analyzing more months of data and 
using weighted estimates rather dian unweighted as in dieir 
analysis. 

Months Using 
Questionnaire 
Month Using 
Questionnaire 
Interval 
1 (Old), 16 (New) 
2 (Old), 17 (New) 
3 (Old), 18 (New) 
4 (Old), 19 (New) 

t 
13 (Old), 28 (New) 
14 (Old), 29 (New) 
15 (Old), 30 (New) 

Old 

New 

Aug. 
1992 
Jan. 
1994 

X 

Sept. 
1992 
Feb. 
1994 

X 
X 

Oct. 
1992 
March 
1994 

X 
X 
X 

Nov. 
1992 
Apr. 
1994 

X 
X 
X 

Dec. 
1992 
May 
1994 

X 
X 

Jan. 
1993 
June 
1994 

X 

...^ Aug. 
1993 

...t Jan. 
1995 

t 

X 

Sept. 
1993 
Feb. 
1995 

X 
X 

Oct. 
1993 
March 
1995 

X 
X 
X 

Nov. 
1993 
Apr. 
1995 

X 
X 

Dec. 
1993 
May 
1995 

X 

^ The "..." symbol is used in diis table to indicate that the pattem established for the preceding months continues for the remaining months. 

Figure 2. The 30 Three-Mondi Time Intervals Analyzed for the Revised and Original Questionnaires 
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Table 1 
Comparison of CPS Labor Force Response Probabilities for the Original and Revised Questionnaires 

True Class 

EMP 

UEM 

NLF 

Observed 
Class 
EMP 
UEM 
NLF 
EMP 
UEM 
NLF 
EMP 
UEM 
NLF 

Original 
(1992-1993) 

98.68 
0.42 
0.90 
8.23 

79.06 
1271 
2.14 
1.43 

96.43 

Revised 
(1994-1995) 

98.84 
0.39 
0.78 

10.57 
73.50 
15.93 
1.99 
1.56 

96.45 

Original-
Diff 

-0.15 
0.03 
0.13 

-2.34' 
5.56* 

-3.32* 
0.15 

-0.13 
-0.02 

- Revised 
S.E. 
0.40 
0.40 
0.16 
0.45 
0.54 
0.26 
0.36 
0.33 
0.18 

* Significant at a = 0.001. 

Table 2 
Comparison of Two Unemployed Subcategories for the Original and Revised Questionnaires 

True Class 

UEM-LAYOFF 

UEM-LOOKING 

Observed Class 

EMP 
UEM-Layoff 
UEM - Looking 
NLF 
EMP 
UEM-Layoff 
UEM - Lookling 
NLF 

Original 
(1992-1993) 

16.32 
61.30 
17.61 
4.77 
7.03 
1.03 

78.00 
13.94 

Revised 
(1994-1995) 

26.67 
55.63 
8.41 
9.29 
7.51 
0.65 

74.61 
17.23 

Original -
Diff 

- 10.35* 
5.66* 
9.20* 

-4.52* 
-0.48 

0.38 
3.39* 

-3.29* 

- Revised 
S.E. 

0.91 
1.03 
0.45 
0.28 
0.29 
0.26 
0.21 
0.18 

Significant at a = 0.001. 

Table 2 shows the same set of estimates for the truly 
employed population only in somewhat greater detail. In 
this table, we considered the two primary subclassifications 
of unemployed: UEM-LAYOFF and UEM-LOOKING. 
This table provides information regarding the source 
difference in accuracy rates between the two questionnaUe 
versions. We first consider the misclassification of true 
LAYOFF persons (top half of the table) and then consider 
die LOOKING persons (bottom half of die table). 

For persons on layoff, classification accuracy appears to 
have dropped an average of 5.66 percentage points with die 
inttoduction of the revised questionnaire: from 61.30 
percent to 55.63 percent. However, die patterns of classUy-
cation error also changed. For the origmal questionnaire, the 
probabUity diat a person on layoff is misclassified as 
looking for work is estimated at about 18 percent. The 
correspondUig estimate for the revised questionnaUe is less 
dian half diat: 8.5 percent. In addition, the data suggests that 
misclassUication of unemployed persons on layoff as either 
employed or not in die labor force increased by 10.35 and 
4.52 percentage points, respectively. 

Now consider persons who are truly looking for work in 
the bottom half of Table 2. According to the MLCA model, 
classification accuracy for the redesigned CPS decreased 
significantiy from 78.(X) to 74.61 percent. Most of die 
misclassification is attributed to misclassifying persons 

looking for work as NLF. This result would arise, for 
example, if the questions regarding active and passive job 
search activities are prone to error. To further investigate 
this finding, we conducted an analysis of each of the 
questions used to determined the LOOKING recode. In the 
next section, we first consider the sources of error in the 
LAYOFF classification and then investigate the sources of 
error for die LOOKING classification. 

4.2 Specific Questions Responsible for the 
Reduction in LAYOFF Accuracy 

4.2.1 Decomposition of the LAYOFF Recode 

Individuals in die CPS are classified as LAYOFF on die 
basis of theU responses to five questions in the original 
questionnaUe and eight questions Ui the revised question­
naUe. These questions are Usted in Figure 3. Initially, we 
consider which questions or combinations of questions 
contilbute most to the error rate observed in Table 2 for die 
LAYOFF recoded variable and then show how MLCA 
models can be appUed to estimate die contiibutions to 
classification error of individual questions diat are used to 
classify an individual as LAYOFF. The methodology 
employed for this is similar to die MLCA approach used 
previously for estimating the aggregate classification error. 
We will describe this technique in terms of the LAYOFF 
classification, but it wUl be appUed subsequentiy to 
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decompose the error Ui both the LAYOFF and LOOKING 
classification processes. 

FUst, we combine the questions in Figure 3 using the 
logical operators such as "and," "or," "if-then-else," etc. to 
form a set of dichotomous "compound" questions with the 
property diat each compound question must be answered 
positively Ui order for an individual to be classified as 
LAYOFF by the CPS classification process. Let 
Qi^,k-l,...,K denote die outcomes to the K compound 
questions that were formed for the LAYOFF classification, 
where Q^ -1 denotes a positive outcome and 2* = 2 
denotes a negative outcome. Then an individual Ui the CPS 
is classified as LAYOFF if and only if Q;, -I for 
k = l,...,K. In Figure 4, we define a set of four compound 
questions for original questioimaUe, labeled 0 1 - 0 4 , and 
five compound questions for the revised questiormaire, 
labeled N1-N5. 

For each classification, Q^ there is a correspondUig true, 
unobservable (latent) classification, T̂  defined in analogy 
to Qi^; i.e., an individual is truly on layoff by the CPS 
definition if and only if Ti^ =l,k = l, ...,K. Next, we will 
use MLCA to estimate the misclassification error rates for 
each compound question Q̂  by tteating these as indicators 
for the unknown true latent characteristics, T^. 

The probability of an error in the classification of 
LAYOFF can be written as 

Pr{Q^ ^2forsomek,k = l,...,K\Ti^=l,k = l,...,K) (7) 

which is the probability that an Uidividual who is truly on 
layoff answers at least one the K compound questions 
negatively. 

Next, we define die latent variable, W, as die number of 
compound questions for which the true response is positive, 
i.e.. 

W = 

0 
1 

...etc... 
K 

if T , -2 ,7-2-2 , . . .7-^= 2 

if r, =1,7-2 = 2 , . . . 7 ^ - 2 (8) 

if T, =1,7-2 = 1 , . . . , T ^ = 1 . 

For example, W = 0 if a person's true response pattem to 
the questions 0 1 - 0 4 is (2,2,2,2), W = 1 if the true response 
pattem is (1,2,2,2), and so on. Note diat W = K 
corresponds to a true layoff. Thus, for the original 
questionnaire, W -0, . . . ,4 and for the revised 
questionnaire, W =0, . . . , 5 . 

To decomposing die probabiUty in (7) into individual 
components for die compound question, Q^, we rewrite (7) 
in terms of die error probabilities associated widi each 
compound question. Thus, it can be shown that (7) can be 
rewritten as 

Y Pr{Q,=l,-,Qk-^=hQk=2\W^K). (9) 
k=l 

The /:* term in die sum may be interpreted as die 
contribution of question (2̂  to probability of being 
misclassified given a true LAYOFF. 

To estimate the components of (9) using MLCA, we 
define a classification variable, R, which is defined in 
analogy to Wfor the observed values of Q^,; i.e.. 

R = { 

if Q,=2,Q2^2,...,Q,=2 

if Q^-\,Q^=2,...,Q,=2 (10) 
...etc.. 
K if Q,=1,Q2=1,..-,QK=^ 

Original 
Questionnaire 
Q19 
O20 
Q21 
Q21A 
Q22E 
Revised 
Questionnaire 
Q20 
Q20B-a 

Q20B-b 
Q20B-1 
Q21 
Q21A 
Q21A-1 
Q21A-2 

Question Wording 

What were you doing most of LAST WEEK? 
Did you do any work at all LAST WEEK not counting work around the house? 
Did you have a job or business from which you were temporarily absent or on layoff LAST WEEK? 
Why were you absent from work LAST WEEK? 
Could you have taken a iob LAST WEEK if one had been offered? 

LAST WEEK, did you do ANY work (either) for pay (or profit)? 
LAST WEEK, (in addition to the business,) did you have a job, eitiier full or part time? Include any job fix)m which you 
were temporarily absent. 
LAST WEEK, were you on layoff from a iob? 
What was die main reason you were absent from work LAST WEEK? 
Has you employer given you a date to return to work? 
Have you been given any indication that you will be recalled to work within the next 6 months? 
Could you have returned to work LAST WEEK if you had been recalled? 
Why is diat? 

Figure 3. Primary Components of UEM for the Original and Revised Questionnaires 
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Compound 
Question 
Number 

Source Question(s) from the CPS Questionnaire Compoimd Question Response is Positive 
if Source Question Response is.... 

Original Questionnaire 
Ol 

02 

03 

04 

Q19: What were you doing most of LAST WEEK? 
or 
Q20: Did you do any work at all LAST WEEK not counting work aoumd 
the house? 
Q21: Did you have a job or business from which you were temporarily 
absent or on layoff LAST WEEK? 
Q21 A: Why were you absent irom work LAST WEEK? 

Q22E: Could you have taken a job LAST WEEK if one had been offered? 

Q19: Any response except working 
and 
Q20: No 

Yes 

Temporary layoff (Under 30 days) or 
Indefinite layoff (30 days or more or no 
definite recall date) 
Yes 

Revised Questionnaire 
Nl 
N2 

N3 

N4 

N5 

Q20: LAST WEEK, did you do ANY work (either) for pay (opr piufit)? 
Q20B-a: LAST WEEK, (in addition to the business,) did you have a job, 
either fiill or part time? Include any job from which you were temporarily 
absent. 
Q20B-a: LAST WEEK, were you on layoff fixjm a job? 
or 
Q20B-1: What was the main reason you were absent from work LAST 
WEEK? 
Q21: Has your employer given you a date to return to work? 
or 
Q21 A: Have you been given any indication that you wiU be recalled to work 
within the next 6 montiis? 
Q21 A-1: Could you have returned to work LAST WEEK if you had been 
recalled? 
or 
Q21A-2:Whyisdiat? 

No 
Any response except "retired," "disabled", 
or "unable to work" 

Q20B-b: Yes 
Or 
Q20B-1: "On layoff" or "slack 
work/business conditions" 
Q21:Yes 
or 
Q21:Noand 
Q21A:Yes 
Q21A-l:Yes 
or 
Q21A-l:Noand 
Q21A-2: Own temporary illness 

Figure 4. Compound Questions Used in tiie LAYOFF Recode for Original and Revised Questionnaire Versions 

Let Jifi'̂  denote Pr{R = k\W = K). Then for k>0 we 
may write 

71,7 =Pr((2, =1,...,G,_, =1,(2, =2\W^K). (11) 

Thus, the contiibutions to error of each LAYOFF question 
can be obtained from the probabiUties in (11). 

To estimate the probabiUties Ttf'̂  we fit MLCA models 
to the same data from the 1993 and 1994 CPS as used Ui the 
previous analysis and replicated the analysis on the 1993 
paraUel survey data. Data from die 1992 and 1995 CPS 
were not part of diis analysis. The MLCA models used were 
similar to those described in the analysis for Tables 1 and 2. 
That is, we used three consecutive months of data and 
estimated the components in (10) for 10 consecutive, 
overlapping intervals for each year {i.e., January-March, 
February-April, and so on to October-December). For the 
original questiormaUe, the model specified three latent 
variables corresponding to the three months widiin a time 
period, each with A" -(-1 = 5 latent classes. For die revised 
questionnaire, we use an identical model except each latent 
variable had K -^-1 = 6 latent classes. 

As before, the best MLCA model for this analysis 
incorporated the proxy-self grouping variable, P, and 
specified non-stationary ttansitions, equal response 

probabiUties widUn time period, group heterogeneous 
transition probabiUties, and heterogeneous response proba­
bilities. The model provides an adequate fit to the data for 
all months in the analysis {i.e., p > 0.05). 

Table 3 provides a summary of the results from this 
analysis. In the column labeled "percent of total" we report 
/?, xlOO percent where 

Pk^ 

^P\W 

y-i«|iy 
(12) 

is the proportion of the classification error due to compound 
question k in Figure 4 and where nf^ are the MLCA 
estimates of n^'^. 

The contiibution to total error presented in Table 3 
(Percent of Total column) is estimated by p^ x 
Pr{A^2\X =2) where p^ is given by (12) and 
Pr(A ;̂  21 X = 2) is estimated from Table 2 as 1 minus die 
accuracy rate for LAYOFF. For the original questionnaire, 
the components that contribute most to LAYOFF 
classification ertor are question 02 (64.2 percent) and 
question 01 (27.2 percent). These two questions taken 
together explain more than 90 percent of the error in the 
LAYOFF classification. 
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For the revised questionnaUe, estimates from the 1994 
CPS indicate that more dian 90 percent of the error in the 
LAYOFF classification arises from two components: Nl 
andN4. 

The analysis for the revised questionnaUe was repeated 
on die Parallel Survey with very similar results. The same 
two components emerge as contributing more than 90 
percent of the error. As mentioned in section 2, the utility of 
the 1993 Parallel Survey as an Uidicator of data quaUty for 
die revised questionnaUe is Ui doubt. Nevertheless, the 
agreement of the results from die Parallel Survey and die 
1994 CPS adds sttengdi to die findings from die 1994 CPS 
analysis 

Thus, reduction in LAYOFF classification accuracy for 
the revised questionnaUe appears to be due primarily to 
error in the responses to two compound questions: Nl, the 
revised global question "LAST WEEK, did you do ANY 
work (either) for pay (or profit)?" and N4, which determines 
whether an individual reporting some type of layoff has a 
date or indication of a date to return to work. The MLCA 
estimates indicate diat almost 60 percent of the error in the 
revised LAYOFF classification maybe attributed to Nl 
while about 34 percent may be attributed to N4. 

4.2.2 Decomposition of the LOOKING Recode 

The estimation process described for LAYOFF was also 
applied to the LOOKING recode. Note diat compound 
question 01, 02, Nl, and N2 defined in Figure 5 for 
LOOKING are die same questions as defined in Figure 4 for 
LAYOFF. Since Ol, 02, and Nl appeared to be 
problematic for LAYOFF, we might expect that diey might 
also be problematic for LOOKING. 

FoUowing the approach used for LAYOIT, for each 
survey year, we defined a latent variable, W in (8) and an 
indicator variable, R in (9). As we did in the LAYOFF 
analysis, we fit MLCA models to die data and determined 
that die best MLCA model for die analysis is die model 

incorporating the proxy-self grouping variable, P, and 
specifying non-stationary ti^ansitions, equal response proba­
biUties within time period, group heterogeneous transition 
probabiUties, and heterogeneous response probabilities. This 
model provides an adequate fit to the data for all mondis in 
the analysis {i.e., p > 0.05). As before, we include die results 
from die ParaUel Survey for comparison with die 1994 CPS 
results; however, the latter results will be emphasized. 

Table 4 displays the values of p , defined in (11) for the 
LOOKING classification. For the original questionnaire, the 
major contributors to classification error appe;u- to be 
questions 01 and 03, which conttibute 31.5 and 56.3 
percent of total classification error, respectively. Question 
02, which was quite problematic for the LAYOFF popu­
lation, appears less so for die LOOKING population. While 
it contributes 64.2 percent of die LAYOFF error estimate 
(or 24.8 percentage points to the error rate), 02 only 
contributes 11.3 percent of the LOOKING error estimate (or 
2.5 percentage points to the error rate). 

For the revised questionnaire, the results from the 
analysis of die Parallel Survey and the 1994 CPS are again 
quite similar. The component Nl appears to be an important 
source of error for LOOKING as it was for die LAYOFF 
analysis. However, its contribution to LOOKING is smaller: 
10 percentage poUits compared widi 25 percentage points 
for LAYOFF. The biggest contributor to LOOKING error 
seems to be question N3 which contiibutes 64.5 percent of 
the error based on die CCO analysis and 51.1 percent based 
on die 1994 CPS analysis. 

Thus, die initial labor force question appears to be 
problematic for both questionnaUe versions. The MLCA 
suggests that persons who are looking for work as well as 
persons who are on layoff experience some difficulty 
respondUig to the question "LAST WEEK, did you do ANY 
work (either) for pay (or profit)?". The changes made to this 
question in 1994 do not appear to have improved die 
accuracy of this question for the either population. 

Table 3 
Percent Contributions to Error in LAYOFF Classifications for Compound Questions for the 1993 CPS, Parallel Survey, 

and tiie 1994 CPS 

Question 

Old Questionnaire 
01 
02 
03 
04 

New Questionnaire 
Nl 
N2 
N3 
N4 
N5 

Total 

1993 CPS 
(Original Version) 

Error Rate Percent of Total 
10.53 27.20 
24.84 64.19 
2.35 6.08 
0.67 1.74 

- -
- -
- -

-
- -

38.39 100.00 

Parallel Survey 
(Revised Version) 

Error Rate 
-
-
-
-

23.19 
0.00 
2.76 

18.42 
0.00 

44.37 

Percent of Total 
-
-
-
-

52.26 
0.00 
6.22 

41.52 
0.00 

100.00 

1994 CPS (Revised Version) 

Error Rate 
-
-
-
-

25.34 
0.00 
3.06 

15.07 
0.89 

44.37 

Percent of Total 
-
-
-
-

57.12 
0.00 
6.90 

33.98 
2.00 

100.00 
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Table 4 
Percent Contributions to Error in LOOKING Classifications by Compound Questions for the 1993 CPS, Parallel Survey, 

and tiie 1994 CPS 

Question 1993 CPS 
(Original Version) 

Parallel Survey 
(Revised Version) 

1994 CPS (Revised Version) 

Old Questionnaire 
01 
02 
03 
04 

New Questionnaire 
Nl 
N2 
N3 
N4 
N5 

Total 

Error Rate 
6.93 
2.49 

12.39 
0.18 

-
-
-
-

22.00 

Percent of Total 
31.51 
11.34 
56.33 
0.83 

-
-
-
-

100.00 

Error Rate 
-
-
_ 
-

8.38 
0.00 

16.38 
0.46 
0.18 

25.39 

Percent of Total 
_ 
_ 
_ 
-

33.00 
0.00 
64.5 
1.81 
0.71 

100.00 

Error Rate 
_ 
_ 
'— 
-

10.00 
0.00 

12.97 
2.27 
0.14 

25.39 

Percent of Total 
_ 
_ 
_ 
-

39.40 
0.00 

51.08 
8.96 
0.56 

100.00 

Compound 
Question 
Number 

Source Question(s) from the CPS Questionnaire Compound Question Response is Positive 
if Soiu-ce Question Response is.... 

Old Questionnaire 
Ol 

02 

0 3 

04 

Q19: What were you doing most of LAST WEEK? 
or 
Q20: Did you do any work at all LAST WEEK not counting work aoumd 
the house? 
Q21: Did you have a job or business from which you were temporarily 
absent or on layoff LAST WEEK? 
Q22: Has ... been looking for work during tiie past 4 weeks? 
and 
Q22A: What has ... been doing in tiie last 4 weeks to find work? 

Q22E: Could .. .have taken a job LAST WEEK if one had been offei^? 

Q19: Any response except working 
and 
Q20: No 

No 

Q22: Yes or response to Q19 was LK 
(LOOKING) 
and 
Q22A: Response otiier tiian "nothing" 
Yes or 
No, and reason is "Already has job" or 
"Own temporary illness" 

New Questionnaire 
Nl 
N2 

N3 
N4 

N5 

Q20: LAST WEEK, did you do ANY work (either) for pay (opr profit)? 
Q20B-a: LAST WEEK, (in addition to the business,) did you have a job, 
either fiill or part time? Include any job from which you were temporarily 
absent. 
Q22: Have you been doing anything to find work during the last 4 weeks? 
Q22 A: What are all the tilings you have done to find work during tiie last 4 
weeks? 
Or 
Q22A-DK: You said you have been trying to find work. How did you go 
about looking? And 
Q22A-DK1: Can you tell me more about what you did to search for work? 
LAST WEEK, could you have started a iob if one had been offered? 

Q20: No 
Q20B-a:No' 

Yes 
Mention of at least 1 active activity. 

Yes 

Note: In a few cases, N2 was positive if response to Q20B-a was "Disabled" or "Unable" and response to Q20A-1: "Does you disability 
prevent you iirom accepting any kind of work during tiie next six months?" was "No". 

Figure 5. Compound Questions Used in die LOOKING Recode for Original and Revised Questionnaire Versions 

The key difficulty for die LOOKING category appears to 
be determinUig whether persons who are truly looking for 
work have made efforts of any type (either passive or 
active) in the past four weeks to find work, li a respondent is 
classified correctiy as having made some effort, the next 
step Ui the process - viz., determining whedier die efforts 
satisfy die definition of active looking - is not problematic 
according to die estimates in Table 4. 

5. CONCLUSIONS 

Biemer and Bushery (2000) provides some evidence that 
unemployment classification accuracy rates Ui die 1994 CPS 
redesign survey were smaller than for the original survey 
design used prior to 1994. This paper provides additional 
evidence of dieU findUigs based upon a more extensive 
analysis of CPS data from 1992 dirough 1994. Our results 
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indicate diat the probability of correctiy classifying 
unemployed persons decreased from 79.1 percent to 73.5 
percent - a difference of 5.6 percentage points. We estimate 
diat roughly 60 percent of the reduction (3.4 percentage 
points) is due to an increase in the classification ertor for 
persons on layoff while the remainder (2.2 percentage 
points) is due to an increase in die classification error for 
persons looking for work. 

For die revised questionnaire, bodi LAYOFF and the 
LOOKING classifications are each based upon five 
compound questions. For LAYOFF, two compound 
questions emerged as being problematic. One is the initial 
labor force question, which asks "LAST WEEK, did you do 
ANY work (eitiier) for pay (or profit)?" The contiibution of 
this component to LAYOFF misclassification is estimated 
to be approximately 57 percent which is more than double 
die corresponding rate for diis question in die original 
questionnaire. In addition, a large error rate is estimated for 
the compound question formed by two questions: "Has your 
employer given you a date to return to work?" and "Have 
you been given any indication that you will be recaUed to 
work widiin the next 6 months?" Approximately 34 percent 
of the estimated LAYOFF error rate is due to diis combina­
tion. Since there are no corresponding questions in the 
original questionnaUe, most of the error in classifying 
persons on layoff Ui the revised questionnaire may be Unked 
to diese two questions. 

For classifying persons who are looking for work in die 
redesigned survey, two questionnaUe components appear to 
contribute most to classification error: "LAST WEEK, did 
you do ANY work (eidier) for pay (or profit)?" and "Have 
you been doing anything to find work during the last 4 
weeks?AVhat has...been doing in the last 4 weeks to find 
work?" The error rates for both questions are slightiy larger 
for the revised questionnaUe dian for the original question­
naire. These increases, therefore, explain die slight increase 
in LOOKING classification error observed for die revised 
questionnaire. 

The error in CPS unemployment classification is well-
documented; for example, see Chua and Fuller 1987; 
Abowd and Zellner 1985; Porterba and Summers 1995; and 
Sinclair and GastwUth 1998. A widely accepted measure of 
reliability for die CPS - viz., Uidex of inconsistency 
computed CPS reinterview - shows the reUabiUty of the 
CPS unemployment classification decreased after the 
redesign. Results provided in this paper are consistent with 
diese prior studies and help determine the source of the error 
in die CPS classification of the unemployed. At a minimum, 
our results provide a basis for further investigation into the 
root causes of the errors in the collection of labor force data 
in the CPS. Through cognitive laboratory experiments and 
field experiments, we may identify causes of the error in the 

unemployment questions that would suggest ways to 
improve the questions. Such improvements could be 
implemented in a future redesign of die CPS. 
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Comment 
JEROEN K. VERMUNT ' 

1. INTRODUCTION 

I enjoyed very much reading tiiis very well written paper. 
The topic addressed by Paul Biemer - classification errors 
in die measurement of employment statiis - is a very 
important one. Employment statistics belong to die most 
important macro-economic indicators and, actually, we 
would wish they would be free of error. It, however, turns 
out to be impossible to measure a person's employment 
without error. The best diat can be done is design the data 
collection in such a manner that the classification errors at 
die individual level are miiUmized as much as possible. The 
current paper contributes to this objective. 

An earlier study by Biemer and Bushery (2000) indicated 
that the 1993 changes in the measurement procedure that 
intended to reduce classification errors actually Uicreased 
measurement error. In the current paper, Paul Biemer 
replicates diese former analyses with a longer time series 
and with an extta employment category obtained by 
splitting die unemployed group Uito "on layoff' and 
"looking for work". The reported results confirm the earlier 
conclusions that die new procedure is worse dian the old 
procedure. In a second step, Biemer tries to disentangle the 
sources of measurement error for the two unemployed 
categories by modeUng the separate questions that are used 
to determine whether a person is "on layoff' and "looking 
for work", respectively. Sources of error are identified that 
point at possible improvements in the questionnaUe. 

Because of my background, my commentary will mainly 
concern mediodological and statistical issues. More 
precisely, I will discuss some methodological problem 
related to application of the LC Markov model, as well as 
indicate how the statistical analysis could be somewhat 
refined. It is, however, not clear whether such a more 
elegant modeling will yield very different conclusions. I 
want to sttess ones more that this is a great paper. My 
critical remarks are only meant to stimulate the discussion. 

2. LATENT CLASS MARKOV: METHODOLOGY 

The main engine of the smdy performed by Paul Biemer 
is die LC of hidden Markov model. Several assumptions 
that may affect the encountered results have to be made 

when - as in this study - die model is applied with a single 
indicator per occasion. The assumption that is discussed in 
detail by Biemer is the first-order Markov process 
assumption. Simulation studies by Biemer and Bushery 
showed that, fortunately, estimates of classification error are 
not very sensitive to diis assumption. Anodier assumption 
that is needed here for model identification is that the 
measurement error is constant over time. This assumption 
does not seem to be very problematic in die current study 
since we are looking for a single time-constant measure for 
classification error. Moreover, there is no good reason to 
assume diat the quaUty of the measurement procedure 
changed over time while die procedure itself did not change 
(of course, apart from the questionnaUe redesign). I am 
much more concerned about die third assumption; that is, 
die assumption of independent classification errors (ICE) 
over time (Bassi, Hagenaars, Croon and Vermunt 2000). Is 
it reaUstic to assume diat the occurrence of a certain type of 
classification error at time point t does not affect die 
probability of making the same mistake at time point t-\- 11 
In my opinion, diis assumption is not realistic in die curtent 
appUcation. For example, a respondent who makes a 
mistake because (s)he did not understand one of the 
questions will most probably (or at least be more likely dian 
others) make die same error again at the next occasion. In 
my opinion, it is necessary to conduct a simulation study to 
determine the sensitivity of die estimated classification 
errors for violations of the ICE assumption. 

I have another critical remark concerning the use of the 
LC Markov model for quantifying measurement error in a 
person's employment state. According to the model, there is 
a probabilistic relationship between an individual's true and 
observed states. What is, however, the true state? Is it the 
true employment state occupied at a particular time point, or 
the state diat would have been recorded widi an error-free or 
gold-standard Uistrument? Or is it die state a person would 
have occupied under "normal conditions"? That is, if also 
randomness in his/her behavior is filtered out. 

I wUl illusttate my point widi a small example. Suppose 
that there is two types (two latent segments) of coffee 
consumers: consumers who prefer brand A and consumers 
who prefer brand B, and that I belong to die brand B 
segment, which means that under normal cUcumstances I 
buy brand B coffee. In an interview, I am asked which 

Jeroen K. Vermunt, Department of Methodology and Statistics, Tilburg University, The Netherlands. 
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brand I bought last week. Suppose I report that I bought a 
brand A package of coffee, and diat am neidier lying nor 
making a mistake. In other words, there is no classification 
error in the sense of making a mistake: I really bought brand 
A diis week (the researcher doesn't know that of course). 
On the odier hand, my behavior from dUs week is 
inconsistent widi my preference, which means that in terms 
of measurement of my preference there is a classification 
error. This example illusttates that there are two types of 
"errors" that can be made: an error in the reporting and an 
"error" in die behavior. The "error" in my behavior of this 
week may have many causes, such as "brand B was sold 
out", "brand A was offered at a lower price this week", "I 
could not find the brand B package because of changes in 
die arrangement of die supermarket", etc. The LC Markov 
model is not able to distUiguish such randomness in die 
behavior that is uncorrelated across time points from real 
classification errors. 

What 4oes this imply for die employment appUcation? It 
impUes that an Uidividual's true state may be "on layoff', 
but for some reason (by chance) this particular month (s)he 
has worked. If diis "some reason" is uncorrelated with other 
"some reasons" for being Ui the "wrong" observed state at 
other occasions, it will be labeled classification error by the 
LC Markov model. While in the case of the measurement of 
preferences based on revealed (or stated) preferences 
correcting for randomness Ui behavior seems to be exactiy 
what we wish to accompUsh, this is clearly not the case in 
die measurement of employment status. I, therefore, have 
die sttong feelUig that die error rates reported by Biemer 
might be somewhat overestimated because of randomness 
in employment behavior, for instance, caused by random­
ness in the functioning of the labor market. 

A well-known consequence of modeling individual 
change by means of a LC Markov model is that die 
estimated number of latent ttansitions is much smaUer that 
the corresponding observed numbers. The reason for diis is 
that both independent classification errors and independent 
random behavior is filtered out; diat is, part of die observed 
change is attributed to these phenomena. 

3. LATENT CLASS MARKOV: MODEL 
SPECIFICATION 

Paul Biemer estimated a separate diree-occasion LC 
Markov model for each of the 30 three-month data sets. 
Interview mode was used as a grouping variable in order to 
take into account some of the heterogeneity in the true 
employment distiibutions and classification errors. The 
reported error rates in die tables are averages over interview 
modes and rotation groups. 

I would have set up the model Ui a somewhat more 
elegant and less ad hoc manner. Instead of running a 
separate analysis for each of the rotation groups, I would 
have tried to build a simultaneous model for all rotation 
groups. The main problem of doUig a series of separate 
analyses is that parameters that should actually be equated 
across rotation groups are now estimated without 
consults. For example, die employment distiibution in 
March 1994 should be the same in the rotation groups that 
were interviewed between January and March, February and 
April, and March and May, respectively. Moreover, the 
ttansition probabUities between March and April should be 
the same in the February-April and March-May rotation 
groups. This has also implications for the Parallel Survey 
groups: dieU time-specific latent distiibutions and 
ttansitions should be assumed to be equal to the ones of the 
standard CPS. That would have been a much better manner 
to test whether measurement error differ between the two 
questionnaUes. Especially for the period in which the 
questionnaUe forms overlap, it is crucial to assume equal 
latent distributions in order to be able to prevent that 
differences in measurement error appear partially as 
differences in true states. 

A similar problem of the separate analyses applies for the 
estimation of the classification errors. These are assumed to 
be time-constant widUn die 3-month period that a rotation 
group is interviewed, but are allowed to differ across 
rotation groups, even if they are interviewed in the same 
month. It would, of course, be much better to impose 
equalUy consttaUits across rotation groups. A consistent 
appUcation of die time-homogeneity assumption would 
imply that - both for the old and the new questionnaire form 
- the measurement errors are constant within the full 
investigation period. 

What we, actuaUy, need is a LC Markov model covering 
aU 30 months; that is, a model for 30 instead of 3 time 
points. Such a simultaneous model for all rotation groups is 
as easily specified as a model for 3 time points. Of course, 
for each rotation group, only 3 of the 30 months are 
observed, which means that the other time points have to be 
tteated as missing values. This is not a problem in the 
maximum lUcelihood estimation of the model parameters 
since we can simply assume that the data are missing at 
random (Vermunt 1997). QuestionnaUe type (old/new) 
serves as groupUig variable (in addition to interview mode) 
and affects the time-homogenous classification error 
probabUities. In other words, we estimate only two sets of 
classifications errors, one for the old and one for the new 
questiotmaUe. Transition probabiUties may change over 
time, but wUl be equal across rotation groups interviewed at 
the same occasions. Moreover, the initial state probabilities 
of a rotation group are not estimated as separate parameters 
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since they are defined by the current state of the latent 
Markov chaUi. 

A practical problem of the simultaneous modeUng is that 
with so many time poUits it no longer possible to estimate 
the model parameters with the standard EM algorithm. With 
a variant of EM called the Baum-Welch algoritiim, 
however, the model can also be appUed with many time 
points (Vermunt 2003; Paas, Bijmolt and Vermunt 2003). 
This algorithm is implemented in an experimental version of 
the Latent GOLD program (Vermunt and Magidson 2000, 
2003) and will be available in a next version of this 
program. 

An alternative way to implement a simultaneous model is 
as a LC Markov model for 3 occasions in which rotation 
group serves as groupUig variable and Ui which the relevant 
across rotation group equaUty restrictions are imposed on 
the classification errors, ttansition probabilities, and initial 
state probabilities. The most compUcated part of diis 
approach is that it requires the use of restrictions on 
marginal probabilities (Vermunt, Rodrigo and Ato-Garcia 
2001). More precisely, die initial state probabiUties should 
be in agreement with the marginal class sizes in the rotation 
groups diat are interviewed at the same occasion. 

Other aspects of the modeling that could be refined are 
die tteatment of missing values and the coding of die 
interview mode. It is not necessary to eliminate cases with 
missing values from the analysis as is done by Paul Biemer 
because ML estimation with missing values is straight­
forward. As far as the interview mode is concerned, it would 
be much more elegant to work with only two categories -
proxy and self - instead of four categories and let the 
interview mode vary across occasions within cases. In other 
words, interview mode could be used as a time-varying 
covariate. Vermunt, LangeheUie and BockenhoU (1999) 
proposed such a latent class Markov model widi time-
varying covariates. 

4. MODEL FOR RESPONSE PROCESS 

It is a very nice idea to try to disentangle which questions 
in the questionnaire are causing the classification errors by 
modeUng the response process itself This may yield lots of 
valuable information for redesigning the questioimaUe. I, 
however, think diat die extended models for the employ­
ment statuses "on layoff' and "looking for work" are 
formulated in an overly complicated manner. 

The form of the created variable R is the same as of the 
outcome variable in a sequential choice analysis or in a 
discrete-time survival analysis. Answering the next question 
is fully determined by whether the current one is answered 
positively or not. The information we have is how many 
steps a person takes, which is conceptually equivalent to a 

discrete survival time. A person "surviving" till the end is 
classified as beUig "on layoff ("looking for work"). 

In my opinion, it is not very helpful to tteat this variable 
as being generated by K latent variables (Ts). This only 
makes sense if theoretically diere should be a response 
hierarchy at the latent level, which, however, because of 
measurement error, is not encountered at the manifest level. 
That is, if at die manifest level there are 2'̂  instead of K 
possible responses. Even tf is the case, it often suffices to 
conceptualize the model as a model with a latent variable 
with K -H 1 classes and K indicators, a stiiicture diat is 
sometimes referred to as a probabiUstic Guttman model. 

Paul Biemer recognizes the complexity of die K latent 
and K manifest variables formulation and decides to 
simplify the model. However, I assume because of his 
startmg point, he decided to keep K + I latent classes. I do 
not see why so many latent classes are needed. There are not 
even so many employment states. More logical would be to 
have only two classes - "on layoff' and "not on layoff' 
("looking for work" and "not looking for work") - since die 
questions are only Uitended to make this particular 
distinction. It can, of course, happen diat the questions turn 
out to be informative about the type of "not on layoff ("not 
looking for work") status, in which case an extta latent class 
might be needed. What is clear to me is diat K -H 1 classes 
are far too many. 

I was wondering how many persons were classified as 
"on layoff' ("looking for work") at the various time points 
in the analysis with composite variable R as indicator. Are 
these numbers, as well as the number of ttansitions into and 
out off diis state similar to die ones obtained widi die 
standard four-state LC Markov model. In my opinion, this is 
a requisite for die validity of die calculation performed to 
obtain die figures presented in Tables 3 and 4. 

A fmal thing that occurred to me is the following. Why 
not buildUig a LC Markov model using the full 
questionnaire Uiformation as is done in the second part of 
die analysis. In otiier words, an alternative to using die 
observed constructed classification consisting of 4 employ­
ment categories would be to use the full set of CPS 
employment questions answered by the respondents. Such 
an analysis with multiple indicators would not only be much 
more informative, it would also make it possible to test and 
relax some of the assumptions that were made in the current 
analysis. For example, die ICE assumption could be relaxed 
for some of the questiormaire items. 
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Comment 
STEPHEN M. MILLER and ANNE E. POLIVKA ' 

1. INTRODUCTION 

We are grateful for the opportunity to comment on this 
interesting paper. We will focus most of our comments on 
die empirical findings about the 1994 Current Population 
Survey (CPS) redesign, rather than a technical discussion of 
die Markov Latent Class Analysis (MLCA) methodology 
itself 

In his article, "An Analysis of Classification Error for the 
Revised Current Population Survey Employment 
Questions," the audior appUes MLCA models in an effort to 
ttace the source of what he believes to be the "reduced 
accuracy of die revised classification of unemployed 
persons" after the redesign. In the CPS individuals are 
considered to be unemployed either because they are 
classified as being on layoff or because they are classified as 
looking for work. The author reports a particularly large 
reduction in the accuracy of die measurement of persons on 
layoff Consequentiy, we will focus our attention on the 
classification of individuals on layoff, aldiough similar 
comments can be made about the change in the measure­
ment of those looking for work. In examining the accuracy 
of the measurement of diose on layoff, the author assumes 
that those classified as on layoff were conceptually the same 
before and after die 1994 redesign, and that these 
individuals should exhibit the same labor force flows 
month-to-month. There are, however, many reasons why the 
improved measurement embodied in the redesign should 
conceptually change who is classified as on layoff In 
addition, diere are several factors unrelated to changes in 
question wording that could affect the composition of those 
classified as on layoff. Therefore, what the author describes 
as a reduction in accuracy due to the redesign more 
appropriately could be attiibuted to conceptual changes in 
tiiose classified as on layoff, and die fact diat what was 
beUig measured by the CPS before the redesign is not the 
same as what is being measured by die CPS after the 
redesign. 

2. IMPROVED MEASUREMENT 

One of the main reasons for the CPS redesign was to 
more accurately measure official definitions and concepts. 

Layoff was found to be an especially problematic concept, 
in that its meaning in general usage in the 1990's - a 
permanent job separation - was very different from the 
official CPS definition - a temporary job separation widi the 
expectation of recall. When the questions were originally 
written in the 1940's, the term layoff was commonly used to 
refer to temporary spells of unemployment due to retooling 
or slowing of business conditions. Consequently, recall 
expectations were not asked about in the pre-redesign 
questionnaUe. Research conducted in die 1980s and eariy 
1990s in preparation for the redesign indicated that 
respondents' Uiterpretation of layoff had become consider­
ably broader dian die official definition. Focus group 
interviews and large scale respondent debriefings found diat 
between 30 and 50 percent of those who said diey were on 
layoff did not expect to return to their former employers 
(Rodigeb 1982; Palmisano 1989; Polivka and Rotiigeb 
1993) Also, in 1993, 5.4 percent of those classified as on 
layoff had last worked 1 to 5 years ago, and another 0.6 
percent had not worked in the last 5 years. This lack of 
recent work experience further supports the notion that 
many of diose classified as on layoff prior to die redesign 
had no expectation of recall. 

To better measure the official CPS definition of layoff, 
two questions were added in the revised questionnaire 
asking about individuals' recall expectations - "Has your 
employer given you a date to return to work?" and "Have 
you been given any indication that you will be recalled to 
work within die next 6 mondis?" Individuals for whom the 
answer is "yes" to either of diese questions are classified as 
on layoff if diey are available for work; all odiers are 
excluded from being classified as on layoff (diese indivi­
duals can be classified as unemployed later in the question­
naUe if diey meet die active job search and availability 
criteria). 

As a result of the addition of these direct questions, a 
somewhat different group of people would be expected to 
be classified as on layoff. Prior to the redesign, a substantial 
proportion, if not the majority, of individuals classified as on 
layoff were in fact permanentiy separated from their 
employers. After the redesign, diose classified as on layoff 
had to expect to be recalled to theU former employers; thus 
the vast majority of tiiese individuals should be only 
temporarily separated from their employers. It is not 
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surprising that these two groups of individuals would 
exhibit different mondi-to-mondi flows between labor force 
groups. It is reasonable to expect that individuals who 
expect to be recaUed to theU job would be more Ukely than 
those who are permanentiy separated to go from beUig 
temporarily on layoff to employed Ui consecutive months. 
Further, compared with permanentiy separated workers, 
those in Uidustries in which temporary layoffs are prevalent 
would be more likely to be on layoff one month, employed 
the next month, and then laid off agaUi. 

Month-to-month gross flows of individuals between 
labor force states Uidicate diat there was an increase Ui die 
proportion of the unemployed who went to employment 
after the 1994 redesign. SpecificaUy, Ui 1994, 26.6 percent 
of those who were unemployed in the fu-st month were 
employed in die second month, compared with 23.7 percent 
in 1993. 

The author's MLCA estimates of a supposed decrease in 
the accuracy of those classified as on layoff after the 
redesign because more individuals are classified as 
employed subsequent to beUig on layoff, in reaUty is exactiy 
in accord widi what would be expected with a tightening of 
die definition of on layoff, and is consistent with the 
increase in the month-to-mondi gross flows between un­
employment and employment (although the increased flow 
also is in accord with a declining unemployment rate that 
was observed during the time period covered by die author's 
study). The MLCA's smaUer, but stiU significant, estimated 
decrease Ui accuracy due to more Uidividuals on layoff 
being classified as not in the labor force after die redesign 
also is consistent with the tightening of the definition of on 
layoff through the requUement that Uidividuals expect to be 
recalled in the next six months, given that Uidividuals may 
adapt or change dieU recall expectations over time. For 
instance, when fu t̂ interviewed, Uidividuals may expect to 
be recaUed in the next six months. However, Ui subsequent 
mondis, as the time from the initial separation increases, 
diese individuals may no longer say diat they expect to be 
recaUed. If, at the same time, these individuals have not 
started searching for alternative employment, perhaps 
because they are still eligible to receive unemployment 
insurance payments, these individuals would transition to 
being not in the labor force. Alternatively, Uidividuals may 
initially expect to be recalled; however; in subsequent 
months due either to poor weather conditions or a deterio­
rating economic situation for theU former employers these 
individuals may become more uncertaUi about die proba­
bility of beUig recaUed and thus they may not say that they 
expect to be recalled, li in later months, economic condi­
tions for theU former employers improve or the weather 
becomes less inclement, these individuals again may 
cortectiy feel that diey will be recalled. The existence of 

changUig expectations could generate a three month pattem 
where individuals truly were on layoff in the first month, not 
Ui the labor force the second month, and on layoff again in 
the thUd month. Those who were permanentiy separated 
from a job and were incorrectly classified as on layoff in the 
unredesigned survey would be unaffected by changing 
recall expectations. Consequentiy, individuals who were 
permanently separated from theU jobs probably would be 
more likely to report themselves as on layoff in consecutive 
mondis with die unredesigned survey. The MLCA model 
would Uiterpret this greater stabiUty as indicating that those 
on layoff were more accurately measured prior to the 
redesign. However this greater "accuracy" would only be 
amongst those who were incorrectiy classified because they 
used too broad a defmition. 

The author concludes diat 60 percent of die misclassi­
fication of tiiose on layoff Ui the redesigned survey is due to 
die question "LAST WEEK, did you do ANY work for 
pay?" This actually is consistent with more people being on 
temporary layoff and beUig recalled by their former 
employers in the redesigned survey (although if individuals 
on layoff engage Ui temporary employment while waiting to 
be recalled to theU former employers, an increase in ttansi­
tions to employment after 1994 may also be at least partially 
attiibutable to the broader employment question used in the 
redesigned survey). Similarly, the audior concludes that 40 
percent of die misclassification of diose on layoff in die 
redesigned survey is due to the expectation of recall 
questions ("Has your employer given you a date to return to 
work?" and "Have you been given any indication that you 
wiU be recaUed to work within the next 6 months?"). This is 
consistent with changing recaU expectations and a slight 
increase Ui the flow between on layoff and not in die labor 
force. The author is obtaining different MLCA estimates of 
those classified as on layoff before and after the redesign 
because the composition of those groups has been changed, 
and the composition of the groups have changed in a 
manner that was desUed and Uitended by those who 
redesigned the questiormaire. 

Further evidence of the different composition of those 
classified as on layoff can be found in a comparison of data 
that were collected to detemnine the effect of the redesign on 
labor force estimates generated from the CPS. Prior to 
January 1994, the redesigned questionnaire was admi­
nistered to 12,000 households monthly from late 1992 to 
December 1993. After the new questionnaUe was imple­
mented in 1994, the old questionnaUe was administered 
mondily from January 1994 to May 1994 to 12,000 house­
holds drawn from the same sample. The experimental 
admUiisttation of die old and redesigned questionnaires has 
been referred to as the "ParaUel Survey". Parallel Survey 
estimates from before 1994 usUig the new methodology and 
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after 1994 usUig die old mediodology were generated to 
compare to official CPS estimates using die unredesigned 
CPS procedures prior to 1994 and the redesigned proce­
dures after 1994. PoUvka and Miller (1998) illustrate die 
importance of using both parts of the ParaUel Survey to 
obtain a complete pictiire of die effects of die redesigned 
survey. For instance, if just the first part of the Parallel 
Survey were used, it would have been estimated that the 
redesign increased the unemployment rate by 0.5 percentage 
point. In fact, when both parts of the Parallel Survey were 
used, the redesign was estimated to have no statistically 
significant effect on the unemployment rate. 

UsUig bodi parts of die Parallel Survey and die official 
CPS estimates, PoUvka and Miller estimate that the 
redesigned CPS decreased the proportion of unemployed 
men who were on layoff by a Uttie less than 7 percent, while 
it increased the proportion of unemployed women classified 
as on layoff by almost 7 percent (although the latter estimate 
was not statistically sigruficant at a 5 percent level). These 
estimates imply that the redesign would decrease the 
proportion of those on layoff who were male and increase 
the proportion who were female compared to the pro­
portions diat were obtained prior to the redesign, if all else 
were equal. Comparison of annual averages for those over 
die age of 20 support this notion, sUice diey Uidicate that, in 
1993, 67.2 percent of those on layoff were male, compared 
to 63.6 percent of those on layoff in 1994 (although in 
addition to questionnaire changes these proportions could be 
affected by changes in economic conditions). 

The industry distribution of those classified as on layoff, 
using data from bodi parts of die Parallel Survey and the 
official CPS, reveals other compositional changes in those 
classified as on layoff before and after the redesign. 
Examination of estimates from the redesigned survey to die 
official CPS estimates for January to May 1993 and from 
the unredesigned survey to official CPS estimates for 
January to May 1994 reveals particularly dramatic differ­
ences for those in the durable manufacturing industry. The 
proportion of those on layoff who were formerly employed 
in durable manufacturing when the unredesigned questions 
were used was almost half die proportion obtained when the 
redesigned questions were used (for January to May 1993 
the proportion of those on layoff who were formerly 
employed in durable manufacturing averaged 16.8 percent 
among those who received the unredesigned questions and 
9.8 percent among diose who received die redesigned 
questions. For January to May 1994 die proportions were 
8.7 percent among diose who received die unredesigned 
questions and 15.5 percent for those who received the 
redesigned questions). At the same time die proportion of 
those on layoff who were in construction was 10 to 15 
percent larger when the redesigned questions were used 

compared to when die unredesigned questions were used 
(for January to May 1993 die proportion of diose on layoff 
who were formerly employed in the construction industry 
averaged 33.3 percent for those who received die redesigned 
questions and 27.4 percent for those who received the 
unredesigned questions. For January to May 1994 the pro­
portions were 33.3 percent and 25.9 percent respectively). 

Averaging the average difference between die fu^t part 
of the Parallel Survey and die CPS for January 1993 to May 
1993 (which is equal to the new method effect plus the 
Parallel Survey effect) with the average difference between 
the CPS and the second part of the Parallel Survey for 
January 1994 to May 1994 (which is equal to die new 
mediod effect minus die ParaUel Survey effect) indicates 
diat die redesign decreased die proportion of diose classified 
as on layoff who were formerly employed in the durable 
manufacturing industry by 7.3 percentage points and 
increased the proportion classified as formerly employed in 
the construction industiy by 3.7 percentage points 
(averaging the average difference between die first part of 
the Parallel Survey and the CPS widi the average difference 
between die CPS and the second part of the parallel survey 
is Ui the spUit, albeit a simpUfied version, of die main-
effects linear models estimates using generalized least 
squares that were presented in Polivka and Miller). 

Individuals in different industries could have very 
different true labor force transition patterns which in turn 
could be influencUig the MLCA estimates. For instance, 
given diat a substantial proportion of employment in die 
construction Uidustry is sensitive to weather conditions and 
may be more project-oriented than other types of 
employment, it is not unreasonable to expect that workers in 
construction might truly be more likely to be temporarily 
laid off in the first of three consecutive months, employed 
on a short term basis in the second month (either because 
die weadier improved in the second mondi or because a 
short term construction project was undertaken), and dien 
temporarily laid off again in the thUd month (either because 
weadier conditions deteriorated or the project for which diey 
were hired was completed). On die odier hand, employment 
in the durable manufacturing industry has been steadily 
declining since the 1970's (for example, comparing non-
recession years, it was estimated that in 1971 14.9 percent of 
U.S. workers as measured by BLS's establishment survey 
were employed in the durable manufacturing industry, 
compared to 9.2 percent in 1993 and 8.5 percent in 2000). 
This long term decUne in employment makes it likely that a 
large proportion of workers in the manufacturing industiy 
classified as "on layoff' prior to die redesign were perma­
nentiy separated from their employers (the change in the 
industry distribution when the expectation of being recalled 
was imposed is consistent widi this notion). Being 
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permanentiy separated from a job in combination with the 
relatively high wages workers in durable manufacmring 
received may increase the likelUiood of tiiese individuals 
being unemployed in three consecutive months, because it 
takes time to find employment in anodier industiy at a 
similar wage. 

Comparison of MLCA model estimates before and after 
die redesign widiout accounting for differences in Uidustiy 
composition of tiiose classified as on layoff could cause 
analysts to mistakenly conclude that the redesign decreased 
the accuracy of labor force classifications. In reality, die 
increase in ttansitions that were measured after the redesign 
represented a true increase in ttansitions to employment 
after layoff was properly asked about in the CPS question­
naUe. Failure to account for die fact that the redesigned CPS 
questionnaire intentionally classified a somewhat different 
group of Uidividuals on layoff than did die unredesigned 
questionnaire could lead to Uicorrect conclusions being 
drawn from die MLCA models. Workers permanentiy 
separated from theU employers who were classified as on 
layoff using the unredesigned questions are appearing to be 
more accurately classified in MLCA models, but they are 
more stable in a classification that was incorrect in the fttst 
place. Further, a proportion of individuals who are correctiy 
classified as on layoff according to the official definition 
inherently could have less stable employment histories due 
either to theU personal tastes or the industries with which 
diey are associated. 

In addition to compositional changes related to differ­
ences Ui question wording, the author also may have inad-
vertentiy caphired in his estimates several other composi­
tional changes unrelated to wording differences. These 
include differences in die time periods the audior used for 
his estimates, as well as technological changes in the data 
collection process and economic conditions. 

3. SEASONALITY 

The first inadvertent compositional difference the autiior 
may have inttoduced is related to seasonably and the 
different time frames die author used for estimation. The 
number of individuals classified as on layoff in die CPS has 
a great deal of seasonal variabiUty, with typically a larger 
number of individuals being on layoff early in die year. For 
instance, diere were 358 individuals who were classified as 
on layoff in January 1995 who matched to February and 
March, while diere were 294 individuals classified as on 
layoff Ui March 1995 who matched to April and May, and 
only 188 people classified as on layoff in June 1995 who 
matched to July and August. This means diat tiiere were 18 
percent more people initially classified as on layoff in 
January 1995 dian in March 1995 and 47 percent more 

Uidividuals classified as initiaUy on layoff in January 1995 
than in June 1995. Using diree mondi moving averages 
generated widi the same calendar months probably would 
help to mitigate the effects of seasonaUty. However, the 
author did not use the same monthly time spans to generate 
his three-month moving averages to estimate the MLCA 
models before and after die redesign. The majority of die 
author's pre-redesign estimates were generated using data 
from August 1992 dirough December 1993, while die 
majority of his post-redesign estimates were generated using 
data from January 1994 to May 1995. Using diese time 
spans means that the author only has, for instance, one 
January to March matched set of data for die pre-redesign 
estimates, while he has two January to March matched sets 
of data for the post-redesign estimates. 

4. TECHNOLOGICAL CHANGES IN DATA 
COLLECTION 

A second reason that the composition of die groups in 
various labor force states may be different for data collected 
widi die unredesigned and die redesigned methodology is 
related to the ability to match Uidividuals' data from month 
to mondi and the quaUty of diese matches. The vast majority 
of data coUected usUig the unredesigned mediodology either 
in die official CPS prior to January 1993 or in the Parallel 
Survey from January 1994 to May 1994 were recorded 
using a paper form, and Uiterviewers were required to 
ti-anscribe by hand household and person identification 
numbers from master files to die paper survey forms. All of 
the data collected usUig the redesign methodology, either in 
die official CPS after January 1994 or in die Parallel Survey 
Ui 1993, were collected using an automated instiument diat 
was loaded onto either a laptop computer or on a centtaUzed 
computer. As part of the computerized data collection 
process, household and person identification numbers were 
automaticaUy and consistentiy carried forward month to 
month. Using paper forms and ttanscribing data by hand has 
the potential to inttoduce errors and cause researchers to 
eUminate as non-matches individuals who actually are the 
same individuals and thus true matches. 

Using the same public-use data diat the author used, in 
combination widi additional information about whedier an 
Uidividual had moved (that is periodicaUy collected in die 
CPS), Madrian and Lefgren (1999) estimated diat, 
depending on the stringency of the match criterion used, 
between 64 and 87 percent of those who were eliminated as 
an invaUd match probably legitimately did match. Further, 
Madrian and Lefgren noted diat there was a substantial 
declUie between 1993 and 1996 in the fraction of invalid 
matches that probably should have been retained in the data 
set based on the criterion of whether an individual had 
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moved (since Madrian and Lefgren were using publicly 
released data, they were not able to investigate the validity 
of matches for 1994 to 1995 and 1995 to 1996 because the 
ability to match this data was suppressed to protect 
individuals' confidentiality). Madrian and Lefgren suggest 
that die increased number of valid matches for 1996 onward 
was due to improvements attributable to the redesign (it 
should be noted diat, aldiough a better match can be 
obtained using data internal to BLS and the Census Bureau 
in which information has not been suppressed, the quality of 
a match using internal data still will be affected by die data 
collection methodology. Thus die quality of die match will 
be better after the redesign tiian before the redesign). In dieU 
research, Madrian and Lefgren also found that individuals 
who were incorrectiy excluded from the matched data sets 
were much more likely to be young and have their 
information provided by anodier member of die household 
(a proxy responder). These individuals are also the ones that 
Biemer argues are more Ukely to have classification errors 
in their labor force statiis. Consequentiy, by potentially 
including more of these individuals in his study due to the 
improved quality of the match, the author could be 
obtaining a decrease in the accuracy of his measures that he 
incorrectiy is attributing to the questionnaUe. 

5. ECONOMIC CONDTTIONS 

Economic conditions may also contribute to differences 
in die composition of die groups classified as on layoff 
before and after the redesign. From 1992 to 1995, the period 
which die audior uses for the majority of his MLCA 
modeling, die unemployment rate was steadily declining. 
Specifically, in 1992 the annual average unemployment rate 
was 7.5 percent while in 1995 it was 5.6 percent. 

At a higher unemployment rate, it is lUcely that die 
proportion of individuals who remain unemployed month to 
month is larger than at lower unemployment rates. As the 
economy improves and the unemployment rate declines, it 
is not unreasonable to expect an increase in the proportion 
of individuals who ttansition from beUig on layoff to 
employment. With the increase in these ttansitions to 
employment, the proportion of individuals who ttansition to 
temporary jobs might also increase. Indeed, although 
undoubtedly related to many factors, the number of 
individuals employed in the temporary help supply Uidustry 
(as defined under die NAICS coding system) increased 44 
percent between 1992 and 1995 - from 1.1 percent to 1.5 
percent of die U.S. establishments' payrolls (as measured by 
the BLS's estabUshment survey). 

In addition, as the unemployment rate decUnes, the type 
of individual classified as unemployed may change. 

Specifically, those who remain unemployed when the 
unemployment rate is low tend to find it more difficult to 
become steadily employed and are more likely to ttansition 
quickly between labor force states. This is die logic behind 
studies that analyze the effects of different types of 
employment separations on subsequent labor force 
outcomes. For instance, in a study comparing individuals 
who were separated fi^om their employers due to slack 
business conditions as opposed to complete plant shut 
downs. Gibbons and Katz (1991) found diat, with regard to 
both duration of joblessness and earnings, workers who 
were separated from their employers due to slack business 
conditions did significantiy worse than did those who were 
separated due to a plant closing. Gibbons and Katz argue 
that these differences were due to employers being able to 
dismiss theU least productive workers, while retaining their 
more productive workers, when business conditions were 
slack, as opposed to employers having to dismiss bodi dieir 
least productive and most productive workers when a plant 
was completely shut down. Similarly, Darby, Haltiwanger 
and Plant (1985) argue diat as economic conditions worsen, 
the duration of unemployment increases as a result of a 
change in the composition of those who are unemployed. 
This is because in more adverse economic conditions, the 
proportion of the unemployed who are high-skill workers 
(who also are less used to being unemployed and more 
lUcely to be able and willing to hold out for a more satis­
factory job) will increase and the proportion of the 
unemployed who are less skilled and who frequently ttansi­
tion between labor force states will decrease. 

It is important to note that the majority of the author's 
pre-redesign estimates were generated using 1992 ;ind 1993 
data, when the unemployment rate averaged 7.0 percent, 
while die majority of die redesigned estimates were gener­
ated using data from 1994 and 1995, when die unemploy­
ment rate averaged 6.0 percent. Changes in general 
economic conditions, and corresponding changes in the 
composition of the unemployed, may be affecting the 
supposed accuracy of the author's estimates in a way that is 
unrelated to the questionnaire. For instance, between 1992 
and 1995, die proportion of die unemployed who were 
teenagers steadily increased from 14.8 percent to 18.2 
percent, while the overall unemployment rate steadily 
declined from 7.5 percent to 5.6 percent. Similarly, die 
proportion of the unemployed who were Hispanic steadily 
Uicreased from 13.6 percent to 15.4 percent between 1992 
and 1995, diough some of this may be due to the increasing 
proportion of Hispanics Ui die population (which rose from 
8.8 percent to 9.4 percent). Bodi teenagers and Hispanics 
tend to be lower skilled workers who historically have been 
more likely to become unemployed or withdraw from die 
labor market. It should be noted that, regardless of die 
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source, an increase in the proportion of the unemployed 
drawn from groups with less stable labor force histories will 
influence the MLCA model estimates of accuracy if the 
change is not accounted for in the modeUng. 

6. DIFFERENTIAL VALIDITY OF THE MARKOV 
ASSUMPTIONS 

In addition to differences in the composition of those 
classified as on layoff affecting the estimates generated by 
die MLCA models, differences in the composition of die 
various labor force groups before and after the redesign 
could affect die validity of the underlyUig assumptions of 
the MLCA models. As the author notes, a key assumption 
when implementing MLCA models is that an individual's 
ttansition from die second to dUrd month is Uidependent and 
thus uninfluenced by how the individual was classified in 
the first mondi. When estimatUig MLCA models for 
individuals' labor force states this obviously is untrue, and 
the vaUdity of the assumption will likely differ amongst die 
various labor force categories. For instance, an individual 
who is employed in die first month is much more Ukely to 
be employed Ui the thUd mondi dian is an individual who 
has never worked. More importantiy, an individual cannot 
be classified as on layoff in either the redesigned or 
unredesigned questionnaUe if he or she has not previously 
worked. Addition, under the official definition of layoff that 
was implemented in die redesign, Uidividuals also have to 
exf)ect to be recalled. This leads to a much tighter 
relationship between employers and workers across mondis 
using the redesigned questionnaUe. Given that Uidividuals 
on layoff under the redesign are much more likely to be 
recalled and thus employed than under the unredesigned 
questionnaUe, the lUceUhood of an Uidividual's labor force 
status in the diUd month dependUig on dieU initial labor 
force status in the first month is much higher. Consequentiy, 
not only is it Ukely diat the Markov assumptions are often 
violated in labor force studies; it is much more lUcely that 
the Markov assumptions are violated after die redesign. This 
differential violation of die model's assumptions could be 
fundamentally Uifluencing the author's results. 

7. CONCLUSION 

In summary, although the author beUeves that he 
identified a problem diat was inttoduced into the CPS with 
the 1994 redesign, the supposed increase in misclassi­
fication of those on layoff in reaUty reflects die greater 

precision of the survey questions. Rather than identify a true 
error, we beUeve the author may have failed to recognize 
that die composition of the groups identified as on layoff 
before and after the redesign were different due to both 
intentional changes (such as the definition of on layoff being 
buUt into the questiormaUe or improved quality of matches 
obtained because of computerization of the survey) and to 
unconttoUed changes such as developments in the overall 
economy. Finally, we would lUce to see further work in diis 
area which combines the MLCA modeUng approach along 
widi a careful consideration of the economic concepts being 
measured, the time periods being examined and die 
assumptions being made. We believe this could lead to a 
more accurate understanding of the effects of the 1994 CPS 
redesign, and more useful application of the MLCA 
modeling approach in general. 
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Comment 
CLYDE TUCKER 

1. INTRODUCTION 

I first would lUce to congratulate Paul Biemer for offering 
an innovative approach to the stiidy of measurement ertor in 
surveys. Although he chose to illusttate his approach widi 
die employment series Ui die Current Population Survey 
(CPS), die mediod can be applied to many surveys. My 
comments largely will be conceptual in nature, but I will 
supplement these comments with examples from the same 
data that Biemer analyzed. 

Using Markov Latent Class Analysis (MLCA), the 
Biemer paper relies on an evaluation of the consistency over 
time of respondents' answers to the questions in the 
employment series. The Uicrease Ui Uiconsistency found in 
die new series as compared to die old one, after conttoUing 
for self versus proxy reports, may serve as an indicator of 
one type of measurement error in the assignment of labor 
force statiis. Presumably, this error is the result of die failure 
of the new questions (at least, compared to die old ones) to 
collect die correct information for classifying an individual 
into the right labor force category. Thus, the error can be 
attributed to poor question design. Because the analysis 
indicates diat the errors tend to be in one dUection more than 
in die odier - die misclassification of truly unemployed 
individuals into a different category - some might Uiterpret 
die result to be a bias in die unemployment rate. 

I will argue that not only has bias not been inttoduced but 
also that the new series, while certaUily not perfect, reduces 
error, providing a more accurate picture of the employment 
situation. It does this by taking into account the economic 
realities of today in a way that the old series did not. This is 
accomplished by not only better question wording but also 
by die inclusion of follow-up questions and probes that 
capture more detailed information for determinUig a 
respondent's tine employment status. The use of follow-up 
questions and probes is facUitated by the inttoduction of a 
computerized survey instrument. As a result of these 
innovations, I believe that the new employment series 
reduces die amount of specification error diat existed with 
the old series. By specification error, I mean the error 
arising from using questions that do not measure what they 
are intended to measure. I also will explain why I do not 
beUeve diat Biemer's method is appropriate for use Ui diis 
particular case. 

2. RECOGNTTION OF THE NEED FOR A NEW 
EMPLOYMENT SERIES 

The last major revision of the CPS prior to 1994 took 
place Ui 1967. In the ensuing years, die labor market under­
went a great ttansformation. The number of women in die 
labor force dramatically increased. The number of part-time 
jobs and multiple job holdings escalated. The relationship 
between die worker and the employer became more 
tenuous. StartUng technological developments changed die 
way Americans did work and resulted in the creation of new 
types of jobs requiring new kinds of skills. Perhaps most 
importantiy, die economy gradually became more service 
oriented and less manufactiiring oriented. 

Just one result of these developments that needed to be 
taken into account in die CPS was the change in the 
accepted meaning of "layoff' as so ably described by Miller 
and PoUvka (2004), but there were others, as enumerated by 
Bregger and Dippo (1993). Better information was needed 
about discouraged workers (those who have given up 
looking for work), multiple jobholders, marginal workers 
{e.g., unpaid workers in a family business), imd job-
changing patterns. In addition, during the 1970s and 1980s, 
concern mounted about the various types of nonsampling 
errors diat could be affecting CPS estimates as well as about 
respondent burden and its detrimental effect on data quality. 

Until die 1980s, die technology to tackle diese f)roblems 
was not available. However, as Bregger and Dippo (pages 
4-5) note, things began to change: 

".. .in die early 1980s, die inttoduction of two 
new survey mediodologies provided die 
means for understanding and reducing 
measurement error. These included the 
application of behavioral science methods and 
theory - more commonly referred to as the 
cognitive aspects of survey methodology-
and computer-assisted interviewing. It is 
dirough die blending of diese two mediodo­
logies diat a new collection procedure, which 
focuses on reducUig measurement error, was 
made possible." 

Cognitive methods (Uicluding focus groups and in-depth 
interviewing) made it possible to develop questions that 
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could accurately measure the more complex economic 
behaviors that the times requUed. Furthermore, these 
techniques were able to uncover problems Ui the existing 
labor force series (See Polivka and Rodigeb 1993). The 
accurate measurement of die more complex behaviors also 
requUed a more complicated survey Uistiument. One so 
complicated that interviewers, left to theU own devices, 
would have difficulty navigatUig. This is where computer-
assisted interviewing played an important role. With a 
computerized survey instrument, interviewers could easily 
navigate tiirough the complex skip patterns necessary to 
obtain answers to questions for measuring the wide variety 
of economic behaviors of interest. 

3. CONSIDERATION OF NONSAMPLING 
ERRORS IN BOTH THE OLD AND NEW CPS 

EMPLOYMENT SERIES 

Let me begin this section by detailing my reasons why 
MLCA is not an effective tool for evaluating die new CPS 
design relative to the old one. MLCA can be a good method 
for detecting measurement error within a constant series of 
questions by lookUig for inconsistencies in response over 
several administtations to the same respondent. In die case 
of die CPS, the method might be appropriate, given a 
careful examination of a well-chosen set of diagnostics, for 
examining problems m the old employment series and the 
new employment series independentiy of one anodier. How­
ever, let me add a caveat here about examining incon­
sistencies even within the same employment series. Labor 
force status, in itself is inherentiy inconsistent over time. 
While die employed and not-in-the-labor-force (NILE) 
categories are relatively stable, the unemployed category is 
not. Those Ui that category are trying to get out. ConttolUng 
for seasonal effects by looking at March-May of either 1993 
or 1994, it turns out diat, on average, almost 90% of diose in 
the employed and NILE categories did not move from one 
month to die next. On the other hand, over haU of tiiose in 
die unemployed category did. Thus, the unemployed are a 
particularly difficult group for MLCA to handle. 

As for comparing the two series, die use of MLCA is 
problematic because the two series were designed to 
measure different tilings. There were some significant 
changes made in the employment series Ui the hopes of 
reducing specification error. Although I do not want to 
dwell on the measurement of layoff (Miller and PoUvka 
have covered this topic well), I do want to use it as a case in 
point for explaining why die comparison of die old and new 
instrument is a difficult one to make. Apart from what 
Miller and Polivka have said, I have my own reasons for 
doubting Biemer's conclusions. 

The changes Ui the layoff questions were designed to 
reduce the specification error discovered in qualitative 
research on the meaning of "layoff," as alluded to by Miller 
and PoUvka. In the attempt to eUminate specification error, 
two additional questions were added. One asked whedier a 
date for recall had been given, and die other inquired about 
the possibiUty of retuming to the job within the next 6 
months. Only those who were given a recall date or 
expected to return to work widiin die 6-mondi period were 
classified as daily "on layoff." 

Clearly, this altered the characteristics of the group 
classified as unemployed as a result of layoff as well as 
those asked the remaUiing questions in the employment 
series, but I beUeve there also were more subtie reasons why 
Uiconsistencies in respondents' answers could have 
increased and still not have contributed to measurement 
ertor to die extent argued by Biemer. In the first place, 
respondents had to answer more questions, which would 
have increased the probabiUty that at least one false 
inconsistency would arise from one mondi to another. This 
might add to measurement error compared to the old series, 
but specification error, considered to be the greater problem, 
still would be reduced. Furthermore, false inconsistencies 
arising from these questions should be minimized for two 
reasons. These questions are much more specific than the 
single layoff question in the old series, and diey had been 
well tested (Esposito, CampaneUi, Rothgeb and Polivka 
1991). Moreover, given that more specific questions were 
asked, there would be an increased chance that true change 
had taken place Ui the state of at least one of diem in the 
intervening month. Finally, and of greatest interest to me, is 
the fact diat these questions attempt to capture information 
on relatively nuanced changes. For instance, a respondent 
may have changed his or her mind about the possibility of 
being recaUed Ui the next 6 months based on Uttie concrete 
information. With the uncertaUities in today's job market, it 
would be difficult to say that die respondent had given the 
wrong answer. 

I now want to address Biemer's concerns about die initial 
question in die new employment series asking about 
whether any work was done last week for "eidier pay or 
profit." His results indicate that this question may be 
contributUig to the amount of error he finds in bodi the 
"layoff' and "looking" series. The change in diis question 
(as weU as the addition of a question on the existence of a 
family-owned business or farm) was prompted by the 
concern diat the old questions were not stated broadly 
enough, so diat margUial workers, especially those working 
for profit at home, were not being classified as working. For 
example, the Parallel Survey showed the percentage of part-
time workers in the new CPS was 1.098 times larger dian in 
die old CPS, and, coUicidentally, the employment to 



Survey Methodology, December 2004 153 

population ratio for women 65 and older also increased by 
about the same amount (PoUvka and Miller 1998). The 
same is true when comparing 1993 to 1994. It stands to 
reason that die increased precision in the identification of 
these marginal workers, who are more lUcely to be 
inconsistent in dieU answers from month to mondi than 
other workers, might be mistaken for measurement error. 
The fact is the more narrow "what were you doing last 
week" question could lead these respondents to consistentiy, 
but inaccurately, report diey were unemployed. 

Finally, let me turn to the other section of die 
employment series in which Biemer found a problem - the 
"looking for work" questions. One Unportant change in diis 
series involved clarifying the differences in "active" and 
"passive" job search in order to reduce misclassification 
rates in these categories. Studies conducted in die 1980s 
found diat interviewers were confused about what 
constituted an active (versus a passive) job search (Polivka 
and Rodigeb 1993). In die redesigned questionnaire, 
interviewers were given an expUcit Ust of both active and 
passive job search methods. 

Comparisons of the results of die old and new questions 
are complicated by the fact that different subpopulations 
were asked these questions in the two series. Those fmally 
defined as looking (and, dius, considered unemployed) in 
die two different employment series could have arrived 
diere in quite different ways. Half of diose considered 
looking in 1993 received that designation by volunteering 
they were looking in die first question ("What were you 
doing most of last week?"); none of those who were looking 
in 1994 followed that padi. Those retired and 50 or older in 
1994 never got the chance to say they were looking. In 
1993, none of those who said diey were on layoff were 
asked the looking question, so they had no chance to be 
classified as NILE in a given month. Then there were the 
two different levels of information given to the interviewers 
for coding active and passive methods. One difference 
uncovered in an analysis of the two groups from 1993 and 
1994 was that a higher proportion of those looking in 1994 
were women compared to 1993 (45.4% vs. 41.2%). 
Referring to the above discussion on the first employment 
question, Uicreases in the inconsistency in reports to the 
looking questions could be the result of capturing more 
marginal workers using die revised employment series. 
Sometimes diese individuals would be looking and 
sometimes not. 

4. CONCLUSIONS 

Paul Biemer has made a bold attempt to investigate die 
error structure in the CPS employment series; however, his 
findings do not take into account the reasons for the revised 
questions. Taking these into account would help explain the 
month-to-mondi Uiconsistencies diat he found. Not only 
might these inconsistencies be real, but they could provide 
evidence of a reduction in specification error. For instance, 
conttols odier than for self/proxy could be included in the 
model to take into account some of die changes in 
methodology, and measurement error within more limited 
subpopulations. More exploration of die utility of MLCA 
with inherentiy inconsistent classifications also should be 
undertaken. 
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Response from the Author 
PAUL P. BIEMER' 

1. INTRODUCTION 

My sincere thanks to all four discussants for dieU 
thoughtful, thorough and constructive comments. They have 
added considerably to our understanding of the complex 
issues surrounding Markov Latent Class Analysis (MLCA) 
and the Current Population Survey (CPS) labor statistics. 
AU four discussants raise a number of important issues that I 
will tiy to address to the extent I can. Some issues will 
requUe more work and deserve much greater consideration 
than is possible here. More complete responses to those 
issues will have to await the results of future research. 

Considering aU the comments collectively, there seems to 
be agreement that Markov latent class analysis has 
considerable potential as a tool for evaluating and exploring 
the sources of measurement error in the CPS. However, 
there is some skepticism diat it has identified real problems 
in the CPS questionnaUe. Dr. Vermunt, who is also the 
author of the software I used for this analysis {viz., fEM), 
provides a number of valuable suggestions for improving 
the models and investigating the validity of the model 
assumptions. The three other reviewers (Drs. MUler, 
Polivka, and Tucker) are quite familiar widi die CPS since 
they are employed by the federal agency that sponsors the 
survey where they played important roles in the 1994 
redesign. TheU comments remonstrate the various ways in 
which the MLCA model assumptions could be violated for 
these data. In addition, they contaUi valuable Uiformation 
regarding details of die CPS (both pre- and post-redesign) 
and die construction of the CPS labor force variable. The 
comments and suggestions of aU the discussants should be 
carefully considered by labor force economists and 
statisticians who are conductUig research in the area of 
employment measurement error, particularly those usUig 
MLCA. 

JEROEN VERMUNT'S COMMENTS 

I first address the comments of Dr. Vermunt and then the 
comments of the odier three reviewers. I share Dr. 
Vermunt's concern that the ICE assumption may not hold 
for these data. As he poUits out, if respondents 

misunderstand the labor force questions in the same way 
from one montii to the next, they may make die same errors 
each month creating correlated errors across the months. As 
an example, a person who is truly in the UEM category at 
both Times 1 and 2 may be more likely to be misclassified 
at Time 2 if they were also nusclassified at Time 1. This can 
be stated probabilistically as 

_ P(fi ^ 21A 9t 2 and X = y = 2) _ 

^~ P{B^2\A^2andX=Y = 2) 
(1) 

The numerator probabiUty of die quantity p is die 
probability that the Time 2 classification {B) is in error 
given the Time 1 classification (A) is also in error and the 
tine classification at both time points is UEM. The 
denominator probabiUty is similar except for the condition 
that no error is made at Time 1 {i.e., A = 2). Under the ICE 
assumption, p = 0. Therefore, if the p > 0 (which is the 
Ukely dUection of the correlated error), the ICE assumption 
is violated. Dr. Vermunt suggests a simulation study be 
conducted to study the sensitivity of the estimated classi­
fication errors to violations of this assumption. Of course, 
determining the extent to which die ICE assumption fails for 
the CPS data is not possible via simulation. Nevertheless, it 
is still useful for assessing die potential for correlated error 
to bias the MLCA classification error estimates. 

Following his suggestion, I conducted a small simulation 
study to gain some insight as to the consequences p > 0 for 
MLCA usUig CPS data. A sequence of artificial populations 
was generated using parameters consistent with those for the 
CPS (see for example, Table 1 in die main paper) except 
that p was increased in small increments from 0 to its 
empUical maximum - i.e., the largest value of p that is 
feasible without violating the other model assumptions. 
Maintaining the odier model assumptions in the analysis is 
necessary so that the consequences of violating just the ICE 
assumption can be isolated. 

The largest feasible value of p was determined empiri­
cally to be 0.7. At this value of p, the MLCA estimate of die 
probabiUty a correct classification of UEM went from 79% 
to 85% and the misclassification error rate dropped from 
21% to 15%. For mild departures from die ICE assumption. 
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say 0 < p < 0.3, die error rates changed by less tiian 3 
percentage points. These results illusttate that if the ICE 
assumption fails to hold due to positive between interview 
correlations, die error rates estimated by MLCA will be 
somewhat underestimated. However, mild departures from 
the ICE assumption should have little effect on the 
classification error probabilities for these data. A similar 
analysis was conducted for the two other labor force 
categories {i.e., EMP and NLF) but die change in die 
classification error estimates was negligible. This result was 
anticipated due to the relatively small error rates for diese 
categories. 

The results suggest that mild departures from the ICE 
assumption should have little or no effect the conclusions of 
die analysis. Extteme departures might affect the conclu­
sions in the unlikely event that errors are highly correlated 
for original questioimaUe and essentially uncorrelated for 
the revised questionnaire. Under diat scenario, the original 
questionnaUe would appear to have smaller UEM classi­
fication error than the revised questionnaUe. However, diere 
is no practical reason to expect tiiis condition to hold since 
both questionnaires present questions that respondents may 
misunderstand consistentiy across interviews. 

Although these simulation results, as weU as those in 
Biemer and Bushery (2001) for investigating the cones-
quences of violations of the Markov assumption, are quite 
useful for studying the sensitivity of the estimates to 
violations of the MLCA model assumptions, diey provide 
no dUect evidence of the vaUdity of the MLCA estimates. 
Biemer and Bushery (2001) illusttate how the (empUical) 
validity of latent class estimates can be established using 
external data and alternative approaches for estimating 
classification error. A similar analysis based upon test-retest 
reinterview data will be provided in the sequel. 

For the purpose of identifying potential areas where the 
CPS questionnaire can be improved, it is not essential to 
establish unequivocally that the MLCA model assumptions 
hold since model vaUdity is of secondary importance. 
Instead, die primary issue for questionnaUe evaluation work 
is whether the method of analysis used is successful at 
identifying questions diat have large measurement errors 
and are in need of revision. In other words, die vaUdity of 
the model is established by its ability to fmd important flaws 
in the questionnaire. Determining whether there truly is 
error in die UEM classification as suggested by MLCA 
requUes an • evaluation using other methods such as 
cognitive laboratory research. Cognitive interviews could be 
used to investigate encoding, comprehension, recall, and/or 
social desirability issues that generate errors in the responses 
to the UEM questions. If diese investigations uncover 
important problems in questions, dien the utility of MLCA 
for identifying flawed questions will be supported even 

though the validity of the MLCA modeling assumptions 
may never be known. 

Dr. Vermunt's other suggestions on ways the modeling 
framework could be improved are quite reasonable and I 
hope to investigate them further in die future. However, die 
current software for fittUig MLCA models is somewhat 
limited and the estimation of complex models such as those 
he suggests may not be feasible. He also notes diat problems 
can arise when fitting large models with die EM algorithm. 
As an example, initially we attempted to use the proxy/self-
response variable as a time-varying covariate in die MLCA 
models, but encountered problems in the estimation process 
such as "division by 0" errors and persistent convergence to 
local maxima. We ultimately had to abandon die approach 
in favor of the single, time invariant proxy/self grouping 
variable used in the current analysis. As new ;md more 
general software becomes available, the options for MLCA 
with time varying covariates as well as other model 
enhancements mentioned by Dr. Vermunt will be feasible. 

COMMENTS OF THE BLS DISCUSSANTS 

I will address the comments of Drs. Miller and Polivka 
and diose of Dr. Tucker together since die reviewers are 
from the same agency (BLS) and their comments raise 
similar concerns about the analysis. The following five 
points summarized their main concerns: 

1. The modifications inttoduced in the new question­
naUe capture more ttansitions than the old question­
naUe. MLCA wrongly interprets diese as en-ors when 
in fact they are not error. 

2. Respondents may change their minds from month to 
month about whether their employers tiuly indicated 
that diey might be recalled to work. These changes 
should not be classified as a response error. 

3. The Markov assumption does not hold in labor force 
studies and it is violated to an even greater extent 
after the redesign tiian before die redesign. This 
differential violation of die model's assumptions 
could be fundamentally influencing the MLCA 
results. 

4. The differences in die estimates of l^YOFF 
classification error before and after the redesign are 
due to the composition of the groups comprising this 
category. This composition changed after the 
redesign in a manner that was desired and intended 
by those who redesigned die questionnaire. 
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5. The Uicreased inconsistency in reports to the 
LOOKING questions for die revised questions could 
be explained by more marginal workers being 
identified using the revised questions. Sometimes 
diese individuals would truly be looking for work 
and sometimes not. MLCA misinterprets these 
ostensibly random changes as response error when 
diey are not. 

Point 1 describes an issue that should not pose any diffi­
culties for MLCA. The MLCA model assumes that each 
individual occupies a true labor force state which may 
change from month to month. No assumption is made that 
the ttansition probabilities are die same for both question­
naires. The true initial labor force probabiUties as weU as the 
month-to-month ttansition probabiUties are estimated inde­
pendently for each questionnaUe. In fact, although not 
discussed in main paper, the model estimates of the true exit 
probabilities for LOOKING and LAYOFF are Ui fact 
greater for the revised questionnaire than for the original 
questionnaire. Thus, a greater number of flows from one 
labor category to another for the revised questionnaUe does 
not necessarily bias the estimates of classification error for 
that category in either dUection. 

Point 2 suggests that whether an Uidividual is duly on 
layoff depends upon that Uidividual's opinion about whedier 
he or she was given an Uidication of possibly being recalled. 
However, this in not how the revised questionnaUe defines 
the concept. An individual's true layoff status depends upon 
whedier or not the employer truly provided an indication of 
being recalled. Aldiough the respondent's opinion about 
what the employer indicated may change from mondi to 
month, the tine layoff status does not change according to 
die respondent's opinion. Flows in and out of the LAYOFF 
category due to the respondent's opinion should be inter­
preted as error by the model. 

Points 3, 4, and 5 could be made for any analysis 
employing MLCA. They essentially concern the potential 
bias in die MLCA estimates when mondi-to-mondi 
ttansitions do not behave according to die MLCA model 
and consequentiy real changes are misinterpreted as 
classification errors. As the reviewers note, there are at least 
three ways this can occur: 

a) the Markov assumption does not hold (point 3), 

b) there is unobserved or unexplained heterogeneity in 
the population (poUit 4), and 

c) employment-related behaviors for two consecutive 
months are not correlated for some persons; dius, for 
tiiose persons, past month statiis does not predict die 
current month's status (point 5 as well as a point made 
by Dr. Vermunt). 

The impUcations of (a) were considered in a simulation 
analysis in Biemer and Bushery (2001). TheU results 
suggest diat, for the CPS data, the estimates of classification 
error are quite robust to violations of die Markov 
assumption. It is unlUcely, dien, that non-Markov ttansitions 
explain the findings of higher classification error for the 
revised questionnaUe. StiU, additional research is needed to 
more thoroughly understand the impUcations of non-
Markov ttansitions for our results. 

For (b), it is quite possible for MLCA estimates to be 
biased when the compositions of the unemployed popu­
lations are substantiaUy different under die original and 
revised questionnaires and those differences are not 
explained by the grouping variables used in die model. 
LUcewise (c) may be regarded as a special case of (b). For 
(c), the ttansition probabiUties for some population sub­
group are uncorrelated with the prior month's employment 
status; Uistead it is correlated with odier unobserved 
variables. In Jeroen Vermunt's coffee drinker example, the 
unobserved variable is the availabiUty of a specific brand of 
coffee at the market. At diis stage of the research, we have 
not conducted simulation studies to quantify the effects of 
unobserved heterogeneity on the estimates, but this 
possibility wUl be examined in future work. 

However, this issue as well as the general plausibiUty of 
the MLCA estimates can be investigated to some extent by 
comparing the MLCA estimates widi independent estimates 
from an estimation approach that is not affected by (a) 
through (c). IS the fmdUigs from die alternative analysis are 
consistent with die MLCA findings, the MLCA findings 
gain credibiUty. As an example, test-retest reliabUity for the 
CPS employment classifications can be estimated both pre-
and post-redesign using the CPS reinterview data (see for 
example Biemer and Forsman 1992 for a description of CPS 
reUiterview program and these data). The validity of the 
estimates of test-retest reliabUity does not depend upon die 
Markov assumption or group homogeneity assumption; the 
ICE assumption, however, is still relevant for reliability 
estimation. 

Table 1 shows estimates of Cohen's kappa measure of 
reUabiUty for tiiree time periods: 1992-1993, 1995-1997, 
and 2002-2003. As shown Ui die table, die reUability of die 
CPS classifications of unemployment dropped after die 
redesign from about 68% to 65%. The most recent estimates 
of kappa Uidicate reUability has dropped to below 60%. 
These results are consistent with the results from the MLCA 
diat classification error Ui the CPS unemployment statistics 
has worsened after the redesign. It is possible diat the 
reUabUity estimates in Table 1 are biased since they also 
rely on die validity of the ICE assumption. But as discussed 
previously, Ui order to the results in the table to be explained 
by die failure of the ICE assumption, the ICE assumption 
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would have to hold for the revised questions but not for the 
original questions. That condition is very unlikely to occur. 

Table 1 
Estimates of Cohen's Kappa for die CPS Before and After the 

Redesign 

Year 
1992-1993 
1995-1997 
2002 - 2003 

Cohen's K 
28,063 
22,429 
19,205 

67.8 
64.6 
58.8 

From Biemer and Bushery 2000. 1 

^ Bushery and McGovem (1999). 
^ Personal communication with Bac Tran at the U.S. Census 

Bureau 

Given the evidence presented here and in the main paper, 
it seems reasonable to consider die possibility that CPS 
unemployment classification ertor increased after the 
redesign. The next step is to conduct additional research to 
evaluate these findings and explore the possible causes for 
die error. Radier dian to focus on the vaUdity of the MLCA 
or test-retest reinterview models, the focus of the future 
research should be the revised CPS questions, particularly 
those used in the LAYOFF classUication. 

I have aUeady mentioned the possibility of using 
cognitive interviews to investigating the problems in the 
response process associated with the revised questions. As 
an example, one question identified in the MLCA as being 
potentially flawed is: "Have you been given any indication 
that you wiU be recalled to work widiin the next 6 mondis?" 
Some of the issues that could be investigated in die 
cognitive laboratory for this question include: 

- How well do unemployed subjects understand the 
meanings of terms such as "any indication" and 
"i^caUed?" 

- Do subjects who were recentiy separated from 
employment have difficulty remembering what their 
employers said about being recalled when they were 
terminated? 

- An employer may say, "If busUiess improves, we 
may call you." Do respondents answer the question 
correctiy in this situation? 

- Do respondents who initially respond diat diey wiU 
be recalled later change theU responses to this 
question as the months pass by and they have not 
been recalled? 

SPECIFICATION ERROR AND MEASUREMENT 
ERROR 

Finally, I will address an important issue raised by Dr. 
Tucker regarding specification error, measurement error and 
theU net effects. As Dr. Tucker explains, the original 
questionnaire suffered from specification error bias caused 

by measuring the wrong concept. The revisions to the labor 
force questions inttoduced in 1994 were designed to 
eliminate the specification error bias by refining die 
concepts of employment and unemployment and modifying 
the survey questions to reflect these refinements. These 
modifications, while reducing specification error, added 
more complexity to the survey questions which could have 
increased the measurement error bias in the labor force 
estimates. Dr. Tucker suggests that while diis may be die 
case, the measurement bias in die new employment series 
may be less than the combination of specification bias and 
measurement bias in the old series. To determine whether 
diis could be true, die specification error bias (fi^) and 
measurement error bias {B^,) were separately estimated 
using die MLCA estimates provided in the paper as 
described below. 

Let p denote die CPS estimate of UEM and let P denote 
the expectation of p with respect to sampling and 
measurement error distributions. Let n denote the true value 
of the characteristic under die definitions of UEM implied 
by the specific questionnaUe {i.e., widiout regard to possible 
specification error). Therefore, n = P - B^, i.e., the value 
of P in die absence of measurement error bias. 

As noted above, specification error bias is the bias in P 
due to a wrong concept or definition of unemployment 
impUed by the questions and/or labor force classification 
process. For the revised questionnaire design, we assume 
diat the specification error in /? is 0 since it will be regarded 
as the gold standard for estimating the specification error 
bias in the original questionnaire. 

Let Ttgy and n^^,^ denote the 7t-parameter for die 
origmal and revised questionnaires, respectively. Then the 
specification error bias in the pre-1994 estimates of the 
unemployment rate is 

^S ^^^old - '^new (2) 

For each questionnaUe, die estimate of P is p, the 
weighted estimate from die CPS. The estimate of n is 
obtained by correctUig p for classification error bias using 
the response probabiUties from the MLCA. l^t p ' = 
(Pi'Pi'Pi) where p,,P2,P3 denote die estimates of die 
proportions in EMP, UEM, and NLF, respectively. Let tu­
be the probabiUty that an observation that tioily belongs to 
the I* category is assigned to the j ' ^ category imd let n, 
denote die true proportion in die population in the i^ 
category. Then 

E{p)^il'n (3) 

where n = (711,712,713)' and £2 = [cO|j] is die 3 x 3 matrix 
with elements oi-. ItfoUows that an estimator of JI is 

n = ( « ' ) ' ' P (4) 
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where Q is a MLCA estimate of Q. For each question­
naUe, Q. was estimated by the average of the 10 MLCA 
estimates (January-March tiirough October-December) 
using die 1993 CPS for die origmal questionnaUe and 1993 
Parallel Survey for the revised questionnaUe. 

Table 2 shows die results of this analysis. For UEM, p = 
6.38 for the original and 6.98 for the revised questionnaUe. 
If the unemployment rates are corrected for measurement 
bias usUig (4), unemployment rate increases to 7.09 percent 
for the original questionnaire and 8.03 percent for the 
revised questionnaUe. Thus, an estimate of the measurement 
bias for die origmal survey is 6.38 - 7.09 = - 0.71 and for 
die revised survey is 6.98 - 8.03 = -1.05. Note tiiat die 
measurement biases are negative for both die original and 
revised questionnaUes, Uidicating that UEM as weU is 
underestimated by both questionnaUe versions. 

For the revised questionnaUe, the specification bias is 
assumed to be 0. For the original questionnaUe, it is 
estimated by die difference 7.09 - 8.03 = - 0.94 percent. An 
estimate of the net bias, fij.=B^+6j, is -0.71 -i-
(- 0.94) = -1.65 percent for die old series compared with 
-1.05-1-0 = -1.05 percent for the new series. Thus, while it 
is subject to greater measurement error bias, the new series 
has smaller estimated net bias assuming B^ = 0. 

Several Umitations of diese results should be mentioned. 
First, as noted in die main paper, the estimates for revised 
questionnaire from the Parallel Survey may not be 
representative of die revised CPS series. Second, die 

analysis assumes diat die revised questionnaUe is die gold 
standard for estimating the specification error bias in the 
original questionnaUe. This assumption could also be 
challenged. FinaUy, no standard errors were provided for the 
estimates in Table 2 and the hypothesis of smaller overall 
bias in die revised question was not formally tested. Despite 
these Umitations, the results suggest the possibility that the 
new unemployment series could have substantially lower 
net bias than the old series. 

Table 2 
Comparison of Original and Revised Questionnaire Biases for the 
CPS Unemployment Rate Based Upon Estimates from the 1993 

CPS and the Parallel Survey 

BA, B, B-r 

1993 CPS 6.38 7.09 -0 .71 -0 .94 -1.65 

Parallel Survey 6.98 8.03 -1.05 O' -1.05 

'Note: Specification error bias is assumed to be 0 for the revised questions. 
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A New Algorithm for the Construction of Stratum Boundaries in Skewed 
Populations 

PATRICIA GUNNING and JANE M. HORGAN ' 

ABSTRACT 

A simple and practicable algorithm for constructing stratum boundaries in such a way that the coefficients of variation are 
equal in each stratum is derived for positively skewed populations. The new algorithm is shown to compare favourably with 
the cumulative root frequency method (Dalenius and Hodges 1957) and tiie LavalMe and Hidiroglou (1988) approximation 
method for estimating the optimum stratum boundaries. 

KEY WORDS: Efficiency; Geometric progression; Neyman allocation; Stratification. 

1. INTRODUCTION 

A stiatified random sampUng design is a sampling plan 
in which a population is divided into mutually exclusive 
stiata, and simple random samples are drawn from each 
stratum independentiy. The essential objective of strati­
fication is to construct sti-ata to allow for efficient esti­
mation. In what follows X represents the known strati­
fication or auxiUary variable while Y represents the 
unknown study variable. Suppose there are L stiata, con­
taining N^ elements from which a sample of size n̂ , is to 
be chosen independentiy from each stiatum (1 < /i < L). We 
write N = 'Zh = iN^ and n-Y!h = \n^. In die case of die 
stratified mean estimate, 

- _ V ^/. -
A = 1 N 

(1) 

th 
where ŷ  's the mean of the sample elements in the h 
stratum, we need to choose the breaks in order to minimise 
its variance 

v(yJ=Z 
L r^^^^ 

N N 
'yh 

(2) 
hj 

where 

^./.=-Ji(y«-n)'M. 

is the standard deviation of y restiicted to stiatum and h, and 

1 ^ 
Yh ~ TT~ / . Yhi' 

NHT^I 

is the mean. 

Dalenius (1950) derived equations for determining 
boundaries when stratifying variables by size, so that (2) is 
minimised, but these equations proved troublesome to solve 
because of dependencies among the components. Since then 
there have been numerous attempts to obtain efficient 
approximations to this optimum solution. The first such 
approximation, suggested by Dalenius and Hodges 
(1957, 1959), constructs the strata by taking equal intervals 
on die cumulative function of the square root of die 
frequencies; this method is still often used today. Eckman's 
rule (1959) of iteratively equaUsing die product of stiatum 
weights and stratiim ranges was found to require arduous 
calculations, and is less used than the method of Dalenius 
and Hodges method (NicoUni 2001). Lavallde and 
HidUoglou (1988) derived an iterative procedure for 
stratifyUig skewed populations into a take-all stiatum and a 
number of take-some strata such that the sample size is 
minimised for a given level of reliability. Odier recent 
contributions include Hedlin (2000) who revisited Ekman's 
rule, Dorfman and ValUant (2000) who compared model-
based stiatified sampUng with balanced sampling, and 
Rivest (2002) who constructed a generalisation of the 
Lavallee and HidUoglou algorithm by providing models 
accounting for the discrepancy between the stratification 
variable and die survey variable. 

In the present paper we propose an algorithm which is 
much simpler to implement dian any of those currently 
available. It is based on an observation by Cochran (1961), 
that with near optimum boundaries the coefficients of 
variation are often found to be approximately the same in all 
stiata. He concluded however that computing and setting 
equal the standard deviations of the strata would be too 
compUcated to be feasible in practice. In what follows we 
show that, for skewed distributions, the coefficients of 
variation can be approximately equaUsed between strata 

Patricia Gunning, School of Computing, Dubhn City University, Dublin 9, Ireland; Jane M. Horgan, School of Computing, Dublin City University, 
DubMn 9, Ireland. 
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using the geometric progression. This new algorithm is 
derived in section 2. Section 3 compares die efficiency of 
die new approximation widi die cumulative root frequency 
and die Lavallee and HidUoglou approximations. We 
summarise our findings in section 4. 

2. AN ALTERNATIVE METHOD OF STRATUM 
CONSTRUCTION 

To sUatify a population by size is to subdivide it Uito 
intervals, with endpoints kQ<k^,<...,<k^. Ideally, die 
division should be based on the survey variable Y. Such a 
consOnction is of course not possible since Y is unknown; if 
it were known we would not need to estimate it. In practice 
therefore we use a known auxUiary variable X, which is 
correlated widi the survey variable. 

In order to make die breaks {kQ,k^,...,k^) for any 
given kg and ^^, we seek to make the CV̂  = S^^lX^ the 
same for h = l,2,...,L: 

X, 
(3) 

Now 5̂ ^ is the standard deviation and X,, the mean of XUi 
stiatum h: If we make die assumption diat the distribution 
within each stratum is approximately uniformly distributed 
we may write 

"^xh ~ r— y^h '^h-ll-

(4) 

(5) 

As an approximation to the coefficients of variation, this 
gives 

CV,^ 
{k,-k,_,)/4l2 

(h+kb-i)/2 

with equal CV̂  therefore we must have 

(6) 

'^h-H '^h '^h '^h-l 

'^h + l '^ '^h "-A •*" ' 'A - 1 

(7) 

This new and exotic recurrence relation reduces however to 
something famiUar: 

k'^ — k k (8) 

the stratum boundaries are the terms of a geometric 
progression. 

k,^ar''{h = 0,l,...,L). (9) 

Thus a = kQ, the minimum value of die variable, and 
ar^ -k^, the maximum value of the variable. It follows 
that the constant ratio can be calculated as r= {k^l k^Y"'. 
For a numerical example take 

L = 4 ; kf,=5; k^= 50,000: (10) 

dius k^=5.lO {h = 0, 1, 2, 3, 4) and die strata form die 
ranges 

5-50;50-500;500-5,000;5,000-50,000. (11) 

This is clearly an extremely simple method of obtaining 
stratum breaks. 

The relationship in (8) depends on the assumption that 
die distributions within stî ata are uniform. This may be 
justified by the following heuristic argument. When the 
parent distribution is positively skewed, dien die low values 
of the variable have a high incidence, which decreases as the 
variable values increase, which makes it appropriate to take 
small Uitervals at the begUming and large intervals at the 
end. This is what happens with a geometiic series of 
constant ratio greater than one. In the lower range of the 
variable, the strata are narrow so that an assumption of 
rectangular distiibution in them is not unreasonable. As the 
value of die variable increases, the stratum width increases 
geometiically. This coincides widi the decreased rate of 
change of the incidence of the positively skewed variable, 
so here also the assumption of uniformity is reasonable. 

This algorithm wUl of course not work for normal 
distributions. Also since the boundaries increase geo­
metrically, it will not work well with variables that have 
very low starting poUits: diis will lead to too many small 
strata; die rule breaks down completely when die lower end 
point is zero. We expect the best results when the 
distribution is highly positively skewed and the upper part 
contains a small percentage of the total frequency. 

3. THE PERFORMANCE OF THE ALGORITHM 

3.1 Some Real Positively Skewed Populations 

To test our algorithm, we implement it on four specific 
populations, which are skewed with positive tail: 

Our first population (Population 1) is an accounting 
population of debtors in an Irish firm, detailed in Horgan 
(2003). In addition, we use three of the skewed populations 
diat Cochran (1961) invoked to illustrate die efficiency of 
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die cumulative root frequency method of sti-atum 
construction. These are: 

- The population in diousands of US cities 
(Population 2); 

- The number of students in four-year US colleges 
(Population 3); 

- The resources in millions of dollars of a large 
commercial bank in the US (Population 4). 

There were five other populations in die Cochran paper, 
which turned out to be unsuitable for use widi our 
algoritiim. In three cases die variable was a proportion: 

agricultural loans, real estate loans and independent loans 
expressed as a percentage of the total amount of bank loans. 
Another, a population of farms in which the variable ranged 
from 1 to 18, was essentially discrete. Yet anodier, a 
population of income tax returns, was not sufficientiy 
skewed: it owed its skewness to the top 0.05% of die 
population, and when diis was removed, or put in a take-all 
stratum, the skewness disappeared. 

These four populations are iUustiated and summarised in 
Figure 1 and Table 1 in decreasUig order of skewness. 

x> 

Population 1 Population 2 

i 

1 " rJ m o 

Accounts u s Cities 

i 

0.5 
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Population 3 Population 4 

— cs m 

u s Students Bank Resources 

Figure 1. Populations 
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The new algorithm is implemented on tiiese populations, 
and compared widi die cumulative root frequency 
(cum ~JJ) and the Lavallee-HidUoglou methods of stratum 
construction. 

3.2 Comparison with the Cumulative Root 
Frequency Method 

We first compare the performance of the new algorithm 
widi cum -y/y by dividUig die populations summarised Ui 
Table 1 into L = 3, 4 and 5 strata, usUig bodi methods to 
make the breaks. The results are given Ui Tables 2, 3 and 4. 

A cursory examination of the coefficients of variation Ui 
Tables 2, 3 and 4 suggests that, Ui most cases, the geometric 
mediod is more successful than cum .,Jf Ui obtaUiing near-
equal sti-ata CV^. For example Ui Population 1, which has 
die greatest skewness, die CV^ dtffer substantiaUy from 

each other when cum yff is used to make die breaks, while 
die geometric method appears to achieve near-equal CV^ in 
all cases of 3, 4 and 5 sti-ata: the best results are obtained 
with L = 5. In the odier three populations, die CV^ are not 
as diverse with cum ^[f, but diey still appear more 
variable than those obtaUied with the geometiic method of 
stratum construction. 

The CV^ with die geometric method are more 
homogeneous when L = 4 or 5 dian when L = 3; tiiis is to be 
expected since the vaUdity of die assumption of uniformity 
of the distiibution of elements widiin stratiim is strength­
ened widi increased number of sti-ata. 

A more detailed analysis of the variability of die CV^ 
between sttata is given in Table 5, where the standard 
deviation of die CV̂  is calculated for each design. 

Table 1 
Summary Statistics for Real Populations 

Population 
1 
2 
3 
4 

N Range 
3,369 40 - 28,000 
1,038 10-200 

677 200-10,000 
357 70-1,000 

Table 2 

Skewness 
6.44 
2.88 
2.46 
2.08 

The Geometric vs the Cum yjf : Stratum Breaks with L -

Stratification 
Population Method CV 

1 Geometric 0.0600 

Cum ,[7 0.0600 

2 Geometric 0.0270 

Cum 7 7 0.0269 

3 Geometric 0.0317 

Cum 7 7 0.0282 

4 Geometric 0.0184 

Cum 7 7 0.0198 

kh 
Nh 
"h 

CVh 

h 
Nh 
"h 

CVh 

kh 
Nh 
"h 

CVh 

kh 
Nh 
"h 

CV, 

kh 
Nh 
"h 

CVh 

kh 
Nh 
"h 

CV, 

kh 
Nh 
"h 

CVh 
kh 

Nh 
"h 

CV, 

1 
354 

2,334 
9 

0.71 
558 

2,339 
19 

0.70 
26 

701 
36 

0.28 
28 

729 
40 

0.29 
726 
253 

9 
0.32 

1,179 
456 

37 
0.41 
168 
211 

27 
0.23 
162 
207 

25 
0.23 

= 3 andn 

Stratum 
2 

3,152 
1,288 

46 
0.68 

2,236 
735 

17 
0.42 

72 
243 

29 
0.23 

66 
208 

22 
0.25 

2,645 
321 

38 
0.37 

3,629 
152 
35 

0.31 
405 

93 
27 

0.24 
441 
107 
39 

0.30 

Mean 
838.64 

32.57 
1,563.00 

225.62 

= 100 

3 

189 
45 

0.64 

295 
64 

0.76 

94 
35 

0.33 

101 
38 

0.34 

103 
53 

0.39 

69 
28 

0.27 

53 
46 

0.30 

43 
36 

0.27 

Variance 
3,511,827 

924 
3,236,602 

36,274 
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Table 3 
The Geometiic vs the Cum 7 / '• Stratum Breaks with L = 4 and n = 100 

Population 
Stratification 

Method CV 
Stratum 

2 3 
I Geometric 

Cum 77 

Geometric 

Cum 7 / 

Geometric 

Cum 77 

Geometric 

Cum 7 / 

0.0430 

0.0480 

0.0194 

0.0213 

0.0214 

0.0230 

0.0142 

0.0143 

kh 
NH 

"h 
CVH 

kh 
Nh 
"h 

CV, 

kh 
Nh 
"h 

CV, 

kh 
Nh 
"h 

CVH 

kh 
NH 

"h 
CV, 

kh 
NH 

"h 
CV, 

kh 
Nh 
"h 

CV, 

kh 
NH 

"h 
CV, 

205 
1,416 

6 
0.45 
558 

2,339 
23 

0.70 
20 
459 
22 

0.22 
19 
393 
15 

0.20 
526 
138 
5 

0.27 
690 
235 
13 

0.31 
134 
156 
20 

0.18 
162 
207 
33 

0.23 

1,057 
1,382 
22 

0.44 
1,117 
483 
5 

0.19 
43 
398 
31 

0.20 
38 
428 
26 

0.17 
1,386 
343 
27 

0.26 
2,160 
319 
43 

0.33 
261 
109 
23 

0.19 
255 
58 
9 

0.11 

5,443 
483 
40 

0.48 
2,795 
325 
10 

0.27 
93 
130 
25 

0.22 
85 
155 
30 

0.25 
3,653 
127 
26 

0.26 
5,100 
75 
21 

0.29 
504 
63 
29 

0.19 
488 
57 
23 

0.18 

88 
32 

0.50 

222 
62 

0.69 
200 
51 
22 

0.22 

62 
29 

0.26 

69 
42 

0.27 

48 
23 

0.19 

29 
28 

0.20 

35 
35 

0.24 

Table 4 
The Geometric vs the Cum 7 7 • Stratum Breaks with L = 5 and « = 100 

Population 
Stratification 

Method CV 
Stratum 

3 
1 Geometric 

Cum 77 

Geometric 

Cum 7 / 

Geometric 

Cum 77 

Geometric 

Cum 77 

0.0360 

0.0349 

0.0144 

0.0186 

0.0184 

0.0212 

0.0110 

0.0119 

kh 
Nh 
"h 

CV, 

kh 
Nh 
"h 

CV, 

kh 
NH 

"h 
CVH 

kh 
Nh 
"h 

CV, 

kh 
NH 

"h 
CV, 

kh 
"h 

CV, 

kh 
Nh 
"h 

CV, 

kh 
NH 

"h 
CV, 

147 
1,054 

2 
0.37 
279 

1,644 
9 

0.52 
17 
364 
18 

0.18 
28 
729 
58 

0.28 
433 
100 
2 

0.22 
1,179 
50 

0.40 
118 
114 
12 

0.14 
162 
207 
44 

0.23 

549 
1,267 
14 

0.38 
838 

1,010 
14 

0.30 
32 
418 
28 

0.14 
38 
92 
4 

0.08 
941 
255 
16 

0.21 
1,669 

3 
0.09 
200 
116 
20 

0.14 
255 
58 
11 

0.11 

2,037 
732 
27 

0.40 
1,677 
332 
7 

0.20 
59 
130 
17 

0.15 
57 
89 
7 

0.11 
2,043 
1,989 
27 

0.24 
3,139 
17 

0.20 
339 
64 
24 

0.17 
395 
37 
10 

0.10 

7,552 
265 
33 

0.37 
4,193 
249 
15 

0.25 
108 
87 
20 

0.16 
104 
88 
16 

0.16 
4,434 
74 
20 

0.21 
6,079 

15 
0.19 
576 
39 
18 

0.12 
627 
36 
19 

0.13 

51 
24 

0.41 

134 
55 

0.57 

39 
17 

0.15 

40 
15 

0.16 

56 
35 

0.21 

15 
0.13 

24 
24 

0.16 

19 
16 

0.11 
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Table 5 
The Variability of the CV, for the Geometiic and the Cum 77 Metiiods 

Strata 

3 

4 

5 

Geometric 
Cum 77 
Geometric 
Cum 77 
Geometric 
Cum 77 

1 
0.035 
0.181 

0.027 
0.276 

0.018 
0.166 

Population 

2 
0.050 
0.045 

0.010 
0.042 

0.015 
0.076 

3 
0.036 
0.072 

0.006 
0.062 

0.013 
0.119 

4 
0.038 
0.035 

0.008 
0.059 

0.020 
0.054 

We see from Table 5 diat, with just two exceptions, the 
standard deviations of die CV, are substantiaUy lower with 
diegeometric method of sti-atum construction than with cum 
. 7 / . In the two cases where the cumulative root has a lower 
standard deviation dian die geometric, the differences 
between them is not great, and occur with the smaUest 
number of strata, L = 3, Ui Populations 2 and 4. We may 
conclude dierefore that the new algorithm is successful in 
breaking die sti-ata Ui such a way that the CV, are near 
equal. 

What remains is to investigate whether the geometiic 
breaks lead to more efficient estimation dian cum 7 / • To 
do this, die two methods are compared in terms of the 
relative efficiency or variance ratio obtained widi n = 100 
allocated optimally among the strata using Neyman 
allocation (Neyman 1934): 

r \ 

Y' ,NiSx 
i ^ i = 1 < X 

The relative efficiency is defined as 

n. 

eff cum, geom 
*̂ cum V^st ) 

V ix y 
' geom \-^sl J 

(12) 

(13) 

where V̂ .„„ {x^,) and V^^„^ ( i „ ) are die variances of die 
mean respectively widi the cumulative root frequency and 
die geometiic metiiods, widi n = 100 and n, allocated as 
in (12) for each of the stratification methods. In sample size 
planning the relative efficiencies may be interpreted as the 
proportionate Uicrease or decrease Ui the sample size with 
cum yff to obtain the same precision as that of the 
geometric method with n = 100. 

The variance calculations are based on die auxiUary 
variable X, and since diis is assumed to be highly correlated 
with the unknown survey variable Y, we can assume the 
relative efficiency eff, given Ui (13), wiU be a reasonable 
approximation of the relative efficiency of Y. 

Table 6 gives the variance ratio when the number of 
strata L = 3,4 and 5. 

From Table 6 we see diat, whUe this new metiiod is not 
always more efficient than the cumulative root frequency 
mediod of stratum construction, when it is, U is substantially 

so, and when it is not it is only marginally worse. For 
example, large gains in efficiency are observed when L = 5 
in Populations 2, 3 and 4: here die relative efficiencies are 
1.69, 1.33 and 1.17 respectively indicating diat samples of 
sizes n = 169, 133 and 117 are required widi cum yff to 
obtain the sample precision as that of the geometiic method 
widin = 100. 

Table 6 
Efficiencies of the Cum 77 Relative 

to the Geometric Method 

Sti-ata 

3 
4 
5 

1 
0.97 
1.23 
0.94 

Population 
2 

0.99 
1.19 
1.69 

3 
0.79 
1.16 
1.33 

4 
1.16 
1.04 
1.17 

We also see from Table 6 that while diere are four cases 
where the relative efficiency is less dian 1, with one 
exception, all are greater dian 0.9. The exception is 
Population 3 with L = 3, die smallest number of strata; the 
relative efficiency in this case is 0.79. 

3.3 Comparison with the Lavallee and Hidiroglou 
Algorithm 

Widi die Lavallee-Hidiroglou algoritiim, the optimum 
boundaries fc,,/C2 " " ^ L - I ^ ^ chosen to minimise die 
sample size n for a given level of precision. The requirement 
on precision is usually stated by requUing die coefficient of 
variation to be equal to some specified level between 1 % -
10%. ObtaUUng die minimum n is an iterative process, and 
the SAS code used for implementing it was obtained from 
the web at http:/Avww.ulval.ca/pages/lpr/. 

To compare the performance of the new method widi 
Lavallee-HidUoglou, the CVs from the geometiic algorithm 
given Ui Tables 2, 3 and 4 are used as input for die Lavallfe-
HidUoglou algoritiim, and the sample sizes required to 
obtain the same precision as that of the geometric method 
with n = 100 are computed. The results are given in Table 7. 

The fu-st tiling to notice from Table 7 is diat the sample 
size requUed with die Lavallee-HidUoglou algorithm to 
obtaUi die same precision as the geometiic method is greater 
dian 100 Ui all but four cases. In Population 2 with 5 strata, 
it is necessary to increase the sample size by 36% to 
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n = 136, to obtain die same precision as die geometiic 
method widi n = 100. Widi three and four sti-ata, sample 
sizes of n = 121 and 113 are requUed Ui Population 1, and 
samples sizes of n = 123 and n - 111 are requUed in 
Population 2, to obtaUi the same precision as the geometric 
method. When the sample size falls below n = 100, die 
drop is not as large. In Population 4, with four and five 
strata, n = 93 and n = 99 respectively, and in Population 1 
with 5 strata a sample size of n = 90 will suffice with the 
Lavallee-HidUoglou algoritiim to obtain the same precision 
as the geometric method. 

The results in Table 7 might appear to indicate diat die 
geometric method outperforms die Lavallee-Hidiroglou 

method in terms of the minimum sample size required for a 
specified precision. We observe however tiiat the geometric 
method does not give a take-all stratum. If this is required it 
is more appropriate to use die Lavallee-Hidiroglou to obtain 
the sti-ata. Often, in financial applications the top sti-atum is 
decided judgementally; for example US state taxing 
audiorities typicaUy decide dieU take-all stratum based on a 
total percentage of purchase amounts (Falk, Rotz and 
Young 2(X)3). ff after such a take-all sti-atum has been 
removed die skewness remains, the geometric mediod is 
probably the easier and more efficient way of obtaining the 
remaining stiata. 

Table 7 
Boundaries and Sample Size Required with the Lavallde-Hidiroglou Method to Obtain the Same 

CV as the Geometric Method when n = 100 

Population 

1 121 

123 

107 

100 

113 

117 

103 

93 

90 

136 

105 

99 

CV 
1 

3 Strata 
2 

0.0600 

0.0270 

0.0317 

0.0184 

kh 
Nh 
"h 

CVh 
kh 

Nh 
"h 

CVh 
kh 

Nh 
1/1 

CV, 
kh 

Nh 
"h 

CVh 

1,248 
2,867 

42 
0.87 

35 
795 
47 

0.31 
1,398 

481 
28 

0.41 
172 
212 
22 

0.23 

8,676 
464 
41 

0.57 
102 
202 
35 

0.31 
4,197 

135 
18 

0.30 
361 

85 
18 

0.21 

38 
38 

0.37 

41 
41 

0.17 

61 
61 

0.24 

60 
60 

0.32 

1 
4 Strata 
2 

0.0430 

0.0194 

0.0214 

0.0142 

*/, 
Nh 
"h 

CV, 
kh 

Nh 
"h 

CV, 
kh 

Nh 
"h 

CV, 
kh 

Nh 
"h 

CVh 

442 
2,086 

16 
0.64 

19 
393 

13 
0.19 
740 
256 

9 
0.32 
117 
111 

7 
0.14 

1,828 
915 
21 

0.41 
37 

420 
21 

0.16 
1,505 

234 
10 

0.18 
188 
112 

9 
0.12 

8,411 
327 

35 
0.45 

95 
176 
34 

0.28 
3,819 

118 
15 

0.25 
359 
74 
17 

0.19 

41 
41 
38 

49 
49 

0.21 

69 
69 

0.27 

60 
60 

0.32 

I 
5 Strata 

3 

0.0360 

0.0144 

0.0184 

0.0119 

kh 
Nh 
"h 

CV, 
kh 

Nh 
"h 

CVh 
kh 

Nh 
"h 

CV, 

kh 
Nh 
"h 

CV, 

342 
1,846 

12 
0.58 

14 
189 

4 
0.12 
512 
133 

4 
0.27 

99 
70 
4 

0.10 

1,153 
993 

14 
0.34 

21 
270 

7 
0.10 
869 
180 

5 
0.15 
130 
68 
4 

0.08 

3,431 
357 

17 
0.31 

35 
336 

16 
0.12 

1,577 
185 

10 
0.16 
189 
85 

8 
0.10 

10,301 
147 
21 

0.31 
80 

164 
30 

0.24 
3,675 

110 
17 

0.23 
339 
71 
20 

0.18 

26 
26 

0.32 

79 
79 

0.30 

69 
69 

0.27 

63 
63 

0.33 
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4. SUMMARY 

This paper derives a simple algorithm for die 
construction of stiatum boundaries in positively skewed 
populations, for which U is shown that the stiamm breaks 
may be obtained usUig the geometric distribution. The 
proposed mediod is easier to implement dian approxi­
mations previously proposed. Comparisons with die com­
monly used cumulative root frequency mediod usUig four 
positively skewed real populations divided into three, four 
and five sti-ata, showed substantial gains Ui the precision of 
die estimator of die mean; die greatest gains occurring when 
the number of strata was five. Comparisons with the 
Lavallee-HidUoglou mediod indicated diat a greater sample 
size was required to obtain the same precision as the 
geometiic method is most cases; die greatest increase in the 
required sample size occurred with the largest number of 
strata. One Umitation of the new algorithm compared to the 
Lavallde-HidUoglou method of stramm construction is that 
it does not determine a take-all top sttatum. 

ACKNOWLEDGEMENTS 

This work was supported by a grant from the Irish 
Research Council for Science, Engineering and Technology. 

We are indebted to die referees for dieU helpful 
suggestions which have greatiy improved die origmal paper. 

REFERENCES 

COCHRAN, W.G. (1961). Comparison of metiiods for determining 
stratum boundaries. Bulletin of the International Statistical 
Institute, 32, 2, 345-358. 

DALENIUS, T. (1950). The problem of optimum sti-atification. 
Skaruiinavisk Aktuarietidskrift, 203-213. 

DALENIUS, T., and HODGES, J.L. (1957). The choice of 
stratification points. Skandinavisk Aktuarietidskrift, 198-203. 

DALENIUS, T, and HODGES, J.L. (1959). Minimum variance 
stratification. Journal of the American Statistical Association, 88-
101. 

DORFMAN, A.H., and VALLIANT, R. (2000). Sfl-atification by size 
revisited. Journal of Official Statistics, 16, 139-154. 

ECKMAN, G. (1959). An approximation useful in univariate 
stratification. TheAnruils of Mathematical Statistics, 30, 219-229. 

FALK, E., ROTZ, W. and YOUNG, L.L.P. (2003). Sti-atified 
sampling for sales and use tax highly skewed data-determination 
of the certainty sti-atum cut-off amount. Proceedings of the Section 
on Statistical Computing, American Statistical Association, 66-72. 

HEDLIN, D. (2000). A procedure for sti-atification by an extended 
ekman rule. Journal of Official Statistics, 16, 15-29. 

HORGAN, J.M. (2003). A list sequential sampling scheme witii 
applications in financial auditing. IMA Journal of Management 
Mathematics, 14, 1-18. 

LAVALLEE, P., and HIDIROGLOU, M. (1988). On tiie 
sti-atification of skewed populations. Survey Methodology, 14, 33-
43. 

NEYMAN, J. (1934). On die two different aspects of die 
representative metiiod: The metiiod of sti-atified sampling and tiie 
method of purposive selection. Journal of the Royal Statistics 
Society, 97, 558-606. 

NICOLINI, G. (2001). A method to define sti-ata boundaries. 
Working Paper 01-2001-marzo, Departimento di Economia 
Politica e Aziendale, Universita degli Studi di Milano. 

RTVEST, L.-P. (2002). A generalization of die Lavallde-Hidiroglou 
algoritiim for sti-atification in business surveys. Survey 
Methodology, 2S, 191-198. 



Survey Methodology, December 2004 
Vol. 30, No. 2, pp. 167-174 
Statistics Canada 

167 

Feeding Back Information on Ineligibility from Sample Surveys 
to the Frame 

DAN HEDLIN and SUOJIN WANG ' 

ABSTRACT 

It is usually discovered in the data collection phase of a survey tiiat some units in die sample are ineligible even if tiie frame 
information has indicated otherwise. For example, in many business surveys a nonnegligible proportion of the sampled units 
will have ceased Q-ading since the latest update of the frame. This information may be fed back to the frame and used in 
subsequent surveys, thereby making forthcoming samples more efficient by avoiding sampling ineligible units. On the first 
of two survey occasions, we assume tiiat all ineligible units in tiie sample (or set of samples) are detected and excluded from 
the frame. On tiie second occasion, a subsample of the eligible part is observed again. The subsample may be augmented 
with a fresh sample tiiat will contain both eligible and inehgible units. We investigate what effect on survey estimation tiie 
process of feeding back information on ineligibility may have, and derive an expression for die bias that can occur as a 
result of feeding back. The focus is on estimation of tiie total using tiie common expansion estimator. An estimator tiiat is 
nearly unbiased in die presence of feed back is obtained. This estimator relies on consistent estimates of the number of 
eligible and ineligible units in the population being available. 

KEY WORDS: Dead unit; Feed back bias; Overcoverage; Permanent random number sampling; Panel survey; 
Coordinated samples. 

1. INTRODUCTION 

To facilitate estimation of change, consecutive samples 
in a repeated survey are usually overlappUig. If several 
surveys draw samples from the same frame, it is often 
desirable to spread the response burden out by making sure 
that samples for different surveys are not overlappUig to a 
greater extent than necessary. This is particularly desUable if 
die frame is moderately large and used for many continuUig 
surveys, which is a sitiiation diat many national statistical 
institutes face when conducting busUiess surveys. Stratified 
simple random sampling is a very common design for busi­
ness surveys. The skewed distribution of businesses calls for 
large samplUig fractions in many sttata, which aggravates 
the response burden for medium size and large businesses. 
Both estimation of change and response burden issues are of 
paramount importance in official business statistics. There­
fore, sampling systems have been constincted that allow die 
organisation to co-ordinate samples, either positively or 
negatively {i.e. to create overlap or to make sure that diere is 
Uttie overlap). 

For example, the Office for National Statistics (ONS) Ui 
die United Kingdom uses the Permanent Random Number 
(PRN) technique, which is a widely used method for 
drawing samples from Usts. A PRN from die uniform distri­
bution on [0,1] is attached to each frame unit Uidependentiy 
of each odier and independentiy of the unit labels and any 
variables associated widi the units. Each unit will retain the 

PRN throughout its existence. The units can be ordered 
along a line starting at 0 and ending at 1 and we refer to this 
Une as the PRN line. To draw a simple random sample 
widiout replacement, an 57, widi a predetermined sample 
size n, a point is selected (randomly or purposively) on the 
PRN line and die n units to the right (say) are included in the 
sample. Two Sis are fully co-ordinated if diey are drawn 
from the same interval. For overviews and further details 
see Ohlsson (1995) and Ernst, Valliant and Casady (2000). 

Samples for repeated surveys can also be selected with a 
panel technique where a set of rotation groups are selected 
at the first wave and one, say, of die groups is replaced with 
a fresh rotation group at the second wave and die other 
groups are retained Ui the sample. The difference between 
PRN samplUig and panel sampUng is more about the way to 
conttol overlaps than having different sampling designs. 

There are in principle two main sources of data diat are 
used to maintain a frame: administtative ones and surveys. 
Various administrative bodies send tapes to die ONS on a 
regular basis with information on, e.g., births and deaths of 
businesses. While these tapes are sent to the ONS very 
frequentiy, the distribution of die time it takes for a new unit 
or an alteration of an old unit to be registered on the frame is 
highly skewed. This is partiy due to frame maintenance 
procedures, e.g. to avoid duplicates. There is also very often 
a considerable difference in time between the actual and 
formal termination of a business. Therefore, most of the 
ONS's business surveys share die information on deadis 

Dan Hedlin, Statistics Sweden, Box 24 300, SE-104 51 Stockholm, Sweden. E-mail: dan.hedlin@scb.se; Suojin Wang, Texas A&M University, 
Departmentof Statistics, College Station, Texas 77843-3143, U.S.A. E-mail: sjwang@stat.tamu.edu. 
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they obtain through theU samples with other busUiess 
surveys to speed up the information process. We examine 
the effects of using sample surveys to update a frame that is 
used for repeated surveys. This is Ui principle how infor­
mation on dead units is tteated Ui business surveys at the 
ONS, Statistics Sweden, and some odier national statistical 
institutes. 

It would seem natural diat diis new information should 
be made available to odier sample surveys, which odierwise 
may include die dead units in theU samples and therefore 
lose precision. However, as pointed out by Srinath (1987) 
among others, such a procedure may cause bias. We refer to 
this as feed back bias, which results whenever the sampling 
mechanism is not independent of die feed back procedure. 
For example, consider a situation where all dead units are 
found and deleted at the first wave of a panel survey. If no 
further deaths have occurred up to the second-wave obser­
vation of the panel units, the second-wave sample contains 
only Uve units. Without knowledge of the total number of 
Uve units in die population at the time of the second wave, 
an unbiased estimator of the total caimot be constructed. 
While more information about the population has been 
gathered when the deaths were recorded at the first wave, 
diere is actiially less information in the second wave-sample 
on the proportion of Uve units in the population. We show 
how an estimate of the number of live units in the popu­
lation can be used to construct an approximately unbiased 
estimate of the population total. 

A safe recommendation would be that no information on 
deaths from sample surveys, odier than from completely 
enumerated sttata, may be used to update the frame when 
samples are co-ordinated over time {cf. Ohlsson 1995, page 
168, and CoUedge 1989, page 103). However, to prohibit 
feeding back seems to deny oneself the use of all available 
information. We obtain an expression for the feed back bias 
and show diat the feed back bias can be estimated and used 
to adjust conventional estimators. Schiopu-Kratina and 
Srinadi (1991) adjust the sampling weights to counter an 
expected too low proportion of dead units Ui the rotating 
sample of the Survey of Employment, PayroU and Hours 
conducted by Statistics Canada. HidUoglou and Laniel 
(2001) discuss the feed back issue briefly. A general discus­
sion of frame issues is given by CoUedge (1995) and over­
views of issues associated with continuing busUiess surveys 
Uiclude College (1989), HidUoglou and SrUiatii (1993), 
Srinath and Carpenter (1995), and Hidiroglou and Laniel 
(2001). 

Instead of the terms eligible and ineUgible we use the 
more emotive words dead and Uve, although our reasoning 
does cover all kinds of ineUgibility. The discussion is 
confined to die estimation of the total 

=Yuyk (1) 

of some study variable y' = (yi,y2,--, y^) on a popu­
lation [/widi unit labels {1, 2, ..., TV}. 

When the sampled units are observed, we assume that all 
dead units in the sample are classified as dead and die frame 
is updated with tiiis information. This may be difficult in 
practice. In some surveys, however, the eUgibility of all 
nonresponding units can be correctly identified. 

Section 2 inttoduces die necessary notation and concepts 
and gives expressions for the feed back bias when esti­
mating a total. Section 3 discusses diree sttategies that may 
be used in the presence of feed back and compares these in a 
simulation study. The paper concludes with a discussion in 
section 4. 

2. EXPRESSIONS FOR FEED BACK BL\S 

2.1 Introduction and Notation 

We assume throughout diat a dead unit is always out of 
scope and diat the value of the study variable of a dead unit 
is always zero. (It is conceivable that dead units are eligible 
in some surveys; for example, a business survey collecting 
data on production may have defmed businesses diat were 
alive at least part of die reference period as eligible.) We 
adopt the design-based view that the survey population and 
die study variable are fixed and non-stochastic at any given 
poUit Ui time. The situation we address is as follows. One or 
more samples are drawn from the frame which comprises 
the orisinal survey population. U\. Let the set of samples 
drawn from U] be denoted by si. For convenience we 
assume that the frame units and population units are of the 
same type. We refer to the updated frame, where all dead 
units that have been included Ui samples from Ui have been 
excluded, as the current survey population, Uj. For 
example, two surveys may simultaneously work with a 
sample each, and after they have fed back, U\ has shrunk to 
Uj. We disregard bUths of new units and other deaths than 
those deleted through samples from U\. We will also 
disregard undercoverage, nonresponse and measurement 
errors. In practice, administtative sources will provide 
Uiformation on deaths. They work independentiy from the 
sampUng procedures employed by the statistical agency and 
wiU therefore not contribute to feed back bias. These units 
are dead by administrative sources. We can think of these 
dead units as beUig excluded from the population. See 
HidUoglou and Laniel (2001) for a discussion of estimation 
in the presence of units deathed by administtative sources. 
While the sampUng design here is assumed to be SI, it can 
readUy be extended to stiatified simple random sampling. 
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Let U^d and U2,i be the two subsets of the current survey 
population, t/2 = t/j.rf ^ ^2.1' th^' consist of dead and live 
units, respectively. All units in U2,d and Uy are assumed to 
be flagged as live. Units that are flagged as dead but for 
which the independence of detection and the sampling 
mechanism cannot be assured are called dead by sample 
survey sources. In our set-up, these are the dead units 
detected in samples taken from Ui. Let the set of diese units 
be denoted by S[^, and we have die relationship C/, = 
U2^Sij . Figure 1 displays the sets and theU relationships. 
Let N and n with a proper subscript be the size of the 
corresponding population and sample(s), respectively. Then 
N\=N2 + n],j and N2 = N2J + Nj^j. At the time when samples 
are drawn from U2, N2 and ni^ are known numbers, whereas 
Â 2,/ and N2,d are unknown. Moreover, n^d, N24 and ^2 could 
be viewed as random depending on feed back results, while 
A'2,/ is fixed. FoliowUig principles of DurbUi (1969) and 
more recentiy in Thompson (1997), we would in many 
situations prefer to condition on n\^d- For example, if it is 
seen that n\d = 0, then it does not seem appropriate to 
include in the inference the possibility diat n\^ could have 
been large. However, to analyse the development of the feed 
back bias over a series of waves in a panel survey when 
planning the survey, unconditional analysis would be 
preferable. We also provide an expression for the 
unconditional feed back bias. 

Denote by s\j the Uve part of s\, i.e., the part of U2 that 
was covered by the previous sample(s) drawn from Uf, see 
Figure 1. Clearly, 5i,/ is a random set and we have 
Sf, c f/j.; • Let die nonsampled part of U2 be denoted by 
^2,»d ('wd' for 'widi dead units'). It is also a random set and 

encompasses all of t/2,rf and part of t/2,;. We have t/2 = 

^2.«d^\l-

Let S2 be an SI taken from U2. Estimators based on 2̂ will 
suffer from feed back bias unless special information is at 
hand, such as knowledge about Â2,/> which is not usually die 
case. To derive an expression for the feed back bias we shall 
first obtain the inclusion probabilities. To do diis, it is useful 
to consider die two sample parts of 2̂ separately: die sample 
part S2,a of size 2̂,0 taken from S\j dirough PRN sampling or 
a panel samplUig technique, and die remaining part 2̂,/, 
taken from U2,wd- If the samplUig is done widi a panel 
technique, die sample parts S2,a and 2̂,̂  are the old and new 
rotation groups, respectively. If die sample is drawn with 
PRN sampling, S2,a and S2j, consist of units witii PRN's diat 
feU in s\ or did not fall in ^i, respectively. Whether the 
sample was drawn through PRN sampling or a panel 
sampUng technique, die sample parts can be viewed as two 
fixed size samples, each drawn with die SI design from dieir 
respective subpopulation. We condition on n2,a and n2,h 
throughout widiout making it expUcit in formulae. With die 
notation {k e 2̂ „) we refer to the event diat a unit is first 
included in the first-wave sample(s) from U\ and then in die 
second-wave sample taken from what remains of the first-
wave sample(s) after dead units have been taken out. The 
notation (^6^2^,) is analogous. Let I{kes2„) = l when 
unit k is included in S2^, otherwise I{k^S2„) = 0. To 
derive the overall bias it is convenient to analyse the biases 
from the sample parts S2,a and S2j,. We derive an expression 
for each of these in section 2.2 and section 2.3, respectively, 
and in section 2.4 the bias expressions will be amalgamated. 

Sl 

S\,d 

U2.1 

^2.a •^2,6 

^l.l U 2.d 

U2..C 2.wd 

U. 

Figure 1. The original survey population, (/,, and its subsets. The grey area represents ^2. the sample from U2 
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2.2 Feed Back Bias from a Sub-sample from the 
Original Sample 

Suppose a sub-sample '̂2,0 is taken from ^i,;, the Uve part 
of the fu-st-wave sample(s). Recall that ŷ  = 0 if fc is a dead 
unit and that U2 = C/2 ^ u t / j ; - Thus we have 2^ y^ = 
It/,,, yk^(k G S2^a) = l u , 3't/(^ e ^2.a) • Assumc diat N2J > 0. 
Then we obtaUi that Pr[^ G i-j „ | n^^^ ] - ^j .^ IN21, sUice a 
sample of size «2,(i is effectively selected from a population 
of size A'2./ with the SI design (through an SI sample from 
U\ followed by an SI sample from U^d- Note that a unit k in 
i'2,a must be alive since U2,i consists solely of live units. 

Denote the bias of an estimator 0 for the parameter 0 by 
B{Q, 0) . Then with respect to the population total t^ = 
^u^ y^, the conditional bias of a general Unear estimator 
iy'^-' =Es2„^t>'«: based on .y2,a. with any given Wĵ 's, is 

B(t';''''tyhdhYu,,MkP^[k^^2.aKA-i}yk 

^kn2,a 

N,, 
- 1 

MVI2 

2./ 

yk 

yk- (2) 

U2 „d, which has Â T / ~ "1 / '̂̂ ^ units. Therefore, the 
conditional bias of f 1*" is 

Bt'^hWd)=Yu, 
^'^t^a.fc ^ 2 , ; - » i . / j ^ 

\̂  "2,H'd A j j 
yk- (5) 

y 

For the expansion estimator f̂ '̂ with weights ŵ  = 
is 

4>''^|«.,J-«'. ' (6) 
N2I n2j, the bias is 

where 

g ^ ^2 ^ 2 . / - " u 

"2,wd ' ' 2 . / 
- 1 

^ A ^ 2 ( ^ 2 . / - ^ U ) - ^ 2 . ; ( ^ 2 - " M ) 

A^2...^2., 

'^2.rf«l./ 

'*2,/'*2,W 

A^2.rf(»l-»1.J 

A^2./K-«,)" 

For the sample part 2̂,0, the naive expansion estimator 
that ignores feed back bias would have weights Wk = N2ln2a-
From (2) die bias of the estimator t yn 

IS 

fi('>\^|«w)= 
Â , 2.d 

N. 

2.3 Feed Back Bias from a Sample Taken Afresh 
from the Current Survey Population 

The bias is always non-positive since fi < 0. It is easy to 
see that B is an increasing function of n,^ since 

• A*2' '̂ 2.0Is2.a ^k ^2d ~^id ~'hd ' where Nid is the fixed number of all 
dead units in [/). It is also readily seen that the maximum of 
B is attained when s^J encompasses aU dead units in U\, 

(3) that is, when ni,d = N\d and consequentiy Â 2.d = 0 • 

2.4 Feed Back Bias from Sample Parts Combined 

Combining (6) with (3) we obtaUi the overall bias of 

Next, we derive the bias arising from the sample part S2,b 
of size «2,i taken from U2 through t / j ^^ , see Figure 1. FUst 
note that 

Pr[k&S2,,\k&U2,^i,n^j\^-^^. 
" 2 . w d 

(4) 

From (4) we obtain that the conditional expected value of 

?T"'=I...>^*>'* is 

^frT">.,J- njb 

'^2,wd 

^2,b '^2,1 ~ ^1,1 

N2..d N2J 

Yu^^^'kykWd 

Yu^'^kyk-

The second equation above is due to die fact that 
given n^j, all A ĵ./ I'^e units in U2 are equally likely to be in 

V = ' ' ^ 2 / « 2 l . , ) ' * to be 

'2,d 

N, 
n 2.a 2.i n, 

n. A', 
t,=ct^. (7) 

2,wd J 

The bias in the expansion estimator is really down to not 
knowing the correct population size. In (3) the bias stems 
from multiplying die sample average over live units with Â2 
radier than die unknown Â 2,/- The bias from the sample parts 
S2,a and S2J, wUl in absolute terms be less than (3) and (6), 
respectively, if some of the dead units in the samples from 
U\ have not been identified as dead and therefore have not 
been weeded out. This would happen, for example, if the 
status of nonresponding units is difficuU to determine. 

An unconditional analysis in the presence of feed back 
can be obtained dUectly by taking expectation of (7) with 
respect to n, ^ . Thus, unconditionally, we have 



Survey Methodology, December 2004 171 

N. 

V"2 
Ys^yk 

A'2,, 

' 2 .A 

^2'^2.l'^2,wd 

V"2 

^(«,.J 

M 2,>vrf y 

= cr^, (8) 

where E{n^J) = n^N^^ I A', and V{ny^ ) = n^N^ jN2,l N^ . 
Lavallde (1996) took an interesting approach to a similar 

problem with panel survey data. In that paper, the problem 
of frame update using panels widi rotation is addressed 
among other issues. Our approach is different from the ap­
proach of that paper in that we consider the two conditional 
probabilities Pr[fcG ^2„ |n,^] and Pr[ks S2,\n^j] 
separately. 

3. THREE SIMPLE STRATEGIES AND A 
SIMULATION STUDY 

3.1 Strategies in the Presence of Feed Back 

A sttategy, which is referred to as Sttategy 1 here, is to 
feed back, delete the set 5i^ from die frame and accept die 
feed back bias. However, the size of die bias is seldom 
known. The estimator for Sttategy 1 under SI is t^ -
N2In2'ZS2 yk where 2̂ is a sample taken from U2. To 
obtain Sttategy 2, note that if consistent estimates of N2,d 
and A'2,/ are available diese may be plugged into (7) or (8) 
and an estimator widi favourable properties is obtained: 

f;,=r;ji+cr, (9) 

where 

C={N 2,d I N 2j)[n2,a /«2-{«2,i(«l-«u)}/{«2 (^ l -« l )}] 

for both the conditional and unconditional cases since die 
term 'J2.A^("i.d)("2^2./^2,wd)~' Ui (8) is almost always neg-
Ugible. The estimates ^ 2 ^ and N2,i of the sizes of the 
domains U2,d and U2,i can be obtained from a sample from 
die original or current survey population. If more dian one 
sample is drawn, each can provide an unbiased estimate of 
A'2,rf (or A'2./)) all of which can be combined. The minimum 
variance combined estimator is the sum of the estimators 
weighted with the reciprocals of theU variances. As die 
following argument shows, we do not expect the bias of (9) 
to be large: 

£fc)=4^.(i+crJ-£(^j(i+c)-' 
= «,,(l + c)(l + c)-'=f^. 

Anodier sttategy, here denoted by Sttategy 3, is to feed 
back the information that certain units are dead, but to retain 
them on the frame and allow them to be sampled. The 
resulting estimator is unbiased, but the disadvantage of this 
sttategy is tiiat the precision will suffer as part of die sample 
is lost on ineligible units. The estimator of Sti-ategy 3 is 
f̂  = Â i / n2 Z r >"*. where r is a sample from the original 
survey population U\. 

3.2 A Simulation Study 

A simulation study may shed some light on which of die 
Sttategies 1-3 is to be preferred. Natural measures for 
comparing the sttategies are bias and variance. In business 
surveys, estimates for subpopulations (industries) are often 
more interesting than the whole population. To simulate a 
subpopulation, a frame consisting of 1,000 units w<is created 
to form the original survey population. A gamma distributed 
value, Yl, was associated with each unit. We used the same 
gamma distribution as die one that generated Population 12 
in Lee, Rancourt and Samdal (1994, page 236). The coef­
ficient of variation (population standard deviation divided 
by the mean) was 0.57. Anodier stiidy variable, Y2, was 
created by performing independent Bernoulli trials, one for 
each population unit, which obtained value 1 with proba­
bility equal to 0.5 and value 0 otherwise. Unlike in Lee 
etal, some of the units were dead. Each unit was inde­
pendentiy of other units classified as dead with a probability 
Pdead- All dead units were assigned zero values for bodi Yl 
and Y2. A set of Yl and Y2 were simulated for each of four 
values of Pdead: 0.03,0.05,0.2, and 0.5. These sets contained 
29,54, 201 and 494 dead units, respectively. 

A PRN was attached to each unit and the units were laid 
out along a PRN Une. The first sample, s\, was drawn by 
identifying the 500 units with the smallest PRNs. All dead 
units in î were flagged as 'dead by sample survey sources'. 
Hence, s\ covered approximately die first half of the PRN 
Une. The frame widi the units flagged as dead by sample 
survey sources excluded made up the current survey 
population. The estimates of ^2.^ and A'2,/ used in Sttategy 2 
were based on ii. A second sample, denoted by J2current. was 
drawn by taking 100 units to the right of a starting point, 
start 2, disregarding units dead by sample survey sources. 
Anodier sample of 100 units was selected from start 2, but 
units dead by sample survey sources were ttiis time allowed 
to be included in this sample. Hence, this sample was drawn 
from U\, and we denote it by 52orig- The sample ,y2cun«nt is 
pertinent to Sttategies 1 and 2 while .y2orig will be used for 
Sttategy 3. 

The procedure described in the preceding paragraph was 
repeated 1,000 times. That is, for each of die values of Pjead 
mentioned above and for each of diree starting points of ^2, 
to be defined, 1,000 sets of PRNs were generated and 
attached to the units. The frame was reordered for each new 
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set of PRNs, and three samples were drawn for each 
reordering {si, 52current. and 52orig)- Two values of start 2, 0.0 
and 0.7, were chosen so as to make the proportion of 52cuirent 
diat fell in s^j 100% and 0%, respectively. That is, n2,a/«2 
was set to 100% and 0%. Further, to make n2.a/«2 on aver­
age 50% under each of the chosen Pdead, appropriate values 
of start 2 were derived. They are 0.448, 0.447, 0.438, and 
0.4 for die Pdead values 0.03,0.05,0.2, and 0.5, respectively. 

In summary, die population and samples sizes, die study 
variables Yl and Y2, and which of the units tiiat were dead 
were held fixed in our study. For twelve combUiations of 
Pdead and n2,fl/«2, the reordering of the units on the PRN Une 
dirough die simulation of new PRNs made the foUowing 
factors vary: 

- which of the units that were included in S\, 52current. 
and 52orig; 

- how many and which of die dead units that were 
dead by sample survey sources; 

- which of die units that belonged to s\j and U^wd-

Thus die quantities si^, Nxd and Â2 vary Ui the 
simulations. It seems practical to let diem do so rather dian 
conttolUng them in an experiment with more factors than 

Table 1 
Bias, % of Total of Yl. The First Entry in Each Cell is die Bias Under 

Strategy 1, the Second is the Bias Under Strategy 2. 

Pdcad and n2.a/«2- Hence die results are unconditional, in 
accordance with (8). 

3.3 Results 

Table 1 shows the empUical relative bias of Sttategies 1 
and 2, computed as die straight average of the 1,0(X) 
differences between die estimate and die parameter in terms 
of the percentage of the total obtained in die simulation. 
Sttategy 3 is unbiased and is therefore not included in Table 
1. The empirical bias of Sttategy 3 diat nevertheless ap­
peared in the simulations reflects the simulation error; it was 
at most 0.5%. As seen in Table 1, Sttategy 2 is virtually 
unbiased as weU. Note diat the simulated empUical bias 
under Sttategy 1 is what (8) predicts (widi allowance for 
simulation error). This bias is appreciable in nearly all cases 
and if the proportion of dead (or ineUgible) units is high die 
bias can be very severe indeed. Figure 2 shows the condi­
tional bias given n\4 for Pjead = 0.50 and nj.a / «2 = 0% . 
Note that die bias given by (6) is locaUy well described by 
the regression line in die figure defined by the OLS fit of the 
bias conditional on nî .̂ For example, if ni,d = 220, tiien bodi 
N2JIN2, and {n^-n^J)l{N^-n^) equal 0.56 and B = 
-0.31. 

p 
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-2.8 

-10.2 
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Figure 2. The simulated conditional bias plotted against the number of units dead by 
sample survey sources, ni^, for Pdcad = 0.50 and n2^ln2=0%. An OLS 
regression line shows the local trend of the conditional bias as a function of n, <;. 
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To assess the bias it helps to look at the coverage 
probabilities. Table 2 shows the empirical coverage proba­
bilities, based on symmetiic 'confidence intervals' widi a 
widdi of two times the simulated empUical standard 
deviation of each side of the point estimate. While Sttategy 
2 gives in aU ceUs coverage probabiUties close to the 
targeted 95%, Sttategy 1 achieves that in general only for 
the population widi 3% dead units. The coverage probabiUty 
under Sttategy 1 tends also to be acceptable for populations 
with a larger proportion of dead units, if haU of the sample 
is taken from the part of die PRN Une where dead units have 
been weeded out, and the other half from the part of the 
PRN Une where die original proportion of dead units has 
been retained, as the negative bias from the first half of the 
sample tends to cancel out the positive bias from the second 
half 

The variance of the simulated estimates was computed. 
Tables 3 and 4 show the variance comparisons for Yl and 
Y2, respectively, under Sttategies 2 and 3 relative to diat of 
Sttategy 1. As expected, in all cases Sttategy 1 gave a 
smaUer variance than did Sttategy 3. Sttategy 2 performed 
well in most cases, but considering the extta complexity of 
this sttategy, the feed back Strategy 1 seems preferable for 
populations with a small proportion of ineligible units, say 
3% or less. However, if diis proportion is larger dian, say, 
5%, die bias of Strategy 1 may cause poor coverage proba­
biUties and misleading estimates. The variance of Sttategy 2 
is no worse dian diat of Sttategy 3; in most cases Sttategy 2 
is superior. The non-monotone variance ratios in die bottom 
row of Table 3 is due to die estimation of N2,,/ and N^j 
combined with die specific details of die simulation. 

Table 2 
The Coverage Probability in Percentage for Estimating Total of Yl. The First Entry 

in Each Cell is the Coverage Probability Under Strategy 1, the Second is the 
Coverage Probability Under Strategy 2. 

0.03 
0.05 
0.20 
0.50 

94.6 
93.3 
65.9 
21.2 

0% 
94.3 
95.2 
94.5 
95.1 

Average oj 

94.6 
94.4 
93.8 
78.4 

50% 
'n„ln 

94.8 
93.9 
94.8 
94.7 

94.3 
90.8 
46.1 

0.0 

100% 
95.1 
95.0 
94.6 
94.8 

Table 3 
Variance Ratio of the Estimator of the Total of Y1. The First Entry in Each Cell 

is the Variance Under Strategy 2 Relative to that of Strategy 1, the 
Second is the Variance Under Strategy 3 Relative to Strategy 1. 

0.03 
0.05 
0.20 
0.50 

1.04 
1.08 
1.28 
1.85 

0% 
1.04 
1.08 
1.28 
1.85 

Average ofn 
50% 

1.00 
0.98 
0.85 
0.52 

i^ln 

1.06 
1.14 
1.27 
1.34 

0.98 
0.95 
0.83 
0.58 

100% 
1.08 
1.15 
1.46 
2.24 

Table 4 
Variance Ratio of the Estimator of the Total of Y2. The First Entry in Each Cell 

is the Variance Under Strategy 2 Relative to that of Strategy 1, the 
Second is the Variance Under Strategy 3 Relative to Strategy 1. 

' d e a d 

0.03 
0.05 
0.20 
0.50 

1.03 
1.06 
1.25 
1.80 

0% 
1.03 
1.06 
1.25 
1.81 

Average ofn^in 
50% 

1.00 
0.99 
0.92 
0.65 

1.03 
1.04 
1.15 
1.40 

0.97 
0.95 
0.80 
0.50 

100% 
1.03 
1.06 
1.19 
1.36 
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4. DISCUSSION 

This paper gives conditional and unconditional expres­
sions for the feed back bias when the total is estUnated with 
the common expansion estimator. We have shown that the 
feed back bias can be large. Witii as Uttie as 5% ineUgible 
units on the frame, feeding back information of these from 
sample surveys can result in about 2-3% bias. However, a 
smaU-scale simulation study indicates that if the proportion 
of ineligible units is 3% or less, die feed back sttategy does 
not seem to create problems Ui terms of bias and variance. 

We have also derived a vUtuaUy unbiased estimator. The 
simulation study shows that this estimator compares 
favourably in terms of variance widi the alternative sttategy 
of retaining ineUgible units on die frame and letting diem be 
included Ui further samples. This estimator reUes on die 
availabiUty of consistent estimates of the number of eUgible 
and ineUgible units in the population. These estimates may 
be obtained from an earUer sample through the unbiased 
strategy of lettUig units diat have been found dead be 
included in the sample. 

In order to faciUtate the dieoretical development, we have 
made simplifying assumptions. The most important of these 
is the assumption that all dead units have been found in 
earlier sample surveys and have been fed back to the frame. 
We have envisaged a frame widi one 'white' area, where all 
ineUgibles have been flagged as such, and one 'black' area, 
where no ineUgibles have been touched. In practice, this is 
not lUcely to happen. If die frame is moderately large and 
used for many continuing surveys, some of which may feed 
back to varying intensity, the frame will turn 'grey' rather 
than 'black and white'. The feed back bias wiU dien be less 
severe than in the 'black and white' situation. It has not, 
however, been in the scope of this paper to quantify the bias 
for a 'realistically grey' frame. In this sense, what has been 
examined in dus paper is a worst case scenario. 
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Application of Quality Control in ICR Data Capture: 
2001 Canadian Census of Agriculture 

WALTER MUDRYK and HANSHENG XIE ' 

ABSTRACT 

Intelligent Character Recognition (ICR) has been widely used as a new technology in data capture processing. It was used 
for the first time at Statistics Canada to process the 2001 Canadian Census of Agriculture. This involved many new 
challenges, both operational and methodological. This paper presents an overview of the methodological tools used to put in 
place an efficient ICR system. Since the potential for high levels of error existed at various stages of the operation. Quality 
Assurance (QA) and QuaUty Control (QC) methods and procedures were built into this operation to ensure a high degree of 
accuracy in the captured data. This paper describes diese QA / QC mediods along with dieir results and shows how quality 
improvements were achieved in the ICR Data Capture operation. This paper also identifies die positive impacts of these 
procedures on this operation. 

KEY WORDS: Data Capture; Intelligent Character Recognition (ICR); Quality control; Quality improvement; 
Statistical process control. 

1. INTRODUCTION 

The data captiire of the 2001 Canadian Census of 
Agriculture was conducted between July and November 
2001, using relatively new technology called InteUigent 
Character Recognition (ICR). This approach to data capture 
combines Automated Machine Capture which uses optical 
character, mark and image recognition, with Manual 
Capture by operators who 'key from image' using a heads-
up data capture technique. The heads-up data capture 
technique is appUed only to fields diat can not be recognized 
by the optical system with a sufficientiy high degree of 
confidence (diat is pre-specified). 

The ICR system offered many benefits to the data 
capture operation, in terms of resource savings and 
productivity gains. At the same time, accuracy became an 
exttemely important consideration for processUig a large 
number of documents since the potential for unacceptable 
levels of error existed at various stages of the process. In the 
Uterature, the quaUty of ICR applications has been studied 
by a few authors; see, e.g., Kalpic (1994) and Pasley (2000), 
among odiers. Kalpic discussed the codUig algorithm and 
the results for the 1991 Census Coding Operation Ui Croatia 
and Bosnia-HerzegovUia, using UitelUgent optical readers. 
Pasley pointed out that the quality of a scanned image 
usually depends on the quality of the source document, the 
precision of the scanner, the skiU of the scanner operator and 
the resolution at which the document was scaimed. With 
quality improvement in mind, QA and QC procedures were 
buUt into the data capture operation for the 2001 Canadian 
Census of Agriculture to ensure a high degree of accuracy in 
this operation. 

Quality Conttol activities for the ICR Data Capture 
Operation were focused in three main stages of processing, 
namely: document preparation, scanning calibration, and 
data capture of the questionnaUes. This was done since each 
of these stages was dependent on one another and each had 
the potential to contribute significant errors down the line. 
Therefore, each component should ideally have its own 
conttol system. 

It is the purpose of this paper to describe the QA/QC 
methodology and procedures associated with each of the 
mam stages of the ICR Data Capture Operation, summarise 
die results obtained from dieU application and show how 
ongoUig quaUty improvements were achieved in the ICR 
Data Capture operation. 

2. QUALFTY PROGRAM OVERVIEW 

To better understand the rationale behind the QA/QC 
procedures, it is worthwhile to give an overview of dieir 
objectives and methodologies. 

2.1 Objectives 

The overaU quaUty objective for tiiis project was to 
measure, conttol and improve the quality of the entire ICR 
Data Captiire Operation on a continuous basis. This would 
be achieved by implementing a series of QA/QC procedures 
at each critical stage of die operation. The specific 
objectives for each stage were as follows: 

a) Document Preparation: to ensure that only highly 
readable documents would reach the scanning stage. 
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b) ScannUig Calibration: to ensure optimal machine set-up 
and caUbration prior to die start of production. 

c) Quick Capture (Machine Capture) and Quick Key 
(Manual Capture): to ensure a high level of quaUty of 
data capture during production. 

2.2 QA / QC Methodologies 

Each major stage of processing was operationaUy unique 
and therefore, had different quality requUements. As a 
result, QA procedures were applied to die Document 
Preparation operation, and QC procedures to the Scanning 
Calibration, Quick Capture and Quick Key operations. A 
flowchart is given in the Appendix, which shows the various 
stages of die ICR Data Capture Operation and exactiy where 
these procedures were appUed. 

2.2.1 Document Preparation 

The document preparation operation was essentiaUy 
divided into five sub-processes, specifically: sorting, 
ttanscription, batching, cutting and storage. This operation 
was responsible for preparing the questionnaUes and as­
sociated batches for scanning by the ICR equipment and 
was performed manually by clerical staff. It included 
activities such as separating the contents of the received 
envelopes by document type {Sorting), re-ttanscribUig dam­
aged or iUegible questionnaUes {Transcription), grouping 
questionnaUes Uito batches for registi-ation {Batching), 
cutting the spine of each booklet questionnaUe with an 
electric cutter {Cutting) and filing questionnaUes in the 
archive {Storage). One of die most important aspects of this 
operation was the identification and isolation of problematic 
questionnaUes so that they would not advance undetected to 
die scannUig and data capture stages. These problematic 
questionnaires were labeled as 'outlier' questionnaUes sUice 
diey had problems such as questionnaUes being X'ed out or 
written over fields, extraneous markings, Ulegible entries, 
torn, crumpled or taped documents, etc. 

The potential for error Ui this operation could lead to 
some problems being experienced at the scanning stage. It 
was felt that QA procedures would be appropriate to ensure 
quality at this stage since many of the clerical functions 
were also subject to various automated system cross-checks. 
The system cross checks ensured that die documents had a 
valid ID, correct number of pages, and that the pages, once 
cut, were aligned and in sequential order. The QA 
procedures consisted of a series of on-goUig random spot 
checks for each of the five sub-processes. The results of 
each spot check were recorded on a conttol form and 
summarized for the supervisor to identify if the work was 
being done correctiy. Feedback would then be given to the 
individual clerk or group on a regular basis, and corrective 
actions would be taken when necessary. For example, if die 

work was not being performed well, some re-ttaining would 
take place and/or an increase in the frequency of spot-
checks was done until favorable results were obtained. If 
extensive problems were identified, the supervisor could 
also decide on die amount of re-work requUed, based on die 
seriousness of the problem observed. 

For the sorting, batching, cutting and storage operations, 
the quality measure selected was 'percent of questionnaires 
in error' {i.e., Ui keeping with the assumptions requUed for a 
simple sampling unit). For the transcription operation, the 
probabiUty of multiple independent errors occurring widiin 
a questionnaUe was exttemely high and dierefore the quaUty 
measure selected was 'Defects per Hundred Units, DPHU' 
{i.e., in keeping with the assumptions requUed for a com­
plex sampling unit). 

2.2.2 Scanning Calibration Check 

Experience has shown diat if die scanning equipment is 
not properly configured, the potential for generating poor 
quality images Uicreases substantially. It is dierefore im­
perative that the scanning equipment be optimally set prior 
to production and well maintained throughout the scanning 
operation. To ensure this, a QC procedure called the 
Scanning Calibration Check was developed to review the 
machine settings and caUbration on an ongoing basis. 

Since the equipment settings of the scanning system 
would tend not to fluctiiate too greatiy, it was felt that 
Statistical Process Conttol (SPC) methods would be 
appropriate for conttolUng this portion of the operation. This 
would essentially be an ongoUig spot check of the 
calibration settings performed on a daily basis prior to the 
start of production. The calibration check consisted of re­
scanning a test batch and comparing the results with the 
correspondUig pre-benchmarked results for the same batch. 
The differences between the actual and expected results 
would be compared and error rates computed. These error 
rates were dien plotted on SPC conttol charts to determine if 
the process was operating at an acceptable level. If diis test 
batch failed, the scanning process would not be allowed to 
start production until the machine was re-calibrated and 
subsequentiy re-tested successfully. 

In the Scanning operation, machine recognition could 
substitute wrong values when poor quality images are 
produced. Poor images could be the result of many factors 
such as dUty read heads, smeared optical windows, mis-
aUgnment, mis-registration of fields, poor conttast / 
brighmess levels, paper feed problems, etc. Since a specific 
quality standard was estabUshed for each field type, a 
separate p conttol chart was used to evaluate die substitution 
error rate for each type (specifically, alpha, alphanumeric, 
numeric, tick boxes and bar codes). The acceptable quality 
standard for each field type was previously estabUshed on a 
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field type basis by the client area so therefore, the quality 
measure used was 'percent of fields in error', i.e., die 
substitution error rate by field type for each scanner. 

Based on SPC conttol chart theory, a decision for each 
scanning caUbration test was made as follows: 
- If each of the sample error rates for die five field types 

was respectively lower than theU correspondUig upper 
conttol limit (UCL), it was concluded diat die scannUig 
system was functioning properly and was ready for 
scanning production. 

- Odierwise, it was concluded diat a problem existed with 
the scanning equipment, and corrective action must be 
taken before the start of regular production. 

The test batches were constructed with minimum sample 
size requirements in mind for each field type, such that the 
producer's confidence level would be at least 95%. This was 
dien used as a guide in selecting the actiial questionnaUes 
for each of the test batches. The minimum size was required 
for each field type in order to achieve the high efficiency of 
decisions in die scanning calibration test, while the 
Producer's Confidence Level referred to the lUcelUiood that 
the scanning system would pass die test for that field type 
when the system was functioning at die acceptable target 
level. The Upper Conttol Limit for each field type was 
computed assunUng a -»-2a variabiUty. This limit is lower 
dian die customary -f3c Upper Conttol Limits since the 
scanning calibration check was designed to be more 
sensitive in detecting smaller shifts at start-up than during 
normal production. 

2.2.3 Quick Capture and Quick Key 

Once the questionnaires had been scanned, the system 
would produce a digital image of each field along with an 
interpretation of its value and an associated confidence level 
for its recognition. The actual data captiire then consisted of 
two processes: Quick Capture and Quick Key. Quick 
Capture was the automatic recognition by die system of all 
field images whose confidence levels were above a pre-
specified direshold value. Quick Key consisted of the heads-
up manual capture (by keyers working on terminals) of field 
images whose confidence levels were below the pre-set 
threshold value. 

Since under ideal cUcumstances, these two processes 
were expected to be relatively stable, die QC Procedures 
were again based on SPC principles and were developed to 
measure and monitor the quaUty of each of the processes. 
This QC approach consisted of a small sample check from 
the output of a sample of batches taken systematically over 
time and computing die error rates for each sample. These 
error rates would dien be compared to rejection levels diat 
were calculated by the system based on the expected quaUty 
standard and the sample size for diat observation. A 

decision was dien made as to die acceptability of each of 
these sample measurements relative to the expected quality 
standard for that process. 

In the case of the Quick Capture operation, the machine 
may Uiterpret a different value from the actual value for diat 
field, and dierefore, substitution rates were used to evaluate 
diis process. These substitution errors are particularly 
serious since, if left unchecked, diey may affect die 
recognition rate for many fields for a long period of time. In 
the case of the Quick Key operation, operators may make 
keying errors for many reasons such as lack of skill, poor 
training, fatigue, etc., and therefore, keying error rates were 
used to evaluate this manual process. For both of these 
processes, the quality measure was defined as 'percent of 
fields in error', across all field types combined. 

WidiUi die two capture operations, there were two 
distinct categories for processing die scanned documents: 
Regular questionnaUes and Outlier questionnaires. QC 
procedures were put in place for each category. A separate 
sample was requUed for each process, one for Quick 
Capture and one for Quick Key. The system could 
distinguish between Quick Capture and Quick Key fields in 
each sample questionnaire and maintain separate counts of 
these fields that had been captured under each process. 
These field counts eventually became the sample size for 
each sample. Each sample was dien compared to its own 
threshold rejection rate, which was a function of the 
number of fields observed {i.e., the effective sample size) 
and the expected quaUty standard or target for that process. 
A decision would then be made to accept or reject the 
sample. The threshold rejection rate was equivalent to die 
standard Upper Conttol Limit {UCL) that would be 
calculated on a standard p conttol chart. If die sample error 
rate exceeded this level, the process was rejected and the 
QC Reviewer proceeded to investigate and implement 
corrective actions as appropriate; otherwise the process was 
accepted. 

The sampUng was done on an individual scanner basis 
for Quick Capture and an individual operator basis for 
Quick Key. Some operators requUed more questionnaires to 
be sampled from time to time, and odiers less, based on dieir 
actual performance. Since the actual observations were 
based on samples, a customary -t-3a variability was 
permitted above die expected quality standard {i.e., die 
centerlUie of a /? conttol chart) for each process. The batch 
decisions for these sample observations were made by the 
system during QC verification and these results were dien 
plotted on a p conttol chart for each scanner and operator, 
after die fact and updated weekly. 

For a detailed description of these QA/QC procedures 
and dieU rationale, please refer to Mudryk, Bougie and Xie 
(2001). 
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3. QUALFTY IMPROVEMENTS 

Two essential elements were included in die quality 
improvement sttategy for the ICR Data Captiire Operation. 
These consisted of feedback of QA/QC results and die 
implementation of corrective and preventive actions when 
requUed. These two elements enabled various staff to play 
an active role in improving the quality of each process 
dirough the additional insight Uito the problems diat were 
identified and through the subsequent corrective or 
preventive actions that were taken. 

Using QC data analysis as the base, all processes were 
examined to determine tf they were operatUig efficientiy. 
QC meetings were held widi operations staff on a weekly 
basis to review the ongoing progress of the entUe operation. 
Problems that had impacted any of the processes were 
addressed and recommendations made to tteat dieU root 
causes and prevent theU re-occurrence. The involvement of 
operational staff in resolving these problems played an 
important part Ui faciUtating quality improvements on a 
contUiuous basis. The foUowing examples iUusttate some of 
die more significant cortective actions that were taken 
during the operation diat led to quaUty improvements at 
various stages. 

Example 1: Filtering Process for Detecting Outiier 
Documents 

During the first few weeks of production, it was noticed 
that some documents were causing a high concentration of 
errors from things lUce large X's across a page, O's and 
dashes in various fields, etc. These documents were causUig 
high error rates for both operations but especiaUy for the 
Quick Capture process. Since these documents were very 
different from the majority of the regular documents, a 
procedure was inttoduced to sort diese documents for spe­
cial tteatinent and processing after the fact. Some docu­
ments in fact had to be re-ttanscribed at this stage prior to 
processing them by ICR. 

Example 2: Adjusting System Settings for ScannUig & 
Recognition 

The highUghts of the QC weekly summaries Uidicated 
that both scanners made errors frequentiy on Pages 3 and 14 
of the questionnaUes during die first few weeks of 
processing. An investigation was conducted and it was 
found diat diere was a template readUig problem on Page 3 
and the pre-set recognition threshold level for the numeric 
fields on Page 14 were set too low. After the system settings 
on bodi scanners were adjusted, die system showed 
substantial improvements in the scanning of these two 
pages. 
Example 3: Rettaining Operators widi High Error Rates 

During the keying operation, the QC results showed that 
certain keyers were experiencing above average difficulties 
widi the 'key from image' process and that dieU error rates 

remained high for several weeks. Focusing on continuous 
improvement, these keyers were offered rettaining on an 
ongoing basis. As a result, many keyers made significant 
improvements (week by week) in theU keying performance. 

4. QC EVALUATION AND ANALYSIS 

Throughout the operation, many QC reports, charts and 
estimates, were produced to provide information about the 
incoming and outgoing quality levels and to evaluate the 
output of each production process. These reports were used 
to analyse the quaUty of each process by week and across 
weeks. 

4.1 Document Preparation 

For each of the five sub-processes of the document 
preparation, individual QA procedures were appUed at 
different frequencies and both corrective and preventive 
actions were taken on an on-going basis as dictated by the 
results. The Uiformation coUected and the feedback that was 
provided as a result of these QA procedures helped 
significantiy in improvUig the scanning, imaging, recog­
nition and capture of die questionnaUes. In the fu-st few 
weeks of production, it was discovered from the QC results 
that problematic documents {i.e., outliers) were causing 
most of the substitution errors {i.e., machine ertors) in the 
Quick Capture process. From that point on, a new procedure 
was Uittoduced Uito the Sorting process of die Document 
Preparation operation to separate these documents for 
special tteatment from the regular documents {i.e., labeled 
them for subsequent 100% verification). In general, better 
quality documents reached die scanning stations while 
poorer documents were either re-ttanscribed or processed 
separately with the addition of post processes such as 100% 
verification. 

4.2 Scanning Calibration Check 

In an effort to ensure optimal scanner settings and 
calibration, a Scanning Calibration Check was initially 
conducted twice a day, and subsequentiy once a day, prior 
to production processing. Many test batches were scanned 
during the operation with a relatively high rejection rate 
encountered by each scanner. On average, approximately 
2-3 tests per day (widi corresponding re-caUbrations) were 
requUed for optimisUig die set-up of each of the two 
scanners. This demonsttates die need for re-calibration 
between processing periods. It should be noted that some 
rejections occurred due to problems identified widi the test 
batches which were fixed later on. This is definitely an area 
where some procedural improvement is requUed in the 
future. 
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Both scanners exhibited reasonably high variabiUty 
during this test. The high number of tests requUed, high rate 
of rejection and high variabiUty across processing periods 
for many of die field types demonstrate the need to caUbrate 
the scanning equipment property prior to production. 
Otherwise, the scanners could be Uiadvertentiy set up to 
produce poor images right from the start, which would 
make good quality capture very difficult. Once a test batch 
failed, problems were usually identified and subsequent 
maintenance and corrective actions taken. This Uicluded 
actions such as: re-configuring die scanning equipment, 
replacing old tight bulbs, fixing software problems, cleaning 
dirty read heads, etc. UsUig this test, the scanners were able 
to be calibrated and maintaUied at optimum levels of 
performance, between production runs. 

4.3 Quick Capture and Quick Key 

For die Quick Capture process, over the entUe 18 weeks 
of processing the Regular questionnaires, the overall 
weekly substitution error rates decreased steadily from 4.3% 
to 0.8%, resulting in a grand overaU substihition error rate of 
2.0% (across all field types) for both scanners. The 
substitution error rates measured during production were 
maintained very near the Target levels diat were estabUshed 
for each field type. These were as follows: Alpha (2.1% 
relative to a tiu-get of 2.0%); Alphanumeric (3.2% vs 3.5%); 
Bar Code (0.0% vs. 0.2%); Numeric (2.8% vs. 2.0%) and 
Tick Boxes (0.8% vs. 0.4%). In comparison, processing die 
outlier questionnaires had a much higher substihition error 
rate and greater weekly variabiUty than the corresponding 
regular questionnaires {i.e., ranged from a high of 22.4% to 
a low of 1.3%). Although die substitution error rate did tend 
to reduce substantially over time, it did remain relatively 
high throughout the process and was measured at 7.0% 
overaU, which was significantiy higher dian die rate for 
regular questionnaUes {i.e., 2.0%). 

For the Quick Key process, the keying error rate for 
processing the regular questionnaires was relatively high 

throughout the entire processUig period {i.e., mostiy over 
3%). This was partially due to die fact diat this operation 
was a heads-up keying process and these keyers typically 
processed die most difficult cases. Over die entire 18 weeks 
however, the weekly keying error rates generally decreased 
from 5.6% to 1.6%, widi an overall average of 3.4%. The 
keying was also subject to high levels of variabiUty among 
operators, widi Uidividual error rates ranging 1.7% to 7.5%. 
It is interesting diat keying die outlier questionnaires had a 
similar keying error rate to the corresponding regular 
process {i.e., 3.4% vs. 3.7%) and ranged from a high of 
5.7% to a low of 1.6%. 

4.4 Estimates of Average Outgoing Quality 

The primary purpose of the QA/QC procedures was to 
identify problems and to prevent them from occurring again. 
However, these procedures also had a corrective component 
in the sense that, errors that were discovered were always 
rectified. It is dierefore possible to estimate the overall 
Average Outgoing Quality (AOQ) for the data capture 
component after die application of the QC procedures. 

Estimates of AOQ were calculated for each of die two 
data capture processes. For a sampled outiier batch, all die 
questionnaUes {i.e., sampled and remaUider) in that batch 
would be subjected to subsequent 100% verification, while 
for a regular batch, only the sampled questionnaUes would 
be verified. This affects the calculation of AOQ since it can 
be assumed that the outgoing error rate for all verified 
questionnaUes is 0.0%. The overall estimate for each 
component was based on die information obtained from 
both the regular and outUer documents, considering 
estimates of incoming quality and corrections made during 
verification. In the calculation, any documents reprocessed 
through either Quick Captiire or Quick Key were included 
in die count. 

Table 1 provides estimates of the AOQ for the Quick 
Capture and Quick Key processes. 

Process 
Quick Capture 

Regular 
OuUier 
Overall 

Quick Key 
Regular 
Outlier 
Overall 

Combined 
Regular 
OuUier 
Overall 

Table 1 
Estimates of AOQ for ICR Data Capture 

No. Questionnaires 
in Population 

273,818 
12,702 

286,520 

281,502 
25,788 

307,290 

No. Fields in 
Population 

21,248,277 
1,044,358 

22,292,635 

6,376,020 
686,734 

7,062,754 

27,624,297 
1,731,092 

29,355,389 

Estimated 
No. Fields Verified 

and Corrected 

170,249 
1,044,358 
1,214,607 

234,253 
686,734 
920,987 

404,502 
1,731,092 
2,135,594 

Incoming Error 
(%) 

2.01 
6.99 
2.95 

3.41 
3.67 
3.45 

2.82 
5.09 
3.24 

AOQ (%) 

1.99 
0.00 
1.90 

3.28 
0.00 
2.97 

2.29 
0.00 
2.16 
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It can be seen that the overall AOQ for the Quick 
Capture process was estimated at 1.90% and for the Quick 
Key process at 2.97%. This was down considerably from 
theU corresponding estimates of incoming quality of 2.95% 
and 3.45% respectively. The overall AOQ for bodi 
processes was estimated at 2.16% (relative to an overall 
incoming error quality of 3.24%). It should be noted that the 
AOQ for outlier documents was assumed to be 0% sUice all 
outlier documents were subsequentiy 100% verified. 

4.5 QC Summary 

The above results clearly indicate the need for die 
QA/QC procedures at die different stages of processing. It 
also shows how they collectively contributed to conttolUng 
the outgoing quality and generatUig quality Unprovements 
into all phases of the ICR data capture operation. 

The QC results clearly showed that the outlier documents 
had a greater negative impact on die Quick Capture process 
{i.e., 7.0% substitution error rate) than die Quick Key 
process {i.e., 3.7% keyUig error rate). This Uidicates that the 
filtering process for special tteatment of outlier documents 
was an important step to take. The QC results also showed 
that if the documents were Ui good shape for scanning and 
the machines were well calibrated, the automated system 
was capable of capturing the data faster and widi better 
quality than die manual key from image process. This is 
quite an important observation, sUice diere are obvious 
savUigs implied widi a correspondUig improvement in data 
capture quality {i.e., 2.0% vs. 3.4%). To die defence of die 
keyers, however, they did process the more difficult cases, 
thus partially explaUiUig theU higher error rates. Overall, it 
was estimated diat about 77% of die fields were captured 
through the Quick Captiire process and 23% were captured 
through the Quick Key process. 

It should also be noted that die regular feedback of the 
QC information collected from the various stages of the ICR 
process was essential in identifyUig the root causes of many 
problems and in helping to resolve them. This provided die 
opportunity for many quality improvements to be generated 
into die various stages, on an on-going basis. 

For a detaUed description of these QA/QC results, please 
refer to Mudryk and Xie (2002). 

5. CONCLUSIONS 

then labeled for special tteatment and subsequent 100% 
verification. 

The QC procedures were then able to optimize the 
machine set-up by applying die Scanning CaUbration Check 
prior to production. Furthermore during production, QC 
samples were also able to identify problems widi die auto­
matic recogiUtion and key from image processes, so that 
diey could be improved as requUed. 

In aU cases, early warning signals were obtained from 
objective measurements at each stage of processing, and 
corrective and preventive actions were implemented as 
needed. Extensive feedback was provided to all stages of die 
ICR process on an ongoing basis from which continuous 
quality improvements were generated. 

APPENDIX 

ICR Data Capture Operation 
(with QAyQC) 

Document Preparation 

Scanning 

X 
Image Processing 

X 

Quality 
Assurance 

. Spoi checks of ̂ SiirtlHg. 
Bulchihg. Culling, stoniso 

ription PreKcssoB. 

Recognition 

Scanning 
Calibration QC 

- Regular bngolnS Tcsi 
conducted using SIK^ 
Chan per Field Type. 

Key from Image 
(Quick Key) 

Automatic Capture 
(Quick Capture) 

Quick Key QC 

Quick Control 
Module 

' Sampling Criteria. 

. Verification. 
Assessment 
and Repair. 

- SPC/Paroto 
Charts. 

Quick Capture 
QC 

CPS" 

'• CPS = Central Processing System. 

It is clear from the results obtained in dUs analysis, diat 
the QA/QC procedures were exttemely valuable and had a 
very positive impact on die entUe operation. The QA 
procedures diat were applied in die Document Preparation 
process were effective in preventUig many poor documents 
from reaching die scanning stations and those that did were 
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Design Effects for the Weighted Mean and Total Estimators 
Under Complex Survey Sampling 

INHO PARK and HYUNSHIK LEE ' 

ABSTRACT 

We revisit the relationship between the design effects for the weighted total estimator and the weighted mean estimator 
under complex survey sampling. Examples are provided under various cases. Furthermore, some of the misconceptions 
surrounding design effects will be clarified with examples. 

KEY WORDS: Simple random sample; pps sampling; Multistage sampling; Self-weighting; Poststratification; 
Intracluster correlation coefficient. 

1. INTRODUCTION 

The design effect is widely used in survey sampUng for 
developing a sampling design and for reporting the effect of 
die sampling design in estimation and analysis. It is defined 
as die ratio of die variance of an estimator under a complex 
sampling design to diat of the estimator under simple 
random sampling with the same sample size. An estimated 
design effect is routinely produced by computer software 
packages for complex surveys such as WesVar and 
SUDAAN. It was origUiaUy intended and defined for the 
weighted (ratio) estimator of die population mean (Kish 
1995). However, a common practice has been to apply this 
concept for other statistics such as die weighted total 
estimator often with success but at times with confusion and 
misunderstandUig. The latter situation (x;curs particularly 
when simple but useful results derived under a relatively 
simple sampling design are appUed to more complex 
problems. In this paper, we examine the relationship 
between the design effects for the weighted total estimator 
and the weighted mean estimator under various complex 
survey sampling designs. In section 2, we briefly review the 
definition of the design effect and its practical usage whUe 
discussing some of the misconceptions surrounding design 
effects for the weighted total and mean estimators. 
Subsequentiy, in section 3, we analyze die difference 
between the design effect for the weighted total estimator 
and diat for die weighted mean estimator under a two-stage 
sampling design followed by a discussion regarding the 
design effects under various two-stage sampling designs and 
some more general cases Ui section 4. We try to clarily 
some of die misconceptions with these examples. FinaUy, 
we summarize our discussion in section 5. 

2. A BRIEF REVIEW ON DEFINITION AND USE 
OF DESIGN EFFECT IN PRACTICE 

A precursor of the design effect that has been 
popularized by Kish (1965) was used by Cornfield (1951). 
He defined the efficiency of a complex sampUng design for 
estimating a population proportion as the ratio of die 
variance of die proportion estimator under simple random 
sampUng with replacement (srswr) to the corresponding 
variance under a simple random cluster sampling design 
with the same sample size. The inverse of the ratio defined 
by Cornfield (1951) was also used by others. For example, 
Hansen, Hurwitz and Madow (1953, Vol. I, pages 
259 - 270) discussed die increase of die relative variance 
of a ratio estimator due to the clustering effect of cluster 
sampUng over simple random sampling without 
replacement (srswor). The name, design effect, or Deff in 
short, however, was coined and defined formally by Kish 
(1965, section 8.2, page 258) as "die ratio of die actual 
variance of a sample to the variance of a simple random 
sample of the same number of elements" (for more history, 
see also Kish 1995, page 73 and references cited therein). 

Suppose that we are interested in estimating the 
population mean {Y) of a variable y from a sample of 
size m drawn by a complex sampUng design denoted by 
p from a population of size M. Kish's Deff for an 
estimate (y ) is given by 

Deff = 
yr(yp) 

(^-f)sl.l 
(2.1) 

m 

where V^ denotes variance witii respect to p,f = m IM is 
die overaU sampling fraction, and S^ = {M-l)~^ 
2f=i(yit -Y)^ is the population element variance of die 
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y-variable. Although the design effect was origUially 
intended and defined for an estimator of the population 
mean (Kish 1995), it can be defined for any meaningful 
statistic computed from a sample selected by a complex 
sampUng design. 

The Deff is a population quantity that depends on the 
sampling design and refers to a particular statistic estimatUig 
a particular population parameter of Uiterest. Different 
estimators can estimate the same parameter and theU design 
effects are different even under die same design. Therefore, 
the design effect includes not only the efficiency of the 
design but also the efficiency of the estimator. Samdal, 
Swensson, and Wretman (1992, page 54) made diis poUit 
clear by defining it as a function of die design (p) and the 
estimator (G) for die population parameter (6 = 9(y)). 
Thus, we may write it as 

Deff ̂ (9)= ' . , 
K, .wor (e ) 

where 0' is the usual form of an estimator for 6 under 
srswor, which is normally different from 9. For example, to 
estimate the population mean, one may use the weighted 
(ratio) mean 0 = 'Es^kyk ' 'SJ^k with samplUig weights 
w^ but 9' would be die simple sample mean X!j y* /m, 
where the summation is over the sample s. We will see the 
effect of particular estimators 9 on the design effect in the 
later sections. 

Kish (1995) later advocated using a somewhat different 
definition, which is called Deft and uses the srswr variance 
in the denominator on the ground that without-replacement 
sampUng is a part of the design and should be captured in 
the definition. He also reasoned that Deft is easier to use for 
making Uiferences and that it is better to define die design 
effect widiout die finite population correction factor (1 - / ) 
because die factor is difficult to compute in some situations. 
The new definition is given by 

Deftp(9)-. 
KrswrCe') 

or Deftp (0) = V (̂0)/V,rswr (0')- Survey data software 
such as WesVar and SUDAAN produce Deft̂  instead of 
Deff. We wUl use this definition in this paper. 

When die population parameter is the total {Y), the 
unbiased estimator is the weighted sample total, namely, 
Y -"Ls^kyk- When the population mean is the parameter 
of interest, it is usually estimated by the weighted mean, that 
is, J' = Zs w'/fc y* / Us ^k - It is a special case of die ratio 
estimator, ZiVfty* /'Ls'^k ̂ k' where X/^ =1 for all kes. 

One common misconception about the design effects for 
Y and Y is that they are similar in values. However, it has 
been observed diat the design effect for Y, Deft^ {Y), 

tends to be much larger than that for Y, Deft^ {Y). This 
was also noted in, for example, Kish (1987) and Barron and 
Finch (1978). Some explanation can be found in Hansen 
etal. (1953, Vol. I, pages 336-340) who showed diat die 
difference arises from die relative variance of the cluster 
sizes. More recently Samdal et al. (1992, pages 315-318) 
showed that conttary to the case of K, the design effect 
for Y depends on die (relative) variation of the y-variable. 
In fact, even the design effect for Y may depend on the 
(relative) variation of the y-variable, which we will discuss 
in section 4. This dependence conttadicts what die design 
effect is intended to measure as Kish (1995) expUcitiy 
described: 

"Deft are used to express die effects of sample design 
beyond the elemental variability {Spm), removing both 
the units of measurement and sample size as nuisance 
parameters. Widi the removal of 5^, the units, and the 
sample size m, the design effects on the sampling errors 
are made generalizable (ttansferable) to other statistics 
and to other variables, within the same survey, and even 
to other surveys." 

^ His statement may be loosely true for die weighted mean 
Y as expressed in the frequentiy used sample approximate 
formula for Deft ^ (p, Y) given by Kish (1987): 

Deft; (y) = {1 + p(m -1) }(l + cv^J (2.2) 

where the sample design p contains complex features such 
as unequal weightUig and cluster sampling, p = Pp (y) is the 
inttaclass correlation coefficient (often called widiin cluster 
homogeneUy measure), m is the average cluster sample 
si,7e, and cv^ is the sample relative variance of the weights. 
Strictiy speaking, dUs formula is not Uidependent of die 
y-variable because p is dependent on the y-variable. Also, 
die design effect may not be free of the unit of measurement 
unless Vp {Y) is expressed in a factorial form of S^ Im. 
See Park and Lee (2002). This formula (2.2) is valid only 
when there is no correlation between the sampUng weights 
and die survey variable y. However, if the correlation is 
present, die formula may need to be modified as stiidied by 
Spencer (2000) and Park and Lee (2001). Ui die following 
section, we elaborate this aspect in detail for two-stage 
sampling and we will also examine diis point further in 
section 4.1. 

3. DECOMPOSrriON OF THE DESIGN EFFECT 
UNDER TWO-STAGE SAMPLING 

We consider a sampling design conducted in two stages. 
Suppose that a population U ={k:k-l,...,M] with M 
elements is grouped into N clusters of size M, such that 
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^=Z,^i l^i- The fu t̂ stage sample s^ -{i:i-l,...,n] 
of n clusters (primary sampling units, or PSUs in 
abbreviation) is selected widi replacement from Â  clusters 
with probabilities p,, where Z,^iP, =1- Let p^ -Pr{s^) 
denote die fu t̂ stage sampUng design. The second stage 
sample s,^ -[j: j -l,...,m.} of m- elements (secondary 
sampling units or SSUs in abbreviation) is then selected 
independentiy from each PSU / selected at the first stage 
according to some arbitrary sampling design, say p^, -
Pr(5 ,̂. 15„) where ie s^. Denote the total sample of ele­
ments and die overaU sampUng design by ^ = u,gj s^i and 
p = Pr{s), respectively. Associated widi die y* element in 
the /* cluster is a survey characteristic y,̂ .,y = l,..., M,., 
I = 1,..., A'. For a given i€. s^, let w |̂; be the second stage 
sampUng weights such diat an estimator of die form Y- = 
'Z'JUWj^i y^j is unbiased for die cluster total Yi -'Z^yy, 
that is, E, {Y- ) = Y., where E, represents die expectation 
with respect to the second stage sampUng. Let w, -ll{np.) 
be the first stage sampUng weights and let ^ = Z/l|l^ be 
die population total. It is easy to show diat E^ {Yilpi) = Y-
Assuming that Y^ are known for i65„, Z"=|M',J^ is the 
average of n unbiased estimators of Y so diat 
E^ (Z"=i Wj Yj) - Y, where E^ denotes the expectation with 
respect to the first stage sampling design. Note that both 
stages are samplUig with replacement. Accordingly, U is 
possible that the same sampling unit (eidier cluster or 
element) is selected more than once but they are tteated 
differentiy. Define the overall sampling weights by 
W.J = w. Wj^.. Clearly, Y = Z"=i ZJii^ij 3'y is unbiased for 
Y, that is, E^{'Y)=E^E,{Y) = E^{Zl^w.Y.) = Y, 
where E^ represents the expectation with respect to p. The 
variance of Y can be written as 

V^{Y) = V^E,{Y)-^E^V,{Y) 

^Zw.O-.-p.n'+iw.V^Cy,) (3.1) 
i=l 1=1 

where Vp,Vg and V, represent variances defined with 
respect to the overall, the first stage, and die second stage 
sampUng. See Samdal etal. (1992, pages 151 - 152). 

A commonly used estimator for die population mean 
y = YIM is the weighted (ratio) estimator given by 
Y = YIM where M =L"=iZ7=i^y- Using Taylor lUiear-
ization, as shown in Samdal etal. (1992, pages 176- 178), 
Y can be approximated as 

Y =:Y-¥M-'D (3.2) 

where 0 = Z"=iZ7=î ,y l̂y is an unbiased estimator of the 
population total D = 'tf^^Y!fi\d^j of dy^yij-Y, which 
represents die deviation of y^ from the population mean 
F. Note diat D = 0. Denoting D-='Z.%dij =Yi-MJ 
and Dj - ZjLi ŵ |, d^j, we obtain the approximate variance 
of Y from expression (3.2) as 

^"'^'^-W 
N f 

Z^/ 
/=i V M +Zvv,-^.(A) . (3.3) 

If a simple random sample of size m = Z"=i'w, is 
selected with replacement from die population U, then a 
sample mean ŷ^̂  = Zj y* /»J and its expansion 

1 
ys.s='^ysrs=jYs yk (3.4) 

would serve as die estimators of the population mean Y 
and total Y, respectively, under srswr, where f -mlM is 
the overall sampUng fraction. Their variances under this 
sampUng design are given as V^^,^^{Y^J = M^ Krswr(5̂ srs). 
where _V,,,^Ay,J = m-^ SJ. and S , S ( M - 1 ) - ' 
ZjCŷ  -Y)^- We note diat m is the achieved sample size, 
which is a random quantity in general. From (3.1), (3.3), and 
above expressions with m replaced by its expected value m' 
with respect to the overaU sampling design p, i.e., 
rn = Ep (m), the design effects for Y and Y can be written 
as 

m 
cv! , ,.=, Y^i Dehl{Y)= 

and 

^<(y)^^\Y-'^ 

+Zvv,V, 
y 1=1 

^Y M,.^' '̂  
Y M J i=i 

T 
v ^ 

'D.' 

(3.5) 

(3.6) 

where CV^ =SylY represents the population relative 
variance of the y-variable. From tiiese expressions, the 
difference in design effects for Y and Y can be written as 
follows. 

Deft ; (y)-Deft ; (y)-A,-^A, , (3.7) 

where 

A „ = • m 

cvl 
Z-,-

\ 2 

--Pi M 

and 

A* = m 
CV,: 

V, 
[Yl] 

-Vb 
fAll 

The two components Â  and Â  in expression (3.7) 
reflect the differences arising from the respective sources of 
variation from the first and second stages of sampling. Of 
course, die second component disappears if all die elements 
in selected clusters are observed since it becomes a single-
stage design or if a simple random sample is selected in the 
second stage. This is because both variances Vj(l̂ ) and 
14(D,) are equivalent under the aforementioned conditions, 
diat is, 1) V (̂i;.) = V (̂D,.) = 0 if ŵ ,,. =1 foraU / andy, and 
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2) V,{Y,) = Vi,{Di)>0 if Wj^i =M.lm. for all / and j . In expression (3.9) approximately reduces to m'CVllCY 
other words, 

A^ = 0 if w:,: - Cj for all i and j . 
"M (3.8) 

where c, are nonnegative constants and not necessarily 
equal for different clusters. Meanwhile, we can show that 

A = 

0 /7,. ocM, . , 

y,-M,., 

Pt'-Yn 

(3.9) 

if 

Ap{y) if 

[-A^{y) if 

for all /, where Ap{y) = {m'IC^l)Z,^iw,{p,-M.IMf. 
Note that A^ (y) is a nonnegative quantity and also that the 
conditions in expression (3.9) can be restated, respectively, 
as Pi=MilM,Y.=Y, and Pi=Y.IY, where i^ = y;./M,. 
for all / = ! , . . . , A'̂ . This result reveals the effect of cluster 
sampUng on die precision of the two estimators. For 
example, if Pj=MjlM, cluster sampling makes no 
difference in the precision of the two estimators. On the 
odier hand, U p, = 5̂  / y , 7 becomes more efficient than Y 
Ui precision under cluster sampUng, whereas the cluster 
sampling favors Y over Y in terms of precision if Y- =Y 
for all /. 

Now, let us consider some examples of die conditions of 
(3.8) and (3.9). 

Example 3.1 For one or two-stage cluster design widi pps 
cluster sampling usUig p. -MJM and w ĵ, =c. for all 
/ = 1, ...,A^, we have from (3.8) and (3.9) diat A„ = 
Aj, = 0, that is, there is no difference in the design effects for 
y and y . 

The same result as given in example 3.1 can be achieved 
by Y -MY. This estimator is the ratio estimator, which 
can be used if M is known. The case that overall sampling 
weights are a constant for all the elements {i.e., self-
weighting sampling design) is a well known special case. 
We will come back to diis Ui section 4. 

Example 3.2 One-stage simple random cluster sampling or 
two-stage sample design widi srs for both stages. Under 
these designs, we have Wj^. = c, and Pi=llN for all / and 
j and dius, it follows from (3.8) and (3.9) diat A^ = 0 and 

m 
- , C V ^ 

cv; 
cv^ 

•m 

if 

if 

A/, =MQ foraUj, 

y, are all equal. (3.10) 

CV,' 
if y, are all equal, 

where m' m7n,CV^=M-^Z,^i(M, •MfiN denotes 
the relative variance of cluster sizes M,, and M =M IN 
denotes the average size of clusters. The conditions Ui (3.10) 
also satisfy the conditions Ui (3.9) and therefore, (3.10) is a 
special case of (3.9). Note diat the quantity Ap{y) Ui 

when p. =11N for all i. 
Example 3.2 shows diat when unequal cluster sizes are 

not reflected in the sampling design, die relative efficiency 
of y over y depends Ui part on the relative variability of 
cluster sizes. If the cluster means are all equal, then cluster 
sampUng makes Y more efficient than Y, vice versa if all 
the cluster totals are equal. On the other hand, if all clusters 
are equal Ui size, no difference in the design effects arises by 
simple random sampling of clusters. 

In section 4, we utilize the results derived in this section 
to discuss other examples used Ui the samplUig literature. 

4. EXAMPLES ON THE DESIGN EFFECT IN THE 
SAMPLING LITERATURE 

4.1 Unequal Probability Element Sampling 

Consider an unequal probabUity element sampUng design 
widiout clustering. The discussion in section 3 applies to 
dUs example widi M , s l for aU i = l,...,N and dius, 
m=n. For brevity's sake, we use lower cases y, to denote 
the value of the y-variable, and we also assume that Â  is 
large so tiiat NI{N-l)=.l. Due to die absence of die 
second stage sampling variation, the design effects for Y 
and y given in expressions (3.5) and (3.6) reduce to 

Ypi'(yi-PiY)' 
Deft^ry) = -

YN{y^-Y)' 
(4.1) 

and 

Yp7'(y^-y)' 
Deftl{Y)B^ (4.2) 

Z^(>'.-^)' 
Further let us consider an example where die survey 

variable y is not correlated with the selection probability /?,. 

Example 4.1 Unequal probabUity element sampUng with no 
correlation between y,. and /?,. When y,. and /?, are not 
correlated, we can approximate Z/li Pr ' (> ' i~^)^ ^y 
«i^Z^=l(} ' ,•-F)^ where W = A^"'Z.li w,-_Note diat 
Ep (n-'zr=iW,.) = A^/n,£^ {n-'^=1^1) = NWIn and 
£ , («"' Z,"=, wf) I El («-' Zr=, w,) = nW IN. Thus, 

Def t ; (y) = ni^/A^ 

-^.("-'ZL-flA^n-'Z;,-,.). (4-3) 
It is easy to show that nWIN >l using the Cauchy-
Schwarz inequality (Apostol 1974, page 14). In addition, 
routine calculations show from (4.1) and (4.2) that 
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Deft ; (y)-Deft ; (y) 

- cviYti p;'(p.-pf-2y-'Y:i p.(y. -y)(p<-p)} 
=cy;\nw/N-i), 

where p = A'"'ZfliP, = 1 / ^ - The latter expression is 
obtained from zr=i Pi\Pi -pf = nWIN-1 and Zf̂ , 
pT\y.-Y){pf-p) =0 because y, and p. are uncorre­
lated. Consequentiy, 

Deft;(y)-Deft;(y) = cv; {Deft;(y)-l} 

or 

Deft ; ( y ) = ( l + CV;^) Deft ^ ( y ) • •CV -2 (4.4) 

From (4.4), 
i2 / # 

it is clear diat Deft^ {Y) > Deft^ (F) U 
Deft^ (F) > 1 and die equality holds if Deft^ {Y) = 1 or 
W=Nln. Also, Deft;(y)<Deft;(y) if l/(l-hCV^^)< 
Deft ;(y)<l . 

Example 4.1 shows diat Y tends to have a larger design 
effect dian Y if the correlation between y, and p, is weak 
and Def t ; (y)>l . 

The customary quantification of the effect of unequal 
weights on the design efficiency shown in (2.2) is due to 
Kish (1965, 11.7). He considered cases where the unequal 
weights arise from "haphazard" or "random" sources such 
as frame problems or non-response adjustments. Assuming 
that (1) a random sample of size n selected widi replacement 
is divided into G weighting classes such that the same 
weight Wg is assigned to n^ sampling units within class g 
and n = Zg=|n^, and that (2) all G weightUig class 
variances are equal to the unit variance of y, i.e., Sj.^ = S^ 
for all g = 1, ...,G, he proposed a quantity given as 

DeftL,(y)-«Z« z«. w„ (4.5) 

to measure die increment in the variance of y Ui 
comparison with the hypothesized variance under srswr of 
size n. The rationale behind the above derivation is that the 
loss in precision of Y due to haphazard unequal weighting 
can be approximated by the ratio of the variance under 
disproportionate stiatified sampUng to that under die 
proportionate sttatified sampUng. 

In (4.5), letting n^ = 1 for all g and thus, n = G, Kish 
(1992) later proposed a well-known approximate formula 
given as 

DeftLh (>') = « Z 
i = i 

1̂ + cv' (4.6) 

where cv^ =n~'Z"=i(w',-w)^/W^ is the sample relative 
variance and vv is die sample mean of w,. Note that (4.6) 
is a sample approximate of (4.3). For a sampling design 

which is inefficient for estimation of Y, the inefficiency 
diminishes with the ratio estimation. Next, we consider die 
opposite case where the y-variable is correlated with the 
selection probability p,, where the efficiency of F 
increases. 

Example 4.2 Unequal probability element sampUng where 
y, is correlated with p.. Suppose that y, is linearly related 
widi Pi by y,. = A -I- Bp. -(- e,, where A and B are the least-
square regression coefficients of die model for die (finite) 
population and e, is die corresponding residual. Further­
more, assume diat the regression model fits well to the 
population data and die error variance is roughly homo­
geneous so diat R^^ = 0 and R^2^ = 0, where R^^ and 
R 2 denote die population correlations of pairs (e,, w,.) and 
{efyWi), respectively. For example, /?̂ ,„ = Z£i 
{e.-E){w.-W)l{{N-l)S^SJ, where E = T.Le,IN; 
S^ and S^ are die population standard deviations of e, and 
w,, respectively. Then the design effects given by (4.1) and 
(4.2) reduce to 

Deftl {'Y) = {nW/N){\-Rl) 

+ {nW/N-]) 
/?,. 

CV„ CV 
(4.7) 

y J 

and 

Deftl {Y) = {nW/N) {I-Rl,) 

-i-{nW/N-l) 
R.. 

CV 
V p y 

(4.8) 

respectively, where R^^ is die population correlation 
between y, and p, and CV^ is the population coefficient 
of variation of p, (see Park and Lee (2001) for proof), ft 
follows from (4.7) and (4.8) Uiat Deftp(y) > De\\l{Y) if 
and only if 

2R,p<CVjCV^., (4.9) 

where the equality holds if and only if 2/?,,̂  =CV^, /CV^,. 
Also, the inequaUty is reversed when the inequality in (4.9) 
becomes opposite. 

The condition (4.9) indicates diat F tends to be less 
efficient in terms of precision dian Y whenever R^.^, is 
small. Thus, we see diat R^^ plays an important role in 
determining the design efficiency of unequal probability 
sampUng on F and Y and their relative efficiency. 

In an attempt to develop an approximate expression to 
the design effect when y, is correlated widi p., Spencer 
(2000) proposed a sample approximate formula for F and 
compared it widi Kish's approximate formula (4.6) for the 
special case of R^^ = 0. As seen in example 4.2, the two 
design effects (4.7) and (4.8) are not equal unless 
W = NIn (see Park and Lee (2001) for more discussion 
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and some numerical examples). In addition, this special case 
provides die same condition as for example 4.1 and thus, the 
two approximate design effect formulae (4.7) and (4.8) are 
equivalent to (4.4) and (4.3), respectively. 

4.2 One-Stage Cluster Sampling 

Consider a one-stage cluster sampling, where every 
element in a sampled cluster is included in the sample, i.e., 
m, = M, for all «G S^. Due to the absence of the second 
stage samplUig variation, die variance of F takes only the 
first term of expression (3.1) and it can be decomposed as 

Z --• (y< -p.y)' =^^^^^^^s%+Y - ,a? ;^ (4-io) 
i=i " ;=i 

where S' - (A^-1)"'ZfL,M.{Y.-Y)' and a-
Mi{Mi-piM) for i = l,...,N. Note diat Q.=0 if 
p.^MjIM, that is, p, is proportional to the cluster size 
M,. Also, note that Sjg is the between-cluster mean square 
deviation in an analysis of variance. Denoting die within-
cluster mean square deviation as S^^ ={M-N)~^'ZiL\ 
Zfj,(y,y-i^)' , write Sl,^S'^{l + 5{M-N)l{N-l)} 
widi 5 = l -5^„ , /S^ . Since die expected sample size is 
m' = nM, the design effect for F can be written from 
(4.10) as 

Deft^/y) = 
'N-l^' 

N yv 

nM ' ' 

l-t--
M 

' ; ' 
N-l 

CV,: 

y w,e,rF^ 
i=i M; KY^ 

(4.11) 

Similarly, die design effect for Y can be expressed as 

Def t^ (y)s 
i \ r N-l 

1-1-
M-N 

N-l 

nM ^ w.-Q,. f D,. 

CV, ,=, '^ Mf 
(4.12) 

We observe diat the design effect for Y differs from diat for 
F in the second term containing D, = Zjl'i (yy - y ) instead 
of Yj. In addition, we note diat die quantity 5 = 5p(y) is 
the adjusted coefficient of determination {RI^J) in die 
regression analysis context. It may be called a homogeneity 
measure. For more discussion on 5, see Samdal etal. 
(1992, pages 130-131) and Lohr (1999, page 140). 

Example 4.3 One-stage simple random sampUng of 
clusters. In this example, if p^=llN for aU i = l, ...,N, 
the two design effects in (4.11) and (4.12) reduce, 
respectively, to 

Deft ' /y) = 
A ^ - l V . M-N ^ 

N 

/v-cv;;r, 

l -h-

V N-l 

Y{M.,-M) 

M^ 

M 

f v \ 

yy J 
(4.13) 

and 

Deft^(y) = 
^ A ^ - l V . M-N\ l-H 5 

I A^-1 ) N 

I 

N - C V ^ = , 
Y(M,-M) M^ 

M yy J 
(4.14) 

where M=MIN. Since Deft^(F)-Deft^p(y)<x: 
Zr=iA^,(^f,-A^)(2i^-F),die Uiequality between design 
effects for F and Y depends on the joint distribution of Y^ 
and M-. 

Example 4.4 One-stage simple random sampling of clusters 
of equal-size. In this case, we have M, = MQ and 
p.=llN for all i = l, ...,N and both design effects in 
(4.13) and (4.14) can be approximated by the same quantity 
given as 

^A^-n 
Â  A^-1 

(4.15a) 

since M.-M = 0 foraU i = l, ...,N. 
To inttoduce die clustering effect on variance estimation, 

one often uses the simplest form of one-stage simple 
random cluster sampling as in example 4.4. For example, 
see Cochran (1977, section 9.4), Lehtonen and Pahkinen 
(1995, page 91), and Lohr (1999, section 5.2.2). Aldiough 
these authors adopted a without-replacement sampling 
scheme, we compare theU formulae with our formulae widi 
the with - replacement sampling assumption for die sake of 
both simplicity and consistency. Furthermore, the compar­
ison is valid because theU formulae are defined with the 
finite population correction incorporated in both numerator 
and denominator so diat its effect is basically cancelled out. 
Cochran (1977, section 9.4) derived 

NM 
Deft'{Y) = 

M,{N-l) 
= l + (Mo- l )p , 

^ [ l + (Mo-l)p] 

(4.15b) 

where p is called the inttacluster correlation coefficient 
defined by 

P = 

N Mo _ _ 

2Z Z (yu-y)(yu-y) 
,=1 j>k=l 

N M„ _ 

{M,-i)Y Y (yij-y)' 
i=i M 

(4.15c) 
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Rewriting Zjl, [Zjl", (yij-Y)? = M,{N-l)S% and 
Zr=, Z7i, {y,j-Y)' = {NM,-l)Sl = {N-l)SJ,+N{M,-l) 
-.2 
^ yW ' 5jj4,, U is easy to show that 

N Mo _ _ 

2Z Z (>',y->')()',.-f) 
,=1 j>k=l 

'MO 1^ N MO _ 

Y(y,-y) -YY(y.j-y)' 
M ;=i j=i 

= (Mo -l)[(A^Mo -l)SJ.-NM,Slw\ 

and, dius, from (4.15c), p = l-{A'Mo/(A^Mo-l)} 
(5'^n,/5^)s5 assuming M.=MQ for aU i=l,...,N, 
NMQI{NMQ-1) = 1. Therefore, furdier assuming {N-l)I 
N = l and (A^Mo-l)Mo'(Af-l)"'=L bodi design effect 
formulae (4.15a) and (4.15b) are approximately equivalent 
to 1 + (M(,-1)5. Odier audiors arrived at die same 
approximate formula. This is because 5 and p essentially 
measure the same tiling, which is die cluster homogeneity. 
Under this situation, two estimators F and Y have the 
same design effect as discussed Ui example 3.2. Note that 
dus is a simple case of a self-weighting sampUng design. 

Samdal etal. (1992, section 8.7) compared the design 
effects for the two estimators under die setting of example 
4.3. They also derived a simpUfied expression l-i-(M -1)5 
for (4.13) and (4.14), assuming the covariances of M, with 
M, Yi^ and M, D^ are ignorable. TheU discussion on the 
difference between total and mean estimators boils down to 
A^ in example 3.2. They also noted diat the design effect 
can be much more severe for the population total than for 
die population mean because more is lost dirough sampling 
of clusters when the total is estimated than when the mean is 
estimated. 

A common practice to handle unequal cluster sizes is to 
use a more efficient sampUng method that incorporates the 
size difference such as pps sampling of clusters. Expressions 
(4.11) and (4.12) can be appUed to arbittary selection 
probabilities p,, where p, are set to be proportional to 
some size measures Z, >0. The difference between the 
design effects for F and Y is explained by A„ in (3.9), or 
alternatively 

A =- m ^tQi 

CV,: M- Y 
v-* J yy J 
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4.3 Self-Weighting Designs 

In a self-weighting sample, every sample element has die 
same weight. This leads to simple forms for bodi totiil and 
mean estimators. They are given by Y = ylf and 
y = yim, where / = mIM is die overall sampling fraction 
and y = ZIU ZJii y,; 'S the sample total. Then just like 
simple random sampling as shown in (3.4), die two 
estimators have the same design effect. 

A self-weighting sampUng design can be implemented in 
various ways by synchronizing the first stage sampling 
method with die second stage sampling mediod {e.g., Kish 
1965, section 7.2). For example, if equal probability 
sampling is used for the fu-st stage sampling, then the 
second stage should be sampled by an equal probability 
sampUng method widi a uniform sampling fraction for all 
PSUs. As a special case of this, where an srs of PSUs of 
equal size {i.e., M, = MQ for all / ) is selected, Hansen 
etal. (1953, Vol. ff, pages 162- 163) showed 

(4.16) 

The term Q, in (4.16) represents the effect of p, on the 
variance estimation when size measures odier dian the 
actual cluster sizes M, are used. Thomsen, Tesfu, and 
Binder (1986) considered die effect of an out-dated size 
measure among odier factors under two-stage sampUng widi 
simple random sample of element at the second stage. We 
will come back to this in section 4.4. 

cv^^(y) = -cv ; [ i + p(: 
m 

m 1)], (4.17) 

where CV^ (y) = Vp ( f ) / F^ is die relative variance of F 
under die sampling design p and p is the inttacluster 
cortelation coefficient as defined in (4.15c). Since die 
relative variance of Y under srswr is m"' CV̂ ^̂ , die well 
known approximate design effect formula for Y under a 
self-weighting design follows immediately as 

Deft ; (y) = l - h p ( m - l ) . (4.18) 

For one-stage cluster designs, we showed similar forms 
given in (4.15a) and (4.15b) (see also Yamane 1967, section 
8.7). Hansen etal.^ (1953, Vol. H. page 204) furdier showed 
CVp(F) = CVp(y) for a sample design that employs 
simple random sampling at bodi stages. This implies diat Y 
and y have the same design effect. 

4.4 Two-Stage Unequal Probability Sampling 

Let us first consider the foUowUig example. 

Example 4.5 A two-stage sampling design where n PSUs 
are selected with replacement with probability p,- and an 
equal size simple random sample of /no>2 elements is 
selected with replacement from each selected PSU. Widi 
routine calculations and simplification, we can show that 

Deft I (F) H1 + (mo - 1)T + W;, (4.19) 

where 

T = -

{N-l)S].,+Y ('"o-l)-'5;, 
1=1 

{N-l)Sl.,+Y (Mi-\)Sl 

(4.20) 

5;,.=(M,-l)- 'Zr=;, {y,-Y-X,W^ =W^.IV,^^^{Y,J = 
(mo / CV;) zr^, (G,- / PiM ^ )(1 .̂ / y ) ' (1 + CV;, / mo), and 
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CV^; = Syi I Yl denotes the within-cluster relative variance 
of the y-variable. Similarly, 

Deft^(y) = l + (mo-l)T + iy , , (4.21) 

where_ W^ =WJV,^„{Y,J -_(mo/CV;)Z,^=, (G,/p,M^) 
(D,/y)^(l-hCVJ;./mo), and D,. and CV^. are defined 
with the ttansformed variable d{dij = yij-Y) analogously 
to Yf and CV^., respectively. (Detailed derivations of 
expressions (4.19) and (4.21) are available from the 
authors.) For the case with m, = m^ for all /, the difference 
in the design effects given in (4.19) and (4.21) reduces to 
(3.7) or (4.16). There is no contiibution from the second 
stage sampUng to the difference. 

Coming back to Thomsen et al. (1986) who studied the 
effect of using an outdated measure of size on the variance, 
the above discussion on F parallels with theU discussion. 
The only difference is diat diey assumed a without-
replacement sampling scheme at the second stage. Note, 
however, that the definition of x in Thomsen et al. (1986) is 
slightiy different from (4.20) and from 5 in section 4.2. 
However, there is a close connection between them. To see 
this, let us write the T as a function of some quantities fo, 's 
associated with PSUs as follows: 

{N-l)S%-Y b,Sl 
T(6,) = - i=i 

{N-l)S^.,+Y (M,-l)5; , 
1=1 

Then the T in Thomsen et al. (1986) is obtained with ft, = 1, 
die T in example 4.5 widi -l/(mo -1), and 5 in section 4.2 
widi (M,.-l)/{Z,'Ij(M,.-l)/(A'-l)}. Equating Kish's 
formula (4.18) for Y to (4.19) for F, they obviously over­
looked that the design effects for F and Y can be very 
different. 

For more general cases, Kish (1987) proposed the 
following popular formula for Y : 

c 
"Z"s w„ 

DeftLh (>-) = • 

w„ 
f G 

Yn 

= (H-cv^)[l-t-p(m 

[l + p(m-l)] 

• 1 ) ] . 

This was obtained by applying (4.5) (or (4.6)) and (4.18) 
recursively to incorporate the effects of both clustering and 
unequal weights. Gabler, Haeder and Lahiri (1999) justified 
die above formula for Y usUig a superpopulation model 
defined for the cross-classification of A' clusters and G 
weighting classes. However, the difference between the 
design effects for Y and F cannot be exposed by such a 
model-based approach, since ŷ  is tteated as a random 
variable while w^. as fixed. Under this approach, Deft̂  (F) 

differs from Deft^(y) only by a factor of {M IM)\ 
although the actual difference can be much more 
pronounced as we have showed in this paper {e.g., 
expressions (3.7) and (4.23)). 

4.5 More General Cases 

Weighting survey data involves not only sampling 
weights but also various weightUig adjustments such as 
post-sttatification, raking, and nonresponse compensation. 
We consider these general cases here. 

We can rewrite the first-order Taylor approximation to 
the weighted rnean estimator Y = YIM given in (3.2) as 
{Y-Y)IY^{V-Y)IY-i-{M-M)lM. Taking variance 
on bodi sides. 

cv;(F) = cv;(y) + cv;(M) 
+ 2/?p(y,M)cVp(y)CV/M), (4.22) 

where CV; ^(y),CV; (y),CV; ( M ) are die relative vari­
ances of Y,Y, and M respectively, and Rp{Y,M) is the 
correlation coefficient of Y and M with respect to the 
complex sampUng design p and any weighting adjustments. 
SUice the relative variances of simple sample total and mean 
t^ and y,„ are C V / _ ( n j = CV,L.(ysJ ='""'CV; 
under srswr of size m, it follows from (4.22) that 

L>eitl{Y) = L>eft\{Y) 

-\-2/?p(y,M)V^(y)Deftp {Y) + Vl{y), (4.23) 

where V^ (y) = CVp (M)/CV^,,„^(y„J is nonnegative. 
As an illusttation, consider a binary variable y, where 
CV̂ ^ = ( 1 - F ) / F and, dius, V^ (y) can be arbittarily 
large as Y approaches 1 or small as Y approaches zero 
assuming CWp{M)^0. When V^ (y) is near zero, the 
two design effects are nearly equal. Otherwise, one is larger 
than the other dependUig on the values of V (y) and 
Rp {Y,M). When the sampling weights are benchmarked 
to the known population size M, Y and Y have the same 
design effect since M =M and CV^ (M) = 0. In diis case, 
y is not affected by the benchmarking but Y = MY, 
which is a ratio estimator. Note that poststtatification or 
raking procedures may be used if population size infor­
mation is available at subpopulation level and we also get 
equivalent design effects. In general, however, we have 
Deft'p(F)>Deft^p(y) U 

^ ^ I ^n(y) 
R(Y,M)>-^ ' - ^ or 

2Deft„(y) 
^ , 1 CY(M) 

R(Y,M)>-- "' 
(4.24) 

2 CVp (y) 

and vice versa. 
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It is iUuminating to look at some specific situations. For 
example, if Rp{Y,M) > 0, then Deft ̂  (F) > Deft ̂  (y), 
however, a negative correlation {i.e., Rp{Y,M)<0) 
doesn't necessarily lead to Deft^ (F) < Deft̂  (F). For a 
special case of 7? (y,M) = 0, the difference is given by 

Deft^p(y)- Deftl{Y) = 
CV;(M) 

sî wr ^-'srs ' 

(4.25) 

Figure 1 shows graphically the relation between the two 
design effects. The expression in (4.23) is plotted for some 
fixed values of Rp{Y,M) and Vp(y). The solid lUie 
passing through the origin which represents equal design 
effects is the reference Une. As the graphs show, the 
comparison is not clear-cut. When_ R^{Y,M)<0, 

Deft; {Y) > Deft' (y) for small Deft̂  {Y) but die relation 
flips over as Deftp {Y) grows larger. 

Hansen ef al. (1953, Vol. I, pages 338-339) Uidicated 
diat Rp{Y,M) would often be close to 0. Under this 
situation,̂  expression (4.25) is also written as Deft^ {Y) = 
Deft J (F) [l + CVJ {M)ICWl (F)], from which we get 
Deftp (F)> Deftp (y).This special case was studied by 
Jang (2(X)1). However, this doesn't seem necessary as can 
be seen in the following example. 

Example 4.6 To illusttate die relationship between the 
design effects for Y and F, we used a data set for the 
adults coUected from die U.S. ThUd National Healdi and 

Nutiition Examination Survey (NHANES HI), which is 
given as a demo file Ui WesVar version 4.0. NHANES HI is 
a nationwide large-scale medical examination survey based 
on a sttatified multistage sampling design, for which the 
Fay's modified balance repeated replication (BRR) method 
was employed for variance estimation. (See Judkins 1990 
for more details on Fay's method.) We used only 19,793 
records widi complete responses to diose characteristics 
Usted in Table 1. Note diat die weight in die demo file is 
different from the NHANES III final weight that was 
obtaUied by poststratification. For more detailed information 
on die demo file, see Westat (2001). 

Table 1 presents the design effects for Y and Y, and 
component terms of (4.23) for die selected characteristics. 
Note that Vp (y) monotonicaUy decreases in CV^ given 
diat m = 19,793 and cVp(M) = 3.2%. Aldiough V^{y) 
tends to be die determinant factor in die difference of the 
design effects, Rp{Y,M) can be important when it is 
negative. For example, for two race/ethnicity characteristics, 
African American and Hispanic, die negative values, -0.67 
and -0.24 of R^ (F, M) were responsible for Deftp (y) < 
Deftp (y). Some design effects for F are huge. ITiis is not 
the case with the NHANES IH poststratified final weights, 
widi which F and Y have die same design effect. This 
illusttates the importance of benchmarking weight 
adjustments for total estimates. 

o . y ... 

\ / \ / 

/ . • • ' ' 

^ - • ^ " ^ ^ 

Design eftect for mean Design etfect for mean 

(a) Vp(>.) = i.o (b) Vp(y) = 2.5 

Figurel. Plots of Deftp (K) versus Deftp(y) for(a) Vp(y) = 1.0(b) Vp(y) = 2.5. The solid line con-esponds to 

Deftp (K) = Deftp (K). Other lines con-espond to /fp (K, M) = - 0.9, - 0.5, - 0.2,0,0.2,0.5,0.9, respectively. 
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Table 1 
Comparison of the design effects for the weighted total and mean using a subset of the adult data file from the U.S. 

Third National Health and Nutrition Examination Survey (NHANES III) 

Characteristic 

Has smoked 100+ 
cigarettes in life? 

Has diabetes? 

Has hypertension/ 
high blood pressure? 

Race/Ethnicity 

Gender 

Number of cigarettes 
smoked per day 

Population Size 

Yes 

Yes 
No 
Yes 
No 

African American* 

: Hispanic* 

Male 

Female 

-

-

Estimate 

0.53 

0.05 
0.95 
0.23 
0.77 

0.12 

0.05 

0.48 

0.52 

5.25 

-

Mean 

Deft' 

4.13 

1.75 
1.75 
3.42 
3.42 

7.64 

6.70 

1.40 

1.40 

6.42 

-

cv 

0.014 

0.040 
0.002 
0.024 
0.007 

0.054 

0.079 

0.009 

0.008 

0.037 

-

Total 

Estimate 

98,397,795 

9,783,307 
176,341,218 
42,939,866 

143,184,660 

21,567,028 

9,550,326 

88,725,967 

97,398,559 

977,225,826 

186,124,526 

Deft' 

31.31 

1.92 
393.47 

7.96 
78.44 

4.21 

6.48 

19.18 

25.39 

10.51 

-

CV 

0.038 

0.042 
0.033 
0.037 
0.034 

0.040 

0.078 

0.033 

0.034 

0.047 

0.032 

cvy r^ 

0.944 

4.246 
0.236 
1.826 
0.548 

2.762 

4.300 

1.048 

0.954 

2.044 

— 

„(y.M) 

0.20 

-0.34 
0.34 

-0.18 

0.18 

-0.67 

-0.24 

-0.11 

O.ll 

-0.09 

-

VpCy) 

4.83 

1.07 
19.35 
2.50 

8.32 

1.65 

1.06 

4.35 

4.77 

2.23 

— 

cVp(M) 

2cvp(n 

-0.58 

-0.31 
-5.53 
-0.37 

-1.22 

-0.11 

-0.08 

-1.55 

-1.70 

-0.17 

— 

Note: * denotes the cases where the design effect for F is smaller than that for Y. 

5. CONCLUSION 

We studied the design effects of die two most widely 
used estimators for the population mean and total Ui sample 
surveys under various with-replacement sampUng schemes. 
We do not think die employment of with-replacement 
sampUng is necessarily a serious limitation because we can 
see things more clearly without muddlUig the madi widi 
probably unnecessary complications with without-replace­
ment samplUig schemes. Furthermore, die effect of the fiiUte 
population correction is largely canceled out Ui our 
formulation of die design effect and so the results are quite 
comparable with traditional design effects for without-
replacement sampling. Therefore, our findings should be 
useful Ui practice. We summarize our key findUigs below. 

Kish's well-known approximate formulae for the design 
effect for (ratio type) weighted mean estimators are not 
easily generaUzed in theU form and concepts to more 
general problems, especially weighted total estimators 
conttary to what many people would perceive. In fact, Y 
and F often have very different design effects unless the 
sampling design is self-weightUig or the sampUng weights 
are benchmarked to the known population size. In addition, 
the design effect is in general not free from the distribution 
of the study variable even for the mean estimator, let alone 
the total estimator. Furthermore, the correlation of the study 
variable with the weights used in estimation can be an 
important factor Ui determining the design effect. Therefore, 
apart from its origmal intention, the design effect measures 
not only the effect of a complex sampling design on a 
particular statistic but also the effects of the distribution of 

the study variable and its relations to the sampUng design on 
the statistic. As complex survey software packages routinely 
produce the design effect, it seems appropriate to warn the 
user of die packages of diese rather obscure facts about the 
design effect. 
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Robust Generalized Regression Estimation 

JEAN-FRANgOIS BEAUMONT and ASMA ALAVI' 

ABSTRACT 

The Best Linear Unbiased (BLU) estimator (or predictor) of a population total is based on the following two assumptions: i) 
the estimation model underlying the BLU estimator is correctiy specified and ii) the sampling design is ignorable with 
respect to the estimation model. In this context, an estimator is robust if it stays close to the BLU estimator when both 
assumptions hold and if it keeps good properties when one or both assumptions are not fully satisfied. Robustness with 
respect to deviations from assumption (i) is called model robustness while robustness with respect to deviations from 
assumption (ii) is called design robustness. The Generalized Regression (GREG) estimator is often viewed as being robust 
since its property of being Asymptotically Design Unbiased (ADU) is not dependent on assumptions (i) and (ii). However, 
if both assumptions hold, the GREG estimator may be far less efficient than the BLU estimator and, in that sense, it is not 
robust. The relative inefficiency of the GREG estimator as compared to the BLU estimator is caused by widely dispersed 
design weights. To obtain a design-robust estimator, we thus propose a compromise between the GREG and the BLU 
estimators. This compromise also provides some protection against deviations from assumption (i). However, it does not 
offer any protection against outliers, which can be viewed as a consequence of a model misspecification. To deal with 
outiiers, we use the weighted generalized M-estimation technique to reduce the influence of units with large weighted 
population residuals. We propose two practical ways of implementing M-estimators for multipurpose surveys; either the 
weights of influential units are modified and a calibration approach is used to obtain a single set of robust estimation weights 
or the values of influential units are modified. Some properties of the proposed approach are evaluated in a simulation study 
using a skewed finite population created from real survey data. 

KEY WORDS: Design robustness; Model robustness; M-estimator; Outiiers; Shrunk weights; Best linear unbiased 
predictor. 

1. INTRODUCTION 

In classical theory, sample data can be viewed as being 
randomly drawn from an infinite population and assump­
tions are made about the unknown distribution of die infinite 
population. In odier words, a model is postulated and the 
interest lies in the estimation of model parameters. In this 
context, an estimator 0 of a model parameter 6 is robust if 
it stays close to the maximum likelihood estimator of 0 
when die model assumptions hold and if it keeps good 
properties when the model assumptions are not fully satis­
fied. The unknown distribution of the infinite population is 
often assumed to be die normal distribution and, as a resuU, 
the maximum likeUhood estimator reduces to the usual 
least-squares estimator. 

The presence of outiiers in the sample can be viewed as a 
consequence of a deviation from a model assumption. The 
majority of the sample could be assumed to come from the 
selected model but some units, called outliers, could be 
thought of as coming from a different model. Therefore, the 
presence of such outliers in the sample may inttoduce bias 
and increase the variance of the least-squares estimator of 
die selected model parameters. Outiiers could also be the 
consequence of a highly skewed distribution. In this case, 
the least-squares estimator is not biased but may be highly 

inefficient due to a deviation from the usual normality 
assumption. The presence of outiiers in the sample could 
also be the result of measurement errors. However, it is 
assumed in die rest of dus paper that the data have been 
verified and corrected, if necessary, and that there is no 
measurement error left in the data. Outiier-robust estimation 
for infinite populations has been studied extensively (for a 
review, see Huber 1981; or Hampel, Ronchetti, Rousseeuw 
and Stahel 1986). 

In survey sampUng theory, the interest usually lies in the 
estimation of finite population parameters such as the total, 
ty = Hksu yk' .of ^ variable of interest y for a finite popu­
lation U of size N. Because it is usually not possible to 
observe die variable y for aU population units, die usual 
practice consists of selecting from die finite population a 
random sample s of size n according to some probability 
sampUng design p{s \ Z). The matrix of design information 
Z contains Â  rows with its /c* row equal to z'̂  , and z is a 
vector of auxiUary variables available at the design stage. 
This does not preclude the finite population itself to be 
assumed to come from a model, as it is expUcitiy the case 
when it is chosen to make model-based inferences. Under 
this type of inference, Royall (1976) derived the Best Linear 
Unbiased (BLU) estimator (or predictor) t^ of t^ (see also 
Valliant, Dorfman and Royall 2(X)0, Chapter 2). U is based 
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on the foUowing two assumptions: i) the estimation model 
underlyUig the BLU estimator i^ is correctiy specified and 
ii) the sampUng design is ignorable with respect to the 
estimation model. In this context, an estimator t^ of the 
fmite population total t^ is robust if it stays close to the 
BLU estimator i^ when bodi assumptions hold and if it 
keeps good properties when one or both assumptions are not 
fully satisfied. Robusmess with respect to deviations from 
assumption (i) is called model robusmess while robusmess 
with respect to deviations from assumption (ii) is caUed 
design robusmess. 

Although we consider robust estimators that are con­
structed from a model-based viewpoint, we prefer eval­
uating theU properties as much as possible with respect to 
the sampUng design. This allows us to choose the constants 
on which robust estimators depend and to evaluate theU 
quality widiout having to rely on a model and, more 
specifically, without having to rely on a model for the 
outiiers. This also provides an objective framework for 
comparing estimators derived under different models. This 
preference of evaluatUig properties of model-based esti­
mators with respect to the sampling design is also shared by 
Littie (1983) who notes that design-based asymptotics may 
be more useful for assessing estimators than model-based 
asymptotics, particularly when the data set is large. 

The GeneraUzed Regression (GREG) estimator of t^ is 
often viewed as being robust since its property of beUig 
AsymptoticaUy Design Unbiased (ADU) is not dependent 
on assumptions (i) and (ii); that is, the GREG estimator is 
bias-robust even though its form can be justified by an 
estimation model. However, if both assumptions hold, the 
GREG estimator may be far less efficient dian the BLU 
estimator and, in that sense, U is not robust. The relative 
inefficiency of the GREG estimator as compared to the 
BLU estimator is caused by widely dispersed design 
weights. The fact that variable design weights may Uicrease 
the variance of an estimator is well known (see, for 
example, Rao 1966; DuMouchel and Duncan 1983; Kish 
1992; Pfeffermann 1993; Kom and Graubard 1999, Chapter 
4; Elliott and Littie 2000; and Kalton and Hores-Cervantes 
2(X)3) and is not uncommon in household surveys due to the 
presence of many weight adjustments before calibration 
(Kish 1992; and Kalton and Hores-Cervantes 2003). This 
problem is often tteated by truncating the larger design 
weights (Potter 1988,1990, 1993; and Stokes 1990). 

To obtaUi a design-robust estimator when the design 
weights are highly variable, we propose a compromise be­
tween die GREG and the BLU estimators based on die 
weighted Least-Squares (LS) technique. This compromise 
estimator has a smaUer design bias than the BLU estimator 
when die ignorabiUty assumption is not satisfied and, at die 
same time, is more efficient than the GREG estimator when 

this assumption holds. It also provides some protection 
agaUist deviations from model assumptions. Balanced 
sampUng (Royall and Herson 1973) and nonparametric 
calibration (Chambers, Dorfman and Wehrly 1993) are 
other methods that provide protection against certain types 
of model misspecifications (see also Valliant, Dorfman and 
RoyaU 2000, Chapter 3, 4 and 11). However, none of these 
methods offer any protection against outiiers, which can be 
viewed as a consequence of a model misspecification. In a 
model-based framework, the idea underlying the 
M-estimation technique has been proposed to develop 
outUer-robust alternatives to the BLU estimator (Chambers 
1986; Lee 1991; and Welsh and Ronchetti 1998). In a 
design-based framework, the M-estimation technique has 
also been used to develop outiier-robust alternatives to the 
GREG estimator (Gwet and Rivest 1992; HuUiger 1995 
1999; Duchesne 1999; and Zaslavsky, Schenker and Belin 
2001). M-estimation is also discussed in the review paper by 
Lee (1995) and an empUical comparison of several outiier-
robust estimators can be found in Gwet and Lee (2000). 

FirUte population parameters are often very sensitive to 
the presence of outUers in the population. This is to be 
conttasted to model (infinite population) parameters, which 
are usually insensitive to outUers. The problem of outiier 
robusmess is therefore different for finite and infinite pop­
ulations. As noted in Chambers (1986), it is the sampling 
error (or die prediction error in a model-based framework) 
of an estimator which must be msensitive to outliers in finite 
populations and not necessarily the estimator itself. For 
instance, when a simple random sampling design is used, 
the sample median is robust in die classical sense. As a 
result, its design variance is essentiaUy unaffected by the 
presence of an outiier in the finite population, no matter how 
large is that outiier. However, the sampling error and the 
design bias of the sample median, when used as an 
estimator of die finite population mean, take an arbittarily 
large value when one or more population unit takes an 
arbittarily large value. This is explaUied by the fact that the 
finite population mean itself takes an arbittarily large value 
in such a case. UnlUce the sample median, the sample mean 
is design unbiased but it is not robust in the classical sense. 
The sampling error and the design variance of the sample 
mean can thus be very affected by the presence of an outlier 
in die firUte population. This illusttates why outiier-ro-
busmess for finite populations is often viewed as a ttade-off 
between bias and variance and why outUers must usually 
have an Uifiuence, at least to some extent, on estimators. 
The Mean Squared Error (MSB) is therefore a useful cri­
terion for evaluating the quaUty of outUer-robust estimators 
of finite population parameters. 

The real goal of this paper is to find a robust alternative 
to die commonly-used GREG estimator of t^. However, it 
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is more natural to discuss robusmess issues by first intto-
ducing the optimal (BLU) estimator. Therefore, the assump­
tions underlying die BLU estimator are discussed in section 
2. We also give additional conditions under which die BLU 
estimator has a negligible asymptotic design bias. Section 3 
deals with design robusmess and the weighted LS estimator 
is inttoduced. In section 4, model robusmess (more speci­
fically, outlier robusmess) is discussed and the weighted 
generaUzed M-estimation technique is suggested to reduce 
the influence of units with large weighted population 
residuals. The proposed estimator is census-consistent in the 
sense diat it is equal to die finite population total t^, when a 
census is conducted. We propose two practical ways of 
implementing M-estimators for multipurpose surveys; either 
die weights of influential units are modified and a cali­
bration approach is used to obtain a single set of robust 
estimation weights or die values of influential units are 
modified. Mean Squared Error (MSE) estimation is dis­
cussed in section 5. In section 6, some properties of the 
proposed approach are evaluated in a simulation study using 
a skewed finite population created from real survey data. 
Finally, some concluding remarks are made in the last 
section. 

2. THE BEST LINEAR UNBIASED ESTIMATOR 

Let us assume that we have a vector of auxiUary 
variables x available for all units of the sample s and for 
which population totals, t̂  == Ejey x^ , are known. Let us 
also denote by X, the matrix containing A' rows with its /:* 
row equal to x'̂  . The vector x may or may not contain 
some variables in the vector z of design variables. Before 
discussing robusmess, we first describe the two assumptions 
(see Al and A2 below) with respect to which robustaess is 
desired. Then, we briefly explain how to validate them. 

Al)The following estimation model m holds: ŷ  given X, 
for ksU ,are independentiy distributed with mean 
E„(yJX) = x;p and variance V„(yJX) = o'v,, 
where p and o^ are unknown model parameters, 
Vj =x'̂ >. and X is a vector of known constants. The 
subscript "m" indicates that expectations and variances 
are evaluated widi respect to model m. 

A2) The sampUng design is independent of y after condi­
tioning on X; that is, p{s | y, X) = p{s \ X), where y is 
a vector containing A' elements with its fc* element 
equal to y^. 

Assumption (Al) describes the estimation model m, 
which specifies the distribution of y conditional on X. 
Standard techniques can be used to vaUdate diis model (see, 
for example. Draper and Smidi 1980, Chapter 3). The 
linearity assumption E^{yi^\X)=x[P is an important 

assumption underlying the estimation model m. 'There are 
many ways of assessUig the validity of diis assumption. A 
graph of residuals e^=yj-x'^p versus x'^p, for some 
m-unbiased estimator p of p, is often suggested for this 
purpose. Any trend in this graph is an indication that the 
relationship between y and x is not linear. To obtain ro­
busmess against a deviation from the linearity assumption, a 
poststratification model can be used when it is possible to 
partition the population into homogeneous and mutually 
exclusive groups. An example of the importance of careful 
modeling in sample surveys can be found in Hedlin, Falvey, 
Chambers and Kokic (2001). 

Assumption (A2) is a sufficient condition for the 
ignorability (Rubin 1976) of the sampUng design with 
respect to the distribution of y conditional on X. In other 
words, it means that the distribution of y is independent of 5 
after conditioning on X. Using assumption (Al), y can be 
split into a fixed term Xp and a random error term 
£ = y - Xp. Consequently, if the sampling design is inde­
pendent of £ after conditioning on X; that is, if 
p{s 18, X) = p{s IX), dien assumption (A2) is satisfied and 
the sampling design is ignorable. Since we only consider 
sampling designs of the form p{s | Z), an obvious way to 
make the sampling design ignorable is achieved by 
including all design variables z into the estimation model. 
Examples of such design variables may include die 
variables used to form the sttata, the variable used as a size 
measure if probability-proportional-to-size sampling is used 
and so on. The design weights may also provide a useful 
summary of die design information. Note that it may not be 
necessary to include aU design variables into the estimation 
model (see Sugden and Smidi 1984). Design variables that 
are independent of y (or £) after conditioning on X should 
not be included. To assess the validity of assumption (A2), a 
graph of the residuals, ê  = ŷ  -Xj^p, versus design weights 
Wj (or any design variable) may be useful (see Pfeffermann 
1993). Any ttend in this graph suggests that the design 
weights are correlated with the random error £ and that the 
sampUng design is not ignorable with respect to die 
estimation model. More formal tests can also be performed 
to assess die vaUdity of this assumption (see, for example, 
DuMouchel and Duncan 1983; Graubard and Kom 1993; 
and, for more references on this topic, Pfeffermann 1993). 

Under die estimation model m and die ignorability 
assumption (A2), it is easy to show that die BLU estimator 
(Royall 1976) t^ of t^ takes the simple projection form 
iy = t'jB" , where B " is implicitiy defined by the equation 

X U - X ; B ' ' ) ^ = 0 . (2.1) 
kes ^k 

The BLU estimator can also be written as f * = 
Zte.tVf*)'*' where die BLU estimation weights wf are 
given by 
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(2.2) 

The model variance V„{(f*-f^)|5,X} of f* is die 
smaUest for every possible sample among all linear m-
unbiased estimators of f̂  . A direct consequence of this 
resuU is diat the anticipated variance E^[Ep{ty -t^)^ \X] 
of fjf is also die smallest among all Unear m-unbiased esti­
mators of ty, where the subscript p indicates that the 
expectation is evaluated with respect to the sampling design. 
Under the additional assumption that ŷ  given X foUows a 
normal distribution, B is also the maximum lUceUhood 
estimator of the vector of model parameters P. 

In general, the BLU estimator i^ is not ADU. However, 
under the estimation model m, the ignorabiUty assumption 
(A2) and die following additional assumption (A3), the 
BLU estimator has die property of being Asymptotically 
Design Unbiased in Probability (ADUP) in the sense that its 
relative design bias Ep(f̂ * -ty)lty converges Ui probabU­
ity to 0 as n and A' Uicrease without bound. 
A3)Z,,yE^{(wf)^/,lo^-0(yV), Ite„x;p = 0(A^) and 

Iltsf/ ^\ - 0{N), where o\ = ô v̂  and 7,̂  is a dum­
my random variable indicating whether unit k is 
selected in the sample (/(. = 1) or not (/(. = 0). 

Assumption (A3) describes the asymptotic behaviour of 
three population quantities. In particular, requUing that 
Zteu Ep{(wf )^/j} al - 0{N) essentially means that none 
of the BLU estimation weights becomes too large as the 
sample size and the population size increase. For instance, if 
X,; = v̂  = 1 and if a sampling design of fixed size n is used, 
dien condition 'Zkeu^p{('^k)^h)'^l-0{N) is equivalent 
to assuming that the weights wf =N In remaUi bounded as 
both n and Â  grow. The proof that i^ is ADUP is given Ui 
die appendix and does not requUe diat v̂^ =x^X. As a 
result, the BLU estimator is ADUP even when the model 
variance V^(y^ | X) is misspecified. 

As pointed out above, die BLU estimator is efficient 
when the estimation model m and the normaUty assumption 
hold as well as the ignorabiUty assumption (A2). Under 
these assumptions and the additional assumption (A3), the 
BLU estimator is also ADUP. Consequentiy, a first step 
towards robusmess consists of selecting and validatUig an 
estimation model such that these assumptions are satisfied 
as much as possible. However, they are rarely fully satisfied 
in practice. For example, one can be reluctant to include aU 
sttata identifiers Uito the estimation model when die number 
of sttata is very large. In such a case, the ignorabiUty as­
sumption might not fuUy hold. Also, the estimation model, 
including the normaUty assumption, may not hold for every 
variable of interest. Consequentiy, the non-critical use of the 
BLU estimator t^ of ty is not always appropriate and 
robust estimators may be needed. 

3. DESIGN ROBUSTNESS 

Using the fact that v^-Xy'k,it can be easily shown (see 
Samdal, Swensson and Wretman, 1992, page 231) that t^ 
can be expressed as ty - t'^B, where B is impUcitiy defined 
by die equation 

Z U - ^ B ) ' k _ = 0. (3.1) 
teU 

The vector B would be the LS estimator of p, under the 
estimation model m, if a census could be conducted. Since 
t̂  is known, the objective of finding an estimator of the 
population total ty is thus equivalent to finding an estimator 
of B. In the design-based theory, a natural estimator B^ of 
B is implicitiy defined by the equation 

Xw,(y,-x;B«)^=0, 
kes 

(3.2) 

where w^., the design weight of unit k, equals to the inverse 
of the selection probability 7t̂ . The use of B*̂  leads to the 
GREG estimator ff = t'B'^ of r . The GREG estimator 
ty takes a simple projection form because v̂ . -x'^'k (see 
Samdal et al. 1992, page 231). It can also be written as 

f̂ =ZteiWfy<:, where die GREG estimation weights wf 
are given by 

w. 
f 
Y'^k 

^kes 

\ - l 

(3.3) 

As pointed out in the Uittoduction, die GREG estimator is 
bias-robust since its property of being ADU is not 
dependent on the vaUdity of the estimation model m and the 
ignorability assumption. However, die GREG estimator is 
not variance-robust sUice U may be far less efficient than the 
BLU estimator when both assumptions hold. The ineffi­
ciency of the GREG estimator is due to widely dispersed 
design weights. In household surveys, this situation is not 
uncommon because of many weight adjustments before 
caUbration. Also, practical considerations for the choice of a 
sampUng design combined with limited information avail­
able at the design stage often lead to sampling designs diat 
are approximately ignorable. In household surveys, for in­
stance, geographic information is often the main auxiliary 
information available to constract the sttata. Unless the 
number of strata is very large, such information is usually 
weakly correlated with quantitative variables of interest, 
such as expenditures or income, and theU corresponding 
population residual variable E = y-x's . As a result, the 
design weight variable w is also weakly correlated with E. 
This suggests that the ignorabiUty assumption may 
approximately hold. This also suggests that the design 
weights act more or less as a random noise when estimating 
B usUig (3.2) and that dieU influence could be significantiy 
reduced. To obtain a design-robust estimator when the 
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design weights are highly variable, we thus propose to 
shrink die design weights towards dieU mean and to use the 
LS estimator f̂^ = t'̂ B"-̂  , where B''^ is impUcitiy defined 
by 

Ziv,(y,-x;B'^)^=0 
kss ^k 

and where vv,̂  is the shrunk weight of unit k given by 

Y' 
g{w^;a). 

Ys(Wk''a) 
\kes 

(3.4) 

(3.5) 

The reason for the ratio in the right side of (3.5) is simply 
to ensure that Xtes vv̂  = Xtej vt't and die role of the function 
g{w^;a) is to obtain shmnk weights vv̂. that are less 
variable than the design weights w^.. This function is 
assumed to be monotone Ui the constant a, with 
\< g{wi^;a)<Wi^. The BLU and GREG estimators are 
dierefore extteme special cases of die LS estimator obtained 
when a is such diat g{w^;a) = l and ^(wj;a) = ŵ  
respectively. To obtain a simple compromise between these 
two extteme estimators, we suggest using g(wj ;a) = w" , 
widi 0 < a < 1 . The choice a = 0 leads to die BLU 
estimator while die choice a = l leads to the GREG 
estimator. In fact, this suggestion was proposed by Kish 
(1992, page 198). Other functions g{Wi^;a) and other ways 
of reducing die variabiUty of design weights can be found in 
die Uterature (see, for example, EUiott and Littie 2000). 
Tmncating large design weights (^(w^;a) = min(H'j,a), 
with a > 0) is a common approach that deals with this 
problem. This approach may be useful when assumptions 
(Al) and (A2) are not fully satisfied and when there are 
some abnormally large design weights. A better approach 
may be to tmncate large weighted residuals. The weighted 
generaUzed M-estimation technique discussed Ui the next 
section can be used for this purpose. 

The LS 
t!f = Zte. w, 
are given by 

estimator 
LS 

can also be written as 
y^, where the LS estimation weights w^ 

LS 

wP - W, 
\ u Al. 

f \ 

.w. (3.6) 

Note diat die estimation weights w]f, including wf and 
wf as special cases, are calibrated on the known population 
totals t^ Ui die sense that they satisfy the calibration 
equation Zte^wl^x,, = t , (see Deville and Samdal 1992). 

4. MODEL (OUTLIER) ROBUSTNESS 

As pointed out in die inttoduction, die LS estimator i^ 
provides some protection against deviations from the 
ignorability assumption and also agaUist deviations from 
model assumptions. However, it does not offer any 

protection agaUist outiiers, which can be viewed as a cones-
quence of a model misspecification, including a deviation 
from the normality assumption. For instance, die GREG 
estimator is ADU no matter the validity of the estimation 
model. However, its design variance may be very large in 
the presence of outiiers in the finite population because they 
may greatiy influence its sampling error when they are 
selected in die sample. This problem may be amplified 
when the design weights are widely dispersed. For the 
Horvitz-Thompson estimator, this was well illusttated in the 
cUcus example of Basu (1971). Of course, the use of effi­
cient auxiUary variables at die estimation stage can conttol 
the impact of outiiers on estimates. However, such auxiliary 
variables are often not available and outiier-robust esti­
mators may provide significant gains over die LS estimator. 

Using the Taylor linearization technique (see, for 
example, Samdal et al. 1992, page 235) and given that 
ty - t^B, it is well known and easy to show diat the 
sampling error of the GREG estimator can be approximated 
as follows: t^ -ty ~ "Lk^s^kEk» where Ê  = ŷ  -x'^B is 
die population residual for unit k. As a result, a large design 
weight associated with a large population residual (or 
outiier) may have a substantial impact on the quality of the 
GREG estimator. Moreover, it is straightforward to show 
that die sampling error of die LS estimator can be expressed 
as t^ -ty -'Lkes'^]fE^ . Therefore, a large estimation 
weight associated with a large population residual may 
greatiy influence the sampling error and the quaUty of the 
LS estimator. To deal with this problem, we use the 
Schweppe version (Hampel et al. 1986, pages 315 ~ 316) of 
the weighted generalized M-estimation technique to reduce 
the influence of units with large weighted population 
residuals. This leads to die M-estimator B"^ of B, which is 
impUcitiy defined by 

_ 1 
.w. -V| / 

kes 

h,EJB^)^ ^''•kEk 

Q 
*k _ 

^f^ 
0, (4.1) 

where E;^(B^) = {yi^-x^B^)l^, Q is a positive 
population scale parameter and ft^ is a weight that may 
depend not only on x^ but also on z,,. The role of the 
function v|/(.) consists of reducing the influence of units 
widi a large /i,.£^(B). From die above considerations, 

*̂ = w]f .̂ Vjt or /zj. - vv̂  .Jv^ is a natiiral choice. In the 
former case, the Uifluence of large wjfE^^ is reduced while, 
in die latter case, the mfluence of large vv̂ f̂  is reduced. 
The choice hf. = w]f yfv^ may be preferred to /j^ = w^ ̂ fv^ 
when there are outliers in the auxiliary variables x or when 
a is not close to 1 (assuming g{Wi^;a)-w'^). Tiie main 

LS point here is tiiat h^ should depend on survey weights w 
or w^. and that bodi choices suggested above should 
perform better than simpler choices that do not take into 
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account the auxiUary variables z such as h^^- .Jv^. or 
hi^-l, which reduce the Uifluence of large unweighted 
residuals. Also, it should again be noted that the Uiterest is in 
findUig a robust estimator for the vector of population 
parameters B and not for die vector of model parameters p. 
In fact, B is itself not robust (in the classical sense) for p 
since it may be highly affected by the presence of outUers in 
the finite population. As a resuU, outUers must have a 
certain influence on B^ . 

Equation (4.1) can be written Ui the weighted linear 
regression form: 

Z ^ ; ( B ^ , < 2 ) ( 3 ' , - X ; B ^ ) ^ = 0 , (4.2) 
kes 

where 

and 

w:{B^,Q) = w , ^ 

_hkE,{B'') 

Q 

We propose the following modification of the popular 
function v|/(.) of Huber (1964) that makes the adjusted 
weights WI{B'^,Q) always greater than or equal to 1: 
M'('i) = 1> if k j ^ (P, and v|i(r̂ ) = sign(r^) 
max( I 'i I / vv̂ , (p), otherwise, where tp is a positive 
constant. This leads to adjusted weights 

w ; ( B ^ , 0 : 
w, 

max 1, w^ 9 

if \rk\<(p, 

, otherwise. (4.3) 

The Iteratively Reweighted Least-Squares (IRLS) 
algorithm (Beaton and Tukey 1974) is often used to solve 
(4.2) and (4.3). At a given iteration i, the adjusted weights 
w '̂(B*''",(2''"'*) are first calculated usUig (4.3) and dien 
B"> is obtained by solvUig (4.2) widi wl{B^,Q) and B"^ 
replaced by vvj(B '̂'"'\(2*'"") and B*'̂  respectively. To 
obtain B*'', an estimate of Q is usually calculated at each 
iteration of the IRLS algorithm. In die simulation study of 
section 6, we have used 

(2<'-'>= 1.483 

X weighted sample 

median of ( | /J^£^(B^'-") | ikes), (4.4) 

where the weighted sample median is calculated using the 
weights Wf^l h^. Equation (4.4) reduces to the proposal of 

HuUiger (1999) when /î . =1 and g{Wi^;a) = w^.. We sug­
gest using B'°' = B''^ as die vector of startUig values since 
B ' ^ is easy to obtain. The iterative procedure is normally 
repeated untU convergence is reached. To reduce computer 
time, especially U a resampling method is used for MSE 
estimation, a single iteration of the IRLS algoritiim can be 
performed. In section 6, it is shown empUically that per­
forming a sUigle iteration yields an estimator of the popu­
lation total diat has properties simUar to die fully-iterated 
estimator. This poUit has also been noted by Lee (1991). 

The M-estimator of t„ is given by t'^ = t'B"^ . Widi the 
restriction that iv (̂B ,Q)>1, where Q is an estimator of 
Q, the estimators B"^ and t^ are census-consistent in the 
sense that they are exactiy equal to B and ty respectively, 
no matter the value of (p and a, when a census is con­
ducted {u;^ =1,for keU ). This restriction might be useful 
for conttoUUig die design bias of i^ when there are shrunk 
weights W(. close to 1. Note that the estimators B*̂  and 
i^ reduce to B''^ and t^ respectively when tp^oo 
(v|/(rj) = 'i). The M-estimator t^ can also be expressed as 
i^ = Ztes wf y^, where the M-estimation weights wf are 
given by 

w^ =Wi^{B ,Q) 
A. X,, 

\kes ^k 
t , . (4.5) 

The estimation weights w^ are still caUbrated on the 
known population totals t, ("Lkes"^^x^ = t , ) . 

In order to determine appropriate values for a and (p , 
the MSE of the M-estimator t^ can be estimated for 
different choices of a and tp using past or current sample 
data. Then, the values of a and tp that give die smallest 
estimated MSE can be chosen. Estimation of MSE is dis­
cussed Ui section 5. As noted in HulUger (1995), choosing 
adaptively a and (p by minimizing the estimated MSE 
widi current sample data leads to an estimator i^ that does 
not requUe estimating die scale parameter Q. Also, diis 
procedure conttols the magnitude of the design bias of i^ 
without requiring the use of additional constants. However, 
it is lUcely to provide less efficiency dian using die optimal 
(although unknown) values of a and tp . 

In multipurpose surveys, different values of a and (p are 
likely to be obtained for different variables of interest. If 
multiple sets of weights are to be avoided, some form of 
compromise is needed. As a first step towards a compro­
mise, a common value of a, satisfactory for the most 
important variables of interest, can be determined. Then, we 
propose two practical ways of implementing the 
M-estimator i^ widiout having to find a compromise value 
for (p ; either the weights of influential units are modified 
and a caUbration approach is used to obtain a single set of 
robust estimation weights or the values of influential units 
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are modified. The former is discussed Ui section 4.1 while 
the latter is discussed in section 4.2. 

where y.̂ . = y^, if A: e 5 - 5„, and y.̂  = yl, otherwise. The 
quantity yl is a modified value for the influential unit k that 
is used to replace y^. Note that B" '̂ = B'̂ ^ if y.̂ . = y .̂, for 

4.1 Modification of the Weights of Influential Units kes.The population totiil t can dien be estimated by 

Let us now assume diat it is desUed to estimate die 
population totals of a vector of q variables of interest 
y - ( ) ' i ' ^2' •••' yq)'- ^ vector of q M-estimators tj ' = 
{t^, tl, ..., t^^y of t^=Zkeu yk can be obtained, widi 
potentially different values of tp for different variables. To 
simplify die notation, we denote the adjusted weights 
associated with variable y,. by vv'̂ (y,), for i = l, 2, ...,^. 
Since die adjusted weights vvt(y,) depend on die variable 
of interest y,, we obtain q sets of weights, even if a 
common value of (p is chosen. 

Gwet and Rivest (1992), Duchesne (1999) and HuUiger 
(1999) suggested using die adjusted weights H'̂ (y) = 
min(vv^(yi), vv^(y2),...,ivj(y^)) to obtain a unique set of 
weights. Then, estimation weights wf (y) are calculated by 
replacing wl{B^,Q) by iv^(y) in (4.5) and t̂ , is 
estimated by Ztejwf (y)yk • Although die estimation 
weights wf (y) are calibrated on die known population 
totals t , , diey are not caUbrated on die vector of estimates 
t^ , which are believed to be our best estimates in the sense 
of minimizing die estimated MSE. Moreover, die use of 
'Zkes w^ (y) Yk Ukely leads to a larger design bias dian t^ 
although it conttols the design variance. To cope with these 
issues, we propose computing the estimation weights 
^^^"^(y) by replacing iv^(B'^,(2) by die adjusted weights 
wl (y) in (4.5), and by augmenting die vector of auxiliary 
variables x and the known population totals t̂  using y 
and tj* respectively. As a resuU, the estimation weights 
w^'^{y) are calibrated on t̂  and tj*, and t is estimated 
by ty = Zites ^k (y)yk - Of course, diere may be a limit 
on the number of variables that can be used for calibration 
purposes. This may somewhat restrict the applicability of 
diis metiiod when q is very large. 

4.2 Modification of the Values of Influential Units 

Another way of implementing the M-estimator t^ in 
practice consists of modifying the values of the variables of 
interest y and using die LS estimation weights w]f for all 
variables. This can be done separately for each variable of 
interest, so we return to the case of only one variable of 
interest in this section. 

Let us first denote by s^ the random set of all sample 
units k for which wl{B^,Q) vt vv̂ . In other words, s^ is 
the random set of units that have been detected as being 
influential. Let also B'^* be implicitiy defined by die 
equation 

Xi i^ . (} ' . . -x ' ,B«- )^=0 , 

t" =t,B . It is also easy to show diat t" = 
LS 

Hkes'^k y.k -

The idea here consists of finding modified values yl, for 
ke Sg, as close as possible to the original values ŷ  and 
diat satisfy the consttaint B"^' = B*^. Under this consttaint, 
k is obvious that i^* =t^ - ^ possible implementation of 
this idea is obtained by minimizing the distance function 
'^kes,^k(yk~y'k)^/^k subject to die'consttaint 8"̂ * = 
B"^ . This leads to the modified values 

yk'^yk+^k Z Wk 
XfcXii 

kes, ^k 

Z^X,X'J(B--B-). (4-V) 
\kes ^k 

This idea is essentially equivalent to reverse calibration 
proposed by Ren and Chambers (2002), except that diese 
autiiors used die consttaint i^' = t^ instead of B"^* = B"^ . 
We prefer die latter since it leads to modified values that 
better preserve the relationships between the variable of 
Uiterest y and the auxiliary variables x. 

Other ways of determining modified values diat satisfy 
the constraUit B*̂ * = B"^ can be found. For example, it is 
sttaightforward to show that this consttaUit is satisfied when 
the following modified values are used: 

>'** = «*}'*+(I-«*)X;B* (4.8) 

(4.6) 
kes 

where â  =w^{B ,Q)lw^. The modified values in 
equation (4.8) have a simple interpretation: diey are a 
weighted average of die robust prediction x'̂ B"̂  and die 
observed value y^. Less weight is given to the observed 
value ŷ  when it has a smaller value of â  and, therefore, 
when it is highly influential. 

5. MEAN SQUARED ERROR ESTIMATION 

Estimation of the MSE of F^ can be used for three 
different purposes: i) finding appropriate values for a and 
(p usUig past or current sample data, ii) evaluating die qual­
ity of estimates and iU) making inferences about unknown 
population quantities. Using the fact that Ep{t^)~ty, it 
can be easily shown that the MSE of i^ can be approx­
imated by 

MSE^(ff)-V/r7) 

+ ̂ p(iy - ty )' - V, (f7 - ff ) . (5.1) 
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Gs-,2 (4.7) or (4.8) could be tteated as true values for MSE 
estimation. 

The last two terms of (5.1) are equal to [Ep{ty -t^)] 
They represent the square of the design bias of i" . As 
suggested in Gwet and Rivest (1992), a potential estimator iii) The term V^ (ff -1^) in (5.2) could be omitted. This 

would lead to die MSE estimator: mse (f^) = of MSE rr^) is given by 

m s e / / 7 ) = V^(f7) 

+ max(0 , (f; -i^)' - V ^ ( F ; -tf)), (5.2) 

where 'Vp{i^) and yp{iy -1°) are estimators of 
V / r 7 ) and V / r ^ -t';) respectively. 

Since the estimator i" has a complex stiiicture, re-
sampUng variance estimation mediods provide a convenient 
way of estimating ^^{i^) and V̂ (f̂ ^ - f ^ ) . The jack-
knife, the bootsttap and the balanced repeated repUcations 
mediods are described and evaluated in Rao, Wu and Yue 
(1992) for stratified multistage sampling designs, where the 
primary sampUng units are assumed to have been selected 
widi replacement. They have shown in an empUical sttidy 
that the jackkrufe variance estimator can have a large bias 
when estimating the variance of a non-smooth estimator, 
such as the sample median. Therefore, the jackknife vari­
ance estimator might be more biased for estimating the vari­
ance of die M-estimator than die balanced repeated rep-
Ucation or die bootsttap method when, at each iteration of 
die IRLS algorithm, Q is estimated usUig a non-smooth 
estimator such as (4.4). Gwet and Lee (2000) studied empU­
ically the performance of die jackknife and die bootsttap 
mediods for some robust estimators. In general, they found 
encouraging results. It is important to note diat the estimator 
i^ should be recomputed for each resample. This includes 
repeatiing the procedure used to estimate a and cp if they 
are estimated using current sample data. 

When die goal of MSE estUnation is only to find 
appropriate values for a and tp, it may be convenient to 
consider simplified MSE estUnators in order to reduce 
computer time. We now propose four different ways of 
simpUfying MSE estimation: 

i) Only a single iteration of the IRLS algorithm could be 
done for each resample even if a fuUy-iterated 
M-estimator is used. This might yield reasonable 
variance estimates since the sUigly-iterated and ftiUy-
iterated M-estimators seem to have similar properties 
(see section 6.4). 

U) Some quantities could be assumed fixed (not random) 
for MSE estimation. This is Ukely to lead to an 
underestimation of the MSE but it may be useful if die 
goal of MSE estimation is only to find appropriate 
values for a and tp . For example, the adjusted weights 
wl(B^,Q) could be assumed fixed. This approxima­
tion was Ui fact suggested in HulUger (1999). Alter­
natively, if the M-estimator is implemented using the 
methodology in section (4.2), the modified values Ui 

Vp (ff) + {ty - iy )^. Note tiiat diis approach leads to 
an overestimation of the MSE. 

iv) A combination of two of the above three propositions 
could be considered. For example, the adjusted weights 
wl{B^,Q) could be assumed fixed and the term 
Np{t^ -t^) in (5.2) could be omitted. In such a case, 
an estimator for V^ {t^) could be obtained by noting 
tiiat Vp(f;^) = t ; V / B " ) t , and by using die weU 
known Taylor linearization technique of Binder (1983) 
to estimate V^ (B"^ ) . After some straightforward alge­
bra, we obtaUi the MSE estimator 

nisep(r7) = 

^^(^^ / -^^" 'V(y . -x;B-)wr (y, -X;B-) 
kes les ^kl 

+ (ty -i°)\ •y -y. , (5.3) 

where TÎ , is die joint probabiUty of selection of units k 
and I. 

6. SIMULATION STUDY 

We performed a simulation study to evaluate some 
properties of die LS estimator and the M-estimator for a 
skewed finite population. In particular, we compared a 
version of the M-estimator that reduces the influence of 
large weighted population residuals to anodier one diat 
reduces the influence of large unweighted population 
residuals. We also compared the performance of the singly-
and fuUy-iterated M-estimators. Section 6.1 describes die 
population and die sampling design, and sections 6.2 to 6.4 
discuss results from the simulation. 

6.1 Population and Sampling Design 

The data from Statistics Canada's 1998 Survey of 
Household Spending (SHS) are used to serve as die popu­
lation. This survey uses a sttatified multi-stage design and 
contains Uiformation about 15,457 households on several 
variables. The variable Renovation/Repair is chosen as die 
variable of interest y. This variable is considered for its 
greater potential of having very large values. A vector x of 
three bUiary auxiliary variables have been created by 
dividing the variable Income into three categories {Income < 
30,000, 30,000 < Income < 60,000 and Income > 60,000) 
and we have chosen v̂ j. = 1, for all ksU .In other words, 
we have considered a poststtatification estimation model, 
which should give us robusmess against deviations from die 
Unearity assumption. The population coefficient of 
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determination {R^) for dus estimation model is 0.13. This 
is a typical R^ in household surveys. 

From diis population, 5,000 samples of expected sample 
size 300 have been selected using Poisson samplUig. We 
wanted to give households quite dispersed probabilities of 
selection resulting Ui variable design weights. We dius 
assigned probabilities of selection such that they were 
proportional to die inverse of die SHS design weights 
(which include a nonresponse adjustment factor). The 
selection probabiUties are thus given by n^. -
(300/Zte(;^I) Ttl. where Tt̂ , for ksU , is die reciprocal 
of the design weight (including a nonresponse adjustment 
factor) from the SHS data. 

Table 6.1 gives some summary statistics for diis pop­
ulation. We note diat die population residuals are very 
skewed and that die skewness increases when the residuals 
are multipUed by die design weights. Figure 6.1 shows a 
graph of the population residuals versus the design weights. 
First, we note diat diere is a clear outUer with a residual 
greater dian 50,000 and with a design weight not close to 1. 
Fortunately, die most extreme design weights are not asso­
ciated with large population residuals. Also, aldiough this 
graph may be misleading because of the huge number of 
points that are overlapping, there does not seem to be any 
clear relationship between the population residuals and die 
design weights. In fact, the coefficient of correlation be­
tween the design weights and the population residuals is 
0.0049. Such a smaU coefficient of correlation is not atyp­
ical in household surveys, for reasons discussed Ui section 3, 
and suggests diat die ignorabiUty assumption may hold 
approximately. 

Table 6.1 
Summary Statistics about the Population 

Variable 
Renovation/Repair 
Population Residual 
Design Weight 
Weighted Population Residual 

Mean 
367 

0 
177 
922 

Standard 
Deviation 

1,124 
1,104 

170 
295,685 

Skewness 
12.6 
12.8 

1.8 
15.0 

CO 

59,000 

49,000-

39,000 

29,000 

19,000 

9,000-6 

-1,000 
0 

• i . 
I .1 litltU Li_ 

500 1,000 1,500 
Design weights 

2,000 

Figure 6.1. Graph of the population residuals versus the design 
weights 

For each of die 5,000 samples, estimates of the 
population total for the Renovation/Repair variable have 
been calculated for both the LS estimator and two versions 
of the M-estimator; one that reduces die influence of large 
weighted population residuals {hf. = vv̂ ) and another one 
that reduces die influence of large unweighted population 
residuals (/J .̂ = 1). For die i* sample, die relative error in 
percentage of any estimate iy. of ty is defined as 
A,. = 100% X {iy, -ty)lty. Thc Relative Bias (RB) and the 
Relative Root Mean Squared Error (RRMSE) of any 
estimator ty, expressed as a percentage of the population 
total, can dius be estimated by RB = ZfiT" A,./5,000 and 
RRMSE ^yj'L^T^] /5,000 respectively. Anodier mea­
sure of interest is die Maximum Absolute Relative Ertor 
(MARE) in percentage given by MARE = 
max(|Aj; j = l, 2, ..., 5,000). This measure may be 
useful to assess the sensitivity of an estimator to the 
presence of influential units in die sample. 

6.2 The LS Estimator: Design Robustness 

In this section, we evaluate die properties of the LS 
estimator. Figure 6.2 illusttates die RB, RRMSE and 
MARE of die LS estimator for 11 values of a (a = 0, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) when g(w^ ;a) = < . 
On die one hand, die BLU estimator (a = 0) has an 
RRMSE close to die minimum and die smallest MARE 
among diese 11 values of a but, as expected, leads to die 
largest RB (in absolute value). Its RB is equal to -13.05%, 
which is not negligible. Given diat a poststratification model 
is used, diis suggests that die ignorabiUty assumption is not 
fully satisfied even though die correlation between die 
design weights and the population residuals is small. On die 
other hand, die GREG estimator (a = 1) has a very small 
RB but has die largest RRMSE and MARE due to die 
variabUity of die design weights. When a = 0.2, the LS 
estimator is biased, widi an RB of-9.11%, but has a value 
of MARE relatively close to the smallest value and has the 
smallest RRMSE (17.94%) among the values of a 
considered. This is a substantial reduction in comparison 
widi die RRMSE of die GREG estimator (34.77%). In 
general, values of a between 0.2 and 0.5 provide a 
reasonable compromise estimator with respect to RB, 
RRMSE, and MARE. Note diat, for larger expected sample 
sizes, we expect that the minimum MSE be reached for 
larger values of a because the bias of the LS estimator may 
dominate its variance. 

We have also considered the LS estimator obtained by 
choosing adaptively, for each selected sample, the value of 
a diat leads to die smallest estimated MSE among die set of 
11 values of a considered above. The MSE has been 
estimated using equation (5.3). The average value of a over 
die 5,000 selected samples is 0.43. This is slightiy larger 
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than the value of a (0.2) that leads to the smallest MSE (see 
figure 6.2). This may be due to die simpUfication made to 
obtain (5.3), which omits a component of the square design 
bias when estimatUig the MSE. Nevertheless, this LS 
estimator shows a significant improvement over the GREG 
estimator in terms of RRMSE (26.05%) and MARE 
(217.99%). This LS estimator shows also a significant 
improvement over the BLU estimator in terms of RB 
(-6.24%). Therefore, it seems that choosing adaptively the 
value of a leads to a useful compromise between die 
GREG and BLU estimators. However, there is a price to 
pay in terms of RRMSE by estimating a instead of usUig 
the optimal (although unknown) value of a. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Alpha Values 
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35 
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i 15 
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0 

•-—• • -^ ^^-"^ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Alpha Values 

Figure 6.2. RB, RRMSE and MARE of the LS estimator 

6.3 The M-estimator: Outlier robustness 

We have compared two versions of the M-estimator; one 
that reduces the influence of large weighted population 
residuals {h^^ = w .̂) and anodier one diat reduces die 

influence of large unweighted population residuals 
{h^ = 1). For the weighted version, we chose 7 values of tp 
((p= 10, 25, 50, 100, 150, 200, oo) and for die unweighted 
version, we chose 9 values of tp (tp = 2, 5, 8, 11, 14, 17, 20, 
30, °°). We have only considered the case a = 1, as we did 
not want to confound the effects of changing the constant a 
with the effect of changing the constant tp. Of course, a 
more efficient estimator could be found by an appropriate 
choice of both constants. It is to be noted that the results are 
based on a single iteration of the IRLS algorithm using 
g (0) _ g G 3g jjjg vector of startUig values. 

It can be seen from figures 6.3 and 6.4 diat the weighted 
version {h^ -^k) has a better potential for reducing the 
RRMSE and die MARE of M-estimators dian die 
unweighted version (/ẑ  = 1). Both graphs of RRMSE 
present a {/-shaped curve. The RRMSE curve for h^ = iv̂  
shows that a value of tp between 50 and 150 leads to an 
RRMSE between 25% and about 27%, whUe die RRMSE 
of the GREG estimator (last poUit on the graphs) is equal to 
34.77%. The RRMSE curve for /î  = 1 shows diat die 
RRMSE is around 30% for values of tp between 8 and 20. 
In the area where die RRMSE is close to its minimum 
value, the MARE is smaUer when h^ -Wi^. This suggests 
that hi^ - Wj may conttol influential units better than 
/î  = 1. As expected, the RB Ui both figures decreases as tp 
Uicreases. 

We have also considered the weighted and unweighted 
versions of the M-estimator obtained by choosUig 
adaptively, for each selected sample, the value of tp that 
leads to the smaUest estimated MSE (using equation 5.3) 
among the sets of values of tp considered above. The 
average value of (p over the selected samples is 72.34 for 
the weighted version and 10.58 for the unweighted version. 
Calculation of these averages excludes samples for which 
(p = oo (13 samples for h^ = ŵ . and 1 sample for /î , = 1). 
Both averages are close to the optimal values of tp found in 
figures 6.3 and 6.4 (100 for h^=w^, and 11 for h^ =1). 
The weighted version of the M-estimator has an RB of 
-10.24%, RRMSE of 28.07% and MARE of 197.86%. 
The unweighted version of the M-estimator has an RB of 
-8.26%, RRMSE of 28.18% and MARE of 232.57%. 
Therefore, both versions of the M-estimator lead to a 
significant improvement over the GREG estimator in terms 
of RRMSE and MARE at the expense of an increase in RB 
(around -10%). The MARE is smaller for die weighted 
version, which again Uidicates diat it conttols influential 
units better than the unweighted version. However, the 
difference Ui die RRMSE between these two estimators is 
very smaU. Curiously, it seems that there is no increase in 
MSE due to estimating tp instead of using the optimal value 
when the unweighted version is used. This observation is 
somewhat difficult to explain. 
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Figure 6.3. RB, RRMSE and MARE of the M-estimator when 
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Figure 6.4. RB, RRMSE and MARE of the M-estimator when 

6.4 Comparison of the Singly-iterated and Fully-
iterated M-estimators 

We now compare the singly- and fully-iterated 
M-estimators when a = 1. We only consider the following 
two cases: i) h^-l and tp = 11; and ii) h^ = vv̂  and 
tp = 100. Most of die time, the IRLS algoritiim converged 
quickly in the fully-iterated case (average number of 
iterations for convergence is 7.53 for hf^=l, and 7.29 for 
h^ - vvj), but in some of the 5,000 samples (64 for h^=l, 
and 75 for /î  = vv̂ .) it did not converge. When diis simation 

occurred, we kept the M-estimate from the last iteration of 
the IRLS algorithm. From table 6.2, it is evident that die 
RB, RRMSE and MARE of die singly- and fully-iterated 
M-estimators are very close to each other. A point worth 
noting is the slightiy smaller RBs for singly-iterated 
M-estimators. This point has also been observed by Lee 
(1991) and is likely due to die fact tiiat we used B**" = B"̂ ' 
as the vector of starting values for the IRLS algorithm, 
which is ADU for B. 
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Table 6.2 
Comparison of Singly- and Fully-iterated M-estimators 

Estimator 
Singly-iterated 

RB RRMSE MARE 

Fully-iterated 

RB RRMSE MARE 

M-estimator (/î  = 1, 9 = 11) -6.94% 29.28% 235.07% -7.93% 29.27% 235.07% 

M-estimator(/)̂  =wj, (p = 100)-8.14% 25.36% 197.86% -8.27% 25.33% 196.73% 

7. CONCLUSION 

In this paper, we considered robust alternatives to die 
optimal (BLU) estimator. We first proposed a compromise 
between the GREG and BLU estimators, the LS estimator, 
to deal with deviations from the ignorabUity assumption. 
The LS estimator is obtained by shrinking the design 
weights toward dieU mean. It is expected to be more stable 
dian the GREG estimator when the ignorabiUty assumption 
holds approximately and less biased than the BLU estimator 
when this assumption is not fuUy satisfied. This was 
confirmed in a simulation study using a population created 
from real survey data. The LS estimator also offers some 
protection against deviations from model assumptions. 

To deal with outUers, we suggested using the weighted 
generaUzed M-estimation technique to reduce the influence 
of units with large weighted population residuals. We found 
in a simulation study that significant gams in MSE could be 
obtaUied widi this metiiod. We also found that an 
M-estimator obtained using a single iteration of the IRLS al­
gorithm performed similarly to a fuUy-iterated M-estimator. 
FinaUy, we proposed implementing M-estimators for multi­
purpose surveys by modifying either the weights of influ­
ential units or their values. We believe that both approaches 
are useful and contribute to bridge a smaU gap between 
theory and practice. 
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APPENDIX 

In this proof, we remove the conditioning on X when 
taking expectations and variances with respect to model m 
in order to simpUfy die notation. Using Slutsky's theorem, 
to show that E^{iy -ty)lty converges in probabiUty to 0, 
as die sample size n and the population size Â  tend to 
infinity, under assumptions (Al), (A2) and (A3), it suffices 
to show that: 

a) Ep(f^/tjP) = r^/t'^p converges in probabiUty to 
1 and 

b) E p (fĵ  /1'^ p) converges in probability to I. 

To show (a), note diat 

^ ^ . ^ 

vt;py 

and 

V„ 
v O y A' (t;p/A^)' ttu Y-l/N-

By Chebychev's inequality, tylt'^p converges in 
probabUity to 1 under model m, as A' increases, if 
t ' j = 0(A?) and Ztet/O^ =0{N) (assumption A3). 

To show (b), we first note tiiat E„Ep(.) = E^E^(.| s) 
provided that the set of all possible samples does not depend 
on which population was generated by model m. 
Consequentiy, U assumption (A2) holds, it is 
sti^ghtforward to show that E^E^ (f̂ f / t'̂ P) = 1. Then, we 
note that 

ty 

t;p 
= V„E. 

ty 

t;p 
+ E„V, 

t;p 
(A.l) 

As a result, V„Ep(f; / t ;p)< V„p(r7 / t ' J ) since die 
two terms on the right side of (A. 1) are greater than or equal 
to 0. By the previous inequaUty and Chebychev's inequality, 
Ep{iy It'^P) converges in probabiUty to 1 under model m, 
as rt and Â  increase, if lim„ f^_„y^p{iy /t',P) = 0. Using 
assumption (A2), it is sttaightforward to show diat 

t;p A' (t;p/A^)^ 
Y^\(<JhVklN. 

Consequentiy, lim„ ^^„ 
0{N) and Y.keu E ,{ (wf )^ , 

v„„(f;/t;p)=o mp ^-y • '\r/ " n Ij^p 

h] Ot = 0{N) (assumption 
A3). This completes the proof. 



Survey Methodology, December 2004 207 

REFERENCES 

BEATON, A.E., and TUKEY, J.W. (1974). The fitting of power 
series, meaning polynomials, illustrated on band-spectroscopic 
data. Technomelrics, 16, 147-185. 

BASU, D. (1971). An essay on the logical foundations of survey 
sampling, part 1. In Foundations of statistical inference, (Eds. 
V.P. Godambe and D.A. Sprott), Toronto: Holt, Rinehart, and 
Winston, 203-233. 

BINDER, D.A. (1983). On the variances of asymptotically normal 
estimators from complex surveys. International Statistical Review, 
51,279-292. 

CHAMBERS, R.L. (1986). Outiier robust finite population 
estimation. Journal of the American Statistical Association, 81, 
1063-1069. 

CHAMBERS, R.L., DORFMAN, A.H. and WEHRLY, T.E. (1993). 
Bias robust estimation in finite populations using nonparametric 
calibration. Journal of the American Statistical Association, 88, 
268-277. 

DEVILLE, J.-C, and SARNDAL, C.-E. (1992). Calibration 
estimators in survey sampling. Journal of the American Statistical 
Association, 87, 376-382. 

DRAPER, N., and SMITH, H. (1980). Applied regression analysis, 
second edition. New-York, John Wiley & Sons, Inc. 

DUCHESNE, P. (1999). Robust calibration estimators. Survey 
Methodology, 25, 43-56. 

DUMOUCHEL, W.H., and DUNCAN, G.J. (1983). Using sample 
survey weights in multiple regression analyses of stratified 
samples. Journal of the American Statistical Association, 78, 535-
543. 

ELLIOTT, M.R., and LITTLE, R.J.A. (2000). Model-based 
alternatives to trimming survey weights. Journal of Official 
Statistics, 16, 191-209. 

GRAUBARD, B.I., and KORN, E.L. (1993). Hypothesis testing with 
complex survey data: the use of classical quadratic test statistics 
with particular reference to regression problems. Journal of the 
American Statistical Association, 88, 629-641. 

GWET, J.-P., and LEE, H. (2000). An evaluation of outlier-resistant 
procedures in establishment surveys. In The Second International 
Conference on Establishment Surveys, American Statistical 
Association, Alexandria, Virginia, 707-716. 

GWET, J.-P., and RIVEST, L.-P. (1992). Outlier resistant alternatives 
to the ratio estimator. Journal of the American Statistical 
Association, SI, 1174-1182. 

HAMPEL, F.R., RONCHETTI, E.M., ROUSSEEUW, P.J. and 
STAHEL, W.A. (1986). Robust Statistics: the Approach Based on 
Influence Functions. New-York, John Wiley & Sons, Inc. 

HEDLIN, D., FALVEY, H., CHAMBERS, R. and KOKIC, P. 
(2001). Does the model matter for GREG estimation? A business 
survey example. Journal of Official Statistics, 17, 527-544. 

HUBER, P.J. (1964). Robust estimation of a location parameter 
Annals of Mathematical Statistics, 35, 73-101. 

HUBER, P.J. (1981). Robust Statistics. New-York, John Wiley & 
Sons, Inc. 

HULLIGER, B. (1995). Outlier robust Horvitz-Thompson estimators. 
Survey Methodology, 21, 79-87. 

HULLIGER, B. (1999). Simple and robust estimators for sampling. 
In Proceedings of the Section on Survey Research Methods, 
American Statistical Association, 54-63. 

KALTON, G., and FLORES-CERVANTES, 1. (2003). Weighting 
methods. Journal of Offiicial Statistics, 19, 81-97. 

KISH, L. (1992). Weighting for unequal P,. Journal of Official 
Statistics, 8, 183-200. 

KORN, E.L., and GRAUBARD, B.I. (1999). Analyses of Health 
Surveys. New-York, John Wiley & Sons, Inc. 

LEE, H. (1991). Model-based estimators that are robust to outliers. In 
Proceedings of the Annual Research Conference, Washington, 
DC, U.S. Bureau of the Census, 178-202. 

LEE, H. (1995). Outliers in business surveys. In Business Survey 
Methods, (Eds. B.G. Cox, D.A. Binder, B.N. Chinnappa, A. 
Christianson, M.J. CoUedge and P.S. Kott). Chapter 26, New-
York, John Wiley & Sons, Inc. 

LITTLE, R.J.A. (1983). Estimating a finite population mean from 
unequal probability sampling. Journal of the American Statistical 
Association, 78, 596-604. 

PFEFFERMANN, D. (1993). The role of sampling weights when 
modeling survey data. International Statistical Review, 61, 317-
337. 

POTTER, F. (1988). Survey of procedures to control extreme 
sampling weights. In Proceedings of the Section on Survey 
Research Methods, American Statistical Association, 453-458. 

POTTER, F. (1990). A study of procedures to identify and trim 
extreme sampling weights. In Proceedings of the Section on 
Survey Research Methods, American Statistical Association, 225-
230. 

POTTER, F. (1993). The effect of weight trimming on nonlinear 
survey estimates. In Proceedings of the Section on Survey 
Research Methods, American Statistical Association, 758-763. 

RAO, J.N.K. (1966). Alternative estimators in PPS sampling for 
multiple characteristics. Sankhyd, Series A, 28,47-60. 

RAO, J.N.K., WU, C.F.J. and YUE, K. (1992). Some recent work on 
resampling methods for complex surveys. Survey Methodology, 
18,209-217. 

REN, R., and CHAMBERS, R.L. (2002). Outlier robust imputation of 
survey data via reverse calibration. Soudiampton Statistical 
Sciences Research Institute Methodology Working Paper M03/I9, 
University of Southampton. 

ROYALL, R.M. (1976). The linear least-squares prediction approach 
to two-stage sampling. Journal of the American Statistical 
Association, 11, 657-664. 

ROYALL, R.M., and HERSON, J. (1973). Robust estimation in finite 
populations I. Journal of the American Statistical Association, 68, 
880-889. 

RUBIN, D.B. (1976). Inference and missing data. Biomelrika, 63, 
581-592. 

SARNDAL, C.-E., SWENSSON, B. and WRETMAN, J.H. (1992). 
Model Assisted Survey Sampling, New-York, Springer-Verlag. 

STOKES, L. (1990). A comparison of truncation and shrinking of 
sampling weights. In Proceedings of the 1990 Annual Research 
Conference, Washington, DC: Bureau of the Census, 463-471. 

SUGDEN, R.A., and SMITH, T.M.F. (1984). Ignorable and 
informative designs in survey sampling inference. Biomelrika, 11, 
495-506. 



208 Beaumont and Alavi: Robust Generalized Regression Estimation 

VALLIANT, R., DORFMAN, A. and ROYALL, R.M. (2000). Fi>«fe ZASLAVSKY, A.M., SCHENKER, N. and BELIN, T.R. (2001). 
population sampling: a prediction approach. New-York, John Downweighting influential clusters in surveys: application to the 
Wiley & Sons, Inc. 1990 post enumeration survey. Journal of the American Statistical 

WELSH, A.H., and RONCHETTI, E. (1998). Bias-calibrated Association, 96, S5S-S69. 
estimation from sample surveys containing outiiers. Journal of the 
Royal Statistical Society, Series B, 60,413-428. 



Survey Methodology, December 2004 
Vol. 30, No. 2, pp. 209-218 
Statistics Canada 

209 

Penalized Spline Nonparametric Mixed Models for Inference about a 
Finite Population Mean from Two-Stage Samples 

HUI ZHENG and RODERICK J.A. LITTLE ' 

ABSTRACT 

Samplers often distrust model-based approaches to survey inference because of concerns about misspecification when 
models are applied to large samples from complex populations. We suggest that the model-based paradigm can work very 
successfully in survey settings, provided models are chosen diat take into account the sample design and avoid strong 
paramettic assumptions. The Horvitz-Thompson (HT) estimator is a simple design-unbiased estimator of the finite 
population total. From a modeling perspective, the HT estimator performs well when the ratios of the outcome values and 
the inclusion probabilities are exchangeable. When this assumption is not met, the HT estimator can be very inefficient. In 
Zheng and Littie (2003, 2004) we used penalized spUnes (p-splines) to model smoothly - varying relationships between the 
outcome and the inclusion probabilities in one-stage probability proportional to size (PPS) samples. We showed that 
/7-spline model-based estimators are in general more efficient than the HT estimator, and can provide narrower confidence 
intervals with close to nominal confidence coverage. In this article, we extend this approach to two-stage sampling designs. 
We use ap-spline based mixed model that fits a nonparametric relationship between the primary sampling unit (PSU) means 
and a measure of PSU size, and incorporates random effects to model clustering. For variance estimation we consider the 
empirical Bayes model-based variance, the jackknife and balanced repeated replication (BRR) methods. Simulation studies 
on simulated data and samples drawn from public use microdata in the 1990 census demonstrate gains for the model-based 
p-spline estimator over the HT estimator and linear model-assisted estimators. Simulations also show the variance 
estimation methods yield confidence intervals with satisfactory confidence coverage. Interestingly, these gains can be seen 
for a common equal-probability design, where the first stage selection is PPS and the second stage selection probabilities are 
proportional to the inverse of the first stage inclusion probabilities, and the HT estimator leads to the unweighted mean. In 
situations that most favor the HT estimator, the model-based estimators have comparable efficiency. 

KEY WORDS: Weighting; REML; Empirical Bayes estimation. 

1. INTRODUCTION 

In a sample survey, let y, denote the value of an 
outcome Y for unit /, and let S denote the set of sampled 
units. The Horvitz-Thompson (HT) estimator (Horvitz and 
Thompson 1952) Y^^J - Z,es yi/t^i^ where TI,. is the 
probabUity of selection of unit /, is a design-unbiased 
estimator of the finite population total (and of the mean 
when divided by the known population count A^). It can also 
be regarded as a model-based projective estimator (FUth and 
Bennett 1998) for the following Unear model relating y, to 
7 1 , : 

y,. =P;i , . -l-7t,.e,, 

where e, is assumed to be i.i.d. normally distributed with 
mean zero and variance o^. 

In Zheng and Littie (2003, 2004), we proposed a 
nonparametric model 

y ,= / (7 i , ) + 8,,8, ~ind A^(0,7if*a'), 

using penalized splines to model mean of outcome y, as a 
smoothly-varying function / of the inclusion probabiUties 

71,.. We showed in Zheng and Little (2003) diat die 
nonparametric model-based estimators are more efficient 
than HT for general one-stage probability-proportional-to-
size (PPS) samples and not much less efficient dian HT 
when the data are generated using a model that favors HT. 

In dus article we consider two-stage sampling. In the first 
stage, a subset of m primary sampling units (PSUs) is drawn 
from a population widi H PSUs with unequal probabilities 
71,;, ,h= I,..., H. Let us number the included PSUs from 1 
to m. In the second stage, a simple random sample (srs) of 
n^ out of Â ;, secondary sampling units (SSUs) is drawn 
from the sampled PSU labeled h with probability 713,,. The 
overall selection probabiUty for unit / in PSU h is 
^h ='^i,/.'^2.*' ^<i th^ HT estimator of the mean of an 
outcome y is y,, =Z"=iZ>, y^ / ( ' t i . / , ' t2 , J /^ . where y„, 
is the value of Y for unit / in PSU h and Â  is the known total 
number of units (SSUs) in die whole population. In a 
commonly adopted design, the first stage selection 
probabUity is proportional to an estimate of the PSU size, 
and the second stage inclusion probabiUties are proportional 
to the inverse of the first stage inclusion probabilities so that 
the overall Uiclusion probabilities 71̂  are equal for all SSUs. 

Hui Zheng, Department of Health Care Policy, Harvard Medical School, 180 Longwood Avenue, Boston, MA 02115. E-mail: 
zheng@hcp.med.harvard.edu; Roderick J.A. Little, Department of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, Ml 
48109. E-mail: rlittle@umich.edu. 
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The inverse probabUity weighted mean in this case equals 
die simple sample mean y = ZA=I Z"=I yu I 2A=I «A • 

We assume throughout this article that the selection 
probabilities 71, ,, are known for aU the PSUs h= I, ...,H. 
In sections 2 and 3, we assume the PSU counts N^ are also 
known for all die PSUs Ui die population. In section 4, we 
discuss the common sitiiation where Â^ is only known for 
sampled PSUs, but the A',, for nonsampled PSUs can be 
estimated using a regression model based on auxiUary 
variables known for all PSUs in the population. 

Samdal, Swensson and Wretman (1992) discussed 
model-assisted alternatives to the HT estimator for two-
stage samples with auxiUary Uiformation available at the 
PSU or SSU level. In the first case, let x^ denote a vector of 
PSU-level auxiUary variables for PSU h. The PSU totals 
/;, = Zjl'i yhi ^6 assumed to be related to J:̂  according to a 
linear model: 

E{th \x,) = xlf>,Nar{t,) = ol, h = l, ..., H 

(Samdal et al. 1992). P is estimated by die probabiUty-
weighted regression 

B^ 
\h=\ 
Y^h^lii^lt^Lh)] Y^ht'hii^lt^i.h)^ 

/i=i 

where f̂  =Z"=iyA,/t2./i' leading to the projected totals 
if, -XIB, h-l, ... H. In practice, estimates ol, either 
simply assumed {e.g., o^ proportional to a measure of size 
of sttatiim h) or estimated, replace o^ in the above formula. 
The generaUzed regression (OR) estimator of the grand total 
is 

7^.=Z^>Z (th-h) 

i=i h=l 

and die estimate for die mean is f^ IN. The term 
ZA=I {t*h~th)l t^i.h is ̂  l^i^ calibration term that makes the 
estimator design- consistent. 

In the second case where auxiUary information is known 
at the SSU level, let JC;,, denote die set of auxiUary variables 
for SSU / Ui PSU h, h = l,...,H;i = l,...,N,,. The 
relationship between the outcome and the auxiUary 
information is modeled by 

£(>'«|^«) = 4P.---.Var(y,,) 

= ol, h = l,...,H, i = l,...,N,. 

The probabiUty weighted regression estimate for P is 

B = 
m n» A-' m "t 

YY^hi^li'i^l^hi) YY^hi yu/[^iT^hii' 

where 7t,„ is the probabiUty for unit {h, i) to be included in 
the sample. The OR estimator for die grand total is 

Ts=YYyM^YY^-^'^^^^ 
h=l (=1 h=\ i=l Tt-hi 

where y/,, - ^IjB . The estimator for the mean is Tg IN. 
These two methods do not account for the within-PSU 

correlations of outcome. These correlations can be modeled 
by treating PSU means as random effects in a hierarchical 
model. For die case where PSU-level information x,, is 
available for all PSUs, one such model is: 

ind 

p~A^„((p, D) (1) 

where p = (P|, ..., n^)^ ' <P = (9i> - . ^H)^ where p,, is 
the mean outcome in PSU h, tp̂ , = J : [ P , and D is the 
covariance matiix of die PSU means. The model-based 
estimator of Y is given by 

E{Y\y,x,) = 

]^(zr=iKyi,+(^/,-«j AJ+ZL+I^AAJ, 

where p,, = £'(y/„ \y,x,,), and y is the vector of outcomes 
Ui the sample. 

Different assumptions about tp and D in (1) lead to die 
following models: 

Exchangeable random effects (XRE): (Holt and Smidi 
1979; Ghosh and Meeden 1986; Littie 1991; Lazzaroni and 
Littie 1998): tp̂ , = \i^,h = 1,..., H and D = x^I„ ; 

Autoregressive (ARl): (Lazzaroni and Littie 1998): 
(p,=p„,/i = l,...,// andD = r'{pl'-^l}; 

Linear (LIN): (Lazzaroni and Little 1998): tp̂ , = 
a -h ^x,, ,h = l, ..., H and D = x^I„ ; 

Nonparametric: (ElUott and Littie 2000): (p,, = 
f{x,,),h^l,...,H and D = 0. 

The nonparametric models in Elliott and Littie (2000) 
assume nonparametric mean function relating the outcome 
to die design variables. By assuming D = 0, the PSU 
means are modeled to equal the mean function / instead of 
varying around it. Nonparametric mixed models relax the 
assumptions on D {e.g.,D = x^If,) and serve as a natural 
extension of die EUiott and Littie (2000) model and Unear 
mixed models with a parametric mean structure. 
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It is worth pointing out that some estimators in the above 
family of models correspond to standard design-based 
estimators. For example, in an equal-probabiUty design 
where n,, are approximately constant across PSUs, the 
unweighted mean corresponds to the special model-based 
estimator that assumes (p^ is constant 

2. ESTIMATION FOR THE P-SPLINE MIXED 
MODEL 

The linear structure of tp in LIN model is subject to 
misspecification when die actual mean structure is non­
linear. The non-linearity problem can be partially solved by 
adding polynomial terms {e.g., quadratic or cubic terms) to 
the fixed effects part in the LIN model. P-spUne 
nonparametric mixed models (Lin and Zhang 1999; 
Brumback, Ruppert and Wand 1999; Coull, Schwartz and 
Wand 2001) are even more flexible, since they replace 
polynomials by smooth nonparametric functions. We 
propose the followUig p-spUne nonparametric mixed model 
for inference about the population mean: 

P-spline nonparametric mixed model (PMM): 

<?h=f(xHlh-l,...,H, D x'L 

where / is a nonparametric degree p spline function: 

f{x;^)^^,+Y^,x' +Y^f,p{x-^X^ 
; = 1 /=1 

where K, < . . . < K ^ are K fixed knots, PQ, ..., p^ .̂̂  are 
coefficients to be estimated and(j:)^ = x''\{x > 0). 

A naive way of estimating p^, ..., P„+^ is to tteat them 
as fixed and estimate diem togettier with die variance 
components o^ and T^ by fitting a linear mixed model. 
However this method can yield estimates of / with too 
much roughness and variability. To avoid overfitting, die 
roughness of the estimation / can penaUzed by adding a 
penalty term to die sum of squared deviations, so that the 
solution Pg, ..., Pp is minimizes 

m . K 

Z(/(^/.)-Aj'+aZP?.. • 

This is achieved in the context of the model by assigning 
Po,...,Pp flat priors, (Pp+i,-, Pp+^) a normal prior 
N^{0,o^^), and letting a = T^/Op. The resuU is a 
penalized spUne (p-spline) model. 

When p = l, f is piecewise linear and the coefficients 
Po> •••' PA-+I and ô ,Op and x̂  are estimated by fittUig the 
linear mixed model: 

y^^XiP-i-X^M + e, (2) 

where y = (y,„ y.j, ..., y,„„ j ' ' , P = (Po. P, Y, " = 
(p2.- .P^+i ." i . - .«„ , f , 

^ 1 = 

1 X, 

1 X.. 

X,= 

(X | - K , ) ^ ... (X| - K ^ ) ^ 1 0 . 0 

(Xx - K , ) . , 

(•^2 - K | ) + 

{Xj - K | ) + 

(•^1 - K y f )+ 1 0 

( X 2 - K ^ ) ^ 0 I 

{X^-Yi^)^0 1 

0 0 

( X „ - K , ) ^ ... {X,„-K„)^0 0 

where x^ in X, and (J:^ -K , )^ . in Xj are both repeated 
«;, times. The random terms u and e are mutually 
independent with 

M = (p2, ..., P̂ f+p u„ ..., uj'^ ~ N^^„,{0,G), 

oll^ 0 

0 T^/„ 

Variance components o^ ,o^^ and T^ can be estimated by 
fitting model (2) by restricted maximum likelihood 
(REML). 

The predicted means of PSUs included in the sample 
are given by: p = X.p -i- X^M , where P = (X|'"V"'A:,)"' 

Xfy-'y, M = GA'[V-'(y - X|P), where V = 
X^GXj + o^Y^, Z=diag[{l/nj;i,] and y -
(y,,...,y^)^ • The predicted mean for a PSU h that is not 
selected in the first stage is p.,, = xl^*, where 
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Xh =" [1 X,, ( X , - K, ) ^ ... {X„-K^ ) ^ ] ' N,=[{N,-n,)...{N^-njN„,^,...N„], 

and 

P*=[Po P,, ..., P^„ f . 

Combining the predictions, we obtain the model-based 
estimator of the population mean 

E{Y\y,x,) = 

I 
^ X Z L ["A3'. + (NH - «/, ) A J +Yb-n,M ^h A/. 

3. VAIOANCE ESTIMATION METHODS 

3.1 Empirical Bayes Model-based Variance 

Model (2) can be interpreted as a Bayes model Ui which 
the parameters M = (p2, . . . , P ^ + | , M | , ...,U^Y have multi-

vanate 
_ 2 

to 

normal 
. 2 

N,,„{0, G), and 
and T̂  all have die flat priors, 
the Bayes posterior variance for 

(Po. P i . - . P^.P 
and 

u. u^) conditional 
T̂  as 

Po. Pi. o ' . 
This leads 
the vector 

2 2 

on a .Op 

Var((P(„ p,,..., P^^i, M,, ..., M„,)̂  | o ^ Op, T^ y) 

= o^(X^X-hA)" 

where X = [X | X^] and 

'O 0 

A = 

0 

0 

aV^ 
0 

0 

0 

0 

'T'I 

where I ̂  and / 

oVi 

and {m x m) identity are {KxK) 
matrices, respectively. 

The empirical Bayes posterior variance for 
(Po, p , , ..., P^^.,, M,, ..., M„)^ is calculated by replacing 
o^, Op and x^ with ttieU maximum lUcelihood (ML) or 
restricted maximum Ukelihood (REML) estimates 
6^,Op and T^, respectively. The empirical Bayes 
mediod underestimates the true posterior variance, but the 
underestimation is not severe for the sample sizes 
encountered Ui many survey settings. A fully Bayes solution 
is also possible, but is not covered here. 

The predicted population mean is T^^^^IN, where 
p̂red =T^+f^,T^= Ztinhyh is the sample tottd, and f^ 

is the estimated total for units not included in the sample, 

f2=z;:'=,(A^A-«JA.+ lA^.A. 
A=m+1 

. [poPi - - -P i f+ i ^ i l • • • A ™ ] ^ (3) = Np^pi 

where 

and 

X,= 

1 JT, (-<^i-K,)+ 

1 X„, {X,„-K.,). 

1 -̂ m+l {Xm+l~^U+ 

{x„--^d^ 

{X,-K^\ 1 0 ••• 0 

0 1 0 0 

0 

0 0 1 0 

(X„,-^K\ 0 - 0 1 

(•^^+|-K,f)+ 0 0 

(XH-^K)., 0 

The empUical Bayes posterior variance for Y = 7̂ ^̂ ^ / A' is 

Nar{Y\o\ol,x\X,X,) = 

a\NpXp{X'^X+A)-'XlNl)/N\ 

3.2 The Jackknife Method 

A jackknife variance estimator is developed for the PMM 
estimator. The jackknife replicates are constructed by 
dividUig die set of PSUs Uito G equd-sized ̂ subgroups ând 
computing the g* pseudovalue as Y^ =GY -{G-l)Y^^^, 
where Y is the original PMM estimator and y^ ,̂ is die 
same estimator calculated from the reduced sample obtained 
by excludUig the elements Irom the PSUs in die g 
subgroup. 

The jackknife variance estimate of Y is 

v{Y) = 
1 

G{G-l)t: 
Y(ys-y)"^ 

where Y - Zg=i YgIG. In order to balance the distiibution 
of the selection probabUities across the subgroups, sampled 
uiUts are sttatified into n/G sttata each of size G with similar 
first stage inclusion probabilities, and the G subgroups are 
constructed by randomly selecting one element from each 
stiatum. To save computation, estimates 6^, Op and T^ are 
not recomputed for each replicate. That is, we compute 
pseudovalues of (Pg, p , , ..., P^+p «,, ..., u^Y based on 
the variance components estimated from the whole sample. 

Miller (1974) and Shao and Wu (1987, 1989) proved 
asymptotic properties of die jackknife estimator and 
jackknife variance estimation in the case of multiple linear 
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regression. Zheng and Little (2004) provided a dieoretical 
justification for the jackknife method for thep-spline model-
based estimator in the case of one-stage designs. Numerical 
simulations in section 4 suggest die above described 
jackknife method also works well for die two-stage design. 
Improved performance might be achieved using the 
weighted jackknife proposed by Hinkley (1977). 

3.3 The Balanced Repeated Replication Method 

The BRR method can be applied in sttatified designs 
widi two units sampled Ui each stratiim. For designs with 
one PSU per stratum, strata are often collapsed (Kalton 
1977) for BRR variance estimation. In our appUcation we 
assume die PSUs are sampled systematically from a 
randomly ordered Ust. This can be viewed approximately as 
a sttatified design with n sttata each consisting of PSUs with 
cumulative measures of approximate size Z,̂ i zj n, where 
z,. are the measures of size for the PSUs . One PSU is 
sampled from each of die n sttata. Assuming n is even, die 
design can be approximated by a sttatified design widi n/2 
stiata widi measures of size 2Z,^i2,/«, and two units 
sampled per sttatiim. Balanced repeated haU samples are 
constructed by selecting one PSU Irom each stratum, with 
the selection scheme based on Hadamard matrices (Plackett 
and Burman 1946). Let ŷ  be die p-spline estimator 
computed from the b^ half sample, usUig the same knots as 
used in the computation using the full sample - the number 
and placement of knots needs to allow the spline model to 
be fitted on each half-sainple. The BRR estimator is given 
t'yvBRR(i') = l / S i:L\{Yb-Y)^ • This estimate of die 
variance is subject to some bias, because it tteats the design 
as if it was sttatified widi two PSUs per sttatum. 

4. WHEN SOME PSU COUNTS ARE NOT KNOWN 

In sections 2 and 3 we assumed diat the PSU counts Â ;, 
are known for sampled and non-sampled PSUs. In this 
section we discuss the situation where Â^ is only known 
exactiy for the sampled PSUs (labeled 1 dirough m). We 
also assume that values Mf,,h = l,...,H of an auxiUary 
variable predictive of A'̂  are known for die whole 
population. For example, the M^ may be PSU counts 
estimated from outside sources such as a census. We 
conduct a regression of A';, on M ,̂ using the sampled 
PSUs and replace the counts A'̂  in (3) for nonsampled 
PSUs widi predictions N,,,h = m + l,...,H from diis 
regression. The resulting estimate of the total is 

T=Ti-^YL(N,-n,)^,+YLJit\^,t-
The variance estimate of T needs to incorporate the 

additional variability in ^^. In particular, a model-based 
variance for T is 

Var(f 17i;„M,) - Var(£(f I ;V„ 7t,„ M„)) 

+ E{yar{f\N,„Tt„M,)), 

where 

E{f\N„n„M,) = Y"'aN, -njp„ +ZL,.,^. H,. 

and 

^ar{f \N „,Tt„,M ,,)^o^{N pX p{X'^ X + A)-' XlNl), 

N p =[{N,-n,)...{N^-n J N^,,...N„], and X, Xp 
and A are defined as in (3). 

If the models for p;, and A',, are bodi correctiy 
specified, the above variance can be estimated according to 
die corresponding models. 

5. SIMULATIONS 

5.1 Simulation Design 

Two simulations are conducted to compare the inverse 
probability weighting mediod, the model-assisted mediod 
(Samdal et al. 1992) and die PMM metiiod in die case of 
two-stage samples. 

In our first simulation, artificial populations are generated 
with different mean functions /(7i|,,)of the first stage 
inclusion probabilities. Four different mean functions are 
simulated: 1) NULL, a constant function; 2) LINDOWN, a 
Unearly decreasing function; 3) EXP, an exponentially 
increasUig function; and 4) SINE, a sine function. 

Two combUiations of values for variance components are 
simulated: l)o = 0.1 and T = 0 .2 ; 2) a = 0.2 and T = 0.1. 
Only normal errors around the mean functions are simulated 
while botii normal and lognormal within-PSU errors are 
simulated. 

The population consists of 500 PSUs, and in the first 
stage 48 PSUs are sampled systematically with probability 
proportional to size (PPS) from a randomly-ordered list. The 
PSU sizes are uniformly distributed with values ranging 
from 4 to about 400. The SSU count in each PSU is 
generated from a distiibution widi mean equal to 1.05 times 
the measure of size and log-normal errors with standard 
deviation 30. 

Two types of second-stage sampling plans are studied: 1) 
within-PSU simple random sampling (srs) with inclusion 
probabUities proportional to the inverse of the first stage 
Uiclusion probabiUties, resulting in an equal inclusion 
probabiUty for all SSUs.; 2) within-PSU simple random 
sampUng widi die same sampling rate across sampled PSUs, 
so tiiat die resulting inclusion probabilities for the SSUs in 
PSU h are proportional to TT, ;,. 
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For each sample drawn under both sampUng plans, the 
following methods are appUed: 

A. The HT estimator. 
B. The model-assisted estimation mediod. We use a linear 

model regressUig the outcome ŷ ,, on the first stage 
inclusion probabilities, which are treated as element-
level information. The OR estimator is computed by the 
formula given in section 1. 

C. The PMM method, widi the first-stage Uiclusion 
probabilities 7t, ̂  as the covariate. We use 20 equal 
percentiles of 7tn of the sampled PSUs as the knots for 
p-spUne regression. 

D. The PMM method widi die PSU means p;, estimated 
die same way as in C, but using estimated PSU counts 
from a sUnple linear regression of Â ,̂ on the measures 
of size, which are proportional to 71,^. This part of the 
simulation is conducted to study the method described Ui 
section 4. 

Estimates of Y from methods A-D are calculated for 
each of the 500 samples drawn repeatedly from the artificial 
populations (each artificial population is generated only 
once). For die PMM estimator, we compute the empirical 
Bayes, the jackknife {K = 8) and BRR variance estimators 
for each repeated sample. The mean estimate for die 

variance of PMM and the coverage rate of the 
corresponding 95% confidence Uiterval are used to judge die 
quaUty of Uiference. For method D, we study the empirical 
bias of the model-based variance estimator described in 
section 4, together with coverage rates of associated 
confidence intervals. 

In the second simulation study, we draw samples of 
household Uicome data from the 5% public use microdata 
sample (PUMS) for die State of Michigan Ui die 1990 US 
Census, which we tteat as a finite population. This 
simulation is more reaUstic than the previous simulation in 
that the outcome values are drawn from a real ratiier dian 
simulated distribution. The PSUs we simulate are based on 
the natural geographical clusters called "Public Use 
Microdata Areas" (PUMAs),which are typically counties 
and places. There are 67 PUMAs in the Michigan 5% 
PUMS, widi counts of families ranging from around 1,300 
to over 10,000. We increase the number of available PSUs 
by dividing each PUMA into 5, resulting in 335 PSUs. The 
PSU counts ranges from 134 to 3,058. Figure 1 gives the 
scatter plot of one sample of the average household income 
versus sampled PSU sizes togettier with the regression curve 
f{x)-

x lO ' 
Household Income Analysis 

c 

3 
U 

5.5 

5 

4.5 

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 
0 500 1,000 1,500 2,000 2,500 3,000 3,500 

Cluster Count 

Figure 1. P-spUne Regression Curve (dotted Une) and the Average Household Income (stars) in Sampled PSUs 
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Five hundred two-stage samples are drawn, each 
consisting of 30 PSUs and 20 SSUs (families) from each 
selected PSU. The first stage samplUig is systematic PPS 
where the measures of size are equal to die PSU counts. The 
second stage sample is simple random sampling with 
inclusion probabiUties proportional to die Uiverse of the first 
stage Uiclusion probabiUties. In the estimation of the mean, 
we use the true PSU counts as variable x,,, widi values 
proportional to the first-stage inclusion probabiUties. We 
apply the p-spline nonparametric mixed model formulated 
in (2). We use 10 equally spaced sample percentiles of die 
PSU counts as the knots in the p-splUie. 

5.2 Results 

Table 1 gives die empirical bias and root mean squared 
error (RMSE) from four estimation methods of die finite 
population mean applied to equal probabiUty sample from 
populations generated with bodi normal and log-normal 
widiin-PSU errors and two (O,T) combinations. The 
empirical bias and RMSE are estimated by die mean bias 
and squared error from the 500 repeated samples. 

Table 1 suggests die PMM based mediods give 
estimators widi small biases. In the case of equal probability 
sampUng, the PMM estUnator is roughly as efficient as HT 
estimator when the mean function / is constant. In the 
more general cases such as NULL and LINDOWN, where 
/ is linear but not constant, the linear model-assisted and 
PMM method are comparable and both are more efficient 
than the HT estimator Ui terms of root mean squared error. 
For populations EXP and SINE, whose mean functions are 

not Unear, die PMM mediod is superior to both die HT and 
the linear model-assisted estimators. The improvement of 
efficiency requires the knowledge of complete design 
Uiformation Uicluding probabiUties 71,,, and PSU counts 
A'̂  for die whole population. When using estimated PSU 
counts A';, in the place of A ,̂,, die resulting estimator is less 
efficient than in die case with known A'^, but die PMM 
estimator can still outperform the HT when the mean 
function is non-constant. Comparisons on populations with 
normal or log-normal widiin-PSU ertors result in similar 
findings. 

SimUar gains for die PMM mediod are seen in Table 2, 
for the case of unequal probabUity sampling. This suggests 
that die key to improved efficiency is the better prediction 
given by the nonparametiic models. Tables 1 and 2 both 
suggest that die p-spline model-based estimators have very 
small empUical design-biases. We believe this is because 
the flexible mean functions yield good predictions of the 
PSU means. 

Table 3 compares poUit estimation and coverage of 95% 
confidence intervals from three variance estimation methods 
for PMM: the empUical Bayes model-based method, die 
Jackknife mediod and die BRR mediod. The empirical 
Bayes method is generally satisfactory but tends to 
underestimate die true variance of PMM estimator, resulting 
Ui under-coverage in some cases. The jackknUe and the 
BRR methods tend to yield more robust estimates for the 
variance. In general, PMM yields estimates with improved 
efficiency over the ttaditional HT and linear model-assisted 
estimators and satisfactory design-based inferences. 

Table 1 
Empirical Biases and RMSE of PMM, HT, GR and PMM witii Estimated Â ,, for Samples Under Equal Probability Designs 

Normal 
Errors 
1 = 0.2 
a = 0.1 

Normal 
Errors 
T = 0.1 
0 = 0.2 

Log-normal 
Errors 
T = 0.2 
0 = 0.1 

Log-normal 
Errors 
1 = 0.1 
0 = 0.2 

(xIO"^) 

NULL 
LINDOWN 
EXP 
SINE 

NULL 
LINDOWN 
EXP 
SINE 

NULL 
LINDOWN 
EXP 
SINE 

NULL 
LINDOWN 
EXP 
SINE 

1 

BIAS 
1.1 
3.5 

-4.4 
4.8 

5.7 
0.5 
0.9 
7.0 

1.7 
2.9 

-0.6 
6.9 

8.5 
3.6 
3.9 

-2.9 

PMM 

RMSE 
29.7 
30.7 
29.1 
32.5 

22.0 
20.4 
23.1 
22.3 

32.3 
31.9 
28.4 
33.8 

30.5 
32.3 
29.0 
30.1 

Horvitz 

BIAS 
0.8 
3.6 

-9.4 
2.1 

6.6 
-0.6 

1.9 
6.5 

0.9 
3.8 

-5.9 
1.5 

9.6 
1.9 
6.8 

-8.9 

-Thompson 

RMSE 
30.0 
36.4 
53.0 
42.0 

22.5 
27.1 
50.3 
34.9 

32.3 
39.4 
51.5 
43.7 

31.3 
37.5 
53.8 
44.7 

Linear Model-
Assisted 

BIAS 
0.8 
3.7 

-9.5 
-0.3 

6.6 
-0.3 
-4.2 

3.8 

0.7 
2.7 

-6.9 
-1.9 

9.2 
3.6 
1.0 

-12.0 

RMSE 
29.9 
30.7 
36.7 
35.9 

22.1 
20.5 
31.7 
26.4 

32.3 
32.1 
36.4 
39.0 

31.0 
32.1 
34.4 
38.4 

PMM with 
Estimated A';, 

BIAS 
1.3 
2.3 

-4.3 
5.2 

5.5 
1.6 
0.4 
8.0 

1.5 
3.2 

-0.3 
-3.1 

9.1 
6.4 
3.7 

-3.8 

RMSE 
30.1 
30.4 
29.1 
34.3 

22.3 
20.6 
23.4 
26.4 

32.5 
32.0 
28.5 
35.0 

30.8 
33.1 
29.4 
35.9 
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Table 2 
Empirical Biases and RMSE of PMM, HT, GR and PMM with Estimated N^ for Samples Under Unequal Probability Designs 

Normal 
Errors 

x = 0.2 
0 = 0.1 

Normal 
Errors 

1 = 0.1 
0 = 0.2 

Log-normal 
Errors 

T = 0.2 
0 = 0.1 

Log-normal 
Errors 

T = 0.1 
0 = 0.2 

(xlO"^) 

NULL 
LINDOWN 

EXP 
SINE 

NULL 
LINDOWN 

EXP 
SINE 

NULL 
LINDOWN 

EXP 
SINE 

NULL 
LINDOWN 

EXP 
SINE 

PMM 

BIAS 
-4.5 
-0.9 

5.8 
7.1 

-7.7 
1.1 

-2.3 
5.6 

-0.5 
5.4 

-1.3 
3.7 

3.6 
6.0 
0.8 
3.7 

Variance Estimation and Empirical Coverage 

Normal 
Errors 

x = 0.2 
a = 0.1 

Normal 
Errors 

1 = 0.1 
0 = 0.2 

Log-normal 
Errors 

x = 0.2 
c = 0.1 

Log-normal 
Errors 

x = 0.1 
0 = 0.2 

Shape 
NULL 

LINDOWN 
EXP 

SINE 

NULL 
LINDOWN 

EXP 
SINE 

NULL 
LINDOWN 

EXP 
SINE 

NULL 
LINDOWN 

EXP 
SINE 

Empirical 
variance 

(xlO"') 
88 
94 
85 
83 

48 
42 
53 
44 

104 
102 
81 
92 

93 
104 
84 

110 

RMSE 
29.3 
27.0 
32.0 
30.1 

21.3 
20.7 
20.9 
20.9 

28.5 
32.6 
28.6 
31.2 

22.8 
26.8 
26.3 
26.9 

Horvitz-Thompson Linear Model-

BIAS 
-3.7 

3.7 
1.9 
6.1 

-7.7 
3.2 

-6.5 
6.9 

-2.0 
5.0 

-7.6 
2.3 

5.7 
9.3 

-2.3 
2.9 

Table 3 

Assisted 

RMSE BIAS 
33.6 -3.2 
35.5 1.8 
56.8 0.4 
39.5 3.6 

24.9 -6.6 
30.6 1.2 
53.3 -7.2 
36.2 4.0 

30.6 -2.1 
39.0 3.7 
62.6 -7.1 
43.1 0.1 

28.8 5.7 
37.5 7.5 
50.8 -3.5 
37.6 -O.I 

Rates of 95% C.I. Using the Model-based 

Empirical Bayes 
Model-based 

Estimate 

(xlO"^) 
74 
73 
70 
67 

45 
45 
54 
46 

83 
98 
77 
99 

97 
101 
81 
96 

% 
92.8 
89.6 
91.4 
91.6 

93.8 
96.8 
95.0 
95.8 

91.8 
93.6 
93.4 
94.8 

94.2 
93.6 
94.6 
94.4 

RMSE 
30.5 
27.7 
39.4 
32.8 

21.1 
20.7 
30.0 
28.6 

29.5 
34.1 
36.8 
36.1 

24.2 
27.3 
33.1 
30.2 

PMM with 
Estimated Nf, 

BIAS 
-4.5 
-0.7 
14.1 
5.3 

-7.6 
3.5 

-3.0 
4.3 

-0.3 
6.0 

-9.3 
1.6 

3.6 
2.5 

11.5 
2.2 

RMSE 
29.3 
26.9 
34.4 
30.4 

21.2 
21.1 
20.9 
21.1 

28.5 
32.7 
30.3 
31.0 

22.7 
26.0 
29.0 
27.8 

, Jackknife and BRR Methods 

Jackknife(A'=8) 

Estimate 

(xlO"^) 
94 
94 
88 
90 

48 
51 
61 
55 

104 
106 
97 
97 

100 
106 
84 
98 

% 
96.4 
94.6 
94.6 
95.8 

96.0 
96.2 
97.2 
96.6 

94.8 
95.6 
96.4 
95.2 

96.2 
96.0 
95.2 
95.6 

BRR 

Estimate 

(xlO"^) 
96 
98 
85 
85 

49 
51 
59 
49 

100 
107 
89 
92 

99 
102 
82 
92 

% 
94.4 
94.2 
93.4 
94.4 

93.8 
96.8 
95.2 
96.0 

93.6 
95.0 
94.8 
93.4 

95.2 
92.8 
95.0 
93.0 

Tables 4 and 5 give the empUical variance of the PMM 
estimator when the non-sampled PSU counts Â ;, are 
estimated. They also give the mean estimated variance of 
this estimator and corresponding coverage rates by the 95% 
CI. The confidence intervals are calculated by die usual 
normal dieory Uitervals based on our point and variance 
estimators. These two tables show the inference method 
discussed in section 5 tends to underestimate the true 
variance of PMM estimator using N,,, giving Ui occasion 
under-coverage of die population mean. It remains to be 
studied in die future whether the JRR and BRR metiiods 
also yield satisfactory Uiferences for this method. 

For the simulation study using 5% PUMS data, die 
simple mean has bias = -50.9 and RMSE = 2,600 and the 
p-spUne nonparametric rruxed model based method has 
bias= -41.9 and RMSE = 2,153.Thus bodi metiiods have 
smaU bias and the model-based estimator has a RMSE 17% 
less than the RMSE of the simple mean. This improved 
efficiency is due to die fact that the average household 
income decreases for as the number of families in the PSUs 
increases (figure 1). The PMM method exploits diis 
relationship in its predictions. 



Survey Methodology, December 2004 217 

Table 4 
Variance Estimation and Empirical Coverage Rates of 95% C.I. Using P-spline and Estimated PSU 

Counts, Population Simulated with Normal Errors 

NULL 
LINDOWN 

EXP 
SINE 

Empirical 
Variance 

(xlO"') 

90 
93 
85 
110 

a = 0.1 and x = 

Estimated 
Variance 

(xlO'^) 

76 
74 
72 
98 

= 0.2 

Coverage 
Rate 
91.8 
90.4 
93.0 
94.8 

Empirical 
Variance 

(xlO"^) 

50 

43 
55 
50 

a = 0.2 and x = 

Estimated 
Variance 

(xlO"^) 

46 
46 
56 
55 

= 0.1 

Coverage 
Rate 
93.2 

95.6 
96.2 

97.6 

Table 5 
Variance Estimation and Empirical Coverage Rates of 95% C.l. Using P-spline and Estimated PSU 

Counts, Population Simulated with Log-normal Errors 

NULL 
LINDOWN 

EXP 
SINE 

0 

Empirical 
Variance 

(xlO"') 

105 
103 
81 

110 

= 0.1 and X = 

Estimated 
Variance 

(xlO"') 

84 

98 
79 

150 

= 0.2 

Coverage 
Rate 
91.8 
94.4 
94.6 
96.4 

Empirical 
Variance 

(xlO"^) 

95 

110 
87 

91 

a = 0.2 and x = 

Estimated 
Variance 

(xlO"') 

99 
102 
83 

130 

= 0.1 

Coverage 
Rate 
94.8 
94.4 
94.2 

95.8 

6. DISCUSSION 

Previous paramedic model-based inference mediods 
have been criticized mainly for their potentiaUy large design 
biases when the model is misspecified. In our nonparametric 
models, the Unearity assumption is replaced by a much 
weaker assumption of a smoothly-varyUig relationship. As a 
result, die model-based estimators are more robust, having 
small biases for a variety of population shapes. 

Design information such as inclusion probabilities plays 
a key role in the model-based inference. Inverse-probabiUty 
weighted methods imply simple assumptions about the 
relationship between the outcome variables and the design 
variables. With the method we propose, the gain in 
efficiency is reaUzed by applying nonparametiic models that 
relax these assumptions. 

Our study has an Uiteresting finding that die model-based 
estimators can be more efficient than the simple mean for an 
equal probabiUty design. In other studies, we also fmd gams 
in efficiency from p-spline nonparametric mixed model in 
estimating post-sttatum means in post-sttatified samples. 

The empUical Bayes method, die jackknife and BRR 
methods all give good confidence coverage widi confidence 
intervals that are narrower dian diose given by die 
ttaditional methods. However, we expect die empirical 
Bayes method to be sensitive to model assumptions on the 
variance components {e.g., constant within-PSU variances). 
When the PSU counts are not known for the sample but not 
for the whole population, model-based estimates of die 

unknown counts can still provide sound estimates of die 
population mean, if the model ttacks the true PSU counts 
precisely enough. The model relating diese counts to the 
auxiUary variable was tteated parametrically here, but this 
could also be specified nonparametiically without much 
difficulty. 

We believe /7-spUne nonparametiic mixed models can be 
applied to more complex designs such as stratified and 
multi-stage designs. We also believe without much more 
effort our methods can be generaUzed for binary or ordinal 
outcomes. 
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A Finite Population Estimation Study with Bayesian Neural Networks 
FAMING LIANG and ANTHONY YUNG CHEUNG KUK ' 

ABSTRACT 

In this article, we study the use of Bayesian neural networks in finite population estimation.We propose estimators for finite 
population mean and the associated mean squared error. We also propose to use the student f-distribution to mode! the 
disturbances in order to accommodate extreme observations that are often present in the data from social sample surveys. 
Numerical results show that Bayesian neural networks have made a significant improvement in finite population estimation 
over linear regression based methods. 

KEY WORDS: Bayesian model averaging; Bayesian neural network; Evolutionary Monte Cario; Finite population; 
Markov Chain Monte Carlo; Prediction. 

1. INTRODUCTION 

Regression estimation is widely used in sample surveys 
for incorporating auxiliary population information (Cochran 
1977) widi the underlying model 

y,=h+Xn^i+--- + x,p^p + e,, t = l,2,...,n, (1) 

where y, is die survey variable for the t element of a 
population, X, -{Xn,...,x,p) is the vector of auxiliary 
variables associated widi y,, p Q , P , , . . . , (3 ̂  are die 
regression coefficients, and £, is die independent distiir-
bance with zero mean and common variance. Although this 
model generally performs well, it has several Uiherent 
limitations. First, the model is specified linearly and dius 
can not capture some types of nonUnear relationship, which 
may be essential in some appUcations. Second, the least 
squares estimate, which is widely used for the model (1), 
may not be reliable in die presence of coUUiearity among the 
auxiliary variables. In this case, techniques, such as 
condition number reduction (Bankier 1990), ridge 
regression (Bardsley and Chambers 1984), and various 
variable selection procedures (Silva and Skinner 1997), 
have to be used to improve die poor prediction performance 
of the model. ThUd, Ui the presence of outliers, the least 
squares estimate may be severely affected by the outUers. 

There are attempts to lessen the dependence of estimators 
on the linear model (1). Firth and Bennett (1998) identify a 
sufficient "internal bias calibration" condition under which a 
model-based estimator is automatically design consistent, 
regardless of how well the underlying model fits the popu­
lation. The condition is met by certain estimators based on 
linear models, certain canonical link generalized Unear 
models and nonparametric regression estimators constructed 
from diem by a particular style of local likelUiood fitting. 

Bias can also be calibrated externally, if not internally. 
Chambers, Dorfman and Wehrly (1993) start widi a 
predictor of the population mean based on a heteroscedastic 
Unear model and adjust for its bias using nonparametiic 
regression. Kuk and Welsh (2001) propose a robustified 
model-based approach whereby a working model is first 
fitted usUig robust mediods and subsequentiy die condi­
tional distributions of die residuals given x are estimated 
nonparametrically to account for local model departure or 
outiiers in localized regions. 

Another way of incorporating auxiliary information into 
an estimator into an estimator in a design consistent manner 
is die model-calibrated approach first proposed by Deville 
and Samdal (1992). The basic idea is to choose weights that 
satisfy certain caUbration equations and are closest to die 
normal Horvitz-Thompson design weights according to 
some distance measure. Theberge (1999) applies die cali­
bration technique to estimate population parameters other 
than the means. More recentiy, Wu and Sitter (2001) 
extends the caUbration approach to deal witti nonlinear as 
well as generaUzed linear models by using the fitted values 
under these working models to set up the calibration 
equations. The model-calibration approach can be classified 
as "model-assisted" because while die efficiency of die 
model-calibrated estimator depends on the validity of die 
model, consistency does not. 

There is certainly a growing ttend in the survey literature 
in using nonlinear and nonparametiic regression. Instead of 
model (1), one considers, 

y, =g{x,)+e,, 

where die regression function g{-) can be any arbittary 
smoodi function. Dorfman (1992) estimates g using the 
Nadaraya-Watson kernel estimator g to result in die 
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following model-based estimator or predictor of the finite 
population mean, 

y,-N-4Yy.+ Ys(^<)\ 

where it is assumed without loss of generality diat the 
sample consists of die first n elements of the population. 
Kuk (1993) makes use of kernel method to estimate the 
conditional distribution of y given x as a way of incorpo-
ratUig auxiUary Uiformation in the estimation of the finite 
population distribution of y. For the case of scalar x, Breidt 
and Opsomer (2000) estimates g usUig local polynomial 
regression with design weights Uicorporated to account for 
die sampling design used and propose a generaUzed 
difference estimator, 

yi ,„-,^A^lW,iju,) UA--'Kw,,,k 
f=i n, 1=1 1=1 

where n, is the sample inclusion probabUity. It can be 
shown that the weights vv, are caUbrated to match the totals 
of jc up to the q"^ order, where q is die order of the local 
polynomial. As a consequence, y^p is exactiy model-
unbiased if die tine regression function is a polynomial of 
degree q or less. Breidt and Opsomer (2000) also show that 
y^p is asymptoticaUy design-unbiased and consistent under 
mild conditions. For more discussions on nonlUiear and 
nonparametric methods, see ValUant, Dorfman and Royall 
(2000) (chapter 11). 

In this paper, another nonlinear regression method, 
Bayesian neural network (BNN), is appUed to die problem. 
BNN has an important advantage of being able to handle 
multivariate auxiUary variables and model selection with 
ease, which is not the case for many other nonlUiear and 
nonparametric techniques. BNNs were first Uittoduced by 
Buntine and Weigend (1991) and MacKay (1992), and were 
further developed by Neal (1996), Muller and Insua (1998), 
Marrs (1998), HoUnes and MalUck (1998), and Liang and 
Wong (2001). But die BNN proposed in diis paper is 
different from those cited above in one important respect: A 
prior is put on each network coimection, instead of only on 
die number of hidden umts as done Ui the literature. This 
aUows us to tteat die selection of network structure and the 
selection of input variables (auxiUary variables) uniformly. 
The network is traUied by sampUng from die joUit posterior 
of the network structure and connection weights. The 
sampled network has often a sparse strucmre, which 
effectively prevents the data from being overfitted. A heavy 
tail distribution, such as the student f-distiibution, is 
proposed to model the disturbances of the data with outUers. 
Numerical results show that BNN models have offered a 
significant improvement over die linear regression based 
models in finite population estimation. 

The remaining part of this article is organized as follows. 
In section 2, we describe the BNN models and the 
associated estimators for finite populations. In section 3, we 
present our numerical results for one finite population 
example with two choices of auxiliary variables and 
comparisons with various Unear regression based models. In 
section 4, we present our numerical results for anodier finite 
population example demonsttate how a cross-validation 
procedure can be appUed to determine the parameter setting 
for BNN models. In section 5, we conclude die paper widi a 
brief discussion. 

2. FEVFTE POPULATION ESTIMATION WITH 
BAYESIAN NEURAL NETWORKS 

2.1 Bayesian Neural Network Models 

Suppose we have data paUs D={ (A:, , y,),..., (x„, y„)}, 
which were generated from the relationship 

y,^8(x,)+e,, (2) 

where y,e R\X, ={x,i,...,x,p)e R'',g{-) is die true 
regression function of unknown form, and €,la ~ t{v) with 
V >2 being a known degree of freedom of the f-distribution. 
Here g{-) may be highly nonlinear, and o is an unknown 
scale parameter. We use the student f-distiibution, instead of 
die Gaussian distribution as usual, to model die disturbances 
in order to accommodate extreme observations that are often 
present in the data from social sample surveys. 

Before describing our BNN model, we first give a brief 
description for feed-forward neural networks. Figure 1 
Ulusttates a one-hidden layer feed-forward neural network. 
It consists of four types of units, bias units, input units, 
hidden units, and output units. The unit to which die input 
features are presented is referred to as die input unit. The 
bias urUt is a special type of input units with a constant 
input, say, 1. The unit where the network output is formed is 
referred to as the output unit. The hidden unit is so called 
because its input and output are only used for internal 
connections and are unavailable to the outside world. In a 
feed-forward neural network, each hidden unit inde­
pendentiy processes the values fed to it by die units in die 
preceding layer and then presents its output to the units in 
die next layer for furdier processing. It has been shown by 
several audiors (Cybenko 1989; Funahashi 1989; Homik, 
Stinchcombe and White 1989) diat neural networks are 
universal approximators in that a one-hidden layer feed­
forward neural network with linear output units can approxi­
mate any continuous functions arbittarily well on compact 
sets by increasUig the number of hidden units. To survey 
regression, diis is an important advantage of neural network 
models over odier regression models. In die survey regres­
sion Uteramre, whedier model-assisted or model-based, 
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there is usually considerable attention paid to the conse­
quences of model misspecification. The neural network 
model avoids this consideration partially due to its specific 
property of universal approximation. In section 2.2.1, we 
show tiiat as die sample size is large, the unknown 
regression function g{-) in (2) can be well approximated by 
BNN models, regardless of the tioie function form of g{-). 
Essentially, BNN falls into die class of data-driven mediods. 

Output Unit 

Hidden Units 

Bias Unit 

input Units 

J! 
i \ \ 

x'Vf^.^' /•••kAJ i .-•-^.-'-rv-' 

• c ^ - " 
-:N\\ 

f' 
Figure 1. A fully connected one hidden layer feed-forward neural 

network with 4 input units, 3 hidden units and 1 output unit. 
The arrows indicate the direction of data feeding. 

In our BNN model, the function g{-) in model (2) is 
approximated by a function of the form 

i(x,,a,p,y) = ao/„^ +Y^ti^iK 

M 

Y r;o , (3) 

where /̂  is an indicator function which indicates the 
effectiveness of the connection ^; M denotes the maximum 
number of hidden units which is specified by users; a^ 
denotes die bias term of die output unit, a,,...,ap denote 
the weights on the connections from the input units to the 
output unit; P,,...,p^ denote die weights on the 
connections from hidden units to the output unit; ŷ ^ 
denotes the bias term of the j * hidden unit, Yy|,...,y,p 
denote die weights on the connections from die input units 
to the y"' hidden unit; and v|/() denotes the activation 
function. Sigmoid and hyperboUc tangent functions are two 
popular choices for the activation function. We set 
t|/(z) = tanh(z) for all examples of this paper. 

Let A be the vector consisting of all indicators of model 
(3). Note diat A specifies the structure of die corresponding 
network. Let a = (ao,a,,...,ap),p = (P|,. . . ,p^), y-^ 
(T;0'---'Y;p)>Y = (yp---,YA/X and e = (a,,,p^,Y^,a ), 
where a^, p^ and y^ denote the non-zero subsets of a, p 
and y, respectively. Thus, die model (3) is completely 

specified by die tuple (0,A). For simplicity, in die 
following we wiU use 0^ to denote a BNN model and use 
^(jc,,9^) to re-denote die function |(jir,,a,p,Y). Also, 
we let Q^ =(0,A), and use 0^ and (6, A) exchangeably. 
To conduct a Bayesian analysis for model (3), we have the 
following prior distiibutions: a,. ~ A (̂0,o )̂ for 
a,ea^;^j~N{0,ol) for p . e P,,;Y^., ~ N(0,oj) for 
yji € Y^; and /(o^) ~ l/o^. The total number of effective 
connections in A is m-^f^I^^-i-'Z%iIp.5{'E,l'=ofy..) + 
Z%i If=o /p/y,,' where 5(z) = 1 if z > 0 and 0 odierwise. 
The model A is subject to a prior probability that is 
proportional to die mass put on m by a tioincated Poisson (k) 
with rate X, 

P{A) = 
1 ^ - . 

, m = 3,4,...,(/ 
Z m! 0, otherwise 

where U -{M -h l){p -I-1) + M is the number of connec­
tions of the full model in which all /̂  = I; and 
Z = Y.\^n^"' lni\. Here we let O. denote the set of all 
possible models widi 3<m<U. We set die minimum 
number of m to tiiree based on our views: neural networks 
are usuaUy used for complex problems, and tiiree has been a 
smaU enough number as a limiting network size. In these 
prior distiibutions, cl,cj,ci^ and A, are hyper-parameters to 
be specified by users (discussed below). Furthermore, we 
assume diat these prior distiibutions are independent 
a priori. Thus, we have the following log-posterior (up to an 
additive constant). 

log7t(0 A |D)= Constant - + 1 
, 2 v + l ^ logo — X 

J 

log 1-H 

--yi 
•^ / = n 

(y , -g(x , ,9J) 

2 ^ 

logo„ + -

p̂-

a -^sv^i^, 
' a / ;=i 

l o g o ^ + ^ 

-^TYhA. 
^ ;=1 i=0 

r 2 \ 

l o g a ? + ^ 

-l-mlog^ —log(m!). 

-y l0g(27t) 

(4) 

Our BNN model is dtfferent from other BNN models 
existing in the literature in two important respects. First, the 
input variables of our BNN model are selected automati­
cally by sampling from the joint posterior of the network 
stiiicture and weights. Second, die structure of our BNN 
model is usually sparse and its performance less depends on 
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the initial specification for the input patterns and the number 
of hidden units. The sparse is in the sense diat only a small 
number of connections are active in the network. So our 
BNN model avoids the problem of overfittUig in a more 
natural way. 

For data preparation and hyperparameter setting, we have 
die following suggestions. To avoid some weights ttiat are 
ttained to be exttemely large or smaU (in absolute value) to 
accommodate different scales of input and output variables, 
we suggest that all input and output variables be normaUzed 
before feeding to the networks. In aU examples of this 
article, the data is normalized by (y, - y ) / 5 ^ , where y 
and S denote the mean and standard deviation of the 
ti^nUig data, respectively. Based on die belief diat a 
network with a large weight variation usuaUy has a poor 
generaUzation performance, we suggest that 0^,0^ and o^ 
are chosen for moderate values to penaUze a large weight 
variation. For example, we set o^ = Op = o^ = 5 for aU 
examples of this article. The setting should also be fine for 
die other problems. The value of X reflects our beUef on the 
network size needed for the data under consideration. Here 
we follow the suggestion of Weigend, Huberman and 
RumeUiart (1990) to choose X such diat the number of 
connection weights is about one tenth of the size of the 
ttaining sample. In one simulation, we assessed the 
influence of X on BNN model size and predictionabiUty. 
The numerical results suggest that the prediction abiUty of 
BNN models is radier robust to die variation of X, aldiough 
the BNN model size increases slowly as X increases. 

To sample from die posterior (4), a Monte Carlo 
algorithm, so called the reversible jump evolutionary Monte 
Carlo (RJEMC) algorithm, is developed. This algoritiim 
extends die evolutionary Monte Carlo algorithm (Liang and 
Wong 2(X)1) to sample from a variable dimensional space 
by incorporating some reversible jump moves proposed Ui 
Green (1995). For details of the algorithm, please refer to 
the support documents and software for the paper. They are 
available at http://www.stat.tamu.edu/~fliang. 

2.2 Finite Population Estimation with Bayesian 
Neural Networks 

2.2.1 Bayesian Model Averaging 

In this subsection, we review some basic results of 
Bayesian model averaging and show one theorem for BNN 
models, which form die theoretical basis for the estimators 
described Ui section 2.2.2. Suppose that we are interested in 
estimating the quantity p(6^), which is a function of both 
A and 0. The Bayesian estimator of p(0^) can be written as 

EA^A) = Y P(^k \D) jp(e,, A, )7r(e, |A, ,D)dQ,, (5) 
«:=0 

where K denotes the total number of models under consi­
deration, 0̂  denotes die parameters associated widi model 

A^, and n{Qi^\Ai^,D) denotes the posterior density of 8̂  
conditional on model A .̂ Madigan and Raftery (1994) 
argued for this estimator that Bayesian model averaging 
(averagUig over aU the models in this fashion) accounts for 
the model uncertaUity, and provides better predictive abiUty, 
as measured by the logarithmic scoring rule, than using any 
sUigle model Â ;.. See Hoeting, Madigan, Raftery and 
VoUnsky (1999) for a tutorial on Bayesian model averaging. 

Suppose tiiat samples {Q^,A^),...,{Q^^ ,Ai^) have been 
drawn from die posterior distribution 7t(0^|D) byaMCMC 
algorithm, then p(0^) can be estimated by 

1 M 

P C O A ) - — Z p ( e A , ) . 
M ,=1 

(6) 

where 0^ = (8,,A,). Applying die standard Markov chain 
theory (Tiemey 1994; Roberts and Casella 1999), under 
regularity conditions we have the foUowing results. If 
£ jp (8J |<oo , dien 

1 M 

— £p(e^,)^£,p(8J, a.s., (7) 
M ,=1 

as M->oo. Furthermore, if E^\p{Qj^)f''*'^<°° for some 
5 > 0, then 

^ ' " | ^ ip (eA, ) -£ .p (eA) |^A ' (0 ,T^X (8) 

for some positive constant T̂  as M —> 00, and the conver­
gence is in distribution. 

Similar to (7) and (8), we have the following theorem for 
BNN models, of which proof is presented in Appendix. 

Theorem 2.1 Let D = {{x^,y^),...,{x„,y,,)} denote a 
simple random sample drawn from a population which can 
be modeled by model (2). Let (8,, A,),..., (8^ ,A^ ) 
denote the sample drawn from the posterior distribution 
7t(8^ \D), given in {4), by a MCMC method. Then, for any 
XQ drawn from the same distribution with the observations 
D, we have 

(a) 

(b) 

£ j iUo.0A) r<~. (9) 
for some 5 > 0, as n^°°. 

1 M 

—Ys(xQ,^A.)^g{Xo), a.s., (10) 

(25 n —> 00 arui M -^ •». 
(c) 

M 1/2 
1 AY 

—Ys(x:o,^A,)-8(Xo) 
M I r 

^A^(0,T.'), ( I I ) 

for some positive constant xl as n-¥°° and 
M —> 00, and the convergence is in distribution. 

http://www.stat.tamu.edu/~fliang
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To show some properties of moments of IIMY!iL\ 
§(0:0,8^), we need die following theorem (Billingsley 
1986, page 348, Corollary), 

Theorem 2.2 Let r be a positive integer. If X^ —> X in 
distribution and sup„ £|X,„|'̂ "^^<oo, where 5 > 0 , then 
£ | x r < ° o and EX'^^EX'. 

Following from (9), (11) and Theorem 2.2, we know 
-i2 

ME 
1 M 

— Y8(Xo,^A,)-8(Xo) - > T , , 

as n ^ 00 and M -^°°. It implies that 

1 M 

— Ys(Xo^^A,)-8(Xo) x*_ 

M 
- + o 

^ l^ 

M 

(12) 

(13) 

holds as n and M are both large. 
Note we have shown that (11) and (13) hold as the 

sample size n ^ 00. In the context of finite population, 
especially for a small finite population, a more precise 
expression for (11) and (13) would be 

M' 
1 M 

— Y8(x^'^A)-E{y,\D,x,) 
M 1=1 

N{0,xl), (14) 

and 

1 M 

-—Y g(xQ,^A.)-E{yQ\D,x^) 
M ,=1 M « ! • "=> 

where ^(yglD,^^) denotes the prediction of y^ which is 
the survey variable corresponding to x^. The equations (14) 
and (15) take into accounts the possible bias of the sample 
D. In die case diat the population constitutes many exact 
copies of the sample D,£(yo|D,airo) = g(Xo) holds, and 
equations (14) and (15) are reduced to (11) and (13), 
respectively. 

2.2.2 BMA Estimators in Finite Populations 

Consider a finite population of Â  distinguishable 
elements. Associated with the /* elements are the survey 
variable y, and the auxUiary variables x,. The values 
JC,,..., AT;y are known for the entUe population, while y, 
is known only if the /* unit is selected in the sample. 
Suppose a simple random sample D -
{(jCpy,),...,(jc„,y„)} has been drawn from die finite 
population, a BNN model has been built for die sample, and 
(ei ,A|) , . . . , (8; i , ,A^) have been drawn from the 
posterior distribution of the BNN model, the BMA 
estimator for the mean of the finite population is 

>'BNN ^fy^io^Y Y 8{x,,^o^ 
MN ,=, ,=„ ,̂ 

where y is die sample mean of y , , . . . ,y„ , and f = nlN 
is the sample fraction. About this estimator, we have the 

following comments. FUst, ygf̂ ^ is a model-based esti­
mator, so that aU die inference is widi respect to die model 
for the y, 's, not the survey design. As long as the model 
holds, the BNN estimator will have the mean squared error 
properties described below for any ignorable sampling 
design. Second, this estimator is identical to that proposed in 
Dorfman (1992), except that die BNN is replaced by a 
kernel-based regression. Third, this estimator can be used to 
estimate the mean of a finite population as long as each of 
the unsampled elements has the same distribution as the 
sample D. 

The accuracy of an estimate can be measured by its mean 
squared error E{y^f^j^-Y)^, where Y denotes the true 
population mean. To estimate E{y^f^f.; -Y)^, we first 
consider 

El{y^^^-YY\D,X::J 

= E 

I M N 

TT^Z Ys(x,fiA,) 

-^Y(s(xt)+^,) 

\D X^ 

{N-nY 

N' 

I 
Y Y 

M{N-n)U,t:.i 

8(X„QA,)-^Y8(X,) 
N-n ,=„+, 

\D,X' 

N-n , , 
+ ^ v a r ( e , ) 

Â ^ 

(N-n)' 

N' 

I M N 

•Y YS(X„QA.) 
M{N-n) ,.=, ,=„+, 

-£(y„|AX,r.,) 
+ £ ( y j D , ; ^ : , , ) - £ ( y „ ) 

N-n 

\n x^ 

Â ^ var(e,) 

^-^ + {\-f)'{E{yJ\D,Xl,)-E{yjJ 

1 - / / ^ + —-f-var{&,), 
N 

(16) 

where X^^^= (oc^^,,...,x^) denotes die set of auxiliary 
vectors of die unsampled elements; y„ denotes the 
averaged survey value of the unsampled elements, and 

E{y.)--^Y8{x,)-
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The last approximation of (16) follows from (15), that is, as 
M is large, 

\ I M M 1 ^ T^ 
Ai^Y Zl(x„8,,)-(l-/)£(yjD,J^:„) =1^, 

[MN ,=, ,=„+, J M 

for some positive constant x\. The term 
^(y^lD, A'„'^i)-£'(y^) is the prediction bias due to the 
randomness or sampling bias of D. Following from (16), we 
have 

Ex' 

;i2 

E(nm-YY-—^ + (^-f) 
M 

£{£(y„ |D , ;^ :„ ) -£ (y„) f + _ i : v a r ( 6 , ) . (17) 

The quantity x\ can be estimated by the batch means 
mediod (Roberts 1996) as foUows. Run die Markov chaUi 
for M = rs iterations, where s is the batch size and is 
assumed suffcientiy large such diat 

1 ks N 

yBm.k^fy + — Y Y8{X,,QA,)^ 
^ty i=(k-l)s+l l=n-H 

is approximately independentiy N{fy + {l-f) 
£(y„|D,A'„'^,),To/5.Therefore T^ can be approximated 
by 

i 2 

r-it: 
2.J (yBNN.k 3 'BNN) ' (18) 
k=l 

which can be substituted into (17) in lieu of Ex],. Under 
die assumption €,/o~r(v), die BMA estimator var(e,) is 

var(e,) = 
v-2Mt; 

Y-l (19) 

Under die assumption that the population is made up of 
exact copies of the_ ttaining data, we have 
E{y^\D,X„'^,)-E{y^)~ y-y, where y denotes the fitted 
sample mean, and 

E{9-yY=E\-Ye] =^var(£,) , (20) 
[n ,=1 J N 

where i,= 'ZfLig{x,,Qf^)IM -y, is the residual of die f* 
element of D, and 6, 's are assumed to be iid and 
£'(e,) = 0. Under the true model, we have var(e,) = 
var(e,). Hence, we suggest E{E{yjD,X^^^)-E{yJ}^ 

be estimated by 

Bias^ = —var(e,). 

In summary, (̂yBNN ~ ^ ) ^ can be estimated by 

(21) 

E{y, •YY 
M 
f + (l-/)^Bias= 

l—f x^ \— f 
-h^^var (e , ) = -^-h—^var(e , ) . 

N M n 

As M —> oo we have 

^ (yBNN- i ' ) ' - ^^va r ( e , ) . 

(22) 

(23) 

We note that this estimate is identical in form to that given 
by Cochran (1977) for the linear regression estimator. 

3. FIRST SIMULATION STUDY 

3.1 The Data 

Our simulation population comprises 426 records for 
heads of household surveyed usUig the sample (long) 
questionnaUe during the 1988 Test Population Census of 
Limeira, in Sao Paulo state, Brasil. This test was carried out 
as a pilot survey during the preparation for the 1991 
BraziUan Population Census. For a detaUed description for 
the test census, see Silva and Skinner (1997). We followed 
SUva and Skiimer (1997) to consider the total monthly 
income as the main survey variable (y) together with 11 
potential auxiliary variables, namely, 

X\ indicator of sex of head of household equal male; 

x-i indicator of age of head of household less than or equal to 35; 

x^ indicator of age of head of household greater than 35 and less 

than or equal to 55; 

Xi total number of rooms in household; 

Xi total number of bathrooms in household; 

Xf, indicator of ownership of household; 

Xi indicator that household type is house; 

jTs indicator of ownersh ip of at least one car in household ; 

x<) indicator of ownersh ip of color T V in household ; 

ATio years of s tudy of head of household; 

Xi 1 p roxy of total month ly i ncome of head of household . 

Figure 2, the scatter plots of y versus the 11 auxiliary 
variables, shows that a linear regression model is not 
appropriate for the data. Aldiough y and A:,, are sttongly 
Unearly correlated, the scatter plots of y versus some other 
auxiUary variables, say x^,x^ and x^^, suggest diat ttieir 
relationships can not be well modeled by a linear regression. 
In addition, tf the data is modeled by a lUiear regression, the 
outUer, the 53* element, may have a high influence on 
fittUig and prediction of the model. More precisely, if die 
element is included in the ttaining data, the fitted response 
curve wiU have a up-drift comparing to die ti^e curve and as 
a result the finite population mean will be overestimated; if 
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the element is not included in the ttaUiing data, prediction 
will proceed as though there were not outUers and as a result 
die finite population mean will be underestimated. The 
presence of the sttong influence element also mounts a great 
challenge on BNN models and other data analysis sttategies. 

We followed Silva and Skinner (1997) to construct two 
alternative sets of auxiliary variables for simulations. The 
first set contains x,^,...,Xi^ and .x,,, which includes the 
proxy variable JC, , and has a reasonable explanatory power 
in predicting y. The second set contains x,, . . . , j:,g, which 
has a weaker explanatory power than the first one due to the 
exclusion of x,,. So these two sets illusti^te die predictive 
performances of BNN models with sttong and weak 
auxiliary variables, respectively. As Ui Silva and Skinner 
(1997), 1,000 sample replicates of size 100 from this 
simulation population are selected by simple random 
sampUng without replacement. The following computation 
were performed on the 1,000 replicates. 

For each replicate, say k, it was analyzed by BNN 
models and various linear regression based strategies 
(reviewed below). For any sttategy, the population mean 
estimate and its estimated mean squared error for the 
replicate k are denoted by y{k) and V{y{k)), respectively. 

The computational results were summarized by computing 
the mean (MEAN), bias (BIAS), mean square error (MSE) 
and average of mean squared error estimates (AVMSE) 
from the set of the 1,000 replicates, given respectively by 

X 

MEAN = Z y(^)/5; 

BIAS = MEAN-F; 

M S E - J \y{k)-Y\ IS; 
it=i 

AVMSE = Z y{y(k))i^^ 

where S is the total number of sample repUcates under 
consideration, and Y - 194.34 for die simulation 
population. Empirical coverage rates for 95% confidence 
intervals based on asymptotic normal theory were also 
computed for each sttategy and tiiese rates, expressed as 
percentages, are presented in the last columns of Tables I 
and 3. 
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Figure 2. Scatter plots of the response variable y versus the auxihary variables. In the plot of >' versus ;c 11 the ' V 
represents the 'bV^ element of the population. 
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3.2 Review of the Linear Regression Based 
Strategies 

The Unear regression based sttategies that have been 
considered by Silva and Skinner (1997) are listed as 
follows. 

SM) Sample mean estimator, with no auxiliary variables (y, V^). 

Fs) Forward selection of auxiliary variables with (y^, Vs )• 

Fd) Forward selection of auxiliary variables with {yr,Vj). 

Fg) Forward selection of auxiliary variables with {y^,Vg). 

Bs) Best subset selection from all subsets of auxiliary variables with 

Bd) Best subset selection from all subsets of auxiliary variables with 

Bg) Best subset selection from all subsets of auxiliary variables with 

FI) Fixed subset of auxiliary variable with (yr-Ki)-

SS) Saturated subset of auxiliary variable with (y^ ,V;). 

FR) Forward subset selection using SAS PROC REG, with (y^. Vj). 

CN) Condition number reduction subset selection procedure with 
(y.v,). 

RT) Ridge regression estimator proposed by Dunstan and Chambers 
(1986). 

To facilitate the description for the above sttategies, we 
define the following notations. Let U ={l,...,N} denote a 
finite population of A' distinguishable elements, DczU 
denote a sample repUcate of n elements drawn from U by 
simple random sampling without replacement, x- -
(x,,,..., x,p)' be the vector of auxiUary variables associated 
widi die /* element, and p = ((3,,...,^^). Let X = 
N'^'Zi^^Xj be die vector of population means, x-
n~^T.ieDXi be die vector of sample means, 
y = n~'X!,sD)'; be the sample mean of the response 
variable, S^ = n~' E^o (j:rx){Xi - x)', S^ = n ' ' I ^ D 
(jc,.-jc)(y,. - y), gi=l-\-{X - Jc)'S;'(x,.-jc)die so-called 
g-weights (Samdal, Swensson and Wretman 1989), and 
P = 5 "' S ̂ ^ the least squares estimator of P The regression 
estimator of Y is 

v,= 
1 - / 

n{n-l)^ Y-> 

y,=y + [x-x)i 

The Vj,V^ is and V^ are three estimators of die mean 
squared error of y^. The V̂  is given by Cochran (1977, 
page 195), 

V =- 1 - / 
« ( « - p - l ) f e D 

where e, = (y, - y)-(J^,--i^)'P and f = nlN is die 
sample fraction. The V^ is generaUzed (from p = l to 
p>l) from one estimator studied by Deng and Wu (1987) 
and it is expected to have a smaller bias than V^ (Silva 
1996), 

where 

a , = ( 5 f - 2 g , / + / ) / 

{(1 - / ) [ l - {x, - x)'S;' {x., - X)l{n - I)]}. 

The Vg is modified from one estimator given by Samdal 
et al. (1989), and it has a similar performance to V^, 

V ^—^—Y g'e. 
n(n-p-l)feo 

The best subset selection sttategy (Bs, Bd and Bg) is to 
choose one subset which has the smallest mean squared 
error estimate among aU 2'' possible subsets. The forward 
selection sttategy (Fs, Fd and Fg) starts with the sample 
mean as an estimator, then adds the variable which 
minimizes the mean squared ertor estimate, and the 
procedure is repeated until the mean squared error estimate 
starts to increase. Refer to SUva and Skinner (1997) for 
detaUs of die implementations of die sttategies CN and RI. 

3.3 Illustration on One Sample Replicate 

To understand the behavior of yĝ N i" presence of 
outiiers and the role played by v in robust inference, we 
focus on one particular sample. The doming data comprises 
the first 100 elements of die population, and die auxiliary 
variables include Xf,...,x^ and x^^ as the first explanatory 
set. Note that the 53 element has been included in the 
training data. 

For BNN models, we set ^ = 5 and M = 8 which 
produces 62 connections for the full BNN model, and died 
V = 25, 50, 100, 200 and -i-oo, where v--\-°o is equivalent 
to the assumption s, ~ A (̂0, o^). For each setting, RJEMC 
was run as foUows: the network connections were first set to 
some random numbers drawn from Â (0, 0.01), and then 
were updated for 1,0(X) iterations in the parameter space of 
die fuU model, i.e., all Uidicator variables are set to 1 in 
those iterations. After die initialization process, 4,000 
iterations of RJEMC were run, and 800 samples were 
collected from these iterations at the lowest temperature 
level with an equal time space. The convergence of RJEMC 
can be diagnosed using the Gelman-Rubin statistic R 
(Gelman and Rubin 1992) based on multiple Uidependent 
runs. Figure 3 shows R values computed from 10 inde­
pendent runs. For each sample replicate of the simulation 
population, RJEMC converges {R < 1.1) very fast, usually 
widiUi die first 500 iterations (100 BNN samples). We 
discarded the first 200 samples for the bum-in process, and 
used the remaining 6(X) samples for the further inference. 
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For comparison, the linear regression model (1) was also 
applied to this sample repUcate. 

Figure 3. Gelman-Rubin statistic R. The curve was computed 
based on 10 independent runs of RJEMC. The random 
errors are assumed to be distributed according to f(lOO). 

Figure 4 shows die original data togedier widi the fitted 
and predicted values produced by various models. The BNN 

(a) 

results were all obtained in one run of RJEMC. It can be 
seen that the Unear regression model is not appropriate for 
this population as some fitted and predicted values produced 
by die model are negative for diis sample replicate. Also, the 
fitted response curve (the soUd curve in Figure 4(a) and 
4(b)) is sttongly Uifluenced by the 53* element and lies 
above almost two-thUds of the data points. A similar 
phenomenon occurs for the prediction of unsampled values, 
see Figure 4(c) and 4(d). As a resuU, the population mean is 
overestimated (Figure 5). Comparing to that of the linear 
regression model, die results of die BNN models are less 
affected by the 53* element, especially for those computed 
with small values of v. Figure 5 shows that as v decreases, 
the estimated population mean by BNN models gets closer 
and closer to die tme value, and the estimated 95% 
confidence Uiterval of the population mean becomes 
narrower and nartower. It indicates that the influence of the 
53* element on these estimates becomes weaker and weaker 
as V decreases. This is not surprisUig as die use of a heavily 
tailed error distiibution is known to make die inference 
more robust. 

(b) 
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Figure 4. Fitted and predicted response curves by various models. The curves are plotted against the proxy variable, and the true response values 
are shown by points, (a) The fitted response curves for the sampled elements, (b) The amplification of the square region of (a), (c) The 
predicted response curves for the unsampled elements, (d) The amplification of the square region of (c), and for clearness only every 
fourth elements are plotted in the order of sorted proxy values. 
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least squares 

§ 8 

Figure 5. Estimated population mean and the associated 95% 
confidence interval by various models.The dotted line shows 
the true population mean which is 194.34. 

3.4 Numerical Results on More Sample Replicates 

BNN models were appUed to analyze die 1,000 sample 
replicates. For each sample repUcate of the first explanatory 
set, we set V = 100, ^ = 5 and M - S which produces 62 
connections for die full BNN model. RJEMC was mn as 
described Ui section 3.3. In each run 600 BNN samples were 
obtained for the inference. The computational results were 
summarized in Table 1. It shows that BNN models have 
made a significantiy improvement over the linear regression 
based models in population mean estimation for die first 
explanatory set. Although the BNN estimate is sUghtiy 
biased (The relative bias is about 2.5% in terms of absolute 
values and is still acceptable.), it has the smallest MSE value 
among all estimates in Table 1 and the highest nominal 
coverage probabiUty among die estimates widi smaller MSE 
values (the boldfaced rows). As discussed in the last sub­
section, we expect y ĝ N to behave differentiy for samples 
containing and not containing the outlying element 53. 
When averaged over only those samples that contain 
element 53, y BNN widi v = 50 performs very well widi bias 
1.51 and 99.6% coverage. The result is obviously not as 
good as for those samples not containing element 53 due to 
the inevitable underestimation of the finite population mean. 
Frankly, there is not much one can do if diere are outUers in 
the population but none in the sample. No statistical method 
based on sample information alone wUI be able to predict 
the occurrence of outiiers in the non-sample. We beUeve 
that ygNN will perform very weU for populations without 
outiiers due to die universal approximation property of 
neural networks and the techiUque of Bayesian model 
averaging. 

Let x^^ denote the average of proxy values of the 
elements in one sample repUcate. To see how die perfor­
mance of the BNN models varied with x,, , we ordered the 
1,000 sample replicates according to theU values of I, , and 

divided them Uito 20 groups of 50 repUcates, the first group 
containing the 50 replicates whose x^, are smallest, and so 
forth. For each group, we calculated MEAN, MSE and 
AVMSE. Figure 6 shows these conditional values. From 
Figure 6(a) it is easy to see that BNN models possess one 
good property, namely, the population mean estimate is not 
sensitive to die value of J , , . From Figure 6(b) it is easy to 
see that AVMSE provides an essentially unbiased estimate 
for MSE regardless of averaged proxy values. 

To assess the influence of v, M and X on BNN model size 
and prediction abiUty for the first explanatory set, we 
conducted three groups of experiments. In the first group of 
experiments, we fixed M = 8 and ^ = 5, and varied the value 
of V, V = 50, 100 and 150. In die second group of experi­
ments, we fixed v = 100 and X = 5, and varied the value of 
M, M = 6, 8 and 10. In the thUd group of experiments, we 
fixed V = 100 and M = 8, and varied the value of X, ̂  = 4, 5 
and 6. For each setting, RJEMC was run as described in 
section 3.3 for the 1,(K)0 sample replicates. The compu­
tational results were summarized in Table 2. It shows that 
die averaged model size produced by each setting is about 
the same, although it increases slowly as M and X increase. 
The results of the first group of experiments show clearly 
that for BNN models there is a trade-off between BIAS and 
MSE or AVMSE by choosing die value of v. The results of 
die second and diUd group of experiments show tiiat BIAS, 
MSE, AVMSE and the coverage probability are rather 
stable to the variation of M and X, aldiough die latter three 
statistics have a slow tendency to Uicrease as M and X 
increase. The Uicreasing ttend of these statistics is due to die 
fact that die neural networks tend to be overfitted as M and X 
increase. 

Table 1 
Bias, mean squared error, average of mean squared error estimates 

and empirical coverage of various estimation strategies for the 
population mean using x^,...,x^ and JJH as auxiliary variables. 
Figures other than BNN are reproduced from Silva and Skinner 

(1997). 

Estimation strategy 

SM) Sample mean (y, y,) 
CN) Cond. num. red. (y, VJ 
RD Ridge 

Fs) Forward (y^, Vj) 
Fd) Forward (y^, V^) 
Fg) Forward (y^.V^) 
Bs)Best (y„V/J 

Bd)Best (y„Vd) 
Bg)Best (y„V^) 
H) Fixed (y„V,) 
SS) Saturated (y^.VJ 

FR)ProcREG (y^.VJ 
BNN) r( 100) 

BIAS 

0.25 
0.34 
2.12 
0.40 

-1.25 
-1.28 

0.44 
-1.22 
-1.24 

0.29 
0.30 
0.38 

-4.91 

MSE 

620.09 
507.33 
304.95 
233.78 
188.08 
188.38 
236.90 
190.52 
190.83 
227.90 
233.58 

235.86 
138.11 

AVMSE 

619.05 
483.63 
257.07 

239.62 
196.88 
192.73 
239.49 
196.84 
192.71 
241.24 
242.32 

240.26 
127.14 

Coverage" 

(%) 
91.8 
89.8 
82.5 
82.7 
82.0 
81.1 
82.7 
82.0 
81.1 
83.3 
82.5 

82.5 
84.8 

° Nominal 95% coverage. 
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Figure 6. MEAN (panel (a)), MSE and AVMSE (Panel (b)) conditional on the averaged proxy values. The 1,000 sample replicates 
are ordered on Jc,, and divided into 20 groups of 50 samples. 

Table 2 
Assessment of the influence of v, M and X on BNN model size and prediction ability 

for the first explanatory set. For convenience of comparison, the results of the setting v = 100, 
M = 8 and X = 5 were repeated in panels B and C. 

Experiment M Size" BIAS MSE AVMSE Coverage* (%) 

A 

B 

C 

50 
100 
150 

100 
100 
100 

100 
100 
100 

8 
8 
8 

6 
8 
10 

8 
8 
8 

5 
5 
5 

5 
5 
5 

4 
5 
6 

10.53 
10.70 
10.79 

9.52 
10.70 
11.83 

9.42 
10.70 
11.83 

-6.78 
-4.91 
-3.81 

-4.90 
-4.91 
-5.14 

-4.94 
-4.91 
-4.92 

131.78 
138.11 
156.55 

136.72 
138.11 
140.13 

138.04 
138.11 
139.62 

90.08 
127.14 
160.28 

122.58 
127.14 
132.20 

125.99 
127.14 
128.64 

82.0 
84.8 
85.5 

84.1 
84.8 
86.4 

85.2 
84.8 
85.7 

»Size=2['2f X!J^i'"(A|)/A//l,000, where /n(A,) is the number of connections of the neural network A,. 

' Nominal 95% coverage. 

The above experiments also address the issue of model 
misspecification. Note die BNN model proposed in this 
paper is specified by the three parameters, v, M and X. Table 
2 shows that die BNN model can still perform well even 
when die parameter setting has some deparmres from the 
optimal settUig. In practice, die setting of v, M and X can be 
determined by a cross-vaUdation experiment. This wiU be 
demonsttated in the second simulation study. 

Finally, we consider the weaker set of auxiUary variables 
x^,...,x^Q. For each sample replicate, we set v = 100, ^ = 5 
and M = S which produces 107 connections for die full 
BNN model. RJEMC was run as in section 3.3. The 

computational results were summarized in Table 3. It shows 
clearly that BNN models continue to provide a significant 
improvement over the linear regression based models in 
population mean estimation when the sttongest predictor 
X, I is excluded. The BNN estimate has die smallest MSE 
value among all estimates in Table 3, and has the smallest 
bias and the highest nominal coverage probability among 
the estimates with smaller MSE values (die boldfaced 
rows). 

To assess the influence of v, M and X on BNN model 
sizes and prediction abiUties for the second explanatory set, 
we conducted the same diree groups of experiments as for 
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the first explanatory set. The computational results were 
summarized in Table 4. Panel A shows again the trade-off 
between BIAS and MSE or AVMSE made for BNN models 
by die value of v. Panels B and C show tiiat BIAS, MSE, 
AVMSE and die coverage probability have an even more 
stable performance across different choices of M and X than 
that of the first explanatory set. 

Table 3 
Bias, mean squared error, average of mean squared error estimates 

and empirical coverage of various estimation strategies for the 
population mean using J C , , . . . , A:,Q as auxiliary variables. Figures 

other than BNN are reproduced from Silva and Skinner (1997). 

Estimation strategy BIAS MSE AVMSE Coverage" 
(%) 

SM) Sample mean (y, V J 0.25 620.09 619.05 91.8 
CN) Cond. num. red. (y, V J 3.49 562.91 450.36 87.3 
Rl) Ridge 1.05 480.18 472.82 89.4 
Fs) Forward (y^.Vj) 0.06 468.46 397.99 86.7 

Fd) Forward (y^.V^) -8 .12 434.27 338.90 81.7 
Fg) Forward (yr ,Vj) -7 .90 433.71 328.46 81.6 
Bs)Best ( y r , V J -0.00 466.16 397.59 86.6 
Bd)Best (y,.,Vrf) -7 .90 434.54 336.88 81.5 
Bg)Best (y^.Vg) -7 .60 433.26 326.05 81.6 
FI) Fixed (y,.,Vj) 0.45 490.49 461.86 89.0 
SS) Saturated (y,.,Vj) -0 .20 462.71 413.17 86.9 
FR)ProcREG (y^.Vj) -0 .07 466.13 399.34 86.4 

BNN)r(IOO) -5 .78 395.25 323.12 86.5 

" Nominal 9 5 % coverage. 

4. SECOND SIMULATION STUDY 

In the first simulation study, we show that the BNN 
model works weU for the data sets with outUers. In diis 
simulation study, we show diat die BNN model works even 
better for the data sets without outUers. In this study, we also 
demonsttate how a cross-validation procedure can be 
applied to determine a setting for the parameters v, M and X 
of die BNN model. 

The simulation population comprises the records of the 
serious crimes of 141 large standard Mettopolitan Statistical 
Areas (SMSAs) in the United States. A SMSA includes a 
city (or cities) of specified population size. The data 
generaUy pertains to the years 1976 and 1977, and is 
available in Neter, Kumer, Nachtsheim and Wasserman 
(1996). We consider the total number of serious crimes in 
1977 as the survey variable (y) and the following 9 variables 
as potential auxiUary variables. 

Xi Land area (in square miles); 
X2 Estimated 1977 total population (in thousands); 
X3 Percent of 1976 SMSA population in central city or 

cities; 
X4 Percent of 1976 SMSA population 65 years old or 

older; 
xs Number of professionally active nonfederal physicians 

as of December 3 1 , 1 9 7 7 ; 
JC6 Total number of beds, cribs, and bassinets during 1977; 
x-, Percent of adult population (persons 25 years old or 

older) who completed 12 or more years of school, 
according to the 1970 Census of the Population; 

Xg Total number of persons in civilian labor force (persons 
16 years old or older classified as employed or 
unemployed) in 1977 (in thousands); 

Xg Total current income received in 1976 by residents of 
the SMSA from all sources (in millions of dollars). 

Table 4 
Assessment of the influence of v, M and X on B N N model size and prediction ability for the 

second explanatory set. For convenience of comparison, the results of the setting v = 100, A/ = 8 
and X=5 were repeated in panels B and C of the table. 

Experiment M Size" BIAS M S E A V M S E Coverage* (%) 

A 

B 

C 

50 
100 
150 

100 
100 
100 

100 
100 
100 

8 
8 
8 

6 
8 
10 

8 
8 
8 

5 
5 
5 

5 
5 
5 

4 
5 
6 

14.87 
15.06 
15.17 

13.90 
15.06 
16.05 

13.23 
15.06 
16.76 

-9.30 
-5.78 
-4.38 

-5.77 
-5.78 
-5.91 

-5.62 
-5.78 
-5.78 

394.11 
395.25 
412.56 

394.79 
395.25 
396.27 

397.65 
395.25 
396.45 

270.09 
323.12 
346.75 

319.13 
323.12 
327.86 

323.68 
323.12 
321.98 

82.5 
86.5 
87.1 

86.0 
86.5 
87.1 

86.4 
86.5 
86.6 

° Size= Xl'^?" 2 | l i ' " ( A , ) / M / l , 0 0 0 , where m(A,) is the number of connections of the neural network A,-. 

* Nominal 9 5 % coverage. 
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Figure 7: Scatter plots of the response variable y versus the auxiUary variables for the second simulation study. 

Table 5 
Cross-validation experiments for the SMSA example. For convenience of comparison, the results of the setting 

V = 100, M = 3 and X = 5 were repeated in panels B and C. 

Experiment 

A 

B 

C 

v 

50 
100 

00 

100 
100 
100 
100 

100 
100 
100 

M 

3 
3 
3 

1 
2 
3 
4 

3 
3 
3 

X, 

5 
5 
5 

5 
5 
5 
5 

4 
5 
6 

Size 

10.68 
10.74 
10.74 

7.29 
9.42 

10.74 
11.66 

9.56 
10.74 
11.82 

BIAS (xlO^) 
-0.472 
-0.527 
-0.543 

-0.466 
-0.500 
-0.527 
-0.480 

-0.434 
-0.527 
-0.455 

MSE (X10*) 

4.78 
5.04 
4.76 

4.63 
4.61 
5.04 
4.74 

4.68 
5.04 
4.66 

AVMSE (X10*) 

4.19 
4.24 
4.21 

3.66 
3.91 
4.24 
4.47 

4.12 
4.24 
4.28 

Coverage" (%) 

91 
92 
92 

89 
90 
92 
91 

92 
92 
93 

' Nominal 95% coverage. 

Figure 7, the scatter plot of y versus the 9 auxiliary 
variables, suggests that a linear regression model may not be 
appropriate for die data set. There is a sttong nonUnear 
relationship between y and x^,x^,x^ and x^. Also, the 
explanatory variables X2,x^,x^,x^ and Xg are highly 
correlated. FUst, we demonsttate how a cross-validation 
procedure can be appUed to determine the setting for the 
parameters v, M and X of the BNN model. We treated the 
first 70 records as a small finite population, generated 100 
sample replicates of size 50 from diese 70 records by die 
method of simple random sampling without replacement, 
and then conducted the following experiments. In the first 
group of experiments, we fixed Af = 3 and X = 5, and varied 
die value of v, v = 50, 1(M) and oo, where v = oo is just an 

indicator which indicates the normality assumption for the 
disturbance. Note M = 3 results in a full model of 43 
connections, which has been large enough for the data set. 
In die second group of experiments, we fixed v = 100 and 
X = 5, and varied the value of M, M = 1, 2, 3, 4. In the diird 
group of experiments, we fixed v = 100 and M = 3, and 
varied the value of ^, X = 4, 5, 6. For each setting, RJEMC 
was run as in the first simulation study. The computational 
results were summarized in Table 5. It shows that the 
performance of the BNN model is rather stable to the 
variation of die settings. It also suggests diat die setting 
V = 100, M = 3 and X-4 probably be a good setting for this 
simulation population by a synthetical considerations on all 
values of BIAS, MSE, AVMSE and coverage probability. 
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In the further analysis, we generated 5(X) sample 
replicates of size 70 from all the 141 records by the method 
of simple random sampling without replacement. For each 
replicate, RJEMC was run as in the first simulation study. 
The computational results were summarized Ui Table 6. It 
shows that the BNN model also works weU for this 
population. We also tried the other settings given in Table 5 
for the 500 sample repUcates. The computational results are 
all similar. 

For the general formulation of Laplace's method, see Kass 
and Vaidyanatiian (1992). 

Proof of Theorem 2.1 

Proof: Part (a) By definition of expectation, 

E„ \8{XO>^A)\^^^ can be written as 

E,\g{x„eJ'^'^YP(^k\D) 
K 

E 
k=Q 

Table 6 
Computational results for the second simulation study with 

v= 100,W = 3andX. = 4 

Size BIAS 
(xlO^) 

MSE 
(xlO*) 

AVMSE 
(xlO*) 

9.20 -0.512 3.36 3.25 

" Nominal 95% coverage. 

5. DISCUSSION 

Coverage" 
(%) 
92.6 

^g{x„Q,if'\{Q,\A„D)dQ,. 

FoUowUig from the normaUty of the posterior distiibutions 
71(0̂  IA^, D) (WaUcer 1969) and die fact diat die activation 
function \|/() Ul (3) is bounded, we know (9) holds. Walker 
(1969) showed that the posterior distribution is Gaussian in 
the Umit of infinite training data. 

Part (b). For a given observation JCo,£'^|(Xo,9^) can be 
written as 

In this article, we studied the use of Bayesian neural 
networks Ui finite population estimation. The numerical 
results show that it has made a significant improvement 
over the linear regression based methods. The improvement 
is not from Bayesian model averagUig, but maUily from 
BNN models. We also applied the linear regression based 
Bayesian model averaging method (Liang, Traong and 
Wong 2001) to the same problem, and the improvement 
over Silva and Skinner (1997) is only marginal. Although 
our implementation for BNN models is not specific to finite 
populations, we do not think this is a shortcoming of our 
method. The generality of our method suggests its wide 
applications, for example, Ui nonlinear regression and 
nonlinear time series (the program is available by an request 
from the first author). Of course, a further research on how 
to use the known auxiUary variable Uiformation for a fiiUte 
population in BNN ttaUUng is also of interest. 

APPENDIX 

Before proving Theorem 2.1, we give one formula which 
will be used Ui the proof. 

Formula 5.1 {Laplace's method) 

\b{0)ey.p{-nh{0)}dO 

= {2nln)'"^ Yf'^eM-nh{Q)}b{Q){l-^0{n-^)], (24) 

as n—>°°, where b{) is a general function which does not 
depend on n, h{Q) is a constant-order function of n as 
n-^°°, p is the dimension of 9, G is the maximizer of 
-h{Q) arui 2 = {D^h{Q))~^ is the inverse of the negative 
Hessian matrix evaluated at 9. 

En=8{Xo,^A)^ 

X / ' ( A ) | i ( A : o , e j e x p { - n / t ( e j } S ( e j A ) d e ^ 
Aeil 

Y P{A)lexp{-nh{Q^)mQjA)dQ, 
Asn 

where 

lo g S ( e j A ) = - l o g o ^ - i - ^ / , l ogo^+-^ 
•^ 1=0 V " 

1 M f p 

1 M p 

2 P 

j=l i=0 

l o g a ^ + ^ 

m, log(2;i) -(- m log X - log(m!), 

and 

/ t ( e j = -
n 

^l_ 

n 

(25) 

(26) 

n, 2 v-i-l-A^ , 
- l o g o + ^ 2 . log 1-H (y,-f(x,)Y 

vo' 

2 

VO 

-Uogo' +^E{y,-g{x„Q^)Y 
1 2va 
1, 2 v-Hl 

2 2vo 

[E{y,-g{x,)Y+{8{x,)-g{x„QJ)'], (27) 
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where the first approximation follows from die Taylor 
expansion, log(l + z) = z, when z hes in a neighbourhood 
of zero; and the second approximation follows from the 
weak law of large numbers by assuming diat n is large. Note 
V is often set to a large number, say, a number greater than 
30. In die first example of diis paper, we set v = 100. The 
equation (27) implies diat the minimum of h{f6^ is 
attained when g(ji:,) = ^(jc,,e^) holds, ttiat is, 
|(A:,,e^) = g(x,),where 0^ =argmine^ h{^f^). 

By applying Laplace's mediod to the numerator of (25) 
widi &() = g(Xo, 9^)^(9^10), we have 

X/ '(A)j | (Xo,9Jexp{-T//(9J}S(9jA)rf9, 

= X/'(A)(27rM)'""lZj'" 

Aen 

Aen 

exp{-n/i(9J}g(A:o,9JS(9jD) 

^g{x,)YP{t^)(2^ln)"'"\YA\'" 
Aen 

exp{-n/i(9J}S(9jD), (28) 

where die first approximation follows from the Laplace 
formula (24), and die second approximation follows Irom 
die equality g(x,,9^) = ^(x,). Here we assume diat the 
number of hidden units of each A is suffientiy large such 
that g{:) can be approximated arbitrarily well by the 
network widi properly adjusted weights. Odierwise, that 
term will take a small value and is negligible in the last 
approximation of (28). 

Similarly, by applying die Laplace's method to the 
denominator of (25) with fc() - ft(9^ | D), we have 

X/'(A)fexp{-n/t(9J}S(9^ |A)rf9^ 
Aen 

- X ^(A)(27t/«)'"" E |"'exp{-n/i(0J)S(9jZ)).(29) 

Following from (28), (29), and die approximation accuracy 
((9(n~')) of Laplace's method, we have 

Ej{x^,^^)-^g{x^), (30) 

as /I —> oo. Following from (7), (9) and (30), we have 

J M 

— Z^(-^o'6A,)^g(j:o), a.s., 

as n ^ oo and M —> °o. 

Part (c). U follows fi-om (8), (9), (30) and Slutsky's 
Theorem (Casella and Berger 2(X)2). The proof is 
completed. 
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Simultaneous Use of Multiple Imputation for Missing Data and 
Disclosure Limitation 

JEROME P. REITER ' 

ABSTRACT 

Several statistical agencies use, or are considering the use of, multiple imputation to limit the risk of disclosing respondent' 
identities or sensitive attributes in public use data files. For example, agencies can release partially synthetic datasets, 
comprising the units originally surveyed with some collected values, such as sensitive values at high risk of disclosure or 
values of key identifiers, replaced with multiple imputations. This article presents an approach for generating multiply-
imputed, partially synthetic datasets that simultaneously handles disclosure limitation and missing data. The basic idea is to 
fill in the missing data first to generate m completed datasets, then replace sensitive or identifying values in each completed 
dataset with r imputed values. This article also develops methods for obtaining valid inferences from such multiply-imputed 
datasets. New rules for combining the multiple point and variance estimates are needed because the double duty of multiple 
imputation introduces two sources of variability into point estimates, which existing methods for obtaining inferences from 
multiply-imputed datasets do not measure accurately. A reference f-distribution appropriate for inferences when m and r are 
moderate is derived using moment matching and Taylor series approximations. 

KEY WORDS: Confidentiality; Missing data; Public use data; Survey; Synthetic data. 

1. INTRODUCTION 

Many statistical agencies disseminate microdata, i.e., 
data on individual units, in pubUc use files. These agencies 
strive to release files that are (i) safe from attacks by iU-
intentioned data users seeking to leam respondents' 
identities or attributes, (U) informative for a wide range of 
statistical analyses, and (iii) easy for users to analyze with 
standard statistical methods. Doing this weU is a difficuU 
task. The proUferation of pubUcly avaUable databases, and 
improvements in record linkage technologies, have made 
disclosures a serious threat, to the point where most 
statistical agencies alter microdata before release. For 
example, agencies globally recode variables, such as 
releasing ages in five year intervals or top-coding incomes 
above $100,000 as "$100,000 or more" (WUIenborg and de 
Waal 2001); they swap data values for randomly selected 
units (Dalenius and Reiss 1982); or, they add random noise 
to continuous data values (Fuller 1993). Inevitably, these 
stiategies reduce the utility of the released data, making 
some analyses impossible and distorting the results of 
odiers. They also compUcate analyses for users. To analyze 
properly perturbed data, users should apply the lUcelihood-
based mediods described by Little (1993) or die mea­
surement error models described by Fuller (1993). These are 
difficult to use for non-standard estimands and may requUe 
analysts to leam new statistical mediods and specialized 
software programs. 

An alternative approach to disseminating public use data 
was suggested by Rubin (1993): release multiply-imputed. 

synthetic datasets. Specifically, he proposed diat agencies (i) 
randomly and independentiy sample units from die 
sampUng frame to comprise each synthetic data set, (ii) 
impute unknown data values for units in the synthetic 
samples using models fit with the original survey data, and 
(Ui) release multiple versions of diese datasets to die public. 
These are called fully synthetic data sets. Releasing fully 
synthetic data can protect confidentiality, since iden­
tification of units and their sensitive data is neariy 
impossible when the values in the released data are not 
actual, collected values. Furdiermore, with appropriate 
synthetic data generation and die inferential methods 
developed by Raghunathan, Reiter and Rubin (2003) and 
Reiter (2004b), it can allow data users to make valid 
inferences for a variety of estimands using standard, 
complete-data statistical methods and software. Other 
attractive features of fuUy synthetic data are described by 
Rubin (1993), Little (1993), Fienberg, Makov and Steele 
(1998), Raghunadian et al. (2003), and Reiter (2002, 
2004a). 

No statistical agencies have released fully synthetic 
datasets as of this writing, but some have adopted a variant 
of the multiple imputation approach suggested by Little 
(1993): release datasets comprising the units originally 
surveyed with some collected values, such as sensitive 
values at high risk of disclosure or values of key identifiers, 
replaced with multiple imputations. These are called 
partially synthetic datasets. For example, the U.S. Federal 
Reserve Board protects data in the U.S. Survey of 
Consumer Finances by replacing monetary values at high 
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disclosure risk with multiple imputations, releasing a 
mixture of diese imputed values and die unreplaced, 
collected values (KennickeU 1997). The U.S. Bureau of die 
Census and Abowd and Woodcock (2001) protect data in 
longitudinal, linked data sets by replacing all values of some 
sensitive variables with multiple imputations and leaving 
other variables at theU actual values. Liu and Littie (2002) 
present a general algorithm, named SMIKe, for simulating 
multiple values of key identifiers for selected units. 

AU tiiese partially syndietic approaches are appeaUng 
because they promise to maintain the primary benefits of 
fully syndietic data - protecting confidentiality while 
allowing users to make inferences without learning 
complicated statistical methods or software - with decreased 
sensitivity to the specification of imputation models (Reiter 
2003). Valid inferences from partiaUy synthetic datasets can 
be obtained using the methods developed by Reiter (2003, 
2004b), whose rules for combining point and variance 
estimates again differ from those of Rubin (1987) and also 
from diose of Raghunathan et al. (2003). 

The existing dieory and mediods for partially synthetic 
data do not deal expUcitiy with an important practical 
complication: in most large surveys, there are units that fail 
to respond to some or all items of the survey. This article 
presents a multiple imputation approach that handles 
simultaneously missing data and disclosure limitation. The 
approach involves two steps. FUst, die agency uses multiple 
imputation to fill in the missing data, generating m multiply-
imputed datasets. Second, the agency replaces the values at 
risk of disclosure in each imputed dataset with r multiple 
imputations, ultimately releasing mr multiply-imputed 
datasets. This double-duty of multiple imputation requUes 
new methods for obtaining valid inferences from the 
multiply-imputed datasets, which are derived here. 

The paper is organized as follows. Section 2 reviews 
multiple imputation for missing and partially syndietic data. 
Section 3 presents the new methods for generating partially 
syndietic data and obtaining vaUd Uiferences when some 
survey data are missing. Section 4 shows a derivation of 
these methods from a Bayesian perspective, and it discusses 
conditions under which the resulting inferences should be 
valid from a frequentist perspective. Section 5 concludes 
widi a discussion of the challenges to implementing this 
multiple imputation approach on genuine data, widi an aim 
towards stimulating future research. 

j-l,2,...,N. Let 1 = {f,...,lfj). Let Rj beapx 1 vector 
of response indicators, where 7?̂ ^ =1 if the response for 
uiUt j to survey item k is recorded, and Rj^ = 0 otherwise. 
Let /? = (/?,,..., Rj.^). Let y be die A^xp matrix of survey 
data for all units Ui die population. Let Y-^^^ = {Y^^^^, Y^^^) be 
the nxp matrix of survey data for the n units with I j =1', 
ŷ bj is the portion of Y-^^^ that is observed, and Y^^^ is the 
portion of Kĵ^ diat is missing due to nonresponse. Let X be 
the Nxd matrix of design variables for all Â  units in the 
population, e.g., stiatum or cluster indicators or size 
measures. We assume that such design information is 
known approximately for all population units, for example 
from census records or the sampling frame(s). Finally, we 
write die observed data as D-{X, y^^^,/,/?). 

2.1 Multiple Imputation for Missing Data 

The agency fills in values for Y^-^ witii draws from the 
Bayesian posterior predictive distiibution of {Y^^^ | D), or 
approximations of that distribution such as diose of 
Raghunadian, Lepkowski, Van Hoewyk and Solenberger 
(2001). These draws are repeated independentiy I -\,...,m 
times to obtain m completed data sets, D '̂̂  ={D,Y^l). 
Multiple rather than single imputations are used so that 
analysts can estimate the variabiUty due to imputing missing 
data. 

In each imputed data set D ' " , the analyst estimates the 
population quantity of interest, Q, using some estimator q, 
and estimates the variance of q with some estimator u. We 
assume that the analyst specifies q and u by acting as if each 
£)^" was in fact collected data from a random sample of 
{X, Y) based on the original sampling design /, i.e., q and u 
are complete-data estimators. 

For / = l,...,m, let q'-'^ and M*'̂  be respectively die 
values of q and u in data set D^". Under assumptions 
described Ui Rubin (1987), the analyst can obtain valid 
inferences for scalar Q by combinUig the <?*'' and u^'K 
Specifically, the foUowing quantities are needed for 
inferences: 

l = \ 

m 

^.=Z(/ ' -^J7(«- I ) 

(1) 

(2) 
; = i 

2. REVIEW OF MULTIPLE IMPUTATION 
INFERENCES 

To describe multiple imputation, we use the notation of 
Rubin (1987). For a finite population of size Â, let I j -I if 
unity is selected in the survey, and Ij = 0 otherwise, where 

( = 1 

(3) 

The analyst then can use <?,„ to estimate Q and 
T,,, =(1-1-1/m)^„-l-M„, to estimate the variance of q^. 
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Inferences can be based on f-distributions widi degrees of 
freedom v„ = (m -1)(1 + «„ /((I +1 /m)b„ )Y • 

2.2 Multiple Imputation for Partially Synthetic Data 
when Fin, = Fobs 

Assuming no missing data, i.e., Y.^„^ = Y^^^^, the agency 
constructs partially synthetic datasets by replacing selected 
values from the observed data with imputations. Let Zj = I 
if unity is selected to have any of its observed data replaced 
with synthetic values, and let Zj -0 for diose units with all 
data left unchanged. Let Z = (Z,, ..., Z„) . Let Y^^^. be ah 
the imputed (replaced) values in the /"' synthetic data set, 
and let y„^p be all unchanged (unreplaced) values of ŷ ŝ • 
The ŷ p̂,. are assumed to be generated from die posterior 
predictive distiibution of (y^^p, \D,Z), or a close 
approximation of it. The values in y„̂ p̂ are the same in all 
synthetic data sets. Each syndietic data set, d,, then 
comprises (-'^.yrep.i.^'nrep'^'^)- Imputations are made 
independentiy i=l, ...,r times to yield r different partially 
synthetic data sets, which are released to the pubUc. Once 
again, multiple imputations enable analysts to account for 
variability due to imputation. 

The values in Z can and frequentiy will depend on the 
values in D. For example, the agency may simulate sensitive 
variables or identifiers only for units in the sample with rare 
combinations of identifiers; or, the imputer may replace 
only incomes above $100,0(X) with imputed values. To 
avoid bias, the imputations should be drawn from the 
posterior predictive distribution of Y for those units with 
Z^ = 1. Reiter (2003) illustrates die problems diat can arise 
when imputations are not conditional on Z. 

Inferences from partially syntiietic datasets are based on 
quantities defined in Equations (1) -(3). As shown by Reiter 
(2(X)3), under certain conditions the analyst can use q^ to 
estimate Q and T^ =b^lr + u^ to estimate the variance of 
^^. Inferences for scalar Q can be based on r-distributions 
widi degrees of freedom v^ ={r-1)(1 + uJ{bJr)Y • 

3. PARTIALLY SYNTHETIC DATA 
WHENy,„,^y„,, 

When some data are missing, it seems logical to impute 
the missing and partially synthetic data simultaneously. 
However, imputing Y^^ and ŷ p̂ from the same posterior 
predictive distribution can result in improper imputations. 
For an illusti-ative example, suppose univariate data from a 
normal distribution have some values missUig completely at 
random (Rubin 1976). Furdier, suppose the agency seeks to 
replace all values larger than some threshold with 
imputations. The imputations for missing data can be based 
on a normal distribution fit using all of Y^^. However, the 
imputations for replacements must be based on a posterior 

distribution that conditions on values being larger than the 
direshold. Drawing Y^^ and ŷ^̂p from die same distri­
bution will result in biased inferences. 

Imputing the Y^^^ and ŷ p̂ separately generates two 
sources of variability, in addition to the sampling variability 
in D, that die user must account for to obtain valid 
inferences. Neither T^ nor T^ correctiy estimate the total 
variation intioduced by die dual use of multiple imputation. 
The bias of each can be illustrated with two simple 
examples. Suppose only one value needs replacement, but 
there are hundreds of missing values to be imputed. 
Intuitively, the variance of the point estimator of Q should 
be weU approximated by T,,,. and T^ should underestimate 
the variance, as it is missing a b^. On the other hand, 
suppose only one value is missing, but there are hundreds of 
values to be replaced. The variance should be well 
approximated by T^, and r,„ should overestimate the 
variance, as it includes an extra fo„,. 

To allow users to estimate the total variability correctly, 
agencies can employ a diree-step procedure for generating 
imputations. First, the agency fills in Y^^^ with draws from 
die posterior distiibution for {Y^^^ \ D), resulting in m 
completed datasets, £><'\..., D*'"^. Then, in each D^", die 
agency selects the units whose values are to be replaced, i.e., 
whose Z^^' = 1. In many cases, die agency will impute 
values for die same units in all O"* to avoid rele;ising any 
genuine, sensitive values for the selected units. We assume 
this is the case diroughout and tiierefore drop die superscript 
/ from Z Third, in each £)*", die agency imputes values 

r̂epi for tiiose units witii Z .̂ = 1, using the posterior 
distribution for (ŷ p̂ | D " * , Z ) . This is repeated 
independently /= 1,..., r times for 1=1, ...,m, so diat a 
total of M = mr datasets are generated. Each dataset, 
dl" =(X,Y,^^^,Yl;!^^,Y^l,I,R,Z), includes a label 
indicating the / of the D ' " from which it was drawn. These 
M datasets are released to the public. Releasing such nested, 
multiply-imputed datasets also has been proposed for 
handling missing data outside of the disclosure Umitation 
context (Shen 2000; Rubin 2003). 

Analysts can obtain valid inferences from these released 
datasets by combining inferences from die individual 
datasets. As before, let q be the analyst's estimator of Q, and 
let u be the analyst's estimator of the variance of q. We 
assume the analyst specifies q and u by acting as if each 
df^ was in fact collected data from a random sample of 
{X, Y) based on die original sampling design /. For 
/= 1, . . . ,mandj= 1, .. . ,r,let qf^ and wf̂  be respectively 
die values of q and u in data set d,*". The following 
quantities are needed for inferences about scalar Q: 

m r m 

^M=YY^f'l(>nr) = Yt"lm (4) 
/ = 1 i = 1 1 = 1 
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m r 

b,-YY(^"-^"'Ylm{r-l) 
/ = I / = 1 

m 

= Yb'"lm (5) 

m 

B^=Y(t"-qMYl(m-l) 

m r 

; = ii = i 

(6) 

(7) 

The q'"'^ is the average of the point estimates in each 
group of datasets indexed by /, and the q^^ is the average of 
these averages across /. The b^'^ is the variance of the point 
estimates for each group of datasets Uidexed by /, and die 
b^ is average of these variances. The B^ is the variance of 
die ^*" across synthetic datasets. The M^ is die average of 
die estimated variances of q across all syndietic datasets. 

Under conditions described in section 4, die analyst can 
use q^^ to estimate Q. An estimate of the variance of q^ 
is: 

T^={l + llm)B^-b^lr + u M- (8) 

When n, m, and r are large, inferences can be based on 
the normal distiibution, {Q-q^^) ~ N{0,T^). When m 
and r are moderate, inferences can be based on the 
r-distribution, 
freedom 

(Q-QM)~ t,„ {0,T^), widi degrees of 

{{l + l/m)Bj' ^ {bjrf 
(m-l)r^ m{r-l)T^ 

^-' 
(9) 

The behavior of T^ and v„ in special cases is 
instructive. When r is very large, T^ ~T^. This is because 
the ^"' = ^" ' , so that we obtain the resuUs from analyzUig 
the Z)*". When the fraction of replaced valiies is small 
relative to the fraction of missing values, the b,^ is small 
relative to B^ , so that once again T^^ = r„ . In both diese 
cases, the v^ approximately equals v„,, which is Rubin's 
(1987) degrees of freedom when imputing missing data 
only. When die fraction of missing values is small relative 
to the fraction of replaced values, the fi^ ~ b^^lr, so that 
T^ is approximately equal to T^ with M released datasets. 

4. JUSTIFICATION OF NEW COMBINING RULES 

This section presents a Bayesian derivation of die 
inferences described in section 3 and describes conditions 
under which these inferences are valid from a frequentist 
perspective. These results make use of the theory developed 

Ul Rubin (1987) and Reiter (2003). For die Bayesian 
derivation, we assume that die analyst and imputer use the 
same models. 

Let D'"={D^'^:l =l,...,m} be die collection of aU 
multiply-imputed datasets before any observed values are 
replaced. For each D*",let q'-'^ and «*'' be the posterior 
mean and variance of Q. As in RubUi (1987, Chapter 3), let 
B^ be the variance of the q^'^ obtained when m = °o. 

Let d'^ ={dl'^ •.i = l,...,r;l = l,...,m} be die collection 
of aU released synthetic datasets. For each d^'^, let q^'^ be 
the posterior mean of q^'\ For each /, let 5*'' be the 
variance of the qf^ obtaUied when r = oo. Lastiy, let B be 
the average of the B" ' obtained when m = °°. 

Using these quantities, the posterior distribution for 
{Q\d'^) can be decomposed as 

f{Q\d'')=\ f{Q\d'',D"',B^,B) 

f{D'",B^\d\B) 

f{B\d'^)dD"'dB^dB. (10) 

The integration is over the distributions of the values in D 
that are missing and the values in each D"^ that are 
replaced with imputations; the observed, unaltered values 
remain fixed. We assume standard Bayesian asymptotics 
hold, so diat complete-data inferences for Q can be based on 
normal distributions. 

4.1 Evaluating/(e Id",D"',B„,B) 

Given D" , the synthetic data are Urelevant, so tiiat 
f{Q I d^ ,D"',B^,B) = f{Q I D'",B^). This is die poste­
rior distribution of Q for multiple imputation for missing 
data, conditional on B^. As shown by Rubin (1987), this 
posterior distribution is approximately 

(el D"',BJ~N{q„,{l + l/m)B^+UJ (11) 

where q^ and M„ are defined as in (1) and (3). In multiple 
imputation for missing data, we integrate (11) over the 
posterior distiibution of (B^ | O'") • This is not done here, 
since we integrate over (B„ {d"^ ) . 

4.2 Evaluating f{D'",B„ Id",B)f{B\d^) 

Since the distiibution for Q in (11) relies only on q„, 
M„, and B„, U is sufficient for f{D"',B„\d'^,B) to 
determine 

f(lm^U^,B^ Id"" ,B) = 

f{q,„,K\d'',B^,B)f{B„\d'',B). 

FoUowUig Reiter (2003), we first assume replacement 
imputations are made so that, for all /, the sampUng 
distiibutions of each ,̂. and M, are. 
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(9<" I £>'",«'") ~N(?" \B<" ) (12) 

(«<'MO^",B^")~ ("*",« fi*")- (13) 

Here, the notation F ~ {G, «H) means that die random 
variable F has a distribution with expectation of G and 
variability much less than H. In actuaUty, M, is typically 
centered at a value larger than « '" , since synthetic data 
incorporate uncertaUity due to drawing values of the 
parameters. For large sample sizes n, this bias should be 
mUiimal. The assumption diat E{ql'^ \ £><'*,B'") = q'-''' and 
the normaUty assumption should be reasonable when die 
imputations are drawn from correct posterior predictive 
distributions, f{Y^^^ |D* ' ' ,Z) , and the usual asymptotics 
hold. 

Assuming flat priors for all ^*'' and v '" , standard 
Bayesian theory implies that 

(14) [q^'y'',B^'^)~N(q^'\B^yr) 

{r-l)b (0 

B (0 
d'',B (I) 

Xr-l 

(15) 

(16) 

where ft'" is defined in (5). We next assume diat B^'' = B 
for all /. This should be reasonable, since the variabUity in 
posterior variances tends to be of smaUer order than the 
variability of posterior means. Averaging across /, we obtain 

(^„ | r f^ ,B)~N(^^ ,B/ rm) 

(u,\d'',B)~{u^,«B/rm) 

(17) 

(18) 

where ^^ is defined in (4) and u^^ is defined in (7). The 
posterior distribution of (B„ \d^ ,B) is 

( m - l ) B ^ I ^M 

B^+B/r 
d",B t^n (19) 

where B^ is defined in (6). 
Finally, the posterior distiibution of (B | rf'**) is 

A.in(r -1 (20) 
'm{r-l)b,^ U M 

[ B \ ^ 

where fo^ is defined Ui (5). 

4.3 Evaluating/(elrf '") 

We need to integrate the product of (11) and (17) with 
respect to the distributions in (19) and (20). This can be 
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done by numerical integration, but it is desirable to have 
simpler approximations for users. 

For large m and r, we can replace the tenns in die 
variance with dieU approximate expectations: the B„ = 
B^f - BIr, and the B ^b,^ . Hence, for large m and r, the 
posterior distribution of Q is approximately: 

(Q\d-) 

~ Af( ̂ ^ , (l + 1/m) ( B ^ - b^ lr)+ b^ Imr + u„ ) 

= N(q^,{l-¥llm)B^-b^lr + u^) 

= N{q^,T^). (21) 

When m and r are moderately sized, the normal 
distribution may not be a good approximation. To derive an 
approximate reference r-distribution, we use the stiategies of 
Rubin (1987) and Barnard and Rubin (1999). That is, we 

assume that for some degrees of freedom 
estimated. 

^MTM 

u^ -l-(l-l-l/m)B^-l-B/mr' 
r^v 

to be 

(22) 

so that we can use a r-distribution with v,^ degrees of 
freedom for inferences about Q. We approximate v^ by 
matching the first two moments of (22) to those of a chi-
squared distiibution. The details showing diat v^ is 
approximated by die expression in (9) are provided in die 
appendix. 

The inferences based on (4) - (9) have vaUd frequentist 
properties under certain conditions. FUst, die analyst must 
use randomization-valid estimators, q and u. That is, when q 
and u are appUed on D to get ^̂ ^̂  and u^^^, the 
{q,^,\X,Y)~}i{Q,U) and {u,^^\X,Y) ~{U ,«U), 
where the relevant distribution is that of /. Second, the 
imputations for missUig data must be proper in the sense of 
Rubin (1987, Chapter 4). Essentially, dus requires diat 
inferences from die imputations for missing data be 
randomization-vaUd for q^^^^ and u^^^, under the posited 
non-response mechanism. ThUd, the imputations for 
partiaUy synthetic data must be synthetically proper in the 
sense of Reiter (2003). This requUes diat the inferences 
from the replacement imputations associated with each D"* 
be randomization vaUd for the q^'^ and M*'^ 

In general, it is difficult to verify diat imputations for 
missing data are proper in complex samples (Binder and 
Sun 1996). They may be proper for some analyses but not 
for others. As a result, some confidence intervals centered 
on unbiased estimators may not have nominal coverage 
rates; see Meng (1994) for a discussion of diis issue. These 
difficulties exist for the multiple imputation approach used 
here, and indeed may be compounded because of the 
additional imputation of synthetic data. 
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5. CONCLUDING REMARKS 

There are many challenges to using partially synthetic 
data approaches for disclosure limitation. Most important, 
agencies must decide which values to replace widi 
imputations. General candidates for replacement Uiclude the 
values of identifying characteristics for units that are at high 
risk of identification, such as sample uniques and duplicates, 
and the values of sensitive variables in the tails of 
distributions. ConfidentiaUty can be protected further by, in 
addition, replacing values at low disclosure risk (Liu and 
Littie 2(X)2). This increases die variation in the replacement 
imputations, and it obscures any information diat can be 
gained just from knowing which data were replaced. As 
with any disclosure limitation method (Duncan, KeUer-
McNulty and Stokes 2001), these decisions should consider 
ti^deoffs between disclosure risk and data utiUty. Guidance 
on selecting values for replacement is a high priority for 
research in this area. 

There remain disclosure risks in partially syndietic data 
no matter which values are replaced. Users can utilize the 
released, unaltered values to facilitate disclosure attacks, for 
example via matching to external databases, or diey may be 
able to estimate actual values of ŷ ^̂  from the syntiietic data 
with reasonable accuracy. For instance, if all people in a 
certain demographic group have the same, or even nearly 
the same, value of an outcome variable, the imputation 
models lUcely will generate that value for imputations. 
Imputers may need to coarsen the imputations for such 
people. As another example, when users know that a certain 
record has die largest value of some ŷ ^̂ , that record can be 
identified when its value is not replaced. 

On the data utility side, the main challenge is specifying 
imputation models, bodi for the missing and replaced data, 
that give valid results. For missing data, it is well known 
diat implausible imputation models can produce invalid 
inferences, although diis is less problematic when imputing 
relatively small fractions of missing data (Rubin 1987; 
Meng 1994). There is an analogous issue for partially 
synthetic data. When large fractions of data are replaced, for 
example entire variables, analyses involving the replaced 
values refiect primarily the distributional assumptions 
impUcit in the imputation models. When these assumptions 
are implausible, die resulting analyses can be invalid. 
Again, diis is less problematic when only smaU fractions of 
values are replaced, as might be expected in many 
applications of the partially synthetic approach. 

Certain data characteristics can be especially challenging 
to handle with partiaUy syndietic data. For example, U may 
be desirable to replace extieme values in skewed dis­
tributions, such as very large incomes. Information about 
the tails of these distributions may be limited, making it 
difficult to draw reasonable replacements while protecting 

confidentiality. As another example, randomly drawn 
imputations for highly stmctured data may be implausible, 
for instance unlikely combinations of family members' ages 
or marital statuses. These difficulties, coupled with die 
general limitations of inferences based on imputations, point 
to an important issue for research: developing and 
evaluating methods for generating partially synthetic data, 
including semi-parametric and non-parametric approaches. 

We note that building the synthetic data models is 
generally an easier task than building the missing data 
models. Agencies can compare the distributions of die 
synthetic data to those of the observed data being replaced. 
When the syndietic distributions are too dissimilar from the 
observed ones, the imputation models can be adjusted. 
There usually is no such check for die missing data models. 

It is, of course, impossible for agencies to anticipate 
every possible use of the released data, and hence 
impossible to generate models that provide valid results for 
every analysis. A more modest and attaUiable goal is to 
enable analysts to obtain vaUd inferences using standard 
mediods and software for a wide range of standard analyses, 
such as some Unear and logistic regressions. Agencies 
therefore should provide information that helps analysts 
decide what inferences can be supported by die released 
data. For example, agencies can Uiclude descriptions of the 
imputation models as attachments to public releases of data. 
Users whose analyses are not supported by the data may 
have to apply for special access to the observed data. 
Agencies also need to provide documentation for how to use 
the nested data sets. Rules for combining point estimates 
from the multiple data sets are simple enough to be added to 
standard statistical software packages, as has been done 
aUeady for Rubin's (1987) rules in SAS, Stata, and S-Plus. 

As constructed, the multiple imputation approach does 
not calibrate to published totals. This could make some 
users unhappy widi or distrust die released data. It is not 
clear how to adapt the mediod - or, for diat matter, many 
other disclosure limitation techiUques that alter the original 
data - for caUbration. 

MissUig data and disclosure risk are major issues 
confronting organizations releasing data to the public. The 
multiple imputation approach presented here is suited to 
handle both simultaneously, providing users with 
rectangular completed datasets diat can be analyzed with 
standard statistical methods and software. There are 
challenges to implementing this approach in genuine 
appUcations, but, as noted by Rubin (1993) in his initial 
proposal, the potential payoffs of this use of multiple 
imputation are high. The next item on die research agenda is 
to investigate how well the theory works in practice, 
including comparisons of this approach with other 
disclosure limitation methods. These comparisons should 
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focus on measures of disclosure risks, obtained by sim­
ulating intruder behavior, and on measures of data utiUty for 
estimands of interest to users, UicludUig properties of poUit 
and interval estimates. 

APPENDIX: DERIVATION OF APPROXIMATE 
DEGREES OF FREEDOM 

Inferences from datasets widi multiple imputations for 
bodi missing data and partially synthetic replacements are 
made using a f-distribution. A key step is to approximate the 
distiibution of 

VMTM 

^M^ -H (l-l-1/m) B^-I-B/mr I 
(23) 

as a chi-squared distribution widi v^ degrees of freedom. 
The v^ is determined by matching the mean and variance 
of the inverted x^ distribution to the mean and variance of 
(23). 

Let a = (B^ -i- Blr)IB^^ , and let j = Blb^ . Then, 
( a ~ ' | J ' ^ , B ) and {y~^\d'^) have mean square dis­
tributions with degrees of freedom m-l and m{r-l), 
respectively. Let f = {l-t-llm)Bf^ lui^ , and let g = 
(1 / r)b^ I Uf^ . We can write (23) as 

l + f - 8 I^M^g 
Var 

V V 1 + a / - y^ 

r 
+ Mar E 

V V 

(MIjZ8_l^M^g 
1 -H a / - yg I 

(27) 

For die interior variance and expectation, we use a first 
order Taylor series expansion in a~' around its expectation. 
SUice Var(a"' \d^,B) = 2l{m-1), die expression in (27) 
equals approximately 

^ 2(l + / - g ) V ^ I ^^ 
(m-l)(l + / - Y g ) ^ l 

/ 
-HVar l + / - g 

1 + / - Yg 
rf^ (28) 

TM ^y{l + f-g) 
ir̂  -H(l-I-l/m)B„ + B/mr u^il + af-yg)' 

(24) 

We now use first order Taylor series expansions in y"' 
around its expectation to determine the components of (28). 
The first term in (28) is, 

2{\ + f-8)f yM 
{m-l){l + f-ygy 

2f 
{m-l){l + f-gf 

(29) 

Since Var(Y ^ \d^) = 2l{m{r-l)), the second term in 
(28) is 

To match moments, we need to approximate the expectation 
and variance of (24). 

For the expectation, we use the fact that 

l" ^ , f A 
l + / - g \^M 

l + of-yg 
{ r 

= E E 
V V 

1 + / - ^ I d - « 
l + a / -Yg 

(25) 

We approximate diese expectations usUig first order Taylor 
series expansion in a"' and y ' around theU expectations, 
which equal one. As a result, 

^ + f - 8 l^M^g 
E 

V V 1 + a / - yg 

= £ f l + / - g 
i + / - y g 

(26) 

For the variance, we use the conditional variance 
representation 

Var '\lLis_\^M 
U+Z-yg ' 

^8' 
{r-lW^f-8f m 

(30) 

CombinUig (29) and (30), the variance of (23) equals 
approximately 

2f 
{m-l){l + f-gf 

2g' 
m{r-l){l + f-gf 

(31) 

SUice a mean square random variable has variance equal to 
2 divided by its degrees of freedom, we conclude that 

f 
A-' 

(rn-\)(\ +f - gf rn{r-l){l + f-gY 
(32) 
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Erratiim: 

In die June 2(X)4 issue, we pubUshed a paper by D.N. Da Silva and Jean D. Opsomer on "Properties of the Weighting Cell 
Estimator Under a Nonparametric Response Mechanism" (pages 45-55). We would like to apologize for having incorrectly 
spelled out Dr. Da Silva's name. It should have read D. Nobrega Da Silva. Please note also that die corrected version appears 
on Statistics Canada's Web site. 
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