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NOTES ON INFERENCE BASED ON DATA 
FROM COMPLEX SAMPLE DESIGNS 

Gad Nathan^ 

the problems associated with ihakihg analytical ihferehcfes 
from data based on complex sample designs are reviewed. 
A basic issue is the definition of the parameter of inter
est and whether it is a superpopulation model parameter or 
a finite population parameter. General methods based on a 
generalized Wald Statistics and its modification or on mod
ifications of classical test statistics are discussed. 
More detail Is given on specific methods-on linear models 
and regression and on categorical data analysis. 

1. INTRODUCTION 

Standard methods of inference, such as regression, analysis of vari

ance or tests of independence, are, in general, based on the assump

tion that the data are obtained by simple random sampling from an 

infinite population with a probability distribution belonging to some 

hypothetical family. The wide dissemination of standard computer 

packages has made the use of these methods extremely easy. However 

standard methods cannot usually be simplyappl led to data from complex 

sample designs without any modification. 

In the following we attempt to provide a selection of some practical 

hints on what can be done and of some warnings against what should not 

be done in these situations. This is based on the selected list of 

references to recent work In the area, which Include many examples of 

applIcatlonSo , 

The first question which must be answered by anyone who intends to 

carry out statistical analysis is what exactly are the parameters 

about which Inference Is required. 

^G. Nathan, Hebrew University, Jerusalem and Isreal Central Bureau 

of Statistics 
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One of two extreme answers to this question Is often given(Brewer and 

Mel lor (1973); Smith (1976)). One, as advanced for instance by Kish 

and Frankel (197'*) » considers that the only relevant inference concerns 

finite population parameters, such as the population regression 

coefficient: 

N N ? 

B = E (X -X)(Y -Y) / E (X -X) , 
i=l ' ' i=l ' 

s.Imi larly defined mul t Iple or part ial correlation coefficients or other 

measures, defined with respect to the finite population only, with no 

recourse to any superpopulation model. Inference in this case would 

usually be design-based (Sarndal (1978)), that is based only on proper

ties of the sample distribution. However model-based inference about 

a finite population parameter is also possible-(Hartley and Slelken 

(1975)). 

The other extreme position, as stated, for instancCj by Fienberg (1980), 

considers all inference as relating to the parameters of a probability 

distri bution (a superpopulation) of which the finite population re

presents a realization. Examples of such Inference can be found in 

Konijn (1962), Fuller (1975), Thomsen (1978) and Pfeffermann and 

Nathan (1981). If the parameters about which inference is made relate 

to a superpopulation model, design-based inference cannot be used 

alone and inference must be model-based, Sarndal (1978), or jointly 

model- and design-based. Under assumptions of independence between 

the model distribution and the sampling di stribut ion, standard (model-

based) inference is valid and the sample design only affects the 

efficiency of inference. 

Serious objections can be raised with respect to each of these extreme 

approaches. Model-based inference relies heavMy on assumptions about 

a theoretical model which are usually difficult to ensure and the in

ference will not, in general, be robust to departures from this model. 

On the other hand, the finite population parameters, on which design-
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based inference is made, are usually "copies" of theoretical model 

parameters with little descriptive value in themselves, unless some 

basic model is assumed. For instance, a finite population correlation 

coefficient is a useful measure of the relationship between two vari

ables only if the relationship is approximately linear. 

In many cases some balance between these approaches may be preferable. 

This can be attained, for instance, by considering as the objects of 

inference only finite population parameters which closely approximate 

superpopulation parameters of a suitable model,to which the data fit. 

For instance, if separate regression equations are fitted to relevant 

sub-populations a better linear fit may be obtained than from an over-

regression. If the sub-populations are large enough this will ensure 

that the finite population regression coefficients closely approximate 

the superpopulation parameters, so that any inference relating to the 

finite population parameters can be considered as relating to the 

superpopulation parameters. 

To ensure close correspondence between model parameters and finite 

population parameters extensive exploratory analysis to check the 

model should be carried out,before entering into any formal analysis. 

This analysis to explore various alternative models can often be based 

on simple descriptive measures for which the sample design can be 

taken into account or on graphical displays. However the results have 

to be carefully interpreted in the light of the sample design. For 

example, a few large residuals with small sample weights may be much 

less Important than many smaller residuals with large weights. A use

ful diagnostic tool to consider in the case of regression is the dif

ference between a weighted and an unweighted regression coefficient. 

A large difference will often indicate that the model is inadequate. 

Once the parameters have been determined,we should consider what type 

of Inference is required (point estimation, Interval Inference or tests 

of hypotheses). While point estimation arid confidence intervals would 
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be most appropriate for finite population parameters,tests of hypoth

eses, and in particular simple hypotheses, are strictly relevant only 

with respect to superpopulation parameters of a well-defined model. 

For example the hypothesis that two domain means are equal can only be 

seriously entertained with respect to the superpopulation means rather 

than their fihite pbpuiatioh realizations. If one Wlshfes to avoid the 

formulation of a model it would be preferable to use point estimation 

or confidence intervals for the difference between the domain means 

rather than tests of hypotheses. If hypothesis testing about fihite 

population parameters is required,testinga compos!te hypothesis (e.g. 

that the difference between the means is in a given range of values) 

would be more appropriate than testing the simple hypothesis(that the 

difference is zero). Note that for sufficiently large samples, any 

non-zero difference, no matter how small, will be found significantly 

different from zero. 

In the following, we discuss some basic general methods of analysis of 

data from complex sample designs and some specific methods for linear, 

models and for tests of goodness of fit and of independence in contin

gency tables. In general we shall consider the inference as relating 

to finite population parameters. However we consider this inference 

as relevant only if the finite population parameters closely approxi

mate superpopulation model parameters. This leaves open the possibil

ities of tending either towards a purely design-based approach or to

wards a purely model-based approach, according to one's personal de

gree of belief in the validity of an underlying model. , 

2. BASIC GENERAL METHODS 

2.1 Generalized Wald Statistic 

If the hypothesis to be tested Is linear (or can be linearized) 

in the expected values of asymptotically normal statistics, for which 

a consistent estimator of the variance matrix Is available, the gen

eralized Wald Statistic can be used (Grizzle, Starmer and Koch (1969)), 
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Koch, Freeman and Freeman (1976), Freeman, Freeman, Brock and Koch 

(1976), Shah, Holt and Folsom (1977) and Koch, Stokes and Brock (I98O)) 

We assume that we wish to test the hypothesis: 

H^: xe = e^, (2.1.1) 

where X is a known rxp design matrix of full rank, g is a pxl 

unknown parameter vector (elther finite population parameters or super-

population parameters) and 6 is a known rxl vector of constants. In 
o 

case the hypothesis is not 1inearafirst-order Taylor series approxi

mation can be used (Nathan (1972) and Shuster and Downing (1976)). 

We assume that a consistent asymptotically normal estimator 6, 

of S is available, as well as a consistent estimator, V, of the cov-

ariance matrix of g, whose distribution Is Independent of that of B. 

Then the generalized Wald Statistic, defined as: 

x^ = (xe-e )' (xvx')"^ (x3-e ) (2.1.2) 

is asymptotically distributed, under the null hypothesis, as chi-

square with degrees of freedom equal to the dimension of the hypoth

esis (p-r). . 

The consistency of B and of V and the asymptotic distributions of 

g and of X can all be considered with respect to the samplingdis 

bution or with respect to the superpopulation distribution. 

The major- problem associated with this approach Is In obtaining 

the consistent estimator, V, of the covariance matrix when 6 is non

linear in the sample observations (as will often be the case). Rao 

(1975) surveys the various methods of variance estimation which can be 

used: linearization (Tepping (1968)); Balanced Repeated Replication 

(McCarthy (I969)); and Jackknife (Miller (197^)). Several general comput

er programmes are available for their implementation - e.g. SUPERCARP 

(HIdlroglou, Fuller and Hickman (I98O)), SUDAAN (Shah (1978)) for 
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linearization and OSIRISI V: PSALMS for balanced repeated replication. 

A complete listing and comparison of programs is given by Kaplan, 

Francis and Sedransk (1979) • 

Empirical comparisons of the variance estimators are given by KIsh 

and Frankel (197M and by Richards and Freeman (1980) and thebreticaj 

comparisons by Krewski and Rao (1981). 

However, attention should be given to the stability of the variance 

estimator, especially when the number of parameters is large. In 

addition, care must be taken with respect to the conditions under 

which consistency and asymptotic properties hold for complex designs. 

For instance, for a two-stage design asymptotic results may require 

both a large number of PSU's and a large number of final units per PSU. 

2.2 Approximation and Modelling of the Covariances 

The practical difficulties Involved In obtaining a stable consistent 

estimator of the covariance matrix have led to attempts to use slmp-

1 if led approximations to such estimators. The basic Idea is that 

by assuming some structure for the covariance matrix, more stable 

estimators of fewer parameters can be used. 

The approximation can be carried out under a pure design-based 

approach, directly with respect to the covariance matrix. If assump

tions can be made on equality of design effects for variances and 

covariances within a given sub-group of parameters,overal1 estimators 

of covariance can be used. This approach is used, for, instance, by 

Nathan (1973), Fuller and Rao (1978), Fellegi (1980) and Lepkowski 

and Landis (1980). 

Alternatively modelling of the population structure Itself can 

lead to simplified covariance matrices which can easily be estimated 

(see, e.g., Altham (1976), Fuller and Battese (1973), TomberlIn (1979) 

Holt, Richardson and Mitchell (1980), Imrey, Sobel and Francis (1980) 

and Pfeffermann and Nathan (1981)). 
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2.3 Modifications of Standard Tests 

The widespread use of standard computer packages has encouraged 

the search for simple modifications to standard test procedures to take 

into account complex sample design. The idea can be regarded as a 

natural extension of the use of design effects as multiplIcative factors 

for variances based on a simple random sample of the same size,in order 

to correct for the complex design used. 

The correction may indeed be based on design effects of various 

estimators or on average design effects • (see, e.g., Cowan and Binder 

(1978), Fay (1979), Fellegi (I98O) , Rao and Scott (I98I) and Scott 

and Holt (1981) . 

Another alternative is to Investigate the behaviours of standard 

test statistics under some superpopulation model and to modify the 

standard statistic accordingly (Cohen (1976) and Campbell (1977)). 

3. SPECIFIC METHODS 

3.1 Linear Models and Regression 

The prior determination of the model and of the parameters of Inte

rest is extremely important for the case of regression analysis and 

of linear models. For instance, when different regression relation

ships must be assumed for different strata or for different PSU's in a 

two-stage design, the parameter of interest could be a simple average 

of the regression coefficients (Konijn (I962)); a weighted average of 

the coefficients (Pfeffermann and Nathan (I98I)); or their expected 

value (under some prior distribution) (Porter (1973)). 

The model and the parameters of interest should, in general, be 

determined on the basis of the assumed overall population structure and 

should not reflect to the structure of the sample design. However in 

many cases the sample design will reflect population structure so that 
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sample design variables may be part of the model. For example consider 

the model: 

E(Y|X^,X2) = X̂  B, 2 ^ ^2 ^2.1 (3.1.1) 

where X, includes only variables which do not relate to the sample 

design and X„ includes all the variables which enter into the complex 

sample design, i.e. the sample distribution depends only on X„: 

i P(s|X^,X2) = P(slX2). (3.1.2) 

The estimation of B, „ 3"^ o^ ^2 1 '" ^^-^-^^ "̂"̂  Inference 

about them can proceed in the classical way, as if sampling were 

simple random. If indeed (3.1.1) holds. 

However if the design variables, X^, are not Included In the 

regression equation of interest: 

E(Y|X^) = X^B^ (3.1.3) 

and the design variable X^ is correlated with Y (conditional on 

X.) then the standard OLS estimator of B, is not consistent (see 

Nathan and Holt (1980) and Holt and Smith (1979), who propose modified 

weighted and unweighted estimates of B,, which are consistent). Holt, 

Smith and Winter (1980) give an example of the application of these 

estimators. 

If the 1Inear model: 

E(Y.|x.) = x! B (3.1 .A) 

cov(Y.,Y.|x.,x.) = {f ii ! (3.1.5) 
I ' J ' I J ^0 IFj 

Indeed holds for all population units (i, j=1, ..., N) of a finite 

population and the pxl column vector x. includes all the sample design 

variables, then the OLS unweighted estimator: 

I 
B = (X X )"' X Y (3.1.6) 

n n n n 
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X ' 
based on the sampled values n = (x,, ..., x ) and Y = (Y,, ..., Y ) 

pxn ' " n 1 n 

is the "best" linear model-unbiased estimator of B irrespective of 

the sample design. "Best" here, is in the sense of minimal model -

variance. However B is, iri general, not a design-unbiased, nor even 

a design-consistent, estimator of the population parameter: 

B = (Xĵ  X^)-l X^ Y^ , (3.1.7) 

X ' 
where N = (x , ..., x ) and Y = (Y , ..., Y ). 

PXN IN IN I IN 

The design-consistent estimator of B is the weighted estimator: 

^W= (< n̂ V " ' <Wn^n ' 3̂.1.8) 

where the weight matrix, W = diag (n. , ..., IT ), is the nxn 

diagonal matrix of the reciprocals of the sample inclusion probabili -

ties n. = Pr(ies) . 

The consistency of B,,, as an estimator of B, obviously does not 

depend on the model (3.1.4) holding, but the relevance of estimating 

B when the model does not hold can be challenged. It can be shown 

that under certain conditions for a non-linear model, which assumes 

that the conditional expectation of Y (given X) is a differentiable 

function of X, the model-expectation of B can be expressed approxi

mately as a weighted average of the slopes of this function at the 

points X. (the weights depending only on X. - X). However this inter

pretation is of limited practical value. 

In any case B,, Is a model-unblased estimator of B, whenever 

(3.1.4) does hold. It will not, in general, be an optimal estimator 

of B under (3.1.5) for unequal probability sampling, but will be so 

if the conditional model variance of Y. is proportional to IT., 
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'•̂ * V(Y.|x.) = k n. . (3.1.9) 

since the weighted estimator, B .,, Is more robust then the un

weighted estimator, B, in the sense that it is both a model-unbiased 

estimator of B, if the model holds and a design-consistent estimator 

of B, if not, the use of the weighted estimator By is recommended, for 

estimation of B, whenever there is no assurance that the model (3.1.4)-

(3.1.5) holds. The question which must then be answered by the subject-

matter specialist is whether B is a relevant parameter to estimate. 

It should be noted that for self-weighting designs Band B,, coln-
" . W 

cide. The estimator, Bw (31.1.8),can be obtained di rectly from standard 

computer programmes which provide for weighted regression (e.g.BMDP) by 

using the weights l/n.; or from other programmes (e.g. SPSS) by carry

ing out unweighted regression on the transformed variables Y./^TT and 
x.//il7, but not on the weighted variables Y./n., x./n. . However, it 
I I 1 I I I ' 

should be noted that under either alternative the reported variances 

and covariances of the estimators are incorrect and that the standard 

significance tests (e.g. F tests) are invalid, and can result in gros

sly misleading conclusions. 

Assuming the model (3.1-4) - (3.1.5), the model variance of 3 Is: 

V(B|X^) = o^iK^ X^)"l , (3.1.10) 

which is the result given by standard unweighted regression programmes. 

However, the model variance of Bw is: 

V(p fx ) = a^(x' W X 0"^ x' w' W^ X^ (x' W^ X )"^ . (3.1.11) w n n n n n n n n n n n 

The weighted regression programme, with weights l/II., will give 

a value of (X W X ) for the model variance of B,,, which equals n n n W 
(3.1.11) only if W = I . Thus none of the standard outputs for stan-n n 
dard errors or for tests of hypotheses are correct. 
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However the estimator of the multiple correlation coefficient obtained 

from weighted regression: 

• 2 (Y -X„ L ) ' W^(Y -X Bw) 
k = - n " '̂  . " " 2_J!L, (3.1.12) 

(Yn-Vn in) ^ (Y - y 1 ) 
n n -n n n n -n 

where y = (E Y./II.) / (E l/ll.), is a design-consistent estimator of 
n s I I S I * ^ 

the population multiple correlation coefficient: 

2 ( Y ^ - X ^ B ) ' (Y -X B) 

R = i (3.1.13) 
(Y - Y 1 ) (Y - Y 1 ) 
^ N N -N^ ^ N N -N' 

where Y^ = (1/N) 1^ Y^. 

The design-variance of B,,, which must be considered the relevant 
W 

measure of accuracy for Bw as an estimator of B, cannot in general, be 

obtained, from only the first order inclusion probabilities, II.. For 

most sample designs used in practice, the design-variance of Bw will 

have to be estimated by one of the variance estimating techniques mention

ed above i.e.1inearization. Balanced Repeated Replication or Jackknife 

(see, e.g., Jonrup and Remmermalm (1976) and Holt and Scott (1981)). 

3.2 Categorical Data Analysis 

The simplest analysis of categorical data relates to a single classi

fication of the population into k classes with probabilities 

(relative frequencies) p = (p. ^k-l^* '" order to test the 

null hypothesis of goodness of fit to a known distribution 

Bo = ^Pol' •••' Pok-l)= 

H^: P = PQ , (3.2.1) 

the approaches outlined in section two can be used. 

We assume that a consistent survey estimator p = (p^ ..., P|̂ _̂ ) 

of p is available. If it is asymptotically normal: 
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7^7 (p-p) -> N(0,V) (3.2.2) 

and a consistent estimator. V. of V is available, then the generalized 

Wald statistic : 

4="(§-Po^' ''' (i-Eo) ' (3.2.3) 

which is distributed asymptotically as x\.] ""der H^. can be used 

to test H . 

For many simple designs consistent estimators of V are directly 

available and for more complex designs they can be obtained by standard 

methods. However if tests of hypotheses of goodness of fit have to be 

carried out for a variety of variables and classifications, the use of 
2 

the standard X statistic: 

1=1 ' 

Where P^ = diag (gj - EQ P^ • ""'^^ appropriate modification may be pre-
fered. ° Rao and Scott (1981) show that the asymptotic distribution of 

X^ under H is that of a weighted sum of k-1 independent x^ variables 
o 

with one degree of freedom each. 

X^-> E X. z!; Z. ~ N(0,1) independent (3.2.5) 
1=1 ' ' ' 

where X^ X^_.^ are the eigenvalues of 

D = P;^ V (X, > X^ ^ ... ^ X^_i > 0)- (3.2.6) 

I 

A conservative test of (3.2.1) can then be obtained by using the 

statistic X^/X^ in conjunction with a x^_i distribution. X̂  can be 

components of g. For example, for proportional stratified sampling 

X <l, so that X^ itself can be used as a conservative test statistic. 

2 - . 
In other cases the use of X /X with: 
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k-1 k 

^ = r T ^ ^ = CT ^ ^i^' "Pî  ' •̂  ' i = i ' "̂  ' i = i ' ' 

where d. =V[p.]/[p. (1-p.)] is the design effect for p., has been shown 

to be a good approximative test by HIdlroglou and Rao (I98I) for the 

Canada Health Surveys and by Holt, Scott and Ewings (I98O) for large 
2 

scale U.K. surveys. An alternative approximation - X /d, where 

-1 ^ 
d = k E d . - has been proposed by Fellegi (I98O). 

1 = 1 ' 

Direct modelling for p has been proposed by Altham (1976) and by 

Cohen (1976), but their models have the serious limitation that they 

imply X̂  = X2 = . .. = X|̂ _j = X, which is equivalent to a constant de

sign effect over categories. This is not a realistic assumption, in 

general, and results in X /X having exactly an asymptotic x^ distri-

bution. 

For testing independence in a two-way contingency table, the hypo

theses can be formulated: 

H 
o = h,j(B) = Pij - Pi+ P+j = 0 

(1=1, ..., r-1; j-1, ..., c-1), (3.2.7) 

where p.. is the population probability of cell (i,j) p. , p . are 

the marginal probabilities and g' = (p̂ ^ , ..., p^ _ ). The generali

zed Wald statistic for testing H is: 

Xwi = n[h(B)]' V^' h(e) , (3.2.8) 

where [h(B)] = [h^,(§), .... h^_^ ^_j (p)] and V^/n is a consistent 

estimator of the covariance matrix of h(e). Versions of (3.2.8) for 

specific designs with various methods for estimating V, , have been 
h/n 

used by Garza-Hernandez and McCarthy (1962), Nathan (1969, 1975) 

Shuster and Downing (1976) and Fellegi (I98O). 
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2 -
A modified statistic similar to X /x has been proposed by Rao and 
Scott (1981) 

2 re 2 
X^l = (n/6) l E (Pjj -Pj^. P^.j) / ( P j + P + j ) , (3.2.9) 

where 6 = / ,\ 1—rr '^ '^ v..(h)/(p..p..) and 
(r-1) (c-1) .̂ ^ ..^ ij'-' '^I-H/^-I-J' 

v..(h)/n is an estimator of the variance of h . . ( p ) . 6 can be written 
U - ^ ij -

in terms of the estimated deffs of h . . ( g ) : 

- - . .1 y y (1 -p..)(l -P..) 6.. . (3.2.10) 
^ - (r-1)(c-1) .1^.1^ '̂  ^J 'J 

where 6.. is an estimator of the deff, 6.., of h..(p) : 
IJ IJ IJ -

6.. = nV[h..(p)] / [p._^ p^. (1 -p.^)(l -p^.) . (3.2.11) IJ IJ'- \+ +j /̂ i-f +J 

Estimates of the design effects may be easier to obtain than estimates 

of variances. 

Empirical investigations by Holt, Scott and Ewinqs (I98O) and by 
2 

HIdlroglou and Rao (1981) indicate that the distribution of X«. is 

close to X(,.,)(c_i). 

3.3 Other Types of Analysis 

While linear models, tests of goodness of fit and tests of Indepen

dence cover many Important analysis applications, other types of 

analysis, such as principal component and factor analysis,discriminant 

analysis, path analysis, logistic regression, log-linear models non-

parametric methods, etc. cannot be directly dealt with in the same 

way. While the general techniques outlined in section two could be 
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used, their application presents difficulties and only few cases of their 

application have been reported. 

Since correlation coefficients are a basic element in most multivariate 

analysis, some empirical studies of the effect of sample design on their 

estimation have been carried out by Kish and Frankel (1974), Bebbihgtori 

and Smith (1977) and Holt, Richardson and Mitchell (I98O). No general 

conclusions can be formulated, but design effects are definitely not 

negligible. Bebbington and Smith (1977) have also studied the sampling 

variability of principal components estimators. 

In other areas design effects for logits have been studied by Lepkowski 

and Landis (I98O) and confidence Intervals for quantiles by Woodruff 

(1952) and by Sedransk and Meyer (1978). 
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THE NONRESPONSE PROBLEM 

J.G. BETHLEHEM AND H.M.P. KERSTEN' 

This paper presents an outline of the nonrespdnse research 
which is carried out at the Netherlands Central Bureau of 
Statistics. The phenomenon of nonresponse is put into a 
general frame-work. The extent of nonresponse is indicated 
with figures from a number of CBS-surveys. The use of 
auxiliary variables is discussed as a means for obtaining 
Information about nonrespondents. These variables can be 
used either to characterize nonrespondents or as strati
fication variables in adjustment procedures. 

Adjustment for nonresponse bias, by means of subgroup 
weighting is considered in more detail. Finally, the last 
section lists a number of other methods which also aim at 
reduction of the bias. 

1. INTRODUCTION 

Nonresponse is becoming a growing concern in survey research. The 

phenomenon of nonresponse, when people are not able or willing to answer 

questions asked by the interviewer, can appear in sample surveys as well 

as in censuses. It affects the quality of the survey in two ways: first 

of all, due to reduction of the available amount of data, estimates of 

population parameters will be less precise. Secondly, if a relationshla 

exists between the variable under investigation and response behaviour, 

statements made on the basis of the response are not valid for the total 

population. For example if the housing demand of respondents is greater 

than the housing demand of nonrespondents, estimates of the housing demand 

In the total population will be significantly too high. 

V J . G . Bethlehem and H.M.P. Kersten, Netherlands Central Bureau of Statistics. 

The views expressed in this paper are those of the authors and do not 
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It is obvious that the extent of the nonresponse must be kept as small 

as possible. If, in spite of these efforts, there still remains a consi

derable amount of nonresponse, measures have to be taken in order to prevent 

formulation of wrong statements about the population. Combination of 

adjustment procedures and usual estimation techniques is necessary to 

yield valid population estimates. 

Two departments of the CBS (Netherlands Central Bureau of Statistics) 

are involved in nonresponse research. The Department for Social Surveys 

is responsible for the field work of the surveys. It is concerned with 

minimizing nonresponse during the process of collecting data. Research is 

carried out on the optima! number of recalls and the time of the interview. 

(See Widdershoven 6 Van den Berg (I98O).) Experiments are set up to find 

the optimal way to approach persons and households with introductory 

letters. Attempts are made to measure the impact of interview fatigue and 

interview pressure. Ultimately, notwithstanding these efforts, there still 

remains an amount of nonresponse. The Department for Statistical Methods 

investigates the effect of nonresponse on the accuracy of the results of 

the survey. Methods are developed there to adjust population estimates for 

the bias due to nonresponse. The remainder of this paper is mainly con

cerned with the work of the latter department. 

The next sections present an outline of the nonresponse analysis at the 

CBS. Section 2 introduces definitions and the accompanying problems. 

Nonresponse figures of a number of CBS-surveys are summarized. In section 

3 graphical methods are discussed to select auxi1iary variables. They 

provide insight into nonresponse and can be used in adjustment procedures. 

Section 4 presents adjustment methods which make use of subgroup weighting 

and section 5 lists a number of other methods. 

2. THE PHENOMENON OF NONRESPONSE 

In this section the problem of nonresponse is placed in a general frame

work, in which also a number of other sampling problems play a role. 
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Nonresponse figures for a number of CBS surveys are given. Situations are 

described in which a relationship exists between the variable under investi

gation and the response behaviour. In the last part of the section two 

models for the general of nonresponse are considered. 

2.1 Terminology 

The objective of every survey Is the determination of certain population 

characteristics. Due to all kinds of errors, the true value will generally 

never be obtained. A typology of sources of error is presented In fig. 1. 

The scheme Is due to Kish (1967). 

FIG. 1. TYPOLOGY OF ERRORS IN SURVEYS 
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The two sources of error In surveys are sampling errors and nonsamplIng 

errors. Sampling errors consist of that part of the error which is due 

to the fact that only a' sample of values is observed rather than the 

total population. The sampling error has an expected frequency distri

bution generated by the totality of sampling errors in all possible 

samples of the same size. This distribution Is used to estimate the 

population characteristic. 
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Nonsamoling errors are those errors in sample estimates which can not be 

attributed to sampling fluctuations. Nonsampling errors are often a more 

serious problem than sampling errors. Nonsampling errors can be divided in 

observation errors and nonobservation errors. 

Observation errors are caused by obtaining and recording observations 

incorrectly. They may be further subdivided into measurement errors and 

processing errors. 

Measurement errors are caused either by the interviewer or by the respon-. 

dent. The interviewer himself can be a source of error. He can influence 

the response by his mere presence, by his (or her) sex, skin colour, age, 

or dress. Also the way in which he asks questions and clarifies statements 

affects results. The answer of a person may depend on the type of question 

(whether a question measures a fact such as year of birth, or an opinion). 

Errors can also be introduced by factors such as whether the person under

stands the question, whether he knows the answer or not, whether he wishes 

to conceal the answer, or whether he wishes to present a certain image. 

Moreover, memory is not always free of errors, and data may be incorrectly 

recorded. 

Processing errors arise during the processing of the data at the office. 

They occur during the stage of coding, tabulating and computing. 

Nonobservation errors are due to the failure to obtain observations on 

certain parts of the population. They may be subdivided In noncoverage and 

nonresponse. 

Let the target population be the population the survey is intended to cover. 

Practical difficulties In handling parts of the population may result in 

their elimination from the scope of the survey. It Is also possible that 

the actually sampled population contains elements which do not belong to the 

scope of the survey. 
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Noncoverage refers to all errors which result from differences between 

target population and sampled population. Elements which belong to the 

target population as well as to the sampled population are correct elements. 

The situation in which elements in the target population do not appear in 

the sampled population is called undercoveraqe. These elements have zero 

probability of selection in the sample. The situation in which elements 

in the sampled population do not appear in the target population is called 

overcoveraqe. Elements, classified as overcoverage, are called duds. They 

have to be excluded from the sample before analysis takes place. If there 

is unexpected overcoverage the ultimate sample size may be less than the 

planned sample size. 

Nonresponse refers to failure to obtain observations on some elements selec

ted and designated for the sample. A good classification of nonresponse 

errors depends on the survey situation. The classification given below 

focuses on problems in face-to-face Interviews. A similar treatment may be 

applicable in other survey situations. The following categories of nonres

ponse can be distinguished: 

(1) Not at home. To reduce the extent of this category recalls can 

be made. Research should be carried out on the optimal number of 

recalls. The term temporarily unavailable would be a useful gener

alization for this category, denoting a delay rather than a denial 

of the interview. The respondent may be too busy, tired, or ill 

at the time, but will be cooperative on another call. 

(2) Refusal. Some of the factors causing refusal are temporary and 

changeable. A person may refuse because he is ill-disposed or 

approached at the wrong hour. Another try, or another approach may 

find him cooperative. Since quite a number of refusals can, however 

be considered permanent, a better term for this category is unob

tainable,, denoting a denial rather than a delay of observation. 

Repeated attempts will not bring success. From this View, respon

dents known to be away during the entire survey period belong in 

this category, rather than among the not-at-homes. 
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(3) Incapacity or inabi1ity. This type of nonresponse may refer to 

mental or physical Illness which prevents response during the entire 

survey period. A language barrier belongs also to this category. 

If generalized this category could fit in the previously defined 

unobtaihables. It can, however, be useful in some situations to 

distinguish between the unwilling and the willIng; but Incapable, 

respondent. 

(4) Not found. This category can e.g. be large for movers. Such res

pondents are either not identified or followed because this would 

be too expensive. Cases of not attempted interviews belong to the 

same general category. They could be caused by inaccessibility 

I (lighthouse keeper, shepherd), or dangerous surroundings (watchdog, 

si urn). 

(5) Lost information. Information may get lost after a field attempt. 

Some questionnaires may be unusable because of poor quality or 

cheating. Other may remain unfilled because they were lost or 

forgotten. 

The typology as described above is applicable in most survey situations, 

but care must be taken in case of complex sampling diesigns. When e.g. 

sampling takes place in more stages the typology can be used in each sepa

rate stage. The same source of error can be classified differently in 

different stage. This is 11lustrated in an example. In a household survey 

first a sample of households is selected. The interviewer enumerates all 

persons in a particular selected household and after that selects a sample 

from this list. In such an enumeration the student living In an attic is 

often concealed. In the first stage of the sampling procedure this situ

ation would be classified as measurement error, and in the second stage as 

undercoverage. 

For some sources of error classification may depend on other factors and 

appropriate rules to cover them must be adopted. For example, if a person 

to be interviewed died before the interview could take place, classification 
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depends on the time of death. If death occurred before the day the sample 

was selected this could be classified as overcoverage, but if death occurred 

between the day the sample was selected and the day of the interview, the 

correct classification may be nonresponse. 

Before selecting the sample, the population must be divided Into sampl irig 

units. To every element In the population there must correspond one and 

only one sampling unit. The construction of the physical list of sampling 

units, called the sampling frame, is often a major practical problem. The 

nature of the available sampling frames is an important consideration in 

sample design. Relevant factors include the type of sampling unit, extent 

of coverage, accuracy and completeness of the list, and the amount and 

quality of auxiliary information in the list. 

For.sampling frames in which the sampling unit is a person the CBS has to 

restrict itself to administrative records of local authorities (municipali

ties). For household surveys the CBS manages its own frame, but at the 

moment the use of the list of delivery points of the Post Office is consl-

dred as a sampling frame. 

2.2 The Extent of Nonresponse 

It Is rather difficult to compare nonresponse figures of different surveys. 

The percentage of nonresponse depends on a number of circumstances: aim of 

the survey, type of sampling unit, the sampling design, efficiency of the 

field work, performance of the Interviewers, nonresponse reducing measures, 

perdiod in which the survey is held, the target population, the length of 

the questionnaire, wording of questions, etc. Even the definition of non-

response may differ. It is necessary to create a frame-work which enables 

proper comparison of surveys. By controlling the factors which influence 

nonresponse figures, judgement can be passed on the quality of the different 

surveys. Such a frame work also offers opportunities for comparing surveys 

from different countries. 
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Table 1 presents nonresponse figures of a number of CBS-surveys. A clear 

trend of increasing nonresponse percentages can be seen in this table. 

Table 1: Nonresponse percentages of some CBS-surveys 

year 
LFS SSC SLC NTS HS 

tn rn tn rn tn rn tn rn tn rn 

1973 13.2 

1974 28.2 15.6 

1975 15.8 9.0 30.1 18.3 14.5 

1976 28.1 18.6 23.o'' 15.6 12.9 

1977 13.1 6.6 30.9 20.5 29.7 16.9 17.6 9-3 

1978 36.1 23.9 33.0 26.2 21.9 12.5 

1979 19.7 36.6 24.4 33.7^^ 30.6 23.9 25.5 

1980 36.8 24.7 35.6 19.7 32.1 24.5 

1) = elderly people only LFS = Labour Force Survey 

2) = young people only SSC = Survey of Consumer Sentiments 

tn = percentage of total nonresponse SLC = Survey of Living Conditions 

rn = percentage of refusals NTS = National Travel Survey 

HS = Holiday Survey 

As mentioned before a relationship between the variable under investigation 

and the response behaviour reduces the value of the conclusions of the 

survey. The existence of such relationships is not rare, as will be illus

trated in the following examples. If the aim of the survey is to measure 

in which way people spend their spare time, then the reason of nonresponse 

"not at home" Is rather annoying since these people are probably spending 

their (spare) time somewhere else. The same applies for the survey on the 

number of hours people watch television: the not-at-homes (in the evening) 

are probably not watching television. One of the aims of the Housing 
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Demand Survey Is to measure the frequency with which people move to other 

houses. As there is a considerable amount of nonresponse due to moving 

(the sampling unit is a person), the estimate for the total population 

will be biased. A number of surveys show that unmarried people have a 

smaller response rate. If there Is a relationship between marital status 

and the variable under Investigation then estimates will be wrong in this 

case too. 

2.3 Response Models 

The first requirement in the development of theories for the treatment of 

nonresponse is the formulation of a mathematical model, which describes the 

way in which nonresponse is generated. Two models appear frequently in the 

literature. They are denoted here by "random response model" and "fixed 

response model". 

According to the random response model every element in the population has 

a certain (unknown) probabi11ty of response. These response probabilities 

are not necessarily the same for every element. When the interviewer 

contacts the person to be questioned the probability mechanism is activated 

and determines whether or not the person responds. 

The fixed response model assumes the existence of two strata in the popu

lation: a stratum of potential respondents and a stratum of potential non-

respondents. Size and content of each stratum Is not known beforehand. 

They are determined by the specification of the survey (aim, type of ques

tions, interviewing techniques, interviewers, period of field work, etc.). 

Disregarding the two strata a sample Is selected from the, population. 

Consequently the number of respondents is a random variable in both the 

random response model and the fixed response model. 

If instead of sampling complete enumeration would take place then in the 

case of random response model the determination of respondents would 

still be a random process whereas in the case of the fixed.response model 

this would be fixed. There Is, however, a certain resemblance between the 

two models. Assuming the existence of two stochastic meachanlsms, the 
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sampling mechanism and the response mechanism, both models differ only in 

the order in which the mechanisms are applied: In the fixed response model 

first the response mechanism is activated for each element in the population. 

This determines the two strata. Then the sample is selected. In the random 

response model first the sample is selected. Then the response mechanism is 

activated for each selected element. 

The random response model offers the opportunity to estimate response prob

abilities. These estimated response probabilities can be used in adjustment 

procedures, or they can be connected to personal characteristics. The fixed 

response models generally results in easier formulae. The theory, developed 

within this model, is conditional on the realized response and non-response 

strata. Consequently the accuracy of the estimates can be computed, but the 

accuracy of the estimation method can not be determined. Due to this last 

argument research Is focussed on the random response model. 

3. SELECTION OF AUXILIARY VARIABLES 

3.1 Auxi1iary Variables 

It is important to discover a possibly existing relationship between the 

variable under investigation and the response behaviour. It is, however, 

not possible to determine such a relationship using the sample data, since 

the values of the variable under investigation are not known for the nonres

pondents. To be able to say something about nonrespondents there must be 

information available about them. One source of information about the non-

response Is formed by auxiliary variables. Auxiliary variables are defined 

as variables which can be measured for both respondents and nonrespondents. 

Two types of auxiliary Information can be distinguished: 

(1) Information which can be collected by the interviewer without 

a face-to-face interview. Among the information, obtained in 

this way, are type of town, type of housing, (approximate) year 

of construction of the housing and social status of the 

neighbourhood. 

(2) Information which can be obtained from administrative records. 

Typical examples are age, sex and marital status. 
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Analysis of the relationship between auxiliary variables and the response 

behaviour provides insight in the group of people which do not respond. 

It may give additional information about the relationship between the 

variable under investigation and the response behaviour. Auxiliary vari

ables showing a clear relationship with the response behaviour play an 

Important role in adjustment procedures, to be discussed later. 

It Is assumed that auxi 1 iary variables are nominal variables, i.e. different 

values have no other meaning than to distinguish between different groups. 
1 

Arithmetic operations on these values, which in fact are only labels, are 

not allowed. The assumption that the variables are nominal is in practice 

not a restriction. Many variables are nominal and other types of variables 

can easily be re-expressed in terms of nominal variables. As an example of 

the available amount of auxiliary information, the auxiliary variables of 

the Housing Demand Survey 1977/1978 is listed below. ; 

(1) year of birth 

(2) sex 

(3) marital status 

(4) size of the family 

(5) structure of the family 

(6) type of housing 

(7) number of floors in the housing 

(8) year of construction of the hoî sing 

(9) municlpal 1ty 

(10) quarter of town 

(11) degree of urbanization 

3.2 Graphical Methods 

As a preliminary tool In the selection of auxiliary variables graphical 

methods have been developed. The advantage of graphical methods Is clear. 

They bring out hidden facts and relationships and can stimulate as well as 

aid the analysis. They often offer a more complete and better balanced 

understanding then could be obtained from tabular or textual forms of 

presentation. Furthermore the visual relationships in the plots are more 

clearly grasped and more easily remembered. (See Schmid (1954).) Two 

simple graphical devices are presented in the next sections: the box-plot 

and the windmill-plot. 
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3.2.1 The box-plot 

The box-plot can be seen as a generalization of a histogram or bar chart. 

The name of the box plot is derived from its form (see fig, 2), 

FIGURE 2. THE BOX-PLOT 

reponse nonresponse 

A rectangle of standard width and a height proportional to the sample size 

represents the sample. The rectangle is divided in a number of layers (the 

categories of the auxiliary variable). The height of a particular layer 

is proportional to the number of sample elements in the corresponding cate

gory. Each layer is divided by a vertical line In a left-hand part (the 

response) and a right-hand part (the nonresponse). The areas of these two 

parts are proportional to the amounts of response and nonresponse in the 

particular category. Fig. 3 contains an example of a box-plot. The data 

originate from the Housing Demand Survey 1977/1978 as far as It concerns 

Amsterdam, The auxiliary variable Is the marital status of the person In 

the sample. 
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FIGURE 3, BOX-PLOT OF MARITAL STATUS IN AMSTERDAM IN 
THE HOUSING DEMAND SURVEY 1977/1978. 

response nonrespon se 

not yet married 

married 

divorced 

widowhood 

A number of aspects may be worth paying attention to: 

(1) The heights of the layers indicate to what extent categories 

contribute to the sample. Clearly a large part of the people Is 

married. The smallest category is the category of people who are 

divorced. 

(2) The extent of the nonresponse can be read from the distance of 

the vertical dividing lines to the right-hand side of the box. 

In this example there obviously is a considerable amount of 

nonresponse, 

(3) If all dividing lines form approximately a straight line there is 

no relationship between response behaviour and the auxiliary 
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variable. Clearly, in this situation there exists a relationship: 

Married people respond better than other people. Response is bad 

in the group of unmarried and divorced people. 

More about the box plot can be found in Bethlehm & Kersten (I98I), 

3.2.2 The Windmill-Plot 

The windmill-plot is a graphical representation of the results of corres

pondence analysis. Correspondence analysis is a technique for the analysis 

of associations in two-way tables. (See e.g. Benzecri (1976).). A geo

metrical representation of the rows (the categories of the vertically tabu

lated variable) and the columns (the categories of the horizontally 

tabulated variable) is constructed. This geometrical representation con

tains all the information concerning the associations in the table. By 

means of a scaling procedure rows and columns are assigned values in such a 

way that the correlation coefficient, computed by using these values, is 

maximized. To each cell in the table there correspond two scale values: a 

row-value and a column-value. When these values are conceived as coordi

nates, a plot of the table can be constructed. In this plot all points 

form an unequally spaced grid. Such a plot may not be easy to interpret. 

To simplify interpretation regression lines are plotted instead of the 

points themselves. Due to the special properties of the scale values the 

regression line to explain y-values from the x-values in the plot has the 

simple form 

y = P,x (1) 

and the regression line to explain the x-values from the y-values has the 

form 

X = p,t (2) 

were p^ is the maximized correlation coefficient. By plotting both regres

sion lines the result is the windmill-plot, see fig. 4. 
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FIGURE 4. THE WINDMILL-PLOT 

A number of aspects may be worth noting: 

(1) The origin represents both marginal distributions of the table 

(2) Scale values close to the origin point at categories which 

resemble the marginal distribution and thus have a regular 

behaviour. Far out scale values Indicate differently behaving 

categories, 

(3) The relationship between the two variables is strong if the two 

regression lines are near the 45 -line, 

(4) Projection of a differently behaving category of one variable 

! via the regression line on the axis of the other variable 

provides a clue about the dependencies of the categories of 

the variables. 

The plot as described above can not account for all the information in the 

table. It explains as much as is possible in a two-dimensional plot. 

Conditionally on the first plot a second plot can be constructed, which 
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accounts for as much as is possible of the information not yet explained. 

If necessary even more plots can be constructed, but preferably one plot 

Is sufficient to explain the major part of the associations, 

A total of s of such plots can be made, in which s is one less than the 

minimum of the number of rows and the number of columns. Let o,. D„. . ..D 
1 - 2 ' '̂ j 

be the maximized correlation coefficients. Since 

^ 2 
E p. = X V N , (3) 
1 = 1 

2 
where X is the chi-square test statistics for the table and N the general 
total, 

T, = Npj/X^ (4) 

is a measure of the amount of information explained by the I-th plot 

(1=1, 2, .., s). 

Fig. 5 contains the first windmill-plot for the variables age (six cate

gories) and type of nonresponse (five categories) of the Housing Demand 

Survey 1977/1978 as far as it concerns Amsterdam. 
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FIGURE 5: WINDMILL-PLOT OF AGE BY TYPE OF NONRESPONSE IN 
AMSTERDAM IN THE HOUSING DEMAND SURVEY 1977/78 

70-H 

It contains about 88^ of the information about associations in the table 

(T, = 0,88). The main reasons for nonresponse of the old people are 

refusal and illness. In case of young people the nonresponse is the 

result of the Impossibi1ity of making contact: uninhabited, not at home and 

moved. More about the application of correspondence analysis can be found 

in Bethlehem 6 Kersten (1980). 
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3.3 Other selection methods 

There are many other, mainly nongraphical, method to determine the asso

ciation between auxiliary vairables and the response behaviour. Much 

about association in contingency tables can e.g. be found in Bishop, 

Fienberg S Holland (1975). 

A popular method for the selection of the most important auxiliary vari

ables is AID (Automatic Interaction Detection), described by Morgan & 

Sonquist (1963). in a stepwise process those auxiliary variables are deter

mined which can explain as much as possible of the variance of the binary 

response variable. There are disadvantages which make reliable application 

of this method doubtful. As the selection process proceeds in a stepwise 

fashion there is no guarantee that the optimal solution will be found. 

Because there is no stopping rule based on a statistical model this sense 

the result is rather arbitrary. Further research In this field is necessary 

(see e,g, Kass (I98O)). 

4, REDUCTION OF NONRESPONSE BIAS BY SUBGROUP WEIGHTING 

When a relationship is found or suspected between the variable under 

investigation (V) and the response behaviour (R) measures have to be taken 

in order to reduce the nonresponse bias. In this section a number of 

adjustment procedures are discussed which are based on subgroup weight

ing. Attention is focussed on estimating the population mean of Y. 

It can be shown that the bias, introduced by only using response values, 

is proportional to the covariance between Y and R. If it would be pos

sible to divide the population in a number of subgroups in each of which 

the covariance is neglectable, then (nearly unbiased) estimates of the 

subgroup means can be combined into a (nearly unbiased) estimate of the 

population mean. 

Let the finite population consist of N elements U, , U-, .., U|̂  with Y-values 

Y, , Y„, .., Y|̂ . From this population a simple random sample u, , u^, .,,u 
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(stochastic variables are underlined) of size n is selected without 

replacement. The corresponding y-values are / ^ 1^, .., Yp ^nd the 

response behaviour is indicated by r^, r2, ... (ij = 1 indicating response 

and r. = 0 nonresponse). In fact V. can only be observed for those sample 
-1 ' 

elements u. for which r. = 1. The m responding elements are denoted by 

u.j, 4 ' •••'-! 2̂' " îl "̂  ̂ 2 "̂  •• "̂  -n^' ^'^^ y-values t \ , t^, " ' ^*m-

Let X be an auxiliary variable inducing a division of the population In 

H subgroups with sizes N^, N2, .., N^. In subgroup weighting first of all 

in each subgroup h an estimator ^" for the subgroup mean is computed: 

m^ 

t - k •', ̂ H,- (h=.,2. ...H) (5) 
- h I — I 

where y^,, yf,' •'•' ^*h "̂"̂  ^^^ values of the mĵ  responding elements 

in subgroup h. The subgroup estimators yj, ^2' ••» ^H "̂"̂  ̂ °'̂ '''"®*̂  '"^° 

a population estimators y , 

h=l 

The type of estimator is determined by the available amount of Information 

about the weights w,, W2, .., w^. 

If the sizes N,, N^, .., N^ of the subgroups are known the situation 

is equivalent to poststratification. (See e.g. Holt & Smith (1979).) The 

weights are not random but fixed quantities: 

N. 
w^ = -H (h = 1, 2, .., H) (7) 
-h N 

If these sizes are not known they can be estimated by 
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"-h 
Wh = — . (h = 1,2,..,H) (8) 

where n, is the number of sample elements in subgroup h (n=n, -fn.-i-. .-Hn ) . 

In an intermediate situation where two auxiliary variables X, and X„ are 

used and only the marginal totals of the two variables are known, a raking 

procedure can be applied to estimate the weights (see e.g. Chapman (1976)), 

Suppose X induces G groups and X induces H groups. Crossing X and X 

results in a subdivision into G x H groups. If only the marginal totals 

N (n=1,2,..,G) of X. and N_̂ , (h=l,2,..,H) of X„ are known then by using 

the sample information good estimates N , of N , can be computed. The 
-gh gh 

weights are then equal t o 

^ah " :iSil ( g = l , 2 , . . , G ; h= l ,2 , , , ,H ) (9) 
9 " N . 

All three estimators.have, when used in the same grouping situation, :he 

same bias, but the greater the amount of available information on the sub

group sizes the smaller the variance of the estimate. Subgroup weighting 

has two advantages: reduction of the variance of the estimate and 

reduction of the response bias. The most extreme possibilities are 

illustrated in fig, 6, If two variables are connected it means that they 

have a strong correlation. 
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FIG. 6. VARIANCE AND BIAS OF ESTIMATORS BEFORE AND AFTER SUBGROUP WEIGHTING 

(Xi) 
© 

case 1 

^ parameter to be estimated 

before subgroup weighting 

after subgroup weighting 

Y variable under Investigation 

R response variable 

X auxi1Iary variable 

© © 
© 

case 3 

© 0 
case 4 



- 151 -

A number of conclusions can be drawn: 
i 

(1) If nonresponse bias exists subgroup weighting is significant when 

X and R are correlated (case 2 ) , Both bias and variance are 

reduced, 

(2) If no nonresponse bias exists a correlation between X and R has no 

effect (case 4 ) . Only correlation between X and Y reduces the 

variance (case 5 ) . 

Because the data on the nonrespondents are missing, it Is impossible to 

use the remaining data to find an auxiliary variable X which is highly 

correlated with Y. It Is, however, possible to use this data to look for 

auxiliary variables which are highly correlated with the response 

variable R. If such a variable has been found, application of it in 

subgroup weighting will reduce the nonresponse bias (if It exists), but 

not always the variance. 

5. Other adjustment methods 

Several other adjustment methods appear in the literature. Several of 

them will be discussed in this section. Some of them need further 

research to establish their merits, 

5.1 No adjustment 

In some situations no adjustment is necessary. If it appears that no 

relationship exists between the variable under investigation and the 

response behaviour the response can be considered as a random sample 

from the population. Also If statements are restricted to the population 

of potential respondents no correction is necessary. In all other 

situations no adjustment Is only justified if the category "nonresponse" 

is Included In all tables in publications. 
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5.2, Imputation 

Imputation procedures solve the problem of missing observations due to 

nonresponse by substitution of values in the records of the nonrespondents. 

In "hot deck" Imputation data are taken from respondents of the current 

survey, while In "cold deck" imputation data are taken from a previous 

survey. If the response structure of previous and current survey 

resemble eath other the results of cold deck imputation arid hot deck 

Imputation will roughly be the same. Imputation can be carried out In 

several ways. Some of them are: 

(1) imputation of a random respondent 

(2) imputation of the mean respondent 

(3) Imputation of a random respondent within the same subgroup 

(4) Imputation of the mean respondent within the same subgroup 

(5) Imputation of a value obtained by fitting a model 

(6) imputation of upper or lower bounds 

Procedures (1) and (2) do not reduce the bias. Procedures (3) and (4) 

resemble subgroup weighting. The effect of procedure (5) depends strongly 

on the fit of the model and the reasonableness of the model assumptions. 

Procedure (6) gives insight in how bad things could be if no adjustment 

would take place. 

5.3- Adjustment for not-at-homes 

The well-known method of Politz 6 Simmons (1949) tries to adjust for 

not-at-home bias by estimating the probability to find a person at home. 

This is performed by asking respondents e.g. how often they were at 

home at the time of the interview during the previous days. ' The at-home-

probability, constructed in this way, can be used as a stratification 

variable. It Is also worth trying to find a model which explains the 

relationship between the variable under investigation and the at-home-

probablllty. Extrapolation of this model to the group of not-at-homes may 

provide more Information about this group. 
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5-4. Adjustment for refusers 

It is possible to measure the willingness of people to co-operate in the 

survey (see Van Tulder (1977)). Using this information a procedure 

analogous: to adjustment for not-at-homes can be carried out. Furthermore 

the willingness to co-operate is a measure for the survey climate. The 

construction of a scale to obtain this information will probably be 

somewhat more difficult then in the case of not-at^home adjustment. 

5.5 Double, sampling 

In order to get.more information about nonrespondents Hansen. & Hurwitz 

(1946) propose selecting a sample from the nonrespondents. Specially 

trained Interviewers try as yet to obtain (part of) the missing informa

tion. Time and money constraints often prevent application of double 

sampl Ing, 

5.6. The principal question 

If the method of Hansen S Hurwitz is too expensive the principal question 

procedure may offer a substitute. In many surveys there often is one 

important basic question around which the survey has been constructed. 

If during the field work problems are met with completing the whole 

questionnaire, the interviewer may try to get an answer on only the 

principal question. This may even be tried afterwards by letter or by 

telephone. This technique will shortly be tried out in one of the 

surveys of the CBS. 

6. Conclusions 

In view of the rise in nonresponse rates during the past years it is 

important to carry out thorough research on the impact of nonresponse on 

the qual Ity of the survey. 

Quite a few adjustment procedures appear in literature, which all aim 

at reduction of the nonresponse bias. A comparative study of these 

procedures has to provide decisive answers about their merits. 



- 154 -

I . . . j : 

The large differences which exist with regard to objective, design and 

execution of surveys prevent correct interpretation of differences in 

nonresponse figures. It is therefore necessary to create a theoretical 

framework which allows proper comparison. 

Of course reduction of nonresponse during the field work will remain 

ah Important topic 
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SURVEY METHODOLOGY ]98], VOL, 7 NO. 2 

ON THE VARIANCES OF ASYMPTOTICALLY 
NORMAL ESTIMATORS FROM COMPLEX SURVEYS 

David A. Binder 

The problem of specifying and estimating the variance of 
estimated parameters based on complex sample designs from 
finite populations is considered. The results of this 
paper are particularly useful when the paramtere estima
tors cannot be defined explicitly as a function of other 
statistics from the sample. It is shown how these results 
can be applied to linear regression, logistic regression 
and loglinear contingency table models. 

1. INTRODUCTION 

In recent years, there has been an increasing demand for using survey 

data to estimate the parameters of traditional models such as regres

sion parameters, discriminant functions, logit and probit parameters 

and others. However, for many such surveys, the primary objectives 

of the survey Is the estimation of population or sub-population means, 

totals, trends and so on. For this reason and because of operatlonal 

considerations, the survey design is often not a simple random sample, 

but Is more typically stratified and often multi-stage with possibly 

unequal probabilities at certain stages of sampling. 

Because of this, there has been much discussion (see, for example, 

Sarndal;1978) on whether the sampling weights should be used in making 

inferences about these model parameters, the answer seems to depend on 

whether a superpopulation model is appropriate for all population units, 

if this Is the case, the. inference on the superpopulation parameters is 

often the primary concern. This leads to model-based Inference, where, 

for a given sample, the inferences do not depend on the sampling weighi;s. 

D.A. Binder, Institutional and Agriculture Survey Methods Division, 
Statistics Canada. 
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The question that comes to mind is: If the superpopulation model is 

not appropriate, what parameters are we estimating? , It must be recog

nized that for many studies, particularly in the social sciences, the 

model (e.g. linear regression) is only a convenient approximation of 

the real world and the parameters of that model (e.g. correlations and 

partial correlations) are often used to understand the approximate 

interdependencies of the variables rather than having a particular 

scientific interpretation. Therefore, the parameters we are estimat

ing do not necessarily refer to a true superpopulation model, but are 

of a more descriptive nature. 

In this paper, we adopt the view that we are interested in making in

ferences about these "descriptive" parameters of the population. For 

example, suppose X and Y are N x p and N x 1 matrices respectively, 

where each row of X and Y corresponds to a different individual of the 

population. We are interested in the descriptive parameter, B, a pxl 

vector satisfying the equations: 

X^XB = X^Y (1.1) 

This view of descriptive parameters is the same as that taken by 

Frankel (1971) and Kish and Frankel (197^). 

The usual estimation of such parameters normally takes into account 

the sampling weights. If we denote by TT. the probabi1ity that the i-th 

unit in the sample is sampled and let n = diag (IT., ..., TT ), then the 

weighted parameter estimate fpr B satisfies: 

/ n"' X B = x^ n"' y, (1.2) 

where x and y are nxp and nxl matrices respectively, the rows of which 

correspond to the sampled rows of X and Y. 

Suppose, now, an estimator of a population parameter can be expressed 

as: 

e = g(z^ , ..., Z|̂ ) , (1 .3) 



- 159 

where E(z.) = Z.. Here, 6 is an estimator of g(Z,, ..., Z, ). Follow

ing Tepping (1968) and Woodruff (1971), a Taylor series expansion for 

e yields: 

k . 
V[0] = V[ E (^)(z -Z.)] . (1.4) 

1 = 1 1 

These formulae are exemplified for estimation of regression coeffi

cients (1.1) by Tepping (1968). However, the expressions resulting 

from (1.4) for the variances of the regression coefficients are some

what comp 1 icated compared to those derived by Fuller (1975). 

In this paper we consider parameters which are not defined through an 

explicit equation such as (1.3), but instead are defined implicitly as 

U(Z,e) = 0 . A simple example showing the distinction would be the 

ratio parameter: 

" ^ -

which could also be defined implicitly as: 

SY, - REX, = 0 . 
k k 

When we deal with some models such as indirect loglinear models or 

logistic regressiori models, the parameters can be defined only through 

implicit relationships. The extension of Tepping's (1968) results for 

this case is fairly straightforward,but does not appear in its general 

form at present in the literature. There are, however, specific 

examples of its application; see, for example Fuller (1975) and 

Freeman and Koch (1976). 

In Section 2 we give the general framework and the main results of 

the paper. A number of models are exemplified in Section 3. 
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GENERAL FRAMEWORK 

2.1 Framework 

The population units are labelled 1, ..., N. Associated with the i-th 

unit we have a q-dimensional data vector X.. We have a parameter space 
P 

equat ions: 

P ' 0 c R . The parameter 6 = (6, , .... 6 ) is defined by the p ~o 1o po ' 

N 
u.(x,e^) = E u (X. ,e ) - v,(ff ) = 0, (2.1) 
I ~ ~o , , I ~k ~o 1 0 k=l 

for 1=1, ..., p. We assume that equations (2.1) define 6 uniquely 

In 0. We also assume that 9u.(X,e)/98 and 9v. (6)/36 exist in a 
i ~ - ~ i ~ ~ 

neighbourhood of 9 . A simple example of (2.1) is where G is a popu-
N 

latlon total, and we have U(X,e ) = E X.-0 . Here, u(X. ,9 ) = X 
k=l 

and v(9 ) = 9 . 
0 0 

We select a sample of the units, according to some probabi1ity distri

bution defined on the set of all non-empty subsets of {1, ..., N}. We 

denote by x, , ... , x the selected values of X,, ..., X.,. We assume ~1 ~n ~1 -N 
that for any 6 e 0, we can cpnstruct a consistent, asymptotically nor

mal estimator of U.(X,9). We denote this estimator by U.(x,9). For 

example, for many without replacement sampling schemes, 

n 
U.(x,9) = E u.(x^,9)/Tr|^ - v,(9) (2.2) 

k^l 

will be a consistent asymptotically normal estimator, where ir. is the 

probability of inclusion for the k-th unit. \ 

We let a..(X,9) = Cov[U.(x,9), U.(x,9)]. For example, for estimator 

(2.2), we have: 

N N 
a.j(X,9) = E E u.(X^,9) Uj.(Xĵ ,9)(Tr|̂ -̂Tr|̂ Tr̂ )/Tr̂ Tr̂ , (2.3) 

K~" I X*^ I 
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where w is the probability that the k-th and l-th units in 

sample. 

We let ?(X,9) be the pxp matrix with entries a..(X,9), and |(x,e) be a 

consistent estimator for E. Now, for any given 6, 

N 
U (X,9) + v (6) = E u.(X, ,9), 
' ~ - k=, ' -K 

so that estimators U.(X,9) and ^(x,9) can be specified for any design 

in which we can derive consistent asymptotically normal estimators of 

population totals and consistent estimators for the variances of the 

estimators of the totals. 

The Horvltz-Thompson estimator for (2.3) is: 

n n 

J, ̂fi "î~k'~̂  "j(^r5)(W£)/\Vk£ (2.4) 

In the case of fixed sample size, the Yates-Grundy estimator of (2.3) 

is: 

E E 
k<Z'-

u.(X|^,9) u.(Xjj^,9) ^]^\*^J "j (?£»!)• 
\ \ -\l^' (2.5) 

Letting y(X,9) and U(x,9) be the p-dimensional vectors with components 

U.(X,9) and U.(x,9) respectively, we define 

J(X,9) = 9y(X,9)/3e 

J(x,9) = 9U(x,9)/99, 

(2.6) 

(2.7) 

where J and J are pxp partial derivative matrices. Assume that the 
matrices are continuous functions of 9 and that the partial deriva
tives with respect to 9 exist in a neighbourhood of 9 . Also assume 
J(x,9) is a consistent estimator of J(X,9). ~° 

Our estimator for 9 is given by 9, the solution to: 

U.(x,9) = 0, for 1=1, ..., p. (2.8) 
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. I • 

We assume the sample size is sufficiently large so that the solution 

to (2.8) is unique in 0. We show in the next section that the covar

iance matri)<i of 9 can be consistently estimated by: 

[J"'(x.9)] E(x.?) [r^(x,9)]^ 

2.2 Asymptdtic TheoJ'y 

Following the asymptotic arguments of Madow (1948), and HMjek (i960), 

we consider a sequence of populations indexed by t, with sizes N 

and data X . We assume N ->-" as t->~. For population t, we sel

ect a sample of size n and observe data x . We let v =E(n ) 

and assume 

I 1 m V = <» 
t ^ " 

II „, (N^^^- v(^)) =«. 
t->-oo 

For any 9 in a neighbourhood of 9 we assume 

[v^^^]^ [y(x(^^ 9) - y(x(^)°?)]/N(^) 

is asymptotically N[0,S(9)], where 

S(9) = lim[v(̂ ^ l{X^^\e)/{/^h^] 
exists. We assume 

K(9) = lim J(x(^\9)/N\^^ exists and also 

plim J ( X ( ^ \ 9 ) / N ( ^ ^ = K(9). 

Also, we assume 

lim[rank {J(x(*\9)}] = pi lm[rank {J (x(^\9)}] = p. 
-(t) 

We define 9 to satisfy 

y(x(^), l^^)) = 0 . 

By a Taylor series expansion, we obtain 

0(x(^\ 9^^)) ^ - J(x(*), 9^^)) (9(^)-9^^)). (2.9) 

Since the left hand side of (2.9) is asymptotically normal, we have that 
(^(t))%(g(t) .3(t)) 

~ ~o 
is asymptotically N[0, G(9 )], where S(9 ) = K(9 ) G(9 )[K(9 )] . 

~ ~ -o ~ ~o ~ ~o ~ ~o ~ ~o 
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Therefore, 
G(9^) = [ K " ' ( 9 ^ ) ] S ( 9 ^ ) [ K " ' ( 9 ^ ) ] ' ^ (2.10) 

and a consistent estimator for G(9 ) is : 

n(^^[j"^x,9)] E(x,9) [j"Vx,9)]'^. (2.11) 

Hence, when the functional form of 0(x,9) and E(x,9) is specified, we 

need only derive the.matrix J(X,9 ) and its estimator J(x,9) to use 
- ~ -~o ~ * ~ ' ~ ' 

these results. 

3. EXAMPLES 

3.1 Introduction 

In this section we consider In detail the implication of the general 

formulation given in Section 2 with respect to estimating the vari

ances of certain population parameter estimators. In particular, we 

discuss ratios, regression coefficients and log linear models for cat

egorical data. Other models, such as probit models could be analyzed 

analogously. 

In general, we use the following notation. If W W are popula

tion values, with W = EW. , then on selecting a sample w,, ..., w , we 
~ ~K ^ ^~I ~n 

have an unbiased estimator of W given by W. We let V(W) represent the 

covariance matrix for W and y(W) a consistent estimator of V(W). The 

particular form of this estimator will depend on the sample design; 

for example, multi-stage stratified, pps with replacement, etc. , 

3.2 Ratios 

Suppose we are interested in R = EX, ./EX, ,. We define 
k2 k1 

U(X,R) = EX^2 " ^^\]' 

Therefore, for without replacement sampling, we have: 

U(x,R) = X2 - RXj. 
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Setting U(X,R) = 0, we obtain 

We def 1 ne W. = X, ̂  " ^ X. , . 

R = X2/X^ (3.1) 

Since, J(X,R) = -5:X.,, we have that V(R) is approximately V(W)/(EX ) 
k1 

This is estimated by V(W)/X,. In the case of stratified sampling, 

this yields the same result as in Woodruff (1971). 

3,3 Regression Coefficients and R 

Suppose our data matrix X is partitioned into [Z|Y], the first column 

of Z being the vector of 1's. The vector Y is Nxl. We have parameters 

of interest 9, B, and R defined by: 

U, = 9 - Y^ i = 0, 

U2 = Z^ Z B - Z^ Y = 0 , 

U, = (Y^Y-N"'9^)(R^-1) -f- Y^ Y - Y^ Z B = 0. 

3 ~ ~ ^ . . . . . . . . . ^ 

(3.2a) 

(3.2b) 

(3.2c) 

Here, B denotes the vector of regression coefficients, R is the 

coefficient of multiple determination and 9 is the total of the Y's . 
T - 1 2 

We first consider the case where N is known. We let SSY = Y Y-N 9 . 

We also define S ^ as the estimator for Z Z, S the estimator for Y Y 

and S^Y the estimator for Z Y. We therefore have : 

and 

9 = Y, 

.̂  _ -1 
B - §22 S^Y , 

r = 1 -YY 
B'S^Y 

YY 
-1 -2 ' 

N Y 

J = 9y(Z,Y,B,R ,9)/9(B,R,9) = 

where Y = 9/N . 

z"rz 
0 

0 

1 

0 

-Y Z SSY 2Y(1-R ) 

(3.3a) 

(3.3b) 

(3.3c) 
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-2Y(1-R^)/SSY B V S S Y 1/SSY 

Now, letting wJ(B) = (Z^, e^, ..., Z^^ e^), where e^ = Y^ - ^ Z^. B., 

we obtain 

V[B] = (z'^Z)"^ V[W(B)](z'^Z)"' (3.4) 

This is a direct consequence of (2.10). Note that the set of W. (B) 

vectors corresponds to y2 in (3.2b). Fuller (1975) obtains the same 

result for stratified or two-stage stratified sampling. 

To estimate (3.4) we use : 

V[B] = SlJ y[W(B)] Sl^. 
•ZZ -ZZ' 

^2 T 2 
We can also estimate the variance of R . If W. (B,R ) = [Y , Z. . e. , 
...., Z^p e^, Y|̂ (E Z^j Q. - R̂ Y|̂ )] and J = [-2Y(1-R^)/N, fiT, 1]/ 

-1 -̂2 -' 
(SYY"N Y ), we obtain: 

,s /N2 T A -̂  '̂  "̂ 2 

V[R ] = c' V[W(B,R )] c (3.5) 

For the case where N is unknown (e.g. the primary sampling units are 

geographic areas), we have the additional equation: 

U^ = N - E 1 (3.6) 

Adding the appropriate row and column to J and inverting, we obtain 

the following results for estimating V[R ]. 

We let 

w;;(B,R^) = [Y^. Z^, e^ Z^p e^, Y^(E Z^. B. - R \ ) , 1] 

and 

J = [-29(I-R')/N, B ^ 1, Y'(I-R')/N^]/(SYY-N-^ Y ' ) . 
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We then have V[R ] is given by (3.5) for these new values of 
2 

W (B,R ) and c. 

3.4 Logistic Regression 

As in the previous section, we assume the data matrix X can be parti

tioned Into [Z|Y], but now Y Is a vector of O's and 1's. In the tra

ditional statistical framework, the logistic regression model for Y 

conditional on Z asserts that Y., ..., Ŷ . are independent with 

Pr(Y|^= 1) = P,^(B), where : 

exp(B^ z. ) (3.7) 

Pk(g) ~ T ' 
] + exp(6 z^) 

Letting B be the maximum likelihood estimator for B, we have that B 

satisfies 

U = Z^P(B) - Z^ Y = 0 , (3.8) 

where P(B)''" = [p, (B) , ..., p^(B)]. 

For a given finite population,we define B as our parameter of interest. 

We let C(B) be our estimate for Z P(B) and S^y °^^ estimate for Z Y. 

Therefore, B satisfies C(B) = S^y. These equations must be solved 

iteratively in general. We also have 

9U 

, - i = 9f • 

The (i,j)th component of J is E Z,. Z. . p. ( B ) [l-p, ( B ) ] , We denote 

the estimator of J by J. 

To estimate the variance of B, we let 

~k " ^h] \ \r %^ 

where e, = Pi,(B) - Y, . The estimator for y[B] is given by : 

/v-1 '̂,'̂, ''—I 
J ' V(W) J ' . 
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3.5 Loglinear Models for Categorical Data 

Suppose that each member of the population belongs to exactly one of 

q distinct categories. Associated with category 1 we have an rxl 

vector aj such that the proportion of individuals in the i-th category 

is approximately 

exp(a. B) 
P:(B) = 

E exp(a. B) 
j ~-J 

We let p(B) = [p,(B) P„(6)] and N^ = (N,, ..., N ), where N. 
- ~ i ~ q ~ ~ I q I 

is the number of individuals in the i-th category. Now, if the popu

lation were generated from a multinomial distribution with probabili

ties p(B),the maximum likelihood estimator for B,given by B, satisfies 

u = A""" N - [A""" P ( B ) ] ;I^ N = 0, 

where A is a qxr matrix with i-th row being a. . We consider B as 

our parameter of interest for any given finite population. 

We let N be a consistent asymptotically normal estimator of N, with 

variance-covaraince matrix y[N] and estimated matrix V[N]. Our esti

mator, B, satisfies : 

6^ N - [A""" p(B)] l"̂  N = 0. (3.9) 

This estimator was suggested by Freeman and Koch (1976). It may be 

less efficient than Imrey, Koch and Stokes (1981, 1982) functional 

asymptotic regression methodology; however, we need not calculate all 
A A 

the components of V[N] to apply (3.9). 

Let D(B) be dlag[p(B)] and H(B) = D(B) - p(B) p(B)^. We have: 

9y , T T 
J = 9g-= - (IN) A' H(B) A . 

Therefore the asymptotic variance matrix for B is given by: 
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y[B] = (U^l)'^ (A"̂  H(B) A)"^ 

A'^(I-P(B)I''") V[N] (l-l p(B)'^) A(A''" H(B) A)"^ (3.10) 

This expression can sometimes be simplified as follows. If it can be 

assumed that N/N 1 = p(B), then for TT = N/N 1 we have: 

so that 

V[^] = (N'^1)"^ (l-p(B)r) V[N](I-1 p(B)^), 

V[B] = (A"*" H(B) A)"' A""" V[TT] A(A"'' H(B) A)"' . (3.11) 

We also have that the covariance matrix for P ( B ) , the estimated cell 

probabilities, is given by: 

V[p(B)] = H(B) A V[B] A^ H ( B ) . 

The estimators of y[B] and y[p(B)] are similar expressions, where N 

and B are replaced by N and B respectively. These assume that V[N] Is 

readily available. For some problems where q is relatively large com

pared to r, it would be more efficient to proceed as follows. Let 

Y, . = 1 if k-th unit in i-th category 

= 0 otherwise, 

for k=1 N; 1 = 1, ..., q. Let Y = (Y. Y. ), and 

4 = A'^[I-B(B) l"̂ ] Y^. 

We then obtain : 

y[B] = (N^p^ (A""" H(B) A)"' y(w) (A"̂  H(B) A ) ^ ^ 

We remark that the methodology described in this section can be readi

ly extended to product-multinomial type models, where we have a log-

linear model for {N..}, but the margins {E N..} are known. 
'J J ' J 
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4. DISCUSSION 

The techniques described In the paper have been described for some 

specific models; see, for example. Fuller (1975) and Freeman and Koch 

(1976). However, the general results are not explicitly described. 

Many standard statistical packages may be used for the estimation of 

the parameters of the models described, but the variances and tests of 

hypotheses given In these packages will not be valid. 

The results of this paper depend on the assumption of asymptotic nor

mality of the estimators. Empirical studies on the validity of these 

approximations are important. 

An alternative methodology to estimating many of the parameters des

cribed here is given by Imrey, Koch and Stokes (I98I, 1982). Their 

functional asymptotic regression methodology also falls within the 

general framework described here, with respect to variance derivation 

and estimation. 
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AN OVERVIEW OF CANADIAN HEALTH STATISTICS: 

PAST, PRESENT AND FUTURE^ 

2 
Lome Rowebottom 

The author briefly reviews the factors determining the 
production of health statistics in Canada, with particular 
attention to the different sources of data and to the long
standing co-operation among the many agencies- involved in 
the gathering of health-related information. 

Mr. Chairman, I want to express my real pleasure at being a member of 

this panel because of the opportunity that it affords me to congratu

late Dorothy Rice and her colleagues in the National Center for Health 

Statistics on the occasion of the completion of 25 years of Health 

Surveys. We in Statistics Canada have long been admirers of NCHS 

and my congratulations to Dorothy are on behalf of my colleagues in 

Statistics Canada, particularly those in our Health Division. 

Consistent, I hope, with the charge of our Chairman, I have chosen to 

paint with a very broad brush what seem to me to be trends and deter

minants of our health which might find echos in other countries and 

therefore be of interest to this audience. 

Two data streams comprise the historic and current sources of Canada 

Health Statistics, The first is health institutions - predominantly 

hospitals, both general and mental. From them we derive statistics 

about a wide range of their characteristics, as well as statistics about 

their patents and their illnesses, Canadian hospital statistics are 

amongst the most detailed and comprehensive in the world. 

As presented at the American Statistical Association Annual Meeting in 
Detroit, August 1981 ^ 

Lome Rowebottom, Assistant Chief Statistician, Institutions and 
Agriculture Statistics Branch, Statistics Canada, 



- 172 

The second stream comprises the records generated by registration of 

births, marriages and deaths from which we derive the critical statistics 

on causes of death, 

A wide variety of statistics is produced from such rich data bases and 

some important statistics are derived from other sources^ for example, 

those on cancer incidence, from cancer registers, and notifiable diseases. 

For those who are interested I have a few copies of a Directory of Health 

Division Information and also I would be glad to send a copy to anyone who 

wrote to me at Statistics Canada. 

The important themes relating to these statistics that I want to touch on 

this morning are the following: 

- First, they measure Illness only when individuals seek health 

care from Institutions. 

- Secondly, they illustrate the strengths and weaknesses of statistics 

derived from surveys and from administrative records. 

- Thirdly, they represent the availability of information which could 

only result from a very high degree of co-operation, sustained over 

a long period of time, between the central agency, federal and 

provincial departments of health, the Institution and hospital 

associations, and vlta'1 statistics registers. 

I will return to these three characteristics of the health statistics 

system: what is measured and what is not, the Implications of data sources 

and the degree of co-operation between the players in the system. 

Why have we produced what we have, rather than different products by 

different means? Looking back over sixty years of health statistics, I 

found this an interesting question. Assessing how priorities were deter

mined is a judgemental process - just as is deciding on today's priori

ties. So it is my judgement that in part we responded to changing needs 

for statistics articulated by users and Royal Commissions, and in part 

we anticipated changing user needs ourselves and used existing data 
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sources which related to such needs, and because they represented oppor

tunities. They were there to be utilized, like the vein of quartz that 

a prospector seeks and finds, or stumbles across. In part, we were 

driven by, and we exploited, the rapidly changing technology. In part 

the environment of co-operation in which we worked determined what we 

did. And finally In many pai-ts the resources available to us in terms 

of dollars, human skills, and data handling capabilities, permitted some 

things and not others. 

These few critical factors: 

- articulated and perceived needs, 

- data sources available, 

- changing technology to process and to analyse data, 

- co-operation between players in the system, 

- budgets available, 

have been the determinants of what we have done. But it will be apparent 

to you that they are also the determinants of what we are and will be doing. 

These forces shift and come together in a changing kaleidoscope so that 

during one span of time one combination is dominant, to be replaced by 

another combination. 

In Canada all have operated in such ways to bring about significant changes 

in our health statistics and it seems apparent that there will result even 

more rapid change. Changing needs should, of course, drive the system and 

they are in fact doing so, albeit in some respect in an erratic manner. You 

You will recall my stating that the Canadian measurements of morbidity are 

largely limited to hospitalized illnesses. This has been widely recocinized 

as a quite unacceptable state of affairs and a few years ago this dissatis

faction led to a federal decision to institute a continuing health status 

survey of the Canadian population. A survey was carefully planned and 

tested from both conceptual and methodological points of view. However, 

only 10 months' data were collected before government-wide budget 

reductions forced cancellation of the survey. The first results from the 
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data collected have just been published and the data base has shown signs 

of being a rich research source with significant decision-making implica

tions. Of course, it suffers from the severe limiations of relating to 

only one point in time. It Is too early to state how long it may be 

before a decision to reinstitute some form of the Canada Health Survey Is 

made. However, I am optimistic that the capacity of such measurements of 

health status - to throw light on the effects of our lifestyles on our 

good health and Illness, and lead to Individual and collective decisions 

which will affect them - will not be ignored for long. 

Let me turn from the area of health-related household surveys where the 

Canadian track record of responding to changing needs is poor, to one 

where we have both anticipated and responded effectively to new demands. 

I refer to epidemiological studies designed to enlighten the kinds of 

health risks resulting from exposure to various demographic, social, occu

pational and environmental influences. Thanks to the foresight and 

persistence of members of our Vital Statistics Staff working with a few 

other key persons both within and outside Statistics Canada, we have a 

computer-searchable MortalIty Data Base file which includes all deaths in 

Canada, coded by cause of death, extending back over three decades. We 

also have a generalized record linkage facility which is being used to 

link specific exposed population groups to the mortality file. Linkages 

are also possible to an as yet incomplete but significant ten-year cancer 

incidence file. 

A paper which includes a largely Canadian bibliography on this area will 

be given by Martha Smith, Head of Occupational and Environmental Health 

Research Unit, In Scotland before the end of this month. It will be 

available on request, (Both Martha and John Silins, Chief of our Vital 

Statistics and Disease Registries Section are in the audience,) 

As to other data available to shape the future of Canadian Health Statistics 

I will only take time to mention the existence of data bases which are 

very large, potentially very rich, and largely unused for national 

statistical purposes. 
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They comprise the administrative records of our national medicare system 

which record annually in excess of 30 million incidents of primary 

cal care extended by physicians. We have demonstrated some of the 

istical potential of these files and we are now shaping new proposals 

to develop their use during the next several years. Budgets are expected 

to be the iimitirig factor, 

i 

New needs should drive the system - new technology does. The influence of 
I 

computers on health statistics is all-pervasive and is operating to change 

the availability and uses of health statistics in profound ways. 

I want to comment on the use of data - In the form of statistical inform

ation, which computers have made possible - by managers, medical personnel 

and administrators in hospitals, local hospital districts, states, provin

ces, universities and associations. At federal levels, computers have 

changed the ways In which data are processed and statistics are used. But 

In many locations throughout the health community, computers have meant 

that data are now used for purposes of understanding, for research and for 

decisions, whereas in the precomputer era they were used little or not at 

all. 

Allowing for some exaggeration - but probably not very much - it was not 

that long ago when national statistical agencies had almost a monopoly on 

large-scale data handling capability. What a contrast between then and now 

when;large, fast, sophisticated and easily used information processing 

capacity is economically available to both large and small organizations. 

The implications are far-reaching and I suspect not yet fully perceived, 

but they include at least: 

- The existence of many rather than few producers of statistics 

(many of these will perceive themselves as operators of MIS but 

statistics is - and will be - the game if not the name.) 

- These same organizations will also be much more intensive users 

of statistics - particularly statistics about their own organizations 

or jurisdictions. 
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- As a result there will be greater knowledge of one's own 

envi ronment. 

- There will be greater Independence on the part of such organi

zations and their need - maybe much less perceived need - to rely 

on others for statistics, 

- This ability to utilize the Information contained in the adminis

trative records of one's own organization or jurisdiction will 

almost certainly reduce the tolerance for completing statistical 

questionnaires, with a resulting increase In the necessity to rely 

on administrative records. This could result in less information 

being available about the total environment because of the problems 

of data comparability between organizations and jurisdictions. 

I find It difficult to forecast the impact that these changes will have on 

co-operation between the many players essential to development and mainten

ance of a comprehensive and inevitably complex system of health statistics. 

All I can say is that in Canada - notwithstanding substantial pressures 

which test and strain the system :T;co-operation has not diminished. In 

fact, the reverse is the case and on this score also I am an optimist, I 

think that one determinant of such co-operation is for national statistical 

agencies to recognize that their role must change in response to the kind 

of changes I have described. It is apparent to me that priorities must 

shift from statistical production to statistical co-ordination. 

One final word about what I consider to be an overriding priority, namely, 

doing statistical analysis of our data bases to determine the messages that 

are in them, to determine their meaning and significance, and to relate 

them to the issues and problems confronting us. 

For too long, we, at least we in Statistics Canada, have published numbers -

myriads of numbers - and failed to translate them into significant indi

cators. We have left It to others to find the gold in the ore we have mined. 

I think that we and the health community have paid a high price for our 

failures (there have been successes) to find the gold, and even shape It 

Into jewellery with which users would enlighten our world, not unlike the 

way necklaces lend radiance to those who wear them. 
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MODELS FOR ESTIMATION OF SAMPLING ERRORS 

2 
P.D. Ghangurde 

This paper presents results of an empirical study on fitting 
log-linear models to data on estimates of characteristics and 
their coefficients of variation (CV) from the Canadian Labour 
Force Survey. The characteristics were classified into 
groups on the basis of design effects and models were fitted 
to data on estimates of characteristic totals and their CVs 
over twelve month period. The models can be used in 
situations where estimates of CV are needed for new charac
teristics, and for providing more precise estimates of 
reliability of estimates based on past data. The problem 
of evaluation of fit of the models is considered. 

1. INTRODUCTION 

This paper presents results of an evaluation study on models for esti

mation of coefficient of variation (CV) of estimates of characteristics 

based on the Canadian Labour Force Survey (LFS), The LFS is a monthly 

household survey with a stratified multi-stage area sample design with a 

sample size of approximately 55,000 households. 

Each month estimates of CV are calculated for a set of characteristics 

using Keyfitz method of variance estimation based on Taylor series 

approximation [4], [5]. However, computation of appropriate variance 

estimates for all estimates tabulated from a large scale survey such 

as the LFS Is not possible due to operational constraints of time and 

Presented at the American Statistical Association Annual Meeting 
in Detroit, August I98I. 

2 
P. D. Ghangurde, Census and Household Survey Methods Division, 
Statistics Canada. 
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costs. The model-based estimates of CV can be used to obtain preli

minary estimates of reliability for new characteristics based on the 

past data, and when estimates of CV for an extended period (e.g. one 

year) are needed. The models can also be used for obtaining concise 

estimates of rellabl1ity, e.g. alphabetic indicators for ranges of 

CV. 

In section 2 the linear and non-linear models used for estimation of 

totals and proportions are explained. Sections 3 and 4 review con

siderations made in forming groups, fitting models and evaluation 

of goodness of fits, 

2. THE MODELS 

The LFS is a monthly household survey in which dwelling is the final 

stage sampling unit. Each of the ten provinces in Canada are divided 

into economic regions which consist of groups of counties with similar 

economic structure. The economic regions are divided into geographic 

strata and multi-stage area samples are drawn without replacement with 

two stages In self-representing strata in the large urban centres and 

three or four stages in the non-r.sel f-representing strata in rural areas. 

The sample selection in the initial stages is with probability propor

tional to population size and that in the last stage, in which dwellings 

are selected from clusters, being systematic. 

The design-based estimates within strata are obtained by weighting the 

data by Inverse of probabilities of selection. An adjustment of the 

basic weight for non-response and ratio estimation within age-sex groups, 

which are post-strata, is used to obtain final estimates. The census-

based population projections for age-sex groups within each province are 

used as auxiliary variable totals for ratio estimation. More details 

on the sample design and estimation are given in [5], 
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The variance estimates of various characteristics at the province 

level are obtained by Taylor series approximation assuming that the 

primary sampling units (psus) within non-self-representing strata are 

selected independently. In self-representing strata the sampled clusters 

are divided into two groups, which are treated as pseudo-psus and are 

assumed to have been selected indepehdentlyi The Variance estimate for 

an estimated characteristic total at Canada level is the sum of corres

ponding provincial variance estimates [5], The variance of an estimate 

X of a characteristic total X in a province can also be expressed as 

V(X) = F (W-1) X (1 - ^ ) , (1) 

where P = population for the province, 

W = inverse sampling ratio, 

F = design effect for the characteristic, and 

n = sample size (persons). 

The expression (1) for V(X) relates the variance obtained for the 

complex ratio estimate based on a stratified multi-stage sample design 

to the variance of the estimate based on a simple random sample of the 

same size drawn from the finite population of size P. The sampling 

variance of an estimate of total based on a simple random sample of size 
p 

n (= w- ) is the usual binomial variance with finite population correction. 

The term, F, the design effect, represents a factor by which variance is 

increased due to the effect of such factors as sampling procedure at each 

stage, the extent of stratification and post-stratification, size of 

units at various stages and clustering of counts of the characteristic 

In the province. It may be noted that stratification and post-strati

fication usually reduce the variance and clustering increases variance 

of an estimate. 

In general, design effects tend to be greater than one due to clustered 

sample design of the LFS. The labour force status categories such as 

"employed", "unemployed" by age-sex groups tend to have lower design 

effects due to post-stratification by age-sex which decreases their 

variance. Those for labour force status by particular industry tend to 
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be large due to their location in specific areas. Design effects are 

known to be related to measures of homogeneity and average size of 

clusters. Models expressing their relationships have been developed 

for many surveys. In a study on components of variance in the LFS 

the design effects and measures of homoegeneity have been analyzed 

for a number of characteristics [2]. 

A measure of precision of estimates which is independent of the level 

of the estimate and the scale is coefficient of variation. The CV(X) 

is g1ven by 

CV(X) = yF(W-l) (^V^) ' • (2) 

By taking logarithms to base e on both sides of (2) we have an equation 

relating CV, X and P given by 

log CV(X) = y log F(W-l) - -̂  log X -I-i log (1 - ^ ) . (3) 

Because of the third term on the right, the equation (3) is not linear 

in log CV and log X, even if F(W-1) is assumed constant. However, for 

small values of X the contribution of the third term is negligible. A 

model based on,(3) is given by 

log CV(X) = A -t- B log X -I- e, (4) 

where A and B are parameters of the model and e is the error term. The 

estimate of parameter B wi 11 differ from - -r-depending on the extent to 
1 X 

which B log X approximates j- log [X/(1 - —)] over the range of X. In an 
evaluation of fits of (4) and of an alternative model (5) given by 

log CV(X) = A -f B log ^ + E, (5) 

(1 - ̂ ) 

2 
the goodness of fit for the two models as shown by R , thu ratio of 
regression sum of squares to total sum of squares, was found to be 
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quite close. The model (4) is linear in log X and log CV and is simpler 

than model (5). 

A non-linear model corresponding to (4) is given by: 

I 

CV(X) = A' X^ + e, (6) 

where A' and B are parameters of the model and e is the error term. The 

two models (4) and (6) were fitted to data on monthly estimates and their 

CVs for 90 characteristics in each of 10 provinces and Canada, 

3. GROUPING OF CHARACTERISTICS 

The monthly design effects of LFS estimates for January-December I98O for 

each of 90 characteristics excluding total population for each province 

and Canada were averaged and plotted to decide the ranges for the two 

groups. In each province, the first group consists of characteristics 

with design effects greater than D. 

Table 1 shows the boundary vialues D for group I and II in each province 

and at Canada level, and the number of characteristics in group II, The 

grouping of characteristics was done by arranging characteristics in 

increasing order of average design effects. The boundary value D was 

selected so that the assumption of equal design effects wa; satisfied £S 

far as possible In group I, The second group consists of all remalninc 

characteristics where the assumption of equal design effeccs is more etude. 

Most characteristics pertaining to labour force status by jge-sex groups 

fall in group I. "Employed by industry" and "duration of unemployment' 

mostly fall in group II. The average design effects diffe* substantially 

between provinces and for Canada. More refined grouping o" char.acteris-

tlcs on the basis of models for design effects is being in/estig.ated. 

It may be noted that about 80% of the characteristics in eich pnivince 

and for Canada, have been classified in group I. For obtaining J 
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conservative estimate of CV for a new characteristic models based on 

group II can be used. For a characteristic for which monthly estimates 

of CV are routinely produced the models for the group in which the 

characteristic falls, can be used to obtain approximate estimate of CV 

with a greater precision than that based on monthly data. 

In the following section the assumptions made In fitting the models (4) 

and (6) are explained and model fits are evaluated. 

4. EVALUATION OF MODELS 

The basis of fitting the 1og-linear model (4) is to treat the model as a 

simple linear regression model In y = log CV(X) and x = log X and to 

obtain estimates of parameters A and B in the linear regression framework. 

The usual assumptions of independence of errors and constant variance 
2 

have been made. Under these assumptions, R provides a measure of fit of 

the model. The values' of the estimated parameters and coefficients of 
2 

determination, R , for group I and 11 in 10 provinces and Canada are given 

in Table 2. The actual fitting of these models was done by using SAS 

utl1ity. 

2 
All R values are significant and quite high indicating that the fits are 

very good. The error plots do not show any patterns to conclude that the 

assumption of constant variance is not satisified. Under these assumptions 

and normality of errors CV(X) has a Ion-normal distribution with constant 

CV for any value of X. 

The non-1inear model (6) was fitted by Gauss-Newton method using SAS 

utility. The initial values of parameters A and B were assumed to be 

1.00 and -0.50 respectively. The number of iterations required to reacn 

convergence was at most 8 for each province and Canada, the convergence 

criterion being that the relative difference between successive error sum 

of squares is less than 10" . Table 3 shows values of estimated parameters 

and errors sum of squares for Canada Group II. The errors are approxi

mately normally distributed as shown by normal probability plots. 
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Slnce it is of interest to compare the fits of the non-linear model for 

provinces, Canada and the two groups it is necessary to have a criterion 

of goodness of fit. In the non-linear model, the total sum of squares is 

not equal to the total of regression and error sums of squares, A 

criterion R' can be defined as 

N . 

M Y - Y,)̂  
R'2 = 1 . IzL. , 

N 
i: (Y. - Y)^ 

where Y.'s are estimated CVs based on the model, Y.'s are observed CVs 
_ I I 

and Y their mean. The summation extends over N, the number of charac

teristics in the group multiplied by 12, the number of months. In the 

linear case R = R' . However, in the non-linear case R 5̂  R'2 since 

the total sum of squares is not equal to regression sum of squares plus 

error sum of squares due to product term not being zero. 

The errors (Y, - Y.) will be small when the fit is good giving a value 

of R' close to 1, the errors (Y. - Y.) will be large when the fit is 

poor giving a small value of R ^. When all the points lie on the fitted 
- 10 

curve i.e. Y. = Y. for all 1, R = 1 . However, in general no lower bound 
' 2 ' ' '2 

to R seems to exist. The values of R shown in Table 4 tend to be 

greater for group I as compared to group II, which has 13 to 21 characts-

ristlcs out of the total of 90. 

Although the log-linear model (4) was fitted to data on logarithms of 

estimates and their CVs and its fit seams to be good, the fitted models 

for provinces and Canada are used for estimation of CV of estimates. M 

order to compare the fit of the transformed model to original data of 

estimates and their CVs, these data and the transformed model coiresponding 

to (4) were plotted for the two groups in 10 provinces and Canada. Fron 

these charts it can be concluded that the transformed model correspondlig 

to (4) fits the data of estimates and their CVs better thar the non-lin2ar 
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model (6), especially for small values of estimates. The plots of these 

models for Canada group II are shown on Chart 1 and 2. 

5. CONCLUDING REMARKS 

The characteristics considered are total persons with labour force status 

by age-sex. Industry, marital status and total persons with various ranges 

of duration of unemployment. However, the models can also be used for 

proportions Instead of totals. The models are not applicable to estimates 

for subprovlncial areas such as urban centres or groups of economic 

regions, since design effects for these areas are more unstable and can be 

much higher due to the effect of ratio-adjustment based on projected popu

lation at province level [1]. 

An assumption made in the use of models for a new characteristic is that 

its design effect is close to the average for the group. This requires 

finer grouping of characteristics of various types possibly on the basis of 

models relating design effects with measures of homogeneity for these 

characteristics. In fitting the models, it was assumed that errors are 

uncorrelated and that independent variable is fixed. Since twelve monthly 

estimates for each characteristic were used, there could be correlation 

in errors for estimates for a given characteristic. Extension of the 

study to models with errors in independent variable and corre1ate>.d errors 

Is being considered. 

A problem in evaluation of fit of non-linear models, whether actually fit

ted to data or transformed from linear models, is the lack of a criterlDn 

for comparison of fits of different models. The criterion suggested In 

section 4 may be appropriate for comparison of fits of a mcdel to different 

data sets, but may not work for different models. 
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TABLE 1: DESIGN EFFECT BOUNDARY VALUES AND NUMBERS OF CHARACTERISTICS 

IN GROUPS I AND I|A 

Province 

Newfoundland 

P.E.1. 

Nova Scotia 

New Brusnwick 

Quebec 

Ontario 

Manitoba 

Saskatchewan 

Alberta 

British Columb 

Canada 

Boundary 
Value (D) 

2.3 

1.9 

1.9 

2.2 

1.9 

1.7 

2.0 

2.8 

2.1 

la 2.3 

1.9 

Number 
Characteri 

Group 1 Gi 

75 

73 

74 

77 

73 

69 

76 

76 

71 

73 

77 

of 
istlcs 
-oup 11 

15 

17 

16 

13 

17 

21 

14 

14 

19 

17 

13 

A characteristic belongs to Group I if its design effect (averaged 

over the 12-month period from January to December I98O) is les;; than 

or equal to the.boundary value D. If the average design effect is 

greater than D, then the characteristics is in Group II, 
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TABLE '2: REGRESSION COEFFICIENTS AND R FOR LOG-LINEAR MODEL 

Province 
Regression Coefficient 

Group A B 

Newfoundland 

P.E.I. 

Nova Scotia 

New Brunswick 

Quebec 

Ontario 

Man Itoba 

Saskatchewan 

Alberta 

B.C. 

Canada 

1 3,3119 
1 3,7757 

1 2,7962 
1 3.1796 

1 3.4612 
1 3.6412 

1 3.2782 
1 3.7544 

1 4,3298 
1 4.3093 

1 4.3825 
1 4.1796 

1 3.5155 
1 3,8769 

1 3.3796 
1 3.5478 

1 3.6960 
1 3.7526 

1 3.9847 
1 3.9814 

1 4,3458 
1 4.2357 

-0.5723 
-0.6101 

-0.5617 
-0.5885 

-0.5837 
0.5257 

-0.5545 
-0.6017 

-0.5942 
-0,5216 

-0.6053 
-0.5009 

-0.5926 
-0.5640 

-0.5700 
-0.4423 

-0,5968 
-0.5090 

-0.5750 
-0.4708 

-0.5936 
-0.5191 

0.9534 
0.9377 

0.9485 
0,8887 

0,9702 
0,8717 

0,9606 
0,9357 

0.9686 
0,9127 

0,9736 
0,9633 

0,9619 
0,9166 

0.9544 
0.8994 

0.9678 
0.9513 

0.9621 
0,8410 

0,9703 
0.9699 
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TABLE 3: NON-LINEAR LEAST SQUARES: GAUSS-NEWTON METHOD 

CANADA (GROUP I I) 

Iteration Residual S,S. 

0 

1 

2 

3 

4 

5 

6 

7 

1.00000000 

15.22076853 

26.47981387 

51.94184546 

57.29455529 

58.32558100 

58,28627964 

58,28746710 

-0,50000000 

-0,23647629 

-0,36743343 

-0.51147529 

-0.47434886 

-0,48419609 

-0,48409502 

-0,48409960 

3401,93232121 

461.76322678 

322.67707190 

248.68405130 

99.32440727 

96.57832290 

96.57810754 

96.57810746 
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TABLE 4: R FOR GROUP I AND II 

Province 

Newfound land 

P.E.I 

Nova Scotia 

New Brunswick 

Quebec 

Ontario 

Manitoba 

Saskatchewan 

Alberta 

B.C. 

Canada 

Group 

i i 

S66 
190 

827 
294 

872 
192 

908 
156 

859 
204 

823 
252 

895 
168 

896 
168 

845 
228 

868 
204 

923 
156 

p'2 _] .Error S.S. 
Total S.S. 

6.93^2 
0.8835 

0.8925 
0.7285 

0.9790 
0.7813 

0.9990 
0.8639 

0.9800 
0.7804 

0.9632 
0.9208 

0,9691 
0.8137 

0.9436 
0.8196 

0.9701 
0.8852 

0.9319 
0.7786 

0.9665 
0.9286 

N for group I can be less than,12 (ho. of 
characteristics) due to exclusion of characte
ristics with zero estimates. 
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