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NOTES ON INFERENCE BASED ON DATA
FROM COMPLEX SAMPLE DESIGNS '

Gad Nathan!

The problems associated with making analytical ififérencés
from data based on complex sample designs are reviewed.
A basic issue is the definition of the parameter of inter-
est and whether it is a superpopulation model parameter or
a finite population parameter. General methods based on a
generalized Wald Statistics and its modification or on mod-
ifications of classical test statistics are discussed.
More detail is given on specific methods-on !inear models

anq regression and on categorical data analysis.

1. INTRODUCTION

Standard methods of inference, such as regression, analysis of vari-
ance or tests of independence, are, in géneral, based on the assump-
tion that .the data are obtained by simple random sampliﬁg from an
infiﬁité population with a probability distribution belonging to some
hypothetical family. The wide dissemination of standard computer
packages has made the use of these methods extremely easy. However
standard method; cannot uwsually be simpiyapplied todata from complex

sample designs without any modification.

tn thé following we attempt to provide a selection of some pfactical‘
hints on what can be done and of some warnings against what should not
be done in these situations. This is based on the selected list of
fefgrences to recent work in the area, which include many examples of

applications. - '

The first question which must be answered by anyone who intends to
carry out statistical analysis is what exactly are the parameters

about which inference is required.

]G. Nathan, Hebrew University, Jerusalem and isreal Central Bureau
of Statistics
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One of two extrehe answefstb this question is often given(Brewer and
Mellor (1973); Smith (1976)). One, as advanced for instance by Kish

and Frankel(T97ﬁ),considers'thattheoniyre]evantinferenqe concerns

finite poﬁu]ation‘parameters, such as the population regression
coefficient:. . ' '
- . - N -2
(X.=xX)(Y.=Y)/ & (X.,=X)",
! ' i=1

w
H
1=

similarly defined multiple or partial correlation coefficients or other
measures, defined with respect to the finite population only, withno
recodrse to any superpopulation model, Inference in this‘caée_would
usua]iy be design-based (Sarndal (1978)), that is based onjy on proper-
ties of the sample distribution. However mode]-based inference -about

a finite population parameter,ié also possible (Hartley and Sielken

(1375)).

The other extreme position, as stated, for instance; by Fienberg (1980),

considers all inference as relating to the parameters of a probability

distribution (a superpopulation) of which the finite population re-

presents a realization. Examples of such inference can be found in
Konijn (1962), Fuller (1975), Thomsen (1978) and Pfeffermann and
Nathan (1981). If the paramefers about which inference is made relate
to a superpopulation model, design-based inference cannot be used
alone and inference must be model-based, Sarndal (1978), or jointly
model- and design-based. Under aséumptions of independence between
the model distributionand the sampling distribution, standard (model-
based) inference is valid and the sample design only affects the

efficiency of inference.

Serious objections can be raised with respect to eachof these extreme
approaches. Model-based inference relies heavily on assumptions about
a theoretical model which are usually difficult to ensure and the in-
ference will not, ingeneral, be robust to departures from this mode]l .

On the other hand, the finite population parameters, on which design-
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based inference is made, are usually 'copies" of theoretical model

parameters with little deScrIptive value in themselves, unless some
basic model is assumed. For instance, a finite population correlation
coefficient is a useful measure of the relationship between two vari-

ables only if the relationship is approximately Tinear.

In many cases some balance between these approaches may be preferable.
This can be attainédl for instance, by considering as the objects of
inference only finite population parameters which closely approximate
superpopulation parameters of a suitable model,to which the data fit.
For Instance, if separate regression equations are fitted to relevant
sub-populations a better linear fit may be obtained than from an over-
regression. . If the sub-populations are large éﬁough this will ensure
that the finite population regression coefficients closely approximate
the superpopulation parameters, so that ény inference relating to the
finfte population parameters can be consfdered as relating to the

superpopulation parameters.

To ensure close correspondence between mode! parameters and finite
population parameters extensive exploratory analysié to dheck the
model should. be carried out,before entering into any formal analysis.
This analysis to explore various alternative models can often be based
on simple descriptive measures for which the sample design . can be
taken into account or on graphi;al displays. However the results have
to be carefully interpreted in the light of the sample design. For
example, a few large residuals with small sample weights may‘be much
less important than many smaller residuals with large weights. A use-
ful diagnostic tool to consider in the case of regression is the dif-
ference between a weighted and an unweighted regressidn coefficient.

A large difference will often indicate that the model is inadequate.

Once the parameters have been determined,we should consider what type
of inference is required (point estimation, interval inference or tests

of hypotheses). While point estimation and confidence intervals would
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be most‘appropkiate for finite population parameters,fests of hypoth-
eses, and in particular simple hypotheses, are strictly relevant only
with réSpect’to superpopulation parameters of a well-defined model.
For example the hypothesis that fwo domain means are equal can oanbe
seriously entertained with respect to the supgrpbpulation means rather -
thén their finite popilation realizations. If one Wfsﬁéé to évdid the
formulation'of'a‘que1 it would be preferable to use point estimation
or confidence intervais for the‘difference between the domain means
rather than tests of hypotheses; | f hypothesis testing abouf finite
population parameters is required,testing a composite hypothesis (e.g.
that the difference between the means is in a given range of values)
would be more appropriate than testing the simple hypothesis(that the
difference is zero}. Hote that for sufficieﬁtly large samples, any
non-zero differencé,_no matter how small, will be found significantly

different from zero.

In the following, we discuss some basic general methods of analysjsof‘
data frbm,complex-sample,deéigns and some specific methods for linear.
models and for tests of goodnessof fit and of.independence in contin-
gency tables. In general we shall consider the inference as‘relating
to finite population parameters. ' Howevér we consider this inferénce
as relevant'only if the finite popu]ation‘parameters closely approxi-
mate ﬁuperpopulationrmodel barameters.‘This leaves open the possibil-
ities of tending either towards a purély design-based appfoach or to-
wards a purely model -based approach, according to one's personal de-

gree of belief in the validity of an underlying model.

2. BASIC GENERAL METHODS

2.1 Generalized Wald Statistiﬁ

If the hypothesis to be tested is linear (or can be linearized) '
“in the expected values of asymptotically normal statistics, for which
a consistent estimator of the - variance matrix -is available, the gen-

‘eralized Wald Statistic can be used (Grizzle, Starmer and Koch (1969)),
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Koch, Freeman and Freeman (1976}, Freeman, Freeman, Brock and Koch
(1976), Shah, Holt and Folsom (1977) and Koch, Stokes and Brock (1980)).

We assume that we wish to test the hypothesis:

H: XB=28 (2.1.1)

o o’

where X is a known rxp design matrix of full rank. B is a px]
unknown parameter vector (either finite population parameters or super=-
population parameters) and eo is a known rx] vector of constants. In
case the hypothesis is not linearafirst-order Taylor series approxi-

mation can be used {Nathan (1972) and Shuster and Downing (1976)).

We assume that a consistent asymptotically normal estimator B,
of B is available, as well as a consistent estimator, V, of the cov-

ariance matrix of 8, whose distribution is independent of that of B.

‘Then the qeneralized Wald Statistic, defined as:
2 - ~ -1 '
= - 1 i -
X, = (X8 eo) (xvx') ' (xB ao) (2.1.2)
is asymptotically distributed, under the null hypothesis, as chi-
square with degrees of freedom equal to the dimension of the hypoth-

esis (p-r).

The consistency of B and of V and the asymptotic distributions of
é and of Xi can all be considered with respect to the sampiingdistri-
bution or with respect to the superpopulation distribution.

1
!

The major problem associated with this approach is in obtaining

the consistent estimator, G, of the covariance matrix when £ is non-
linear in the sample observations (as will often be the case). Rao
(1975) surveys the various methods of variance estimation which can be
used: linearization (Tepping (1968)); Balanced Repeated Replication
(McCarthy (1969)); and Jackknife (Miller (1974)). Several general comput-
er programmes are available for their implementation - e.g. SUPERCARP
(Hidiroglou, Fuller and Hickman (1980)), SUDAAN (Shah {1978)) for
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.llnearlzatlon and OSIRIS IV: PSALMS for balanced repeated replication.
A complete llstlng and comparlson of programs is given by . Kaplan,
Francis and Sedransk.(1979).

Emplrlca! comparrsons of ‘the variance estimators are q:ven by KISh4V
and Frankel (1974) arid by Richards and Freeman (1980) and theoretl'al
comparisons by Krewski and Rao (1981).

Howgver, attention should be given to the stability of thé variance
estimator, especially when the number of parameters is large. In
addition, care must be taken with respect to the conditions under
which consistency and asymptotic properties hold for compiex designs.
For instance, for a two4stage design asymptotic results may require

both a large number of PSU's and a large number of final units per PSU,

2.2 _Approximation'and Modelling of the Covariances

'The‘practita] difficulties iﬁvolved‘ih obtafﬁinq“é stable consistent

estimator of the covariance matrix have led to attempts to use simp-

lified approxfmations to such estimators. The basic idea is that

by assuming some ‘structure for the covariance matrix, more stable

estimators of fewer parameters can be used.

The approximation can be carried out under a'pure desiqn-ba;ed
approach, direcfly withjréspect to the covariance matrix. |If assump;
tions can be made on equality of design effects for variances and
covariances within a given sub-group of paraméters,overal] estimators
of covariance can be used.  This approach is used, for;fnstance, by
Nathan (1973), Fuller and Rao (1978) Fellegi {1980) and Lepkowski
~and Landls (1980).

Alternatively mod9ll|nq of - the populatlon structure itself can

lead to simplified covariance matrices whlch can easnlytxaestlmated
(see, e.q., Altham (1976), Fuller and Battese {(1973), Tomberlln (1979).
Holt, Richardson and Mitchell (1980), Imrey, Sobel and Francis (1980)
and Pfeffermann and Nathan (1981)) ' :
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2.3 Modifications of Standard Tests

The widespread use of standard computer packages has encouraged

the search for simple modifications to standard test procedures to take
into account complex sample design. The idea can be regarded as a
natural extensién of the use df design effects asmultiplicative factors
for variances based onasimple random sample of the same size,in order

to correct for the complex design used.

The correction may indeed be based on design effects of various

estimators or on average design effects - (see, e.q., Cowan and Binder
(1978), Fay (1979), Fellegi (1980) , Raoc and Scott (1981) and Scott
and Holt (1981) .

Another alternative is to investigate the behaviours of standard

test statistics under some superpopulation modelA and to modify the
standard statistic accordingly (Cohen (1976} and Campbell {1977)).

3. SPECIFIC METHODS

3.1 Linear Models and Regression

The prior determination of the moqel and of the parameters of inte-
rest is extremely important for the case of regression analysis and
of linear models. For instance, when different regression relation-
ships must be assumed for different strata or for different PSU's in a
two-stage design, the parameter of interest could be a simple average
of the regression coefficients (Konijn (1962)); a weighted average of
the coefficients (Pfeffermann and Nathan (1981)); or their expected

.value {under some prior distribution} (Porter (1973)).

The model! and the parameters of interest should, in general, be
determined on the basis of the assumed overall population structure and
should not reflect to the structure of the sample design. However in

many cases the sample design will reflect population structure so that
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sample design variables may be part of the model. For example consider
the model: 7 '
E(Y|x],x2) =X

1812 T % B (3.1.1)

where X, intludes:only-variables‘ which do not relate to the sample

 design and X, includes all the variables which entér into the compleéx

2
sample design,_i.e. the sample distribution depends only on XZ:

P(gjx],xzj = P(s]X,). . (3.1.2)

The éstimatioh of Bl 5 and of Bé i-in (3.].])'and inference
abouﬁ'them can proceed in the .classical way, as if sampling were

simple random, if indeed (3.1.1) holds.

However if the design variables, ng'are not included in the

regression equation of interest:

E(Y[X)) = X8 (3.1.3)

1
and the design wvariable 22 is correlated with Y (conditional on
Xl) then the standard OLS estimator of g, is not consistent- (see
Nathan and Holt (1980) and Holt and Smith (1979}, who propose modified
weighted and unweighted estimates of 8,, which are consistent}. Holt,
Smith and Winter (1980) give an example of the application of these
estihators. -

I

I f thé linear model:
1

X, B ‘ _ :' (3.1.4)

' E(Yilxi)

{o% i=J (3.1.5)

0 i#]

c?v(Yi,YJIxi,xj)

indeed holids for all ‘pqpulatiop units (i, j=i, ey N} of a finite
population and the px] column vector X includes all the sample design
- variables, then the OLS unweighted estimator:

ﬁ_.,l -1 .
B = (X, X) Xy Vn (3.1.6)
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]
based on the sampled values xn = (xl, cens xn) and Y. = (Y], veey Yn)
pxn

is the 'best'" linear model-unbiased estimator of R lirrespective of
the sample design. "Best'' here.is in the sense of minimal model -
variance. However 8 is, in general, not a design-unbiased, nor even
a design-consistent, estimator of the population parameter:

_ ; -1 | ’ .
B = (xN xN) L (3.1.7)

x 1
where “N = (x], ey xN) and YN = (Y], s YN)'
pxN

The design-consistent estimator of B is the weighted estimator:

, ' (3.1.8)

~ ] _'I ]
By = (xn wn xn) Xn wn Yn

where the weight matrix, wn = diag (H;], e, H;l), is the nxn
diagonal matrix of the reciprocals of the sample inclusion probabili -

ties n, = Pr{ies).

The consistency of éw, as an estimator of B, obviously does not

depend on the model (3.1.4) holding, but the relevance of estimating
B when the model does not hold can be challenged. [t can be shown
that under certain conditions for a non-linear model, which assumes
that the conditional expectation of Y (given X) is a differentiable
function of X, the model-expectation of B can be expressed approxi-
mately as a weighted average of the slopes of this function at the
points Xi'(the weights depending only on Xi-i). However this inter-

pretation .is of limited practical value.

In any case Bw is a model-unbiased estimator of B, whenever
(3.1.4) does hold. It will not, in general, be an optimal estimator
of B under (3.1.5) for unequal probability sampling, but will be so

if the conditional model variance of Yi is proportional to .
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f.e. - - : V(Y||X|) ‘=.'k._']1i _‘ - (3.1.9)

-~

" Since the weighted estlmator 8\#’ is more robust then the un-

welghted,estlmator, 3, 'in the sense that it is both a model- unblased
estimator of g, - if the mode] Holds and a design-consistent estimator
of B, if ndt,‘the‘use of the weighted estimator éw is recommended, for
estimation of B, whenever there is no assurance that the model (3.1.4)-
(3.1.5) holds. The question which must then be answered by the subject-

matter specialist is whether B is a relevant parameter to estimate.

It should be noted that for self-weighting designs B .and éw coin-
cide. The estimator, éw (3.1.8) ,can be obtained directly from standard

comphter programmes which provide for weightéd regression (e.g.BMDP) by

using the weights 1’“1‘ or from other programmes (e.g. SPSS) by carry-
ing out unweighted regression on the transformed variables 'Yi//ﬁ?.and
xiffy?} but not on the weighted variables Y./, xé/Hi. However, it

should be noted that under either alternative the reported variances

and covariances of the estimators are incorrect and that the standard

. significance tests (e.g. F tests) are invalid, and can result in gros-

sly misleading conclusions.

Assuming the mode | (3.1.4) - (3.1.5), the model variance of B is:
m ; P -1 ‘
V(B[X ) = o (x x )., (3.1.10)

which is the result given by standard unweighted regre;sion programmes.

HoweVer, the model variance of éw,is:

- Ry 't VLN ! -1
v(ew|xn) =ot(X W XD T X oW oW X (xowox)o .o (3.1.0)
i . . 1 ' i '
" The weighted:regression programme, with weights 1/H , will give
AR .
.a value of (Xn Wn Xn) ! for the model varlance of B which equals
(3.1.11) only if N‘ = | . Thus none of the standard outputs for stan-

dard errors or for tests of hypotheses are correct.
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However the estimator of the multiple correlation coefficient obtained

from weighted regression:

a “
> (Y =X g, W (Y -X 8
R™ = n n W : n'n n "W ’ (3.]']2)

(=¥, 1) Wty -y 1)

where ;n = (zé Yilni) / (ES I(Hi), is a design-consistent estimator of

the population multiple correlation coefficient:

(Y. -X. B) (Y.-X. B)
R e NN N N (3.1.13)

=¥y L) (=Y 1)

- ' i
where YN = (1/N} lN YN'

.The design-variance of éw, which must be considered the relevant

measure of accuracy for Bw as an estimator of B, cannot in general, be
obtained from only the first order inclusion probabilities, Hi' For
most sample designs used in practice, the design-variance of §w will
have to be estimated by one of the variance estimating techniques mention-
ed above i.e.lineafization, Batanced Repeated Replication or Jackknife
(see, e.g., Jonrup and Remmermalm (1976) and Holt and Scott (1981)).

i

.3.2 Categorical Data Analysis

The simplest analysis of categorical data relates to a single classi-
fication of the population into k classes with probabilities
(relétive frequencies) El = (p], cees pk-l)' In order to test the
null hypothesis of goodness of fit to a known distribution

E; = (pol’ T pok-l):

> (3.2.1)

the approaches outlined in section two can be used,

Al A ~
We assume that a consistent survey estimator p = (p], cers pk_])

1 .
of p is available. If it is asymptotically normal:
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wﬁ(é-y-$ N,V | (3.2.2)

and a consistent estimator, V, of V is avallable, then-the_generalized_

Wald statistic:

2 . S =l e :
X, = n(e-pp) ' (e-p,) - (3.2.3).

which is distributed.asymptotically as sz-] under Ho’ can be used

to test H, .

For many s;mpie designs consustent estimators of V are directly

available and for more complex designs 'they can be obtained by standard
methods. However if tests of hypotheses of goodness of fit have to be
carrled out for a variety of varlables and classifications, the use of

the standard x statistic:

r

2 . ~ 2 ‘n ] _‘I ,\ |

X =n kzl (p, 'poi) /ey = nlp-gy) Po-(E"Eo) , (3.2!h)

where P = diag (go) - E p s with appropriate modlflcatlon may be pre-

fered. Rao and Scott (1981) show that the asymptotic dlstrlbution of
2

X under H is that of a weighted sum of . k-1 tndependent x2 variables-

with one degree of freedom each.

>
[
v
He1t
>

: ZI; .Zi ~ N(0,1) independent (3.2.5)

Ay are the eigenvalues of

L p7] ‘ B
p =PV () 22y 2 cor 20 > 0). (3-2-5)

A conservative test of (3.2.1) can then be obtained by ueing the
statistic XZIAA in EOnjunctidn with a xﬁ i “distribution. l] can be
components of - E _For example, for. proportlonal stratlfned sampllng
Al.sl, so that X |tself can be used as a conservattve test stat:stlc

In other cases the use of lei with:
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A, = ———

1
k-1

1=

LI e B }
N~ x

where di==V[§i]/[pi(l-pi)] is the design effect for ﬁi' has been shown

to be a good approximative test by Hidiroglou and Rao (1981) for the

Canada Health Surveys and by Holt, Scott and Ewiﬁgs (1980) for large
2 -

scale U.K. surveys. An alternative approximation - X /d, where

d = k-I I di' ~ has been proposed by Fel]egi (1980).

i=1

Direct modelling for p has been proposed by Altham (1976) and by
Cohen {1976), but their models have the serious limitation that they

imply A, = 2 = ... = lk-l = X, which is equivalent to a constant de-

1 2

sign effect over categories. This is not a realistic assumption, in
2 .

" general, and results in X /) having exactly an asymptotic Xﬁ-l distri-

bution,
For testing independence in a two-way contingency table, the. hypo-

theses can be formulated:

Hot M) =Py = Py Py =0

(i=1, ..., r=1; j-1, ..., c-1}, (3.2.7)

where Pij is the population probability of cell (i,j) Piyr Pyy are

the marginal probabilities and E' = (pll’ cens rc-l)' The generali-
zed Wald statistic for testing Ho is: ‘
2 _ o~ “-1 ~ 8
X = nl@1 vln , | (3.2.8)

- ! ~ ~ >~ . . .
where . [h(p)] = [hII(B)’ ceer h b oo fp)] and V /n is a consistent
estimator of the covariance matrix of h(p). Versions of (3.2.8) for
specific designs with various methods for estimating Gh/n have been
used by Garza-Hernandez and McCarthy (1962), Nathan (1969, 1975)

Shuster and Downing (1976) and Fellegi (1980).
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A modified statistic sumrlar to X /x has been proposed by Rao and
Scott (1981):

2 L, T ¢ ' o
Xep = (n/8) |-Z-I J:] (p;; P, P ) /(pI+ p+J) (3.2.9)
I O r ¢ '
where § = yreoy B E (h)/(p'+ p+J) and

|-I j=1

(h)/n is an. estlmator of the variance of h,. J(_). & can be written

ln terms of the estimated deffs of h (E):

; (1 -p J0-p J)‘iJ , (3.2.10)

1 j=1

G
il
Il e iy |

- where gijhis an estimator of the deff, Gij’ of hij(é)

Gij = nV[h (E)] / [p.+ *j 0 -pl+)(l -p+J) . (3.2.11)

Estimates of the design effects may be easier to obtain than estimates

of wvariances,

Empirical anvestiqatlons by Holt, Scott and Ewnnqs (1980) and-by
Hidiroglou and Rao (1981) |nd|cate that the dustrsbution of XCl is
2 . .

close 0 X (1) (1)

3.3 Other Types of Analysis

while linear models, tests of goodness of fit and tests of indepen-
dence cover many important analysis applications, other types of
analysis, such as principal component and factor analysis,discriminant
analysis, path analysis, loglstlc regression, log-linear models non-
~parametric methods, etc. cannot be directly dealt with in the same

way. While the general fechniqdes outlined in section two could be.
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used, their application presents difficulties and only few cases of their

application have been reported.

Since correlation coefficients are a basic elemeﬁt in most multivariate
analysis, some empirical studies of the effect of sample design on their
estimation have been carried out by Kish and Frankel (1974j, Bebb ington
and Smith (1977) and Holt, Richardson and Mitchell {(1980). "No general
conclusions can be formulated, but design effects are definitely not
negliéib]e. Bebbington and Smith (1977) have also studied the sampling
.variability of principal components estimators,

»
In other areas design effects for logits have been studied by Lepkowski
and Landis (1980} and confidence intervals for quantiles by Woodruff
(1952) and by Sedransk and Meyer (1978). . :
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THE NONRESPONSE PROBLEM

J.G. BETHLEHEM AND H.M.-P..KERSTENl

This paper presents an outline of the nonresponse research
which 1s carried out at the Netherlands Central Bureau of
Statistics. The phenomenon of nonresponse is put into a
general frame-work. The extent of nonresponse is indicated
with figures from a number of CBS-surveys. The use of
auxiliary variables is discussed as a means for obtaining
information about nonrespondents. These variables can be
used either to characterize nonrespondents or as strati-
fication wvariables in adjustment procedures.

Adjustment for nonresponse bias by means of subgroup
weighting is considered in more detail. . Finally, the last
section lists a number 6f other methods which also aim at
reduction of the bias.

1. INTRODUCTION

Nonresponse is becoming a growing concern in surve§ research., The
phenomenon of nonrespoﬁse, when people-ére not able or witling to answer
guestions asked by the interviewer, can appear. in sample surveys as well
as in censuses. |t affects the quality'Of the survey in two ways: first
of all, due to reduction of the available amount of data, estimateé of
population parameters will be less precise. Secondly, if a relationshio
exists between the variable undér'investigation and response behaviour,
statements made on the basis of the response are not valid for the total
pépuiation. For example if the housing d;mand of respondents is greater
than the housing demand of nonréspondents, estimates of the housing demand

in the total population will be significantly too high.

].J.G. Beﬁhléhem and H.M.P. Kersten, Netherlands Central Bureau of Statistics.
The views expressed in this paper are those of the authors and do not
necessarily reflect the policies of the Netherlands Central Bureau of

Statistics.
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It is obvious that the extent of the nonresponse must be kept as small

as possible. If, in spite of these efforts, there still remains a consi-
derable amount of nonresponse, measures have to be taken in order to prevent
formulation of wrong statements about the population. Combination of .
adjustment procedures and usual estimation techniques is necessary to

yieid valld population estimates.

Two departments of the CBS {(Netherlands Central Bureau of Statistics)

are involved in nonresponse research. The Department for Social Surveys

is responsible for the field work of the surveys. It is concerned with
minimizing nonresponse during the process of collecting data. Research is
carried out on the optimal number of recalls and the time of the interview.
(See Widdershoven & Van den Berg {1980).) Experiments are set up to find
the optimal way to approach persons and households with introductory
lefters. Attempts are made to measure the impact of interview fatigue and
interview pressure. Ultimately, notwithstandingltﬁese efforts, there still
remains. an amount of honresponse. The Department for Statistical Methods
investigates the effect of nonresponse on the accuracy of the results of
the survey. Methods are developed there to adjust‘population eétimates for
the bias due to nonresponse. The remainder of this paper is mainly con-

cerned with the work of the latter department{

The next sections present an outline of the nonresponse analysis at the
CBS. Section 2 introduces definitions and the accompénying problems. _
Nonresponse figures of a number of CBS-surveys are summarized. In section
3 graphical methods are discussed to select auxiliary variables. They
provide insight into nonresponse and can be used in adjustment procedures.
" Section 4 presents adjustment methods which make use of subgroup weighting

and 'section 5 lists a number of other methods.

2. THE PHENOMENON OF NONRESPONSE

In this section the problem of nonresponse is placed in a general frame-

work, in which also a number of other sampling problems play a role.
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Nonresponse figures for a number of CBS surveys are given. Situations are
described in which a relationship exists between the variable under investi-
gation and the response behaviour. In the last part of the section two

models for the general of nonréSponée are considered.
2.1 Terminology

The objecfive of evefy survey is .the determinatfgn of certain population
characteristics. Due to all kinds of .errors, the true value will generally
never be obtained. A typology of sources of error is presented in fig. 1.
The scheme is due to Kish (1967). . |

FIG. 1. TYPOLOGY OF ERRGRS IN SURVEYS

error

| ]

(:sampling erréE) ‘(Tnonsampling error_)
(jObservation errgﬁ) ) (Eonobservation errof;)

(Vmea5urement error) ( processing error;) (}oncoveragé) (}onresponse)

The two sources of error in surveys are sampling efrors and nonsampling
errors; Sampling errors consist of that part of the‘error which is due
to the fact that only a sample of vailues is observed rather than the
total population. The sampling error has an expected frequency distri-
bution generated by the totality of sampling errors in all possible
samples of the same size. This distribution is used to estimate the

population characteristic.
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Nonsamoling errors are those errors in sample estimates which can not be
attributed to sampling fluctuatlons. Nonsampling errors are often a more
serious problem than sampling errors. Nonsampling errors can be divided in

observation errors and nonobservation errors.

Observation errors are caused by obtainiﬁg and recording observatisns
incorrectly. They may be further subdivided into measurement errors.and
processing errors.

Measufement errors are caused either by the interviewer or by the respon-.
dent. . The interviewer himself can be a source of error. He can influence
the response by his mere presence, by his (or her) sex,‘skin colour, age,
or dress. Also the way in which he asks questions and clarifies statements
affects results. The answer of a person may depend on the type of question
(whether a question measures a fact such as year of birth, or an Oplnlon)
Errors can also be introduced by factors such as whether the person under-
stands the quest|on, whether he knows the answer or not, whether he wishes
to conceal the answer, or whether he wishes to present a certain image.
Moreover, memory is not always free of errors, and data may be incorrectly

recorded.

Processing errors arise during the processing of the data at the office.

They occur during the stage of coding, tabulating and computing.

Nonobservation errors are due to the fallure to obtain observations on
certain parts of the population. They may be subdivided in noncoverage and

nonresponse.

Let the target population be the population the survey is intended to cover.
Practical difficulties in handling parts of the population may result in
their elimination from the scope of the‘SUrvey 't IS also possible that
the actually sampled population contains elements which do not belong to the

scope of the survey.
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Noncoverage refers to all errors which result from differences between
target population ahdlsampled population. Elements which belong to the
‘target population as well as to the sampled population are correct elements.
The situation in which elements in the target population do not appear in
the sampled population is called undercoverage. These elements have zero
probability of selection in the-sampie. The situation in which elements

in the sampled popu]ation do not appear in the target population is called
overcoverage. Elements, classified as overcoverage, are called duds. They
have to be excluded from the sample before analysis takes place. |f there
is unexpected overcoverage the ultimate sample size may be less than the

planned sample size.

‘Nonfesponse refers to failure to obtain observations on some elements selec-
ted and‘designated for the sample. A good classification of nonresponse
errors depends on the survey situation. The classification given below
focuses on problems in face-to-face interviews. A similar treatment may be
applicable in other survey situations. The foilowing categories of nonres-

ponse can be distingdishédf

(1) Not at home. To reduce the extent of this category'récalls can
be made. Research should be carried out on the optimal number of
recalls. The term temporarily unavailable would be a useful gener-
alization for this category, denoting a delay rather than a denial
of the interview. The respondent ma9 be too busy, tired, or ill

at the time, but will be cooperative on another call.

(2) Refusal. Some of the factors causing refusal are temporary and
_changeable. A person may refuse because he is ill-disposed or
'approached ?t.the wrong hour. Another try, or another approach may
find him coépérative. Since quite alnumber of refusals can, however
be considered permanent, a better term for this category is unob-
tainable,, denoting a denial rather than a delay of observation.

Repeated attempts will not bring success. From this view, respon-
‘dents known to be away'during the entire survey period belong in

this category, rather than among the not-at-homes.
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(3) Incapacity or inability. This type of nonresponse may refer to

mental or physical illness which prevents response during the entire
survey period. A language barrier belongs also to this category.
If generalized thfs'category could fit in the previously defined
unobtainables. It can, however, bé useful in some situations to
distinguish between the unwilling and the willing; But incapable,

respondent.

(4} Not found. This category can e.g. bé large for movers. Such res-
pondents are either not identified or followed because this would
. be too expensive. Cases of not attempted interviews belong to the
. same general category. They could be caused by inaccessibility
! {lighthouse keeper, shepherd), or dangerous surroundings (watchdog,

slum).

(5) Lost information. Information may get lost after a field attempt.

Some questionnaires may be unusable because of poor quality or
cheating. Other may remain unfilled because they were lost or

forgotten.

The typology as described above is applicable in most survey situations,
but care must be taken in case of complex sampling designs. When e.g.
sampling takes place in more stages the typology can be used in each sepa-
rate stage. The same source of error can be classified differently in
different stage.. This Is illustrated in an example. In a household survey
first a sample of households is selected. The interviewer enumerafes all
persons {n a particular selected household and after that selects é sample
from this list. In such an enumeration the studenf living in an attic is
often concealed. |In the first stage of the samp]ing procedure this situ-
atipn would be classified as measurement error, and in the second stage as

undercoverage.

For some sources of error classification may depend on other factors and
appropriate rules to cover them must be adopted. For example, if a person

to be interviewed died before the interview could take place, classification
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‘depends on the tlme of. death I f death occurred before the day the sample
was selected th:s could be claSS|f|ed as overcoverage, but if death occurred
between the day .the sample was selected and the day of the interview, the

correct classification may be nonresponse.

Before selecting the sample, thé population must be divided ihto sampling
units. To every element in the population there must'corresbond one and
only one sampling unit. The construction of the physical 1ist of sampling
units, called the sampling frame, is often a major practical problem. The
nature of the available sampling frames is an-important consideration in

. sample design. Relerant factors include the type of sampling unit, extent
of coverage, accuracy and completeness of the list, and the amount and

quality of auxiliary information in the list.

" For_sampling frames in whlch the sampling unit is a person the CBS has to
restrict itself to administrative records of 1ocal authorltles (muntcnpall-
ties). For household surveys the CBS manages its own frame, but at the
moment the use. of the list of delivery‘points of the Post.OFFTce is consi-

dred as a sampling frame.

2.2 The Extent of Nonresponse :

It is rather difficult to compare nonresponse figures of different surveys.
The percentage of nonresponse depends on a number of circumstances: aim of
the survey, type of sampling unit, the sampling design, efficiency of the
field work, performance of the interviewers, nonresponse reducing measures,
perdiod in which the survey is held, the target population, the length of
the questionnaire, wording of questions, etc. Even the definition of non-
response may differ. It is necessary to create a frame-work which enakles
proper comparison of surveys. By controlling the factors which fnfluence
nonresponse figures, judgement can be passed on the quality of the different
surveys. Such a frame work also offers opportunities for comparing surveys

from different countries.
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Table 1 presents nonresponse figures of a number of CBS-surveys. A clear

trend of increasing nonresponse percentages can be seen in this table.

Table 1: Nonresponse percentages of some CBS—surveys

LFS ss¢ SLC

NTS ~ Hs

year tn .rn “tn en tn rn tn rn tn
1973  13.2
1974 . 28.2 15.6
1975 15.8 9.0 30.1 18.3 14.5
1975 28.1 18.6 23.01) 15.6 12;9
1977 13.1 6.6 30.9 20.5 29.7 16.9 17.6 9.3
1978 » 36.1  23.9 33.0 26.2_ 21.9 12.5
1979 19.7 36.6 244 .33.72)‘ 30.6 23.9 25,5
1980 36.8 24,7 35.6 19.7 32.1 24.5
1) = elderly people only LFS = Labour Force Survéy
2} = young people only S$SC = Survey of Consumer Sentiments
tn = percentage of total nonresponse SLC = survey of Living Conditions
rn = percentage of refusals NTS = National Travel Survey

HS = Holiday Survey

As mentioned before a relationship between the

variable under investigation

and the response behaviour reduces the value of the conclusions of the

survey.

The existence of such relationships is not rare, as will be illus-

trated in the following examples. |If the aim of the survey is to measure

in which way people spend their spare time, then the reason of nonresponse

"not at home' is .rather annoying since these people are probably spending

their (spare) time somewhere else.

The same applies for the'survey on the

number of hours people watch television: the not-at-homes (in the evening)

are probably not watching television. One of the aims of the Housing
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Demand Survey is to measure the frequency with which peoble move to other
houses. As there is a considerable amount of nonresponse due to moving
(the sampling unit is a person), the estimate for the total population
will be biased. A number of surveys show that unmarried people have a
smaller response rate. |f there is a relationship between marital status
and the variable under Investugatlon then estumates will be wrong in this

case too.

2.3 Response Models

The first requifemgnt.in the development of theories for the treatment of
nonresponse is the formulation of a mathematical model, which describes the
way in which nonresponse is generated. Two models appear frequently in the
literature. They are denoted here by 'random response model' and ''fixed

response model'',

Acbording to the random response model every element in the population has
a'certéin (annown) probability of response. These‘fesponse prbbabilitfes
are not necessarily the same for every element. When the interviewer

- contacts the person to be'quéétioned the probability mechanism is activated

and determines whether -or not the person responds.

The fixed response model assumes the existence of two strata in the popu-
lation: a stratum of potential resbondents and a stratum of potential non-
respondents.’ Size and content of each stratum is not known beforehand.
They are determined by the specification of the survey (alm type of ques-
tions, interviewing techniques, interviewers, period of field work, etc.).
Disregarding the two strata a samplé is selected from the population.
Consequently the number of reSpondents is a random variable in both the

.random response model and ‘the fixed response mode]l .

If instead of sampling complete enumeration would take place then in the
tase of random response model the determination of respondents would

still be a random process whereas in the case of the fixed.response model
this would be fixed. There iﬁ, however, a certain resemb1anqe between thé

two models. Assuming the existence of two stochastic meachanlisms, the
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sampling mechanism and the response mechanism, both models differ only in
the order in which the mechanisms are applied: In the fixed response model
first the response mecﬁanism is activated for each element in the population.
This dete?mines the two strata. Then the sample is selected. In the random
response model first the sample is selected. Then the response mechanism is

activated for each selected element.

The random response model offers the opportunity to estimate response. prob-

abilities. These estimated response probabilities can be used in'adjdstment
procedures, or they can be connected to personal characteristics. The fixed
response models generally results in easier formulae. The theory, developed
within this model, is conditional on the realized response and non-response
strata. Consequently the accuracy of the estimates can be computed, but the
accuracy of the estimation method can not be deterﬁined. Due to this last

argument research is focussed on the random response model.

3. SELECTION OF AUXILIARY VARIABLES

3.1 Auxiliary Variables

It is important to discover a possibly existing relationship between the
variable under investigation and the response behaviour., It is, however,
not possible to determine such a relationship using the sample data, since
the values of the variable under investigation are not known for the nonres-
pondents. To be able to say something about nonrespondents thetre must be
information available about them. One source of information about the non-
response is formed by auxiliary vériables. Auxiliary variables are defined
as variables which can be measured for both respondents and nonrespondents.

Two types of auxiliary information can be distinguished:

(1) Informatfon‘which can be collected by the intervjewer>without

| a face-to-face interview., Among the'information, obtained in
this way, are type of town, type of housing,'(approximate) year
of construction of the housing and social status of the
neighbourhood. | ' '

(2} Information which can be obtained from administrative records.

Typical examples-are age, sex and marital status.



- 140 -

Analygis of the relationship between auxiliary variables and the response
behévﬁour provides ‘insight in the group of people which do not respond. '
It may give additional information about the relationship between the

:

variable under invéstigatlon and the response behaviour. Auxiliary var!—
ables show:ng a clear relationship with the response behaviour play an E
important role in adjustmént procedures, to be dlSCUSSEd iater

.
1t is assumed that auxiliaryvariables are nominal variables, i.e. diffeient
values have no other meaning than to distinguish between different grou?s.
Arithmetic operations on these values, which in fact are only labels, are
not allowed. The assumption that the variables are nominal is in practice
not a restriction. Many variables are nominal and other types of variables
can ea5|ly be re-expressed in terms of nominal variables. As an example of
the available amount of auxiliary information, the auxiliary variables of

the -Housing Demand Survey 1977/1978 is listed below.

(1) vyear of birth : - (7) number of floors in the hou51ng

(2) sex _ ‘ ~ (8) year of construction of the housing
(3) marital status ~ (9) municipality

(4) size of the family : (10) quarter of town

(5) structure'of the‘fami]y' (11) degree of urbanization

(6) type of housing

3.2 Graphical Methods

As a preliminary tool in the selection .of aux11|ary variables graphical
methods have been developed. The advantage of graphical methods is clear.
They brlng out hidden facts and relatlonshlps and can stimulate as well as
aid the analysis. They often offer a more comptete and better balanced
understandlng then could be obtained from tabular or textual forms of
presentation. Furthermore the visual relationships in the plots are more
clearly grasped and more'easi1y‘remembered. " (See Schmid (1954).) Two
simple grapﬁical devices are presented in the next sections: the box-piot

and the windmill-plot.
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- 3.2.1 . The box-plot

The box-plot can be seen as a generalization of a histogram or bar chart.

The name of the box plot is derived from its form (see fig. 2).

FIGURE 2. THE BOX-PLOT

reponse nonresponse

A rectangle of sﬁandard width and a height proportional to the sample size
represénfs the sample. The rectangle is divided in a number of layers (the
categories of the auxiliary variable}. The height of a particular layer

is proportional to the number of sample elements in the corresponding cate-
gory. Each layer }s divided by a vertical line in a left-hand part (the
response) and a right-hand part {(the nonresponse). The areas of these two
parts are proportional to the amounts of reSpbnse and nonresponse in the
particular category. Fig. 3 contains an example of a box-plot. The data
originate from the Housing Demand Survey 1977/1978 as far as it concerns
Amsterdam. The auxiliary variable is the marital status of the person in

the sample,
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"FIGURE 3. . BOX-PLOT OF MARITAL STATUS IN AMSTERDAM IN
~ THE "HOUSING DEMAND SURVEY 1977/1978.

response nonresponse

nhot yet married

married

| divorced

widowhood

A number of aspects may be worth paying attention to:

(1)

(2)

The heights of the layers indicate to what extent categories
contribute to the sample. Clearly a large part of the people is
married. The smallest category is the category of people who are
divorced. ' o N |

The extent of the nonresponse can be read from the distance of
the vertical dividing lines to the right-hand side of the box.

In this examhle there obviously is a considerable amount of
ﬁonfesponse. ' .

If all dividing lines form approximately a straight line there is

no relationship between response behaviour and the auxiliary

-
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variable. Ciearly, in this situation there exisfs a relationship:
Married people respond better than other people. Response is bad
in the group of unmarried and divorced people;

More about the box plot can be found in Bethlehm & Kersten (1981).

3.2.2 The Windmill-Plot

The windmill-plot is a graphical representation of tﬁe.results of corres-
pondence analysis. Correspondence analysis is a technique for the analysis
of associations in two-way tables. (See e.g. Benzecri (1976).). A geo-
metrical representation of the rows (the categories of the vertically tabu-
lated variable) and the columns {the categories of the horizontally
tabulated variable) is constructed. This geometrical represéntation con-
tains all the information concerning the associations in the table. By
means of a scaling procedure rows and columns are assigned values in such a
way that the correlation coefficfent, computed by using these values, is
maximized. To each cell in the table there correspond two scale values: a
row-value and a column-value. When these values are conceived as coordi-
nateé, a'plot of the table can be constructed. In.this plot all points
form an unequally spaced grid. Such a plot may not be easy to inte}pret.
To simplify interpretafion regression lines are plottea instead qf the
points themselves. Due to the special properties of the scale values the.
| regression line to explain y-values from the x-values in the plot has the

simple form
Y = D.IX : h (])

and the regression line to explain the x-values from the y-values has the

form

were P, is the maximizéd correlation coefficient. By plotting both regres-

sion lines the result is the windmill-plot, see fig. 4.
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FIGURE 4. THE WINDMILL-PLOT

" A number of aspects may be worth noting:

(1) The origin represents both marginal distributions of the table
(2) Scale values close to the origin point at categories which
resemble the margihal'disfribution and thus have a regular
_ behaviour. Far out scale values Indicate differently behaving
categories. ' o
(3) The relationship between the two variables is strong if the two
regression lines are near the 45° -line.
4) Projection of a differently behaving category of one variable
via the regression line on the axis of the other variable
provides a clue about the dependencies of the categories of

the variables.

The plot as described above can not account for all the information in the
table. It explains as much as is pqssible in a two-dimensional plot.

Conditionally on the first plot a:second plot can be constructed, which
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~accounts for as much as is possible of the information not yet explained.
I'f necessary even more plots can be constructed, but preferably one plot

.is sufficient to explain the major part of the associations.

A total of s of such plots can be made, in which s is one less than the
minimum of the number of rows and the number of columns. Let Pys Pps --4P

be the maximized correlation coefficlents. Since

ENTE X2/, | - )
1

Il 2w

where X2 is the chi-square test statistics for the table and N the general

total,
T, = Np?/x2 \ (L)
is a measure of the amount of information éxplained by the i-th plot

.(i=l, 2, .., s).

Fig. 5 contains the first windmili-plot for the variables age (six cate-
gories) and type of nonresponse (five categories) of the Housing Demand

Survey 1977/1978 as far as it concerns Amsterdam.
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FIGURE 5: WINDMILL-PLOT OF AGE BY TYPE OF NONRESPONSE ‘IN
AMSTERDAM IN THE HOUSING DEMAND SURVEY 1977/78

20-29
" _ 30-39
- Q [11]
[ -
— =
— N
. ut
© -
E o
Q ot
40-—49f =
50-59 2
70+

It contains about 88% of the information about associations ih the table
(r] = 0.88). The main reasons for nonresponse of the old people are
refusél and ilinesﬁ. 'In cése.of'young‘people the nonresponse is the

result of the-impossibility of making contact: uninhabited, not at home: and
moved. More abbut the application of correspondence analysis can be fcund

in Bethlehem & Kersten (1980).

moved
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3.3 Other selection methods

There are many other, mainly nongraphiéal,.hethod to determine the asso-
ciation between auxiliary vairables and the response behaviour. Much
about association in contingency tables can e.g. be found in Bishop,
Flenberg & Holland (1975).

A popular method for the selection of the most important auxiliary vari-
ables is AID (Automatic Interaction Detection), described by Morgan &
Sonquist (1963). In a stepwise process those auxiliary variables are deter-
mined which can explain as much as possible of the variance of the binary
response variable. There are disadvantages which make reliable application
of this method doubtful. As the selection procesé proceeds in a stepwise
fashion there is no guarantee that the optimal solution will be found.
Because there is no stopping rule based on a statistical model this sense
the result is rather arbitrary. Further research in this field i's necessary
(see e.g. -Kass (1980)). ' '

4. REDUCTION OF NONRESPONSE BIAS BY SUBGROUP WEIGHTING

‘When a relationship is found or suspected between the variable under
investigation (Y) and the response behaviour (R) measures have to be taken
in order to reduce the nonresponse blas. In this section a number of
adjustment procedufes are dis;uséed which are based on subgroup weight-

ing., Attention is focussed on estimating'the'population mean of Y.

't can be shown that the bias, introduced by only using response values,
is proportional to the covariance between Y and R. If it would be pos-
sible to divide the population in a number. of subgroups in each of which
the covariance is neglectable, then (nearly unbiased) estimates of the

subgroup means can be combined into a (nearly unbjaséd) estimate of the.

population mean.

Let the finite population consist of N elements U1; UZ’ vey UN with Y-values

Yl’ YZ’ ces YN. "From this population a simple random sample Ups Yoy oenlp
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(stochastic variables are underlined) of size n-is selected without

replacement. The corresponding y-values are f&, Yor <5 Y, and the

response behaviour Is -indicated by LTS CPRER (Ei-=_l indicating response

and r, ='0.nonresponse) In fact Y. can only be observed for those sample
% Y

{m=r, + 52.4 ..t ), with ¥-values Y], yz, e ¥ n’

.!—

A i
elements_gI for which £y = 1. The m responding elements are denoted by
+

Uoys Hgioeees Uy I

Let X be an auxiliary variable ‘inducing a division.of the population in
H subgrdups with sizes N],‘Nz, ooy NH" In subgroup weighting first of all

in each subgroup h an estimator yh-for the subgroup mean is computed:

Mh :
I | % » "
% =7 I Yoo - (h=1,2, .., H) : (5)
. =h 1=l ,
. * * * R L . ‘
whefe Yhis Yp2r -0 ¥ hm h are the values of the M respond|ng e]ements
‘ -% % %
in- subgroup h. The subgroup esttmators Yy» ¥ps --» Yy 3FE combined into

a populatlon estlmators y .
‘ in = I wth _ 7 . o (6)

The type of estimator is determined by the available amount of information

about the weights Wiy Wos oo Wy

If the sizes N], NZ; .y NH of the subgroups are known the situatfon
is equivalent to poststratification. (See e.g. Holt & Smith (1979).)  The

weights are not random but fixed quantities:

N, ,
W = o=, 2, L., H) o (7)

If these sizes are not known they can be estimated by
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: | (h=1,2,..0) (8)

where 0, is the number of sampie elements in subgroup h (n=n, +n +..+ﬁH).

] 2

In an intermediate situation where two auxiliary variables X] and X2 are

used and only the marginal totals of the two vériables'are known, a raking:
procedure can be applied to estimate the weights (see e.g. Chapman (1976)).
Suppose X] induces G groups and X2 induces H groups. Crossing XI and XZ
results in a subdivision into G x H groups. |If only the marginal totals
Nq+ (9=1,2,..,6) of X, and N__ (h=1,2,..,H) of X, are known then by using

the sample information good estimates Ngh of N can be computed. The

. gh
weights are then equal to

w L =
s =

ah i ' (9=1,2,..,6; h=1,2,.. H) (9)
All three estimators have, when uéed in the same grouping situation, :he
same bias, but the greater the amount of available information on the sub-
group sizes the smaller the variance of the estimate. Subgroup weighting
has two advantages: reduction of the variance of the estimate and
reduction of the response bias. The most extreme possibilities are .
illustrated in fig. 6. |If two yariables:are connected it means that they

have a strong correlation.
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FIG. 6 VARIANCE AND BIAS.OF ESTIMATORS BEFORE AND AFTER SUBGROUP UEIGHTING

.'fc'a-s'e:r- S @
o o

case 3

ZQS parameter to be estiméfed
--~ before subgr0up-weighfing.
'____after subgroup weighting

Y wvariable under investigation

R response variable

X auxiliary variable
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A number of conclusions can be drawn:
i

(1) If nonresponse bias exists subgroup weighting is significant when
X and R are correlated (case 2). Both bias and variance are

reduced.

(2) If no nonresponse bias exists a correlation between X and R has no
’ effect (case 4). Only correlation between X and Y reduces the

variance (case 5).

Because the data on the nonrespondents are missing, it is impossible to
use the remaining data‘to find an auxiliary variable X which is highly
correlated with Y, It is, howevér, possible to use this data to look for
aux[liary variables which are highly correlated with the response

< varigble*R.‘ If such a variable has been found, application of it in
Subdroup weighting will reduce the nonresponse bias (if it exists), but

not always the variance.

5. Other adjustment methods
Several other adjustment methods appear in the literature. Several of
them will be discussed in this section. Some of them need further .

research to establish their merits. i

5.1 No adjustment

In some situations no adjustment is necessary. |f it appears that no
relationship exists between the variable under fnvestigation and the
response behaviour the response can be considered as a random sample

from the pbpulation. Also if statements are restricted to the population
of potential respondents no correction is necessary. In all other‘
situations no adjustment is only justified if the category '"nonresponse'

is included in all tables in publications.
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5.2, Imputation

Imputation procedures solve the problem of missing observatfons due to
nonresponse by substitution of values in the records of the nonrespondents.
In '""hot deck' imputation data are taken‘frém reSpondents of the current
survey, while in "cold deck' imputation data are taken from a previous
survey. If the response structure of prévious and current survey

resemble each other the results of cold deck impiitation aid hot deck
‘imputation will roughly be the same. i@putatidn can be carried out .in

several ways. Some of them are:

(1) imputation of a random respondent

(2) imputation of the mean respondent

(3) imputation of a random'respondent within the same subgroup
(4) imputation of‘ﬁhe mean respondent within the same subgroup
-{5) imputation of a value obtained by fitting a model’

{(6) imputation of upper or lower bounds

Procedures (1) and (2) do not reduce the bias. Procedures (3) and (4)
resemble sUbgro&p weighting. The effect of pﬁotédure (5) depends strongly
on the fit of the,mbde] and the reasonableness of the model assumptidns.
Procedure (6) gives insight in how bad things éould be if no adjustment

would take place.

5.3. Adjustment for not-at-homes

The well-known method of Politz & Simmons (1949) tries to adjust for
not~-at-home bias by estimating the probability to find a.person at home.
This is.perfdrmed-by asking respondents e.g. how 6ften they were at

home at the time of the fnterview during the previous days. The at-home-
probability, constructed in this way, can be used as a stratification
variable. It is also worth trying to find é model which explains the
retationship between the variable under invéstigation and the at-home-
probability. Extrapolatidn of this model to-the group of not-at-homes may

provide more information about this group.
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5.4. Adjustment for refusers

It is possible to measure the williﬁgﬁess of people to co-operate in the
survey (see Van Tulder (1977)). Using this information a procedure
analogous: to adjustment for not-at-homes can be carried out. Furthermore
the willingness to cb-operate is a measure for the survey climate. The
construction of a scale to obtain this infqrmétion will probably be

somewhat more difficult then in the case of nof*af*hbmé ad justment.

5.5 Double samp1ing

In order to get more information about nonrespondents Hansen & Hurwitz
(1946) propose selecting a sample from the‘nonkespondents. Specially
trained interviewers try as vet to obtain (part of) the missing informa-
tion. Time and money constraints often prevent application of double

sampling.

5.6. The principal question

If the method of Hansen & Hurwitz is too expemsive the principal guestion
procedure may offer a substitu;e. In many surveys there often is one
important basic quesfion around which the survey has been constructed.

If during the field work problems are met with completing the whole
questionnaire, the interviewer may try to get an answer on only the
principal question. This may even be tried afterwards by letter or by
telephone. This technique will shortly be tfied out in one of the

" surveys of the CBS.

6. Coénclusions

In view of the rise in nonresponse rates during the past years it is
important to carry out thorough research on the impact of nenresponse on

the quality of the survey.

Quite a few adjustment procedures appear in literature, which all aim
at reduction of the nonresponse bias. A comparative study of these

procedures has to provide decisive answers about their merits.
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The large differences which exist with regard to objective, design and
execution of surveys prevent correct interpretation of differences in
nonresbbnse Figﬁres. It is therefore necessary to create a theoretical

framework which allows proper comparison.

- Oof course reduction of. nonresponse during the . field work will remain

ah important topic.
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SURVEY METHODOLOGY 1981, VOL. 7 NO.

-ON THE VARIANCES OF ASYMPTOTICALLY
NORMAL ESTIMATORS FROM COMPLEX SURVEYS

David A. Bindér'

The problem of specifying and estimating the variance of
estimated parameters based on complex sample designs from.
finite populations is considered. The results of this
paper are particularly useful when the paramtere estima-
tors cannot bhe defined explicitly as a function of other
statistics from the sample. It is shown how these results
can be applied to linear regression,. legistic regression
and loglinear contingency table models.

1. INTRODUCTION

In recent years, there has been an increasing demand for using survey
data to estimate the parameters of traditional models such as regres-
sion parameters, discfiminant functions, logit and probit parameters
and others. However, for many such surveys, the primafy objectives
of the survey is the estimation of population or sub-population means,
totals, trends and so on. For this reason and bgcause of‘opgrational
considerations, the survey design is often not a simple random sample,
but is more typically stratified and often multi-stage with possibly

unequal probabilities at certain stages of sampling.

Because of this, there has been much discussién (see, for example,
Sarndal;1978) on whether the sampling weights should be used in making
inferences about these model parameters. The answer seems to depend on
whether a sqperpopulatidn model is appropriate for all population units.
If this is the case, the inference on the superpopulation parameters is
often the primary concern. This leads to model-based inference, where,
for a given sample, the inferences do not depénd on the sampling weights.

I D.A. Blnder, Institutional and Agrlculture Survey Methods DIVISIOH,

Statistics Canada.
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The question fhat comes to mind is: If tﬁe'superpopulation model is
‘not appropriate, what parameters are - we estimating? It must be recog-
nized that for man? studies,-particularly in the social sciences, the
mode 1 (e.gf:linear regreésion):'is only a convenient approximation of
the real world and the pafameters df that model (e.g. corfe]ations and
partial correlations) are often used to understand thé approximate
interdependencies. of the variables rather than hévihg a particular '
scientffig Interpretation. Therefore, the parameters we are estimat-
- ing do hot necessarily refer to a true superpopulation model, but are

of a more descriptive nature.

ln‘this paper, we adopt the view that we are interested in making in-
'ferences about these ''descriptive" parameters of the population. For
example, suppose X and Y ?re Nxp and N x '] matrices'respectively,
where each row of X and Y corresponds to a different individua]'of the
popuiatibn.- we'afe'fnterested in thé déscriptive parameter, B, a pxl

vector satiéfying the‘eqﬂations;‘

Txe = x'y S a

X X
This view of descriptive parameters (s the ‘same as that- taken by
Frankel (1971} and Kish and Frankel (1974)‘

The usual estimation of such parameters normally takes into account
the sampling weights. If we denote by . the probability that the i-th
unit in the sample is sampled and let E'= diag (ﬂli vees wn), then the

weighted parameter estimate for B satisfies:

o lxs=x 1y, - (1.2)

where x and y are nxp and nxl matrices respectively, the.rows of which

correspond to the'sampled rows of X and Y.

Supposé, now, an estimator of a population parameter can be expressed
as: , o . o
g = g(z],»..., zk), | ‘ (1.3)
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where E(z ) = Z.. Here, 8 is an estimator of Q(Z]; vees ) Follow-
ing Tepp:ng (1968) and Woodruff (1971), a Taylor series expansnon for
8 yields:
. k
CRAES G 20 (1.4)

i=]

These formulae are éxemplified for estimation of'regression coeffi-
cients {1.1) by Tepping (1968). However, the expressions resulting

from (1.4) for the variances of the regression coefficients are some-

what complicated compared to those derived by Fuller (1975).

In this paper we consider parameters which are not defined through an
explicit equation'such as (1.3), but instead are defined Implicitly as
U(Z,8) = 0. A simple example showing the distinction would be the
ratio parameter: '

EYk

EXk'

R =

which could also be defined implicitly as:

LY, - RIX, = 0.

When we deal with some models such as indirect loglinear models or
logistic regression models, the parameters can be defined only through
implicit relationships. The extension of Tepping's (1968) results for
this case is Fairly'straightFOrward,but does not appear in its general
form at present in fhe literature. There are, however, specific
examples of 1its application; -see, for example Fuller (1975) and
Freeman and Koch (1976).

In Section 2 we give the general framework and the main results of

the paper. A number of models are exemplified in Section 3.
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7. GENERAL FRAMEWORK

2.1 Framewofk'

Theupdpulation units are labelled 1, ..., N. Associated with the i-th

unit we have a q-dimensional data vector Ei' We have a parameter space
P- . T A ot daft
©@cR. The parameter 8, = (610, "'*,epo)‘ is defined by the P
equations:
. N ‘ ‘
0008 = T 408,) < v, 8 <o, @

for i=1, ..., p. We assume that equations (2.1) define 8, uniquely
-in ©. We also assume that Bui(g,g)/ag and SVT(Q)IBQ exist inm a
neighbourhood of QO. A simp]esexampie of (2.1) is where'e0 is a popu-

X

-0 .
i k "o

=

lation total, énd we have U(g,ao) = Here;‘ Q(Xk,eo) = X,

k

and V(Bo).=‘9°.

We éélect:a sample of the units, according to some probability distri-
bution'defined on the‘Set of all ndn-empty.subsets of,{T, Ty N}.' We
denote byr_§], cees X the s§1¢cted values of 51;‘..., EN" We assume
that for any 6 e @, we can construct a consistent, asymptotically nor-
mal estimator of . U.(X,8). We denote this estimator by Gi(§,g). For

example, for many without fepiacement sampling schemes,

n ‘ :
U.(x,0) = £ u,(x ,8)/n - v.(8) ‘ (2.2)
RN i*~k?= k i~

| k=] ,

will be a consistent asymptotically normal estima;or, where T is the
probability of inclusion for the k-th unit. i

We let cij(x,g) = Cov[ﬁi(f,g); ﬁj(f’é)]'.' For example, .for estimator
(2.2), we have: ‘
. |
Eoup(x,0) “3(52’9)(“k1'fk"n)/“k“£’- (2.3)
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where L is the probability that the k-th and 2-th units in

samp]e.

We let L(X,8) be the pxp matrix with entries oij(g,g), and g(g,g) be a

~

consistent estimator for I. Now, for any given 8,

'-'I ()_Sk.Q) »

=

U (X,0) + v, (8) =

k=1

so that estimators ﬁi(g,g) and f(§,g) can be specified for any design
in which we can derive consistent asymptotically normal estimators of
population totals and consistent estimators for the variances of the

estimators of the totals.

The Horvitz-Thompson estimator. for {2.3) is:

nn .
kil 221 u; (x,.,9) uj(§£,§)(w

ke -“kﬂz)/“kﬂﬁﬂkz . (2.4)

In the case of fixed sample size, the Yates-Grundy estimator of (2.3)

is:
Lz T " ﬂ - - T | (ﬁkwl —nkﬂ)' (2.5)
k<t k £ Kk L
Letting U(X,8) and Q(§,§) be the p-dimensional vectors with components
Ui(g,g) and ﬁi(§,q) respectively, we define
J(X,8) = au(x,e)/ose (2.6)
J(x,8) = al(x,8)/38, | (2.7)

where J and J are pxp partial derivative matrices. Assume that the
matrices are continuous functions of § and that the partial deriva-
tivés with respect to § exist in a neighbourhood of 8 . Also assume
J(x,8) is a consistent estimator of J(X,9). ©

Our estimator for 8 is given by é, the solution to:

Ui(§,§) =0, for i=I1, ..., p. (2.8)
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We assume the sample size is sufficiently large se that the solution

t6 (2 8) is ﬁnique in 9. We-show in the next section that the covar-

iance matr|§ of B can be con5|5tently estlmated by :
[ (x 9)] E(x 9) 3" (x 9)]

2.2 Asymbtcf?t,Theory.

Following the asymﬁtotic arguménts of Madow (1948}, and H&jek (1960),

we consider a seguence of populat|ons lndexed by t, with sizes N(t)
and data X( ). We assume N(t)44n ‘as t+=, For populat}on t, we sel-
ect a sample of size n( ) and observe data §(t). We let v(t)"E(n(t))
and assume
Pimot) o
Cpe
pim (V8 - )y oo
ts+m .
For any e in a neighbourhood of e( t) we aséume
L 6O, 0 - g, e)}/u(t’
is asymptotlcally ‘N[O, s(e)], where
e 2
s(o) = timlv® z(x(),e) 7N (P47
exlsts We assume o
7 K(8) = lim J(X(t) B)/N(t) exlsts and also
prim 30, eyt < g(g).
Also, we assume
lim[rank {J(X(t) ,0)1}] = pllm[rank {J(x(t) e)}] = p.
We define e( t) to satlsfy
By a Taylor series expansion, we obtaln o
9(5( )’ gét)) % ( (t) ‘(t)) (e(t) ét)). . (2'9)

Since the left hand side of (2.9) is asymptotically normal , we have that
(n(t))%-(éFt) - 9o(t)) . . } o

. . T T

is asymptotically NIQ, §(g))], where $(5.) = K(5,) (e ) [K(e_)]
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Therefore, -1 ' -1 T
- 6(g,) = 167" (e)1 s(e) K™ (e )] (2.10)

and a consistent estimator for Q(QO) is:
n 17 08T 2,0 7,817 (2.11)

Hence, when the functional form of ﬁ(k,g) and £(x,8) is specified, we
need only derive the. matrix Q(g,go) and its estimator J(x,8) to use

these results,

3. EXAMPLES

3.1 Introduction

In this section we consider in detail the implication of the general
formulation given in Section 2 with respect to estimating tHé vari-
ances of certain population paraméter estimators. In particular, we
'discuss-ratios, regression coefficients and log linear modeis for cat-
egorical data. Other models, such as probit models could be analyzed

analogously.

In éeneraf, we use the following notation. |If Wi» +.., W, are popula-
tion values, with W = ZHk, then on selecting a sample Wis vees W, We
have an unbiased estimator of W given by W. We let y(@) represent the
covariance matrix for Q and g(@) a consistent estimator of y(@). The
par;icular form of this estimator will depend on the sample design; -

for example, multi-stage stratified, pps with replacement, etc. .

3.2 Ratios

We define

Suppose we are interested in R ZXkZ/EXk

1"

1]

IX . - RIX

CU(XR) = IX

k1®

Therefore, for without replacement sampling, we have :

~

U(x,R) = X, - RX,.
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Setting‘ﬂ(g,ﬁ) =0, we obtain - |
| - R=% /R, G

We define wk = sz - R xkl'

Since, J(X,R) = ZXk], we have that V(R) is apprOX|mately v(w)/(zxk])

This is estimated by V(W)/X In the case of stratified sampling,

this yields the same result as in ondrufF (1971).

3.3 Regression Coefficients and R

Suppose our data matrix-%'is partitioned into [Z|Y], the first column
of Z being the vector of 1's. The vector Y Is Nx1. We have parameters

of interest 6, B, and R? defined by:

U =o-Y 1=0 )  (3.2a)
y,=2'z8-2 y=0, (3.2b)
Uy = (YNl RPD) 4 Y Y - YTz =00 (3.20)

. " 2 . .
Here, B .denotes the vector of regre55|on coeffncnents, R is. the

coefficient of multlple determlnatlon and 6 is the total oF the . Y's

We flrst consider the case where N is known, We.let SsY = ¥ Y N -1 e

T

We also define §ZZ as the estimator for 'z, SYY the estimator for !
and §ZY the estimator for %T!.: We therefore have :
é = ?’ i ' . (3.33)
A - —] . ‘ )
B = §ZZ §ZY, (3-3b)
AT ] .
S,, ~ B § .
A2 -~ ~
R2 = - D (3.3¢)
‘ S - N Y ‘
and ' , o ~ P _
R .
2 T
J = 3Y(Z,Y,B,R ,0)/3(B,R,8) = Z'Z 0 0 .
‘ LI
-Y'z ssy 2¥(1-R%)]



Therefore,

0

-~

[

[ .

1

s

T
Now, lettlng.yk(B) = (Zkl e

we obtain :

v[8]

This is a direct consequence of

K? e
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' o

-2V(1-R%)/SSY. B'/SSY- 1/5SY

T

0 0

. ka ek), where

= (27 viie)

(2.10). Note t

Yy

Z . B,,

e E
k . ki
i J

(3.4)

hat the set of Hk(g)

vectors corresponds to UZ in (3.2b). Fuller (1975) obtains the same

result for stratified or two-stage stratified sampling.

To estimate (3.4) we use !

-1

VIgl = 55, TW@] 55,
We can also estimate the variénce of RZ. " If yI(B,Rz) =‘[Yk, Zi1 €
o Ty @ N (E 7 B - RY )] and ¢! = [-2¥(1-R%)/N, BT, 11/
(SW-N-I QZ), we obtain:
GIR°] = T UI0E,RD)] c. (3.5)
For the case where N is unknown (e.g. the primary sampling units are

geographic areas), we have the additional equation:

U‘+=N-z].

(3.6)

Adding the appropriate row and column to J and inverting, we obtain

the following

results for estimating V[ﬁZ]J

We let
T 2y _ 52
‘ﬂk(Q.R ) = [Yk’ Zkl ek’ “e ey ka ek: Yk(f ij Bj R Yk), ]]
and . ] ,
-~ ~ ~ -~ a2 ~ ~ A - -~
gT = [-2v(1-RH/M, 87,0, ¥ (1-32)/N2]/.(sYy -8 9.
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We then have V[R ] is given by (3. 5) for tHese new values of
W (B,R ) and c.

3.4 Logistic Regression

As in the previous section, we assume the data matrix X can be parti-
tioned into [Z|Y], but now Y is a vector of 0's and 1's. In the tra-
~ditional statistical framework, 'the logistic regression model for M
conditional on Z asserts that Y], :..,‘YN are indenendent with
Pr(Yk=l) = pk(E)’ where :

exp(8 z) 3.

p, (B} =
“T 1w exp(s] z,)

- Letting B be the ‘maximum }ikelihood eétinator for B, we have that B

satisfies
u=2p(8) -2 Y=0, C(3.8)

where P(B)" = [p,(B), ..., p\(B)].

For a given finite population,we define B as our paraheter of interest.
We let C(B) be our estimate for z P(B) and SZ our estimate for ZTY
Therefore, § satisfies g(g) = §ZY These equatlons must be solved

iteratively in general. We also have

9

=

~

40}|

The (I,J)th component oF J is E ;kl Kj pk(§) [l-pk(g)]. We denote

the estimator of J by J

To estimate the variance oflé, we let

W o= (2

% = B S e 2

kr ek)
where ék‘= pk(é) -_Yk. The estimator for‘![é] is given by:

-1 -1

10>
[ X 30
>

(W)
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3.5 Loglinear Models for Categorical Data

Suppose that each member of the population belongs to exactly one of
q distinct categories. Associated with category 1 we have an rx]
vector a; such that the proportion of individuals in the. i-th category

is approximately

ekp(g? 8)

p.(8) = ‘
! I exp(aT g)
- =j®
J
We let p(B) = [p,(8), ..., p (B)] and N' = U N,), where N,
is the number of |nd|V|duaIs |n the i-th category. Now, if the popu-

lation were generated from a multinomial distribution with probabili-

ties B(B),the maximum likelihood estimator for 8,given by B, satisfies:
u=a"N- AT peB)] 1T N =0,

where' A is a qxr matrix with i-th row being a? - We consider B as

our parameter of interest for any given finite population.

We let ﬂ be a consistent asymptotically normal estimator of N, with
variance-covaraince matrix V[N] and estimated matrix V[N] Our esti-
mator, B, sat|sF|es

T

AR - [T )] 1T R = o. . (3.9)

tZ>

This estimator was suggested by Freeman and Koch {1976). It may be
less efficient than Imrey, Koch and Stokes (1981, 1982) functional

asymptotic regression methodology; however, we need not calculate all

the components of V[N] to apPiY (3.9).

Let D(B) be diaglp(8)] and H(B) = D(B) - p(B) p(B). We have
au
~ Ty T
S=g=- W AT HE) A

Therefore the asymptotic variance matrix for ﬁ is given by:
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~

Bl = 72 T ue) A

e O

AT(-p(®)11) VIRD (-1 p(8)) AT H(B) )Y (3.10)

This expression can sometimes be simplified as follows. If it can be

assumed fhé; E/@TL E(?),:fhen for ﬁ'= ﬁ/ﬁTi we have :

~

Vil = (D2 () VIRl p@) D),
so that. : '

v[B]

EION IR WICUIOW RPN CHI)

We also have that ‘the covariance matrix for p(B), the estimated cell

probabilities, is given by:

o

VIp(8)] =H(B) A VIB] AT H(e).

The estimators of y[ﬁ] and -y[B(B)] are similar expressions, where N
and B are replaced by @ and § respectively. These assume that g[@] is
readily available. For some problems where q is relatively large com-

pared to r, It woﬁld be more efficient to proceed as follows. - Let

-
I

1 if k-th unit in i-th category

0 otherwise,
— - ‘ HE V T - ’
for k=1, ..., N; i=1, ..., q. Llet :k . (Ykl, cees qu), and

I PPN ¢
W = AlI-p(6) 1'1Y,.

We then obtain:

1y

. ST 02 T Ay =l e T

8= @0 6w o7 vw o we) H7

We remark that the methodology described in this section can be readi-
ly extended to product-multinomial type models, where we have a log-

linear model for {Nij}’ but the margins {Z Nij} are known.
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4. DISCUSSION

.The techniques described in the paper have beén destribed for some
specific models; see, for example, ‘Fu]ler (1975) and Freeman and Koch
(1976).  However, the general results are not explicitly described.
"Many standard statisfica] packages may be used for the estimation of
the parameters of the models described, but the variances and tests df

' hypotheses given in these packages wili not be valid.

The results of this paper depend on the assumption of asymptotic nor-
mality of the estimators. Empirical studies on the validity of these

approximations are important.

An alternative methodology to estimating many of the parameters des-
cribed here is givén by Imrey, Koch and Stokes (1981, 1982). Their
functional - asymptotic regression methodology also falls within the
general framework described here, with respect to variance derivation

and estimation.
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AN OVERVIEW OF CANADIAN HEALTH STATISTICS:
PAST, PRESENT AND FUTURE]

Lorne Rowé'bottom2

‘The author briefly reviews the factors determining the
production of health statistics in Canada, with particular
attention to the different sources of data and to the long-
standing co-operation among the many agencies invelved in .
the gathering of health-related information.

MrL'Chairman, | want to express my real pleasure at being a member of
this panel Secause of the opportunity that it affords me to congratu-
late Dorothy Rice and her colleagues in the National Center for Health
Statistics on the occasion of the completion of 25 years of Health
Surveys. We in Statistics Canada have long been admirers of NCHS

and my congratulations to Dorothy are on behalf of my colleagues in

Statistics Canada, particularly those In our Health Division.

Consistent, | hope, with the charge of our Chairman, ‘| have chosen to
paint with a very broad brush what seem to me to be trends and deter-
minants of our health which might find echos in other countries and

. therefore be of interest to this audience.

Two data streams comprise the historic and current sources of Canada
Health Statistics. The first is health institutions - predominantly
hospitals, both general and mental. from them we derive statistics
about a wide range of their characteristics, as well as statistics about
their patents and their illnesses. Canadian hospital statistics are

amongst the most detaifed and comprehensive in the world.

1 . .
As presented at the American Statistical Assocliati ati i
Dottort. August Isgl tion Annual Meeting in

2 Lorne Rowebottom, Assistant Chief Statistician, Institutions and
Agriculture Statistics Branch, Statistics Canada.
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The second stream cbmprises the records generated by registrétion of
births, marriages and deaths from which we derive the critical statistics

on causes of death.

A wnde varlety of StatIStICS is produced from such rlch data bases and
_some |mportant statistics are derived from other sources, for examp]e,
those on cancer incidence, from cancer registers, and notifiable dlseases.
For fhose who are iﬁterested | have a few copies of a Directory of Health
Division Information and also | would be'glad to send a copy to anyoﬁe who

wrote to me at Statistics Canada.

The important themes relating to these statistics that | want to touch on

this morning are the following:

- First, they measure illness only when individuals seek health
care from institutions. ‘

- - .Secondly, they illustrate the'strgngths and weaknesses of statistics
derived from surveys.and from administrative records. | '

- Thirdly, they represent the availability of informatfon_which could

| only result from a very high degree of'co-operation,.sustained over
a long period of time, between the central agency, federal and
provincial departments of health, the fnstitution and hospital

associations, and vital statistics registers.

I will return to these three characteristics of the health statistics
system: what is measured and what is not, the implications of data sources

and the degree of co-operation between the players in the system.

Why have we produced what we have, rather than different prodﬁcts by
different means? Looking back over.sixfy years of health statistics, !
found this an interesting question. Assessing how priorities were deter-
mined is a judgemental process - just as is deciding on today's priori=
ties. So it is my judgement that ‘in part we responded to changing needs
for statistics articulated by users and Royal Commissions, and in part

we anticipated changing user needs ourselves and used existing data
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sources which related to such needs, and because they represented oppor-
tunifies. They were there to be utilized, like the vein of quartz that
a prospector seeks and finds, or stumbles across. in part, we were
driven by, and we exploited, the rapidly changing technology. In part
the environment of co-operation in which we worked determined what we
did. And finaily in many parts the Fesources available to Us if térms
of dpllars, human skills, and data handling capabilities, permitted some

things and not others.
These few critical factors:

- articulated and perceived needs,

- data sources available,

- changing technology to process and to analyse Hata;
- co-operation between players in the system,

- budgets available, |

have been the determinants of what we have done. But it will be apparent

to you that they are also the determinants of what we are and will be-doing.

These forces shift and come together in a-chénging kalefdosc0pe so that

during one span of time one combination is dominant, to be replaced by

another combination.

In Canada all have operated in such ways to bring about significant changes
in our health statistics and it seems apparent that there will result even
more rapid change. Changing needs should, of course, drive the system and
they -are in fact doing so, albeit in some respect in an erratic manner. You
You will recall my stating that the Canadian measurements of morbidity are
largely limited to hospitalized illnesses. This has been widely recoqnized
as a quite unacceptable state of affairs and a few years ago this dissatis-
faction lted to a federal decision to institute a continuing health status
survey of the Canadian population. A survey was carefully planned énd
tested from both conceptual and methodological pofnts of view. However,
only 10 months' data were collected before government-wide budget

reductions forced cancellation of the survey. The first results from the
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data collected have just been published and the data base hés shown signs
of being a rich research source with‘significant decision-making implica-
tions. . Of course, it suffers from the severe 1tm|at|ons of relating to
only one point in time. It is too early to state how long it may be
before a decision to reinstitute some form of the Canada Health Survey is
made. However, | am optimistic that the capacity of sich measurements of
health status - tb throw light on the effects of our lifestyles on our
gpod health and illness, and lead to individual and collective decisions

which will affect them - will not be ignored for long.

Let me turn from the area of health-related hoﬁsehold surveys where the
Canadian track record of responding to changing needs is poor, to one
where we have both anticipated and responded effectiQely to new demands.
| refer to epidemiologicalvstudies.desighed to enlighten the kinds of
health risks resulting from exposure to various demographic, social, occu-
pational and environmental influences. Thanks to the foresight and
persisténce of members of our Vital Statistics Staff working with a few
other key'persons both within and outside Statistics Canada, we have a
computer-searchable Mortality Data Base file which includes all deaths in
Canada, coded by cause of death, extending back over three decades. We
also have a generalized record linkage facility which is being used to
link specific exposed populatioh groups to the mortality file. Linkages
are also possible‘to an as yet incomplete but significant ten-year cancer

incidence file.

A paper which includes a largely Canadian bibliography on this area will
be giver by Martha Smith, Head of Occupational and Environmental Health
Research Unit, in Scotland before the end of this month. It will be
available on request. (Both Martha and John Silins, Chief of our Vital

Statistics and Dlsease Reglstrles Section are in the audrence )

As to other data available to shape the future of Canadian Health Statistics
! will only take time to mention the existence of data bases which are
very large, potentially very rich, and largely unused for national

statistical purposes.
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. They comprise the administrative records of our national medicare system
which' record annually in excess of 30 million incidents of primary
medihal care extended by physicians. We have demonstrated some of the
stathstical potential of these files and we are now shaping new proposals
to dévg]op‘their'use during the next several years. Budgets are expected
to be the limitlng factor.

New needs should drive the system - new technology does. The influence of
comphters on health statistics is all-pervasive and is operating to change
the availébilify and uses of health statistics in profound ways.

i waLt to comment on the use of data - in the form of statistical inform-
atioh. which computers have made possible - by managers, medical personnel
and administrators in hospitals, local hospital districts, states, provin-
ces, universities and associations. At federal levels, computers have
changed the ways in which data are processed and statistics are used. But
in many locations throughout the health.community, computers have meant
that data are now used for purposes of understanding, for research and for
decisions, whereas in the precomputer era they were used little or not at
all.

Allowlng for some exaggeration - but probably not very much - it was not
that long ago when national statistical agencies had almost a monopoly on
large-scale data handling capability. What a contrast between then and now
when.large, fast, sophisticated and easily used information processing
capacity is economically available to both large and small organizations.
The implications are far-reaching and | suspect not yet fully perceived,

but they include at least:

- The existence of many rather than few producers of statistics
(many of these will perceive themselves as operators of MIS but

statistics is - and will be - the game if not ‘the name.)

- These same organizations will also be much more intensive users

of statistics - particularly statistics about thelr own organizations

or jurisdictions.
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- As a result there will! be greater knowledge of cne's own

environment.

- There will be greater independence on the part of such organi-
zations and their need - maybe much less perceived need - to rely

on others for statistics.

- This ability to utilize the information contained in the adminis-
trative records of one's own organization or jurisdiction will
almost certainly reduce the tolerance for completing statistical
questionnaires, with a resulting increase in the necessity to rely
on administrative records. This could result in less information
being available about the total environment because of the problems

of data comparability between organizations and jurisdictions.

| find it difficult to forecast the impact that these changes will have on
co-operation between the many players essential to development and mainten-
ance of a comprehensive and inevitably complex system of health statistics.
A1l | can say is that in Canada - notwithsténding substantial pressures
which test and strain the syétem;?:cofoperat?on has not diminished. in
fact, the reverse is the case and on this score also | am an optimist. |
think that one determinant of such coQOperation is for national statistical
agencies to recognize that their role must change in response to the kind
of changes | have described. |t is apparent to me that priorities must

shift from statistical production to statistical co-ordination.

One final word about what | consider to be an overriding priority, namely,
doing statistical analysis of our data bases to determine the messages that
are in them, to determine their meaning and significance, and to relate

them to the issues and problems confronting us.

For too long, we, at least we in Statistics Canéda, have published numbers -
myriads of numbers - and failed to translate them into significant indi-
cators. We have left it to others.to find the gold in the ore we have mfned.
| think that we and the health community have paid a ﬁigh price for our
failures (there have been successes) to find the gold, and even shape it
into jewellery with which users would enlighten our world, not unlike the -

way necklaces lend radiance to those who wear them.
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{ MODELS FOR ESTIMATION OF SAMPLING ERRORS'

2
; , P.D. Ghangurde

' This paper presents results of an empirical study on fitting
log-linear models to data on estimates of characteristics and
their coeffictients of variation (CV) from- the Canadian Labour
‘Force Survey. The characteristics were classified into

‘grOups on the basis of design effects and models were fitted

, to data on estimates of characteristic totals and their CVs
over twelve month perlod. The models can be used in
sltuations where estimates of CV are needed for new charac-
teristics, and for providing more precise estimates of
reliability of estimates based on past data. The problem
of evaluation of fit of the models is considered.

1. INTRODUCTION
This paper presents results of an evaluation study on models for esti-
mation of coefficient of variation (CV) of estimates of characteristics
based on the Canadian Labour Force Survey (LFS). The LFS is a monthly
househo]d survey with a stratified multi-stage area sample design with a

sample size of approximately 55,000 households.

Each month estimates of CV are calculated for a set of characteristics
using Keyfitz method of variance estimation based on Taylor series
approximation [4], [5]. However, computation of appropriate variance
estimates for all estimates tabulated from a large scale survey such

as the LFS is not possible due to operational constraints of time and

1 presented at the American Statistical Association Annual Meeting
in Detroit, August 1981,

g P. D. Ghangurde, Census and Household Survey Methods Division,

Statistics Canada.
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costs. The model-based estimates of CV can be used to obtain preli-
minary estimates of reliability for new characteristics based on thef
past data, and when estimates of CV for an extendEd.Deribd (e.g. one
year) are needed. The models can also be used for obtaining concise
eStimate§ of reliability, e.g. alphabetic indicators for rangés of
Cv.

In section 2 the linear and non-linear models used for estimation of
totals and proportions are explained. Sections 3 and 4 review con-
siderations made in forming groups, fitting models and evaluation

of goodness of fits.

2. THE MODELS

The LFS is a monthly'household survey in which dwelling is the final
stage sampTing unit. Each of the ten provinces in Canada are divided
into economic regions which consist of groups of counties with similar
economic structure. The economic regions are divided into‘geographic
strata and multi-stage area samples are drawn without replacement with
two stages in self-representing strata in the large urban 'centres and
three or four stages in the non=se1f—fepresenting strata in rural’areas.
The sample selection in the initial stagés is"with probability propor-
tional to pépulation size and that in the last stage, in which dwellings

are selected from clusters, being systematic.

The design-based estimates within strata are obtained by weighting the
data by inverse of probabilities of selection. An adjustment of the
basic weight for non-response and ratio estimation within age-sex groups,
which are post-strata, is used to.obtain final estimates. The census-
based population projectfons ?or-ége-éex grdﬁps‘within'eabh province are
used as aﬁxi]iary variable totals for ratio estimation. More details

on the sample design and estimation are given in [5].
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The variance estimates of various characteristics at the province

level are obtained by Taylor series approximation assuming that the
primary sampling'unitS'(psus) within non-self-representing strata are
selected independently. In self-representing strata the sampled clusters
are divided into two groups, which are treated as pseudo psus and are
assumed to have been selectad |ndependently The variancé estimaté for
an estimated characteristic total at Canada level 1s the sum of corres-
Eonding provincial variance estimates [5]. The variance of an estimate

X of a characteristic total X in a province can also be expressed as

V) = F (WD) X (1 -3, o | (1)
where P = population for the province,
. W = inverse sampling ratfo,
F = des:gn effect for the characteristic, and
n = sample size (persons).

The expression (1) for V(i) relates the variance obtained for the

complex ratio estimate based on a stratified multi-stage samplé»design
.to the variance of the estimate based on a simple random sample of the
same size drawn from the finite population of size P. The sampling
variance of an estimate of total based on a simpie random sample of size
n (= 5-) is the usual binomial variance with .finite population correction.
The term, F, the design effect, represents a factor by which varlance is
increased due to the effect of such factors as sampling procedure at each
stage, the extent of stratification and post-stratification, size of
unit$ at various stages and clustering of counts of the characteristic

in the provinée. It may be noted that stratification and post-strati-

fication usually reduce the variance and ‘clustering increases variance

of an estimate.

In general, design effects tend to be greater than one due to clustered
sample design of the LFS. The labour force status categories such as
"employed', '"'unemployed' by age-sex groups tend to haye lower design
effects due to post-stratification by age-sex which decreases their
variance. Those for labour force status by particular industfy tend to
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be large due to their location in specific areas. Design effects are
known to be related to measures of homogeneity and average size of .
clusters. Models expressing their relationships have been developed
for many surveys. In a studylon'componeﬁts of variance in the LFS
‘the design effects and measures of homoegenelty have Beeh analyzed

for a number of charaéterisfics [2].

" A measure of precrsuon of estimates which is Tndependent of the level
of the est:mate and the scale is coefficient of variation. The CV(X)

is given by

o = rGen &= 0 0 : o

By taking_logarithms to base e on both sides of (2) we have an equation

relating C¥, X and P given by

log CV(X) = 5 log FW-1) - & log X +-;- log (1 - ). (3)
Because of the third term on-tﬁe right, the equation (3) -is not Iinea}
in log CV and log X, even if F(W-1) is assumed constant. However, for .
small values of X the contribution of the third term is negligible. A

mode ] based'oh.(B)‘is given by
log CV(X) = A + B log X + ¢, - (4)

where A and B are parameters of the model an& € is the error term. Tte
estimate of parameter B‘wili differ from - %—depending on the extent to
which B log X approxumates i-Iog /0 - —J] over the range of X. In an
evaluation of fits of (4) and of an alternatlve model (5) given by

log CV(X) = A+ B log —X s, ) . {5)

(1 -3

the goodness of fit for the two models as shown by Rz, the ratio of

regression sum of squares to total sum of squares, was found to be
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quite close. The model (4) is linear in log X and log €V and is-simpler
than modei (5).

A non-linear model corresponding to (&) is given by:

cvix) = A' X + e, | | (6)

where A' and B' are parameters of the model! and & is the error term. The
two models (4) and (6) were fitted to data on monthly estimates and their

CV¥s for 90 characteristics in each of 10 provinces and Canada.

| 3. GROUPING OF CHARACTERISTICS

The monthly désign effects of LFS estimates for.JanuarQ—December 1980 for
each of 90 characteristics excluding total population for each province
and Canada were averaged and plotted to decide the ranges for the two
groups. In each province, the first qgroup consists of characteristics

with désign effects greater than D.

Table 1 shows the boundary values D for group | and 1! in each province
and at Canada Ievel; and the number of characteristics in group>I|. The
grouping of characteristics was done by arranging characteristics in
increasing order of average design effects. The béundary value D was
selected so that the assumption of equal design effects was sétisFied ‘s
far as possible in group I. The second group conéists of all remaining.
characteristics where the assumption of equal design effects is inore crude.
Mast characteristics pertaining to Iqbour force status by .age-sex grours
fall in group IL. '"Employed by industry" and ''duration of unemployment'
mostly fall in group llI. The average dgsfgn effects diffe- substantially
between provinces and for Canada. More refined grouping o characteris-

tics on the baéis of models for design effects is being insestigated.

It'may be noted that about 80% of the characteristics in each province

and for Canada, have been classified in group |. For obtaining a
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conservative estimate of CV for a new characteristic models based on
group Il can be used. For a characterfstic for which monthly estimates
of CV are routinely produced the models for the group in which the
characteristic falls, can be used to obtain approximaté estimate of CV

with a greater precision than that based on monthly data.

‘In the fol]owing‘sectioﬁ the assumptions made in fitting the models (4)

and (6) are explained and model fits are evaluated.

4. EVALUATION OF MODELS

The basis of fitting the log=linear model (4) is to treat the model as a
'simple‘lineéf regression model in y = log CV(i) and x = log X and to
obtain estimates of parameters A and B in the linear regression framework.
The usdél assumptions of independence of errors and constant variance

have been made. Under thes¢ aSSUmptionﬁ, Rz provides a measure of fit of
the model. The values of the estimated parameters and coefficients of
determination, Rz, for gfoup'l and 11 in 10 prbvinces and Canada are given
rih Table 2. The actual fitting of these models was done by using SAS
utility. ' ‘ '

All R2 values are éignificaht and quite high indicating that the fits are
very good. The error plots do not show any patterns to conclude that the
assumption of constant variance is not satisified. Under these assumptions
and normality of errors cv(i) has a loa-normal distribution‘with constant

CY for any value of X.

The non-linear model (6) was fitted by Gauss-Newton method using SAS
utiliﬁy. The initial values of ﬁarameters A' and B' were assumed to be
1.00 and -0.50 respectively. The number of iterations required to reacn
convergence was at most 8 for each province and Canada, the convergence
criterion being that the relative difference between successive error sum

8

of squares Is less than 107", Table 3 shows values of estimated parameters
and errors sum of squares for Canada Group Il. The errors are approxi-

mately hormally distributed as shown by normal probability plots.
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Since it is of interest to compare the fits of the non-linear model for
provinces, Canada and the two groups it is necessary to have a criterion
of goodness of fit. In the non-linear model, the total sum of squares is
not equal to the total of regression and error sums of squares. A

crlterlon R' 2 can be defined as

N "
£ (Y, - v.)2
12 i=1- ! !
R =1 - ]
N .
(v, - V)
j=

where ;i's are estimatgd CVs based on the model, Yi's are observed CVs
and Y their mean. The summation extends over N, the number of charac-
teristics in the group multiplied by 12, the number of months. In the
linear case Rz = R'Z, However, in the non-linear case R2 £R'2 since

the total sum of squares is not equal to regression sum of squares plus

error sum of squares due to product term not being zero.

The errors (Y - ;i) will be small when the fit is good giving a value

of R'Z close to 1, the errors (Y - ?i) will be large when the fit is

poor ngung a small vatue of R 2 When all the points lie on the fitted
curve i,e. Y Y for all i, R '2 2. However, in general no lower bound
to RI2 seems to exnst. The values of R 'z shown in Table 4 tend to be
greater for group | as compared to group |l, which has 13 to 21 characte-

ristics out of the total of 90.

Although the log-linear model (4) was fitted to data on logarithms of
estimates and their CVs and its fit seems to be good, the fitted models

for provinces and Canada are used for estimapion of CV of ¢stimates. |1
order to compare the fit of the transformed ﬁodel to origiral data of
estimates and their CVs, these data and the transformed modei corresponding
to (4) were plotted for the two groups in 10 provinces and Canade. Fron
these charts it can be concluded thaf the transfofmed mode | corfespondiwg
to {4) fits the data of estimates and their CVs better thar the rion-1linzar
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model (6), especially for small values of estimates. The plots of these

models for Canada group 1l are shown on Chart 1 and 2.

5.. CONCLUDING REMARKS

The characteristics considered are total persons with labour force status
by age*sex, indusfry, marital status and total persons with various ranges
of duration of unehployment. However, the models can also be used for
proportions instead of‘totals{ The models afe not applicable to estimates
for subprovincial areas such as urban centres or groups of economic
regions, since désign effects for these areas are more unstable and can be
much higher due to the effect of ratio-adjustment based on projected popu-

lation at province level [1].

An assumption made in the use of models for a new characternstlc is that
its design effect is close to the average for the group This requires
finer grouping of characterlstlcs of various types possibly oﬁ the basis of
modeis relating design effects with measures of homogeneity for these
character{stlcs. In fitting the models, it was assumed that errors are
uncorre]aﬁed and that independent v%rlable is fixed. Since tw¢1ve monthly
estimates:TOrleach characterigtic were uséd, there could be correlation

in errors for estimates for a given characteristic. Extension of the

study to models with errors in independent variable and correlated errors

is belng considered.

A problem in evaluatlon of fit of non- Ilnear models, whether actually fit-
ted to data or transformed from linear models, is the lack of a critériosn
for c0mpar|son of fits of dlfferent models. The criterion sugqested in
section 4 may be approprlate for comparison of fits of a mcdel to different

data sets, but may not work for different models. ‘ oot
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TABLE 1: DESIGN EFFECT BOUNDARY VALUES AND NUMBERS OF CHARACTERISTICS
‘ ’ IN GROUPS | AND | 1% '

Boundary Numbér of
" Province Value (D) Characteristics
Group | Group 1
Newfoundland = 2.3 75_ 15
P.E.I. - 1.9 73 17
Nova Scotia 1.9 7h 16
New Brusnwick 2.2 77 | 13
"Quebec 1.9 73 17
Ontario 1.7 69 21
Mahrtopé 2.0 76 14
-Saskatchewan 2.8 76 Ny
Alberta 2.1 71 19
British Columbia 2.3 : 73 17
Canada 1.9 77 13

A characteristic belongs to Group | if its design effect (ayeraged
over the 12-month period from January to December 1980) is less than
or equal to the boundary value D. |If the average design effect is

greater than D, then the characteristics is in Group II.
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TABLE '2: REGRESSION COEFFICIENTS AND'R2 FOR LOG-LINEAR MODEL

Regression Coefficient

Province "~ Group A B , g2
Newfoundland [ 3.3Ij9 -0.5723 0.9534
(] 3.7757 -0.6101 0.9377
P.E.I. | 2.7962 ~0.5617 0.9485
1 3.1796 -0.5885 0.8887
Nova Scotia | 3.4612 - -0.5837 0.9702
] 3.6412 0.5257 0.8717
New Brunswick | 3.2782 -0.5545 0.9606
I 3,754k -0.6017 0.9357
Quebec { 4,3298 -0.5942 - 0.9686
i1 4.3093 ~0.5216 0.9127
Ontario | 4, 3825 -0.6053 0.9736
i L. 1796 -0.5009 0.9633
Manitoba | 3.5155  -0.5926 0.9619
R 3.8769 -0.5640 0.9166
Saskatchewan li 3.3796  ~0.5700 0.95h44
1§ 3.5478 -0.4423 0.8994
Alberta I 3.6960 ~0.5968 - 0.9678
It 3.7526 -0.5090 0.9513
B.C. ‘ | 3.9847. -0.5750 . 0.9621
1t 3.9814 -0.4708 0.8410
Canada I 4. 3458 -0.5936 0.9703
I ! 4,2357 -0.5191 0.9699



TABLE 3: NON-LINEAR LEAST SQUARES:
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 CANADA (GROUP [1)

GAUSS-NEWTON METHOD

Iteration Al B' Residual S.S.
0 1.00000000  -0.50000000  3401.93232121
1 15.22076853  -0.23647629 461.76322678
2 26.47981387 -0.36743343 322.67707190
3 51.94184546  -0.51147529 248.68405130
4 57.29455529 -0.47434886 99.32440727
5 58.32558100  -0.48419609 96.57832290
6 58.28627964 -0. 48409502 96.57810754
7 58. 28746710 -0.48409960 96.57810746
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ABLE 4: R 2 FOR GROUP I AND 11
. L * t2 ¢ _Error S.5§.
PrOV|nFe Group N R “Total 5%,
NewFolnd1and 'i 866 0.9362
: P 190 0.8835
PLE. | 827 0.8925
i1 294 0.7285
Nova Scotia - [ 872 0.9790
i1 192 0.7813
New Brunswick | 908 0.9990
- I 156 0.8639 -
Quebec | 859 0.9800
11 204 0.7804
Ontario | 823 0.9632
Kl 252 0.9208
Manitoba t ‘895 0.969]
i 168 0.8137
Saskatchewan | 896 0.9436
I 168 0.8196
Alberta | 845 - 0.9701°
: ] 228 0.8852
B.C. I 868 0.9319
‘ 11 204 0.7786
Canada I 923 0.9665
Il 156 0.9286

ale

]

" N for group I can be less than, 12 (no. of

characteristics) due to exclusion of characte-

ristics with zero estimates.
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