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COST MODELS FOR OPTIMUM ALLOCATION 

IN MULTI-STAGE SAMPLING 

William D. Kalsbeek, Ophelia M. Mendoza 

and 

David V. Budescu 

Cost models to determine an optimum allocation of the sample among 
stages in cluster samples are considered. Results from a proposed 
cost model, which directly considers the implications of follow-up 
visits to sample clusters as well as other travel to and from the 
field by data collectors, are compared with results from existing 
cost models. The proposed model generally calls for fewer clusters 
with more elements selected per cluster than the existing models. 

1. INTRODUCTION 

One of the first issues in designing a multi-staqe cluster sample is how to 

best allocate the sample among stages. In a two-stage design this amounts to 

deciding on the number of clusters to be selected in the first stage of 

sampling and the average sample size among selected clusters in the second 

stage. One normally wishes to choose that allocation of the sample among 

individual stages which will yield the best possible precision of estimates 

for the amount of funds available to conduct the survey. In the sequel, we 

will refer to this issue as the problem of determining an "optimum stage 

allocation". 

The theory of optimum stage allocation requires both a variance and a cost 

model. The variance model is a mathematical formula for the precision of a 

survey estimator, written as a function of the sample sizes in each stage and 

certain measures of the components of unit variance attributable to each 

stage. Similarly, the cost model is a mathematical formula for the total cost 

^ William D. Kalsbeek and Ophelia M. Mendoza, Department of Biostatistics, 
University of North Carolina at Chapel Hill, and David V. Budescu, 
Department of Psychology, University of Haifa. 
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of conducting the survey, expressed as a function of the same stage-specific 

sample sizes but also various per-unit costs for each stage of the sampling 

design. 

Variance models for many common multi-stage sampling designs have been produ­

ced, when the objective of the survey is to estimate the population means per 

element (see, for example, Hansen, Hurwitz, and Madow, 1953, and Cochran, 

1977). Furthermore, important parameters of these variance models are readily 

estimable and can often be obtained from published reports. For example, 

Kish, Groves, and Krotki (1976) present estimates of one such parameter, the 

intraclass correlation coefficient for several national fertility surveys. 

The variance model used in this paper is a simple but common one. Suppose 

that the sample is selected in two stages from a population consisting of 

egual-sized clusters. If simple random sampling (with replacement) is used to 

first select a sample of n clusters and next a sample of m elementary units 

within selected clusters, then the variance of the estimated population mean 

per element y is simply 

Var(y) = a\^ + p(m - 1)]/nm, (1.1) 

2 

where p is the intraclass correlation and a is the variance among all elemen­

tary units in the population. The result of (1.1) may also serve as a reason­

able approximation even when clusters are of unequal size and selection proce­

dures other than simple random sampling are used (see Kish 1965, Section 

5.4). In this case we may view m as the average within-cluster sample size. 

The development of reasonable cost models has received relatively little 

attention in the survey literature despite the fact that existing models 

contain parameters of survey cost which, though clearly defined, are difficult 

to compute. One such parameter, is the cost of adding a cluster to the 

sample. Computing a reasonable measure of this per-unit cost is complicated 

by the difficulty in determining the impact of data collector travel which 

depends on such things as the size of the area being covered, the number of 
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clusters assigned to each data collector, and the pattern of travel followed 

by the data collector in completing the survey. Some consolation can be 

derived from the known robustness of optimum stage allocation when imperfect 

cost measures are used (see Kish, 1976), although nontrivial departures from 

the best attainable precision may result when severely misinterpreted cost 

measures are used. 

Two well known cost models have been applied to the survey setting in which 

data collection required a visit to each cluster by a data collector (or in 

some surveys a team of data collectors). We call the first of these models 

the simple model in which total non-overhead costs can be expressed as 

c[,~^ = nC^~^ + nmC^^\ (1.2) 

(S) (S) 
where C_~ is the total nonoverhead cost, C.~ is the average cost of adding a 

(S) 
cluster to the sample, and C ~ is the average cost of adding an elementary 

unit to the sample. The simple model, combined with the variance model of 

(1.1), yields (see Cochran 1977, Section 10.6) 

m(^, = (il£)!L_ (1.3) 

^2 

as the optimum value of m. 

The costs of travel during data collection often contribute significantly to 

total survey costs. Data collector travel and accompanying costs may be con­

sidered to be of two types. The first is between-cluster travel which refers 

to movement among clusters during a data collection trip. The second is posi­

tioning travel which refers to travel to the first cluster visited from the 

data collector's home base and then back to the home base from the last clus­

ter visited during the data collection trip. The importance of the second 

cost model, suggested by Hansen, Hurwitz, and Madow (1953) and called the HHM 

Model here, is that it isolates between-cluster cost from the rest of the sur­

vey's total nonoverhead costs. This is done by assuming that the n clusters 
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are uniformly arranged in a rectangular geographic area of size A and that 

associated with each unit of distance travelled is a unit cost (U) consisting 

of two components: the mileage allowed for travel (e.g., in dollars per mile) 

and the ratio of hourly wages to the average rate of travel (e.g., in miles 

per hour). 

In many surveys, data collection may require multiple visits to sample clus­

ters. We incorporate the concept of follow-up visits into the HHM model by 

assuming the data collection is completed in H phases with np ~ clusters be­

ing visited in the h-th phase; 0 < p < 1. The cost of cluster follow-up is 

determined for the HHM model by summing the between-cluster travel cost over 

all phases. The HHM model as adapted here thereby takes the form, 

Ĉ ii) = nC^ti) . nmC^ii) . n^ti) (1.4) 

(H) - H/2 A 
where C),~ = UA^ (1 - p )/(1 - p^) is the cost parameter of the term isola­
ting the cost of between-cluster travel with follow-up visits considered. The 

(H) (H^ 
cost of adding a cluster (C!j~'̂ ) and the cost of adding an element (C^~0 in 

the HHM model include positioning travel cost but exclude all remaining 

between-cluster travel costs which are covered by the term, n^C^~ . The new 

HHM model, combined with.the variance model once again, yields (see Hansen, 

et al., 1953, Vol. II, Section 6.11) 

C\^^ + cJiiV(2n^) Y 
XHT -i^l-l'-^^- ^ ^1-5) 
C ~' 
^2 

which must be solved iteratively to determine the optimum value of m. 

The intent of this paper is to extend the thinking about cost models used for 

optimum stage allocation and to produce a new model which more explicitly re­

flects actual survey costs. In so doing, we develop a cost model which: (1) 

isolates the increasingly important component of total survey costs due to 

data collector travel, (2) can easily accommodate follow-up visits to clus-
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ters, and (3) can be expressed as a relatively simple function of a number of 

readily interpretable measures. 

2. PROPOSED MODEL 

The cost model discussed in this section isolates from other survey costs the 

cost of both between-cluster and positioning travel for data collectors. This 

is contrasted by the HHM model where only between-cluster travel costs are 

isolated and by the simple model where isolation of travel costs does not 

occur at all. The proposed model can therefore be viewed as an attempt to 

avoid the difficulty in existing models of having to allocate unisolated tra­

vel costs among other per-unit costs, e.g., in the simple model data collector 

(S) (S) 
travel costs must be appropriated to C}~ and Ci~ . As with the HHM model, 

assumptions made for the proposed model regarding the location of clusters and 

the route of between-cluster travel are needed to express the survey's total 

travel cost as a function of n. 

We shall see that assumptions concerning the spatial arrangement of clusters 

and travel by the data collectors are kept simple and admittedly somewhat 

naive. Less restrictive and presumably more realistic assumptions could be 

made, but the effect would be to add prohibitive complexity to the problem. 

We shall also see that the assumptions made in developing the proposed model 

allow one to express survey costs in terms of simple, well-known parameters of 

a survey operation. Thus, optimum stage allocation using the proposed model 

can be determined by specifying several easily understood measures character­

izing a survey protocol. 

2.1 Spatial Configuration of Sample Clusters 

We now describe the spatial configuration of sample clusters as assumed for 

the proposed cost model and illustrated in Figure A. The object of the as­

sumed configuration is for the uniformly scattered clusters to be arranged so 

that distances for reasonable travel routes can be expressed simply as a 
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function of several readily obtained parameters. One assumes that the 

expressions will hold true for all possible parameter values. 

Suppose that we have a survey population with land area of geographical size A 

and that the population is divided into t equal and nonoverlapping subareas, 

each of size A/t and containing v = n/t sample clusters. One data collector 

is assigned to do the survey work in each subarea, which is shaped as a square 

with a number of evenly spaced concentric circles contained therein. The data 

collector's home base, assumed to be one of the clusters in the sample, lies 

in the center of the subarea in order to assure adequate accessibility to 

clusters during data collection. The distance from the home base to the 

outermost circle in each subarea is r. Thus, since the size of each subarea 
2 ^ 

is 4r , we have r = (A/t)V2. Moving from the home base in a subarea, the 

k-th circle (k = 1,...,K) contains 6k clusters. Assuming a multiple of six 

clusters on each concentric circle allows- clusters to be almost uniformly 

spaced in the subarea, except for the square corners. 

2.2 Data Collection Protocol 

Using the spatial configuration of clusters just described, we now discuss a 

protocol for data collection which one might expect to observe in certain 

kinds of surveys with two or more stages of sampling. Comparison of results 

from existing cost models is later made within the context of this protocol. 

Data collection in a subarea is assumed to require multiple phases of activity 

since work in most clusters usually involves several visits, some to make ar­

rangements for data collection in the cluster and others to actually collect 

the data. As mentioned earlier, we let H denote the number of phases required 

to complete data collection in a subarea. This parameter can also be 

interpreted as the maximum number of required visits to individual clusters. 

In the h-th phase of data collection (h = 1,2,...,H), we assume that vp 

clusters (where 0 ^ p ^ 1) are visited in a series of trips before proceeding 

with the next phase. Each trip involves a visit to £ neighboring clusters not 

previously visited during that phase of data collection. The cluster located 

in the home base is included in all phases of data collection. 
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Several assumptions are now made regarding movement of the data collectors 

among clusters. First the travel route followed in each trip proceeds from 

that data collector's home base, to each of the i clusters (without back­

tracking), and then back again to the home base. Second, data collector tra­

vel is assumed to proceed in a straight line except between neighboring clus­

ters on a circle where travel follows the arc of the circle. The choice of 

the arc distance over the straight-line is thought to be feasible since the 

formula for the former is simpler and since travel in surveys seldom follows a 

straight line. 

Third, movement between two neighboring circles follows the shortest possible 

straight-line distance. This means that the cluster of departure from one 

circle and the cluster of destination on a neighboring circle are in line with 

the home base. The alignment of clusters 7 and 8 in Figure A illustrates this 

assumption. Fourth, travel within clusters and between data collector sub-

areas is assumed to be negligible and is therefore not specifically isolated 

in the proposed model. 

One final important assumption in the proposed model concerns the problem of 

the spatial configuration of clusters when h > 1; i.e., when the number of 

clusters visited during a phase of data collection is a subset of the v 

clusters originally selected in the subarea. To retain the simplicity of the 

concentric circle arrangement through all phases of data collection, we allow 

the number of concentric circles (K. ) at the h-th phase to vary according to 
h 1 

the size of vp ~ while fixing the size of the interviewer subarea at A/t. 

Thus, we have K̂^ = (a^ - 1)/2, where ĉ  = {^ + - (vp'̂ "'' - 1)}^. 

2.3 Cost Formulation 

Total travel cost in the proposed model is calculated as the product of U and 

the total distance travelled (D). Formulations for D, expressed alternatively 

as a function of the cluster workload per data collector (v) and the number of 

data collector subareas (t), are given below. Although the two formulations 
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are functionally similar (since v = n/t), developing both solutions is thought 

to be important because either v or t may be specified in designing a survey. 

Details of the derivations for (2.1) - (2.5) are appended. 

Assuming the above data collection protocol, the total distance travelled over 

all phases, expressed as a function of v, will be 

D^V -_ 6 ( P ) n ^ (2 .1 ) 

where 
u 

6[^^ = ( A / v ) ^ d {v(1 - p " ) / ( 1 - p) - H} + {1 + (Jl - 1)Tr/2}{ Z a, + H } ] / 2 J I . 
^ 3 h=1 " 

This leads to a cost model which has the same general form as the HHM model o f 

(1 .4 ) but where the c o e f f i c i e n t o1 

value can be obta ined from ( 1 . 5 ) . 

(1 .4 ) but where the c o e f f i c i e n t o f the n ' term i s U6^~'^ and the optimum 

The t o t a l d i s tance t r a v e l l e d , obta ined as a f u n c t i o n o f t , can be w r i t t e n as 

D ~ = 6n~ + n6^~ + I a. 6 ; ~ , ( 2 . 2 ) 
° ^ h=1 ^ "̂  

where 

6 ^ ^ = H (A t ) ^ {3 (£ - D i r - 2 } / 1 2 £ , 

6̂ £̂̂  = 2 { (1 - p '^) / (1 - p ) } ( A / t ) V 3 i l , 

5^p = ( A t ) ^ { ( £ - DTT + 2} /4J l . 

The d is tance model o f (2 .2 ) leads to a cost model o f the genera l form 

u 
CQ = nC^ + nmC2 + T. o^C^. (2 .3 ) 

Obtaining optimum values for n and m from (2.3) is an excessively cumbersome 

process which can be simplified by substituting a first-order Taylor series 
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approximation (in n) for a , evaluated at t/p ~ for simplicity. By so doing 

we have 

ct = (2p^-V3t)n + 1 , (2.4) 
" 3 

which, when applied to (2.3), reduces the proposed cost model to 

c'p = nC^£^ + nmC^£\ (2.5) 

where 

.(P.) _ r M/*(P.) . ux(P.) C^^^ = C,-U{6^^>.H6;^V3}, 

c[p = Ĉ  + U{6^£^ + 26^£)(1 - p")/3t(1 - p)}. 

r(P) _ r 
L ̂ ~ = L„. 
z ~z 

iCp is the total prespecified nonoverhead cost of the survey, C^. is the prespe-

cified average cost of adding a cluster to the sample (excluding all costs of 

data collector travel), and £_ is the prespecified average cost of adding an 

element to the sample (excluding, once again, all data collector travel 

costs). We note from (2.5) that using the approximation for a has reduced 

the proposed model to the form which, except for the three cost parameters, 

resembles the simple cost model of (1.2). Optimum values of m and n are 

obtained from (1.3) and by solving for n in (2.5). 

3. COMPARISON OF PROPOSED MODEL WITH EXISTING MODELS 

In this section we compare results obtained from the proposed cost model 

(expressed as a function of v) with results from the simple and HHM cost 

models. We consider the situation where a two-stage survey of the United 

States is being planned, and the variance model of (1.1) is assumed in all 

comparisohs. Measures used as the basis for comparisons among models are as 

follows: (1) optimum value of n, (2) optimum value of m, and (3) the variance 

of the survey estimate given the optimum allocation. 

Optimum values of n and m for the simple HHM models are obtained from (1.3) 
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and (1.5), respectively. To make comparisons with these models more realis­

tic, adjustment factors are calculated to account for those travel costs not 

specifically isolated by the models. The adjustment procedure is similar to 

the approach mentioned earlier and suggested by Hansen, et al. (1953, Vol. 1, 

Section 6.13). To account for positioning travel costs in the HHM model we 

specify that 

r̂ ti) - \(^)r 
3 ~ H ' 

c^ii) = x^iDc,, 

2 ~2 

ĉ iî  = x^i!^(A)^u(i - p"/2)/(i - p ^ ) , 

where 

~0 '• opt~1 opt opt'^ opt •' 
(P) is the adjusting factor, n ~' is the corresponding optimum value for n under 

(P) the proposed model, and m ~/ is the corresponding optimum value for m under 

(H) the proposed model. Using X ~ in this way has the effect of assuming that 

positioning travel costs contribute to each cost parameter of the HHM model by 

the same relative amount. In similar fashion, we account for all costs 
(Si (5) (S) of data collector travel, in the simple model by setting Ĉ '̂  = X ~'̂ C. and Ĉ ~̂  1 ~1 z 

(S) = X ~ IC_, where the adjustment factor is 

X̂ ^̂  = C„/(n^£^C, + n'^^lm^^kj. (3.2) 
~0 opt~1 opt opt~2 

(H) We must acknowledge the synthetic nature of the adjustment factors, X ~ and 
(S) X^~ , used for our comparisons. In each case the adjustment factor is a 

function of the optimum values of n and m obtained from the corresponding pro­

posed model. In reality, these factors would be calculated for, the HHM and 

simple models by estimating the proportion of the survey's budget not spent on 

those travel costs left unaccounted for by the model. One might suspect that 

this estimated proportion would, at best, amount to a rough approximation 

which would probably differ from the adjustments produced from (3.1) and 
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(3.2). Thus, we suspect that using these factors may contribute to making the 

simple and HHM models seem more comparable to the proposed model than they in 

fact are. 

3.1 Assumed Parameter Values 

Producing the findings of the comparison study reguired several numerical 

values for the various statistical and cost parameters of the models. First, 

we consider national surveys in the United States, A=3,042,265 sguare miles, 

the land area of the United States, excluding Alaska and Hawaii. We also 

arbitrarily set £_ = $500,000, the total nonoverhead cost of the survey, and 

U = $0.45, the unit cost per mile travelled. The latter figure is obtained by 

assuming a mileage allowance of $0.25 per mile, an interviewer salary of $6.00 

per hour, and an average travel rate of 30 miles per hour. All combinations 

of the following groups of parameters are considered in our comparisons: 

(£^, v): ($50, 20); ($250, 5) 

(Ĉ 2. P. H): ($10, 0.3, 5); ($25, 0.8, 20) 

£: 1; 2 

p: 0.05; 0.15 

Parameters were grouped in this manner since many of the combinations 

resulting from individual parameters were thought to be unrealistic. 

The parameters JĈ  and v are grouped together to indicate the degree of 

difficulty that data collectors would have in setting up and maintaining par­

ticipation among clusters in the survey. For example, in a one-time survey or 

the first installment of an ongoing survey, one might expect to find cluster 

set-up costs to be high and the set-up activities to be sufficiently burden­

some so that the average number of clusters assigned per data collector would 

of necessity be low. Thus, for present purposes we designate C^ - $250 and 

V = 5 to indicate cluster set-up and maintenance which is "difficult". Acti­

vities such as obtaining endorsements, making initial visits to solicit co­

operation, and constructing the frame for selecting the second stage would all 
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contribute toward the determination of these values. We designate C^ = $50 

and V = 20 to indicate cluster set-up and maintenance activities which are 

"easy". This situation might be observed in surveys in which set-up activi­

ties are relatively simple. One example would be a subsequent installment of 

the ongoing survey while another would be a survey in which arrangements can 

be made by mail or telephone. The parameters £2* P> ^"d H are used to joint­

ly indicate the level of difficulty in the data collection protocol. When 

£„ = $10, p = 0.3, and H = 5, the average number of times a cluster will be 

visited is 1.4 and data collection is assumed to be "easy". This may occur, 

for example, in a survey where the protocol requires only that a small amount 

of readily accessible datai be extracted for each element in a cluster. When 

less accessible data are extracted or when follow-up of selected elements is 

required, data collection might be called "difficult" in which case we assume 

that C^y = $25, p = 0.8, and H = 20, thus implying that the average number of 

times a cluster will be visited is 5.6. 

The parameter indicating the number of clusters visited per trip (i) assumes 

the values 1 or 2 in these comparisons. Allowing Jl > 2 is thought to be un­

realistic in national surveys since distances would preclude visiting a large 

number of clusters on a single trip. Two moderate values of intraclass corre­

lation (p) are assumed. 

3.2 Findings 

Tables 1-3 contain the results of the comparison study involving the proposed 
(S) 

model and the versions of the simple model and of the HHM model where X^~' and 
(H) 

X ~ are applied, respectively. Optimum values of n and m, as determined 

under the proposed model, are presented in Table 1. As expected, optimum 

values of n tend to be lower when cluster set-up and maintenance is difficult, 

and optimum values of m tend to be lower when data collection is difficult. 

The major focus of the comparison study is the difference between optimum 

results under the proposed model and. comparable results under the simple and 

HHM models. Optimum results for the proposed aid simple models are compared 
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in Table 2 in which one notes that differences are generally substantial. 

Optimum values for n under the proposed model are found to be between 2.4 and 

60.0 percent lower than under the simple model, while optimum values for m are 

between 7.6 and 198.2 percent higher under the proposed model. These large 

differences are thought to be attributable to the ability of the proposed 

model to isolate between-cluster and positioning travel costs. This results 

in greater per-cluster costs and a smaller optimum number of sample clusters. 

The greatest differences in optimum variances, computed by applying the opti­

mum values of n and m to (1.1), occur in surveys with easy cluster set-up and 

maintenance and difficult data collection. One might speculate that the 

magnitude of these variance differences is largely due to the relatively heavy 

cluster workload (i.e., v = 20) assumable when cluster set-up and maintenance 

is deemed easy. However, when this workload is lightened (i.e., v = 5) and 

considered with the same combination of parameters, the relative difference 

among optimum variances is reduced but remains substantial at 11-16 percent, 

as opposed to the 18-27 percent figures presented in Table 2. 

The effects of the number of clusters visited per trip (Z) and the intraclass 

correlation (p) are also readily apparent in Table 2. Larger differences ap­

pear when Jl = 1 than when il = 2. This effect can be attributable to the 

greater importance that travel costs would play when only a single cluster can 

be visited per trip to the field. Furthermore, when p = 0.05, relative diffe­

rences for n and m are somewhat greater than when p = 0.15; however these dif­

ferences are an artifact due in part to the iterative approach which is used 

(P) 
to obtain m ~; . From (1.3) and (1. 

opt 
optimum values of m to be identical, 

(P) 
to obtain m ~/ . From (1.3) and (1.5) we would expect relative differences on 

The relative differences between the proposed and HHM models presented in 

Table 3 remain notable but are generally smaller than the differences reported 

in Table 2. We suspect that the greater similarity between results under the 

proposed and HHM models can be attributable to the fact that the HHM model 

represents a more realistic reflection of survey costs than does the simple 

model. However, as with comparisons involving the simple model, optimum 

values of n are smaller and optimum values of m are higher under the proposed 

model in Table 3. These comparisons also reveal once again that the largest 
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differences in optimum variance occur in surveys with easy cluster set-up and 

maintenance and difficult data collection. Variance differences in other 

instances are negligible. 

3.3 Discussion 

We have proposed a cost model where the important component of travel during 

data collection can be completely set apart to improve one's ability to accu­

rately reflect survey costs in determining an optimum stage allocation. In 

addition, a study designed to compare optimum results of this proposed nrradel 

with two existing cost models has indicated substantial differences. However, 

aside from these differences, perhaps the most important practical implication 

of the proposed cost model is that the optimum stage allocation can be produ­

ced by specifying measures which are intuitively simple. These measures are 

of two types: fiscal and nonfiscal characteristics of the survey design. The 

required fiscal characteristics (i.e., ^^, £^ , and £_) can be determined by 

estimating the costs of certain components of the survey. For example, we 

might determine £. from a recent similar survey as the average per-cluster 

cost of choosing the sample of clusters, soliciting among clusters for 

participation in the survey (excluding travel costs), and constructing the 

sampling frame for sampling units within selected clusters. The required 

nonfiscal characteristics of the survey (i.e.. A, v or t, p, H, i , and p) can 

be obtained as factual information from prior surveys. For example, knowledge 

of the maximum and average number of visits required per cluster in a recent 

similar survey would determine p and H. 

We conclude by briefly examining the robustness and artificiality of the pro­

posed cost model. Robustness is considered on the one hand by determining 

(from stated assumptions) the types of surveys for which the model is likely 

to be useful. Assumptions of the model imply that the sample points are clus­

tered rather than randomly scattered in the population and that during data 

collection a group of these clusters is assigned to each data collector. This 

arrangement of sample points and data collection assignments will occur in 

certain types of household and institutional samples. An example of one such 
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arrangement is the National Survey of Nursing Homes (see National Center for 

Health Statistics, 1968) which is selected in two stages with nursing homes 

designated as clusters. 

The arrangement might also appear in household surveys where the sample is 

chosen in two or more stages and where data collectors complete interviews 

within several small area segments (see, for example, the Virginia Health 

Survey conducted by the Statistical Sciences Group, Research Triangle 

Institute, 1978). A household sample chosen in three or more stages can be 

accommodated by treating A as the size of the land area occupied just by se­

lected primary sampling units (PSU's) and then considering sampling Lffiits from 

the second or subsequent stages to be the clusters that follow a concentric 

configuration within each data collector subarea (i.e., consider Figure A with 

t scattered rather than contiguous subareas). Procedurally, one would 

substitute tA for A in (2.2), where A is the average land area to be covered 

by each data collector in the planned survey. Given this adaptation, it is 

important to note that the number of sample PSU's would be prespecified and 

thereby not optimized, that n in the cost and variance models would be the 

number of sample clusters (i.e., not PSU's), and that m would be the average 

number of elementary units per cluster. Treating the number of sample PSU's 

to be fixed and then determining the optimum allocation for subsequent stages 

would be reasonable for certain surveys where the ultimate sample is chosen 

from a sample of PSU's which is used repeatedly for different surveys. The 

variance model of (1.1) may have to be modified to reflect the additional sam­

pling stages (see Hansen, et al., 1953, Vol. II, Section 6.9). Some institu­

tional samples selected in three or more stages (e.g., the Hospital Discharge 

Survey of the National Center for Health Statistics, 1970) could be considered 

for the multi-stage adaptation as well. However, the proposed model would be 

less practical for those surveys where cluster sizes are so large that each 

data collector is assigned only one or two clusters or where selected clusters 

are not likely to be uniformly scattered about within subareas. 

Another facet of the robustness issue is the generalizability of the find­

ings. Clearly, any conclusions drawn from our findings must be limited by the 

parameter values we have assumed. Rather than using values from existing sur-
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veys in which case inferences would be limited to those surveys, our strategy 

was to create several prototype surveys based upon combinations of unit costs 

and other parameters thought to reflect current survey practice. Values used 

to create the prototype were often taken directly or inferred from recent 

surveys known to the authors. 

Finally, a certain degree of impracticality is the price one pays to keep 

things simple since realism and simplicity seem to be indirectly related in 

building survey cost models. Thus, while the intent of our research has been 

to find a more realistic yet simple model, we must acknowledge a substantial 

amount of remaining artificiality in our assumptions. For example, clusters 

are more likely to be randomly scattered than to exist as multiples of six 

lying on concentric circles. Moreover, travel between neighboring clusters 

would follow winding, circuitous routes rather than arcs or straight lines, 

and return visits to clusters would have more haphazard schedules than well-

established phases of follow-up with the number of clusters per phase decrea­

sing each time by a factor of p. While the proposed model reflects the order­

liness which one hopes for in most survey field operations, it, like other 

existing models, fails to capture the unpredictability of things which tends 

to blend into the orderliness. Stochastic events can be used to create unpre­

dictability but adding them tends to complicate the model to the point of 

being less useful mathematically. Until more realistic assumptions can be 

tied to simplicity, we are faced with the need to settle for cost models which 

fall short of the realism we seek. 
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TABLE 1. Optimum Values for n and m Under the Proposed Cost Model 

(A = 3,042,265 square miles; C^ = $500,000) 

Prototype 
Survey 

Cluster set-up 
and maintenance 

Easy 

Difficult 

Parameters 

Data 
collection 

Easy 

Difficult 

Easy 

Difficult 

Z 

1 

2 

1 

2 

1 

2 

1 

2 

P 

0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 

Optimum V 

n ~. opt 

1673 
2319 
1910 
2669 
385 
518 
489 
675 
871 
1095 
847 
1065 
426 
560 
378 
493 

alues 

m ~, 
opt 

14.1 
7.4 
13.1 
6.9 
18.4 
9.4 
16.0 
8.2 
23.6 
12.8 
23.9 
12.9 
19.0 
10.1 
20.2 
10.6 

[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[10] 
[11] 
[12] 
[13] 
[14] 
[15] 
[16] 

Cluster set-up and maintenance (£1, v) 
Easy ($50, 20) 

Difficult ($250, 5) 

Data collection (£2> Pvl^) 
Easy ($10, 0.3, 5) 

Difficult ($25, 0.8, 20) 
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Relative Differences Between the Proposed Model 
and the Simple Model 

(CQ = $500,000) 

Prototype 
Survey 

[1]. 
[2) 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[10] 
[11] 
[12] 
[13] 
[14] 
[15] 
[16] 

Cluster 
set-up and 
maintenance 

Easy 

Difficult 

Parameters 

Data 
collection 

Easy 

Difficult 

Easy 

Difficult 

Z 

1 

2 

1 

2 

1 

2 

1 

2 

P 

0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 

Relative 
vs simpl 

opt 

-22.7 
-16.6 
-18.5 
-13.3 
-60.0 
-52.9 
-54.6 
-47.2 
-3.8 
-2.4 
-4.3 
-2.7 
-18.0 
-12.4 
-21.2 
-15.1 

difference: proposed 
e model 

opt 

44.3 
38.5 
34.4 
29.7 
198.2 
179.3 
159.2 
142.3 
8.4 
7.6 
9.7 
8.7 
37.8 
33.6 
46.2 
41.3 

(in percent) 

Optimum 
Variance 

3.1 
2.7 
2.0 
1.7 
24.4 
26.9 
18.1 
19.6 
0.2 
0.1 
0.2 
0.2 
2.6 
2.1 
3.6 
3.0 

Relative difference is computed as the measure under the proposed model minus 
the measure under the simple model divided by the measure under the simple 
model, and multiplied by 100. 

Cluster set-up and maintenance (JĈ , v) 

Dat a collection (£„> P> h) 

Easy ($50, 20) 

Difficult ($250, 5) 

Easy ($10, 0.3, 5) 

Difficult ($25. 0.8, 20) 
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Relative Differences Between the Proposed Model 
and the HHM Model 

Prototype 
Survey 

[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[10] 
[11] 
[12] 
[13] 
[14] 
[15] 
[16] 

Cluster 
set-up and 
maintenance 

Easy 

Difficult 

(£o = 

Parameters 

Data 
collection 

Easy 

Difficult 

Easy 

Difficult 

$500, 

Z 

1 

2 

1 

2 

1 

2 

1 

2 

,000) 

P 

0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 
0.05 
0.15 

Relative 
vs HHM 

opt 

-12.5 
-8.9 
-8.7 
-6.0 
-22.8 
-17.5 
-17.2 
-13.0 
-1.3 
-0.8 
-1.8 
-1.1 
-4.0 
-2.6 
-6.5 
-4.4 

difference: proposed 
model (in 

m . opt 

22.9 
20.2 
15.2 
13.4 
49.6 
46.2 
34.2 
31.7 
2.9 
2.6 
4.0 
3.6 
7.9 
7.2 
13.5 
12.2 

percent) 

Optimum 
Variance 

0.9 
0.8 
0.4 
0.4 
3.5 
3.3 
1.8 
1.7 
0.0+ 
-0.0 
0.0+ 
0.0+ 
0.2 
0.1 
0.4 
0.3 

Relative difference is computed as the measure under the proposed model minus 
the measure under the HHM model, divided by the measure under the HHM model, 
and multiplied by 100. 

Cluster set-up and maintenance (£^, v) 
Easy ($50, 20) 

Difficult ($250, 5) 

Dat a collection (£o> P> h) 
Easy ($10, 0.3, 5) 

Difficult ($25. 0.8, 20) 
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APPENDIX 

Details of the derivations for (2.1) - (2.5) in the text are presented here. 

Using the assumed spatial configuration of clusters and data collection 

protocol for the proposed model as discussed in Sections 2.1 and 2.2, 
(P) 

respectively, the total distance travelled (D ~ ) is first expressed as a 

function of the number of sample clusters assigned to each data collector 

(v). Given the configuration of clusters as illustrated in Figure A, note 

that the positioning and between-cluster travel distances for each data 

h ? 
co l lec to r during the h-th phase of data co l lec t ion are {l2r/K. Jl} E k and 

k-1 
[ZTJviZ - 1)/K, A} Z k, respectively. Summing these two distances, recalling 

A h 1 i 
that K. = (OL^ - 1)/2, where a = {l + — (vp ~ - 1)} , and multiplying times 

the number of data collectors (t), we have the total positioning and 

between-cluster travel distance for the h-th phase expressed as: 

D^ = rt[2K^(K^ + 1)(2K^ + 1) + (ji _ 1)TrK^(K^ + 1)]/K^Jl 

= rt[(a^ - 1)^ + {6 + (£ - 1)Tr}(<3t̂  - 1 )/2 + 2 + (Z - ^)^t']/Z. (A.I) 

H h-1 H 
Noting that E p ~ = (1 - p )/(1 - p), we sum D, over all phases to obtain: 

h=1 

H H 
D̂ -Ê  = Z D. = ivt/Z) T [ { 1 + ^ v p ^ - ' ' - 1)} + ct + {a + ^} {(Z - 1)Tr/2}] 

h=1 h=1 3 

= r t [ iL{v(1 - p" ) / (1 - p) - H} + {1 + (£ - 1)Tr/2}{ E <x + H } ] / £ . (A.2) 
3 h=1 " 

Recall ing that r = (A / t ) ^ /2 and t = n/v and subst i tu t ing these i d e n t i t i e s in to 

(A.2) leads to (2 .1 ) . 

(P) To express D ~ as a function of the number of data co l lec tors ( t ) , f i r s t note 

that we must use a. = {l + _ (np ~ / t - 1 ) } * as opposed to the ear l ie r expres-
3 

sion for a . Using the new expression complicates things a b i t since a. i s 
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now a function of both t and the number of sample clusters (n), which is one 

of the parameters to be optimized. Using the new expression for ot. and recal­

ling once again that r = (A/t)^/2, a bit of algebra allows us to recast (A.I) 

as : 

D^ = rt[c(^^ + {l + (£ - 1)ir/2}a|^ + (Z - 1 ) T T / 2 ] / ; 

A h-1 = r t [ { 3 ( £ - 1)7r - 2}/6 + (1 p ^ - 7 t ) n + {l + (£ - 1)TT/2}ct ] /£ 
3 

- ' - • ' • '- , h - 1 / f l / i . N i , = (At)2{3(£ - Dir - 2}/12£ + n{2p"" ' (A / t )V3) l } 

+ a^(At)2 {(Ji - DTT + 2}/4£ . (A.3) 

Summing D. from (A.3) over a l l phases leads us to the t o t a l d i s t a n c e given in 

( 2 . 2 ) , 

Q(V , ^(P) + riS^V + J: a. {['^^ (A.4) 
^ ' h=1 ^ 

where 

6^~^ = H(At)^{3(£ - DTT - 2}/12£, 

6J£^ = 2{(1 - p'^)/(1 - p)}(A/t)V3£, 

e'^V - (At)2{(£ - DTT + 2}/4£ . 

The t o t a l t r a v e l d i s t ance given by (A.4) leads to an o v e r a l l survey cost model 

given by: 

u 

C^ = nC, + nmC„ + \}6^P + Un6$£^ + U E {l + i ( n p ^ ' V t - 1 ) W ~ ^ (A.5) 
~ 0 ~1 ~2 0 1 u 1 I ' d 

h=1 3 

Where C^^ is the total prespecified nonoverhead cost of the survey, C^ is the 

prespecified average cost of adding a cluster to the sample (excluding all 

costs of data collector travel), and £^ is the prespecified average cost of 
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adding an element to the sample (excluding, once again, all data collector 

travel costs). 

Using the cost model given by (A.5) to obtain optimum values for n and m is 

disadvantageous because the final righthand term of (A.5) is a complex 

function of n. To circumvent this difficulty we suggest substituting a 

first-order Taylor series approximation in n for ot, = {l + _ (np ~ /t - 1)}', 

3 

which is arbitrarily evaluated at t/p ~ to simplify the approximation. By so 

doing we have 

a = f(n) = (1 + it(np^-Vt - 1)}^ = f(t/p^-'') + f'(t/p''-'')(n - t/p''"'') 
3 

where f'(.) is the first partial derivative of f(.) with respect to n. Since 

r(t/p^~^) = 1 and f'(t/p^-b = 2p''-V3t, we have 

(X = (2p^-''/3t)n + 1 (A.6) 
3 

which is a linear function of n. Applying the approximation of (A.6) to (A.5) 

reduces the proposed model to the form, 

C^~^ = nĈ ~̂̂  + nmC^£\ (A. 7) 

where 

r(P) r ii/*(P) u*(P)/^l 

c\^^ = Ĉ  + U{6\^^ + 2S[^(^ - p")/3t(1 - p)}. 

and 

p(P) _ p 

The result of (A.7) corresponds to (2.5) in the main text. 
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SURVEY METHODOLOGY 1983, VOL. 9 NO. 2 

EVALUATION OF COMPOSITE ESTIMATION FOR THE CANADIAN LABOUR FORCE SURVEY^ 

S. Kumar and H. Lee 

This study considers the suitability of composite estimation 
techniques for the Canadian Labour Force Survey. The performance of 
a class of AK composite estimators introduced initially by Gurney 
and Daly is investigated for several characteristics. While the 
ordinary composite estimate has a large bias, the AK composite 
estimate is capable of reducing the bias. Composite estimates 
having minimum variance and minimum mean square error are compared. 

1. INTRODUCTION 

The Canadian Labour Force Survey (LFS) is conducted each month by Statistics 

Canada and is designed to produce estimates for various labour force charac­

teristics. The LFS sample design follows a rotation scheme that permits the 

replacement of one-sixth of the households in the sample each month (see 

[7]). The sample is composed of six panels or rotation groups. A panel 

remains in the sample for a period of six consecutive months. 

As pointed out in Bailar [1], one of the major drawbacks of composite estima­

tion currently in use for the U.S. Current Population Survey (CPS) is its bias 

as compared to the simple ratio estimator for estimates of level. This bias 

stems from rotation group differences: the phenomenon that estimates based on 

data from different panels relating to the same time period do not have the 

same expected value. This phenomenon, often referred to as the rotation group 

bias, has been studied for LFS (see [2] and [6]). Recently, Huang and Ernst 

[4] have reported results in the context of the CPS on the performance of AK 

composite estimator introduced initially by Gurney and Daly [3]. A and K are 

1 Presented at the Joint Statistical Meetings of the American Statistical 
Association, the Biometric Society, the Institute of Mathematical 
Statistics and the Statistical Society of Canada in Toronto, August 1983. 

S. Kumar and H. Lee, Census and Household Survey Methods Division, 
Statistics Canada. 
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constants in the equation defining the composite estimator. Their results 

show improvement over the composite estimates currently in use for CPS as 

regards variance and bias. 

The objective of this investigation is to study the suitability of composite 

estimation technigues for LFS. In this study the performance of different 

composite estimators of level and change will be investigated for the 

following five characteristics; in labour force, employed, employed 

agriculture, employed non-agriculture, and unemployed. These composite 

estimators are compared with the simple ratio estimator which is presently in 

use for LFS. The study is based on the province of Ontario data for 1980-81. 

2. DEFINITIONS AND NOTATION 

We are interested in estimating Y the number of persons in the population 

with a certain characteristic for the month m. Let 

y . = A simple ratio estimator of Y based on the i-th panel 

(i = 1,2,...,6). Here the i-th panel refers to the sub-sample 

(rotation group) that is in the sample for the i-th time. It will 

be referred to as the i-th panel estimator. 

d , = estimator of change (Y - Y .) from the month (m - 1) to the month 
m,m-1 m m-1 

m based on five panels that are common to the months m and ( m - 1 ) 

j_2 "ijJ f"-i>J-1 

y' = AK composite estimator of Y„ defined as 
•'m "̂  m 

y' = (1 - K + A)y^ /6 + (1 - K - ̂ ) . E y /6 
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-^(y^-l -dm,m-l) ^2.2) 

where K and A are constants, and 0 < K < 1. 

The equation (2.2) defines a class of estimators referred to as AK composite 

estimators. The estimators obtained by taking A = 0 in (2.2) are referred to 

as K composite estimators. The simple ratio estimator, to be denoted by y , 

the mean of six panel estimators can be obtained by taking A = 0 and K = 0 in 

(2.2). We investigate the relative performance of the optimal (minimum vari­

ance or minimum mean square error) AK composite, K composite and simple ratio 

estimators. 

We assume the rotation group bias E(y •) - Y is independent of m and is a 
^ m,i m 

function of i. We denote this bias by a.. Formally 

«i = ^%,i^ - \ ' (2.3) 

The expression for the bias of the composite estimator is given in Appendix I. 

3. ASSUMPTIONS 

The rotation system in the LFS is schematically described in Table 1, where 

the current (month m) panel i (= 1,2,...,6, denoting interview month no.) is 

the same as panel i - j in month m - j, provided i - j lies between 1 and 5. 

The immediate predecessor to panel i of month m as of month m - j is given by 

(6 + i - j) provided (6 + i - j) lies between 1 and 6. Likewise, the second 

predecessor to panel i as of month m - j is given by (12 + i - j) provided (12 

+ i - j) lies between 1 and 6. In general, the r-th predecessor to panel i of 

month m is given by (i - j + 6r) in month m - j. Note that the 0-th predeces­

sor to a panel means the same panel in earlier months. 

The expression for the variance of y', i.e. V(y') involves the variances and 
'̂  •'m' •'m 

covariances of various panel estimators (see Appendix II). The following 

variance-covariance structure for various panel estimators is assumed. The 
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assumptions conform to the LFS rotation pattern, illustrated in Table 1. 

(i) V(y .) = â  for all m and i = 1,2,...,6, 
m,i 

(r) 7 (ii) Cov(y ., y . . . , ) = y- cr̂ , where i = 1,2,...,6, j > 0 ^ ' •'m,.i* •'m-j,i-j+6r j ' 7 J » J o 

and r > 0, such that 6 > i - j + 6 r > 1 . Here r denotes the number 

of predecessors to the current panel. 

For r = 0, i.e., 6 > i - j > 1, let Y- = P- (based on overlapping panels of 

months m and m - j). 

(r) 
For r = 1, i.e., 6 > i - j + 6 > 1 , let y. = Y- (based on the current panel 

and its immediate predecessor j months back). 

For r > 2 , i.e., 6 > i - j + 6 r > 1 , let 

and its r-th predecessor j months back). 

(r) 
For r > 2 , i.e., 6 > i - j + 6 r > 1 , let Y- = 0 (based on the current panel 

(iii) Of interest to the development of the variance of the composite 

estimator y' are the correlation coefficients p. and Ŷ > both of 
m J J 

which are assumed to be stationary; i.e. they are functions of j and 

not of m. It is reasonable to assume that both p.'s and Y^'S are 

positive since p. 's are based on characteristics of largely common 

households while Y-'S are based on the characteristics of households 

in the current month and those of their near (in many, cases next 

door) neighbours j months back (apart from cluster rotation). 

(iv) The expression for V(y') contains covariance terms not included in 

the assumptions (ii) and (iii). Some of these are: 

^°^(ym,i' ym,j) ^°^ i * J' ̂ °^(ym,i' ym-1,j) for i = 1» j " 6, and 
i * ^, 2 * i - ^, and Cov(y ., y .) for g > 12. These and all 

(2) 
other covariances not defined above, including those with Y- and 

existing in the expression for V(y') are assumed to be zero. 
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Following these assumptions, a variance expression for the AK composite 

estimator was derived in terms of the above parameters. The mathematical 

details for derivation of the expression for the bias and variance of y', and 

the variance of y' - y' ^ are given in the appendices. 

4. RESULTS AND DISCUSSION 

2 
The guantities a , p. and Y- in the expresssion for V(y') were replaced by 

their estimates (For details of the methodology for estimating p's and Y'S, 

see [5]). Note that, in the Canadian LFS p.'s do not exist for j ^ 6 because 

of no overlapping panels. Nor do Y- 's exist for j > 12 because for j > 12, 

there exist 2nd or higher order predecessors to the current panel and the cor­

relation may be taken as 0 in the developments. Estimates of p., p. , are gi­

ven in Table 2. The estimate of Pc has been obtained by extrapolating other 

p. 's as it was not possible to estimate it directly from the sample. Note 

that p. (j = 1,2,...,5) is a decreasing function of j for all the five charac-
J 

teristics. This is consistent with what we expect intuitively about the be­
haviour of p. 

J 
"unemployed". 

haviour of p.'s. Also p. 's are high for all the characteristics except 

Table 3 gives the estimates Y- of Y-» The estimates YC and Y^^ were obtained 

respectively by interpolating and extrapolating other Y- 's. Intuitively, we 

expect Y-'s to decrease with j for each characteristic. We observe that this 
J * « 

is not the case with Y-'S. Although Y-'S do not exhibit monotonic decreasing 
J J ^ A. 

behaviour, we point out that whenever the difference (y. ., - Y-) is positive, 

its magnitude is very small. The positiveness of these differences 

could be due to the sampling variability rather than a real positiveness of 

(̂ j.1 - ^ j ^ -

In the following discussion, the term relative efficiency of AK composite (or 

K composite) estimator refers to its efficiency relative to the simple ratio 

estimator. 
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Tables 4A and 4B give the results of comparing the estimated variances of 

three estimators. These are: (i) optimal AK composite estimator, i.e., an 

estimator having minimum variance among the class of estimators defined by 

(2.2), (ii) optimal K composite estimator (obtained by taking A = 0 in (2.2) 

and having minimum variance anong all estimators in this subclass), and (iii) 

the simple ratio estimator. For 0 < K < 1, nearly optimal values of K and 

(K, A) are also given (K was incremented by 0.1 and the optimal value of A was 

determined for each fixed K). Here, a value (K, A) is referred to optimal 

value if the AK composite estimator with this value has the smallest variance 

among all AK composite estimators defined by (2.2). Similar definition 

applies to the term "optimal K". Table 4A (computed using y.'s given in Table 
vJ 

3) shows that, for all characteristics except "unemployed" there are 18-21% 

gains in relative efficiency for the K composite estimates and 26-30?o gains in 

the relative efficiency for the AK composite estimates. 

To determine the effect of y.'s on the relative efficiencies, y.'s were repla-
J J 

ced by zero's in the expression for V(y') and the optimal K, optimal (K, A ) , 

and the relative efficiencies were computed. These results are presented in 

Table 4B. Note that the optimal K's and optimal (K, A)'s in the Tables 4A and 

4B are different. Comparison of the corresponding relative efficiencies in 

these two tables shows that positive y's have a negative effect on the 

reduction in variance, i.e., the gains in relative efficiency are reduced. 

The greatest reduction in relative efficiency is for the characteristic 

"employed agriculture". This is the characteristic with relatively high 

values of y.'s. Thus taking y.'s to be zero, when y. > 0, can result in over-
J J J 

estimation of the relative efficiencies and the degree of over-estimation 

depends on the magnitude of y.'s. 

As mentioned in the introduction, one of the drawbacks of the composite 

estimators of level is their bias as compared to the simple ratio estimator. 

Thus comparing the variances of biased estimators can sometimes result in 

erroneous conclusions about the relative performance of these estimators. It 

is appropriate to examine the mean square error in the case of biased 

estimators. The expression for the bias of y' (see Appendix I) involves a. 's 


