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SURVEY METHODOLOGY 
	

VOLUME 1 - SUPPLEMENTARY ISSUE 

ANALYTIC STUDIES OF SAMPLE SURVEY DATA 

J.N.K. Rao 1  

Most sample surveys in the past have been 'descriptive' ii: 
the sense that the main objective is the computation of means 
or totals of a number of characters of interest along with 
their standard errors. However, in recent years data produced 
from 'descriptive' surveys are also being increasingly used 
for 'analytical' purposes, i.e., for investigating relationships 
among variables. Also some sample surveys might have primary 
'analytical goals' In which case the 'optimal' designing of 
such 'analytical surveys' become important. 

These lecture notes present an account of some recent develop-
ments in the analytical studies of sample survey data. Many 
challenging problems remain to be solved and I hope these notes 
will provide stimulation for further research in this important 
area. 

ETUDES ANALYTIQUES DE DONNEES PROVENANT D'ENQUETES 
PAR SONDAGE 

par J.N.K. Rao 1  

La plupart des eInquates menées dans le passé ont été de type 
"descriptif", c'est--dire ayant conune principal objectif le 
calcul de moyennes et de totaux associé a un certain nombre de 
caractères ainsi que de leurs erreurs-types. Cependant, plus 
récemment, les données provenant d'enqutes par sondage de type 
"descriptif" sont de plus en plus utilisdes a des fins analytiques, 
c'est-à-dire pour étudier les relations entre les variables. Ii 
peut dgalement se faire que des enqutes par soridage aient 
principalement pour but l"analyse"; dans un tel cas, la 
recherche d'un plan "optimal" pour ces enqutes de type "analy-
tique" devient importante. 

Ces notes présentent un "bilan" sur quelques récents développexnents 
en ce qui concerne les etudes analytiques sur les donnêes 
provenant d'enqutes par sondage. Ii reste plusieurs problames 
intéressants I résoudre et jespère que ces notes seront un 
stimulant pour la recherche dans cet important secteur. 

1 Professor, Department of Mathematics, Carleton University. 
Consultant, Statistical Services Field. 
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INTI'DUCTION 

Most sample surveys in the past have been "descriptive" in the 

sense that the main objective is the computation of means and totals of a 

number of characters attached to the units of the population, along with 

their standard errors. However, data produced from a "descriptive" survey 

can also be used for "analytical" purposes, i.e., for investigating 

relationships among variables. Such an analysis often involves the comparison 

of means of certain subgroups or "domains" of the population. "Domains" are 

usually well defined but it will not be known until after sampling which of 

the "domains" a particular unit belongs to. Consequently, the sample size 

within a "domain" is a random variable. Also, the size of the domain is 

usually unknown; in fact, it is often a parameter of interest. 

A simple method of estimation of domain totals and means, which is 

applicable for any sampling design however complex it may be, will be given 

in Section 1. 	This method requires only the standard formulae pertinent 

to the estimation of a population total or a population ratio. 

Some sample surveys might have primary "analytical" goals. "Optimal" 

designing of such "analytical" surveys will be considered in Section 2 

employing double sampling or two-phase sampling. 

Classical methods of statistical inference assume simple random 

sampling from infinite populations. Extensions of these methods to cover 

the complex designs usually employed in survey work is a formidable task. 

Certain tests of independence in contingency tables from stratified samples, 

however, have been proposed. Ingenious methods, such as the "jack-knife" 
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and "balanced half-sample replication", to circumvent the theoretical 

difficulties have also been proposed. These methods will be considered 

in Section 3-9. 

1. Estimation of Domain Totals and Means 

Suppose .N elements (ultimate units) in the population and in in 

the sample belong to domain i (say D.). Appropriate to any particular 

sampling design, there are three basic formulae pertinent to the estimation 

of population total Y(y.) = Zy. of a character of interest "y": 

Estimator of Y: Y = Y(y.)  

Variance of Y: V(Y) = V(y.) (1.2) 

Estimator of V(Y): v(y) = v(y.). (1.3) 

The estimator Y usually is of the form Y(y.) = E w J j y. where "s" 
:i  

denotes a sample. The operators Y, V and v depend on the sample design. 

The three basic formulae (1.1) - (1.3) are applicable for any set of 

characters y, attached to the population elements. Consequently, the same 

formulae could be used to estimate domain totals Y by attaching the following 

characters 
iy 
 to all the elements in the population:  fyj  

= 	

th 
if j 	element belong S to D 

1 	
(1.4) 

0 	otherwise , j = 1, 2, . .., N. 

Noting that Y = YL) 1  it immediately follows that 

	

= Y(. 
1 
 y.) 	 (1.5) 

1 	 J 

V( 1  . 	
1 

	

Y) = V(.y.) 	 (1.6) 
J 

v( 1  . 	
1 

Y) = v(.y.) . 	 (1.7) ] 
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An alternative way of defining iY 
i 	 1  J 

: 	.y. = • 
1a ) 3 

y. where t th 
i if j 	element belongs to D. 

.a. 	 1 

o otherwise 

If Y and v(Y) are unbiased for Y and V(Y) respectively, then 

the corresponding domain estimators Y and v(.Y) are also unbiased for 

Y and V(.Y) respectively. The meaning of the formulae (1.5) - (1.7) is 

simply that the standard formulae be applied to the "synthetic" characters 

y. defined by (1.4). Spelling out of these formulae in terms of the y values 

of the elements in D. will often result in simplification and lead to useful 

insights. For numerical evaluation, however, it is expedient to use the 

standard formulae by putting y = 0 when the element j is not in D. 

Noting that .N = Y(.a.), it immediately follows that 

= Y(. 1  a.). 	 (1.9) 
1 	 3 

Since the domain mean 
1 

• 	
1 

Y = .Y/.N, it follows from (1.1) and (1.9) that 
1  

= 	1 3 	 (1.10) 
1 

Y(.a.) 
13 

provided .N>0 (i.e., at least one element in the sample belongs to D)  which, 

in general, is a ratio estimator. Employing the classical approximate variance 

formulae for ratio estimators, we have: 

V(.y. - • Y.a.) 
V(.y) 	21 

1 
 

1 

v(,y. - • Y.a.) 
v(.Y) 	1 	 1 	

(1.12) 



	

, !.wr 	•- =741TAROM  

: 	 • 	, 	. 	 . 	.. 	 . 

-. 	: . 	• 	. 	- 	 -- 	/ 

;J; 	 4 

... 
1 	 . 	 :•; 	 •: 

.:• 	 . 	 : I I 
- s 	 ' 

 

Qb  

q A 

T4 	4 	I- 	 ' 	

-: 	 • 	 .' 

-, 

r 	 - 

I, 

	

I 	 -.. 

£4 	l 

04 -  -. 4"OV4 

r 44
: 

" 	
•• 

+ 

' 
-I' 

I.. 	 - 

	

I 	 c 

- 

- 	
--it -, 	. 	- 



-4- 

1 

For self-weighting designs, • Y reduces to the simple mean y = E y/.n. 

	

1 	
1 

Note that 
1.y. - . 

1 
 Y 1  a 3  . 	

1 
takes the value y 	Y jf th element is in D., 3 	 3 	1  

otherwise it is zero. 

For the comparison of domain means, say 
1 
 Y and 2 Y, we have: 

V(1 - 2 
	

v (i- 11a 
	- 2Yi2  22) 	

(1.13) 

- 2 	
11 	

- 2y. - 	a. 

 ) 	

(1.14) 

Since the "domains" are usually non-overlapping, the expression in brackets 

	

on r.h.s. of (1.13) reduces to 	- 1!)/1N if th element in D1 , to 

- (y. - 2Y)/2N if j 
th 
 element in D and to zero otherwise. 

If we are interested in the proportion of a measured characteristic 

which falls in D., i.e., .P = Y/Y, we use: 

Y(.y,) 
= 	3 	 (1.15) 

1 	
Y(y.) 

with variance: 

V(.P) 	V(.y. - .Py.) 	 (1.16) 

and variance estimator: 

v(.P) 	4- v(y - .Py.). 	 (1.17) 
1 	,2 	ij 	1 j 

For instance, in a cons.uner expenditure survey we might be interested 

in the proportion of total milk consumption which is attributable to families 
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in the income group $6,000 to $9,000. Note that y. - S Pyj  takes the value 

Y(l - P) if i th element belongs to D., otherwise it equals - 

One could test the hypothesis 1 Y =Y or set confidence limits on 

- 2" by assuming that 	2' is approximately normal with mean 
1 

 Y 
- 2" 

and variance v( 1Y - 2"' 
	

An application of 'balanced half-sample replication' 

for simplifying the computation of standard errors will be given in Section 

1.3. 

Examples: 

1. Stratified Simple Random Sampling 

We will now spell out the formulae for the simple case of stratified 

simple random sampling. We adopt the following notation for stratum 

h (h = 1, ..., L) and domain i: 

i h 	
= no. of elements, 

ih 	= no. of elements drawn in the sample, 

ih 	
= population total, 

i'h 	
= sample total, 

= population mean square, 

2 
iSh 	= sample mean square, 

i'1h 	
= population mean, 

ih 	
= sample mean. 

For stratum h, we have 

= 	no. of elements drawn in the sample, 

Nh = 	no. of elements, 

Yh 	= sample mean, 

= sample mean square. 



t 

, ; 

	

t 

	

_* 	 ( 	•r 	 _____ 

	

? 	 ' 

' - 

	

- 	 * 

jk 

: . 	 1y 
•• ?i  

Jk 

"..-, 	.' 	-- 	- 	. 	
. 	 - 	- 	. 	. 	. 	

•-: 

' '6 -. 	 1' 	 . 	 - 	 . 	 . 	 . ,- 	V 	• 	 • 	I 

	

Z' 	• 	 . 	V• 	V 	 : 	• 

	

4 	 t 	 t-, •  

	

V - 	 • 	VV 	 - 	 VV 	V 	• 	 V 	 •V V 	 •V 	 •V VVV.V rt$ 

	

i I 	 V1 

	

; •1 	4 

p 	

: 
• 	 I s 	3t 	,. 	

: *. 
I 

	

I 	
Vf 	 •V 

I •V 	 ____ 

	

- 	
V 	 - 

— 

•' 	VI 

- 	# V 	 V V • 	 - 	
•• V V V VV! 	 __________ 

V 	 V 

$ 

	

•V 	 ______ 

iGL  



-6- 

Then letting ah = Nh(Nh - 	we get 

= 
1 

El 
% iYh 

 
Ii 

V(.Y) 	= E ____ - 1) 	S2 + ti - ii (1.19) 
1 h N h-i 	ih i h 	.N h i, N h J ih 

v(.Y) 	= {(n 	-1) 2 
i 	

+(___ 1-_) 2 
h 1 h 1h1 	i h h 'h 

i'J' 	(1.20) 

The last ternis in (1.19) and (1.20) arise due to not having the "domain" 

frame. 

For the mean .Y we have 
:1. 

	

N 	 Nh 

	

=(E - 	y )/( 	- n ) 	 (1.21) 
h% ih hnh ih 

	

= .Y if n. 	Nh (i.e., self weighting) 

v(.Y) 	.N 	
a 
	t(iN 

-

2 	1 	1 	2 	- -

1 	1 	N 1 	 h 1)  Sh + 	- 	iNh iYh 1  J 

	

hh 	 ih 	h 

(1.22) 

v(.Y) 	 na-i finh - 1) 	+ 	- 	jrh 	
- 

(1.23) 

Similarly, 

	

- 1) 1s + 2% - 1) 2 	+ 	- ih 

	

v(1 - 2 	h 1  'l_ 

	

1h 	+ 2% (nh - 2% 	2 'h 2 	+ 2 i% 2% 

2N2 	 nh 

	

lh - 1 	2 'h - 2 	

} 	

(1.24) A A 

1N 
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y 
v(1P) . 	

ah I U - I ) 2 	2 	
1) 

' 	
ih 

h %  

1 
+ 	

Eflh_l)s 

2 	(n -1) s 2I 
h 	ih 	ihJ 

[1 -  

	

Y 	Y (n  
 + 	'n - in i'h ] 

2  

	

iyh 
y 	y 

(1.25) 

It is clear from the above formulae that the "spelling out" for domain 

estimation could be tedious and might lead to lengthy formulae. 

In a recent Minimum Wage Survey in Manitoba, a stratified simple 

random sampling design was adopted: firms were first stratified by region 

and industry and simple random samples from each cell were selected and 

interviewed in three consecutive quarters. Whenever the number falling in a 

cell is small (say < 6), all the firms were enumerated, so this is a case of 

disproportionate allocation. Here we might be interested in comparing the 

large and small firms (within an industry) for the effect of minimum wage on 

employment. 

Another interesting application is in surveys with "deaths" of 

elements. For instance, in the Minimum Wage Survey, some firms were not in 

existence at the time of interview and in addition there was non-response. 

Suppose for stratum h (which is a cell in the two-way table) d. = number of 

deaths, rh = number not responding in the sample of size m1  (say). If we 

assume that respondents and non-respondents are similar, the formulae (1.21) 

+ 	- i 
• n 
n

) 
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and (1.23) are applicable, provided we use ].h = mh - d. - rh? n. = m - rh. 

2. Multistage Stratified Sampling 

Tin and Toe (1972) provide an application involving multistage 

sampling. The following sampling design was adopted for a Consumer 

Expenditure Survey in Burma: M = 190 villages were classified into L = 3 

strata on the basis of location such that M1  = 116, M2  = 39 and M3  = 35. A 

6% sample of villages (i.e., 	= 0.06) consisting of m1  = 7, m2  = 2 and 

= 2 villages within strata were selected by simple random sampling (srs). 

All households in the selected villages were substratified by main occupations 

into T = 5 substrata (some substrata might be empty in some villages). Out 

of Nh.  households in the j 
th  village of hth  stratum, Nhik  belong to kth 

substratum and n
hjk

out of Nh.k  were selected again by srs, where rhik/Nhik = 

0.2. The selected households numbering n' = 291 were provided with account 

books for entering daily expenditure and were visited every month for twelve 

months to check and collect monthly data. Only six households did not 

respond (n = n' - 6 = 291 - 6 = 285). Suppose we take households of size 

five as our domain of interest, then in = 56 and the monthly expenditure 

per capita for households of size five is estimated by 1y 
= i  y/n = 1760/56 = 31.4 

since the design is self-weighting. For this sampling design, we have 

v(.y) = A + B 

where A, the variation due to first stage sampling, is given by: 

A = 1 - a 	mh  t 1h 	- 2
inh  h=l -1 

	j=l 	- 	i 	- 	ih -mh 
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and B, the variation due to second stage sampling, is given by: 

L m. T n 
hjk 	

-1) 2 
in 	h=l j=l k=l 'hjk1 	

1 hjk 	1 hjk 

+ iTlhjk 

%jk 	
%jk - i%jk ihk - 

) 2} 

where a = m./Mh b = %jk/Nhjk and the rest of the notation is self-

explanatory. 

For the Burmese data, 

A = 0.6352, 	B = 0.0837 

and 

v(.y) = 0.6352 + 0.0837 = 0.7189. 

If saiqling fraction a and second stage variation B are neglected 

(equivalent to drawing villages with replacement), thenv(.y) = 0.6757 which 

is quite close to the correct value 0.7189. 

3. Interpenetrating Sub-samples 

Suppose K interpenetrating equal sub-samples are selected using 

some sampling design and Y1, ••• 	
denote the K estimates of Y. Then 

K,. 
= 	Y. 
K1 j 

(1.26) 

and 

K ,. 
V(Y) 	

K-i) = K( 	
E (Y 

j - 
	

(1.27) 
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We obtain the estimates of domain total from the K sub-samples separately: 

.,  i i 	
• Y and then 

K 

1 
Y = K .2:. 	; 	• y • 	 (1.28) 

and 

2  
v(.Y) = K(K-1) 	

l (Y - Y) 	 (1.29) 
j  

For instance, in a two-stage design if primaries are drawn p.p.s. with 

replacement and equal work loads, say in, in each selected primary, then 

jy = (1.30) 
MK 

and 

- 	N2 	
K 	, y 2  

v(.Y) = K(K-l) 	
! 	- 	 (1.31) 

i  

where y is sample domain total and i 
y is tth  sub-sample domain total. 

Similarly, for estimating domain means, if .N1, ..., 	denote the estimates 

K 
of .N from the K sub-samples separately, ,N = Z .N./K, 

j=1 

and 

	

- 	K 	- 	K 	- 
= 	E.iz 	.N. 

	

1 	 i11j •11J 
(1.32) 

v(Y) = 	i 	 - 	
. 	 (1.33) 
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2. Design of Analytical Surveys 

2.1 	Domains Identifiable in Advance 

We first consider the comparison of strata, assuming that domains 

are strata: i.e. we assume that sampling can be done independently in each 

sub-group. We list several problems and their solutions. A difficulty in 

designing for analytical surveys is that a great variety of analytical studies 

are usually made. 

(1) 	Simplest situation is stratified s.r.s. and 'objective function' is 

the average variance of the differences Yh - k between all L(L-1)/2 pairs 

of strata, i.e. 

L 

V = 	L(L-1)/2} 	
h<k V(y - 	 (2.1) 

=1 

- 2 LS 
	2 L S 

- 	L 	ç-i: 	 (2.2) 

where, for stratum h, n. = no. elements in the sample, S = mean square. 
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Suppose the cost function is C = EChn.fl. Minimization of V subject to fixed 

C leads to 

(Sh V  / ) C 

Sh 	

(2.3) 

which is different from the customary Neylnan allocation for estimating Y: 

* 	(whSh/V'5 c 

= 	EWhSh 	

, 	 (2.4) 

unless Wh = W, where Wh = Nh/N and Nh = no. of elements in stratum h. 

(2) Allocation for the criterion 1yj 1 ) 	••• 	= 

Suppose C is fixed and we wish to find an allocation = 

which makes the strata variances V(yh)  as nearly as possible in a given ratio 

where 	 is a prespecified constant representing the 'importance' 
h  

attached to stratum h, i.e. we wish h = h V(yh) to be as nearly equal as 

possible, i.e. 

hSh 	= 	+
-h 	 (2.5) 

rib 	Nh 

using E c h n h = C in (2.5), we get 

C = 4hhh2 

ahSh } 

fNhch 	-1 
= 	

• 	
(2.6) 

1+ 

hSh 
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The range of 4> is limited by 

0 <4> <miii{hS(l - 	)}• 	 (2.7) 

* 
From the graph of C versus 4>, we read off 4> = 4> say, given a fixed C. 

We then get the nonintegral allocation 

* 	Nh  
(2.8) 

= 1 + *
2 

We round the n, to the nearest integer, say n, in the range 1 < fih< N. 

If C = Echñh = C, then (ñ3, , ..., i) is a feasible allocation; if C < C (C > C) 

we have to increase (decrease) some of the n h  to obtain a feasible allocation. 

To accomplish this, pUt •h = hSh ( 	- - ) and increase (decrease) the 

by distributing (withdrawing) units, corresponding to C - C, among (from) those 

strata where 4)h  is relatively high (low) . This allocation often gives a 4> 

which is quite close to the minimum attainable 	If the nh  are small, an 

integer programming algorithm is needed to get the optimal solution (Chaddha 

et al, 1971). 

Example: Suppose L = 5, Nh = 4, 33, 20, 55, 56, S = 1 for all h, 

Oh =  8, 1, 1, 4, 8, ch = 1 for all h. The graph of C versus 4> 

for 0 < 4) < 0.40 gives 4> = 0.27 when C = Enh  = 41 is fixed. 

We get ñ, = 4, n2  = 4, ft = 3, 	= 11, n5  = 19 and 4> = 0.30, 

compared to optimal 	= 0.29. 

(3) 	Consider again the stratified s.r.s. case but now suppose we are 

interested in optimal design for both strata means and overall population 

mean. In the Labour Force Survey we might wish to find an allocation 

(n1 , ..., 	which minimises the cost subject to the following conditions: 
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V(y 
h ) 	

< 
—— 

V 	and V(y 	) ho 	st 
< V 	where 

o yst 
= Ew 

h  yh 
and V 	, V 	are prescribed ho 	0  

gauges. The problem, therefore, is: 

Minimize C = EChrl 

	

subject to V(y ) 	Ew2  (1- 	) - 	<V 	(2.9) 

	

St 	h 	N
h  

Ih < V(yh) 	(l - -- ) 	
- Vho 	(h = 1, ..., L = 	 —  

and l<%<Nh. 

Letting rh = 1 - - 1 , this may be reformulated as: 

Nhch 
minimise C = E 

1 + Nr 

	

subject to E (W S2)r < V 	 (2.10) h h —  o 

andS 
2
r <V 

h h - ho 

o < rh 1 
- L. , h  

h 

This is a convex programming problem because the 'objective' function C is 

a separate convex function of the rh  and the inequality constraints are 

linear in rh.  Hartley and Hocking (1963) have given an efficient convex 

progranuning algorithm and Huddleston et al (1970) use it for sample survey 

problems. Due to the special nature of the inequality constraints in (2.10), 

an explicit solution can be obtained simply along the lines of the solution 

to problem (2) of section 	2.2 (see p.  23). 
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(4) Multi-factor studies 

Often times, we might be interested in more than one factor, in 

analogy with factorial experiements. Keyfitz (1953) investigated the effect 

of six factors on the family size, using a sample of 1056 Roman Catholic, 

French-speaking farm families of French origin, living in Quebec. Each 

factor has two levels: present age of wife (45-54, 55-74), age of wife at 

marriage (15-19, 20-24), wife's year of schooling (0-6,7 k), farm income 

(high, low), distance to city (near, far), type of area (French, mixed). 

Keyfitz estimated for each factor the true difference between the two levels 

for the variable 'family size'. 

Consider two factors a and t each having two categories, represented 

by a 2 x 2 table with the obvious notation: N. ., n. ., S,, Y. ., y. . and the 
1J 	1) 	1J 	ij 	1J 

marginals N. , N.., n. , n.. (i, 3 = 1, 2). The two levels for each factor 

may be compared by considering 

N 
D 	

= 	N 	'll - '21 	N 	'12 - '22 	
(2.11) 

	

N 1 	N 
D 	= 	

'u. - 'l2 + N 	'21 - 

These estimators may be called 'proportionally weighted estimators' and 

provide overall comparisons. 

Again, one might formulate the allocation problem as a convex 

programming problem: 

minimise 	Z Z c. .n 
i 1] 1J. i 

N2  
subject to V(D) = 	2 	1 	1 

2 	• 	- - ) < V 	(2.12) OL 	 ij 	n.. 	N.. 	- 
ijN 	ij 	iJ 
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N2  

	

V(D) 	E j --- S 2 . (. n !__ 
N  
_._)<V 

r 

	

T 	. 	. 	2 	1] 	. . 	. . 	- iN 	1] 	ij 

	

1 < n 	< N.., it 	= 1, 2 

where c. i  is cost/element in (i, i) -th cell and V, V are prescribed gauges. 

Booth and Sedransk's (1969) empirical investigation indicates that the 

solution to (2.12) is essentially the sanie as the solution to the following 

simpler problem: 

minimise E E c. .n. 
13 13 

subject to 
VV * 

W 1 V(D ) + (1 - W ) V(D ) = 2 	= V (say) 	(2.13)
CL 	 1 	V+V  

T 
and 

1<n. ].  . 	< N.. 
- 1 - 13. 

where W1  = V/(V + VT). However, they considered only the case V = VTCL 

The solution of (2.13) is 

iji  * [S 2 .. 1/2 	
{z 	[c (W N 2  +(l-

W )N2 )]1/2} 

= 	—j 	(WN2  + (1 - W1) N]1"2 	21 	i 	1 ;J 	1 1 

ijJ 	 NV 

(2.14) 

* 
provided we ignore the constraints 1 < n.

1J 
< N. .

J
. However, n.

1  .J 
 usually 

- 	— 1  

satisfies 1 < n. . < N. 
- 1] - 13 

(5) Comparison of domains with stratified s.r.s. 

Suppose we have I domains and L strata represented by a L x I table 

with Nh. = No. of elements in (h, i)-th cell, h = 1, ..., L; I = 1, ..., I. 

Then, if we assume the availability of frame in each cell, the estimator of i th 

domain mean is 



	

L 	' 

Or 

	

- I 	- 	 I  

- 	- 

- 	 — 	 -ç 	•--ji, 

- 

. 	 .. 	 J- 

- 
•! -- 

1 

+ 

jo 	- tt 	 ..- 	 -_--_;-- 	-- 

'- 

1 	
I 

:V *4 

ti- •- 

Vj 

iJ 

I - j 

II •-- 

.( 

IfI 

I 

4 

AW  

i4 ?,44~ 

jI 

 aw 



- 17 - 

h hi hi 
Y ± = 	 (2.15) 

N. 
.1. 

and 

:r(') 	, v(. - i.,) = 	E E - 
	

(- - i-) S 	(2.16) 

which reduces to (2.2) when L = 1 in (2.16) and L in (2.2) is changed to I. 

Minimisation of (2.16) for fixed C = Z E n 
hi hi 
c leads to 

hi 

n,. = C [ (Nh/Ni )  Sh.//c .]/[ 	(N •/N •) S • /c.]. 	(2.17) hi 	hi .1 hi hi hi 

2.2 	Domains not Identifiable in Advance 

If domains are not identifiable in advance, two-phase or double 

sampling is needed. We illustrate the methods for problems (1), (4) and (5). 

Double sampling is appropriate only if the cost of identifying an element is 

small compared to the cost of obtaining y - values. For example, it will be 

useful when sampling from files containing information about the domain to 

which each population element belongs. If the identification process involves 

visiting each person in home (say), then double sampling is impractical. 

(1) 	Suppose a large sample s(n') of size n' is selected by s.r.s. and 

of these belong to D., so that 
in, 

 is an r.v. We need now a sampling 

rule which specifies how subsainpling is to be done within each domain. Suppose 

1 
•n (< 1  n') elements from s( 	 i 1 

.n') are enumerated for y-values and y denotes the 
-  

mean based on these n  elements. Suppose the cost function is C = c'n' + 

where c' = cost of identifying per element and .c = cost of getting y in D 

per element. Then 
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V(.y - .y) = E V(Y - . yI 	.n,.n) + V E(.y - • yI 	.n,.n) 

s 2  r. 
=E— + 

I,n 
1_i 	J 

(.s2 	•s2 
= 	+ 

J 

Therefore the average variance of the differences .y - .y is 

I 	
2 	.s2 

= 	Ef —  - (2.18) 
li I 	 1 

Given that in' elements from s(n') fall in D., Sedransk (1965) proposed to 

minimize the conditioned average variance ES 2/.n w.r.t. 1n and subject to 

E.c.n = C-c'n' and in ' Sn', i = 1, ..., I, assuming that no is so large that 

Pr (.n' > 1) = 1 for all i. The resulting sampling rule is quite complicated, 

especially when I is not small. Sedransk proposed various approximation when 

I = 2 or 3. Since the overall average variance V is a function of n', we 

could select that value of no which minimizes V. The implementation of 

Sedransk's method for more complex situations (like problems (4) and (5)) is 

quite formidable, so we consider an alternative scheme, due to J.N.K. Rae (1973), 

which attempts to circumvent these difficulties. 

Essentially, Rao's method employs .n = .n'.v, where 
i  v is a constant 

such that 0 < .v < 1, with determination of optimal no and V. Now 

	

E(--) . 2 	1 

	

I 	n'( W i v) 	
(2.19) 

1 	1 	 i 

provided no is sufficiently large 1:0 justify the approximation E(l/n') 

l/E(.n'). Here W = N/N. The cost C, however, is random for this scheme 

so we use the expected cost 
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c = E(C) = c'n' + no ).W.c.v 	 (2.20) 
111 

for determining the optimal no and iv. This is satisfactory provided the 

C.V. of C is small, which is the case when n' is large, since C.V.(C) 	l/v'iY. 

So the problem reduces to minimising (2.19) subject to (2.20) and the 

inequality constraints o < iY < 1, i = 1, ..., I. We will give the explicit 

solution later, employing a lenuna in convex programming. This method retains 

its simplicity even when I is large. The optimal .v (as well as n') depend 

on the weights W. If the weights are not accurately known and/or if random 

costs are undesirable, one could use the no obtained from the above method, 

draw the sample S(fl') and then minimize conditional average variance, for 

given 
1 
.n', subject to E 1  . 	

1 	 1 1 
c,n = C-c'n' and .n < .n ' . The resulting .n, of 

1  

course, do not depend on W. Note, however, that the determination of no by 

Sedransk's method also requires a knowledge of the W. We shall also present 

the explicit solution for the in (p. 23). 

(2) 	Turning to problem (4), we distinguish two cases: (a) marginals N.. 

and N . unknown; (b) marginals N. and N known. In the case (a), the 

estimators are given by 

fl .1 	- 	- 	no 	- 	- 

	

D' = — ( 	-" )+— ( 7 
1 	'11 	'21 	no 	'12 	'22 

no 	n 

= n' 	'll - '12 + n' 	'21 - 

where n! = ) n., n'. = E.n. and n. = no. of elements from s(n') falling 
1. 	3 13 	.3 	113 	1] 

in (i j)-th cell and y. j  is the mean based on sub-sample of size n... If 

we take n. = n v. ., 0 < V. < 1, then with equal precisions for D' and 
13 	13 13 	— 13 	 OL 

D', we minimize 
T 
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= 2:.V(D') + V(D')) 
2 	T 

+ 

subject to 	
(2.21) 

c* = 	' c' + Z E n ' c. . W, 	V. 
1] 13 1) 

and 

o<v.. <1 	, i,j=l,2 
13 - 

where 	W.. = N. ./N, 
1) 	iJ 

2 	2  . + w w  
ii 	

W. 
13 

A 	= E W. 	(6. - 5)2 + E w •  

 
2j, 	

= E W. 3 . 
j  
6, 	y. = Y 

ii - i2 	1 , y = W. 
. 
y. 
1. 

We will present the solution of (2.21) after considering problem (5). 

(3) 	Suppose a large sample s(% 	
th

) is drawn by s.r.s. from h stratum 

and i n' of these belong to D.. We select in h 
	hi 
= in'.' 

h 
 units from s( 

i  
.n 

 h  
') and 

h 	1  

observe y-values, where o < v < 1. The expected cost is 

C = Ec 	ich i E(.%) = E cjn + E i c
h i

W
h i

v
h h 

	

n ' . 	(2.22) 

To estimate the domain mean .Y = E .N • Y / E N , we ethploy the combined 

	

1 	hlhlh h i h 

ratio estimator 

i = i 
N 
 h i 'h '  i 

N  h 
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whereN = N (.n/n). Noting that .Y - 	) .N 	- Y)/N, we find 
ih 	hi 	 1 	1 	hlh 	

. 	. 
 

that V is of the form 

L 	I.A 	B. 
____ 	ri = 	{ 	+ 	+ terms not involving n and 

h=1 i=l rh  ih 

(2.23) 

where .A. and Bh  are population parameters (assumed known). Therefore, the 

problem is to minimize (2.23) subject to (2.22) and the constraints 

o 
< i 

V  h < 1. 
— 

Solutions: 	The determination of optimal v,. for problem (4) and of the 

optimal i  V  h  for problem (5) can be formulated as follows: 

TA 
Minimize = 	T + 

1 
ntv 	no  

T I Subject to xYc' + E n'v 
T T T 
c W = C 

ando<v <l,T=l,...,T 
T 

(2.24) 

where C*,  A, B, c', c and W are known constants. Without going into 

details, we present the solution: If we minimize V subject to the equality 

constraint by Cauchy inequality or Lagrange multiplier method, we get 

XFc - n o  

_A  =AJn'vcW 
tln'V 	TTT 
VT 

Rr 
T = VB 	 C. 

and 

or 
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Suppose (1) denotes the index t for which 	 is the largest, (2) the 

second largest, and so on. Then if V (1)  < 1, the optimal \. are given by 

(2.25). If one or more of the v given by (2.25) is > 1, we set v (1) = 

and repeat the procedure with the remaining Vh. If again one or more of 

the remaining v is > 1, we set the largest equal to 1 and repeat the procedure 

with the remaining v 
T 
until all V < 1. Note that when two or more of the 

T given by (2.25) (or in later steps) are > 1, we should not set all of them 

equal to 1, since this procedure is not optimal. The above procedure can 

also be written explicitly as follows: 

A 
(r) 	

r 	r 

- W c 
Let D

(0)  = , D (r) - 	(c' + E c 	W 	) - 	A 	, r = 1, . . . ,L, 
(r) (r) 	(i) (i) 	(i) 

(D(1) < D(L l) ... < D0) ), then if for r = 1, ..., L, D 	< B < D 
(r) 	- (r-l) 

V 
(1) 

= 1, il, ..., r - 1 (r = 2, ..., L) 

1/2 

	

(i) 	

fcs + c

(1) W 
and 	v 	

(1)  + 	+ C(r_l)W(r_l) } 
 (i) 	

/C 

	

(i) W 
	B+A 
(i) 	(1)  

+..+A 

and if B > D(Ll) then V (1)  = 1. We start with the interval (D (1)  D (0) ) and 

stop the procedure as soon as B is in the interval under consideration. In 

practice, it is unlikely that we need to compute D's beyond D (3)  or D (4) . For 

problem (5), once the fractions i  V  h  are obtained by the above procedure (which 

do not depend on h,), we minimize (2.23) subject to (2.22) w.r.t. n after 

substituting for . h This, of course, reduces to standard Neymari allocation 

and we get 

	f 

 \J 	 (2.26) 
EBhch 	Ch J 
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A. 
where 	- = 	

ii '' h 

	

+ E 	and 	= c' + E c W v 
h 	h 	. 

1 
i h i h i h 

Turning to the problem of minimizing conditional average variance 

subject to 
1 	1 
.n < .n' for all i and Ec.n = C - c ' n ' , it may be formulated as — 

follows: 
TA 

Minimize V = E — 
1 nT 

subject to En 
T T 
c = 	 (2.27) 

and n T  <aT 
 ,T1, ...,T 

where A, c, C and a are given constants. Without going into details we 

present the solution: If C > E c 
T T 
a , then clearly n 

T 
= a 

T 
. So we assume 

now that E C a > C. If we minimize V subject to the equality constraint, 

then 

= 
c 

	

n 	
(\J_T- 

) , 	T = ., ..., T. 	(2.28) 

	

T 	E/AC 
TT 

Suppose (1) denotes the index for which 
FA 

	is the largest, (2) the second  OL  

largest and so on. Then lf.n (1)  < a ()  the optimal n are given by (2.28). 

If one or more of the n given by (2.28) is > 1, we set all of them - 1 and 

repeat the procedure with the remaining n until all the n < aT. In this 

problem, the above procedure and the earlier one (viz, setting only the 

largest n equal to a T  ) both lead to the optimal solution. Again, we can 

wirte an explicit solution as follows: 

= (EV) a 	ITT Let C (1)  = 01 	
(0) T t 	(l)\JA(1) 
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E 	-Vc 
c 

	

fA c - /A1)c(1) 	
Cr) ( r) 

 

	

TI 	
-1 Co 	

[IA(1)/C(1)] 	(r+1) 	
r = 1, ..., T - 2 

and C(Tl) = E Ch cth. 

Then if C 	< C < C 	, r = 1, 2, ..., (T-l) 

fl(1) = ?T) I T = 1, ..., r 

	

- C - C (1) a (1)  ... - 

	I = r+l, ..., T 
- 	- IA (1) c 	••• - IA 	c 	\JC(I) 

	

I T 	 (1) 	Cr) (r) 

if C (1)  < C I C0 

I 
C 	I 	I_ ( 1)1 

T = 1, ..., T. 
(I) 	ZYA c 

T T 
 

We start with the interval (C (1)l  C (0) ) and stop the procedure as soon as C 

is in the interval under consideration. 

Finally, we turn to the solution of problem (1) which may be 

formulated as follows: 

T A 
Minimize V = E 	 I 

n'v W 

	

1 	IT 

subject to C = c'n' + E c 
I T 	I 
W (n'v ) 	 (2.29) 

and 0 
< I 

< 1, 1 = 1, ..., T 

where A, C, c and WI  are given constants. The optimal solution is given 

by J.N.K. Rao (1973). We determine the optimal v for a given n' and then 

the optimal n'. For a given n', using Cauchy's inequality, we get 
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=FT

(C*n'c') 	
(r = 1, ..., L). 

T T  
TT 

provided n'W 
T T 	I 
v < n'W or 

flu > 	+ W (1) 	(E/Xc) }_l 
	= m (say) 

where (1) denotes the index T with the smallest value of W 'c /A . The 
I I I 

minimum value of V for no > m i , after substituting the optimal v into (2.29), 

is 
(E 	2 

V1(nu) 	TT = 

c* - n u c '  

so that the minimum occurs at the value m1  = m. Note that V (1)  = 1 when 

n o  = in. We consider next the values of n o  < in1 . Since V (1)  > 1 for these 

values, we set V (1)  = 1 and reallocate the remaining \ again by Cauchy's 

inequality. This gives 

nWV = 	{(c - flC - noW(1))/IAc} 	+ 

provided 

no > {c' + c (1) W (1)  + (W(2) 	
}1 c = m (say) 

where E denotes summation over r + (1) and (2) denotes the index T with 
( 1 ) 	_____ 

second smallest values of W Ic /A . Therefore, the minimum value of V, for 
ITT 

no in the range m < no < mj is given by 

2 
( E (Ac) A(1) 	

+ 	(1) V2(n') =
C* - t(u + n'W(1) 
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We need to examine the derivation of V 2 (n') over the range m2  < n' < mj to 

find the optimal n ' . The derivative vanishes at 

+ c (1) W (1 .} 	___ 
c 	C 

-1 
} nt = [& + C(1)W(1) + 

	 (1) 
tvA 

T T 	* = m2  (say) 

and the derivative is < for n' < m 2 . Consequently, if m 2  > m 1  V2  (i-i') 

monotonically decreases as n' increases so that the minimum occurs at 

= m1 ; note that m2  is usually > m since c' << c. If, however, m 2  lies 

in (mi, m) 1  the true optimum will often be given by m 2  = rn2  and the procedure 

may be terminated here, since in practice, V(n') will have a unique minimum. 

The general procedure is now clear. If m2 + m 2 , we set '(l) = 1, 

V(2) = 1 and reallocate the remaining v. All in all, T steps will be involved 

if the derivative is nonvanishing over the T-1 ranges n' > 	m' < n' < mu 1  

(T = 2, . .., T-l) where 

W 
(T) 	(T) = {Cu + 	C(k)W(k) + 	

(_....' l * 	( 2.30) 
1 	 (T-l) 	:i : 

(k) denoting the index T with smallest value of W VA /c and Z denotes 
T T T 

(T-l) 
sunination over j excluding (1), ..., (t-l) (j-1, ..., L). The derivative of 

	

V (fl u ) in the range m '  < n < m ' 	vanishes at 
T 	T 	T1 

T1 	
l/2 

ru 	 T-1 	 _ 

	

c' + 	c(k)W(k) 

(k) 	

I 	____ 

	

fl u  = m = [Cu + E c 	
W (k) + 
	 E VA c 

T1 T 
1 A J /W J  

1 

and usually rn > m'. Denoting the optimal u in the range mu < n' < rn' 1  by 

m, we compare the values V(m) to find the true optimum u  and then the 

corresponding v's 1  where 

(2.31) 
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(C* - nici - nt r-1 c(k)W(k)) 

V cj  JJ 	

(r-l) 	
TT 

j + {(l) , ..., (r-l)}. 

(2.33) 
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v'A.c,) 2  
JJ t-1 A(k) 

T (' 
	

+ 	(T-l) 	- 
V 	) = 	

fl'W 	
C*_n,(1+T c(k)W(k)) 

(2.32) 

If the optimum occurs in the range m' < n' < m 	then optimal V are 

given by 

- 	
= '(r-l) = 

Note that n' > C*/(c' + Ec W ) = m. 
TT 

Example: Sedransk (1965) considered the comparison of farms of different 

sizes with the number of cattle expected to be sold, and measure of size, 

the number of animal units (three hogs equal one head of cattle) on the farm. 

Here T = 3, C* = 220, c' = 1, C1  = C2 	C 3  = 4 Wi  = W2 	0.25, W 3  = 0.50, 

A1  = S = 4, A2  = S = 1, A 3  = S = 1. Using the above method, the following 

values are obtained: m 1  = mi 73, 4 V1 (m) = 0.436; m = 55, m2  = m2  = 64 

and 4 V2 (m2 ) 	0.424. One could stop here since m2  = rn2 , but let us proceed 

to the final (third) step: m = 44, rn3  = 58 m so m3  m = 55 and 4 V3(m3) 

= 0.436. Therefore, the optimal n' = m 2  = 64 and V (1) 	'V 1  = 	
'V (2) = " 2 = 

0.72 and \) 3  = 0.36. Sedransk's method leads to n' = 64 also. Here the C.V. 

of C is about 4% only. 
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3. Hypothesis Testing 

Classical statistical tests of significance or tests of goodness 

of fit are based on the assumption of simple random sampling from an infinite 

population. However, survey populations are finite and most survey designs 

are complex involving clustering, unequal probabilities, etcetra. Only 

recently, some attention has been given to hypothesis testing from complex 

survey designs. 

3.1 	Tests of independence in contingency tables from stratified simple 
random samples 

Nathan (1969, 73) considered stratified s.r.s. and developed 

appropriate tests of independence in contingency tables. Stratification is 

used only for reducing the variance of estimated total and/or for adininis-

trative convenience and is considered to have no intrinsic interest as an 

additional variable when testing independence between two qualitative 

variables. That is, the hypothesis of general independence in the population 

between the two qualitative variables is of interest, irrespective of the 

stratification employed for sampling. 
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Suppose the population is divided into t strata and the elements 

within each stratum classified according to an r x s table. Let P 
ij
. . = N.

i 
 /N 

k 	jk 

where Ni.k = no. elements in 
kth  stratum falling in (i, j)-th cell. Denote 

	

the marginal totals as P..., 	k etcetra where P..k = Nk/N is 

the known stratum weight (i = l . .., r, j = 1, ..., s, k = 1, ..., t). The 

hypothesis of interest is 

H: P.. 	= P 	P. 	, 	i = 1, ..., r; j = 1, ..., s 	(3.1) 

The hypothesis H in general is not equivalent to testing independence within 

strata: 

Pi
. j 
	N.ij 	

P
i 	

P.
j 	

N
i 
 N.. 

j 
H' 	

k 	k 	= 	.k 	k 	= 	.k 	k 	
(3.2) 

° P.. 	 Nk 	
P.. k 
	k 

H = H' if and only of 
0 	0 

P. . 	
i 	Pj 

p. 

P ij 	
= 	ij. 	.k 	k 	 (3.3) 

k 	p 	P. 	 p 
i.. 	j. "k 

The meaning of (3.3) is not clear. If one of the classifications, say that 

indexed by i, corresponds to domains, H is formulated as 

P. 	P. 	P. 
H : 	lj. = 	2j. = 	= 	rj. 	= P . 	) ( j = 1, •.., s) 	(3.4) 

P 	P 	P 
1.. 	2.. 	r.. 

i.e. the conditional probability of having character j given the domain is 

constant over all domains of study, i.e. a homogeneity test. 

Nathan assumed infinite N or that n/N is negligible so that the likelihood 

	

function, based on a stratified s.r.s. (n1, 	•' n) is given by 

t  f 	nk., 	— 
L(Piik)  = 	II 	

ijk 	iJk l 	(3.5) 
k=l 	

. 	
ijk! 	i,j 	. .k 	

j 
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where n ijk = no. of elements in the sample from k-th stratum falling in 

(i, j)-th cell. The theory for finite N, when n/N is substantial, is not 

available. 

Likelihood ratio test statistic 

Maximizing (3.5) subject to E P ijk = P
..k 	ijk 

and P 	> 0 leads to 
— 

1,) 
the maximum likelihood estimators (ML) 

P i = i n 	- 
jk 	jk nk 

(3.6) 

ML estimators under H 0  and the constraints E P l)k 	k 
. 	

ijk 
= P.. and P 	> 0 can 

— 

1,3 
be obtained by using Lagrange multipliers Ak  and ti.. and the Newton-Raphson 

method. Starting values of P 1jk' Ak and p in the iteration may be taken as
ij 

(3.6), Ak = 0 and p.. = 0. Four or five iterations might suffice when r, s 

and t are small. Denote the restricted ML estimators as P. 13k . The likelihood 

ratio statistic, therefore, is given by 

ijk 
 

L(P. ijk 

orG-2lnA=2)n,. ln(P../P ij) 
k 	13k 	k 

ijk ij  

is the log-likelihood ratio. Under H, G is asymptotically (as n - 	with 

r, s, t fixed) distributed as chi-square with (r-i) (s-l) d.f. Therefore, 

H is rejected if G > x where  x is the upper a-point of chi-square distri-

bution with (r-l) (s-i) d.f. 

Other test statistics based on the ML estimators P. 	and restricted 
ijk 

ML estimators P 
ijk are the following: 

(3.7) 
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chi-square statistic: 

= 	( p 	
ijkijk1 	 (3.8) 

chi-one square statistic: 

2 
n

j  
p i 
	

-pi.] 
= 	

k 	k 	jk 	 (3.9) 
 1. P. 

k 	k 	i,j 	P. 
1 jk 

All three statistics G, x2 and  x have the same asymptotic distribution 

under H and also same asymptotic non-null distribution. These statistics, 

however, are computationally coithersome as P 	 involve iterative calculations.ijk  

Two other statistics, which are computationally simpler, are given below. 

First, one could consider the restricted ML estimators after the 

first iteration only, say ijk'
and replace Pi.k  by P ••k 

 in (3.9): 

n 	(P.. 
ijk -pijk 

xi 	
] 

= E ( 	) 	 (3.10) 
k 	"k i,j 	P ijk 

The estimators P ijk are equivalent to those obtained by minimising a x- 

statistic: 

P
jk 

''ijk - ' 	
i 

k P. 

x i =  E E 
i jk 

= 	E 	
P)2 

kk i,j 	p ij
.. 

k 

subject to a linearised Fl 0 	ijk and E P 	= P 
k 

(3.11) 

n. ijk 
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A large sample statistic based on asymptotic normality of 

estimators of H 0  has also been considered. The hypothesis H 0  (given by (3.4)) 

may be written as 

H: 	QTT'_() 	 (3.12) 
0 

where 	q' 	= (q, •.., q 	) , q. 	- p. 	/P. 	and 
ii 	r,s-1 	)J 	1]. 1.. 

F 	(y , ..., y 	) is r(s-l) x (r-i) (s-i) matrix 

where 	
Y= i' .., 	i = 1, ..., r-l; j = 1, ..., s-i 

1 ifj' =j, i' =i 

= -i if j' = j, 	i' = i + 1, i' = 1, ..., r 

0 otherwise 	j' . 1, ..., s-i. 

The test statistic is 

G1 	= (q' I') (F' 	F) 1  (q' F) ' 	 (3.13) 

where . = 	E is a consistent estimator of the variance- 
J 	P. 	- 

1.. 

covariance matrix of q. Again, the statistics (3.10) and (3.13) have the 

same asymptotic null and non-null distributions as G, X and X.  One advantage 

of (3.13) is it can incorporate finite population correction factor in 

comoutina E. A Monte Carlo study has shown that. for finite n. the differences 

between the oowers of these five statistics are cuite small. 

Example: Consider the data in Table 1 obtained from a (stratified) sample 

survey undertaken in a Canadian Maritime Province in 1952. Responses are 

classified by groups of 'occupational disadvantage' (r=2), by incidence of 
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psychiatric disorders (r=3) within t=3 geographic - and social-area strata: 

n1  = 92, n2  = 112, n 3  = 78, n = 282. 

Table 1: n. 
1
jk - values 

1 	2 

1 10 	18 

k1: 	2 6 	46 0.17 

3 2 	10 

1 17 	18 

k2: 	2 29 	31 0.35 

3 8 	9 

1 4 	18 

k3: 	2 9 	30 0.48 

3 8 	9 

If we test H (within strata) using the G - statistic, we get G, = 6.449, 

= 0.011, G3  = 4.363. Comparing these values with 	(2d.f) = 5.991, 

we see that the hypothesis of inde?endence within strata is rejected for 

stratum 1 but not in strata 2 and 3. Pooled statistic G1  + G + G 3  = 10.823 

is also not significant compared to x 05  (6d.f). Turning to H0 , we have the 

following: 
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Statistic 	Estimates of P 	under H 	
Value of Test 

0 	Statistic 

	

j =1 	j=2 	j = 3 

(3.7) 	P 	: 	.2965 	.5236 	.1799 	2.288 
.3. 

(3.10) 	P 	.2965 	.5389 	.1686 	2.2880 
.3. 

(3.13) 	q.: 	.2983 	.5246 	.1771 	1.929 

where q' = q' - q' r (r' E r) 1 	
• It is seen that H0  is not rejected 

by any of the three methods considered above, since x 05(2 d.f.) = 5.991. 

In the case of proportional allocation (i.e. nk  = ' 

= 	
= 

iJ. 	n 	
k 	

k 

are unbiased estimates of P.. . Therefore, classical methods applied to over-

all frequencies n.. might be appropriate. The classical log-likelihood ratio 

will be 

= 2[E E ri. . 	in (ri. . ) - 1 E n. 	in (n. 
1) 

1). 	 1J. 	. 	1.. 	 1.. 

- E n 	in (n. ) + ninth)] 	 (3.14) 

3 	
3 	3 

or chi-square statistic 

= 	(n.. 	
- 1.. 	 )2/( 	

n.• 
 (3.15) 

In fact, the asymptotic distribution of G*  or 	under H0  is chi-square 

with (r-l) (s-i) d.f., i.e. same as before. However, their asymptotic power 

is not greater than that of the detailed test statistics. A Monte Carlo study 

has indicated that for finite samples or large samples, differences in power 
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are quite small so that over-all test statistics might be preferred under 

proportional sampling. 

The test statistics wc havc oid 	bssLc, c':i tIc 	sciicn 

of s.r.s. within each stratum. No theoretical results are available when 

cluster sampling and/or unequal probability sampling is used within strata. 

The method of balanced repeated replication (BRR) has been used to construct 

test statistics under stratified cluster sampling (Nathan, 1973). We will 

give this application after describing the method of BRR. 

Brackstorie and Cosselin (1973) consider the problem of testing 

that undercoverage rate in the 1971 Census is evenly distributed with respect 

to categories of interest, i.e., a test of homogeneity. If M. = no. missed 

persons in category i, E 1  = no. persons enumerated in category i, then 

M 	M 
r 	M 	

E 	E 
1 

H0: M +E = 	= M +E = M+E or equivalently H0 : M1  = M -1  , • 	Mr = M r 
11 	rr 

where M = EMirE = ZE 
i 

and the quantities M, E and E. are known. 

Based on a stratified s.r.s. of missed persons, we estimate 

P, = 	by P. and the large-sample statistic (P - p 0)' E 	(P - P0 ) is 

assymptotically X with k - 1 d f under H 0 , where P, is the vector of P's, 

P is the vector of P. = E./E and E is the estimated variance-covariance 
10 	i 

matrix of P's. 
1 
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4. Balanced Repeated Replication (BRR) 

Since the efficiency of an estimator generally increases with the 

number of strata for the same sample size, quite often the primary units 

are stratified to the extent that two primary units are selected from each 

stratum. One could, of course, stratify to the extent that one primary per 

stratum is selected, but difficulties with variance estimation arise. If 

the two primaries within a stratum are selected with replacement, there 

will be only two independent replicates available for the estimation of 

variance and confidence intervals for the population parameter (based on 

the two replicates) will then be much wider than they need to be. One cannot 

always estimate the variance by first estimating within strata and then 

pooling over strata. For instance, to estimate the ratio T = Y/X where Y 
L 

and X are unknown, one cannot write T as P = E (X./x) (Yh/xh)  and then 
1 

estimate Yh/Xn  separately from the data in stratum h, since 	is unknown. 

Moreover, even if 	is known, 'separate ratio estimate' of T might lead 

to large bias when L is large, unlike a 'combined ratio estimate' of T. It 

may also be noted that the variance estimate based on the two independent 

replicates refers to the average of replicate estimates rather than to the 

estimate prepared for the entire sample. The two estimates will not be the 

same in general except in the linear case. BRR is a method to overcome these 

difficulties and it often leads to stable variance estimates and facilitates 

statistical inference from complex survey data. 
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To fix the ideas, consider the estimation of Y from a stratified 

s.r.s. design with two elements per stratum. Assume first that the elements 

are selected with replacement. Suppose 
1h1 

 and y 
h2 
 denote the observaticns 

from stratum h (h = 1,..., L), then Y is estimated by y = hh where
st 

Wh = Nh/N and y h = hi + h212 The customary variance estimator, of 

course, is given by 

v(y ) = (1/2) 	S = (1/4) 
st 	

d 	 (4.1) 

where 
dh = 

 h1 - h2 The variance estimate based on the independent 

replicates 	
••• 	'Li and y12, ...' 	is 

- 	2 
vR(yt) = (1/4) 	'stl 	'st2 

(4.2) 

where ysti 
	

'' 
h hi 	' w 	' 1st2 = EWh h2 and y =(y 	 + 'st2"2 Of course, (4.2)

st

is in general not equal to (4.1) and its stability relative to (4.1) will 

be very poor as it is based only on two replicates. 

Suppose now we form a half-sample replicate by selecting one of 

y11 , y12 , one of y21 , y22 , ..., and one of y L1' L2' then the half-sample 

estimate of Y is 

=W (45 	y 	+45 	y 

	

s 	h hi hi 	h2 h2 

where 6
hl 
 = 1 if element (hi) is selected for the half-sample, 0 otherwise 

and 6h2 =1 - 6hl 	
L 

There are in all 2 possible half samples for a given 

sample and if y. denotes the estimate for i th  half-sample (i = l ..., 
2L )  

then 

1 	- 	- 

	

- 	y
S, ]. =ySt. 	

(4.4) 

(4.3) 
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Also 
- 	L 
v 	- v 	= (1/2) E W 6 h  

(1) 
s,i 	st 	r 	dh (4.5) 

where 	= 26hl - 1 and eauals + 1 if (hi) is in the 
.th 

 half sample and 

is -1 if (h2) is in the 
1th 

 half sample so that 	= 0. Similarly 
2 

- 	= (1/4) 	d + (1/2) E 	6 (i) 6 (i) 
 Yst 	 h 	he WhWhdh&nI 

h<h' 

(4.6) 

since [6,]2 = 1. Since 	
6(j) 6 
	= 0 it immediately follows that 

L 	h 	he 
2 

2 	i 
	- 	

2 = 	
(4.7) 

i.e. there is no loss of information if we use all the 2 half-sample replicates. 

If 
2L 
 is large (say L = 30), one would naturally wish to select 

only a fraction of these half-samples. Suppose we select k half-samples 

from 2 by s.r.s. with replacement and use the variance estimate 

k 	- 
'7 (y )=( 	- y k 	St 	5,1 	St 	 (4.8) 

1 

- 	L 
Since the conditional expectation, E2 {vk 	over the 2 half-samples

st  

(for a given sample) is v(Y),  it immediately follows that 

V[vk(y ]=V E {vk  (y )}+E V 	v (y )} St 	1 2 	st 	1 2 k St 

= V1 [v()J + E1  V2 {vk 	st 

	

V1  [v()J 
	

(4.9) 

where E1  and V1  respectively, denote the expectation and variance over the 

main sample and V 2  is the conditional variance. Consequently, the variance 

estimator (4.8) is less stable than v(yt). 
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The question that naturally arises now is whether it is possible 

to select a set of k half-samples such that (4.8) is equal to v(y),  i.e. 

is it possible to select a set of k half-samples such that 

k 
(i) 	j) 

h 	h' = 0 V h, h' = 1, ..., L (h < h'), 	(4.10) 
i=l 

in view of (4.6)? This leads us into the method of BRR which provides a 

set of half-samples satisfying (4.8). 

If the two elements within a stratum are selected by s.r.s. without 

replacement, then we modify (4.3) to 

= Z W 	
/1 - Nh 	hl 'hl + 6h2 'h2 - ' 	

(4.11) 
h + S 	 h 

because then 

- 	2 - 
- 	

- 	
-s- 	- .a._ 	(i),(i) (y . - y ) 	v(y 

St 	St )(1/4)Z 	(1 
N 

	

S,1 	
h<h' 	

h ) h h WhWhldhdhl 

(4.12) 

Plackett and Burinan (1946) have given a method of constructing 

k x k orthogonal matrices when k is a multiple of 4. Suppose L = 5, 6, 7 or 8, 

then the smallest orthogonal matrix that can be used for this case is 8 x 8 

because of the multiple-of-4 constraint. We give the 8 x 8 matrix below 

where rows identify half-sample and the columns correspond to strata: 
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h 

(l) 
+1 -1 -1 +1 -1 +1 +1 -1 

O 
h 

+1 +1 -1 -1 +1 +1 +1 -1 

+1 +1 +1 -1 -1 +1 -1 -1 

-1 +1 +1 +1 -1 -1 +1 -1 

+1 -1 +1 +1 +1 -1 -1 -1 

(6) 	: 
h 

-1 +1 -1 +1 +1 +1 -1 -1 

-1 -1 +1 -1 +1 +1 +1 -1 

(8) 
 

Any set of 5 columns for L = 5 case, 6 columns for L = 6 case, 7 columns for 

L = 7 case or all the 8 columns for L = 8 case defines a set of k = 8 

balanced half-samples with the property (4.10). The average of k values y. 

will be equal to y when
st  

k 
=  

k 	h 	
0, Vh = 1, ..., L. 	 (4.13) 

This property is satisfied except for the last column of the orthogonal 

matrix given above, i.e. except in the case of L = 8 strata. However, the 

property (4.10) is always satisfied. Note that the number of half-samples, 

k, equals the smallest integral multiple of 4 which is greater than L if both 

(4.10) and (4.13) are to be satisfied. We call this 'full orthogonal balance'. 

These results easily generalise to multi-stage sampling in which 

primaries are selected p.p.s. with replacement within strata. The estimator 

of Y corresponding to (4.3) is 
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L 	
1h1 	h2 = 	

hlp. 	+ 6h2 i- ) 	 (4.14) 

where Y
hi 
 is the unbiased estimator of (hi)-th primary tot1 Y. bai;ed on 

the elements selected from that primary (i = 1, 2) and P hi is the selection 

probability for (hi)-th primary. If a set of k balanced half-samples are 

selected, then 

Vk (Y) = 	(Y 	- 	 (4.15) 
1 

is taken as the estimator of V(Y) where Y is the estimator of Y based on 

the entire sample: 

LhlH'h2 	
(4.16) (1/2) ( - + ----   

1 	h1 	h2  

Due to the property (4.10), it follows that (4.3) reduces to 

L 

	

vk(Y) = 1/4 E 	h1h1 - h2"h2 	
v(Y), (4.17) 

which is the customary unbiased estimator of V(Y). 

Application to ratio estimation 

Suppose we are interested in estimating R = Y/X from a multi-

stage p.p.s. sample (withinstrata) where the primaries are selected with 

replacement. Then the estimator of R based on a half-sample is 

Y 
R= 

S 

S 
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where X is of the form (4.14) with y replaced by x. The variance estimator 

based on k balanced half-samples is taken as 

k 
vk 

 (R 
S 	k 	si ) = 	E (R 	- R) 2 	 (4.9) 

where R = Y/X. A similar procedure is adopted for ratio estimators of Y 

when X is known. If L is large, we could approximate 

Y,-  RX. 
R 	- R 	

Si 	
(4.20) 

Si 	 x 

since X. and X both converge to X. Therefore, 

vk(R) 	4-i- { 	[(Y. - Y) - R(X. - 

	

= Cv(y) - 2 RCov (Y, X) + R2  v(X)} 	(4.21) 

in view of (4.10), where 

Cov(Y,X) = (1/4) 1 ( 	- 	) ( 	- 	) . 	(4.22) 

	

1 	hl 	h2 	hJ. 	h2 

Consequently, for large L, vk (R) is approximately equal to the customary 

estimator, v(R), of V(R). If the property (4.13) also holds, then 

R = I R 	R in view of (4.20) 
k 	s,i 

Corresponding to the half-sample estimate R. we have the 

estimate R5  from the complimentary set of data and we get the variance 

estimate 

1 k- 
v(R) = - I(R 	-R) 2 . k s 	

k 1 
(4.23) 
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The complimentary estimators Rsl 	..' s,k 
also form a balanced set of 

half-samples. We could also take average of (4.19) and (4.23): 

v (R: + k (R) 

Vk 
(R ) = 	k 	s 	S 	

(4.24) 
S 	

2 

Another variance estimator is 

k * 
vk 	S 

(R ) = (1/4) 	(R 	R 	)2 • 
	(4.25) 

1 

A motivation for (4.24) is that R 	= S,]. 	(1/2) [R S,1  + R .1 	R (equality 

exact in the linear case) and since R. and R. are independent, V(R.) 

is estimated unbiasedly by (R. - R.) 2/4. 

No theoretical results are available (even for the case of 

stratified s.r.s.) on the finite sample performances of the variance estima-

tors Vk 	(R, Vk (R),  vk (R) and the customary one v (R). We 

will, however, briefly describe later the results of some empirical studies. 

If primaries are selected with unequal probabilities without 

replacement and sampling fraction is large, no simple correction similar to 

(4.11) is available. 

Example: Koch and Thompson (1972) give an interesting application of BRR in 

the comparison of domain means employing two characters: height and weight. 

In a U.S. Health Examination Survey, employing a complex design with two 

primaries per stratum, the heights, y1 , and weights, y2,  of n = 7119 boys 

are recorded. The two domains are: D, = negro, six years old, male; 

= white, six years old, male. The estimator of 	i2' i = 1, 2 is 
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1,. 1 
.Y ] = 
12 

where 	 n 
Ew y 

tijt 
.2. 	= 
1J 	Ii 

Ew a 
t i t 

j=1, 2; i1, 2 (4.26) 

where 
i yjt = y jt  j 
	

1 	 l 
child is in D., = 0 otherwise and a 

jt  
. = 1 if tth 

child in D., = 0 otherwise and w is the weight attached to tth  child, i.e. 

the estimator of Y is of the form Y = Z w 	With L = 20 strata, we get 

k = 20 balanced half-sample estimates 

n 
r) 

(r) 
= E w 

i 	n 	
(r) 

- 
r=l, ...,k i.  

Ew 6 	a 
1 

(4.27) 

where 	= 1 if 	child is in rth half-sample; = 0 otherwise. Denote 

(r) 

i2 

ly 
We may therefore estimate the variance-covariance matrix of Y 	[ 	J by 

2 -  

kP 	= 	- ] [(r) - Y] 	(4.28) 

(r) 

where Y= [ 	r) 1. Note that j  (Y) is a 4 x 4 matrix. 
2 	k 

Since n is large we could assume multivariate normality of Y and 

any contrast in .Y, say C' Y, may be estimated by c' Y. For example, if 

= (1, 0, - 1, 0) we will have a comparison of height of negro vs. height 
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of white. We could use the statistic 

	

2 	(c i  y 2  

	

x 	= 	 ( 4.29) 
c' k c  

as a x 2  with 1 d.f. If C' = (1, 0, - 1, 0) we get C' Y = 0.58, 

c  k c = 0.8168 and X 	0.40. Similarly for the comparison of weights, 

x 2  = 0.40. Both X's are not significant suggesting that the two domains are 

similar w.r.t. average height and weight. 

One could make a joint test of height and weight by considering 

1 0 -1 0 
0 1 0 -1 

and the statistic 

= 	' c' 	k c ']  c 	 (4.30) 

2 which is asymptotically x 2 with 2 d.f. Here we get X = 8.70 which is 

significant, i.e. differences cannot be explained in terms of any variable 

separately. Here is an illustration that multivariate tests are more 

sensitive than separate univariate tests. One reason for this is the data 

exhibit a 'cross over effect' which arises when direction of differences 

between the two domains w.r.t. two positively correlated characters is 

reversed. Here corrN(yl ,  y2) = 0.89, corr(y1 ,  y2) = 0.77, but 1Y, - 2
"1 = 

0.58 cm and 1 
 Y =Y = -0.28 kg. 

Application to testing in contingency tables from a stratified cluster sample 

Suppose two primaries are selected within each stratum by s.r.s. 

with replacement, and subsampling is done such that we have two independent 

unbiased estimates of the probabilities P 
ijh  from the two primaries within 

stratum h (L = 1, ..., L), where P 
ijh  is the probability that an element is 
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in stratun h and is classified into (i .)th cell. Denote the two estimates 

of P.. 
ijh 	iji 

in stratum h by P 	
ij2 

and P 	. If we select a set of k balanced 

half-samples, then the estimate of P 	from u 
th 
 half-sample is 

ij.,u = ' 	hl ijI + h2 
3 ij2 	= 1, ..., k 	(4.31) 

where 6
h1 
 is as defined before. Similarly, from the complimentary set 

corresponding to u 
th

half-sample we get the independent estimate of P 

given by 

p 	+6 	P 	} = 	
P ijl 	hl ij2 ' u 

= 1, .. . k. 	(4.32) 
1] . ,U 

h 

Under the null hypothesis H 0 : P.. = P. 	P 	, the following statistics 

have zero expectation: 

= P • 	+ P 	- P. 	P . 	- P. 	P . 	(4.33) 
ij,U 	13.,U 	iJ.,U 	i..,U .j.,U 	i..,U .J.,U 

Tij,u 	= 	ij.,u rs.,u - is.,u 	rj.,u' 	
= 	r-1 	(4.34) 

j = 1,..., s-l. 

Let 

= 	ll,u' ** " I  r-1,s-1,u' 	= 	11'"' r-i,s-i 

(4.35) 

T 	= (T 	,...,T 	)',T= (T 	T 
ll,u 	r-1,s-1,u 	r-1,s-1 

where 
k 	k 

Q 	= 1 	 , T.. = I 	z T. . 	. 	(4.36) ij 	k 
u=l 

 ij,u 	ij 	k 
u=l 

 ij,u 

Then the statistics 

x 2 = ' 	
(4.37) 

x 	= 	;-i 	
(4.38) 
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can be used to test H 0  by comparing them with X 	[(r-l) (s-i)], where 

DQ  and D 
T 
 are the estimated variance-covariance matrices of Q and T 

respectively; expressions for D and DT  are given in Nathan (1973a). 

In the case of a self-weighting design, P.. 
	

/n is unbiased 

for P, so one could use the classical statistic given by (3.14). A 

linked simulation study by Nathan (1973) indicates that the differences in 

performance of (4.37) and (3.14) are small, so that the use of the simpler 

overall statistic (3.14) may be justified in the case of self-weighting 

designs. 

One could also use the large-sample statistic (3.13) with an 

estimate of E based on balanced half-sample estimates P. 
-. 	 iJ.,u 

est. coy
= 	

ui 	
- 

r 
(4.39) 

j ,j ' 	= 1, ..., 5-1 
P. . 	 p. 

where qiJ . . = 
	

is the estimate of 	based on the entire sample and 
 p. 

1. • 	 1.. 

p. 
q. . 	

= 	i].,U . 
The use of (3.13) of course, involves the inversion of a 

iJ,u 	p. 
1 .. 

large matrix r' E 1-' 

A computationally simpler statistic is the following: 

4 L E Z (z. . - 
2 	i' 	iJ 

x = 
M 	

sin 
2.-i 

1-- 	( 11 	l-rs 

(4.40) 
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where Z. . = 	sg [P. . 	- P. 	P ], z = 	Z Z. 	(4.41) 
k ul 	

ij.,u 	1. .,u .j.,u 	rs 	
.j 

and sg [ I = 1 if [ ] is positive and = 0 if [ I is negative. If rs 

-1 	. 	2 is large l/(l-rs) is small and sin 	[l/(l-rs] = 1/(1-rs). XM  is asympto- 

tically X 1)  under some stringent assumptions (McCarthy, 1969). Nathan's 

(1973a) empirical investigation indicates that (4.37) performs better than 

(4.40). 

Partially balanced half-samples 

If the number of strata, L, is large (say > 50), full orthogonal 

balancing would require k > L half-samples and the processing of results 

for such a large number of half-samples might be quite expensive. To reduce 

the number of half-samples, we could generate a smaller number of partially 

balanced half-samples as follows: We group the L strata into C groups, each 

of L/G strata (assume L/C is an integer) and then use a set of k > 

balanced half-samples in each of the groups. Then E 6 W  6 	 = 0 when L 

and L' belong to the same group or belong to different groups but do not corres-

pond to the same column in the two balanced sets. Therefore, the variance 

estimator is 

P - 	1 k- 	- 2 
Vk 	 = 	

(y 
. 	

- Yst 	= (1/4) E w a + ( 1/2) E WhWh,dhdhl (4.42) 

* 
where Z denotes summation over all pairs (h,h') such that h < h', h is from 

one group of strata and h' is from another group of strata and h and h' 

represent corresponding columns from the L/G orthogonal columns that make up 

G(G-l) a balanced set. The number of terms in E*  is (L/G) 	
2 	

= L(G-l) 
2 

which increases with C. 
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Example: L = 6, k = 4. Here we need k = 8 to achieve full orthogonal 

balancing. Since k = 4, we can divide the six strata into G = 2 groups each 

of L/G = 3 strata and use the first three columns of a 4 x 4 orthogonal 

matrix for each of the 2 groups: 

h 

- 	2 3 4 5 	6 

-1 +1 +1 -1 +1 +1 

+1 -1 +1 +1 -1 +1 

+1 +1 -1 +1 +1 -1 

Efficiency of partially balanced half-sample variance estimator 

will depend on G as well as on the arrangement of strata into groups, for a 

given C. In the linear case, if we assume that the L strata are randomly 

split into C groups each of size L/G, then 

h 

(2) 
h 

3) 

h 

V[v 	= V[vk 	st1 + 
	w1 , a 

which shows that (4.43) increases with C. The loss in using v() is 

minimised when G - 2. For the special case of W c = ... = W cy and 
1 ly 	L Ly 

= •... = 	= 3 where a is the kurtosis measure in stratum h, we have 

p - 
V[vk  

V[vk 

(4.43) 

(4.44) 
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so that the loss in precision by using a G-order partially balanced set 

of samples instead of a balanced set of half-samples might be very large. 

Of course, the choice of G will depend on a trade-off between precision and 

computational cost. 

Lee (1972,73) has investigated several strata arrangements into 

G groups and his investigations suggest the following as a 'good' pattern: 

A A A (alternatate ascending order arrangement) 

(1) Arrange the L strata first in ascending order of the magnitude of 

W a; (2) Divide the L strata arranged in this order into G groups, each 

of size L/G; (3) Reverse the order of the L/G strata in each of the second, 

fourth, sixth, . .., groups. 

In practice, to implement AAA we will need estimates of ah  from 

past data. 

Additional applications of BRR are given in a paper by G.C. Koch, 

D.H. Freeman and J.L. Freeman "Some useful strategies in the multivariate 

analysis of data from complex surveys", Proc. Soc. Statist. Sec. (A.S.A.), 

1973, 8 - 17. A weighted least squares approach is used to investigate 

various relationships anng domain means and to test relevant hypotheses. 

Examples include: (1) comparisons among cross-classified domains; (2) 

evaluation of the existence and nature of trends. 
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5. The Jack-knife Method 

To fix ideas, consider the case of simple random sampling and ratio 

estimation. Suppose (y.,, x)1, ..., n) denotes the sample and y and 

denote the sample means. The customary ratio estimator r = y/x of the 

population ratio R = Y/X has bias of order 1/n. Suppose we split the sample 

at random into g groups, each of size p = fIg and compute the customary 

estimators, r., by omitting j th group from the sample, j = 1, ..., g, i.e. 

- 	- 	- 	- 	- 	- 	.th = (ny - py.)/(nx - x) where y. and x. are the j 	group means. Let 

= Er!/g, then the estimator 

rQ  = 	r./g = gr - (g-l) r'  

will have bias of order n 2  at most (ignoring f.p.c.), where 

rj  = gr - (g-l) r' 	 (5.2) 

is called a 'pseudo-value'. If f.p.c. is not negligible, we modify (5.1) as 

rQ  = wr - (w-1) r 	 (5,3) 
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where w = g[l - (n-p)/N]. Bias of r Q  will not contain terms of order 

as well as of order N . Quenouille (1956) proposed this method in the 

context of bias reduction. Investigation by Rao and Rac (1971) indicates 

that for ratio estimatioi, g = n is an optimum choice in that both bias 

and variance of rQ  are decreasing functions of g under certain reasonable 

models: 

yi = c+8x.+e., 	i=l, ...,n 
	

(5.4) 

t 

	

E(ejx.) = 0, V(ejx.) 	x. , t >0 , E(e.ejx., xi = 0, i + i 
1 1 	 1 1 	1 	 iJ 1 	J 

x is distributed as a garima r.v. 

Extensive empirical and semi-empirical work (Rao, 1969; Rao and Kuzik, 

1974) support this choice. 

Tukey proposed that in many instances the pseudo-values r1 , ..., r 

(using g = n) can be treated as approximately i.i.d. (independent, 

identically distributed) so that V(r Q) (or m.s.e.r.) may be estimated by 

v(rQ) = 
n(n-l) 	- I•Q ) 	 (5.5) 

(n-i) n 

	

= 	E (r' - rI)2 	 (5.6) 
1 	g 

If f.p.c. is not negligible, we multiply (5.5) or (5.6) by 

(1 - n/N). One could also use 

1 	2 
vQ(r) = n(n-l) 	

E (r - r) . 	 (5.7) 

For large n, v(rQ) is approximately equal to the customary variance estimator 

n 	n 	n 1 _____ 2 	2 2 
v(r) = 	 { E y. - 2 r E y x. + r E x }, 	(5.8) 

n(n-l)x2 	1 	
i 1 
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noting that 

y. - rx. 
- r' 	{(y. - y) - r(. - x)}/{(n1)x} = 	. 	(5.9) 

x(n-l) 

Investigation by Rao and Rao (1971) using the model (5.4) indicates that 

v(r) underestimates m.s.e. (r), whereas v(rQ) overestimates it, although 

the absolute bias of v(r) is likely to be smaller than that of v(rQ). 

If p.s.u. 's are selected with probabilities p. and with replace-

ment, formulae (5.5) - (5.7) hold good, provided y j  and x, are replaced by 

th 
Y/p. and X/p. respectively, where Y. and X. are unbiased estimates of  

primary totals Y. and X. based on the elements selected from that primary. 

Stratified sampling 

H.L. Jones (1974) has obtained 'jack-knife' estimators for the 

case of stratified simple random sampling without replacement, employing 

Taylor expansions. Suppose nh  units are selected from the Nh  units in 

stratum h(h = 1, ..., L) by srswor independently in each stratum. Then the 

combined ratio estimator of R is 

= E 	
(5.10) 

WX 

where Wh = Nh/N and y  and xhare  h-th stratum sample means. Let R(hi) 

denote the estimator of R, of the same form as R, obtained by omitting 

th unit in stratum h and let R(h) = R (hi)  %. Then Jones' jack-knife 

estimator of R is 

= [1 + 	- 1) (1 - l)]R - 	- 1) (1 - 	-) R(h) 
h 	1 

(5.11) 
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whose bias (for large L) does not involve second order population moments. 

If 1 - 	1 and nh  = 2, we get 

L 
= 2 R - 	R 

(h) 	
(5.12) 

U  

which was proposed. by McCarthy (1966). Jones' estimator of mse R (or of R) 

is 

Ln 
v(R) 	= E(l---) 12 

 

Nh S( h) 	 (5.13) 

where Sh) = h 	hi) - R(h))/% . For h = 2 and 1 - %/Nh 1, 
1 

(5.13) reduces to 

L 	2 	L 
E (R 	- 	) 2 = 	2. (R(hl) - R(h 2 ) )2  v3(R) 	 . = 	
1 	

(hi) 	(h) 

(5.14) 

McCarthey (1966) proposed 

vM (R) = 	2 	hi) - 	h) 	(5.15) 

Lee (1973) employed 

L 	2 
-R) 

1
(R 	2  vL ( R)  = 	(hi) 

(5.16) 

Kish and Frankel (1970) suggested, for nh = 2, deleting one unit from 

stratum h but including the other unit twice and then computing the estimator 

from (5.10); in all 2L estimators. For the case of fh 
= 2/Nh = f, i.e. equal 

Nh? one of their estimators of m.s.e. (R) reduces to Jones' (5.13). Other 

estimators of m.s.e. (R) are similar to (4.21) and (4.22) in the case of BRR: 
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L 
v1 (R) = (1 - f) ) 	

- 

1 

L 
2  v2 (R) = (1 - f) 	- R) where (hi) is the 
unit omitted 

(5.17) 

(5.18) 

v3 (R) = 
v1 (R) + v2 (R) 

2 
(5.19) 

For large L, all the variance estimators are approximately equal to the 

customary variance estimator (% = 2) 

v(R) 	= 	
1 

 (s2 -2 Rs yxh 
+ 2 

(Wh)2 (E 

	h xh 

where s 
2 =h1 - h2 	

y  
12' 

S 	
= 'hl - 'h2 	hl - xh2 ) '2 1 yh 

(5.20) 

22 
Xxh = (xhl - xh2) /2. 

An advantage of the ' ' method is that variance estimators are 

available for general nh > 2 unlike the BRR which is applicable only for 

n.r = 2. * 

If P.S.U. 's are selected with probabilities p
hi 
 with replacement 

from each stratum, then the above formulae hold good, provided y is re-

placed by 'hi'hi  and x by Xhi//Phi. 

6. Taylor Expansion Method 

Suppose Y = (Y1 , Y 2' 	
is a vector of population parameters 

and Y = (Y11  Y 2 , 	Y) be the vector of unbiased estimators. Suppose the 

* Extension of BRR to n. > 2 has recently been given by M. Gurney (Technical 
Memorandum, U.S. Bureau of Census) and J.I. Borack (1971, Ph. D. Thesis, 
Cornell University). 
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parameter of interest is g(Y) which is estimated by g(Y). Then by Taylor 

series expansion, 

k 	-. 	a g(Y) I 

	

g(Y) 	g(Y) + E (Y. - Y.) 	 (6.1) 
1 	

1 	1 	ay. 
1 	Y.=Y. 

1 	1 

to first approximation. Therefore E g(Y) 	g(Y) and 

k 	a g(Y) 	k 	g(Y) 
mse (g(Y)) A Var [ (Y. - Y.) 	] = Var (E Y. 	1. 1 	1 	ay. 	 1 

1 a. 
1 	 1 

(6.2) 
n 	n 

Now Y. = E w, y. 	E y. (say) where w• 
J 
 are the weights attached to the 

1 	
1 	1  

elements in the sample, and {D g(Y)/aY.jY =Y 	g(y.)Iay.Iy!. = E(y.)} 

for all j. Therefore 

kk 
mse (g(Y)) 	Var [E 	

ag 

1 1 aE(.) 	' 

nk 
= Var [E (Z 	g 	

y'.)] = Var (E Z.) say 
1 1 aE(y.) 

k 
where Z. = 	g 	

y,. This method avoids the computation of M 

	

1 aE(y'.) 	1] 

variances of Y. and M(M-1)/2 covariances of Y. and Y.,from (6.2); we only 

need to compute Z's and apply the usual formula for single variate. For 

variance estimation, we substitute the estimates of partial derivatives 

ag/aE(y) from the sample and then apply the usual variance estimator 
ii 

formula for a single variate. The Taylor expansion method is general and 

applicable to any sample design, provided the variance estimator formula 

for estimated total is known. The above method of simplification is due to 

Woodruff (1971). 



4 

( 

At ot- 

•.i 	 . 	
; 	 . 	 . 	 . 	 , 	

• 

! 
-. 

. 	 . 	 . 	. 	. 	., 

 

r 	 ' 	 I 

Al  

	

)7 	: 	: 
. 	-  

—& 

Ml 
i 

4T 
AIN 

4 
4 	 ;:;ç 



— 57 - 

Example 

For stratified srswor, 

L n 	L 
R= 	E 

1"1' 	
h 	= 

where 
N 

'hi - n, 	'hi 

and 

Nh 
Xhi 	Xhi 

Also 

aR 	- 	Y 

	

- x ' 	 aE(x,.) 	— 

ag_i 
aE(y.) - x 

ag 	! 
E(x.) - 	x2  

n 	 Lnh 1 __ 	3g 

	

E(y') Y 	+ aE(x..) 	x . }  = : E { 	Yç1 j — 	} 
hi 

L % Nh 'hi = 	E 

	

ii 	
çLr"2xhj)}. 

Therefore, letting Zh• = 	— 
'hi Y 

2 Xh we get 
x 	x 

v(R) = E v( E z 
hi 

— 	)2 (z L 	 hi 	h 

nhi 
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L N2  
= 4- 	(1 	

% "h 	-' 
Xh x2  lh 	

_i;ç) 	(yhiRi_Yh+R)2/h_1) 

(6.3) 

which is identical to (5.20) when n = 2 and 1 - 

	

h 	
N h 

7. Empirical Study 

Frarikel (1972) empirically compared and evaluated BRR, 'jack-knife' 

and Taylor series method using data from the Current Population Survey of 

the U.S. Bureau of Census. Treating the sample as population, three clustered 

and stratified sample designs are constructed (approximately 14 elements/ 

cluster) with n. = 2 clusters/stratum (Nh's  are equal) by simple random 

sampling: (1) 6 strata (n 	170); (2) 12 strata (n 	340); (3) 30 strata 

(n 847). For each design, M = 200 or 300 independent samples are drawn 

and g(Y), v.[g(Y)] for each of the methods i are computed. Empirical values 

of bias and m.s.e. of v are obtained: 

M 
1 

B(v.) = - 
M 	

E 	
1 

v. [g(Y)]) - V[g(Y)] 
1  

j =1 

where 	V[g(Y)J 	= I E {[g(Y)]. - 	(g(Y)]} 2  
M 

j =1 

M 	A 	 M 
1 

and 	V[vj = - 	[{v(g(Y)]}. - {1 
1 	M 	

. 	
- 	M 

m.s.e. [v. 
1 	 1 
] = V(v.) + B 2 (v.). 

1.  

The variance estimators chosen are: for ERR eqs. (4.24) and (4.25); for 

the 'jack-knife' eqs. (5.13) and (5.19); (6.3) for Taylor series method. 

Results on the relative merits of the three methods with regard to bias 

and m.s.e. are not clear-cut. Therefore, a different criterion is chosen: 
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q(Y) - Eg(Y) 
degree to which a method makes the approximation t. = 	- 	t (L d.f.) 

i 	V'v. [g(Y)] 

most valid. For each sample t 1  is computed from each of the 5 variance 

estimators and then the proportion of times each t-ratio falls in the 

limits specified by t-distribution with L d.f. is computed. These propor- 

tions are given in Table 1 - 3 for ratio g(Y) = Y/X and difference of ratios 

g(Y) = Y/X - 	
=1 - 
	= Z/x where 

zhi =  1hi - 2hi and Xh. = nuuther 

of elements in (hi) th cluster; values given are averages of proportions for 

6 ratios and 12 differences of ratios. 

Table 1: 6 strata design (M = 300) 

Difference of Ratios 

± 2.576 ± 1.960 ± 1.645 ± 1.282 ± 1.000 
eq. (4.22) 0.9500 0.8997 0.8497 0.7578 0.6483 

BRR 
eq. (4.22a) 0.9481 0.8950 0.8450 0.7503 0.6436 

eq. (5.19) 0.9464 0.8939 0.8397 0.7428 0.6367 
Jack-knife 

L 	eq. (5.13) 0.9458 0.8889 0.8389 0.7400 0.6353 

Taylor eq. (6.3) 0.9450 0.8842 0.8372 0.7381 0.6306 

Theoretical Prop. 0.9580 0.9023 0.8489 0.7529 0.6441 
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'able 2: 12strata design (M = 200) 

Ratio 

± 2.576 ± 1.960 

Ieq. (4.22) 0.9721 0.9221 
BRR 

eq. (4.22a) 0.9721 0.9208 

r eq . (5.19) 0.9712 0.9200 
Jack-knife 

jeq. (5.13) 0.9712 0.9196 

Taylor [en. (6.3) 0.9712 0.9192 

Theoretical Prop. 0.9757 0.9264 

± 1.645 ± 1.282 ± 1.000 

0.8700 0.7692 0.6612 

0.8687 0.7667 0.6579 

0.8662 0.7650 0.6554 

0.8658 0.7642 0.6550 

0.8646 0.7625 0.6542 

0.8741 0.7760 0.6630 

Difference of ratios 

eq. (4.22) 0.9658 0.9117 

(eq. 
BRR 

 (4.22a) 0.9656 0.9097 

eq. (5.19) 0.9653 0.9083 
Jack-knife 

(eq.  (5.13) 0.9653 0.9083 

Taylor eq. (6.3) 0.9653 0.9078 

Theoretical Prop. 0.9757 0.9264 

0.8617 0.7614 0.6458 

0.8594 0.7586 0.6422 

0.8558 0.7561 0.6375 

0.8544 0.7558 0.6369 

0.8525 0.7539 0.6358 

0.8741 0.7760 0.6630 

Table 3: 30 strata design (M = 200) 

Ratio 

	

BRR 	t eq . (4.22) 

eq.  (4.22a) 

(eq.

eq. (5.19) 

	

Jack-knife 
	(5.13) 

	

Taylor 	feq. (6.3) 

Theoretical Prop. 

± 2.576 ± 1.960 ± 1.645 ± 1.282 ± 1.000 

0.9825 0.9444 0.8906 0.7894 0.6569 

0.9819 0.9437 0.8894 0.7881 0.6569 

0.9819 0.9431 0.8887 0.7856 0.6537 

0.9819 0.9431 0.8881 0.7850 0.6537 

0.9819 0.9431 0.8881 0.7844 0.6537 

0.9848 0.9407 0.8896 0.7903 0.6747 
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Difference of ratios 

req. (4.22) 0.9829 0.9462 
BRR 

eq. (4.22a) 0.9825 0.9454 

eq. (5.19) 0.9821 0.9433 
Jack-knife 

eq. (5.13) 0.9821 0.9433 

Taylor eq. (6.3) 0.9821 0.9433 

Theoretical Prop. 0.9848 0.9407 

0.8875 0.7783 0.6475 

0.8867 0.7779 0.6462 

0.8842 0.7742 0.6433 

0.8842 0.7742 0.6433 

0.8842 0.7742 0.6429 

0.8896 0.7903 0.6747 

Table 1: 6 strata design (M = 300) 

± 2.576 ± 1.960 ± 1.645 	± 1.282 ± 1.000 

Ieq. (4.22) 0.9558 0.9042 0.8450 0.7562 0.6450 
BRR 

1 , eq. (4.22a) 0.9533 0.8996 0.8404 0.7487 0.6379 

req . (5.19) 0.9508 0.8942 0.8362 0.7421 0.6329 
Jack-knife 

L eq. (5.13) 0.9500 0.8912 0.8337 0.7396 0.6329 

Taylor eq. (6.3) 0.9483 0.8879 0.8329 0.7379 0.6279 

Theoretical Prop. 0.9580 0.9023 0.8489 0.7529 0.6441 

Results in Tables 1 - 3 clearly show that the average proportions produced 

by BRR (eq. 4.24) agree better with theoretical proportions than the average 

proportions produced by the other methods, and the agreement is good. 

However, the differences between the methods are small. Since (6.3) is 

computationally simpler than BRR and 'jack-knife' variance estimators, 

Frankel (1972) recommends Taylor series method for ratios and differences 

of ratios. 

8. A General Method 

Lee (1973) proposed a general method which yields BRR or 'jack-knife' 
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as special case. Suppose the L strata are divided into g groups (g L) 

with r t strata in t th  group (t = 1, ..., g). In each group BRR is used to 

select half samples (assuming 2 units per stratum selected with replacement). 

Suppose q 
<t 

 half samples are selected by BRR from 
tth 

 group. Then the 

variance estimator for ratio estimation is 

g q 
V g (R) = 	E 	E 	(R(t) - 

t=l cz=l 
. 2 (8.1) 

t 	(a) 	(a) 
(t) Wh(Yhl + 'h2 "2  + 	

W}(61 	
'hl + h2 	h2 

where 	R(td) = Et 
	

/2  + E 	
(a) 

h 	
Wh( l  + 	2) 	wh( 

t 	(a) 
hl 'l + h2 

(8.2) 

where 6 	 = 1 if (hl) is selected for ath  half sample, = 0 otherwise and 
hl 

(a) 
= 1 - (a) 

	t 	 th 	(t) i 
h2 	6hl 	is summation over the r  strata in t group and Z 	s 

summation over remaining strata. In the linear case, Vg (R) reduces to v(Y) 

as in the case of BRR and the 'jack-knife' variance estimator (5.16) and g = 1 

gives the BRR variance estimator (4.15). Lee (1973) made a small empirical 

study which indicates that the absolute bias of Vg (R) increases with g, 

whereas m.s.e. of vg (R) decreases as g increases, i.e., 'jack-knife' method 

leads to smallest mean square error and 'BRR' to smallest absolute bias. 

Frankel (1972) did not use (5.16), so Lee's result is readily not comparable 

to Frankel's. Lee has not considered the behaviour of the t-statistic. 

Lee's estimator (8.1) is applicable to any sample design provided 

2 p.s.u.'s are selected from each stratum with replacement and we replace 

'hi by 
Y 
hi"hi 

 as before 
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9. Estimating Relationships between Variables 

Consider the finite population of pairs (y 1 , x1), ••• (y 	xN). 

Several survey practitioners estimate population values like the finite 

population regression coefficient (of y on x) 

S 
B = 	= 

x 

E(x. - x) (y. - Y) 

E(x. = x) 2  

Ny,x. -Yx 
(9.1) - 	2 	2 N 	x. - X 

1 

from the sample selected by a specified sample design. For instance, with 

unequal probabilities p, with replacement, S and S 2  are estimated term by 

term and their ratio taken as an estimate of B: 

n -1 	-1 	
n 	

n -1 p. 	) ( Z p. 	x.y.) - ( E  P 	 y) 	Z p. 	x) 

b 	
= 1 	1 	1 	1 

PPS 	n -1 	-1 	-1 	2 

	

p. 	) ( 	p. 	x.) - ( Z 	x.) 

	

11 	1 ' 	1 

One could also estimate S and S 2  unbiasedly, noting that 
xy 	x 

S, 2 
	N 

= N(N-l) 	(x. - x 
)2 
 and S 	

= 	
- x.)(y - y . 	 .): 

1 	j 	xy 	N(N 
2  
-l) 	i i<J 	 i<j 

V 

{t.t /E(t. 1  t.)} (x. 1-x.) (y. 
1
-y,) lj 	J 	3 	3 i<j 

b 	= 
pps 	V 	

2 
{t. 	

1 1
t /E(t.t.)} (x.-x.) lj 	J 	J ii 

(9.3) 

where v = no. of district units in the sample, E(t.t.) = n(n-l) 

Unlike in the case of total Y, mean Y or ratio Y/X, it is not clear what 

meaning one can attach to B without an underlying model. If we assume the 

y. 	= ct+x.+c., 	jl, ...,N 
	

(9.4) 

with the c. assumed as i.i.d. random variables with mean 0 and variance 
: 

then B is the least square estimate of . 
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Some people advocating the estimation of B (e.g., Kish and Frankel, 

1974) argue that some researchers could profit by knowing how much of a 

relationship between y and x could be explained or accounted for by a linear 

model (9.4) or some other model. They emphasize that it is not necessary to 

assume a model like (9.4), since we are only asking how much of the variabi-

lity in y can be explained by the particular model we choose to try. 

However, others argue that researchers' primary aim is to discover some (at 

least approximate) relationship between y and x and then the amount of 

variation that cannot be accounted for by such a relationship would have some 

natural relevance to the evaluation of the results obtained. That is, most 

users are concerned with estimating parameters of an appropriate model rather 

than estimating descriptive expressions like B (see Brewer and Mellor, 1974 

for an illuminating discussion and also the discussions on Kish and Frankel's 

1974 paper by Konijn and T.M.F. Smith). 

We consider both approaches here and present some empirical results 

on descriptive measures like B. However, one should not forget that the 

problem of estimating relationships among variables is deeper than simply 

estimating descriptive quantities and that it demands close collaboration 

between the statistician and the subject matter specialist. 

9.1 	Descriptive Measures 

Frankel (1972) employed estimates of measures like B which are 

strictly valid only under simple random sampling. However, since the sampling 

designs used in his study are self-weighting, these estimates are consistent 

for large samples. Wakimoto (1971), derived an unbiased 
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estimate of the correlation coefficient p = S /(S 2  S2 ) 1" 2  for stratified xy x y 

simple random sampling of elements: estimate of S2  is 
y 

2 = 	
W1 	h 	L WhWh, 	hh' 	2 zz (y - V 	) (-l) 	

<t 	hi - h1' 	+ 	
E 

hi 	h'j 

	

h(h' hh 	i j 

(9.5) 

and similar expressions for S , S 2  xy x and then 

p = S /(S2S 2)1/2 
xy x y 

(also Koop, 1970). (9.6) 

For measuring relationship between y and x = (x., ..., x) Kish 

and Frankel (1974) choose to define parameters as B. such that 

N 	p 	2 (y. - 	B. x,.) 	is minimum, (x  
i=l 	' 	j=0 	 Oi (9.7) 

i.e., B. are the ordinary least squares regression coefficients. The 

estimates b are obtained by treating the sample (y., x1 .,, ..., x.), 

i = 1, ..., n as if it is a simple random sample and, therefore, by minimizing 

n 	p 	2 

	

- 	E b.x..) 	 (9.8) 
i=l 	j=O 

w.r.t. b. which leads to the customary normal equations: 

p 

	

u.k . b. 	Vk 	k = 0, 1, ..., p 	 (9.9) 
j=0 

n 	n 

	

where u
kJ  • = E xjiki.x , Vk 	ki = Z yx . Half sample estimates and . 	 • 	i  

i=l 	i=l 
'jack-knife' estimates of B are similarly obtained. 

We need the partial derivates 3b/3uK and  3bj/vk (S = 0, 1, . .., p) 
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to find the variable estimates by Taylor expansion method. Tepping (1968) 

has given a systematic method for this: Differentiating (9.9) w.r.t. 

(9 = 0, 1, ..., p), we get 

p 	ab. 

jO Ukj u 	= - 	 S - si 	ks b - ki b 	(9.10) 
=siz 

k,s, 9=0,1, ...,p 

and differentiation w.r.t. v leads to 

p 	ab. 

j 	v 	= 	ks 	k, s = 0, 1, ..., p 	 ( 9.11) 
j=O Uk 5 

where 6 = 1 if k = s, = 0 otherwise. The system of equations (9.10) can
ks 

be divided into (p + 1)2 subsystems (s, Z = 0, 1, ..., p), each of p + 1 

linear equations in p + 1 variables 	, j = 0, 1, ..., P. However, 

since u = u only (1/2) (p + 1) (p + 2) of the subsystems are distinct.ks  

Similarly, the system (9.11) can be subdivided into p + 1 subsystems each 

of p + 1 linear equations in p + 1 variables 3b/aV j = 0, 1, ..., p. In 

total, we need to solve (1/2) (p + 1) (p + 4) sets, p + 1 linear equations 

in each set. For BRR, we have to solve L sets (L = no. of strata) each of 

p + 1 linear equations. So the computations involved depend on the relative 

magnitudes of L and (1/2 (p + 1) (p + 4). For the jack-knife, one could use 

short-cut methods for deletion of an observation (y.1 , x
01 ., 	P1 

..., x .) from 

regression equations. 

Tables 4 - 6 g...ve empirical results (taken from Frankel's 1972 

paper) on t-statistic for simple correlation coefficient, multiple regression 

coefficients and multiple correlation coefficient; values given are averages 

of proportions for 12, 8 and 2 coefficients respectively (Taylor expansion 

method not used for multiple correlation coefficient). 



	

________ 	

. 	
1 	,. ' 	 I 	 • 	 ,. I 	

________ 
	

t 	 - 

	

3 	 .' 	. 	-. 	' 	- 	 - 	 . 	
S 	• 	• 	 gt 

' : 	 , • 	: 	 • 	. 	 _______ 

j. 
; 	 - 

 

aA 

; 	 4  - 	I,  

" - 

- 	 - 	 S 	- 	
- 

	

- 	
- 

	

—:•T 	I 	 S 

WT 

jr 

IL 

- 	

- 

e-4 	3 d 	S.  

	

- 	
- 	 - 	 - 	 - 	 - 

	

- 	
- 	 - 	

- 	 - 	 - 

	

, 	5Y  

	

- 	

- - 

	 - 	 S 	 - 	 - 

A- 

I 

. 	 - 



- 67 - 

Table 4: 6 strata design (M = 300) 

Simple Correlation Coefficient 

+ 2.576 + 1.960 ± 1.645 ± 1.282 ± 1.000 

eq. (4.22) 
BRR 

eq. (4.22a) 

eq. (5.19) 
Jack-knife I eq. (5.13) 

Taylor eq. (6.3) 

Theoretical Prop. 

0.9475 0.8864 0.8358 0.7386 0.6250 

0.9411 0.8761 0.8189 0.7131 0.6069 

0.9311 0.8633 0.8047 0.6992 0.5906 

0.9292 0.8553 0.7944 0.6892 0.5814 

0.9158 0.8367 0.7744 0.6708 0.5631 

0.9580 0.9023 0.8489 0.7529 0.6441 

Multiple Regression Coefficient 

r eq. (4.22) 0.9662 0.9150 0.8600 0.7683 0.6642 
BRR 

L eq. (4.22a) 0.9587 0.8996 0.8433 0.7446 0.6446 

eq. (5.19) 0.9521 0.8833 0.8304 0.7312 0.6200 
Jack-knife  t eq. (5.13) 0.9454 0.8796 0.8258 0.7262 0.6142 

Taylor [eq. (6.3) 0.9421 0.8733 0.8146 0.7167 0.6029 

Theoretical Prop. 0.9580 0.9023 0.8489 0.7529 0.6441 

Multiple Correlation Coefficient 

eq. (4.24) 0.9350 0.8950 0.8233 0.7383 0.6133 
BRR 

eq. (4.22a) 0.9033 0.8217 0.7583 0.6417 0.5467 

r eq. (5.19) 0.9117 0.8400 0.7800 0.6600 0.5600 
Jack-knife 

eq. (5.13) 0.8850 0.8033 0.7350 0.6133 0.5133 

Theoretical Prop. 0.9580 0.9023 0.8489 0.7529 0.6441 
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Table 5: 12 strata design (M = 200) 

Simple Correlation Coefficient 

+ 2.576 + 1.960 + 1.645 ± 1.282 ± 1.000 

eq. (4.22) 
BRR 

eq. (4.22a) 

I eq. (5.19) Jack-knife 
eq. (5.13) 

Taylor 	(eq. (6.3) 

Theoretical Prop. 

0.9553 0.8967 0.8439 0.7578 0.6397 

0.9492 0.8883 0.8344 0.7397 0.6264 

0.9439 0.8750 0.8261 0.7308 0.6167 

0.9428 0.8719 0.8211 0.7217 0.6108 

0.9333 0.8589 0.8028 0.7050 0.5992 

0.9757 0.9264 0.8741 0.7760 0.6630 

Multiple Regression Coefficient 

f eq. (4.22) 0.9733 0.9337 0.8746 0.7733 0.6529 
BRR 

eq. (4.22a) 0.9700 0.9250 0.8654 0.7646 0.6412 

f eq. (5.19) 0.9675 0.9162 0.8542 0.7496 0.6283 
Jack-knife 

eq. (5.13) 0.9671 0.9142 0.8508 0.7471 0.6250 

Taylor (eq. (6.3) 0.9662 0.9121 0.8496 0.7437 0.6217 

Theoretical Prop. 0.9757 0.9264 0.8741 0.7760 0.6630 

Multiple Correlation Coefficient 

(4.22) 0.9200 0.8500 0.7900 0.6767 0.5500 

BRR 	(

eq . 

eq.  (4.22a) 0.9067 0.8150 0.7400 0.6067 0.5067 

eq. (5.19) 0.8950 0.8133 0.7383 0.6333 0.5167 
Jack-knife t eq. (5.13) 0.8850 0.7933 0.7067 0.5933 0.4950 

Theoretical Prop. 0.9757 0.9264 0.8741 0.7760 0.6630 
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Table 6: 30 strata design (M - 200) 

Simple Correlation Coefficient 

± 2.576 ± 1.960 ± 1.645 ± 1.282 ± 1.00 

f eq. (4.22) 
BRR 

L eq. (4.22a) 
eq. (5.19) 

Jack-knife t  eq. (5.13) 
Taylor 	eq. (6.3) 

Theoretical Prop. 

0.9725 0.9108 0.8617 0.7533 0.6325 

0.9696 0.9083 0.8550 0.7467 0.6212 

0.9658 0.9021 0.8471 0.7346 0.6137 

0.9658 0.9008 0.8442 0.7333 0.6112 

0.9650 0.8983 0.8362 0.7225 0.6025 

0.9848 0.9407 0.8896 0.7903 0.6747 

Multiple Regression Coefficient 

eq. (4.22) 
BPR 

eq. (4.22a) 

I eq. (5.19) 
Jack-knife 

eq. (5.13) 

Taylor 	eq. (6.3) 

Theoretical Prop. 

0.9825 0.9381 0.8900 0.7887 0.6706 

0.9812 0.9369 0.8881 0.7831 0.6687 

0.9800 0.9325 0.8844 0.7787 0.6631 

0.9794 0.9319 0.8844 0.7787 0.6619 

0.9787 0.9319 0.8837 0.7781 0.6612 

0.9848 0.9407 0.8896 0.7903 0.6747 

Multiple Correlation Coefficient 

f eq. (4.22) 0.9125 0.8250 0.7350 0.6375 0.5272 
BRR 

eq. (4.22a) 0.8975 0.8100 0.7175 0.6125 0.4975 

eq. (5.19) 0.8950 0.7925 0.7025 0.5950 0.4950 
Jack-knife 

L eq. (5.13) 0.8875 0.7925 0.6975 0.5825 0.4700 

Theoretical Prop. 0.9848 0.9407 0.8896 0.7903 0.6747 
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Results in Tables 4 - 6 again clearly show that the average proportions 

produced by BRR (eq. 4.22) agree better w ith theoretical proportions than 

those produced by the other methods. Also agreement is good except in the 

case of multiple correlation coefficient - - note that the observed propor-

tion is decreasing as the number of strata increases, unlike in the estimt-

tion of other parameters. 

9.2 	Estimation of models 

Konijn (1962) formulated a regression model appropriate to a 

two-stage sampling design. Suppose the 
hth 

 cluster (h = 1, ..., L) has 
Nh elements and the elements in the 

hth 
 cluster are assumed to have been 

selected from an infinite super-population satisfying the linear model 

Y 
hi = a h 

+ a 
h Xhi 	Nh? 	(9.12) 

a , e and e uncorrelated. E(eh.Ixh.) = 0, E(ejxh.) = 
	2 

i hi 	hj 

The parameters of interest are taken as 

ENhah 	N h h 
a = 	, 	while N = Nh. 	(9.13) 

N 	N 

A justification for choosing these parameters is that an individual selected 

at random from the population will satisfy the model y = a + ax + e, E(elx) = 0. 

Suppose £ clusters are selected by some sampling method (without 

replacement) with inclusion probabilities ir,, and if 
hth 

 cluster is 

selected n. (predetermined) elements are selected by simple random sampling 
th 

(E nh = n). Given that h cluster is in the sample, we have E(bh) = h where 

b is the ordinary least squares estimator: bh = hi
(  xhi -  (xhi - xh)2 

Therefore, an unbiased estimator of is 

hbh 
___ 	 Nh 

= 	
= Eb/& 	if 	

'h 	
L1—. 	 (9.14) 

iNith 	
h 
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In the case of stratified simple random sampling, lrh = 1 and 

L 
=E Nb/N . 	 (9.15) 

1 

Similarly, one obtains unbiased estimator of a, noting that a h I given hth 

cluster in sample, is estimated by ah = h - bh x. One could, of course, 

estimate any specified linear combination of h' 
 or a hS The usual 

estimate 

E (c 	- 	'hi 
b = - 	, x = 	 (9.16) 

- ) 	(x.1 . - x) 
2 

 

is not unbiased unless a =a, h = . The variance of B is estimated 

unbiasedly by 

v(8) = 	W a/[1r E (xhi - 
	) 2 ]  

hh' 	bhWh bh,Wh, )2 
+z 	 (9.17) 
hh' 	Tlth, 	h - 

2  where a = 	
: ah bh Xhi 

	- 2), assuming n. > 2 for each h.
hi 

Similarly v(c) and coy (c&, B) are obtained. Konijn also treats the case of 

sampling clusters with replacement. Note that the variance estimate (9.17) 

is the sum of two components: First component is due to within cluster 

variability and the second is due to the fact that a sample of clusters is 

selected. 

An alternative formulation for two stage sampling is due to 

Fuller (1972) which reflects the 'cluster effect'; 

'hi = a + 	+ 	+ 	i = 1, ..., Nh 	(9.18) 

h=1, ...,L 

= a + Bxhi + 
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where u1, ..., 	is a random sample from an infinite population with mean 0 

and variance 0 2  e have mean zero and variance a and distributed inde-
u hi 	 e 

pendently of v.. This model induces correlations between elements in the 

same cluster which takes into account the fact that elements within a cluster 

are often positively correlated: 

2 	2 a -a 
e• u 

cov(eh? e1 , 1 ,) = 

0 

if h = h', i = i' 

if h = h', i =/i' 

if h y6  h'. 

(9.19) 

If we assume that a two-stage random sample of L clusters with nh  elements 

form 
hth 

 selected cluster, then the estimates of a and are simply obtained 

by applying ordinary least squares to 'transformed' observations 

Yhi = "hi - 11h 1h ' Xhi = Xhi - 11h Xh 

2 
e 

= 1_l[2 a 

e + 

	}1/2 

 VU 

(9.20) 

2  'hi 	- 	,c ( 	- x) 	x = 	and ; = 	- 

Since r are unknown, one could obtain estimates of a 2  and a 
2 
 and, hence, of h 	 e 	u 

by the method of fitting constants. The resulting estimates of a and 

are also unbiased provided the e 
hi  have symmetric distribution. The model 

(9.18) is the simplest model for two-stage sampling which suggests itself 

various extensions suitable for different practical situations. For instance, 

if we believe that the slopes vary from cluster to cluster, we could change 

(9.18) to 

'hi = a + 	Xhi + 5h (xhj - h +hi 	(9.21) 
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where Sh'S  are regarded as random slopes :aken from a distribution with 

mean 0 and variance a and 4h'S  assumed independent of u.n 's (see Fuller (1972) 

for details of estimation of a and ). Fuller also gives procedures for 

tesoir 	acheis of the type (9.13) and (9.11) - 

Porter (1973) has provided an extension of Konijn's model to time 

series sample survey data. For each element in the finite population, it 

is assumed that T observations (T = no. of time periods) are observable and 

the 'economic' relationship 

y. 	= X.. + e. , 	i = 1, ..., N 
	

(9.22) 

is assumed, where y.  is TX1 vector of observations on the dependent variable, 

X. is a TXp matrix of observations (with rank p) on p independent variables, 

th 
is a pxl vector of paranleters for i element and e. is the TX1 vector of 

errors with zero mean for each i. Suppose now that n elements are selected 

by using a specified sampling design, without replacement and the same n 

elements observed in T successive periods. Therefore, the observations on 

the n elements for T periods obey 

=
X1 . + e 	, 	i = 1, ..., n. 	(9.23) 

Porter chooses 	= 	) 	as the parameter vector of interest (or 
- 

weighted average E w..). 

The following assumptions are made: (1) n > p, T > p; (2) independent 

variables fixed and r (X 	... 	X') = p for all samples; (3) e. and e. 

independently distributed and variance-covariance matrix of e 1  = a. 

Let b. = (X Xi)'  X'y be the least-squares estimator of 8, so that given 
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the sample s, E (bjs) = 
	

. Unbiased estimator of chosen is the Horvitz- 

Thompson estimator 

nb •  

N (9. 24) 

	

.A 	1 

and an unbiased estimator of its variance-covariance matrix is 

2 
n 	(1 - 	 ( 	- 71 	71) 	 fl S. 

- 	b b!+ 

] 

N2 E 
	+ 	(xx.) 	(9.25) 

2 	..i_i 	it 

	

it 	_1_1 

1 

where s = (y. - X. b.)' (y. - X. J b/(T - p). The variance-matrix estimator 

(9.25) is of the Horvitz-Thompson type and a 'better variance-matrix 

estimator of the Yates-Grundy form is obtained by replacing the first two 

terms in brackets of (9.25) by 

	

(ii. it. - it. .) 	h. 	b. 	b. 	b. 

	

1 	 !J 	(_2...2) (_.) 	(9.26) 
it.. 	 it 	it. 	it. 	Ti. 

1<3 	iJ 	 1 	j 	1 	j 

An approximate Aitken-type estimator of a which uses more of the model than 
(9.24) is also given (second part of assumption (2) is needed for this) 

Assumption (3) is also relaxed by letting 

E(e. j') 
= 0ij T ' 

[1] QUENOUILLE, M.H. (1956). Notes on bias in estimation. Biometrika, 43, 
353 - 60. 

* This variance estimator takes negative values 'often' unlike the 
Yates-Grundy variance estimator. 
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