Published by Authority of the HON. W.D. EULER, M.P. Minister of Trade and Commerce.

CANADA

DEPARTMENT OF TRADE AND COMMERCE
DOMINION BUREAU OF STATISTICS
PUBLIC UTILITIES BRANCH

$$
\begin{gathered}
\text { STATISTICS STATISTIQUE } \\
\text { CANADA CANADA } \\
\text { SEP } 182000 \\
\text { BIBLIOAARY } \\
\text { BIOEQUE }
\end{gathered}
$$

USE OF ELECTRIC POWER

IN

MANUFACTURING AND MINING INDUSTRIES

IN

CANADA

1935

DOMINION BUREAU OF STATISTICS

 TRANSPORTATION AND PUPLIC UTILITIES BRANCH OTTAWADominion Statistician, R.H. COATS, LL. D., F.R.S.C., F.S.S. (Hon.)
Chief, Transportation and Public Utilities Branch, G.S. Wrong, B.Sc.

USE OF ELRCTRIC PONER

IN
MANUFACTURING AND MINING INDUSTRISS
IN CANADA
1935

This report, issued during the past six years, has attempted to show the evolution of power machinery in maunfacturing and mining industries in Canada toward electric drive and particularly toward electric motors driven by power generated in centra? stations. With no coal mined in the chief manufacturing provinces of ontario and Quebec and with a large supply of water power within economic transmission distance of manufacturing and mining centres in these and in most of the other provinces, this trend has been more pronounced than in many countries. The trend has been measured by the ratio of electric motor capacity to total power equipment installed in these industries, the central electric station industry being excluded as one of the manufacturing industries.

The report for the first four years also contained data on the production of elcctric power as reported monthly, but these data are now published monthly in a separate report.

This ratio of electric motor rating to total power equipment indicates this evolution, but the movement towards electric drive is slightly exaggerated because of the praciice in mills, factories, etc., of installing motors at each machine or group of machines with a total capacity greater than would be necessary if only one large wotor were used or if a stean engine and belts and shafting were used. In the early annual industrial censuges no segregation was made of electric motors operated on power burchased from central electric stations and on power produced within the establishment making the report. Consequently, 1923 is the first year for which total power employed can be compiled without duplication.

During the twelve years between 1923 and 1935 there has been very little nei increase in the use of water power in manufacturing industries outside of the central electric station industry which is excluded here. Steam engines increased by 40.7 per cent and internal combustion engines increased by 88.7 per cent, but the use of this latter type is still a very small part ($2 \mathrm{p} . \mathrm{c}$.) of the total. Electric motors operated
on central station power, however, increaseả by almost 200 per cent and all electric motors increased by 157.4 per cent in capacity. The details are as follows:

PONER EQUIPMENT IN MANUFACTURING INDUSTRIES

The ratio of electric motor capacity to total power employed has increased steadily, the recessions being few and small. The gaturation point will be reached somewhere below 100 per cent because direct hydraulic drive or steam or internal combustion engines always will be used in preference to electric motors in some plants. The rate of increase has been considerably less since 1929 than duriag the preceding six years, the increase being 3.2 points from 1929 to 1935 as against 13.4 points from 1923 to 1929. For 1935 data on spare or reserve equipment were collected and compiled for the first time and for all industries 5.9 per cent of the total capacity was reported not in use during the year. The equipment in regular use is more informative than total figures and when data for several years are avallable these tables will be complled on the basis of equipment in regular use. In the meantime comparisons are possible only for total equipment in the operating plants. Although equipment in idle plants might be considered as idle or spare equipment in the industry or group of industries it is not included in these tables as reoorts are received only from plants in operation during the year. With increased business the ide equipment would probably be reduced but the bringing into operation of ide plants will not necessarily affect the proportion of equipment in regular use and the proportion idle.

Table 3 indicates that while the transfer to electric drive from other forms of power has been taking place in all groups of industries mayy of them were highly electrilied in 1923 and the chief factor in increasins the ratio of electric power to total power in the total for all industries has been the development of the pulp and paper industry which is included with the "Wood and Paper Products" group and accounted for 79 per cent of the power equipment and 87 per cent of the electric motor capacity of that group in 1935. Elminating this group from table 3 would give ratios of 74.6 per cent in 1923 and 84.6 per cent in 1935, or an increase of 10 points instead of an increase of 17 points with this group included. The lowering of the ratio of electric motors to total power from 84.6 to 77.9 per cent when the wood and paper group is included in the total is due to the direct bydraulic drive in pulp mills and the use of steam engines in saw mills, many of which use wood as fuel, and in planing mills, furniture factories, etc.

Table 4 shows the power equipment in regular use in manufacturing plants operating during 1935. The data in this table differ from those shown in previous reports in that idle equipment is excluded here excopt for the groups where total including and excluding idle equipent are shown. Under each group are shown only the industries having large power installations. Kany other industries not ilsted use electric drive almost exclusively. The consumption of electricity for all parposes is also shown for each industry listed. This is not all used to drive machinery, large quantities being used in electric boilers in the pulp and paper mills, in electric furnaces, electric ovens, electro-chemical processes, etc., in other industries. As yet comprehensive statistics showing the break-down of these consumption data are not avallable.

The mining industries in Canada are nearly as completely electrified as the manufacturing industries with the exception of the fuel group and the increase in the ratio of electric motors to total power equipment during these twelve years has been even greater, rising from 57.3 per cent in 1923 to 75.7 per cent in 1935. Data for the mining industries are show in Tables 2 and 7.

Tables 8,9 and 10 show for the nine groups of mamfacturing industries and the totals, (1) the horse power ratings of the power equipment, (2) the number of employees, and (3) the net value of production for the years 1923-1935, and the index numbers of these are charted on pages $14-17$.

While the power equipment in all manuacturing industries more than doubled in capacity between 1923 and 1935, the net value of production rose to a peak in 1929 and then declined rapidly to 1932 and rose again in 1934 and in 1935. The two curves were approximately parallel from 1924 to 1929 , but with the decline in business the net value of production naturally fell off while the equipment retained its position, slthough probably some of it was idle, and it also showed small net increases each year throughout the depression. The employees also increased in munber from 1924 to 1929, but at a much lower rate than the power and net value of production and declined in somewhat the same way as the net value of production in 1930-1933 and rose in 1934 and again in 1935. The peak reached by the employee curve in 1929 was only 32 points above the 1923 level, whereas the power curve rose 80 points and by 1935 had reached 102.5 points above the 1923 level.

These curves show the steadily increasing spread between power and employees employed in mamfacturing industries. The charts for some of the nine groups show much greater spreads than the curves for the totals and quite probably curves for individual industries would show even greater differences.

A change in method of computing the mumber of employees for the years 1925-1930. inclusive, tended to increase the number for these years so that the peaks in 1929 are higher than if this change had not been made and the divergence from the power curves is consequently less. For the years 1923 and 19,24 and again 1931 onwards the number of employees was computed by dividing the sum of the monthly counts by 12. Thus it represented the average man year positions. For the years 1925-1930, inclusive, the sum of the monthly counts for each plant was divided by the number of months the plant operated which would give the average monthly employment. This second method produced a much higher figure for seasonal industries, such as fruit, vegetable and fish canneries, and was probably an important factor in raising the employee curve above the power curve for Group 1. "Vegetable Products", and for the sharp rise in 1925 for Group 2, "Animal Products", and some of the other groups. The change in method of computing employees would only cause break in the curves upward in 1925 and downard

In 1031 and would not affect the slopes of the curves except at these points. It is inpossible. however, to calculate the exact effect of the change.

The three sets of data for these tables ($8-9-10$) and graphs were complled from the sane redorts and consequently the curves indicate change in mamifacturing technique, largely a substitution of mechanical power for man power.

The non-ferrous metal products industries showed an increase in power of 250 per cent from 1923 to 1929 and another 65 per cent to 1935, whereas the number of employees increased by only 86 per cent to 1929 and then declined to 1933. This group showed only 47 per cent electric drive in 1923 and 93 per cent in 1935. It $1 s$ quite probable that this large increase in electric motors was a factor in this enormous spread between the power and employee curves. As stated above, over-installation is a characteristic of electric drive where individual motors are installed for each machine or groups of machines, but allowing half of the increase in olectric motors in this group as excess capacity reduces the increase in power to 132 per cent between 1923 and 1929 for an increase in employees of only 86 per cent, 28 points of which were made in 1925 when the change in method of computation was made. This feature of electric drive probably affected the power curve of the "Wood and gaper Products" group which showed an 1ncrease in the ratio of eloctric motors to total power from 50 per cent in 1923 to 69 per cent in 1929 and to 72 per cent in 1935. The same adjustment for excess power in this group produced an increase in power between 1923 and 1929 of 46 per cent for an increase in employees of only 28 per cent. The increase in electric motor ratio to total power in the other groupg did not exceed 11 points and, consequently, any excess motor capacity installed in these groups would have ifttle effect on the spread beiveen the power and employee curves.

It is not contended that the foregoing adjustment for excess motor capacity installed during these years is correct, but it is liberal. Even with it, a large difference existed between the rate at mhich the rated capacity of power equipment mas being increased duriag the boom years up to 1929 and the rate at which the number of employees was being increased. With the revival of business in 1934 the eraployee curves moved upward farther than the power curves for all groups except the "Animal proaucts" group and in 1935 for all groups except the "Animel Products", "Textiles and Textile Products", and "Chemicals and Allied Products." For "Textiles and Textile Products" the index number for power rose from 203.9 in 1934 to 223.0 in 1935. or by 19.1 points, but the index number for employees advanced from 124.8 to 130.2 , or by only 5.4 points. The reductions of the spread between the power and employee curves during these years were undoubtedly due to the re-employment of omployees lald off during the depression and the brigging back into operation of equipment which had been idle but which had been included in data of previous years. Quite probably when all idle equipment in excess of what is necessary for emergencies, tc., is brought into service, the power curves will again rise more quickly than the employee curves, as was the case betweez 1923 and 1929 when the rajority of industries were expanding and were fairly active.

Table 1. POWER EQUIFMENT OF ALL MANUFACTURING INDUSTRIES IN CANADA

Year	Total power employed	mectric Motors Operated			Mectric Power Per cent of total
		By central electric station power	Dy power generated in the industries	Total motor capacity	
	R.P.	H.P.	H.P.	H.P.	$F . C$.
$\begin{aligned} & 1923 \\ & 1924 \\ & 1925 \\ & 1926 \\ & \hline \end{aligned}$	$\begin{aligned} & 2,146,903 \\ & 2,538,535 \\ & 2,888,164 \\ & 3,134,248 \end{aligned}$	$\begin{array}{r} 958,692 \\ 1,256,183 \\ 1,547,754 \\ 1,770,334 \end{array}$	$\begin{aligned} & 357,136 \\ & 398,001 \\ & 434,678 \\ & 392,322 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,315,828 \\ & 1,654,184 \\ & 1,982,432 \\ & 2,162,656 \end{aligned}$	$\begin{aligned} & 61.3 \\ & 65.2 \\ & 68.6 \\ & 69.0 \end{aligned}$
$\begin{aligned} & 1927 \\ & 1928 \\ & 1929 \\ & 1930 \\ & \hline \end{aligned}$	$\begin{aligned} & 3,287,582 \\ & 3,592,184 \\ & 3,867,979 \\ & 4,051,744 \end{aligned}$	$\begin{aligned} & 1,924,687 \\ & 2,139,129 \\ & 2,393,684 \\ & 2,518,853 \end{aligned}$	$\begin{aligned} & 386,555 \\ & 457,565 \\ & 496,036 \\ & 478,548 \\ & \hline \end{aligned}$	$\begin{aligned} & 2,311,242 \\ & 2,596,694 \\ & 2,889,720 \\ & 2,997,401 \end{aligned}$	$\begin{aligned} & 70.3 \\ & 72.3 \\ & 74.7 \\ & 74.0 \end{aligned}$
$\begin{aligned} & 1931 \\ & 1932 \\ & 1933 \\ & 1934 \\ & 1935 \end{aligned}$	$\begin{aligned} & 4,114,677 \\ & 4,157,420 \\ & 4,147,831 \\ & 4,244,696 \\ & 4,346,775 \end{aligned}$	$\begin{aligned} & 2,587,421 \\ & 2,694,164 \\ & 2,671,440 \\ & 2,779,913 \\ & 2,874,693 \end{aligned}$	$\begin{array}{r} 539,800 \\ 516,157 \\ 502,706 \\ 550,500 \\ 512,396 \\ \hline \end{array}$	$\begin{aligned} & 3,127,211 \\ & 3,210,321 \\ & 3,174,147 \\ & 3,330,413 \\ & 3,387,089 \end{aligned}$	$\begin{aligned} & 76.0 \\ & 77.2 \\ & 76.5 \\ & 78.5 \\ & 77.9 \end{aligned}$

f 政cluding contral electric stations.

Table 2. POWER DCPLOYED IN THE MINING INDUSTRT IN CANADA

Year	Total power employed	Hectric Motors			Electric Power Per cent of total
		Operated by central electric station pores	Operated by power generated in the industry	Total motor capacity	
	H.P.	H.P.	\#.P.	\%.P.	P.C.
$\begin{array}{r} 1923 \\ 1924 \\ 1925 \\ 1926 \\ \hline \end{array}$	301,316 314, 173 323,882 336,880		$\begin{aligned} & 53,860 \\ & 77,376 \\ & 64,126 \\ & 64,277 \end{aligned}$	172,695 211,317 231,518	$\begin{aligned} & 57.3 \\ & 62.7 \\ & 65.2 \\ & 68.7 \\ & \hline \end{aligned}$
$\begin{aligned} & 1927 \\ & 1928 \\ & 1929 \\ & 1930 \\ & \hline \end{aligned}$	$\begin{aligned} & 380,460 \\ & 419,464 \\ & 450,261 \\ & 509,007 \end{aligned}$	$\begin{aligned} & 202,702 \\ & 233,666 \\ & 238,974 \\ & 297,826 \end{aligned}$	$\begin{aligned} & 62,067 \\ & 68,121 \\ & 75,069 \\ & 88,585 \end{aligned}$	$\begin{aligned} & 264,769 \\ & 291,787 \\ & 314,043 \\ & 386,411 \end{aligned}$	$\begin{aligned} & 69.6 \\ & 69.6 \\ & 69.7 \\ & 75.9 \\ & \hline \end{aligned}$
$\begin{aligned} & 1931 \\ & 1932 \\ & 1933 \\ & 1934 \end{aligned}$	$\begin{aligned} & 520,638 \\ & 482,344 \\ & 533,779 \\ & 621,071 \end{aligned}$	313,567 287,130 322,361 400,035	$\begin{aligned} & 79.259 \\ & 76,626 \\ & 47,407 \\ & 66,647 \end{aligned}$	$\begin{aligned} & 392,826 \\ & 363,756 \\ & 369,768 \\ & 466,682 \end{aligned}$	$\begin{aligned} & 75.5 \\ & 15.4 \\ & 69.3 \\ & 75.1 \end{aligned}$
1935	688.470	446.247	71.439	520.934	75.7

f mecluding non-ferrous melting, selt, cement, clay products and lime, included with "Manufacturing."

Table 3. Mamufacturing Industries	1923		1929		1934		1935	
	Pomer		Power		Power		Pomer	
	$\begin{aligned} & \text { Total } \\ & \text { H.P. } \end{aligned}$	Per cent electric motor	$\begin{aligned} & \text { Total } \\ & \text { K.P. } \end{aligned}$	Per cent electric motor	$\begin{aligned} & \text { Motal } \\ & \text { H.P. } \end{aligned}$	Per cent electric motor	$\begin{aligned} & \text { Total } \\ & \text { H.P. } \end{aligned}$	Per cent electric motor
1. Vegetable Products.	257.176	65	326,346	74	332,052	72	331,361	74
Products	80,895	72	101,268	72	117,843	73	122.560	74
Products	107.850	83	168.614	81	219.938	85	240.549	85
4. Tood and Paper Products ...1,146,571		50	2,022,839	69	2,115,205	72	2,160,083	72
5. Iron and its Products...	213,705	89	529,162	100	637.728	86	660,491	82
6. Mon-ferrous Metal Pdts.	99.963	47	351,752	82	405,248	94	416,927	93
7. Non-metallic Mineral Pdts	$131,780$	83	210,804	88	231.586	87	222,555	84
8. Chemical and Alled pdts.	62,447	72	83.935	77	115.082	85	130,464	86
9. Miscellaneous	46,516	86	73.259	86	70,024	84	61,785	89
TOTAL	2,146,903	61	3,867,979	75	4,244,696	78	4,346,775	78

(Fquipment in Regular Use)

[^0]IN REGULAR USE

+ Bxcluding central electric stations.

	TOTAL POHER EMPLOYETI		ELECTRIC wOTORS OPERATED BZ						ELECMRIC POMERPer Centof Total		COITSLMPTION OF ELECTRICITY		
	$\begin{aligned} & \text { In } \\ & \text { Regular } \\ & \text { Ore } \end{aligned}$	Incluinge Reserve Equipment	Centrsi Station Power		Power Generated in the Inclustries		$T 0 \pm A 1$				Purchased from Cent.Elec. Stations	Ganerated by the Industries	Total
			$\begin{gathered} \text { In Regular } \\ \text { Use } \end{gathered}$	Incluning Reserve	In Regular Use	Including Reserve	$\begin{gathered} \text { In Regular } \\ \text { Dse } \\ \hline \end{gathered}$	Includiag Reserve	Regular	Incluaine Reserve			
	H.P.	H.P.	H.P.	R.P.	H.P.	H.P.	H.P.	H.P.	P.C.	P.C.	(Thousa?	3 of Kilow	t Hours)
Products	316,582	331,361	213,577	22z,051	22,965	23,088	236,542	246,139	72.8	74.3	377,412	21,590	399,002
2. Animal Products	118,171	122,560	85,904	87,900	2,930	2,998	88,834	90,918	75.2	74.7	184,451	844	125,295
3. Textiles and Textile Products	219,387	240,549	177,038	182,186	22,058	22,463	199,096	204,349	90.8	85.1	446,801	57,656	504,457
4. Wond and Paper Products	2,078,032	2,160,083	1,171,787	1,202,403	350,904	355,692	1,522,691	1,558,094	73.3	72.1	9,499,549	1,260,893	10,780,442
5. Iron and its Products	615,772	680,491	459,013	473,584	64,915	69,395	523,928	547,979	85.1	82.2	810,447	41,632	652,079
6. Non-ferrous Metal Products	360,338	416,927	324,426	367,123	21,810	22,467	346,236	389,590	96.1	93.4	1,148,653	29,474	1,178,127
7. Mon-netallic Mineral Pdts..	205,477	222,555	171,870	181,293	5,989	6,147	177,859	187,440	85.5	$84 . ?$	525,546	5,788	532,334
Chealcal Pdts.	217,500	130,464	95,092	104, 872	7,001	7,600	102,093	112,271	86.9	86.1	1,119,890	78,773	2,198,663
9. Miscollameous Industries ...	$60,059$	61,785	51,046	52,452	2,557	2,557	58,603	55,009	89.2	89.0	39,039	124	39,103
TOTAL	4,091,428	4,346,775	2,749,753	2,874,693	501,129	512,396	3,250,882	5,387,089	79.5	77.9	13,892,788	1,496,774	15,389,562

Table 7.
MISINO IMOUSTRIES

Metal mining	317,621	365,384	248,350	267,862	36,865	39,3x6	885,215	307,198	89.9	85.5	687,958	91,553	779,511
Non-metal mining.	59,120	64,129	51,450	55,067	2,904	3,179	54,334	56,246	91.4	90.8	78,308	5,532	83,840
Sand, Gravel \& Stone	39,209	44,577	28,114	31,196	763	890	28,877	32,386	78.6	72.7	19,186	339	19,525
Fuels	204,947	214,430	82, 339	91,822	30,907	31,282	113,246	123,104	55.3	57.4	205,437	39,264	144,701
TOTAL	621,197	888,470	410,233	446,247	71,439	74,687	491,672	520,934	77.6	75.7	890,889	136,688	1,027,577

MANUPACTURING INDUSTRIES

Table 8.

POWR MMLOYED
 म. P .

| | 1923 | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Table 9.
TMPLOTRES
8o.

Table 10.
NET VALUE OF PRODUCTION
(Thousands of dollars)

MABUFACTURING INDUSTRIES

PORER EMPLOYED
H.P.

	1929	1930	1931	1932	1933	1934	1935
	326,346	313,527	322,401	326,829	326,666	332,052	331,361
	101,268	105,833	98,892	100,069	112,035	117,843	122,560
168,614	171,324	186,952	189,915	215,907	229,938	240,549	
	$2,022,839$	$2,126,515$	$2,126,398$	$2,094,010$	$2,035,112$	$2,115,205$	$2,160,083$
	529,162	575,609	589,261	623,888	626,730	637,718	660,491
	351,752	401,817	424,738	450,271	434,581	405,248	416,927
	210,804	213,917	212,179	209,484	219,612	231,586	222,555
	83,935	87,382	96,893	105,671	110,873	115,082	130,464
	73,259	54,820	56,963	57,283	66,315	70,024	61,785
	$3,867,979$	$4,051,744$	$4,114,677$	$4,157,420$	$4,147,831$	$4,244,696$	$4,346,775$

BRFLOTERS
\$o.

| | 88,858 | 84,182 | 77,706 | 72,390 | 73,095 | 77,464 | 79,285 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 67,670 | 57,657 | 51,297 | 49,953 | 53,111 | 57,199 | 60,124 |
| | 115,620 | 109,576 | 105,473 | 102,116 | 106,235 | 115,695 | 120,699 |
| | 164,800 | 156,724 | 121,672 | 107,834 | 105,471 | 116,691 | 123,724 |
| | 132,281 | 119,987 | 96,927 | 74,214 | 70,947 | 81,782 | 95,426 |
| | 39,867 | 38,756 | 34,414 | 26,704 | 25,273 | 30,177 | 33,613 |
| | 31,431 | 29,868 | 24,895 | 20,342 | 19,296 | 21,959 | 23,342 |
| | 16,694 | 15,503 | 15,207 | 15,295 | 15,397 | 17,130 | 18,933 |
| | 21,049 | 14,328 | 12,821 | 11,155 | 10,361 | 12,091 | 12,270 |
| | 678,270 | 626,581 | 540,412 | 480,003 | 479,186 | 530,188 | 567,416 |

HET TALUE OF PRODUCTION
(Thousands of dollars)

	344,438	314,513	274,475	211,601	197,607	210,899	226,140
	132,410	132,212	106,060	95,623	91,638	94,998	104,268
	205,943	177,251	163,967	144,943	150,131	160,723	173,186
	411,616	368,351	291,858	227,252	207,175	223,241	266,120
	353,087	288,032	203,970	123,542	114,256	143,370	186,247
	158,645	138,720	116,520	84,176	92,775	112,156	113,616
	124,874	109,606	102,486	73,407	70,077	71,357	87,215
	83,361	71,805	64,745	60,003	58,549	62,216	70,257
	60,092	35,458	28,190	21,258	17,919	21,522	22,287
	$1,874,466$	$1,635,948$	$1,352,271$	$1,041,805$	$1,000,127$	$1,100,482$	$1,249,336$

MANUFACTURING INDUSTRIES

> INDEX NUMBERS
> $(1923=100)$

Table 11.
POIER MPLOYED

	1923	1924	1925	1926	1927
1. Vegetable products	100	100.6	103.7	104.1	108.9
2. Animal products	100	110.6	111.0	118.9	125.7
3. Textiles and textlle products	100	129.3	134.0	142.1	245.6
4. Mood and paper products	100	106.0	114.9	135.4	154.5
5. Iron and its products	100	164.2	216.2	197.6	211.3
6. Nor-ferrous metal products	100	104.0	222.8	229.0	237.6
7. Non-metallic mineral products	100	92.0	95.8	114.5	121.6
8. Cherical \& allied products	100	95.9	93.7	101.9	105.5
9. Miscellaneous industries	100	94.7	97.3	94.9	134.6
Total	100	111.0	127.3	138.8	153.1

Table 12.
RMPLOYEES

1. Vegetable products	100	101.2	110.2	113.0	119.7	
2. Animal products	100	93.9	103.5	110.3	111.1	
3. Textiles and textile products	100	97.4	102.0	108.5	116.0	
4. Nood and paper products	100	99.3	99.6	104.5	117.2	
5. Iron and its products	100	88.9	10.3	117.5	120.7	
6. Non-ferrous metal products	100	101.2	129.5	140.6	156.2	
7. Mon-metallicmineral products	100	96.8	98.0	104.3	106.7	
8. Cremical \& allied products	100	91.1	92.1	94.7	96.1	11.7
9. Miscellaneous industries	100	95.4	100.0	106.3	11.7	
Total	100	96.4	103.2	110.5	117.5	

Table 13.
NET VALUE OF PRODUCTION

1. Tegetable products	100	105.0	108.4	116.3	135.0
2. Animal products	100	99.7	105.2	111.7	120.1
3. Textiles and textile products	100	89.8	91.1	103.5	115.9
4. Wood and paper products	100	94.1	97.3	106.2	112.1
5. Iron and its products	100	83.1	97.9	118.0	126.4
6. Hon-ferrous metal products	100	112.2	188.7	204.5	248.2
7. Kon-metallic minersi products	100	102.9	105.8	123.0	119.8
8. Chemical \& allied products	100	95.2	100.0	110.4	112.8
9. Miscellaneous industries	100	91.4	93.2	109.3	122.0
Total	100	95.2	103.1	115.1	125.6

MANUPACIURING INDUSTRIES
IND取 NUMBERS
(1923 = 100)
PORER RMPLOTED

1928	1929	1930	1931	1932	1933	1934	1935	
	120.4	126.9	121.9	125.4	127.1	127.0	129.1	128.8
128.8	125.2	130.8	122.2	123.7	138.5	145.7	151.5	
151.9	156.3	158.8	173.3	176.1	200.2	203.9	223.0	
166.5	176.4	185.5	185.5	182.6	177.5	184.5	188.4	
228.6	247.6	269.8	275.7	291.9	293.3	298.4	309.1	
294.7	351.9	402.0	424.9	450.4	434.7	405.4	417.1	
137.9	160.0	162.3	161.0	159.0	166.7	175.7	168.9	
114.3	134.4	139.9	155.2	169.2	177.6	184.3	208.9	
149.7	157.5	117.9	122.4	123.1	142.6	150.5	132.8	
167.3	180.2	188.7	191.7	193.6	193.2	197.7	202.5	

HMPLOYEES

128.1	135.9	128.7	118.8	110.7	111.8	118.5	121.2
110.2	110.0	93.7	83.4	81.2	86.3	93.0	97.7
122.7	124.8	118.2	113.8	110.2	114.6	124.8	130.2
123.1	128.3	122.1	94.8	84.0	82.1	90.9	96.4
135.3	150.2	136.2	110.0	84.3	80.6	92.9	108.4
166.1	186.2	181.0	160.7	124.7	118.0	141.0	157.0
114.7	125.8	119.6	99.7	81.4	77.3	87.9	93.5
106.6	110.2	102.3	100.4	101.0	101.6	113.1	125.0
116.7	126.9	86.4	77.3	67.3	62.5	72.9	74.0
	124.9	131.9	121.9	105.1	93.4	93.2	103.1

NET VALUE OF PRODUCTION

	151.1	164.1	149.9	130.8	100.8	94.2	100.5
121.4	120.3	120.1	96.3	86.8	83.2	86.3	107.7
121.3	130.3	112.2	103.8	91.7	95.0	101.7	109.6
122.0	128.9	115.4	91.4	71.2	64.9	69.9	83.4
143.2	168.5	137.5	97.3	59.0	54.5	68.4	88.0
306.5	349.3	305.4	256.5	185.3	204.2	246.9	250.1
150.5	167.2	146.8	137.2	98.3	93.8	95.5	116.8
128.6	147.3	126.9	114.4	106.0	103.4	109.9	124.1
	138.3	164.8	97.3	77.3	58.3	49.2	59.0
	151.1						
	139.9	153.7	134.1	110.9	85.4	82.0	90.2

IIANLFACTURING INDLSIRIIIS

$1923=100$
Poner Employed
Chart 1 EMPLOYEES NET VALUE OF PRODUCTION

$$
\mathrm{CaCOS}
$$

[^0]: I - Including equipment held idie or in reserve, which is comparable with totals in previous reports.
 f Ixcluding central electric tations.

