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Regional Staff. 
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the study and its publication possible. 

Although the study has been supported by Statistics Canada and published 
by the bureau, responsibility for the analyses and conclusions is that of the 
author. 
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PREFACE 

This study examines the application of Markov chain models to the fore-
casting of two aspects of industrial activity: the relocations of manufacturing 
establishments, and their growth as measured by number of employees. The 
Province of Ontario was chosen as a pilot study area which would provide an 
adequate and manageable volume of data. The modelling is based on data, 
spanning the period 1961 - 65, derived from the Census of Manufactures, an 
annual survey made by Statistics Canada. A further purpose of the study is to 
explore techniques of improving the accuracy of Markov chain models which 
could be helpful in this and similar contexts. 

The support of Statistics Canada (formerly the Dominion Bureau of 
Statistics) has made this study possible. In this respect, the author wishes to thank 
M.L. Szabo, Coordinator, Regional Statistics Staff for his sponsorship, and 
J .S. Lewis, Special Advisor of that staff, for valuable assistance in the mathematical 
aspects and the computer programming. Thanks are extended also to D.G. 
Campbell, Assistant Director, Manufacturing and Primary Industries Division for 
his assistance in the data acquisition, and to Dr. L.C. Stone, Consultant on 
Demographic Research, who contributed a helpful critique. 

The writer is indebted to many of the staff of the Department of 
Geography, University of Toronto: in particular, to Professor Leslie Curry whose 
philosophy and guidance initiated the study's underlying theme, and to Professor 
Larry Bourne whose constructive comments and advice have been instrumental in 
the study's organization. Professors Britton, Field, Kerr, MacKinnon and Simmons 
also contributed valuable suggestions. Miss J.E. Wilcox, Assistant Cartographer, 
prepared the maps and charts. 

Finally, the constructive criticism and extensive editorial assistance of 
Valerie Collins, the author's wife, have greatly helped to guide this work to 
completion. 

The opinions expressed and the analyses and any errors therein are the 
responsibility solely of the author. 

Lyndhurst Collins. 
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CHAPTER 1 

INTRODUCTION 

The prediction of changes in the spatial arrangement of the economic 
structure within a given system is the ultimate goal of economic geography. But 
economic geographers, until recently, have concentrated upon analysing locational 
patterns of economic activities at one point in time relatively little attention has 
been given to locational and structural changes. Consequently, most studies have 
rendered "statistical photographic stills" rather than an understanding of either 
dynamic spatial rr('cesses or economic processes that have spatial consequences. 
Evcn when the dynamic aspects of the "economic landscape" have been 
considered, geographers have tended to focus on past processes rather than on 
future time paths of spatial units, the study of which is essential for ameliorative 
economic planning. 

Aims and Objectives 
An economic landscape, such as that envisaged by LOsch, 1954, 1  is scattered 

with peaks of urban-industrial activity, the heights and internal structures of 
which are continually changing. One of the most dynamic components of these 
urban-md ustrial agglo merat ions is secondary manufacturing activity which is the 
concern of this study. The initial purpose is the statistical separation of the 
processes affecting the spatial and structural dynamics of manufacturing activity 
in Ontario and, as such, is an essential prerequisite to the second aim: the 
formulation and adoption of a descriptive and operational forecasting model of 
manufacturing activity within this arbitrarily defined urban-industrial system. 
Although there is little formal theory to suggest which general approach would be 
the most appropriate, recent developments in the mathematics of stochastic 
processes add attraction to a probabilistic framework as a possible avenue of 
research. 

Conceptually, the requisite operational forecasting model should accommo-
date not only processes of birth, growth and death but also migration. General 
observation indicates for example, that an important factor influencing the differ. 
ential growth patterns of urban-industrial areas is their interdependency which in 
terms of manufacturing activity can manifest itself in the form of "industrial 
migration" involving the relocation of plants from one urban area to another. 
The simplest stochastic model, amenable to migration research, is Markov chain 
analysis. In a recent discussion of a, wide range of industrial location models, 
Hamilton, 1967, suggests that although ". . .they are still in their infancy, 

All the references are listed alphabetically in the Bibliography following the 
appendices. 
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Markov-chain models seem to have most potential in tracing trends in industrial 
location . . ." and that "Markov-chain analysis may also lend itself to problems of 
industrial migration." Markov chain models have provided good approximations 
to physical processes but in the social sciencts, and particularly in geography, 
their successful application has been limited by severe data constraints, which are 
discussed in Chapter III. Hence, in addition to the desirability of evaluating 
Hamilton's comments a further reason for adopting a Markov framework is the 
need to test the validity of the technique for spatial analysis given a suitable 
body of data. 

Technically, there are several advantages to a Markov chain model though 
it is not within the scope of this study to demonstrate that a Markovian frame-
work is the best approach to the study's bbjectives. A critical assumption of 
Markov models, as with other models, is that of constant parameters or 
"stationarity" but in Markov chain analysis statistical procedures are available for 
testing this and other underlying assumptions. The stochastic properties of Markov 
models allow a multiplicity of variables to be embraced by a random component, 
thereby considerably simplifying the computational procedures. Moreover, the 
basic matrix structure of a Markov model avoids the necessity of replicating the 
analysis over as many spatial units as comprise the study area so that in 
generalizing the processes involved the technique provides insight which may not 
be so readily attainable by conventional methods of analysis(Rogers, 1968, p. 5). 
In its ability to utilize well tested matrix algebra formulations, Markov chain 
analysis is attractive not only because of its predictive capability but also because 
of its descriptive qualities. Thus, it is a 'ombination of factors - both conceptual 
and technical - which encourages the adoption of a Markov model. 

Methodology 

The spatial and structural dynamics of manufacturing activity can be 
measured and statistically analysed by using such variables as employment, type of 
activity, value added, number of establishments, corporate structure, sales, and 
assets. In this study only three variables are used: number of establishments which 
are grouped into size categories measured by total number of employees, type of 
activity, and location. The manufacturing establishment is typically a plant or 
factory and is defined as the "smallest unit which is a separate operating entity 
capable of reporting all elements of basic industrial statistics" (Statistics Canada, 
1960). In the Census of Manufactures, these statistics include, among others, 
those on materials and supplies used, goods purchased for resale as such, fuel and 
power consumed, number of employees and salaries and wages, man-hours worked 
and paid, inventories and shipments. 

The study is based on establishment data since the establishment, being the 
smallest geographical feature of the industrial landscape, is the most appropriate 



observation for analysing industrial migration. In this context, migration refers 
not only to the physical movement of activity from one location to another but 
to the spatial rearrangements created by differential growth rates resulting from a 
birth/death process and by differential expansion rates involving the location of 
locally and foreign-owned branch plants. It is recognized, that spatial trends and 
forecasted patterns of manufacturing establishments do not always correspond to 
those observed and predicted for other variables. In Metropolitan Toronto, for 
example, the concentration of manufacturing plants is proceeding at a significantly 
faster pace than the concentration of manufacturing employment, (Field and 
Kerr. 1969). 

For computational simplicity two sets of Markovian matrices are developed. 
One set is aspatial in that the Markov "states" comprise establishment size 
categories; such structural matrices are used to predict changes in the size 
distributions of establishments for the Province, individual towns, and industrial 
categories. This model, therefore, analyses the internal structures of selected areal 
units on a disaggregated basis since frequency distributions are used as input 
parameters. These parameters are analysed within the conceptual framework of 
two hypotheses - the Pareto and the lognormal - which are concerned with 
prevailing size distributions in economic phenomena. Distinctions between the 
two distributions will be elaborated in detail in Chapter IV. Both hypotheses 
embody Gibrat's Law of Proportionate Growth which postulates that the 
proportional change in the size of a plant in any one time interval is independent 
of its absolute size(Gibrat, 1957). This implies that large and small plants have the 
same proportionate rates of growth. Changes in the configurations of these 
probability distributions are generally assumed to be generated by a simple 
stochastic or Markov process. 

Spatial states comprise the second set of Markovian matrices. Ideally, any 
system of spatial states should cover completely the study area so that all move-
ment is included in the model. A discussion of specific-order Markov models 
follows in Chapter II. The basic first-order Markov property, for example, 
provides that the future location of an observation unit at time t+l will be 
dependent upon its location at time t but not on previous locations. Conceivably, 
then, a system of states can be adopted whereby all movement is masked because 
the "size" of the state, in terms of geographical area, effectively excludes move-
ment out of that state. Thus, a ten state matrix representing the Canadian 
provinces may not be appropriate for predicting provincial trends in manufac. 
turing activity measured in terms of number of establishments if interprovincial 
relocations do not occur; in this event the provincial increase in number of 
establishments would be independent of events elsewhere. It is necessary in the 
present context, therefore, to analyse recent trends in the spatial dynamics of 
Ontario's manufacturing activity in order to devise a meaningful descriptive set 
of spatial states. The rationale for adopting the set of spatial states used in this 
study is presented in Chapter V. 
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Perspective on Forecasting Models 

Although the development of forecasting models for projecting recent 
trends in the economic landscape can be criticised on the basis of our insufficient 
knowledge of the complex causal interrelationships of known and recorded 
variables, the need and rationale for developing such models stem from both 
theoretical and practical interests. The philosophy adopted here is that of Curry, 
1964, who, in an applied context comments: 

all of government and private planning can, in a real sense, never be 
better than the ability to predict. 

Some of the problems encountered in developing forecasting techniques are due to 
lack of disaggregated data which it seems has rendered most models of the social 
sciences incomplete and of a highly generalized nature. Nowhere do deficiencies 
of data manifest themselves more clearly than in studies of the urban.industrial 
environment in which heavy ". . . reliance on cross-section data and the ad hoc 
methods of projecting employment changes in metropolitan growth models have 
biased these models toward underestimating the amouni of change in existing 
distributions - . .", (Kain and Meyer, 1968). A direct consequence of such data 
deficiencies is that the application of all forecasting models is contingent upon the 
acceptance of certain limiting assumptions, which are discussed in Chapter III. 
Any forecast, therefore, can be interpreted only in the framework of these 
assumptions. 

The practical need for forecasting models of the economic environment has 
been recognized by both geographers and economists alike. Spatial and economic 
forecasting models overlap considerably though their objectives are quite distinct. 
Economic forecasting models, for example, focus on temporal changes in the 
values of certain economic phenomena and upon their effect on the economy. 
Spatial forecasting models, on the other hand, deal with the dynamics of variables 
as they are distributed across the landscape. Theoretically, these variables are 
regarded as being spatially and temporally continuous though their gradients or 
slopes can be detected only at discrete points in space. In the context of the 
urban-economic landscape, Bourne, 1967, has commented on the difficulty of 
forecasting spatial trends in the process of urban redevelopment which is usually 
too localized and scattered for the identification of spatial surfaces. The same 
difficulty exists for the analysis of manufacturing activity which, as previously 
mentioned, appears as peaks in the Läschian economic landscape. The convoluted 
tent-like surface is far more irregular, and hence future patterns tend to be less 
predictable than those derived from the analysis of orthogonal surfaces 
representing ciruclation patterns used by meteorologists for weather forecasting, 
(Malone, 1956). 

The utility of forecasting depends partly on the length of the forecast 
which is referred to as short, medium, or long-range. General economic fore. 
casting usually considers three month periods for its short range forecasts. 
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Short-range forecasts for the spatial economy, however, extend to three to 
four years after date of prediction, (e.g. CoIm, 1958, p.  178 ff; Fouraker, 1957, 
p. 285 ff) medium range forecasts normally predict for a five- to ten-year period, 
and anything in excess of this is termed long-range. The present study considers 
only short- and medium-term forecasts. 

The prediction of comprehensive changes in the economic landscape would 
require a dynamic model of innumerable dimensions embracing a host of variables. 
Such a model, theoretically, would provide forecasts of locational and structural 
changes of economic activity under varying degrees of technological change and 
general economic advancement: few assumptions would be necessary. Realistic 
attempts at model building must of necessity select aspects of the spatial economy 
and postulate certain relationships between selected variables which are intended 
to stand proxy for the most important characteristics of the phenomena in the 
real world. Since in this study the number of variables is limited to three the 
model adopted is simple and highly generalized. 

The Data and Their Organization 
Most of the data used in this study have been extracted from informa-

tion collected by Statistics Canada in its annual Census of Manufactures. This 
information is recorded on computer tapes for the years 1961 - 66 which form the 
study period. Although 1961 is the first year for which the data are available on 
computer tapes, the main reason for using 1961 as the base year is the change in 
that year of the definition of the establishment. Prior to 1960, the Census of 
Manufactures attempted to cover the manufacturing activities of a large number 
of establishments which were not principally engaged in manufacturing operations. 
Beginning with the 1961 Census, and the redefinition of the establishment, those 
establishments not primarily engaged in manufacturing were no longer included 
in the manufacturing universe, (Statistics Canada, 1960, p.  8). At the same time, 
however, provision was made to collect statistics on the non-manufacturing 
activities of manufacturing establishments, thus providing statistics on "total 
activity" as well as on "manufacturing activity" of establishments classified to the 
manufacturing industries. The new definition, of course, resulted in a decrease in 
the number of recorded establishments. In Ontario, by the old definition there 
were 13,387 manufacturing establishments in 1960, but the new definition 
decreased the number by lOci to 12,090 for the same year, (Statistics Canada, 
1969). Since this study concerns the analysis of individual establishments, the 
definitional change limits the length of the data series. One other constraint 
affecting the presentation of data is the confidentiality imposed by the Statistics 
Act. For this reason some of the statistics in the tables are presented in the form 
of percentages or probabilities and, where necessary, graphs have been truncated. 

The study includes all manufacturing establishments in Ontario as defined 
by Statistics Canada, with total employees of individual establishments ranging 
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from zero to the size of the largest plant. 2  Plants recorded with zero employment 
are those in which only working owners or partners are engaged or in which the 
paid employment amounts to less than one-half man-year. Each establishment on 
the computer tape is assigned a code for its province, county, municipality, 
industry (at the 4-digit level), and sequentially assigned establishment number. 
Thus a plant (013), manufacturing coffins (S.l.C. 2580), in Gravenhurst (13), 
Muskoka County (30) in the province of Ontario (05) is identified as 
05-30-13.2580.01 3. Each establishment, then, can be identified as within the 
province by its combined S.I.C. code and establishment number. 

Sawmills (SJ.C. 2513) are the one exception. These are specifically 
numbered only within counties and duplicate numbers occur within a province. 
Since such plants cannot be uniquely identified from year to year on a provincial 
basis, sawmills have been excluded from the analysis. For all other industries the 
establishment number is unique within a province. 

The unique number enables the data to be organized into four groups which 
for convenience are assigned demographic terms. A resident or permanent plant is 
one which appears in the same location in the five-year period 1961 - 65. Only 
this period is used for the analysis. The 1966 data were processed but have been 
used only for testing the models' predictive accuracy. A plant is "born" when its 
unique number appears in the data for the first time and is described as a birth; 
similarly a plant "dies" when its number disappears for the first time and is termed 
a death. Those plants that appear with different location codes in two successive 
years are termed migrants or relocations. 

Data Constraints 
In the strictest sense, the present study deals with aspects of industrial 

activity in Ontario as measured by the Census of Manufactures. This survey, like 
any other, filters the "true world" through a particular data acquisition procedure 
which necessarily imposes certain conceptual and defInitional constraints, along 
with the usual risks of errors in reporting, recording, and processing. These 
constraints and errors cause certain distortions of the data relative to any specific 
model of manufacturing activity. While the possible sources of these difficulties 
are readily identified, the detection and correction of actual errors is not often 
feasible. These problems stem partly from a situation very common in research: 
the study has objectives which extend beyond those for which the data were 
originally developed. This restricts the choice of modelling techniques to those 
which are not highly sensitive to data distortion; in this respect, the suitability of 
Markov chain models is examined in later sections. 

2 For brevity, the term "plant" will be used synonomously with "manufacturing 
establishment". 
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The study has been limited to the province of Ontario which, therefore, is 
viewed as a closed system. Hence, a plant relocating from the province of Quebec 
to Ontario, for example, is classified as a birth. Similarly, a plant relocating from 
Ontario to any other province or outside the country is classified as a death. The 
number of births and deaths can also be distorted by production changes. A plant 
manufacturing electronic components for aircraft in 1961 would be assigned a 
S.I.C. code of 3210 (Aircraft and Parts Manufacturers), but by 1962 the plant may 
be geared to the production of satellite components and would then assume a 
S.1 .C. code of 3350 (Communications Equipment Manufacturers). In such cases a 
birth and death is recorded in the respective industries. 

Certain other conceptual qualifications apply to any measurement of births 
and deaths. For reasons arising from the accounting of reporting units, an 
establishment can be "born" or "die" because it begins or ceases to be able to 
report, or to report with reasonable ease and accuracy, the required minimum 
range of principal statistics for an establishment; that is, reporting units are split 
or merged from time to time for purely statistical reasons (apart from actual 
organizational mergers or splits of business units). In these and other cases, 
the components of an establishment may not always be in one location. 
As the 1960 Standard Industrial Classification Manual puts it: "Theoretically, an 
establishment would be engaged in only one kind of activity in one location but 
in practice . . . the unit for which information is usually obtained on statistical 
surveys is engaged in a number of activities and sometimes these activities take 
place in different locations". 

There are additional sources of possible errors. In the clerical processing of 
the survey information, the misallocation of establishment numbers can result in 
false births and deaths, and the miscoding of locations can create apparent plant 
movement. Apparent relocations can also occur through errors in a further 
processing step necessary to this study. Since the location data are specified in 
terms of the municipality definitions at the time of each annual survey, to make 
comparisons over a span of years requires the difficult conversion to a common set 
of boundaries. Although total movement is underestimated because relocations 
within municipalities cannot be distinguished, this particular deficiency has no 
serious implications for the present study which is mainly concerned with 
interurban migration patterns. Whatever their short-comings, the data still 
represent the best and most complete source of information for a statistical 
analysis of Ontario's manufacturing activity. 

Study Design 
The design and organization of the study mirror its twofold aim: to provide 

a detailed analysis of the processes underlying the structural and spatial dynamics 
of manufacturing activity, and to adopt and develop a probabilistic forecasting 
model. Markov chain analysis, the simplest stochastic approach, is selected as an 
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appropriate methodology and the rationale for adopting a probabilistic framework 
is discussed in Chapter II. Chapter III provides a basic description of Markov chain 
models and their assumptions as they apply to industrial geography. The fourth 
chapter focuses on the analysis of prevailing size frequencies which act as states in 
the structural matrices. Changes in the configurations of these frequencies for 
permanent establishments are examined in the context of hypothesized stochastic 
growth mechanisms leading to the Pareto and lognormal distributions. Structural 
variations in the birth and death process, which modifies the form of these 
distributions for "all establishments", are also examined in Chapter IV. Spatial 
variations of the process as well as other processes of change are analysed in 
Chapter V which provides the rationale for the selected system of spatial states. 
Chapter VI concerns the development, improvement, and testing of the structural 
and spatial Markov models which are applied to provide short and medium-term 
forecasts of the number and size distribution of manufacturing establishments. 
A general evaluation of the study's aims and objectives is presented inChapter VII. 



CHAPTER H 

STOCHASTIC PROCESSES AND THE SPATIAL ECONOMY 

Given the rationale for developing forecasting models of manufacturing 
activity, the principles for adopting a probabilistic framework, as opposed to a 
more traditional deterministic approach, are presented in four interrelated 
sections. The first outlines the basic concepts and properties of stochastic 
processes which are then broadly classified in section two; this section also places 
in context Markov chain analysis. Reasons for the increasing trend to inject 
concepts of random processes into spatial analysis are presented in section three 
which leads to a discussion of the concept of "uncertainty" or randomness in 
section four. 

A. Basic Concepts of Stochastic Processes 
The term random process describes a series of events to each of which 

there corresponds probabilities of particular outcomes. In an independent random 
process each event has no dependence on other events and is thus synonymous 
with "pure chance". Theoretically, the terms random process and stochastic 
process are also synonymous but in practice the latter term is normally used when 
a time parameter is introduced. A probabilistic model specifies the complete joint 
probability distribution of different kinds of events at each point in time, and the 
whole process is referred to as a stochastic process. The concept of the random 
variable is central to the theory of stochastic processes and may be regarded as a 
mathematical entity arising from probabilistic mechanisms just as conventional 
nonstochastic (systematic) variables are associated with deterministic mechanisms, 
for which the outcome of an experiment is exactly predictable. A stochastic 
model, therefore, is one which produces results in terms of the probabilistic law 
or distribution governing the process and provides only the probability or likeli-
hood associated with a set of possible future states. 

B. Classification of Stochastic Processes 
Stochastic process models, like other models, are subject to classification 

which makes them more amenable to discussion. Harvey, 1967, for example, in 
his review relating to models of spatial patterns, draws attention to the stochastic 
counterparts of various classes of deterministic models which are classified as 
"comparative statics", "process models", "growth models with spatial assign-
ment", and "time-space models". Harvey also outlines three specific types of 
stochastic models: "quantitative ecological models which depend upon a general 
understanding of the Poisson process, and have been used in plant ecology with 
"quadrat sampling" and "nearest neighbour analysis"; Markov chain models;and 
"Monte Carlo simulation techniques". A similar yet broader grouping suggested 
by Cox and Miller, 1965. describes stochastic models as "open" or "closed". The 
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words are used in a direct sense; membership of a closed system does not change 
over time so that in a study of industrial structure the number of manufacturing 
plants would be assumed constant. No births or deaths would be allowed and the 
focus of such a study would be on short-term internal changes. Conversely, 
although an open system with both gains and losses would be more realistic it 
would be highly complex both operationally and conceptually. A variant of these 
models would allow one or the other growth operators to exist so that a study 
focused on a rapidly declining/developing area would provide insight into the 
rates of the processes involved. 

Cox and Miller also distinguish stochastic models as being "discrete" or 
"continuous" depending on whether the time variable is treated in these terms. 
Most economic processes are continuous and in an analysis of industrial structure, 
since changes of plant size or location can take place at any time, a continuous 
time model based on an open system is therefore apposite. But since data on 
changes are available only at discrete time intervals, discrete or "discontinuous" 
time models are usually employed. Fortunately, however, discrete time models 
can be used profitably to approximate a system in continuous time. 

Stochastic models are also classified by Cox and Miller depending on 
whether or not they possess the Markov property. Markov process models possess 
this property and can be regarded as generalizations of Markov chains; in a 
Markov process model a transition from one state to another can take place at any 
point in time but in a Markov chain the state varies only at discrete time intervals. 
Markov chains are described by Feller, 1968, as: 

stochastic processes in which the future development depends only on 
the present state, but not on the past history of the process or the manner 
in which the present state was reached. 

Thus; in a Markov chain a system of states changes, according to some probability 
law, with time t in such a manner that the system changing from a given state S 
at time t 4  depends only on the state Si at time t o  and is independent of the 
states of the system at times prior to t o . Formally, this is written: 

Prob.{txIt 1 	Yi,t 2 	Y2 .... tYn}" 
= Prob.{ t  x Itt= y} 

which holds for all t 1  <t2  < . . . < tn <t and for all x where tt is the random 
variable of the process. This means that we can predict the value of the random 
variable tt at time t, on condition that its value at a previous point of time tn is 
known. If the process is Markovian, then we cannot improve this prediction on 
the basis of our knowledge of the state of the system at times prior to t. If the 
state of the system at time t 01  is only dependent on the state of the system at 
time to  plus some independent random component, the process is referred to as a 
first-order Markov chain. In a second-order Markov chain the state of the system 
at time t2 would depend on the states of the system at both time t o  and t1 .In this 
way, provided sufficient data are available, the "dependence" of a Markov chain 
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can be extended to any length. Pattison, 1965, for example, used sixth-order 
Markov chains in a study of hourly rainfall rates. Thus, generally in an n-th order 
Markov chain the state of the system at time tn is dependent on the n prior states. 
It should be noted, however, that even in a first-order Markov chain, although at 
time t 1  , the state S depends on S 0  and need not refer to S 0 _1 , S 0 _2 , . . . S0 _,, 
the effects of So _ I  , S 0 _2 , . . . S 0 , are subsumed in S o  which represents the sum 
of past history. To express the degree of such dependency of a given state upon 
previous states, Feller provides the term "memory". In using this concept 
Krumbein, 1965, has outlined the position occupied by Markov chain models 
within the broad conceptual spectrum that includes classical deterministic models 
at one extreme and purely random models at the other. Consider, for example, 
that the industrialization process in a particular area is a system comprising a set 
of states, then in a classical deterministic model the state of the system in time or 
space can be exactly predicted from knowledge of the functional relation specified 
by the underlying differential equations. At the other extreme, in a purely random 
model, the state of the system at any instant or point in time or space is wholly 
independent of its state at any other instant or point and is specified by 
underlying fixed probabilities. The latter notion is exemplified in a Bernouilli 
trials problem and Poisson process. A classical deterministic model, where the 
state of a system at t o  depends upon all previous states, has a long memory, 
whereas a purely random model has a marked lack of memory. The first-order 
Markov chain model, therefore, although it embodies the sum of past history 
contained in state S0 , occupies a position of partial dependence. But as stated 
above, Markov models include an independent random component that precludes 
exact prediction of future events and in this respect the model has some 
resemblance to the completely random model. The terms dependency, predict-
ability and memory clearly represent gradations rather than mutually exclusive 
categories. 

In this study, for reasons outlined above, only time homogeneous discrete 
Markov processes are considered. To what extent, then, can we justifiably analyse 
the spatial and structural dynamics of manufacturing activity in a probabilistic or 
Niarkovian framework? 

C. Stochastic Processes and Spatial Analysis 
Since the probability distribution depends explicitly on time, stochastic 

processes represent the "dynamic aspect of statistical theory" (Bartlett, 1953) and 
it is this property which has prompted both Dacey, 1963, 1964, 1966, and 
Curry, 1964, 1967, to inject probability theory into spatial and locational 
analysis. The necessity for formulating stochastic models in spatial analysis is 
readily appreciated by considering the possible range of alternatives associated 
with individual events. In a study of industrial migration, for example, there are 
no certain means of predicting if or when a single industrial plant will expand in 
Situ, establish a branch plant, relocate, or close down. But given a sufficient 
number of observations we can attach probabilities to each particular "alter-
native". 
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Demographic studies of interregional migration by Rogers, 1966, have 
shown that the interplay of economic and social forces is too complex to be 
formulated within the simple cause and effect relationship of a deterministic 
framework; yet it is precisely this static framework that has been employed to 
model the economic landscape. In settlement theory both Christaller, 1966, and 
L.ösch, 1954, theorize about settlement patterns as being components of an 
essentially static framework. Neither of these models reveals the underlying 
random and dynamic aspects in the development of urban systems. The 
deterministic approach has equally dominated industrial location theory. Ever 
since Schaffle, Launhardt. and Weber formed their strictly deterministic models 
of industrial location, geographers and economists alike have endeavoured to 
modify and improve them. Isard, 1965, synthesized all of the earlier location 
models to formulate a general equilibrium model, but still deterministic and 
essentially static his model was not operational because of the large number of 
variables involved. In this respect, both Curry, 1964, and Hamilton, 1967, using 
evidence from studies by Koopmans and Beckman, 1957, Garrison, 1959, and 
Bos, 1965, have pointed to the almost insuperable computations required for the 
solution of a relatively simple problem of allocating growth units to locations 
when only a small number of variables are incorporated into a deterministic 
model. Such observations encourage the application of stochastic models with 
their greater elasticity to industrial migration especially in those areas where 
industrial location is not strictly and scientifically planned (Hamilton, 1967). 

Under these conditions it would be relatively easy to show that economic 
variables like population, demand, and firm growth which by their interaction 
specify the course of growth of an economy, or at least some of its sectors, are 
probabilistic in nature. This is because the decisions underlying demand and 
production variations are not made in a world of complete certainty, but only in 
one of imperfect knowledge and uncertainty. Irregular and unpredictable 
fluctuations in demand and supply occur constantly so that the analysis of 
economic growth and of the spatial economy in a probability framework 
acquires a crucial role. From the purely formal and analytical standpoint a 
probabilistic approach to the analysis of the spatial economy serves to generalize 
the purely deterministic results derived from conventional location models which 
neglect stochastic influences. The theory of stochastic processes, for example, 
shows that for linear models restricted to very short periods, the solution of a 
deterministic model is very similar to the mean solution of the corresponding 
stochastic model, (Bharucha-Reid, 1960). But whenever there are a large number 
of factors to be considered or whenever events are highly disaggregated a stochastic 
model is usually more realistic than its deterministic counterpart. Deterministic 
models may provide a reliable estimate for the whole economy, but at the finer 
level of small area analysis stochastic process models may be more appropriate. 
Britton Harris, 1956, in his critical assessment of methods for projecting 
industrial growth in metropolitan areas vis a vis national projections has endorsed 
this notion: 
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• . . any metropolitan area is small relative to the national economy and 
there is more opportunity for random variation in development. 

Within the present context, the concept of regarding the growth pattern of 
urban-industrial areas as a stochastic process is best illustrated by reference to a 
hypothetical example. In the simplest case, consider the changes in the amount of 
manufacturing activity measured by the number of establishments in any one 
town. The manufacturing activity in this town grows or decreases in irregular 
jumps as a result of births, deaths, and relocations; in the case of one town; 
however, relocations are considered as births or deaths. The growth/decline of the 
town's industry can be typified by a discontinuous stochastic process in which 
the random variable - the plant - as a function of time is the step function; 
the appearance or disappearance of a plant is randomly distributed along the time 
axis. A second random variable is the height of the step measured, in this case, 
by the size of the plant which is justifiably considered independent of the size of 
the town measured by the population of establishments. With this assumption it 
can be shown that the evolution or development of the population of establish-
ments in our hypothetical town can be approximated by a simple stochastic birth 
and death process as has been outlined by Simon, 1955. In this process, only two 
kinds of transitions are considered, namely a transition to the next higher state 
(one birth) and a transition to the next lower state (one death). Formally, 
Feller, 1968, shows that in an interval of time At during which the state of the 
system Si - Si.,, there is a probability pt + O(zt) of a plant's dying and a 
probability XAt + O(it) of a plant's being born - the probability of multiple 
births or multiple deaths is O(At). The corresponding probabilities for a popula-
tion of n planst are nttt + O(t) and nXit + O(At). Thus, a contagion effect is 
postulated by which new establishments are attracted to a town because of its 
apparent economic viability reflected in the number of manufacturing establish-
ments; each plant contributes to the prosperity of the town which benefits and 
which in turn is able to provide better utilities, transportation networks and other 
social overheads. The process typifies that of cumulative causation, (Myrdal, 1957; 
Pred, 1966), in that existing plants attract new ones. For the town the birth 
intensity X will depend on the generative growth structure of the new industry and 
on how effective the town is in using its increased capacity to improve its 
locational attractiveness. 

Another aspect of the economic landscape which may be interpreted 
through the language of probability is the tendency for the size distribution of 
cities and towns to conform to the Pareto distribution. Both Zipf, 1949, and 
Madden, 1956, have provided empirical evidence for the existence of the Pareto 
distribution as applied to the ranked populations of urban systems, and Berry and 
Garrison, 1958, in their study of urban rank size relationships write: "There 
seems to be no doubt that the empirical regularity with which we are concerned 
exists." Thus, it seems pertinent to ask the question: does this empirical 
regularity exist also for manufacturing establishments at various disaggregated 
levels of spatial units? The frequent occurrence of this phenomenon among 
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economic variables has concerned both geographers and economists for some time 
but like many empirical relationships it has never been satisfactorily explained. 
That the Pareto distribution may result from a stochastic process was first 
explained by Champernowne, 1953, in his analysis of income distributions. These 
distributions, Champernowne argued, approach a steady-state equilibrium which 
is described by Feller, 1968, as a state of". . . macroscopic equilibrium . . . main-
tained by a large number of transitions in opposite directions." Within a stationary 
human population, for example, there exists a state of continual flux in which 
people are born, age, and die. Individual births and deaths are random events and 
are not predictable but the total population and its age structure remain stable, 
the confIguration being determined by the birth and death probabilities. Thus, the 
result of the process depends only on the transition probabilities from one state 
to another and is independent of the initial distribution. Within geography, Curry, 
1964, has attempted to formalize the organizational features of systems and 
cities in terms of cybernetics or self-organizing systems, and concludes that if a 
system of cities assumes a Pareto distribution then entropy has been maximized. 
The available evidence, then, suggests that the explanation of the phenomenon 
depends ultimately upon probability theory, by which order in the mass is 
produced out of individual chaos by the very fact of the chaotic or random 
character of individual action, (Steindl, 1965). The validity of this viewpoint in 
relation to prevailing distributions of manufacturing establishments is examined in 
Chapter IV. 

D. Uncertainty and Randomness 
Perhaps one of the strongest forces encouraging the adoption of a 

probabilistic framework to the exclusion of a deterministic approach is the 
concept of economic uncertainty referred to above. In this context Curry, 1966, 
states: 

Uncertainty is a basic fact of life for both individuals and groups of men. It 
matters little operationally whether this uncertainty be inherent indeter-
minacy or simply reflects ignorance of deterministic sets of events. Un-
certainty is particularly important in connection with the future so that 
action predicated [Sic] on future conditions may be understood as the 
making of decisions within the range of possible future. 

Acceptance of this concept should not be misinterpreted as a step towards 
invoking Heisenberg's principle that because of uncertainty an exact theory 
cannot exist. Rather, the argument is that the deterministic model, regardless of 
its mathematical sophistication, can never accommodate the uncertainty prevalent 
in the economic landscape. A probabilistic model, however, can include the 
element of uncertainty by introducing probabilities in place of mathematical 
variables, that is by introducing random variables. These variables, unlike 
deterministic quantities, assume different values with different probabilities. 
Indeterminacy or randomness exists not only because of imperfect foresight but 
also because of "economic man's" incomplete information or inability to abstract 
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from the maze of interrelationships the possible effect(s) of many small factors in 
reality. 

Random behaviour, be it individual or collective, does not preclude a model 
capable of providing reliable estimates and insight which may lead to an 
explanation to the type of processes involved. The model builder, equipped with 
a detailed knowledge of the economic environment can, by comparing alternative 
situations, state what types of establishments or mode of behaviour will have a 
relatively greater probability of survival. In this respect the commercial application 
of probabilistic forecasting has been elaborated by meteorologists, (Crossley, 1952; 
Malone, 1957), in probabilistic weather statements for operational decisions in 
military manoeuvres, (Jacobs, 1947) and in the construction industry for pouring 
concrete, (Thompson, 1950; Brier, 1955). Clearly, any prediction arising from a 
probabilistic approach will not assert that all or even particular individual plants 
necessarily change their characteristics. It asserts instead that the characteristics of 
the new population of establishments, or possibly an existing population, will 
change. This population may be characterised by the "representative plant" which 
stands as a purely statistical concept and signifies a vector of averages with one 
dimension for each of the several qualities of plants. No single producer, therefore, 
need typify the representative establishment which is a set of statistics summa-
rizing the "various modal characteristics of the population", (Alchian, 1950). 
Since the subject matter of spatial analysis is fraught with uncertainty it does 
seem appropriate to incorporate the notion of randomness in studies of geographic 
phenomena. 

In spite of the many advantages offered by a stochastic approach, concepts 
of random processes have invaded the social sciences, especially geography, only 
recently and have not advanced very far. One of the distinct advantages of the 
probabilistic approach is that it allows the problem to be tackled in ignorance of 
causal deterministic relationships. This may seem a basis for criticism, but it is 
precisely that man is a free agent that his behaviour pattern is largely unpredict. 
able and hence must be described in probabilistic terms. 

In a stochastic model of industrial structure it would be appropriate to 
postulate a chance mechanism to describe the transition of plants from one size 
category to another. The objection in this case would be that an entrepreneur does 
not make his decisions to expand or decrease production by resorting to "dice or 
a roulette table". On the contrary, the entrepreneur carefully weighs the 
advantages and disadvantages of changing his productive capacity, thereby 
deriving a responsible and rational decision. The contention here, is not that the 
individual entrepreneur actually uses a chance device to make a decision but that 
industry as a group behaves as if separate components did use such a method. 
In sum, the function of probability theory in the .present context is simply to 
describe observed variability; it carries no implications about the freedom or 
otherwise of human choice. "It is a fact of experience that 'choice may mimic 
chance' ", (Bartholomew, 1967, p.  6). 



CHAPTER III 

MARKOV CHAINS AND INDUSTRIAL GEOGRAPHY 

1 Iiis chapter resumes the discussion of the concepts and properties of 
\Iarkov chain analysis. The single most important objective is the examination of 
'v1arkovian assumptions as they apply to industrial activity. This chapter terminates 
with a discussion of various Markov chain applications most of which have 
implicitly accepted the validity of these assumptions. 

Transition Probabilities 
The transition probabilities, the Pij'S,  which give the probability that the 

process will move from state Si to state S are given for every pair of states. The 
"set" of probabilities or "outcome functions" describes the process as it moves 
through any finite number of steps. For computational reasons and notational 
simplicity the transition probabilities are best represented in the form of a 
Ira nsition matrix I'. 

S I 	S2 	S 3 	. S 

	

Sm P 11  P 12  p 13 	pin  

	

P = S2  p21 p22  p23 	P211  

	

Sn Pni Pn2 Pn3 	Pnn 

= I 

and 	 Pij° for alliandj 

ihe elements of P denote the probability of moving from state Sito S 3  in the next 
step. Since the elements of this matrix must be non-negative and the sum of the 
elements in any row is 1, each row is called a probability vector and the matrix P 
is a stochastic matrix. If for some power of the matrix P there are only positive 
entries the transition matrix is described as regular. A Markov chain is regular if, 
and only if, pk has no zero entries for some k. Thus, regular Markoy chains are 
readily distinguished from absorbing Markov chains since the latter contain at least 
one state which once entered cannot be left; a state Siis absorbing if, and only if, 
pii = 1. A Markov chain depicting the life cycle of industrial establishments and 
having "death" as a state would of necessity be absorbing. A brief development of 
some of the basic theory of regular Markov chains is given in Appendix A, along 
with a numerical example. 
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The Markov Property 
The application of a Markov model is contingent on the identification of the 

specific-order property. Given adequate data this property can be readily deter -
mined by a substantial body of statistical theory. It should be noted, however, 
that any transition matrix suggests a Markovian model but the partial dependence 
or Markovity property of a Markov chain renders it unsuitable for the analysis of 
an independent series of events. A transition matrix depicting such a series is often 
described as zero order, (Billingsly, 1961). Before determining the specific-order 
of a stochastic matrix, therefore, it is essential to test the validity of the Markovity 
assumption. For this the maximum likelihood ratio criterion, which may be 
extended to determine the specific-order of the process, is an appropriate test 
statistic. The design of these tests involving asymptotic distribution theory and the 
closely related Chi-square tests of the form used in contingency tables is elaborated 
in two studies of Markov methods by Anderson and Goodman, 1957, and 
Kuliback, Kupperman and Ku, 1962. Basic to all these tests is the actual number 
of observations for all cells represented in a "Tally Matrix". Assume that plant 
relocations among three towns (states) have been observed and tabulated as in 
Table 3.1. For Markovity, the likelihood ratio criterion tests the null hypothesis - 

TABLE 3.1. Tally Matrix 

1 s 2 s 3 
Marginal 
totals 

S 1 ......................................................................... 120 40 40 200 

S 2 ........................................................................60 80 60 200 

120 120 360 600 S 3 	......................................................................... 

300 240 460 1,000 

that the movement of plants from one location to another is statistically 
independent as against the alternative that the observations exhibit partial 
dependence. The test for Markovity is detailed in Appendix B. In this hypothetical 
example, —2 logX = 165.8 which is greatly in excess of the tabled value of Chi-
square with four degrees of freedom, and the hypothesis of an independent trials 
process is rejected. Other methods have been used for tests of Markovity;Grant, 
1957, for example, used autocorrelation techniques which are applied directly to 
the sequence of observed values. 

A First-order Markov Chain 
Alone, the dependence property is insufficient justification for adopting a 

specific-order Markov model. The assumption of most studies that any transition 
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matrix typifIes a first-order Markov process, is akin to that of assuming normality 
for the application of standard statistical procedures. Such assumptions usually 
arise from inadequate data. The test for a first-order Markov chain cannot be 
applied to a simple two dimensional tally matrix. Their test requires observations 
on individual movements through at least two time intervals; such observations are 
distinct from the aggregate observations derived by a comparison of the states at 
two dates. Assume, for example, that the tally matrix presented above is for the 
1941 - 51 period. This indicates that during the interval, 40 plants moved from 
S 1  to S 3  and 120 plants moved from S 3  to S2 , and so on. But to determine that 
the data typify a first-order process it is necessary to observe the individual move-
ments of these plants during the next time interval (1951 - 61). In this way we can 
attach a probability to a plant's moving to S 3  in the next interval given that it has 
already moved from S 1  to S2 . The notion is best illustrated by a conditional 
probability tree, which is given for the three-town example in Appendix B. 
Formally, this shows the probability of moving to the j-th state in the k+1 
"realization" given that movement has already occurred from the i-th state to a 
j-th state in the k-th realization. 

The probability tree shows that of the 40 plants which moved from S to S 2  
between 1941 and 1951, 28 remained in their locations during the 1951 -61 
period but two returned to S 1  and ten relocated to S 3 . Such data are best 
presented in a three way or cubic matrix which takes the general form shown in 
Fig. 3.1. For the hypothetical example the three facets or leaves of the cubic 
matrix are presented also in Fig. 3.1. 

Given such data it is possible to test the null hypothesis that the chain is 
first-order against the alternative that it is second-order. The statistical test for a 
first-order Markov chain is detailed in Appendix B. Assuming that —2 logX is less 
than the tabled value of Chi-square with n(n-l) 2  degrees of freedom the data are 
considered as typifying a first-order Markov chain. Clearly, by extending the 
probability tree and hence expanding to n dimensional matrices the likelihood 
criterion can be transformed to test the more general null hypothesis that the 
chain is of order r-1 against the alternative that it is of order r. So far, however, 
there has been no application of this test to socio-economic variables. Gale, 1969, 
pinpoints the main reason for this inadequacy as being a problem of "...ob-
taining permission to derive the proper parameters and of developing computer 
programs to do this quickly and efficiently". 

The Concept of Stationarity 
Fundamental Markov theory requires, in addition to the first-order property, 

that the parameters be stationary. This implies that the estimated transition 
probabilities are fixed or constant throughout the predictive period and as such 
is a restricting assumption of Markov theory. It is often possible, however, to 
estimate a series of transition matrices or a set of realizations which typify recent 
trends. The constancy of these trends can be determined by statistical tests. 
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FIGURE— 3.1 

CUBIC MATRIX FOR A THREE STATE MARKOV CHAIN 
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Anderson and Goodman, 1957, for example, provide a likelihood ratio criterion 
which closely approximates Chi-square, and was applied by Gale, 1969, to sets of 
small matrices. One alternative, desirable for the larger matrices of this study is 
the minimum discrimination infonnation statistic (m.d.i.s.) which is equal to -2 
logX. The advantages of this statistic are in its properties of additivity, convexity 
and computational facility. 

The utility of using the m.d.i.s. in association with its component properties 
for testing the null hypothesis - that several realizations of a first-order Markov 
chain come from the same but unspecified matrix of transition probabilities - has 
been discussed in detail by Kuliback, Kupperman and Ku, 1962. Assuming that 
we have two transition matrices for the three-town example we may postulate the 
null hypothesis that the two realizations, 1941 -51, and 1951 -61 are hom-
ogeneous, that is the parameters are constant. The set comprises s (i.e. two 
realizations) of a first-order Markov chain with n (i.e. three) states. For this the 
null hypothesis is: the probability of moving from state ito state j in the k-th 
realization, that is pl((SJSi),  is the same for all k(k=l, 2, . . .$) for every possible 
pairing of i and j where il, 2, . . n, and j=1, 2,.. .n. Under the null hypothesis 
the additivity property of the m.d.i.s. can be used to provide information statistics 
for: the homogeneity of the marginal probabilities -(i) - homogeneity; the 
conditional homogeneity a/i); and the two way independçnce homogeneity (i,j). 
The formulation of these tests is given in Appendix B. 

Derivation of Transition Probabilities 
The transition probabilities, the Pij'S,  form the heart of any Markov chain 

model; their derivation, therefore, is of the utmost importance. Such probabilities 
must be estimated for models of real world situations, and alternative approaches 
are classified here in two main groups: conceptual and statistical estimation. 

(a) Conceptual 
The general problem is a lack of suitable disaggregated data showing 

individual temporal or spatial movements of selected economic variables. Krenz, 
1964, in a study of temporal changes of farm size in North Dakota, adopted a 
conceptual approach by postulating rules of behaviour for the micro Units (farms). 
Basic data were obtained from the Quinquennial Census of Agriculture which only 
enumerates the total number of farms in each of several size categories (size based 
on acreage); no information concerning the movement of individual farms from 
one size group to another was available. Krenz postulated that: if possible, farm 
operators would always expand their acreage; the farms most likely to expand are 
initially larger than average; increases in farm size are most likely to result from 
gradual increases in acreage; and that a farm is more likely to go out of business 
than to decrease its acreage. Krenz adopted a six state system (state refers to farm 
size) and used the assumptions to postulate three rules of behaviour. First, farms 
in the largest category S 6 , remain in this category. Second, increases in number of 
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farms in any state Si move from the next smaller state S 11  . Finally, any decrease 
in the number of farms in any state, other than from the second rule, results in a 
movement to S 0  which represents a cover all state for going out of business. An 
absorbing Markov model is thereby applied. Clearly, this approach is highly 
dependent on an intimate knowledge and conceptualization of the processes 
involved. 

(b) Statistical Estimation 
Where a detailed knowledge of the underlying processes is absent the para-

meters must be statistically estimated from either aggregate occurrence data of the 
type used by Krenz or from observations of individual movements between states. 

(i) From aggregate data - Transition probabilities can be estimated from 
aggregate or total occurrence data by linear and quadratic programming procedures 
which produce least squares estimates. The idea was first conceived by Miller, 
1952, but has since been refined and extended by Goodman, 1953, Kao, 1953, 
Madansky, 1959, Telser, 1963, Scott, 1965, Lee, Judge and Takayama, 1965, and 
Lee, Judge and Zellner, 1970. Miller's initial formulation produces unrestricted 
least squares which automatically fuffil the condition: 

j1 

but the non-negativity and not greater than unity condition, i.e. 0 < Pi 	1, may 
be violated and hence non-admissible estimates of the transition probability values 
may appear. In this event adjustments to the parameters are necessary and are 
usually accomplished by an iterative procedure requiring a subjective termination 
to the solution, (Telser, 1963). 

(ii) From individual observations - Given observations on the individual 
movements of economic variables, Anderson and Goodman provide the maximum 
likelihood technique for estimating transition probabilities. Maximum likelihood 
estimates of the Pij  are derived by dividing the number of times micro units move 
from Si to Sj by the total number of occurrences of S; the total number of 
occurrences and individual movements are obtained from empirical observation. 
Thus: 

r 	1 
I 	In 

I Pii I 	=1 
L 	J Li 

where fij  is the number of movements of the sample elements from state Si to Si. 

The maximum likelihood criterion stands as the best alternative for 
estimating the underlying fixed probabilities. Some researchers have inferred, 
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however, that where the objective is one of predicting the proportions in each of 
the states over time, because of the basis on which the estimates are derived, the 
unrestricted and restricted least squares estimates may be superior to the maximum 
likelihood estimates. But the results of Scott's analysis, the only geographic 
application of the former approach, do not support the inference. Intuitively, it 
seems that where the objective is both predictive and descriptive, then maximum 
likelihood estimates of the structural parameters will be more useful. Moreover, 
the above discussion has shown that when individual observations are available the 
transition matrices (tally matrices) can be subjected to rigorous statistical tests for 
determining the specific-order of the chain. All studies pfedicated on the aggregate 
formulation of a first-order Markov model carry the uncomfortable assumption 
that the frequency distributions represent vectors of state probabilities generated 
by a first-order Markov process. The most that can be determined for such matrices 
is Markovity and the ergodic nature typical of a regular chain. 

Although the maximum likelihood criterion is upheld as the best estimating 
procedure it should be noted that its limiting property is one of restriction to large 
sam pies. 

Basic Assumptions of Markov Chain Models 
No matter how sophisticated are the mathematical techniques, the formula-

tion of a predictive model depends upon the acceptance of certain restricting 
assumptions. Markov chain models are no exception. Some of the assumptions 
referred to earlier are capsuled below, prior to a detailed examination of their full 
implications for industrial geography. Such a discussion is necessary because each 
postulate assumes a different level of importance depending on the variables and 
processes examined. 

Four basic assumptions emerge, the first being one of definition. in dis-
Continuous Markov processes it must be assumed that the system is typified by 
distinctive states and that transitions occur at discrete time intervals - an 
assumption not unique to Markov chain analysis. Space and time are continuous 
variables but by virtue of their mode of tabulation all social science data are 
discrete. Most models, therefore, are formulated in discrete terms. 

The second and most limiting assumption has been summarized by 
liailey, 1964: 

The restriction that the future probability behaviour of the process is 
uniquely determined once the state of the system at the present stage is 
given is the characteristic Markov property. 

This implies the ability, in the absence of information about the history of the 
process, to deduce its future development from knowledge of its present state. 
But given adequate data the memory of a Markov chain can be infinitely 
extended. 
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A third limiting restriction, the concept of stationarity, implies a constant 
relationship among the transition probabilities throughout the predictive period. 
For many studies this is not a severe restriction since its limitations can be over-
come by manipulating two independent sets of transition matrices;Pattison, 1965, 
for example, used both first-order and sixth-order chains to traverse transition 
periods separating rainfall cycles. Presumably the approach could be useful for 
long-term studies traversing two or more business cycles. 

Finally, any structural or spatial grouping of economic variables into a set of 
distinctive states assumes uniform probabilities for all individual components of 
each cell or state in the matrix. But the assumption is not always tenable; 
sociological studies of occupational mobility, for example, suggest a marked 
negative correlation between length of time in any one state and the tendency to 
move out of that state. Such observations have encouraged the adoption of a 
"Mover-Stayer" dichotomy in which one transition matrix represents occupa-
tional transients and a second matrix represents those who possess relative 
occupational stability. 

Implications of Markov Chain Postulates for Industrial Geography 
One important characteristic of these four assumptions is their inter-

dependence evolving from the initial classification of states. 

(i) A system of states - To a considerable extent the pragmatic value of 
Markov chain theory depends upon the distinctive classification of states. 
Evidence suggests that manufacturing establishments relocate once, twice, or many 
times during their existence, (Kerr and Spelt, 1958), Most studies of industrial 
relocation have recognized the tendency of plants to relocate over a considerable 
range of distances, (e.g. McLaughlin and Robock, 1949; Ellis, 1949; Hamilton, 
1963; Keeble, 1965). Spatial states of origin and destination typified by well 
defined geographic areas are clearly discernible. But industrial activity is not 
distributed in a continuum across the landscape; rather it is concentrated into 
selected nodes separated by conspicuously non-industrial areas. A discontinuous 
system of spatial states may, therefore, be an appropriate framework for a Markov 
chain model of industrial activity. Within such a framework, at least in terms of 
existing migration theory, the probability of a plant's moving from one state to 
another would be a function of the characteristics of the individual plant and the 
characteristics of both the state of origin and the state of destination. Since these 
characteristics cannot be adequately evaluated the underlying fixed transition 
probabilities using statistical techniques elaborated earlier are most easily estimated 
from actual observations. The selection and delimitation of the states, as with any 
formal regionalization of the landscape, involves subjectivity which will in varying 
degrees affect the estimated transition probabilities. 

The same problem arises in a dynamic analysis of industrial structure. 
States, in this case, refer to establishment size categories, represented by employ. 
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ment, value added, or some other viable measure of productive capacity. Here, 
the system of states must be continuous within the limits of the actual range of 
the size criteria examined, though the upper and lower bounds must be subjec-
tively determined. The size of the state will affect the estimated transition prob-
abilities. The degree of effect can be determined more easily for structural than 
for spatial states by examination of the transition matrices under changing limits. 
Generally, the smaller the states the greater is the tendency for the appearance of 
small, unstable elements in the off diagonals of the matrix; whereas the larger the 
states the more pronounced is the main diagonal. The size of the states and the 
method of classification do, of course, depend largely on the quality of the data. 
Kemeney and Snell, 1967, remark that ". . . if we decide that the Markov 
assumption is reasonable for a certain method of classification, then we cannot 
arbitrarily treat a coarser classification as a Markov chain . . . unless the condition 
for lumpability is satisfied". 

Suppose that the movement of plants from one size category to another 
actually typifies a Markov process and that the location data are divided into as 
many states as is desirable. Then, given a sufficiently large number of time 
periods we could obtain, at least theoretically, the transition matrix for the net-
work of movements. This network may reveal that the transition probabilities to 
and from several spatial states are identical, in which case the states could be 
grouped into a coarser classification for which the Markov matrices would still 
give a correct picture of the expected movement. 

In practice, however, data are not available for an arbitrarily fine classifica-
tion so that even if the process examined were of an exact Markov type, the 
classification adopted might include several states whose patterns of movements 
are disparate because of industrial mix and age characteristics. A fundamental 
problem of Markov chain analysis, therefore, is the adoption of a classification 
scheme which is good enough to enable a reasonably simple model to fit the data. 
The specific states adopted will depend ultimately on the degree of individual 
awareness of the problem being studied. Justification of the specific states adopted 
in this study is made in Chapters IV and V. 

(ii) First-order assumption - The ability to verify statistically the assumption 
that a set of data conforms to a first-order Markov process clearly depends on the 
method of classification. However, data for such a short time period as is covered 
by this study are not adequate to test the assumptions for the spatial matrices; in 
five years it is not to be expected that many manufacturing establishments will 
change spatial states more than once - no matter what classification scheme is 
adopted. Nevertheless, several studies of iritraurban location (e.g. Reeder, 1954; 
Martin, 1966) have shown that the new location of a plant will be dependent upon 
its existing location though not necessarily on previous locations - a familiar 
property of a first-order Markov chain. Thus, it is reasonable to hypothesize, that 
the pattern of industrial location for Si at time t is a function of the industrial 
location pattern at time t-1 plus some component of change which may be defined 
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by a set of probabilities. It has been shown in several location studies that the 
component of change affecting industrial migration in influenced by a multiplicity 
of factors which include tax incentives, rezoning, lease expiry, introduction of 
pollution control, and expanded markets. Given that data are not available to test 
the first assumption and given that plant relocation may be approximated by a 
first-order Markov process, the task of delimiting a meaningful set of spatial states 
assumes a crucial role in the research design. 

The theoretical model used in this study assumes that of those economic 
factors - such as entrepreneurship, financial structure and position, proneness to 
introduce technological change, and profits - which may determine the growth 
pattern of manufacturing plants, size, measured in terms of employment, is 
assumed to be the most important summary criterion. By using the latter variable 
the first-order assumption can be statistically verified for the system of structural 
states adopted in this study. 

(iii) Constant parameters - The assumption concerning the future stability 
of transition probabilities is also partially dependent on the method of classifica-
tion. By definition, this postulate is dependent on the first-order property which 
is assumed in statistical tests for stationarity; similarly, statistical tests for the first-
order property are predicated on the constancy of the parameters. Acceptance of 
stationarity for long-term prediction of industrial activity may not always be 
justifiable since technological change could have a significant impact on existing 
trends. On the other hand, there is no evidence to suggest that any technological 
innovation so far has profoundly affected the spatial distribution of manufacturing 
during a short-term period. Factors likely to have the greatest impact on the 
spatial rearrangement of manufacturing activity include the construction of new 
superhighways, direct government subsidies, and the construction of new airports. 
But the influence of such factors is only asserted gradually. Technological changes 
may well influence the size structure of industry to a greater degree but again 
there is little evidence to suggest that even this is substantial in the short-term. In 
this study, however, the constancy of recent trends is tested lending credence to 
the assumption of short-term stationarity. 

(iv) Uniform probabilities - The valid assignment of spatial and structural 
probabilities to large numbers of plants depends upon careful grouping which 
again relates to the method of classification and size or content of the states. In 
terms of size, a plant employing 200 employees locating in a country town is 
unlikely to satisfy the notion of uniform probabilities but as part of a large 
industrial complex it might well do so. Similarly, in terms of state content a 
factory manufacturing pencils is more likely to relocate than a plant manufac-
turing locomotives; plants in urban areas are more likely to relocate than plants 
in rural locations or vice versa. Collins, 1966, in an earlier study supported 
inferences that branch plants have a higher propensity to relocate than other 
types of plants. Conceivably, other sub-groups within the broader aggregate 
categories could be distinguished as having a higher/lower propensity to migrate. 
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But it is unlikely that a mover-stayer  dichotomy adopted in sociological studies is 
applicable to industrial activity as there is no evidence to suggest a correlation 
between the length of time a plant remains in a location and the likelihood of its 
relocating. 

Thus, an important aspect of the Markovian assumptions is their inter-
dependency by which the basic classification of states can influence the Markovity 
component as well as the assumptions of stationarity and uniform probabilities. 
When applied to industrial activity the severity of the constraints depends on 
whether the analysis is structural or spatial since the concept of stationarity is not 
so rigid for spatial as it is for structural patterns. Against the background of these 
assumptions the following section examines the various applications of Markovian 
analyses in geography and related disciplines. 

Applications of Markov Chain Analysis 
Although Markov process models have been applied in a large variety of 

studies, most applications of Markov chain analysis in the social sciences have been 
concerned with social mobility and the tendency of economic activity to concen-
trate among large organizations. The limited success of these studies has been 
summarized by McGinnis, 1968: 

Few applications of these temporal functions worJed especially well when 
tested against data and some of them were howling failures. In each case 
Markov chain theory was applied but in no case did it prove to be a particu-
larly good representation of social phenomena. 

Many of the failures could be attributed to inadequate data and insufficient 
number of observations. Normally, the term observation denotes a micro unit in 
the sample but in some analyses, in an attempt to increase the apparent sample 
size, the term has been given a different interpretation. Recognizing the basic need 
of maximum likelihood techniques for large samples Judge and Swanson, 1962, 
basing their analysis on 83 units for a six-state model, concluded that, "Since each 
hog producing firm moved (or had the option to move) from one state to another 
12 times during the 13-year period the transition matrix is based on 996 
observations." A much smaller sample size was used by Archer and McGuire, 1965, 
in a seven state model in which 13 observations comprised the average sample size. 
The problems of using such small samples extend to the model testing mechanism. 
In their analysis of the market structure of food processing firms, Preston and 
Bell, 1961, for example, using 35 observation units for a six-state model, applied 
the Chi-square test to the expected distribution vectors which contained five cells 
with values below five, two of which were less than unity. The validity of such a 
test has been elaborated by Ray, 1965. 

Criticism of these earlier studies focuses not only on the insufficient 
observations but also on the quality of the data. Clark, 1956, has commented, for 
example, on the limited sample used by Hart and Prais, 1956, in their seminal 



- 35 - 

application of Markov chain analysis to business concentration. They used only 
those firms quoted on the stock exchange, and manufacturing establishments 
were grouped with finance companies, service industries, shipping and trade 
corporations. Later studies, such as those of Kaplan, 1954, Adelman, 1958, 
Collins and Preston, 1961, used only the 100 largest industrial firms enumerated 
on a voluntary basis in public reference manuals. 

A common goal of many Markovian applications has been the derivation of 
equilibrium vectors. Hart and Prais, because of their difficulty in handling 
realistically the phenomena of firm entry and exit, were not able to derive an 
equilibrium market structure for business activity. Adelman's technique of adding 
an additional state comprising a reservoir acting as a source of potential entrants 
and as a pooi for liquidated firms, partially solved the problem of entry and exit 
and was adopted in several later studies. For the equilibrium state, Adelrnan 
provides a proof which shows that the size of the reservoir - no matter how 
large - does not affect the economically relevant portion of the results. 

A comparison of equilibrium vectors computed for both white and negro 
flows among California's S.M.A.'s provided Rogers with a mobility index for the 
two populations. The value of the equilibrium vectors to migration studies is 
summarised by Rogers, 1968: 

At more disaggregated levels, the equilibrium solutions present a detailed, 
quantitative picture of the spatial implications of current mobility trends. 
Moreover, they provide indications of temporal changes and of differentials 
between migrant sub-classes. 

Rogers also used mean first passage time matrices to define aspatial measures of 
interregional "migrant distance" which when interpreted in relative terms provides 
a measure of interdependence among the respective states. Mean first passage time 
matrices were also derived by Bostwick, 1962, in a study concerned with the 
application of Markov chain analysis to decision making in farm management. 

Markov chain models were introduced to geographic analysis by Brown, 
1964, in a study of the diffusion of innovation. Clark, 1965, presented transition 
matrices of urban land values in selected American cities to illustrate the 
concept's potential. In a related study, Bourne, 1969, powered a 1952 - 62 
transition matrix of urban land use change to extrapolate land use matrices for 
decennial periods up to the year 2002. Bourne's approach deviates from others in 
that he is concerned only "...with change data and not the total land use 
inventory." In an earlier exploratory paper Marble, 1964, showed that the Markov 
model ". . - despite its very real limitations appears to have some value in the 
study of certain aspects of travel behaviour." 

Implicit in all these studies has been the assumption that any transition 
matrix can be validly manipulated in a Markovian framework; none of these 
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studies has questioned the assumptions of Markovity, stationarity or first-
orderedness. The recent study by Gale, 1969, however, is more encouraging. 
Gale's explicit aim is ". . . to test the viability of a methodology" and for this he 
goes as far as to test his data for stationarity. Unlike his predecessors, Gale opens 
up new vistas by suggesting a continuous time and discrete space state model. 
This, he augments with a multivariate approach which is used to test a total of 
eighteen hypotheses relating to social and spatial mobility of negroes in Ann Arbor 
1870 - 99. All his models, Gale claims, are significant at the 0.95 level. Un-
fortunately, he gives no indication whether his augmented model is an improve-
ment over the simple Markov concept. The notion oi a continuous time and 
discrete space model has since been adopted by Drewett, 1969, in analysing the 
land conversion process from rural to urban use, and is very similar to the semi-
Markov process model adopted by Harris, 1968. In this, the successive selections 
of the states of development are independent of the time it takes to go from one 
state to the other so that the ". . . wait is a random length of time sampled from 
the distribution." 

In addition to outlining the statistical theory associated with a Markov 
methodology, this chapter has emphasized the implications of Markovian 
assumptions for industrial geography. The interdependency of the assumptions is 
shown to be strongly influenced by the classification of the respective states. As 
well, the foregoing discussion has shown that Markov chain models can be 
considered on three levels. First, investigation of the input parameters provides a 
suitable framework for analysing the structural and/or spatial dynamics of the 
variables involved. This descriptive aspect of the concept can also provide the 
foundation for inferential or causal statements. The second level comprises the 
use of Markov chain analysis as a predictive tool. In this respect, the approach has 
usually been one of estimating past events from which the parameters were 
derived in the first instance. In other words, the model has merely been tested 
within the limits of all the available data. Some studies, however, lacking adequate 
test data, have extended the predictions to some future date. Closely related to 
the second approach is the use of Markov chain models to derive an equilibrium 
situation of the variables studied. Such studies have focused on the tendencies of 
economic phenomena, such as firms, to concentrate in various size categories. 



CHAPTER IV 

STRUCTURAL CHARACTERISTICS OF MANUFACTURING ACTIVITY IN 
ONTARIO 1961 - 65 

Two important issues emerge from Chapter 111: forecasts derived from 
Markov chain analysis are projections of the future state of industries if the 
observed patterns of change continue; and the application of a Markov model is 
contingent upon the careful selection of an appropriate system of states. 
Accordingly. Chapters IV and V comprise analyses of recent trends in Ontario's 
manufacturing activity to determine the validity of accepting the assumption of 
stationarity for projected trends and to provide a framework for selecting a 
suitable system of Markov states. Whereas the analyses of this chapter focus on 
structural characteristics, those of Chapter V concern the spatial dynamics of 
Ontario's manufacturing activity. 

Generally, industrial structuft refers to all the component parts of industrial 
activity in any one area, region or system. The two most important industrial 
units, the firm and the establishment, may be analysed in such terms as size, age, 
labour force characteristics, productivity, type of activity, location, linkages, 
ownership, and managerial organization. The firm is an economic-legal unit with 
no areal bounds whereas the establishment or plant is a technical-economic unit 
with a specific location and as such is the more appropriate unit for spatial 
analysis. Whereas the population of establishments accounts for all manufacturing 
activity, the total number of firms does not since all manufacturing establishments 
are not firms. In this study, structure refers specifically to three characteristics 
relating to establishments: size measured in terms of total employment, type of 
activity, and location. 

Plant size which varies widely between industrial sectors has been the focus 
of many studies. A large number of small plants is a characteristic feature of most 
manufacturing activity though exceptions exist in such industries as cement, 
smelting, refining, and automobiles. In the past, even these industries were 
characterized by small concerns; at the turn of the century the American 
automobile industry was typified by small assembly units. Later, economies of 
scale, largely initiated by the introduction of Ford's conveyer belt in 1908 
encouraged many units to expand production to the detriment of less innovative 
concerns, and today well over 90% of the U.SA's output is controlled by only 
three corporations. Similar characteristics in other industries have led to a general 
belief that productive efficiency declines below a certain minimum size. Why 
then are most manufacturing establishments small and what is the most 
appropriate measure for interindustry comparisons? 
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Reasons for the continued existence of a large number of small plants in 
some industries (e.g. metal fabricating) include market and product differentiation, 
the geographical dispersion of population, and demand for specialized functions. 
Once well established, an industry produces a multiplicity of products and tends 
to move towards increasing specialization in which large establishments concen-
trate on mass production, medium size plants manufacture non-mass producible 
goods at an efficient scale, and the numerous small establishments perform 
functions of a specialized nature such as repairs, rush orders, and personalized 
services. The result tends to be a rather stable distribution or structure of large 
and small establishments working in "complementarity", (Andrews, 1956). The 
most striking feature of this structure is the tremendous variation of scale which 
consistently ranges from small family concerns employing one or two people to 
multi-million dollar complexes with an employment in excess of several thousand. 
Thus, this chapter seeks to identify prevailing plant size distributions. Because of 
their skewed nature, the distributions can be appropriately analysed within the 
framework of two established theoretical concepts, one of which relates to the 
Pareto Curve or, more appropriately, to the Pareto Tail, and the other via Gibrat's 
Law of Proportionate Growth to the lognormal distribution. Both models may be 
generated from a simple stochastic or Markov process which offer a dynamic 
interpretation of the underlying growth mechanisms and changes in the configu-
rations of the respective distirbutions. 

Size Distributions and Structural Variations 
The traditional approach to analysing spatial and temporal variations in the 

size distribution of industrial activity is through the comparison of ratios or Gini 
coefficients derived from cumulative frequencies plotted as Lorenz curves which 
provide a visual measure of the degree of concentration in employment. If 
employment were distributed equally in all size categories then the curve would 
be a straight line at an angle of 450;  hence, the more convex the curve the more 
concentrated is the employment in the largest plants. But such an approach, 
although highiy descriptive, does not identify or give insight into the processes 
influencing changes in the distribution. In Ontario, for example, between 1961 
and 1965 employment in the constant sample' of permanent establishments of 
the primary metals industry, and in "all industries" for the city of Toronto 
became more concentrated whereas no noticeable change occurred in the 
corresponding plants for the foods and beverage industry (Fig. 4.0. In particular, 
plants with more than 400 employees in 1965 accounted for approximately one 
third of the respective totals in foods and beverages, non-metallic mineral products, 

This refers to all plants with at least two employees throughout the 1961 -65 period 
and which remained in the same location for that period. The term "all establishments", used 
elsewhere, refers to the total number of establishments employing at least two people in any 
one year. Similarly, the term "all industries" is an aggregate term denoting the sum of "all 
establishments" in 20 2-digit industries or in 37 3-digit industries. Where reference is made to 
the total number of establishments the phrase all establishments as recorded by Statistics 
Canada is used. 
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printing and publishing, metal fabricating and chemical products industries, 
whereas in the transportation and primary metals industries over 80% of the total 
employment was found in such plants; in the clothing industry only 12.5% of the 
total was found in plants with over 400 employees (Table 4.1). These figures 
emphasize the considerable variation in the size distributions of individual sectors 
but when plotted with the 1961 data as Lorenz curves no insight is provided 
concerning the underlying mechanisms generating the changes. 

T'8LE 4.1. Cumulative Percentages for Permanent Establishments 
in Selected Industries for Ontario, 1961 

Size of 
plant by 
No. of 

employees 

Foods 
and 

bever- 
ages 

Tran- 
sport 
equip- 
ment 

Cloth- 
ing 

- N 
me a1 

erals 

Print-
ing 
and
Pub- 
IjSh- 

. ri-  
mar 

a me 	S 

ing  

Metal 
fabri- 
cat- 
ing 

Chem- 
icals 

14.6 72.2 5.6 13.8 18.1 71.4 4.2 20.1 
619 	......................... 20.8 77.9 9.8 21.8 23.9 78.5 13.7 29. 1 
399 	......................... 30.4 81.0 12.4 34.6 32.9 83.4 28.3 37.4 

43.3 87.8 22.9 44.9 43.3 87.3 46.1 44.9 257 	......................... 
166 	........................54.4 92.3 37.0 55.7 48.5 91. 1 55.6 58.8 
106 	........................65.0 96.0 51.4 68.3 59.1 94.2 66.9 73.9 

73.7 97.7 61.5 76.0 71.4 96.6 75.4 83.8 

961 	......................... 

80.7 98.8 74.5 83.0 77.2 97.8 84.3 90.0 
68 	......................... 

87. 2 99.3 85.7 89.3 83.8 98.9 90.5 93.9 
44 	......................... 
28 	......................... 

91.8 99.5 92. 1 93.4 89.5 99.5 95.0 97.0 18 	.......................... 
11 	........................95. 1 99.8 97. 1 96.9 94.5 99.8 97.7 98.5 

7 	........................97. 7 99.9 98.8 99.0 97.2 99.9 99.1 99.3 
4 	........................99. 3 99.9 99.8 99.8 99. 1 99.9 99.8 99.9 
2 	......................... 00.0 100.0 100.0 100.0 100.0 100.0  100.0 100.0 

Some comparative measure of Ontario's manufacturing with respect to that 
of other countries should also be given. For Britain in 1951 and the U.S.A. in 
1954, Florence, 1957, calculated that plants with more than 100 employees 
accounted for 74.8% and 74.3% of the respective employment totals; the 
corresponding figure for Ontario in 1965 was 73.7%. But whereas plants 
employing more than 500 in Britain and the U.S.A. accounted for 42.4% and 
45.2% respectively, in Ontario similar plants accounted for only 37% of the total 
employment in 1965. In contrast, only 53.4% of the total Norwegian eniployment 
in 1948 was found in plants with more than 100 employees and only 26% in 
plants employing more than 500, (Wedervang, 1965). 
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Although the symmetry of the Lorenz curves (Fig. 4.1) shows that the size 
distribution of selected industries is skewed one of the most widely used 
statistics in previous studies has been the representative average (mean) size. 
Florence used the median in his comparison of British and American industry, 
but used the measure to describe the plant in which the "mid-most" worker is 
found. Using this measure Table 4.2 compares the Ontario statistics with those 
derived by Florence; the median size of plant for all Ontario establishments as 
recorded by Statistics Canada in 1961 was eleven. 

TABLE 4.2. International Comparisons of Average Plant Size: 
Ontario, U.S.A., and Britain 

Plant Size by No. of employees 
Place 

Mean 	I 	Median 1  

Britain , 1935.............................................................31 	 235 
BritaIn, 1951.............................................................53. 2 	 370 
U.S.A.. 1954 .............................................................54.8 	 415 
Ontario, 1961 ...........................................................51 	 281 

Median denotes plant size with • 'mid-most" worker. 

At a more disaggregated level a comparison of the means and medians for 
individual industries provides some measure of structural variations (Table 4.3). 
As an example, the furniture and fixture industry, although possessing some large 
establishments is numerically dominated by small plants with less than four 
employees; whereas, by contrast, over half the tobacco product manufactories 
have more than 200 employees. Such differences in size distribution are portrayed 
graphically by frequency polygons (Fig. 4.2) where the almost symmetrical size 
distribution for non-metallic mineral products is replaced by a bimodal 
distribution for leather industries and a highly skewed distribution for foods and 
beverages; the latter is a more representative distribution relative to all other 
major groups. 

Urban areas are equally characterized by structural variations which are 
examined for a selection of those urban centres possessing more than ten 
permanent establislments for the 1961 - 65 period (Table 4.4). Although there are 
marked variations in the mean size of plants among the various urban centres the 
differences among the respective median values are much smaller. In their study, 
Kerr and Spelt, 1965, contrasted the industrial structures of Toronto, Hamilton 
and Windsor according to their respective mean firm sizes; the average Toronto 
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TABLE 4.3. Size of Permanent Establishments by Employment 
in Twenty 2-digit Industries, Ontario, 1961 

Industry Median Mean Standard 
deviation 

7 37 121 
206 206 130 
89 286 408 
39 80 112 
18 64 136 
46 7'7 89 
19 43 84 

9 28 48 Wood......................................................................... 
3 22 47 

45 112 166 
Printing and publishing 	......................................... 6 30 116 

Foods and beverages 	............................................. 

Knitting mills ........................................................... 

42 311 1.191 

Tobacco products 	................................................... 
Rubber ....................................................................... 

Clothing................................................................... 

15 46 96 

Leather..................................................................... 
Textiles 	................................................................... 

37 126 314 
49 268 1,017  

Furniture and fixtures .............................................
Paper and allied products 	..................................... 

Machinery................................................................. 
73 183 325 

Primary metals ......................................................... 

Transportation equipment ....................................... 
15 46 113 

Metal 	fabricating 	..................................................... 

44 222 381 

Electrical products .................................................. 

24 74 189 

Non-metallic mineral products ............................... 
Petroleum and coal products ................................. 
Chemical products ................................................... 

8 34 100 Miscellaneous 	......................................................... 
All industries ........................................................... 13 63 

Not computed. 

firm in 1958 was cited as having "...44 workers while its counterparts in 
Hamilton and Windsor, cities characterized by fewer and larger industries, employ 
88 and 89 workers respectively". By 1961 the values for establishments in these 
cities were 52, 126, and 94 with respective standard deviations of 158, 597, and 
454. When median plant sizes are compared, however, the values of 13, 16, and 
14 indicate that the differences are much less and that there is a much closer 
correspondence in terms of total structure. 

The median size variation is not correlated with size of urban area (for those 
urban areas shown in Table 4.4, r-0.l9), but a distinct spatial grouping of 
towns with less than one fifth of their establishments having fewer than eleven 
employees occurs in the "core" or Golden Horseshoe area (Map 4.1). Within this 
area only two centres - Oakville and Dundas - have more than 20% of their 
establishments employing less than eleven. Outside the intensely developed core 
area, the size distributions of most towns are characterized by a larger percentage 
of small establishments and are presumably not so stable as the size distributions 
of those towns in the Golden Horseshoe. Possible reasons for observed structural 
variations are examined in the following section. 
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T.BL,l: 4.4 A verage Size of Permanent Establishments for Selected 
Cities and Towns in Ontario, 1961 

Town 	 popu- 
lation 

Median 

640, 588 52 158 13 
Hamilton ................................................ 261, 114 126 597 16 

255. 608 57 104 13 
158. 158 71 150 17 
116, 160 94 454 14 
83. 941 90 406 15 
72,961 92 223 22 

Brantford 	............................................... 53. 616 75 154 16 
49,089 190 517 17 

Kitchener ............................................... 

48,028 81 329 16 
46,424 115 367 17 
44, 709 58 82 27 

Ottawa 	................................................... 

Fort 	William ........................................... 43, 968 29 93 6 
43,448 76 247 13 
42. 581 29 51 9 

Toronto ................................................... 

Kingston................................................. 

Cornwall................................................. 

38. 323 65 102 22 

London ................................................... 

Guelph 	................................................... 
35. 967 93 212 22 

Windsor................................................... 

29. 271 52 109 16 

St. 	Catharines 	....................................... 

29. 070 66 157 19 

Sarnia 	..................................................... 

Welland................................................... 

26. 945 100 147 48 

Peterborough ......................................... 
Burlington............................................... 

23,750 18 19 15 
22. 575 59 103 18 

Port Arthur............................................. 

22. 348 45 75 22 

Chatham 	................................................. 

21. 271 56 81 16 

Belleville ............................................... 
Gait......................................................... 

20. 562 67 91 26 

Eastview 	............................................... 
Niagara Falls 	....................................... 

20,432 53 76 21 

Barrie 	..................................................... 

19. 923 84 123 40 

Waterloo 	................................................. 
Stratford ................................................. 

17. 657 65 114 16 
Woodstock 	............................................. 

17,549 18 15 18 Riverside 	............................................... 
17, 385 62 87 31 

Brockville ............................................... 

. 

17, 124 90 187 22 
16. 380 34 39 16 

St. 	Thomas ............................................. 

Mimico..................................................... 
Pembroke 	............................................... 16. 214 64 93 9 
Richmond Hill ....................................... 16, 095 15 18 14 

15,024 147 486 20 

Brampton 	............................................... 

14,515 45 87 9 
12. 790 35 54 15 

Owen 	Sound 	........................................... 

12.314 56 74 35 
11,664 242 437 41 

Dundas 	................................................... 

11. 338 66 131 18 

Port Colborne 	....................................... 

Trenton................................................... 
New Toronto 	......................................... 
Preston................................................... 

11,052 45 81 19 

Orillia ..................................................... 

Lindsay 	................................................. 
10, 783 49 75 19 
10,015 75 104 28 
9,419 86 177 19 

Long Branch 	......................................... 
Georgetown 	......................................... 

8, 615 62 65 47 
Weston 	.................................................... 
Midland ................................................... 

8,029 61 163 14 Wallaceburg ............................................ 
Aurora ...................................................... 7,124 92 118 32 
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Economic Theory and Structural Variations 
Economic explanations for the observed size distributions among either 

firms or plants usually assume that the basic causal mechanism is the shape of the 
long-run average cost curve. But why should this postulated mechanism, even 
occasionally, produce such highly skewed distributions? General economic 
theory proposes that the long-run average cost curve is U-shaped; this shape 
supposedly determines a definite optimum size beyond which diseconomies of 
scale exist, and thus most plants within an industry would approximate this size 
so that the whole distribution would be platykurtic. Wedervang, 1965, points out 
that some dispersion would result from the creation of new suboptimal plants, 
lack of efficient competition or the fact that productivity depends upon factors 
that are not positively related to size. If the cost curve is U-shaped then the range 
of the dispersion will depend upon the slope of the curve on both sides of the 
optimum point. Clearly, the observed distributions in Ontario do not correspond 
with theoretical expectation. 

Some uphold the alternative theory that long-run average cost curves are 
falling and that economies of scale continue to exist indefinitely (e.g. Hymer and 
Pashigan, 1962). The reply to this argument invokes the inevitable cost advantages 
gained by large establishments so that average size will increase gradually until one 
or a few establishments remain. However, decreasing long-term average costs 
would be countered by monopolistic competition developed in terms of product 
differentiation, services provided, and location. 

A third alternative postulates that the long-run cost curve is horizontal, in 
which case any size is efficient and the size distribution is influenced not by costs 
but by other factors such as entry and growth rates. Bain's, 1956, analysis supports 
this notion, at least for plants above a certain minimum size. He found that for 
most industrial plants the long-run cost curve is "L-shaped", i.e. declines sharply 
and then levels off. Similarly, Johnston, 1958, in a review of statistical studies 
relating to cost functions concluded that the proponderance of the L-shaped 
pattern of long-run average cost curves stands out. Other isolated explanations 
for the size distributions of establishments involve the assumption that their size 
is dominated by one variable which has a natural distribution. Florence, 1957, 
for example, and later Tuck, 1954, suggested that the size of establishments 
reflects the distribution of managerial talents. But other factors, such as 
monopolistic competition, also need to be considered. 

Structural Change as a Stochastic Process 
Unfortunately, none of the economic explanations based solely on the 

shape of the cost curve has any predictive value for changes in the size distribution 
of industrial establishments. In this respect, Simon and Bonini, 1958, have 
stressed the urgency for understanding such changes so that public policy may be 
directed towards arresting undesirable trends as they appear in different areas. In 
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the same context, Engwall, 1968, has remarked that ". . . research ought to be 
devoted to explain the generation of the distributions. We can in this way reach a 
better understanding . . . and use it as a forecast implement." Towards this end 
alternative approaches following the pioneering works of Kapteyn, 1903, and 
Gibrat, 1931 ,postulate a process in which growth in proportion to size is a random 
variable with a given distribution that is considered constant in time. Two of the 
most common probability distributions that approximate the observed distribu-
tions, the Pareto and the lognormal, can both be generated by a simple stochastic 
process. 

The Pareto distribution postulates that when the number of units n with a 
size in excess of s is plotted against s on logarithmic paper the result is a straight 
line of slope -1. The frequency distribution is determined by: 

f(s) = c.s- a 	c.e- aX 	 (4.1) 

where x = log (s), and c and a are constants, the latter depending on the rate at 
which new fIrms enter the industry. The two-tailed lognormal distribution is 
obtained by the addition of a second parameter: 

f(s) = c.eax - bx2 	 (4.2) 

Such a distribution arises from a theory of elementary errors combined by 
addition. 

The usefulness of both the Pareto and lognormal distributions as models for 
analysing frequency distributions with highly skewed upper tails has been 
demonstrated for various phenomena. In particular, the distributions of city 
populations have been approximated by the Pareto curve and have attracted the 
attention of many geographers concerned with the Rank Size Rule and its 
explanatory role in Central Place Theory. The importance of the lognormal 
probability distribution in locational analyses has been emphasized in successive 
studies by King, 1961 ,Thomas, 1962, and Curry, 1964. Kulldorf, 1955, and, later, 
Morrill and Pitts, 1957, have used the function in migration studies. Applications 
of these models have appeared in studies concerned with the unequal distribution 
of economic activity among large corporations or firms. Most of these studies 
have shown that the observed frequencies certainly look like Pareto or lognormal 
distributions but there is no known satisfactory mechanism to specify accurately 
the degree of resemblance since the problem of "fitting" skew distributions is 
similar to that of testing "extreme hypotheses". 

Nevertheless, it is in such studies, which began with the work of Gibrat, 
that attention is focused on the dynamic interpretation of the lognormal distribu-
tion. To explain how this distribution arises in a population of firms Gibrat 
invoked the simplest kind of stochastic process which he called the Law of 
Proportionate Growth. In its strongest form this proposes that temporal changes 
in firm sizes are governed by a simple Markov process in which the probabilities 
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of specified percentage increments are independent of a firm's absolute size. 
Gibrat's model bears a strong resemblance to an unrestricted random waLk on a 
line in which the length of the steps taken at each time interval is a random 
variable relating to its position on the line. 

Theoretically, if the law of proportionate growth is valid and the process is 
allowed to continue unhampered for an identical sample of firms the resulting 
model of diffusion will be analogous to that used in physics, the so-called 
Brownian movement. Osborne, 1959, has shown, that for an identical sample of 
common stock prices there is an ever growing dispersion since the variance of 
the logarithms of the quotations increases in proportion to time. Clearly, these 
are not the characteristics of a population of firms or establishments and more 
recent theorists have attempted to introduce stability conditions to offset the 
dispersive tendencies. Two of the most notable variants of Gibrat's law are those 
proposed by Kalecki, 1945, and, more recently, by Simon and Bonini, 1958. For 
his model, Kalecki assumed that the variance of an identical sample of units 
remains constant and implies that growth is negatively correlated with size. 
Simon and Bonini's model is more complex and is predicated on four assumptions, 
the first of which relies on Bain's analysis: (1) there is a minimum size of firms Sm 
above which unit costs are constant; (2) there exist steady states in the evolution 
of the size distributions; (3) the law of proportionate effect or Gibrat's law is 
valid; and (4) new firms are born at a constant rate in the lowest size class. It is 
the last assumption - that of a constant birth rate for new firms - which separates 
the Simon-Bonini model from others in that it leads to a Yule distribution which 
is given by: 

f(s) = kB(s,p+l) 	 (4.3) 

where B(s,p+l) is the Beta function of s and (p+l), k is a normalizing constant, 
and p is a parameter. When s-°°, that is only when very large firms are considered, 
equation (4.3) can be approximated by the Pareto distribution. By subsuming 
Gibrat's law, the Simon and Bonini model assumes that the unrestricted random 
walk does apply to a sample of identical firms which would exhibit Brownian 
movement but that the diffusion or increase in the variance for firms as a whole 
would be offset by a stream of new firms entering and of old firms dying. It is 
implied, therefore, that unlike the assumption of Kalecki's model, there is no 
correlation between growth and firm size. 

The adequacy of these theoretical concepts to give insight into changes in 
the structural components of manufacturing activity depends on two considera-
tions: the plausibility and agreement with known facts of their assumptions, and 
the model's "goodness of fit" with observed distributions. In this, some stress the 
necessity to test the validity of the assumptions while others, the so-called 
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"instrumentalists", Puu, 1967, emphasize only the predictive value. As mentioned 
already, in spite of Quandt's recent attempts to test extreme hypotheses, there is 
still no dependable means of measuring the goodness of fit of highly skewed 
distributions. Nevertheless, the purpose of the following section is to approximate 
and analyse observed distributions within the conceptual framework outlined 
above and wherever possible to test the assumptions of the respective models. It 
should be noted that in most cases the stochastic growth models leading to the 
Pareto distribution have been applied to samples, less than 500 in most studies, 
of large firms which do not suffer from impeded growth to the same extent as 
establishments. Gibrat's law of proportionate growth, therefore, when applied to 
industrial establishments, gives rise to the lognormal distribution. 

Analysis of Observed Distributions 
In accordance with Gibrat's law of proportionate growth, frequency 

distributions should be calibrated with constant geometric size intervals. 
Champernowne, 1953, for example, adopted a common logarithmic scale whereas 
Flart and Prais, 1956, and Archer and McGuire, 1965, set the upper limit of their 
intervals as twice that of the lower limit (i.e., an interval progression factor of 
two). Most other studies have adopted an arbitrary classification. Since the 
goodness of fIt of the observed frequencies to the lognormal distribution depends 
on the size of the class intervals selected, and since individual establishment size 
observations were available for this study, an iterative search procedure was used 
to derive the best interval classification scheme for approximating the lognormal 
distribution. The computed progression factor is 1.55 with r= 0.9624 and slope 
of —1.01 for the constant sample of permanent establishments; the derived size 
categories were listed previously in Table 4.1. 

The remaining analyses of this and succeeding chapters are based, unless 
otherwise stated, on establishments with at least 2 employees. Thus the lower 
limit of the smallest size category is set at two for all search operations. The first 
search operation is given a starting interval of one so that the first size interval 
is 2.3 employees. The lower limits of each successive higher interval are multiplied 
iteratively by a series of progression factors until the range of the size distribution 
of "all establishments" is covered. For each set of frequencies produced by each 
progression factor for each starting interval a regression line is derived. 

When plotted as a Pareto curve on logarithmic paper the distribution for 
the constant sample of Ontario establishments takes the form shown in Fig. 4.3. 
The curve differs from that derived by Wedervang 2  for Norwegian establishments 
where only the small units corresponded to a straight line with an approximate 
slope of - 1. For the Ontario data only the large plants - those with over 400 
employees - fall within the range of the Pareto tail with a slope of - 1.06 the 
number of medium plants - those below 150 is grossly under-predicted. These 

2 Wedervang did not use constant samples for his curves. 
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data, then, unlike those of Wedervang, tend to support the Simon and Bonini 
model which assumes a straight Pareto line with slope - 1 in the range of constant 
costs. Below a certain size, in the Ontario case 150 employees, the slope would be 
drastically reduced because the chance of survival decreases as average costs rise 
sharply, (Bain, 1956). Consequently, the number of medium and small establish. 
ments is less than that predicted by the Pareto distribution. The same approach 
can be adopted to analyse sectoral variations in the critical average cost structure 
of manufacturing activity. The electrical products industry, for example, has a 
sharp kink in the Pareto curve for plants with approximately 100 employees but 
in the clothing industry the curve's kink is in the region of plants employing only 
30 employees (Fig. 4.3). This implies that constant average costs in the clothing 
industries are achieved at a much smaller scale of production than in the electrical 
products industry. For both industries the mean and median employment values 
are respectively electrical products 183 and 73, clothing 43 and 19. 

When the observations for the constant sample, meaning those plants which 
remained in the same location 1961 - 65 are plotted on logarithmic probability 
paper the distribution assumes an almost linear form (Fig. 4.4). Thus, as anticip-
ated, the lognormal is a more appropriate model for industrial plants than the 
Pareto curve, and the almost parallel upward movement of the curve from the 
1961 position to that of 1965 indicates that there is a dispersive tendency or 
Brownian movement. 

This dispersive tendency is contrary to Kalecki's viewpoint but supports the 
Simon and Bonini postulate that the unrestricted random walk does apply to a 
constant sample of plants. For individual industries the degree of dispersion is 
summarized in Table 4.5. Although the time period is short, the figures indicate 
the tendency towards Brownian movement for 9 of the 20 2-digit categories whose 
variance of the logarithm of size increases proportionately with time; for "all in-
dustries" the correlation coefficient between variance and time covered is 0.989, 
but the best examples are furniture and fixtures, and machinery industries. The 
general trend is also apparent for the more disaggregated 37 3-digit industrial 
categories, the best examples of which are other textiles r = 0.999, and scientific 
profession equipment r = 0.995; at this level the main exception is grain milling 
r = -0.366. As hypothesized by Simon and Bonini, the dispersive tendency is off-
set for "all establishments". Although in Fig. 4.4 there is a slight tendency towards 
convexity, indicating a greater number of plants than expected among the middle 
categories, in Fig. 4.5 there is a reverse tendency for the curve to be concave up-
wards showing a greater number of small establishments than predicted by the log-
normal model. Usually the lognormal and Pareto distributions are only fitted to 
aggregate industries, (Simon and Bonini, 1958). Steindl, 1965, noted that a 

• . neat division of firms, if it goes beyond the broad division of manufacturing, 
trade etc., is artificial, because of the arbitrary allocation of many firms, and be-
cause firms in growing spread from one line of business to another." Nevertheless, 
in Ontario, individual industries do conform quite closely to the lognormal distri- 
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TABLE 4.5. Regression of Variance of Log Employment on Time for 
a Constant Sample of Plants in Twenty 2-digit Industries, 1961 -65 

1961 1962 1963 

Industry 
Mean Variance Mean Variance Mean Variance 

.96 .459 .96 .469 .95 .485 
2.13 .422 2.12 .555 2.12 .525 
1.95 .605 1.99 .545 2.02 .587 
1.45 .583 1.46 .610 1.46 .601 
1. 24 . 547 1.25 .570 1.27 .569 
1.56 .422 1.60 .380 1.61 .339 
1.25 .370 1.23 .403 1.24 .414 

8 	...............................93 . 524 .94 .555 .96 .564 
9 	...............................69 .542 .70 .549 .72 .558 

1 	............................... 
2 	............................... 

7 	............................... 

10 	.............................. ..67 .380 1.68 .380 1.67 .412 

3 	............................... 
4 	............................... 

11 	...............................84 .450 .83 .461 .84 .456 

5 	............................... 
6 	............................... 

12 	............................... ..60 .690 1.63 .685 1.65 .703 
1.16 .438 1.21 .448 1.23 .449 
1.60 .395 1.63 .406 1.66 .414 
1.60 .732 1.64 .776 1.69 .769 

13 	............................... 
14 	............................... 

1.81 .463 1.86 . 	 .458 1.88 .568 
15 	............................... 
16 	............................... 

1.18 .406 1.20 .421 1.20 .426 17 	............................... 
18 	............................... .1.73 .656 1.76 .606 1.81 .625 
19 	............................... 1.32 .531 1.34 .529 1.34 .532 

.94 .518 .95 .530 .97 .537 
All industries 1.11 .563 1.13 .581 1.14 .590 

1964 1965 Corre- Regres- 

20 	............................... 

___________________  lation sion 
coef- coef- 

Mean Variance Mean Variance ficient ficient 

.95 1 	.493 .96 .499 .9859 	I 	.0104 
2.08 .510 2.03 .536 .5624 	1 	.0184 
2.03 .502 2.07 .536 - .6949 	H .0181 
1.47 .605 1.46 .596 .3217 	.0021 
1.28 .586 1.27 .604 .9655 	.0130 
1.63 .320 1.62 .357 - .7630 -  .0190 
1.26 .412 1.25 .425 .9014 	.0119 

1 	............................... 

.97 .583 .98 .574 .8929 	.0127 

2 	............................... 
3 	............................... 

.72 .567 .73 .575 .9998 	.0084 

4 	............................... 
5 	............................... 

1.69 .411 1.72 .389 .4791 	.0048 

6 	............................... 
7 	............................... 

.85 .455 .86 .464 .6229 	.0022 

8 	............................... 
9 	............................... 

1.65 .731 1.69 .737 .9355 	.0139 
11 	............................... 

1.26 .453 1.28 .465 19588 	.0060 

10 	............................... 

12 	............................... 
13 	............................... 

1.68 .422 1.72 .435 .9955 	.0096 14 	............................... 
15 	............................... 1.73 .801 1.74 .819 .9465 	.0198 

1.89 .482 1.92 .474 .7902 	.0047 
1.21 .437 1.23 .448 .9919 	.0100 

.. 1.83 .617 1.83 .635 - .2488 	- .0030 

16 	............................... 

1.36 .527 1.37 .535 .3385 	.0006 

17 	............................... 
18 	............................. 

.99 .545 1.00 .551 .9922 	.0081 
19 	............................... 
20 	............................... 
All industries .15 .598 1.16 .609 .9890 	.0109 
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bution (Fig. 4.6); in particular very good fits are obtained for printing and 
publishing, and foods and beverages. The main exception is the furniture and fixt-
ure industry in which the distribution bends downwards in the upper tail indicating 
the strong impediments to continued economies of scale. This may result from 
such factors as raw material and labour force restrictions, sharply increasing 
transport costs, entrepreneurship, and a highly fluctuating market. 

TABLE 4.6. Mean Plant Growth Rates' 1961-65, by Quartile, 2  for 
Thirty 3-thgit Industries, Ontario 

Indust ry First 
quartile 

Second 
quartile 

Third 
quartile 

Fourth 
quartile 

19. 5 37.5 11.6 - 	3. 1 Meat 	products 	....................................................... 
Dairy 	products 	..................................................... 9.2 16.2 14.6 45.4 

14. 1 17.3 6.2 6.2 
- 2.9 7.7 15.6 23.8 

7. 1 - 11.2 - 5.0 20.1 Bakery 	products 	................................................... 
3. 9 6.5 38. 1 - 10. 2 Other food processes ........................................... 

Beverages 	............................................................. 8. 1 7.8 2.3 11.9 
10. 2 5.8 1.7 49.5 

Fruit and 	vegetables 	........................................... 

Leather industries 	............................................... 
13. 0 22. 1 4.2 80.6 

Grain 	mills 	........................................................... 

36. 2 9.3 19.6 19.8 
- 3.3 4.4 - 4.2 37.7 

Other primary 	textiles 	......................................... 

- 2. 1 10.2 10.6 303.6 

Other 	textiles 	....................................................... 
Hosiery 	mills 	....................................................... 

Clothing industry 	................................................. 6.4 16.9 16.4 12.5 
Other knitting 	mills 	............................................. 

21.6 27.2 44.2 103.6 Wood 	industries 	................................................... 
18.8 11.8 35.8 9.6 
16. 0 27.3 7.8 55.6 
7.4 19.9 13.8 26.3 

Household 	furniture 	............................................. 
Other 	furniture 	..................................................... 

8.8 7.6 10 5 44.0 
Engraving and allied industries ......................... .6 6.6 1.6 16.9 

10. 5 7.2 30.0 57.7 
32.3 37.7 28.4 35.0 
33.6 44.1 51.2 79.1 

Machinery industries 	........................................... 29. 6 65.7 38.0 57.2 

Paper and allied industries 	............................... 
Commercial printing ............................................. 

60. 0 71.6 45.2 87.9 

Printing and publishing ....................................... 

27. 7 43.2 52.5 53.3 

Primary 	metals 	..................................................... 
Metal 	fabricating 	................................................. 

24.3 30.3 38.3 52.5 

Transportation equipment 	................................... 

18.9 15.6 15.3 41.0 

Electrical 	products 	............................................. 
Cement, lime 	+ gypsum......................................... 

8. 9 18.4 37.6 37.0 
Other non-metallic mineral products .................
Chemical products 	............................................... 

26. 9 26.3 48.7 9.3 Scientific professional equipment ..................... 
Miscellaneous manufacturing 	............................. 20. 5 20.5 42.8 73.5 

Mean Growth Rate = 	(x1/y1 - 1) 

where x 1  = size of plant in 1965, y = size of plant in 1961. N = number of plants in 
each quartile. 

2 Quartiles refer to plant sizes by employment, with the first quartile as the 
largest. 



BC 

6( 

41 

21 

C 
'I I.) 

a- 

0J 

0. 

- 55 - 

80 

60 
	

s- .. 

40 

20 

E 10 
U 

5 

Furniture and fixture industry 
0.5 	- - - Foods and beverage Industry 

Printing and publishing Industry 
0.1 

a- 
In 

Size of plants 
Figure 4.6: Lognormol Probability Curves for Permanent Establishments 

in Selected Industries, Ontario, 1965 

r 

Figure 4.7 Lognormal Probability Curves for Permanent Establishments 
in the Cities of Toronto and Hamilton, 1965 



- 56 - 

When the frequency distributions are plotted for "all industries" in 
individual industrial agglomerations the resulting curves, especially those of 
Toronto and Hamilton, closely resemble those for the whole province (Fig. 4.7). 
Other major urban area distributions, e.g., those of London, Windsor and Ottawa, 
display strong linearity in the lower and middle ranges but in general there are 
fewer large establishments than are predicted by the lognormal model (Fig. 4.8). 
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Figure 4.8: Lognormal Probabilly Curves for Permanent Establishments 
in the Cities of Windsor, London, and Ottawa , 1965 

The simplest way to test Gibrat's law is to plot on a logarithmic scale plant 
sizes at the beginning of the period against those at the end. Although the law can 
be accepted when the slope of the regression line is 450 and the plots are 
homoscedastic, much more information is gained by examining the mean growth 
rates for individual size categories, (Hymer and Pashigan, 1962). In general, these 
rates exhibit no systematic trend in the quartile values for 37 3-digit industries 
(Table 4.6). On the basis of the figures in Table 4.7, however, it is tempting to 
postulate, as Kalecki did, that growth is negatively correlated with size. But 
although 25 of the 37 categories show a negative correlation, only four are 
significant at 005e/. 
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TABLE 4.7. Regression of Growth' Between 1961 and 1965 on Size 
of Plants in 1961 for Thirty-seven 3-digit Industries, Ontario 

md str U 
Correlation 
coefficient 

No. of 
plants 

Meat 	products 	..................................................................... .1111 128 
- .1178 497 

. 1446 111 
- .2474 297 

. 0347 421 
Other food processors ....................................................... .0170 115 

.0562 165 Beverages........................................................................... 
Tobacco products ............................................................... . 1865 13 

- .3446 47 'Rubber industries ............................................................... 
- .1054 137 
- .1878 47 

Synthetic 	textiles ............................................................... - .1562 14 
Other primary textiles 	....................................................... . 1974 80 
Other 	textiles 	..................................................................... .1281 150 
Hosiery 	mills 	..................................................................... - .2881 31 

'Other 	knitting mills 	........................................................... - .3159 65 
Clothing industry 	............................................................... .0223 398 

- .1338 168 
.0046 33 

- .1327 251 

Dairyproducts 	................................................................... 
Fruit and vegetable canners ............................................. 

- .1027 93 

'Grain 	mills 	......................................................................... 
Bakery products 	................................................................. 

Other 	furniture 	................................................................... 
- .0850 189 Paper and allied industries 	............................................. 

Commercialprinting ........................................................... - .1375 516 
Engraving and allied industries ....................................... - .0089 107 

Leather 	industries 	............................................................. 
Cotton 	and 	wool 	................................................................. 

- .1128 313 
- .0224 150 
- .0892 932 
- .0067 256 

Wood 	industries 	................................................................. 
Miscellaneous wood ........................................................... 

.0299 198 

Household 	furniture 	........................................................... 

- .1093 278 
- .1458 176 

Printing and publishing ..................................................... 

.2622 40 

Primary metals 	................................................................... 
Metal 	fabricating 	............................................................... 

Clayproducts 	..................................................................... 
.0288 99 

Machinery industries 	......................................................... 
Transportationequipment ................................................. 

- .1833 25 

Electrical 	products 	........................................................... 
Cement, 	llrne+gypsum 	....................................................... 

- .1623 37'? 

Other non-metallic mineral products ............................... 

- .0518 161 

Petroleum and coal products 	........................................... 
Chemical 	products 	............................................................. 
Scientific professional equipment ................................... 

- .1958 493 'Miscellaneous manufacturing ...........................................
Allindustries 	..................................................................... - .0316 7,550 

Both growth and size are In terms of employment which is measured logarith-
mically. 

'Significant at .05. 

Markov Matrices and the Dynamics of Size Distributions 
The analyses of the observed size distributions indicate the relevance of 

interpreting Gibrat's law as a mechanism of change, but perhaps a more profitable 
way of verifying this assumption is to examine the individual observations 
contained in transition matrices. The structural matrices comprise, as states, 
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establishment size categories derived for analysing the data in the context of the 
Pareto and the lognormal distributions. Thus, the rationale for the adopted 
system of structural states rests on an optimum classification derived for analysing 
the lognormal distribution which is assumed to be generated by a simple stochastic 
process. When arranged into Markov matrices the observed frequencies yield 
additional information of particular importance. 

First, the 1961 - 65 tally matrix for a large sample of permanent establish-
ments gives insight into the dynamics of the respective size distributions (Table 
4.8). Among those plants employing less than 106 people in 1961, approximately 
45% in each size category remained in the same category for the five-year period: 
over half of the plants, therefore, experienced significant proportionate changes in 
number of employees. Significant proportionate changes also occurred among 
those plants with more than 106 employees in 1961 but in each size category the 
number of plants moving to other categories was slightly exceeded by the number 
remaining; in category eleven, for example, almost 53% of the plants initially in 
this category remained there for the five-year period. At a more detailed level, the 
tally matrix shows that a greater proportion of plants in the second and third 
smallest size categories moved down to the next lowest category. But plants in 
these size categories, as well as those in categories one and four, tended to move a 
larger number of intervals than those initially in the higher categories. 

Second, in accordance with the hypothesized L-shaped long-run average 
cost curves the tally matrix may be interpreted to suggest that the smallest 
establishments, because of high unit costs, have a greater probability of decline 
than the large plants; but because of the incentive to realize cost savings through 
increased size, they have a greater probability of a higher proportionate change. 
This is especially evident from the four annual stochastic matrices (Tables 
4.9 - 4.12). The transition probabilities are maximum likelihood estimates for 

TullE: 4.8. 1961-65 Structural Tally Matrix for Permanent Establishments 

SIze 
No. of .mpl 	S 	 cate- 	2 	3 	4 	3 	6 	7 	8 	9 	10 	1! 	12 	13 	14 

gories 

2- 	3 	................................ 1 337 164 55 20 2 1 
4- 	6 ............ 2 119 426 202 68 17 8 1 1 
1. 	10 ................................ 3 18 154 353 228 52 12 2 2 

8 27 142 402 228 64 15 3 4 
2 18 115 364 223 56 10 1 

11- 	11 	...........................................4 

5 15 89 343 219 51 10 28- 	43 ...........................................6 
44- 	67 ................................_ 7 

. 

0 

3 7 10 70 249 184 36 12 2 

18- 	27 	...........................................5 

68-105 ........................ 8 1 1 5 14 63 226 137 33 8 

106-165 ........................- .... 9 1 6 37 208 108 21 2 1 

166-256 .......................................... 1 1 3 35 159 80 14 

257-398 .......................................... Il 1 2 2 13 90 51 10 

399-618 12 

. 

2 12 58 21 	6 

13 

. 

5 31 	17 619-960 ........................................... 
961- 	..... . ............ 	 - ................ 14 5 	54 
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TI1I F 1.0. 1961-62 Sjriieturiil Probability Matrix for Permanent I:xtabIihmentx 

2 	5 	4 	5 	6 	7 	8 	9 	to 	II 	12 	13 	14 

* 	........... 7375 .2228 .0284 .0066 .0017 

2.1475 .6530 	1674 .0244 .0055 	.0011 .0011 

3 ....................0085 .1681 .5883 .2132 .0183 .0034 .00*2 

4 ....................0011 .0157 .1265 .8585 .1825 .0080 .0045 .0022 

S 	 .0025 .0038 . *648 .0388 . 1660 .0203 . 0038 

6 	 .0014 .0027 .0096 .0994 .6940 . *803 	0123 .0014 

7 ................... ... .0052 .0873 .7066 .1867 .0140 

8 	 .0020 	 .0061 .1986 .6967 .1860 .0184 .0020 

9 .... 	 .0052 .1016 .7318 .1464 .0130 

*0 ........ 	 .0034 	1092 .7201 .1638 .0034 

Li 	 .0059 .0059 .0941 .7588 	1235 .0118 

12 	 .0101 	 .0101 .1111 .7071 .1515 .0101 

13................... .0755 .8491 	.0755 

14 .................. .0169 .0847 	.8983 

'I'%RFE 4.10. 0062-413 StrL,ctural Probability Matrix for Permanent lstablishments 

I 	2 	3 	4 	5 	6 	7 	8 	9 	*0 	Il 	12 	13 	*4 

7641 .2095 .0211 .0053 

2 .................1283 	.6861 .1627 .0195 	.0011 	.0023 

0104 .1545 .6610 .1623 .0104 .0013 

4 	 .0097 .1122 .7077 .1553 .0108 .0022 .0011 .001* 

5 	 .0062 .1324 .6894 .1586 .0144 

6 	 .0085 .0897 .7422 .1538 .0057 

7 	 .0096 .1187 .6992 .1610 .0081 .0016 	 .0016 

8 	 .0119 .1074 .7316 .1412 .0060 .0020 

9 	 .0050 .0693 .7748 .1485 .0025 

10 	 .0034 .0034 .0850 .8027 .0988 .0068 

11 	 .0052 	 .1082 .7526 .1340 

12 ..............................1031 .7835 .103* .0*03 

13 ..............................1343 .7463 - 1194 

14 	 .0345 .9655 
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TtBLE 4.11. 1963-64 Structural Probabitit MaIns For Permanent Establishments 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14 

1 ..................7996 	.1787 	.0162 	.0054 

2 ................0890 .7423 . 1560 .0106 .0012 

3 ..................0078 	.1089 .7134 	.1530 	.0104 	.0052 	.0013 

4 	 .0055 .0837 .7434 . 1564 .0088 . 0022 

5 	 .9013 .0053 .1043 .7233 .1631 .0013 .0013 

6 	 .0027 	.0041 .1076 .7562 .1553 .0041 

7 	 .0016 .0099 .0755 .7373 .1691 .0049 .0016 

8 	 .0020 	.0100 .0778 .7784 .1257 .0020 .0040 

9 	 .0699 .7031 . 1470 

to 	 .0031 .0748 .7913 .1308 

II 	 .0053 .0535 .7968 .1390 .0053 

12 	 .0796 .7965 .1150 .0088 

13 	 .0159 	 .0476 .8413 .0952 

14 	 .0154 	.9846 

TABLE 4.12. 8964-65 Structural Probabilit3 Mutrix for Permanent Estabtishments 

1 	2 	3 	4 	5 	6 	7 	8 	9 	tO 	11 	12 	13 	14 

O ..................8533 	.1390 	.0076 

2 ..................1074 	.7256 	.1538 .0134 	.0024 

3 ..................0052 	.1310 	.7004 	. 1543 	.0078 	.0013 

4 ..................0023 .0079 .1160 .7061 . t554 .0090 .0023 .0011 

5 	 .0051 .1120 .7901 .1686 .0116 .0026 

6 	 .0139 .0933 .7396 .1407 .0101 .0014 

7 	 .0033 .0050 .0099 .0924 .7310 .1535 .0050 

8 	 .0076 .0152 . 1042 .7235 .1439 .0038 	 .9018 

9 	 .0024 	.0048 .0048 .0697 .7716 .1370 .0096 

10 	 .0031 .0948 .7768 .1254 

ii 	 .0050 	.0050 .0050 .0693 .7723 .1436 

12 	 .1000 .7917 .1000 .0083 

13 .... 	 .0746 .8060 .1194 

14 	 .0141 .0282 .9577 
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observations of the permanent establishments - i.e., those plants which remained 
in the same location 1961 -65. The tables show the higher probabilities of 
decreasing employment in the smallest size categories for the 1961 - 62 period 
(Table 4.9). At this time many of the smaller plants in the constant sample would 
be recently established plants which would not have had sufficient time to settle 
down to a viable operating size. This, of course, subsumes the Simon and Bonini 
postulate that new plants enter the smallest size categories. The validity of this 
assumption is examined in a later section. By the 1964 -65 transition period all 
plants in the constant sample would be at least 5 years old and hence more stable 
so that the probabilities of decline are more equitable with those for larger plants 
(Table 4.12). 

Third, reference to the four annual stochastic matrices indicates substantial 
stability in plant size changes over time. There is an almost equal probability for a 
plant to increase to the next higher size category as to regress to the next lower 
one. Moreover, the increasing value of the main diagonal elements with increasing 
size in all matrices suggests a systematic increase in the dispersion of proportionate 
growth with decreasing size of plant. These general trends are illustrated in Fig. 4.9 
in which are plotted three probability row vectors of the 1961 -62 matrix 
contained in Table 4.9. This tendency is summarized at a more disaggregated 
level for 37 3-digit industries in Table 4.13 which shows that 16 industries exhibit 
a continuous increase in the dispersion of mean plant growth rates with decreasing 
size. The general trend also prevails among the other industries since the standard 
deviation increases in 90 cases and only in 21 cases does it decrease. 

Stochastic matrices for individual industries and spatial units exhibit 
different probabilities of proportionate change among the various size categories. 
A comparison of the 1961 - 65 probability matrices for foods and beverages 
(Table 4.14) and metal fabricating (Table 4.15) reveals the greater tendency 
among plants in the former industry to remain in the same size class whereas the 
much lower main diagonal values of the latter indicate a much more dynamic 
process of change. In almost all categories of the metal fabricating industry there 
has been a greater probability of expansion than of remaining in the same size 
category. Matrices for other industries show similar trends; in general, plants 
manufacturing electrical products had four times the chance of increasing to the 
next higher size category as decreasing to the next lower one. Industries con-
forming to the equal probability distribution of proportionate growth exhibited 
by "all industries" are foods and beverages, knitting mills, and printing and 
publishing. 

Similar comparisons can be made for spatial units. Plants employing less 
than 106 people in the twelve suburban municipalities of Metropolitan Toronto 
have experienced a highly dynamic growth process but the comparatively high 
diagonal values of plants employing more than 106 indicate greater stability at this 
level (Table 4.16). On the other hand, in the city of Toronto plants in the higher 
categories have exhibited greater expansionary tendencies than their counterparts 
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Figure 4.9 Probability Distributions Acoss Three Rows of 1961-1962 
Structural Matrix for Permanent Plants 
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TABLE 4.13. Standard Deviation of Mean Plant Growth Rates 
1961 - 65, by Quartile, for Thirty-seven 3- digit Industries, 

Ontario 

Industry First 
quartile 

Second 
quartile 

Third 
quartile 

Fourth 
quartile 

42.7 76.6 52,4 70.3 
31.4 68.4 45.0 115.0 

Fruit 	and 	vegetables ......................................... 43.6 37.9 39.6 71.2 

Meat 	products ..................................................... 
Dairy 	products 	................................................... 

33.6 35.5 63.6 67.6 
32.3 44.1 59.5 62.5 
26. 5 39.7 94.1 37.7 

*Grai n 	mills 	......................................................... 

23.8 28.8 28.6 59.2 

*Bake ry 	products ................................................. 
Other 	food 	processors ....................................... 

27.9 25.0 64. 2 55.5 
Beverages ........................................................... 
Tobacco 	products 	............................................. 

19. 2 36.2 74. 2 159.2 *Rubber 	industries 	............................................. 
Leather 	industries ............................................. 32. 0 39.4 66.1 135.7 

20.6 41.5 43.6 73.9 
35.3 67.5 59.2 67. 9 
26.4 76.9 33.3 202.3 

*Cotton 	and 	wool ................................................. 

54.7 55.1 66.0 96.5 
Hosiery 	mills 	..................................................... 15.7 49.5 18.2 71.2 

25. 2 48.7 56.5 599.2 
43.7 56.9 58.4 94.0 
60.6 77.9 103.6 589.9 
27.3 45.2 146.3 41.1 
41.6 76.0 88.8 38.3 

Synthetic 	textiles 	............................................. 

29.9 50.9 50.6 114.5 

Other primary 	textiles 	..................................... 
*Other 	textiles 	................................................... 

24.4 33.4 38.8 64. 5 

Other 	knitting 	mills ........................................... 

33.5 43.6 79.9 132.0 

*Clothing 	industries 	........................................... 
*Wood 	industries 	................................................. 

26.4 42.3 41.4 77.9 

Miscellaneous 	wood 	......................................... 
Household 	furniture ........................................... 

28. 1 67.3 180.7 142.5 

Other 	furniture 	................................................... 
Paper and allied industries ............................. 

61.8 42.2 48.2 69.0 

Commercial 	printing 	......................................... 
Engraving and allied industries 	..................... 

47.5 70.6 116.3 170.3 

Printing and 	publishing 	................................... 
Primary 	metals ................................................... 

42.1 112.5 73.1 138.5 
*Metal 	fabricating 	............................................... 
Machinery 	industries ......................................... 

66.0 99.4 87.3 222.8 Transportation 	equipment................................. 
*Electrical 	products 	........................................... 50.7 60.6 73.6 122.9 
Cement, 	lime + gypsum 	..................................... 70.0 65.4 92.1 81.7 

41.4 36.0 30.9 63.2 
37.6 44.4 82.1 136.4 
70. 3 58.8 28.4 97.6 

Clay 	products ..................................................... 
Other non-metallic mineral products ............... 
Petroleum and coal products ........................... 

36.0 
43.0 

42.1 
76.7 

139.5 
115.7 

74.6 
44.6 

Chemical 	products ............................................. 
Scientific professional equipment ...................

*Miscellaneous manufacturing ........................... 48.4 61.0 99.4 211.1 

*Continuous increase. 

in the suburbs, but in the lower size categories the number of employees per 
establishment remained rather more stable (Table 4.17). The matrices for the group 
of four other large cities resemble those of the city of Toronto but in general 
there were much lower probabilities of plants employing more than 100 people to 
decrease in size than in Toronto. 
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T%BLE 4.14. 1961 -65 Structural Probability 

in the Food and Heverage 
Mains for Permanent 

Industry 
Establishments 

2 1 4 5 0 7 0 9 tO 11 12 	13 	14 

6719 .2064 .0917 .0229 

2254 .5108 .2206 .0360 .0049 .0024 2 	................... 

0238 .2054 .4554 .2351 .0625 .0149 .0030 3 	.................. 

4 	.................. 0120 .0359 .1766 .4701 .2395 .0449 .0210 

5 .0236 .1655 .5000 .2500 .0439 .0169 

8 .0125 .0188 .1285 .4884 .2915 .0408 .0094 

7 .0136 .0227 .0136 .1545 .4909 .2591 .0409 .0045 

8 .0059 .0176 .0235 .1708 .4529 .2471 .0647 .0178 

9 .8213 .1277 .5745 .2551 .0213 

10 .0079 .0079 .0079 .1102 .6378 .1989 .0315 

11 .0154 .0154 .0154 .1077 .5692 .2789 

12 .2121 .8910 	.0606 	.0303 

13 .1250 	.8250 	.2500 

14 .1867 	.8333 

TABLE 4.15. 1961 -65 Structural Probability MaIns for Permanent Establishments 

in the Metal Fabricating Industry 

1 	2 	3 	4 	5 	6 	7 	8 	0 	10 	11 	12 	13 	14 

3896 .2896 .1558 0519 .0130 

2 	................... 1212 .3495 .3652 A667 .0682 .8227 .0076 

3 	................. 0132 .1258 .3907 .3377 .0927 .0199 .0132 .0066 

4 .0101 .1307 .3719 .2965 .1558 .0201 .0050 .0101 

5 .0287 .0805 .3968 .5333 .1437 .0172 

6 .0138 .1156 .3605 .3613 .1224 .8204 

7 .0167 .0667 .3833 .3417 .1187 .0593 .0187 

8 .0100 .0100 .1099 .3628 .3958 .0879 .0220 

9 .0120 .0602 .4217 .3976 .0964 .0120 

10 .0500 .3167 .5333 .1000 

11 .0488 .5366 .2439 .1707 

12 .0690 .0890 .5172 .2069 	.1370 

13 .0769 .3077 	.6154 

14 1.0000 
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IARLE 4.16. 1961-65 Structural Probability Matrix for Permanent Establishments 
Located In the Inner Suburbs 

I 	2 	3 	4 	S 	6 	7 	8 	9 	10 	11 	12 	73 	14 

I ... . ......... .4697 .3030 .1667 .0455 

2 ............ .... 1443 .3093 . 2990 .2268 .0206 

3 .......... 	.0990 .3824 .3725 .1176 .0294 

4 	.... - .0078 .0391 .1250 .3750 .2656 .1406 .0313 .0078 .0078 

5 	 .0290 .1014 .3623 .3788 .1097 .0217 

6 	 .0074 	.0515 .3750 .4338 .0809 .0515 

7 	 .0092 .0092 .0550 .3945 .4404 .0642 .0275 

8 	 .0109 .0326 .0652 .4130 .3261 .1304 .0217 

9 	 .0128 .0128 .0573 .5128 .3482 .0641 

10 	 .0233 .0233 .0930 .5581 .3023 

11 	 .0357 	 .0357 .1071 .6429 .1786 

12 	 .1000 .7000 .1500 .0500 

13 	 .1250 .6250 .2500 

14 ..... .. ........ 	 .1000 	.9000 

TABLE 4.17. 1961 -65 Structural Probability Matrix for Permanent Establishments 
Located In the City 01 Toronto 

2 	3 	4 	5 	6 	7 8 9 	10 	II 	12 	13 	14 

1 	........... .5887 	.3145 	.0565 	.0323 	.0081 

2 	.... .2332 	.4456 	.2176 	.0614 	.0155 	.0155 .0052 

0303 	.2677 	.3586 	.2525 	.0808 	.0101 3 	................. 

4 	..... ....... 0166 	.0415 	.1826 	.4813 	.2282 	.0373 	.0124 

5 	................. 
.. 	

.0047 	.0237 	.2038 	.5166 	.2133 	.0237 .0142 

6 .0096 	.0102 	.1635 	.4952 	.2740 .0240 .0144 

7 .0079 	.0079 	.0315 	.1890 	.5270 .2047 .0236 	.0019 

8 	........ .0194 	.0388 	.2421 .4466 .2136 	.0388 

9 .1688 .8104 	.1948 	.0260 

10 .0370 .2037 	.5185 	.2407 

11 	............... .0279 .0278 	.0833 	.5556 	.2222 	.0833 

12 	....... ....-. .2000 	.5500 	.2500 

13 	._ ....__. .0833 	.5833 	.3333 

14 	................ .2127 	.7273 
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The growth mechanism postulated by Gibrat requires only that the proba-
bility of moving to the next higher interval is the same for all intervals. If Gibrat's 
law is valid we can expect a similar distribution of proportionate growth among 
size classes in the off-diagonals of each stochastic matrix. It is reasonable also to 
hypothesize that such similarities will be greater at the end of the 1961 • 65 
period than at the beginning because, as has been stated, many of the constant 
sample will be those recently established before 1961, thus exhibiting greater 
probabilities of decline or growth at the beginning than at the end of the period. 
The null hypothesis - that the proportions of growth along the first off-diagonal 
do not deviate from some average value - is tested by means of Chi-square, and 
the computed statistics for twelve degrees of freedom are presented in Table 4.18. 
Thus, the longer the period covered by the constant sample the greater our 
confidence in accepting Gibrat's law of proportionate growth. 

TABLE 4.18. Chi-square Statistics for 
Hypothesis of Equidistribution 

Transition period 	 Chi-square
statistics(12 D.F.) 

1961-62 ............................................................................................. 10.23 
1962-63 ............................................................................................. 6.76 
1963 -64 ............................................................................................. 4.40 
1964-65 ............................................................................................. 2.71 
1961-65 ............................................................................................. 4.46 

In accordance with the requirements of the law of proportionate growth the 
analyses, so far, have focused on the constant sample of permanent establishments 
which have been shown to exhibit the so-called Brownian movement. Presumably, 
this dispersive tendency is offset by the constant influx of new establishments 
and the outflow of old establishments. Simon and Bonini, in their model, postu-
lated that this influx of new establishments would be concentrated in the smallest 
size category. To what extent is this assumption valid? More pertinent perhaps is 
the question relating to the "rate of entry and exit" of manufacturing establish-
ments. In his study, Michael Beesley, 1955, uses the terms "entry" and "exit" in 
preference to births and deaths because ". . . transfers of establishments from and 
to other areas could not be identified." In this study, however, such transfers 
have been identified as "relocations", and the terms "entry" and "exit" do refer 
to actual births and deaths. If the size distribution of industrial plants is accepted 
as being determined by a stochastic process, then the appropriate way to think 
about public policy, hitherto based on static equilibrium analysis, is to consider 
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means by which the stochastic process can be altered and the consequences 
evaluated. Within this frame of reference, to what extent can we expect entry and 
exit rates to be stable and equal among industries? 

The Entry and Exit of Manufacturing Establishments 
Variations in the rates of entry or birth and exit or death of manufacturing 

establishments may be viewed in two ways: by size and by industrial sector. The 
exit rate may be considered also in terms of age. The analyses in the following 
sections are based on 4,283 new plants which were established in Ontario between 
1961 and 1965, and on 3,690 plants which went out of business or ceased to be 
reporting units, for some reason, during the same period. These figures are for 
total births and deaths and include plants "being born" or "dying" with less than 
two employees. Two points should be noted: first, both these figures are less 
than the true numbers because (a) sawmills are excluded from the analysis, and 
(b) data are recorded at annual intervals so that plants opening and closing within 
an interval are not included; second, approximately 500 of the births were 
foreign-owned branch plants which tend to be significantly larger than locally. 
owned establishments. The 500 new foreign-owned branch plants in Ontario 
form approximately 60%r of the Canadian total of new foreign-owned plants for 
this period. Presumably, the net effect of these foreign-owned branch plants is to 
distort the average size of the births which, therefore, may be larger on average 
than in areas not dominated by foreign-owned plants. 

(1) Entry and exit by size - The range in size of births for Ontario between 
1961 -65 is quite large (Table 4.19). For the four intervals there is a marked 
stability in the distributions of both births and deaths but in comparison to the 
distribution of "all establishments" and especially to that of permanent establish-
ments there is a much greater percentage in the lower frequencies for incoming 
and outgoing plants; whereas 34% of the permanent establishments and 42% of all 
establishments had less than eleven employees in 1961, 63% of the births and 58% 
of the deaths between 1961 and 1965 were in this category. When plotted on a 
logarithmic probability chart the distribution of both births and deaths tends to 
be concave, indicating a larger number of small establishments than expected by 
the lognormal model (Fig. 4.10). Presumably, the skewed nature of these 
distributions is dependent on and closely correlated with the distribution of 
wealth among entrepreneurs. The size of new establishments, for example, is 
limited by the availability of equity capital which will in turn determine the size 
of potential loans. In general, the average size of births is slightly smaller than that 
of deaths which in turn is markedly snmller than the average size of the permanent 
establishments. For the four observation intervals shown in Table 4.19 the births 
had median values of 5, 8, 7, and 8 respectively whereas the respective values of 
deaths were 7, 9, 9, and 8; in 1961 the median was 14 for all establishments and 
19 for the constant sample. 
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TABLF 4.19. Percentage Frequencies of Births and Deaths by Size Category, 1961-5 

1961 	I 	 Births 	 I 	Deaths 

SIZE 	 I 	I 	 I 	I 	I 	I 	 I 	I 

flE~flL 	eats- 	1961- I 1962- I 1983- I 1964- I Aver- 	1961- 	1962- I 1983- 	1964- esta- 	Aver- pistil 	 i 
IPernia-I All 	 I 	I 	 I 

I bit 	I bush 	62 I 	63 I 	84 I 	65 I age 	62 	63 I 	64 I 	65 I age 
meats meats  

14.8 28.5 20.1 28.4 21.2 24.9 26.3 	21.7 22.2 24.8 23.8 
13.3 14.2 23.7 23.8 20.4 21.2 22.2 21.3 	19.9 18.0 18.4 19.4 

2- 	3 	...................................8.5 

12.0 12,6 14.3 19.6 14.6 15.5 15.9 12.3 	17.8 14.5 14.1 14.8 
4- 	6 	................................... 

13.1 12.8 11.4 15.6 11.3 15.5 13.4 12.3 	15.2 15.2 14.9 14.4 

11.5 10.6 8.3 7.9 9.1 10.8 9.1 8.7 	7.2 9.2 6.9 8.5 

7- 	10 	................................... 

10.7 9.4 5.5 5.8 5.5 8. 1 5,6 5.4 	7.3 7.9 7.5 7.0 

II- 	17 	................................... 

8.4 7.4 4.2 3.2 4.9 3.5 3.9 4.5 	4.9 6.4 4.5 5.0 

16- 	27 	................................... 
28- 	43 	................................... 
44- 	67 	................................... 

7.1 6.2 1.9 1.5 2.2 2.6 2.1 5.0 	3.2 3.3 2.7 3.5 68-105 	................................... 

5.6 4.6 1,6 1.2 1.9 1.8 1.6 3.0 	1.5 1.5 3.4 2.3 106-165 .................................. 

166* 	...................................... 9.8 7.4 0.6 8.7 1.7 1.8 1.3 1.2 	1.4 1.8 0.8 1.3 

Totals ...............................100.0 I 190.0  J lOO.OlOO.OJ IOO.OIIO,O  I I00.0[  100.01 100.0] 100.0 1 
 I90.01] 

The respective rates of entry and exit into the various categories are shown 
in Table 4.20. Although the birth rates for small plants (< eleven employees) 
are clearly higher than those for large plants the range is not so great as one would 
expect from the frequency size distributions (Table 4.19). The death rate also 
declines with increasing size but not to the same extent as that for births; this 
reflects, in part, the availability of equity capital for new establishments. 

One additional difference which appears between the two distributions is 
that for plants employing between 28 and 43 people the birth and death rates are 
equal; for plants with less than 28 employees the birth rate is considerably higher 
than the death rate but the reverse is true among those plants employing more 
than 44 employees. The exception is the birth rate for plants employing more 
than 166 people - this may be attributed to the large number of new foreign-
owned branch plants. 

(ii) Entry by sector -. For convenience, the rest of this chapter analyses all 
births and deaths which include plants with less than two employees. Since both 
birth and death rates have a close inverse correlation with size it is reasonable to 
hypothesize that any systematic variation in the entry rates between industrial 
categories or sectors will be related to the size structures of those industries. 
Variations in the percentage distribution of all births and deaths for 20 2-digit 
industries are shown in Table 4,21 where they are compared with the average of 
all plants for the years 1961 and 1966. It is clear that the number of births and 
deaths in an industry is not simply related to the total number of establishments 
already in that industry. Between 1961 and 1966 the foods and beverages sector 
accounted for 20% of all establishments but only received an average of 13% of all 
births. During the same period it had the largest number of deaths resulting in a 
net loss of 11 .5% from its 1961 total. On the othej hand, metal fabricating, with 
only 137, of the establishments, accounted for 18% of all births. This extremely 
high percentage of births - one and a half times that of its deaths - gave rise to 
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Figure 4.10: Lognormal Probability Curves for All Births and Deaths 

1961-1965 

T.'BLE 4.20. Average Birth and Death 
R ate s ! by Size Category, 1961-65 

Size by No. of employees 	 I Birth rate I Dtath rate 

12.4 10.1 
10.7 8.0 
8.7 6.9 

2 - 	 3 	............................................................................... 

7.1 

	

4 - 	 6 ............................................................................... 

	

7 - 	 10............................................................................... 

	

11 - 	 17 	............................................................................... 
5.6 4.6 

	

18 - 	 27 	............................................................................... 

	

28 - 	43 	............................................................................... 4.1 4.1 
3.6 3.8 
2.2 3.2 

44 - 	67 	............................................................................... 

2.4 3.1 

	

68-105 	............................................................................... 

	

106-165 	............................................................................... . 
1.0 0.9 166 - 	 ............................................................................... . 

Totals .......................................................................... 7.0 6.1 

Birth and death rates are calculated by expressing the total number of births 
and deaths between 1961 and 1965 as a percentage of the total number of plants in 
each size category for that period. 
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an exceptionally rapid growth in number of establishments which increased at the 
rate of 6.2% per annum; in comparison all industries expanded at less than 1% 
per annum. The largest proportionate net increase occurred in the machinery 
industry with 3.1% of all establishments and an average of 5.2% of total births. In 
terms of rank the machinery industry had the sixth largest number of births and 
the tenth largest number of deaths. The only industries which experienced a net 
loss in number of establishments were those of foods and beverages, knitting, 
clothing, and wood. 

Since the number of births and deaths is not simply related to total number 
of plants in each sector it gives rise to several interesting hypotheses. Such 
hypotheses have counterparts in demographic studies which reveal significant 
differential growth rates among the various components of the population; 
biological causes for variations in the fertility rates, religious beliefs and differences 
in social class are but three common examples. In the first instance we can 
consider the hypothesis that all manufacturing sectors are homogeneous in respect 
to their opportunities for profits and loss. For this we would postulate that the 
sectoral variations of the entry rates shown in Table 4.22 are caused by random or 
chance fluctuations about a common or expected value. in the 1961 - 65 period 
this value was 7.0% and the probability would be .95 that the observed entry rate 
for a sector of 100 establishments (approximated by the knitting industry) would 
lie between 7.5% and and that the rates for a sector with 500 establishments 
(approximated by the clothing and chemical industries) would lie between 7.2% 
and 6.8%. Clearly, random fluctuations do not explain most of the sectoral 
variations in entry rates ranging from 4.1% to 11 .8%. As one alternative we may 
hypothesize that within every industry each employee, since he already possesses 
experience and first-hand information concerning that form of economic activity, 
is a potential entrepreneur in that industry. Under this assumption the number of 
births in any sector would be directly proportional to the total employment of 
that sector. A second alternative is the hypothesis that sectoral variations in the 
entry rates are a function of the typical size or prevailing size distributions of the 
various sectors. Having shown in the preceding section that entry rates decline 
sharply with increasing size of plant it is reasonable to hypothesize that industries 
with the largest proportion of "small" establishments will exhibit the largest 
entry rates and vice versa. Since there is not a perfect correlation between average 
size (mean or median) and proportion of small plants (r = .88 for medians and 
proportions of plants with less than eleven employees) the latter hypothesis may 
be modified to - industries with the smallest average size will exhibit the highest 
entry rates. Perhaps the most obvious hypothesis relates to the influence of 
differential development stages of the industrial economy. The desire of entre-
preneurs to establish new plants, for example, may be strongly influenced by the 
expansionary tendency of various sectors reflecting, in part, changes in consumer 
demand and product differentiation. These hypotheses, for which data are 
available, can be easily and quickly tested by Kendall's rank correlation coefficient. 
The respective rankings are listed in Table 4.23. In each case the rankings of 
columns 2-6 are correlated with those of column I . The highest correlation is 
given for expansion rate but even this is not highly significant. 
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TABLE 4.21. Percentage Frequencies of All Births and Deaths for 
Twenty 2-digit Industries,' 1961-65 

lndustr " 
esL 

lishrnents 
1961-65 

change 
Percentage all births 

1961-62 1962-63 1963-64 1964-65 1961-65 

20.7 - 	11.4 16.1 20.2 10.4 88.5 13.6 
0. 1 13.3 0.2 0.1 0. 1 0.0 0. 1 
0.5 26.9 0.1 0.4 0.4 0.4 0.4 
1.6 4.6 1.2 1.2 1.6 1.1 1.3 
3.0 3.3 2.4 2.7 2.4 2.7 2.6 
1. 0 - 	 8.9 0.9 1.2 0.7 1. 1 1.0 

2 	...................... 
3 	...................... 

4.4 - 	 9.2 2.8 4.9 3.3 3.1 3.5 
5.7 - 	 1.9 4.3 5.9 4.5 4.7 4.8 

6 	....................... 

6.9 14.0 10.8 8.8 9.6 11.6 10.2 
2. 1 5.4 1.3 1.2 2.4 1.4 1.6 

4 	....................... 

12.2 2.3 8.9 7.8 8.1 8.6 8.4 

5 	....................... 

1.7 9.1 1.7 1.5 1.9 0.9 1.5 
12.9 32.0 18.2 13.2 20.7 19.7 18.1 

7 	....................... 

3.1 41.8 3.4 4.6 6.4 6.0 5.2 

8 	....................... 
9 	....................... 

2.4 30.6 4.0 4.2 3.6 4.7 4.1 

10 	....................... 
11 	....................... 

3.3 16.7 2.4 2.6 2.8 3.5 2.9 

12 	....................... 
13 	....................... 

4.2 3.3 5.9 3.7 4.2 3.9 4.5 

14 	....................... 
15 	....................... 

0.2 3.2 0.3 0.1 0.2 0.2 0.2 

16 	....................... 
17 	....................... 

4.5 1.5 2.8 3.8 4.7 4.6 4.0 
18 	....................... 
19 	....................... 

9.5 18.0 11.6 11.7 11.4 12.7 11.8 20 	....................... 
Totals 100.0 4.6 100.0 100.0 100.0 100.0 100.0 

Percentage all deaths 

1961-62 1 1962-63 1 1963-64 I 1964-65 I 1961-65 

23.2 28.0 21.9 22.9 24.1 
2 0.0 0.1 0.1 0.0 0.1 
3 0.2 0.2 0.5 0.8 0.4 
4 0.5 1.5 1.4 1.3 1.2 
5 3.4 1.8 2.4 2.5 2.5 
6 1.5 1.5 1.3 1.7 1.5 
7 5.8 4.3 4.5 4.6 4.8 
8 6.2 7.7 7.0 5.2 6.6 
9 8.2 9.7 8.1 9.0 8.8 

10 1.2 1.3 1.8 1.1 1.3 
11 6.7 9.6 12.4 7.7 9. 1 
12 1.2 0.6 0.7 1. 1 0.9 
13 13.4 12.2 12.1 11.9 12.4 
14 2.8 2.8 3.2 4.1 3.2 
15 3.3 2.0 2.4 3.3 2.7 
16 3. 1 1.3 2.0 2.9 2.3 
17 5.1 3.5 5.6 4.7 4.7 
18 0. 1 0.2 0.3 0. 1 0. 1 
19 2.6 3.3 3.2 4.5 3.4 
20 11.6 8.3 8,8 10.4 9.6 

Totals 100.0 100.0 100.0 100.0 100.0 

Sawmills excluded. 
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TiBLE 4.22. .'iverage Birth and Death Rates for 
Twenty 2-digit Industries, 1961 -65 

Industry Birth rate Rank Death rate Rank 

4. 78 16 6.75 3 
4.69 18 3.12 20 
6.35 9 5.08 12 

Leather ................................................. 5.93 10 4.95 13 
Textiles 	............................................... 5. 16 15 4.94 14 
Knitting mills 	..................................... 4.70 17 6.62 4 
Clothing 	............................................... 5.22 14 7.39 2 

5.47 13 5.55 10 
9.35 4 8.27 1 

Paper and allied products 5.64 11 4.13 18 
4. 29 19 4.22 17 

Foods and beverages ......................... 
Tobacco products ............................... 

4. 10 20 3.59 19 

Rubber 	................................................. 

9. 75 3 5.38 Il 
Machinery ............................................. 11.79 1 6.60 5 

Wood 	..................................................... 

Transportation equipment 10.33 2 6.27 7 

Furniture and fixtures 	....................... 

6.76 7 4.89 15 

Printing and publishing ..................... 
Primary metals 	................................... 

Non-metallic mineral products 6.60 8 6.34 6 

Metal fabricating ................................. 

Petroleum and coal products 5.63 12 5.63 9 

Electrical products 	........................... 

6.85 6 4.37 16 
Miscellaneous manufacturing 8.60 5 5.81 8 
Chemical products 	............................. 

All industries 	................................. 7. 0 6.1 

It is apparent that other factors for which data are either not available or not 
quantifiable, may have more important influences. General economic conditions 
such as cartelization and trade associations requiring certain qualifications or 
financial resources, and legal restrictions to entry imposed by public authorities 
are among the factors that may be influential. In more specific terms, Bain has 
pointed to the different capital requirements among industries to establish a plant 
of minimum efficient size, and to the influence of patent laws and economies of 
large scale production. Other factors which may be peculiar to various industries 
include accessibility to raw materials, power, water supply and buildings. Likewise, 
sectors typified by low average operating costs may be expected to have relatively 
high entry rates just as those sectors earning high profits. 

On a regional basis, Beesley, 1955, attempted to test the hypothe-
sis: '...about the effect of differences in the structure of the industries of 
zones upon the emergence of new establishments, therein, and the latter's effect, 
in the long run, on employment in the zones". For this purpose, Beesley defined 
structure as the "specialization of each zone to various stages in the production 
sequence of metal industries." He distinguished four main stages: (I) early 
manufacturing and forming processes (e.g., iron and steel and non-ferrous metal 
rolling and drawing), (2) later forming processes (e.g., stamping, piercing and 
forging semi-finished metal to make finished goods and parts for further 
assembly), (3) sub assembly (bringing together parts to go forward for assembly), 



itid (4 I IiNwmhk 	if ci p1ct 	r1iJc). Hic twu iinies wcre icIiiiiiicd liiiifl the 
Ilirmiiighain conurbation as the S.W. and N .W.. Beesley attributed the higher 
incidence of entrants in the latter to its more integrated or "virtuous circle" form 
of structure. Geographic location is yet another factor which may indirectly 
influence entry rates but treatment of this aspect is retained for Chapter V. 

TABLF 4.23. Rank Correlation for Hypotheses Relating to 
Sectoral Variations of Birth Rates 

Industry 
Entry 

1961-65 1961 1961 1961 

E 	- 

rate 
employ- 

ees 

Foods and beverages 16 1 3 2 20 1 
18 20 20 20 8 20 

18 19 19 4 14 
10 16 12 13 12 15 
15 11 8 8 14 11 

Tobacco 	.................................. 
Rubber 	...................................9 
Leather ................................... 
Textiles 	................................. 

17 16 16 18 19 17 
14 5 9 11 9 12 

Knitting 	................................. 
Clothing 	................................. 

13 6 5 7 18 18 Wood 	....................................... 
4 7 1 3 7 16 Furniture 	................................ 

11 13 15 17 11 10 
19 3 2 1 16 6 
20 15 13 14 10 4 

Paper 	..................................... 
Printing 	................................. 

1 	tal fabrication 3 2 6 5 2 5 
Primary metals 	..................... 

1 12 11 12 1 7 
2 14 17 16 3 2 

1chinery ............................... 

7 10 18 15 6 3 
transport ...............................
lectrical ............................... 

8 9 6 6 13 13 un-metallic 	......................... 
Petroleum and coal 12 19 14 10 15 19 

6 8 10 9 17 8 
5 4 4 4 5 9 

hemicals 	............................. 
'liscellaneous ....................... 

Iank 	correlation 	coeffici- 
ents ..................................... 0.08 0.03 0.07 0.46 0.16 

Median value refers to size of "mid-most" plant in each industry—size 
1 by number of employees. 
cnal1 refers to plants with less than eleven employees. 
xpansion rate refers to expansion in the employment in the constant sample 

:itiiieflt establishments. II the expansion rate of all establishments were used 
liii 	,viilu 	tIpiI-u'n. 	Ii part, oii rh' 	ntrv tN. 
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(iii) Exit by sector and age - The average exit rate for the 1961 -65 period 
was 6.1% comapred to the average entry rate of 7.0%. Around this average death 
rate, however, there was a considerable sectoral variation ranging from 3.1% for 
the tobacco industry to 8.3% for the furniture and fixture industry (Table 4.22). 
Death rates decline not only with increasing size but also with increasing age. The 
survival patterns for selected industries born in Ontario between 1961 and 1962 
are shown in Fig. 4.11 which also shows the pattern for all manufacturing firms in 
American industries born in 1944. 3  After seven years, approximately 45% of all 
the new establishments which began production in Ontario between 1961 and 
1962 were still operating, but the sectoral variations ranged from 20% for textile 
industries to 72 for machinery industries. 

3 -1 he graph for U.S.A. manufacturing is constructed front data presented h Betty 
Churchill in "Age and Life Lxpectancy of Business Firms". Suri'r'v of Current Business (Dcc., 
1955). The data are based on the full record of U.S. firms available from the centrally 
administered Old Age Insurance (Bureau of Old Age and Survivors' Insurance) since 1944. 
Ihe data, however, unlike the Ontario data, include transfer as well as death; when a firm is 
passed from a father to son or changed from partnership to corporation it is regarded as a 
death. Note also that the first ajinual interval for the American industries is six months after 
birth. 

963 	1964 	1965 	1966 	1967 	1968 	1969 

Figure 4.11: Survival Patterns for Plonts Born in Ontario Between 1961 and 1962 in Selected 
Industries 
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The general survival pattern for Ontario establishments resembles that for all 
American manufacturing firms born in 1944 but the relatively sharper decrease 
among the American firms in the fIrst three years may be attributed, in part, to 
the limitations of the American data which include "apparent deaths" in the form 
of transfers, and, in part, to the time differential: in 1944, for example, the birth 
rate for all American manufacturing industries was 10.75% but by 1958 it had 
systematically declined to 7.45 which compares more favourably with that of 
Ontario for the 1961 - 65 period. 

After the first two or three years the exit rate gradually decreases with 
increasing age though the rate of decrease, especially in the formative years, varies 
from industry to industry. Age, it seems, is of independent importance to young 
plants because difficulties of adjustment and inadequate experience may be a 
considerable handicap to them. Once a plant has survived its "youth" and has 
adapted to the economic environment, age assumes lesser importance in com-
parison to other factors. This notion is consistent with the almost constant level 
of mortality ratios for plants still operating after five years. At this stage, size is 
probably the most important factor but risk differences between industries are also 
influential. In general, however, because of their greater resources to resist crises, 
and better qualified management than is common to small establishments, large 
plants are able to survive longer. Once well established, plants continue to grow 
despite the tendency of the average cost curve to remain constant above a certain 
minimum size. Continued growth is not just directed towards ever-increasing 
economies of scale, and hence greater profit margins, but also towards the 
accumulation of reserves for survival in times of economic stress. Large 
organizations, therefore, use much of their power to ensure survival rather than to 
maximize profits. (Wedervang, 1965). 

The continued decline in the survival ratios by approximately 2% per annum 
can be related partly to the owner's business life which normally ranges between 
20 - 50 years. In larger partner-controlled establishments the activity is inherited 
by several generations. The ability to control the relative weights of either age or 
size would simplify the analysis of the dynamics of a population of plants. Added 
to this complexity is the spatial component which is the focus of the next chapter. 



CHAFFER V 

SPATIAL DYNAMICS OF MANUFACTURING ACTIVITY IN ONTARIO 
1961 - 65 

Changes in the locational patterns of manufacturing activity usually occur 
very slowly but the processes leading to such changes are continuous. This chapter 
attempts to identify and analyse these processes and to evaluate their relative 
impact on recent spatial trends in Ontario's manufacturing activity. Such analyses 
offer a framework for the classification of a system of spatial states for the Markov 
model. 

Alternative Systems of States 
Ideally, the most appropriate system would be one comprising as states the 

smallest areal units for which data are available, in this case the individual 
municipalities (townships and urban centres), but they are too numerous for 
computational feasibility. Operationally, therefore, it is necessary to aggregate 
the municipalities into spatial groups. Conceptually, for the analysis of manufac-
turing activity, several alternative methods of grouping can be proposed though 
the combinations of the number and size of states within any one system are in-
numerable. One alternative is the "regionalization" of contiguous municipalities 
on the basis of their economic viability measured in terms ofa variety of factors, 
(e.g., Ray, 1967; Ray and Berry, 1966;Amedeo, 1969). A second alternative, and 
one that is implicitly suggested by studies stressing the increasing tendency towards 
decentralization (Slater, 1961; Flay, 1965), is a system of states based on a series 
of concentric distance bands radiating outwards from the core area of industrial 
activity. Another alternative is the grouping of locations according to their 
industrial attractiveness or "similarities" in which case the system need not be 
spatially continuous as it would be in the first two alternatives. But as noted in 
Chapter Ill,the system adopted should be one in which the transition probabilities 
are as homogeneous as possible. The concept of uniform probabilities, however, 
depends, in part, on the underlying processes and patterns of change but our 
knowledge of these is limited since little effort ". . . has been made to explain the 
existing pattern of industry location. Even less attention has been devoted to 
explaining changes in this pattern", (Kain and Meyer, 1968, p.  177). 

Processes of Distributional Change 
Most studies which have been concerned with the spatial dynamics of 

manufacturing activity are confused by terminology. Usually the focus has been 
on the identification of resulting regional palterns of "distributional change", 
"industrial migration", or "locational shifts". In those few studies which have 
examined the underlying mechanisms of change, terms such as decentralization 
are used to describe the processes as well as their results. Given its broadest 



1 

meaning as used by both Creamer, 1935, and Woodbury, 1953, decentralization 
refers to the process whereby there is an apparent decrease of manufacturing 
activity within a particular area as contrasted to a larger region to which it is 
being compared. 

When the process of decentralization is considered within the boundaries of 
a metropolitan region the terms used are "suburbanization" and "diffusion" 
(Linge, 1963). In an attempt to be more precise, Linge used the term "deconcen-
tration" to describe ". . . the process whereby the productive capacity of firms 
already established in the inner zone is partly or wholly shifted to the outer 
zone." When decentralization occurs from a metropolitan region to areas 
adjoining it - i.e. to smaller surrounding cities - the term "intraregional disper-
sion" is used, and if the process occurs between major regions then "interregional 
dispersion" is adopted. 

Most of the resulting patterns, except that of"deconcen,tration" defined by 
Linge, require only simple identification through a comparison of locational maps 
drawn at two widely separated points in time. Given adequate data, however, even 
for a relatively short time period, it is possible to assess the relative importance of 
the underlying mechanisms of change. Consider, for example, the most familiar 
form of decentralization - that of suburbanization within a single metropolitan 
area which may be defined as any of the following (Gilmour, 1965): 
(1) appearance of manufacturing in the suburbs, (2) greater relative growth of 
manufacturing in the suburbs as compared to the central city, or (3) movement of 
plants from the central city to the suburbs. Several processes, singly or together, 
can produce the condition which the definitions describe. For instance, according 
to the second definition suburbanization can evolve in the following ways: 
(I) outward movement of plants from the central city to the suburbs, (2) inward 
movement of plants from areas outside the city to the suburbs, (3) decline in the 
expansion of industries in the central city, (4) greater expansion of manufacturing 
plants in the suburbs, (5) location in the suburbs of local branch plants from 
other areas, and (6) birth of new enterprises in the suburbs. 

Once the analysis of these locational changes is extended beyond the 
boundaries of a single metropolitan area the resulting patterns become increasingly 
complex and lead to difficulties of interpretation. Forty years ago, Thorp, 1929, 
p. 218, interpreted the movements of certain patterns in the U.S. as foretelling 

great decentralization of industry", whereas a contemporary, N.H. McCarty, 
1930, p.  26, concluded from his analysis that the observed movements simply 
represented changes in the areas of concentration. In the Canadian context, both 
Slater, 1961, and Hay, 1965, described and measured the increasing trend towards 
decentralization of industry in southern Ontario but in 1969 Field and Kerr, 1969, 
analysed the same data to ifiustrate the trend to increasing centralization in 
Metropolitan Toronto. 
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In studies which have considered the processes of change a variety of specific 
generalizations emerge. In one of the earliest and most comprehensive surveys 
(Metropolitan Life Insurance Company, 1929), 2,084 communities in the United 
States and Canada reported that of the 10,000 plants gained between 1926- 27, 
relocations accounted for 9.4%, branch plants for 8.8%, and new establishments 
for 81.8%; at the same time they lost 5,903 plants of which 18% moved away and 
82% discontinued operations. In his study, 1961, Slater reported that "except for 
manufacturing for local markets, it appears that most manufacturing is dispersed 
by means of branch plants, or at least by decisions and arrangements made outside 
the community where the plant is located." Kerr and Spelt, 1958, however, found 
that the development of manufacturing in suburban Toronto resulted largely 
from the relocation of existing "Toronto city firms", whereas the plants com-
prising the remaining third were entirely new enterprises or branch plants. On the 
other hand, Hamilton's opinion, 1967, p.  410, is that usually ". . . "migration" 
results from differential rates of industrial growth which is accentuated if stagnant 
or declining and expanding industries are localized in separate areas". A somewhat 
negative appraisal was given by T.R. Smith, 1968, p.  49, supported later by 
Keeble, 1968, p.  1, that the ". . . actual movement of firms generally accounts for 
but a small part of the overall change in manufacturing importance of an area." 
Clearly, there is uncertainty concerning the respective processes influencing 
locational patterns of manufacturing activity, and further examination of these 
processes is required. 

Within this framework the following sections focus on the rates and relative 
weights of distributional change influencing the spatial patterns of manufacturing 
activity in Ontario. The analyses are arranged to provide chronologically a survey 
of the general pattern in 1961, the net changes which occurred between 1961 
and 1966, spatial variations in the birth/death differentials, expansion in the 
relative rates of permanent establishments, impact of foreign-owned branch 
plants, and the patterns of relocations between 1961 and 1965. 

Structure and Change 1961 - 66 
Ontario's manufacturing activity in terms of both employment and number 

of establishments as tabulated by Statistics Canada is completely dominated by 
Metropolitan Toronto' (Map 5.1). In 1961 this urban complex of over 1.6 
million people - 26% of the provincial total - accounted for 4,584 or 37% of 

I Metropolitan Toronto (or Metro) refers to Political Metropolitan Toronto comprising 
the city of Toronto, the municipalities of Long Branch, New Toronto, Mimico, Swansea, 
Weston, Forest Hill, and Leaside, and the townships of Etobicoke, North York, East York, 
York, and Scarborough. For convenience, in this study the city of Toronto is referred to as 
Toronto, the townships and municipalities of Metropolitan Toronto are referred to as the 
Toronto Suburbs and the satellite towns and their respective townships of Toronto. Vaughan, 
Markham, Chinguacousy, and Pickering are referred to as the Fringe areas. The number and 
boundaries of the suburbs have subsequently been changed but this need not affect this 
study. 
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Ontario's manufacturing establishments; in terms of employment Metro's share 
was 33%. Within the metropolitan area over 60% of the plants with 53% of the 
jobs were located in the city of Toronto which, at the same time, accounted for 
41% of the metropolitan population. Outside Metropolitan Toronto another 1,877 
or 15% of Ontario's establishments were concentrated into eight main cities: 
Hamilton(520), Windsor(279), London(28 1), Kitchener-Waterloo(258), 
Ottawa(219), Brantford(168), and St. Catharines(152); together these eight 
centres accounted for 16% of the provincial population. Most of the remaining 
48% of the establishments were distributed in clusters of 30.50 in south western 
Ontario. 

During the 1961 - 66 period Ontario increased its number of establishments 
by 4.5% but the dominant trend was towards the development of an "industrial 
doughnut" around Toronto (Map 5.2). Between 1961 and 1966 the city of 
Toronto suffered a net loss of 314 establishments representing a decrease of 11%. 
In five years, therefore, Toronto lost more establishments than were located in any 
other centre except Hamilton. Although less marked, the 8' decrease in employ-
ment was greater than the total 1965 manufacturing employment of 
Welland(8,300) and almost equalled that of Guelph(8,600). 

But far more spectacular were the gains that occurred in Toronto's 
suburbs and Fringe areas which more than offset the loss in the city. Metro 
increased its number of establishments by 10% and its share of Ontario's total by 
1.6%. Altogether, the twelve suburbs had a net increase of 769 plants or 42c; of 
their 1961 total. The largest increases occurred in North York with a gain of 
383 (74%), Scarborough with 210 (62%), and Etobicoke with 200 (44%). The 
greatest relative increase, however, took place in the Fringe areas, between 1961 
and 1966, there was a net increase of 65%. 

Beyond the limits of this ring of intense industrial development very little 
change occurred except for the increasing concentration in the Kitchener-
Waterloo.Preston-Guelph complex of urban centres which gained a total of 81 
plants (20%). Similar evidence concerning the growing strength of this complex 
was noted in L.S. Bourne and A.M. Baker, 1968, pp.  12 - 17. Hamilton had a net 
gain of only three, though London and Windsor had more substantial increases of 
6% and 11%.. respectively. No change was recorded for Ottawa but net losses were 
experienced by Niagara Falls, St. Catharines, Sarnia, Owen Sound, and 
Peterborough. In Eastern Ontario over 75% of the urban centres (greater than 
10,000 population in 1961) had a net loss of establishments for the five-year 
period. 

Changes in the size distributions of manufacturing establishments also vary 
systematically for urban areas of similar size. This relationship is graphically 
presented in Figs. 5.1 - 5.3. The net loss which occurred in Toronto is distributed 
almost proportionately in each size category so that the 1966 distribution 
resembles very closely that of 1961 (Fig. 5.4). There was, however, a slight 
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increase in three of the four largest size categories. Much different is the picture 
presented by the respective groups of all other urban areas which recorded a net 
loss among the smallest size categories but a net increase in the number of plants 
with more than 40 employees. The main exception is the group of four large 
urban cities (90,000 . 400.000 in Fig. 5.2) which experienced a slight decrease in 
the number of plants employing between 100 and 250 people:this led to a slight 
change in the form of the upper tail of the distribution ( Fig .5.5). 
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Spatial Variations in Birth/death Differentials 
Net changes in the number of establishments isa function of two processes: 

a birth/death differential which may result in either a "natural increase" or 
"decrease"; and a "migration" process. Recalling the definitions outlined in 
Chapter 1, births are those plants, including foreign-owned and locally-owned 
branch plants, which appear in Ontario for the first time. Thus, plants relocating 
to an Ontario site from outside the province are termed births; likewise, plants 
relocating out of Ontario are grouped with those plants that "ceased operations" 
and are termed deaths. Plants which move from one municipality to another are 
termed relocations. 

The impact of the birth/death differential between 1961 and 1965 had 
marked spatial variations in terms of both the number of establishments and 
employment. Some measure of the degree to which the birth/death process 
affected the distribution pattern of Ontario's manufacturing establishments is 
summarized in Table 5.1. During the 1961 - 65 period Toronto lost 300 establish-
ments but the average annual death rate was only 0.2% higher than the birth rate; 
between 1961 and 1965 Toronto gave birth to 801 new establishments and 823 
died. Toronto's natural decrease, therefore, was only 22 or 7.5y of its total loss; 
hence 92.5% of Toronto's loss for this period can' be attributed to the migration 
process which is treated in a later section. Despite Toronto's loss the Metropolitan 
area gained 276 plants - an increase of 6% for the 1961 - 65 period. Most of 
Metro's gains were concentrated in the three suburbs of Etobicoke, Scarborough, 
and North York where the respective natural increases accounted for 80%, 64%, 
and 43% of the total gains. 

Thus the spatial pattern of development in terms of the birth/death process 
in and around Toronto's industrial dougimut is extremely varied. The centre is 
characterized by an almost stable state of births and deaths so that if no migration 
occurred a very gradual decrease in the number of establishments would prevail. 
Around this area in the most industrialised suburbs there is a concentric band of 
lower than provincial average death rates which are greatly exceeded by higher 
than average birth rates. The result has been a substantial natural increase that has 
accounted for 63% of the suburban gains. Circling this zone is a peripheral area 
with an exceptionally high birth rate which is double the death rate. In this area, 
between 1961 and 1965, the natural increase contributed almost 80% of the 
total gains. 

Beyond the outer periphery of Metro the only centres with birth rates 
noticeably higher than the provincial average of 7% were Waterloo, Barrie, 
Burlington, and Oakville. Even these are not independent centres: Waterloo is part 
of the Kitchener/Waterloo Metropolitan Area; Burlington is a "suburb" of both 
Hamilton and Toronto and was part of the former's Census Metropolitan Area; 
Oakville is a part of the Toronto Census Metropolitan Area; and Barrie, though 
not part of a metropolitan area is strongly affected by Toronto's "spill over" 
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Figure 54:  Lognormal Probability Curves for All Establishments in the 
City of Toronto, 1961 and 1966 

Figure 55;  Lognormal Probability Curve; for All Establishments in the Cities 
of Hamilton, Windsor, London, and Ottawa, 1961 and 1966 
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effects. Except for Oakville all these centres also had death rates lower than the 
provincial average. Altogether, 13 of the 28 towns and cities with more than 40 
plants in 1961 had death rates higher than their respective birth rates. 

Although the city of Toronto's birth rate is considerably lower than the 
provincial average, indicating that it is no longer Ontario's predominant nursery of 
manufacturing establishments, it is clear that Metropolitan Toronto is increasing 
its role as the focus of industrial development. On the basis of its total number of 
establishments for the 1961 . 65 period Metro attracted almost 10% more of the 
births than one would expect; during this period Metro accounted for 37.47, of 
Ontario's manufacturing establishments but recorded 41.4% of all births. 
Similarly, the suburbs attracted 26.5% more of the births than expected on the 
basis of total number of establishments. Obviously, the suburbs are no longer just 
"reception areas" (Kerr and Spelt, 1958), for plants relocating from the city of 
Toronto but are, in fact, self generating. However, this does not imply that the 
suburbs are "self contained" and "independent" of the city which is still the hub 
of industrial development and acts as a central focus for the surrounding activity. 

TABLE 5.1. Average Annual Birth and Death Rates 1  and Net 
Migration Figures for Selected Urban Areas, 1961-65 

Urban area 
No. of plants 

_______ _______ Net 
change' 

1961-65 
_  Birth 

rate 
Death 
rate tion  

Net 
migra- 

1961 1965 Births Deaths 

All Ontario' 	.... 11,966 12,559 593 4,283 3, WO 7.0 6.1 
Metros Toronto 4,579 4.855 276 1,775 1,438 7.5 6.1 61 
City of Toronto 2,762 2,462 - 300 801 823 6.1 6,3 - 278 
Toronto 	suburbs 1,817 2,393 576 974 615 9.3 5.9 217 
Fringe areas 374 551 177 280 140 12.4 6.2 37 
Other urban 

areas4 ................ .3,196 3,263 67 912 840 6.3 5.9 - 	10 

Birth and death rates are calculated by expressing total number of births and 
deaths for 1961-65 as a percentage of total number of plants for 1961-65. 

Totals differ from those published in the Census because sawmills are ex- - 
cluded. 

Metro Toronto includes City of Toronto and its suburbs. 
Those with at least 40 plants in 1961. 

Spatial Variations in Size Distributions of Births and Deaths 
Spatial variations in employment change are due in part to differences in 

the respective birth and death size distributions. As noted by Field and Kerr, if 
"mini establishments" are defined as those plants with fewer than four employees, 
then Metropolitan Toronto is the dominant breeding ground of these plants 
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(Table 5.2). Within this area, however, most of the mini establishments were born 
in the suburbs; over 26% of the total suburban births (two or more employees) 
between 1961 and 1965 were in the lowest size category compared with 16 for 
the central city. The variation is reduced, however, when plants with less than 
eleven employees are considered; these plants account for 64.6% of all suburban 
births and 57% of those in the city. 

TABLE 5.2. Percentage Frequencies of Births and Deaths for 
Urban Size Groups in Ontario, 1961 - 65 

Size of 
plant by 5,000- 10,000- 30,000- 90,000- City of T 	Metro Fringe 
No. of 9.999 29,999 89,999 399,999 Toronto suburbs Toronto areas 

employees 

Births 

2 8.0 12.3 14.1 19.4 15.8 26.8 22.3 21.5 
25.6 25.4 23.5 29.5 27.1 21.5 23.8 21.0 4 ........... 

7 	........... 25.6 22.3 21.7 15.8 16.0 16.3 16.2 16.6 
14.2 15.6 16.5 14.3 15.8 14.4 14.9 14.5 
10.2 6.4 8.2 8.1 8.4 10.3 9.4 11.4 

28 7.4 7.6 6.6 5.8 7.9 4.4 5.8 6.2 
44 4.5 5.1 1.8 2.7 4.1 4.4 4.2 3.5 

11 	............. 
18 	............. 

68 1.1 3.0 3.2 1.6 2.8 1.4 1.9 2.2 
106 3.4 2.3 4.4 2.8 2.1 0.5 1.5 3.1 

Totals 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Deaths 

12.7 9.3 9.7 15.2 11.6 21.0 16.0 22.7 
23.4 25.0 20.2 25.5 25.2 17.4 21.4 18.2 

2 ........... 
4 	........... 

21.0 15.0 15.5 21.6 14.2 13.4 13.9 14.5 
17.7 19.0 22.6 13.0 15.1 15.7 15.5 16.4 

18 7.8 11.6 9.7 8.1 9.8 10.6 10.2 10.9 
28 5.5 8.0 8.8 7.6 9.7 7.4 8.4 10.0 

7 	............ 

44 4.3 4.4 7.3 4.0 5.1 6.5 5.8 1.8 

11 	............. 

68 3.1 3.6 2.9 2.3 .2 3.6 4.5 0.9 
106 3.6 4.1 3.3 3.7 4.1 4.4 4.4 4.6 

Totals 100. 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Although the birth rate in Toronto's suburbs exceeded the death rate by 
3,4%, a differential which accounted for 63% of the new suburban plants, the 
structure of the birth and death size distributions did not create a similar propor. 
tional increase in the suburban employment. In the suburbs, for example, only 6% 
of the births had more than 44 employees; the death rates for these categories 
were 14.5% and 4.5% respectively (Table 5.2). If we ignore the expansion of the 
new plants during the 1961 -65 period the birth/death differential added 1,549 
new jobs in the suburbs, or 3.7% of the 40,500 new jobs created between 1961 
and 1965. On the other hand, in Toronto where the employment decreased by 
8,300 the structural imbalance within the almost equal birth and death rates 
accounted for 51.5% of the net loss in employment; over 14% of the deaths in 
Toronto had more than 44 employees as compared with 9% of the births. 

Only in the fringe areas did plants employing more than 44 employees 
record a greater percentage of births than deaths. Here the percentages among the 
births and deaths were 8.8% and 7.3% respectively. The direct contribution of the 
birth/death differential to the total employment which increased in the Fringe 
area from 15,900 in 1961 tc 25,500 in 1965 was 3,350 or 33.6% of the new jobs. 
The subsequent expansion of births is not taken into account in the calculation. 

In the rest of southern Ontario between 1961 and 1965 towns with less 
than 10,000 people (in 1961) increased their total employment by 9,369 from 
34,448 to 43,819. Because the death rate in these towns was slightly higher than 
the birth rate and because the respective birth and death distributions were 
similar (Table 5.2) the birth/death differential resulted in a net loss of only 66 
employees. In towns with between 10,000 and 30,000 people the slightly higher 
birth rate provided 3.5% of the net increase of 19,000 jobs which increased from 
52,500 to 71,500; in the group of large towns (30,000 - 90,000) the excess of 
births over deaths, despite the significantly larger percentage of deaths in relation 
to births with over 44 employees, accounted for 5.5% of the net gain of 33,700 
employees. The highest percentage contribution of the birth/death process out-
side Toronto's industrial doughnut occurred in the cities of hamilton, Windsor, 
Ottawa, and London where the introduction of a few large plants, each employing 
more than 400 employees, helped to create 11% of the 23,700 new jobs generated 
in the city size group between 1961 and 1965. 

Differential Growth Rates 
Although the spatial rearrangement of manufacturing activity in terms of 

the number of establishments is not directly influenced by the expansion in situ 
of plants the attractiveness of certain areas over others as potential sites for new 
and relocating establishments is greatly influenced by rapidly growing and 
developing plants. Approximately 85% of Ontario's 28% increase in employment 
between 1961 and 1965 can be attributed to expansions of the permanent 
establishments. The mean rate of growth for the permanent plants in each of the 
most important areas in southern Ontario is shown in Map 5.3. Again, the 
dominant trend has been one of increasing concentration in job opportunities in 



the peripheral area around Metropolitan Toronto. In the city of Toronto the 
permanent establishments had a relatively low mean growth rate of 19% as 
compared with 28% for all of Metro; the mean growth rate for plants in the 
suburbs was 40%.Such differences are to be expected since the suburbs, in general, 
are less confined than the more highly developed downtown areas where physical 
constraints often limit expansion. Similar differences, however, did not occur for 
the suburban areas bordering three of the other four large metropolitan centres. 
Establishments located in the cities of Hamilton, London, and Ottawa had mean 
growth rates of 24.8%, 22%, and 17% respectively; when their respective suburban 
growth rates are added the metropolitan rate of Hamilton decreased to 23.9%, and 
those of London and Ottawa increased only to 23.9% and 18.7% respectively. The 
exceptions were those plants in Windsor's suburbs which had a mean growth rate 
of 76% compared to 33% in the city; for Metropolitan Windsor the mean growth 
rate of its permanent establishments was 42.5%. 

In the Fringe townships of Chinguacousy, Markham, Pickering, Toronto, 
and Vaughan the mean growth rate was 47%. The growth rates of these suburbs 
were matched elsewhere in Ontario by those of Cornwall(44%), Woodstock(47%), 
and Stratford(48%), and were exceeded by those of Wallaceburg(86%), 
Preston(98%), and Aurora(l 20%). 

The development of branch plants is also part of the "expansion process" 
and probably the most widely referred to characteristic in Canadian manufac-
turing, particularly in Ontario, is the foreign-owned branch plant. Unfortunately, 
for geographical analysis, less is known about this component of manufacturing 
activity than any other. The most useful available data are the annual numbers 
of "planned births", above a minimum size category, by type of activity for 
municipal locations. 2  No separate employment figures, other than those derived 
by private questionnaire, are available. The locations of all new foreign-owned 
branch plants which were established in Ontario between 1961 and 1966 are 
shown in Map 5.4. It may be assumed that these branch plants accounted for a 
greater net share of the development, both in terms of number of establishments 
and employment, than the same number of indigenous enterprises. Foreign-owned 
branch plants tend to be more viable in their formative years since their continued 
existence is not always contingent on their own profitability; parent companies 
with large financial reserves often continue inefficient or unprofitable branch 
plant operations until the offspring develop into self sufficiency. It may be 
expected, therefore, that foreign-owned branch plants have a different survival 
pattern from that which was shown for all establishments in Fig. 4.12. Under 
such conditions a disproportionately larger share of local or indigenous enterprises 
will contribute to the total number of deaths. 

2 The Ontario Department of Trade and Development (formerly the Department of 
fconomics and Development) publishes annual lists of foreign firms planning to open a new 
establishment which will either "employ 10 persons, occupy 5,000 sq. ft. of manufacture or 
assembly space, or have sales in excess of S 100,000 annually." 
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Spatial Patterns of Relocation 
Almost without exception, studies of industrial relocation have treated this 

phenomenon as "unidirectional" in that either the source area or the reception 
area for the migrant plants has been analysed. But as this analysis shows, industrial 
migration is not a simple one way process. This study identities five main 
processes: 

(i) Suburbanization - involves the movement of plants from the city of Toronto 
to its suburbs and the movement of plants from the cities of Hamilton, 
London, Wmdsor, and Ottawa to their respective suburbs bounded by the 
limits of their Census Metropolitan Areas. 

(ii) Suburban dispersion - summarizes the movement of plants lacking a marked 
spatial pattern which, in this context, refers to the interchange of plants 
among Toronto's suburbs. 

(iii) Decentralization - describes the process whereby plants move out of Metro-
politan Toronto to other areas of Ontario including the Fringe areas. The 
latter movement, it may be argued, is part of the suburbanization process of 
Metropolitan Toronto, but here it is treated as decentralization. 

(iv) Centralization - is the counter movement of plants from the rest of Ontario 
into Metropolitan Toronto and includes also those plants which moved in-
wards from the suburbs to the city of Toronto. Centralization as defined here, 
therefore, excludes those plants relocating from Ontario into the Fringe areas. 

(v) Dispersion - as defined above, relates to the residual interurban relocations 
which have no well defined spatial pattern. 

These definitions emerge from the analysis of plants with at least two employees 
which relocated from one municipality to another between 1961 and 1965 
(Table 5.3). Although it was shown in Chapter IV that the size structure of 
Ontario's manufacturing activity closely resembles that of Britain, the size 
structure of plants which have relocated in Ontario is markedly different to that 
observed by Keeble, 1968, for London. Keeble analysed only those plants with 
more than ten employees and found that relocations to the Metropolitan and 
Provincial zones 3  averaged 365 and 728 employees respectively. In contrast, only 
four plants which relocated within Ontario between 1961 and 1965 had more 
than 365 employees. Moreover, whereas the relocations analysed by Keeble were 
much larger on average than all establishments the mean value of 38 for relocations 
in Ontario is significantly lower than the 1961 provincial average of 62 for those 
plants with more than two employees. 

(i) Suburbanization - By far the largest component of change in Ontario 
involved the relocation of plants from the city of Toronto to its suburbs. These 
plants with an average of 49 employees, at time of relocations from Toronto, 
were responsible for 7,600 or I 8.7' of the new job opportunities generated in 

3 The Metropolitan zone was defined as that area between 10 and 100 miles from 
north-west London. The Provincial zone extended outwards from the Metropolitan zone. 
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the suburbs between 1961 and 1965. In moving, 67% of the relocations exhibited 
an "immediate increase" in number of employees, 12% maintained the same 
number and 27% had a decrease. "Immediate increase/decrease" refers to the 
difference in employment recorded by a plant at its original location and that 
first recorded in its new location. The net result, in total employment among the 
relocations was an immediate increase of 3.2%. 

The suburbanization process was rather less well marked in the other four 
Census Metropolitan Areas of Windsor, Hamilton, London and Ottawa. The plants 
were much smaller on average (18 employees) than their counterparts in Toronto 
and only accounted for 500 jobs in their original sites; after relocating, only 18% 
decreased their employment and the net increase in employment among the 
relocations was 24%. 

For all plants the most "mobile" were those in the machinery industry 
(Table 5.4) with a mobility index of 1.82 but among the suburbanizing plants in 
Metropolitan Toronto furniture and fixture plants accounted for one quarter - 
twice the percentage for this group among all relocations. 

(ii) Suburban dispersion - The main recep{ion areas were Etobicoke, 
Scarborough and North York, all of which received most of their plants from 
adjacent older suburbs closer to the city centre. The average size of the re-
locating plants changed from 36 to 43 employees during relocation; over 8070 
added more employees after relocating and the total employment of these plants 
immediately increased by 20% from 2,142 to 2,569. Metal fabricating plants 
accounted for 27% of the moves and miscellaneous industries 12%. 

TABLE 5.3 Percentage Frequencies of Relocations by Size 
Category, 1961-65 

Size by 
No. of 

employees 
All 

reloca- 
tions 

De- 
central- 
ization 

- en ra 
iza on 

- 

persion 
Suburban- 
ization 
Toronto 

Suburban 
dis- 

persion 

S9burban- 
ization 

large  

2- 	3 8.3 9.8 9.1 10.8 5.9 5.0 21.4 
4- 	6 11.1 11.7 12.7 21.0 11.2 3.3 10.7 
7- 	10 14.5 9.8 12.7 8.7 15.9 13.3 28.6 

11- 	17 12.7 13.7 16.3 10.3 11.3 15.0 10.7 
18- 	27 15.0 11.7 10.9 17.4 13.2 26.0 10.7 
28- 43 12.0 15.7 14.5 7.9 11.3 15.0 7.1 
44- 67 11.2 13.7 3.6 13.0 14.6 10.0 3.6 
68-105 8.2 7.8 14.5 8.7 7.3 6.6 3.6 

106-165 2.7 3.9 3.6 2.6 3.3 3.6 
166- 256 2.0 1.8 2.2 3.9 
257-398 2.0 1.9 1.3 1.6 
399' 0.5 1.3 

Totals 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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TABLE 5.4. Percentage Frequencies of Relocations for 
Twenty 2-digit Industries, 1961-65 

Industry MIblity' re 1 a- ce1- ral- 
tions ization ization 

Food and beverages ............................ 0. 52 10.7 7.2 5.8 
Tobacco................................................ 

0. 40 0.2 1.8 
Leather 	goods ...................................... 0.75 1.2 1.8 1.9 

0. 86 2.6 1.8 
1. 50 1.5 1.8 1.9 

Clothing ................................................ 1.04 4.6 1.8 3.9 
Wood...................................................... 0.49 2.8 3.9 

1.81 12.5 3.6 5.9 

Rubber ................................................... 

Paper and allied industries 0.86 1.8 1.8 1.9 

Textiles ................................................. 

0. 56 6.9 10.9 5.9 

Knitting 	................................................. 

1.65 2.8 8.5 

Furniture and fixtures ......................... 

1.74 22.5 12.7 21.5 
1.82 5.6 5.4 11.7 

Primary metals ..................................... 
Metal fabricating 	................................. 

0. 95 2.3 2.5 
Machinery 	............................................. 
Transportation equipment ................... 

1. 78 5.9 12.7 9.8 Electrical products 	............................. 
Non-metallic minerals ......................... 0. 61 2.6 4.6 1.9 
Petroleum and coal products 

.

.

. 

.1.00 0.2 1.8 
Chemical products ............................... 1.02 4.6 10.9 9.8 

0.88 8.4 10.9 11.7 Miscellaneous....................................... 
Totals ............................................... 100. 0 100.0 100.0 

Dis Suburban- Suburban Suburban 
izatlon 

Printing and publishing ....................... 

pers ization dis- large Toronto persion urban 

Food and beverages............................. 17.4 13.2 6.6 10.7 
Tobacco................................................ 
Rubber.................................................. 

2. 2 1.3 Leather goods....................................... 
2. 2 3.3 5.0 Textiles................................................. 

2. 6 
4.4 5.9 6.6 
2.2 2.0 6.6 3.5 

Knitting .................................................
Clothing................................................. 

2. 2 23. 2 8.3 7.1 
Paper and allied industries 2.6 1.6 

4. 4 7.3 5.0 7. 1 
6. 5 0.6 5.0 

26.0 20.5 26.6 39.3 
Primary metals .....................................
Metal fabricating 	................................. 

6. 5 2.6 6.6 7. 1 

Wood....................................................... 

Machinery 	............................................. 
Transportation equipment ................... 8. 7 0.6 10.7 

Furniture and fixtures ......................... 

4. 4 4.6 3.3 

Printing and publishing....................... 

6. 5 1.8 3.3 3.5 
Petroleum and coal products ............ 

Electrical products ............................. 

2. 2 1.3 3.3 3.5 

Non-metallic minerals ......................... 

Chemical products ............................... 
4. 4 6.6 12.2 7. 1 Miscellaneous....................................... 

Totals 	............................................... 100.0 100.0 100.0 100.0 

Mobility Index calculated by dividing percentage of relocations in each in-
dustry by the percentage of all establishments in each industry. 
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(iii) Decentralization - Most of the decentralizing plants (69) moved to 
locations within a 50 mile radius of downtown Toronto and thereby reinforced 
the outer shell of the doughnut's periphery (Map 5.5). Fifty-one plants with a 
total of 2,242 jobs in their new locations were involved in the process. Over 80% 
of these plants increased their size which on average changed from 38 employees 
to 44 employees and generated 293 new jobs - an increase of 23%. By far the 
greatest proportion of the plants were metal fabricating units, and miscellaneous 
industries comprised a poor second. 

(iv) Centralization - In contrast to the process of decentralization, of the 
plants which moved inwards to Metropolitan Toronto almost 80% relocated from 
outside a 50 mile radius around the city (Map 5.6). These plants, with 1,205 
employees in their original locations reduced their average number of employees 
slightly and suffered a total employment loss of 5%; more than half reduced 
their size. 

Added to this general inward movement of plants to Metropolitan Toronto 
was the relocation of plants which moved further inwards from the suburbs to the 
central city. These plants were considerably smaller on average (29 employees) 
and carried only a total of 629 jobs to their new locations, but in so doing 60% 
experienced a loss of employment. Almost half the plants which moved inwards 
to the city belonged to the electrical products and printing industries whose 
principal locations are in the core area. 

(v) Dispersion - The complexity of movements in interurban relocations 
is shown in Map 5.7. Rural relocations are not marked because of uncertainty of 
exact location within the respective townships. Of the 46 plants involved 28 or 
61 	moved from a smaller to a larger urban centre. If there is a pattern the 
dominant characteristic of the movements is one of concentration into selected 
metropolitan nodes such as Windsor. This city seems to be playing a similar role, 
hut on a much smaller scale, to that of Toronto in that it is attracting plants from 
less viable centres in the extreme south.western region. The two most important 
nodes are 1-lamilton-Burlington, and Kitchener/Waterloo, both of which have 
attracted plants over a considerable range of distance. The average size of all these 
plants was 29, and only one had more than 100 employees. In relocating 60% 
increased their size, 26% decreased and 14% showed no change. 

Generalizing, it is seen that the dominant trend in Ontario's manufacturing 
activity between 1961 and 1965 was towards the development of an industrial 
doughnut around the traditional centre of manufacturing activity in the city of 
Toronto. This development was undoubtedly initiated, as observed by Kerr and 
Spelt in 1958, by the relocation of plants to the suburbs from downtown Toronto 
where physical limitations to site expansion encourage some firms to establish 
suburban branch plants. These "migrant" plants helped to "pioneer" suburban 
locations. This aspect of the suburhanization process was accelerated by the influx 
of foreign-owned branch plants which tend to favour locations with easy access to 
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the international airport. Ihe praLlual amelioration ot the uncertaiii ecolloiltic 
environment in the suburbs subsequently encouraged a rapid rise in the birth rate 
of indigenous mini-establishments hitherto incubated in the safe and inexpensive 
atmosphere of the central city. Such plants, having attained a viable operating 
level and requiring more room for expansion, tend to relocate still further out-
v.ards, thereby extending the outer margin of the industrial doughnut. Thus, the 
"hollowing out" process at the centre of the doughnut has proceeded in both 
absolute and relative terms. 

Around the city the increasing gravitational force of the suburbs has not 
only attracted plants from the central city but has "pulled in" plants from as far 
away as Kingston, Ottawa, and Windsor. Although Metropolitan Toronto has also 
"spun off" plants to other towns in Ontario less than one-third relocated beyond 
a radius of 50 miles; in contrast, almost 80% of those attracted to Toronto 
originated beyond this 50 mile zone. In general, those plants which decentralized, 
and especially those which relocated within the suburbs, were larger than those 
which centralized and whereas the greater majority of those plants which moved 
outwards increased their size upon relocating over half of those which moved 
inwards reduced their number of employees. 

The Classification of a System of Spatial States 
Recalling the alternative systems of spatial states outlined earlier in this 

chapter the analyses tend to support the notion of increasing concentration in and 
around Metropolitan Toronto rather than that of widespread decentralization in 
southern Ontario. Therefore, a system of states based solely on the concept of 
"distance bands" radiating outwards from Toronto may not be the most appro-
priate. Likewise, the analyses indicate no well defined interregional character in 
the migration process. Clearly discernible, however, has been the tendency for 
plants to relocate from the city of Toronto to its suburbs and other centres; from 
the larger cities to their respective suburbs; and from smaller to larger urban 
centres. Such observations encourage the adoption of a system of states that gives 
emphasis to the varying degrees of industrial attractiveness exhibited by urban 
areas rather than to that associated with distance bands or economic regions. 
Perhaps the best system, therefore, would be one with each state comprising an 
urban area or its suburbs. But since the number of "migration observations" is 
comparatively small it is apposite in the present context to limit the size of the 
system to a small number of states. This requires grouping and the particular 
system adopted is presented in Table 5.5. The directional probabilities gener -
alize the migration process of the manufacturing establishments which relocated 
in Ontario between 1961 and 1965. The relatively high diagonal values for the 
"Toronto suburbs" and the "Rest of Ontario" could be reduced but this would 
involve disaggregation of the respective states and hence would considerably 
enlarge the system. When "all establishments" are considered the respective 
annual transition probabilities for the spatial states assume the values shown in 
Tables 5.6- 5.9. 
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TABLE 5.5. Directional Probabilities of Relocations 

Toronto Toronto Large Large  
urban  Small  Rest 

Of suburbs urban Suburbs urban Ontario 

1 2 3 4 5 6 

Toronto 	............................1 0.8631 0.0038 0.0418 0.0912 
Toronto suburbs ..............2 0.0940 0.7351 0.0069 0.0278 0.1358 
Large urban ......................3 0.0434 0.1304 0.0217 0.5652 0.1739 0.0652 
Large urban suburbs 	4 0.6296 0.2407 0.0740 0.0555 
Small urban 	......................5 0.0245 0.1311 0.0245 0.3442 0.4754 
Rest of Ontario................6 0.0067 0.0536 0.0100 0.0100 0.3926 0.5268 

Note: (Large urban refers to the four cities of Hamilton, Windsor, London, and 
Ottawa. Small urban refers to all other towns over 10,000 in 1961). 

TABLE 5.6. Spatial Matrix, 1961 and 1962 

1 2 3 4 5 6 

0.9567 0.0385 0.0017 0.0029 1 	............................................. 
2 	............................................. 0.0115 0.9805 1 0.0008 0.0026 0.0044 

0.0012 0.9830 0.0072 0.0048 0.0003 3 	............................................. 
4 ............................................. 

0.0004 0.0019 
0. 1063 0.8865 

0.9866 
0.0070 
0.0108 5 	............................................. 

6 	............................................. 0. 0022 0.0007 0.0477 0.9492 

TABLE 5.7, Spatial Matrix, 1962 and 1963 

1 2 3 4 5 6 

1 	............................................. 0.9776 0.0193 0.0012 0.0018 
2 	............................................. 0.0027 0.9916 0.0009 0.0046 

0.0012 0.9902 0.0085 
0.0387 0.9457 0.0155 

3 ............................................. 
4 ............................................. 

0. 0024 0.0005 0.9945 0.0024 5 ............................................. 
6 	............................................. 0.0007 0. 0023 0.0015 0.0054 0.9899 
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TABLE 5.8. Spatial Matrix 1963 and 1964 

1 2 3 4 5 6 

0.9556 0.0366 0.0035 0.0115 

0.0044 0.9805 0.0035 0.0115 2............................................... 

3 ............................................... 0. 0012 0.0012 0.9842 0.0084 0.0048 

1 	............................................... 

0.0384 0.9384 0.0076 0.01538 4 ............................................... 

5 0.9916 0.00741 

6 ............................................... 0.0023 0.0007 0.0162 0.98000 

TABLE 5.9. Spatial Matrix, 1964 and 1965 

1 2 3 4 5 6 

1 	............................................... 0.9539 0.0401 0.0005 0.0017 0.0035 

0.0051 0.9801 0.0008 0.0137 2 	............................................... 

3 ............................................... 0.0012 0.9902 0.0073 0.0012 

4 ............................................... 0,0671 0.9253 0.0074 

0.0009 0.0029 0.0004 0.9876 0.0079 5............................................... 

6 	............................................... 0. 0007 0.0052 0.0076 0.0007 0.0181 0.9743 

All these matrices, as did those for the size distributions developed in 
Chapter IV, show only the transition probabilities for a constant sample of 
establishments. The analyses of this chapter, however, have shown that the 
locational patterns of manufacturing activity are changed not only by a process of 
relocation but also by a birth/death differential. The Markov models developed in 
the next chapter combine both processes to estimate changes in the total pattern 
of Ontario's future manufacturing activity. 



CHAPTER VI 

THE MARKOV MODEL: DESIGN AND APPLICATION 

This chapter has three objectives: first, to implement a methodology for 
adopting a specific-order Markov model; second, to test the accuracy of the model 
in its ability to describe temporal changes in Ontario's manufacturing previously 
documented; and third, to improve the model. These procedures rely in the first 
instance on the constant population of permanent establishments which, it is 
generally assumed, provides the best "Markov laboratory". Ostensibly, a model's 
inability to predict changes for a homogeneous sample would render it inadequate 
as a predictive tool for a fluctuating population characterized by birth and death 
processes. Thus, the birth and death vectors are added only to the "improved" 
model. 

The methodology corresponds to that outlined in Chapter III and relies on 
the statistical tests for specific-order properties and for stationarity outlined in 
Appendix B. These tests, at least for the structural matrices, provide the rationale 
for adopting a first-order Markov model. Non-parametric tests are used in this 
chapter to test the accuracy of the model by comparing its estimates of the annual 
distribution vectors with those observed. The frequency estimates are obtainesi by 
successively powering the relevant matrices and by post multiplying the initial 
state probabilities. Since much of the variance of the 1961 - 65 expected vectors 
is explained by the data from which the initial parameters are estimated, per se, 
these expected values are not regarded as predictions. It must be emphasized that 
predictions in this case would require "true" Markov transition probabilities 
contained in a mathematical model and derived theoretically from a probability 
distribution. The improvement of the model - the chapter's third objective - relies 
on three concepts: fractional powers based on the Binomial theorem, matrix 
surfaces, and the average matrix. Birth and death vectors are added to the improved 
model to provide estimates for 1966 which acts as a test year, and forecasts are 
projected for annual periods up to 1975. 

Rationale for a First-order Markov Model 
A null hypothesis is tested to establish whether or not the four independent 

annual structural matrices possess the Markov property. Formally, it is postulated 
that the movement of plants from one size category to another is statistically 
independent against the alternative that the observations are Markovian. The 
likelihood criterion provides the -2 loge X values shown in Table 6.1. Thus 
clearly, the null hypothesis is rejected and we can consider the structural 
matrices as realizations of a Markov chain. Using the same procedure the likelihood 
ratio criterion for the null hypothesis - that the relocation of plants from one 
location to another is statistically independent as against the alternative that the 
observations are from a Markov chain - provides the following values of the test 
statistic (Table 6.2). Again, rejection of the null hypothesis justifies the acceptance 
of the spatial matrices as realizations of a Markov chain. 
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1 IBLE 6.1. Test of Markovity for Structural Matrices 

Realization 	 _2-I09e \ 	D.F. (n 1)2 

1961-62 ................................................ 	......20,444 	 169 
1962-63 ................................................ 	......21,803 	 169 

	

1963-64 	................................................ 	......22,959 	 169 

	

1964-65 	................................................ 	......22,520 	 169 

TABLF 6.2 lest of Markovity for Spatial Matrices 

Realization 	 —2 109e 	D.F. ( n 1)2 

1961-62 ................................................. 980 	 25 
1962-63 ................................................. 954 	 25 
1963-64 ................................................ 	

.. 

.026 	 25 
1964-65 ................................................. 973 	 25 

Markovity alone, however, provides no indication of the specific-order of 
the chain. Such additional information is obtainable only from cubic or three-way 
tally matrices which are necessary for testing the null hypothesis that the chain is 
first-order against the alternative that it is second-order. For the structural data 
four cubic matrices are developed: 

(1) 1961-63 
(2) 1962-64 
(3) 1963-65 
(4) 1961-65 

Tables 6.3 - 6.6 show three "facets" or "leaves" of the first matrix. Table 6.4 
(Leaf 6), for example, shows that of the 763 plants recorded for category six in 
1963, one plant regressed from category nine in 1961 to category seven in 1962 
and continued its decline to category six in 1963. Substitution of all these 
observations in equation A.2 provides the test statistics of Table 6.7. For all 
realizations the values of-2 logX are less than the appropriate degrees of freedom. 
The null hypothesis is not rejected and the change in a plant's employment 
structure is considered to typify a first-order Markov process. For the spatial 
matrices, however, the study's relatively short time period precludes the 
possibility of developing cubic matrices. However, on the basis of the empirical 
analysis of Chapter V. the first-order property is assumed. 
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TABLE 6.3. Leaf 2 of 1961-63 Cubic Tally Matrix for Permanent 
Establishments 

5 	6 	7 	8 9 	10 11 12 13 14 

TABLE 6.4. Leaf 6 of 1961-63 Cubic Tally Matrix for Permanent 
Establishments 

1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 

1 	................ 
2 	................ 
3 	................ 
4 	................ 
5 	................ 
6 	................ 
7 	................ 
8 	................ 
9 	................ 

10 ................ 
11 	................ 
12 	................ 
13 	................ 
14 	................ 

1 2 2 
1 	1 4 22 4 

3 73 91 5 	1 
1 2 21 389 24 

3 35 42 	1 
1 	4 



1 	.................. 
2 .................. 
3 	.................. 
4 .................. 
5 .................. 
6 .................. 
7 .................. 
8 .................. 
9 .................. 

10 .................. 
11 	.................. 
12 .................. 
13 .................. 
14 	.................. 

1 

3 9 6 
2 44 59 	2 

17 229 	7 
18 	15 

1 	1 

- IC( - 

TABLE 6.5. Leaf 9 of 1961-63 Cubic Tally Matrix for Permanent 
Establishments 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 12 13 14 

1' B1.I 6M.Leaf 12 of 1961-63 Cubic Tally Matrix for Permanent 
Establishments 

1 	2 	3 	4 	5 	6 7 	8 	9 	10 	11 	12 	13 	14 

2 	.................. 
3 	.................. 
4 	.................. 
5 	.................. 
6 	.................. 
7 	.................. 
8 	.................. 
9 1 

10 1 5 1 
11 1 17 16 
12 3 57 	6 
13 2 	3 
14 	.................. 
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TABLE 6.7.Test of First-order Property for 
Structural Matrices 

- 	Reali2tion 	 -2 logA 	D.F. n(n- 	1)2 

1961-63 ....................................................697.62 	 2.366 

1962-64 ....................................................631.21 	 2.366 

1963-65 ....................................................607.78 	 2.366 

1961-65 ....................................................610.16 	 2.366 

Chapter III emphasized the relevance of determining the homogeneity 
among serially independent Markov realizations designed for estimating future 
states of the system. Two series are obtainable for both structural and spatial 
matrices: 

(1) 1961 .62, 1962.63, 1963-64, 1964.65 
(2) 1961 -63, 1963-65 

Whether or not the components of each set are from the same but unspecified 
matrix of transition probabilities is testable by the minimum discrimination 
information statistic - the m.d.i.s. Formally, a null hypothesis is postulated that 
the four annual and two biennial matrices are realizations from the same sets of 
transition probabilities. The components due to each information statistic for the 
structural matrices are shown in Tables 6.8 and 6.9. The (i) component measures 
the lack of homogeneity among the initial distributions (1961 - 64), and the (j/i) 
component measures that of the transitions to the final distributions (1962- 65) 
from the corresponding initial distributions. The (i,j) component is the sum of 
these two. 

TABLE 6.8. Test of Homogeneity for Four Annual 
Structural Matrices 

Component due to 	I 	Information 	I 	D.F. 

(I) homogeneity .................................... 

(i/I) conditional homogeneity ............ 

(i,j) homogeneity.................................. 

31.36 39 

384.43 546 

415.79 585 
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In both tables the three information components are not significant: this 
implies that the differences between the various independent realizations within 
each set are small enough to be attributed to random or chance fluctuations. By 
statistical inference the two sets of independent realizations are accepted as 
homogeneous and representing the same first-order Markov chain. A similar 
conclusion is reached for the spatial matrices, the "information components" of 
which are shown in Tables 6.10 and 6.11. In these, however, the validity of the 
results is predicated on the first-order assumption. 

TABLE 6.9. Test of Homogeneity for Two Biennial 
Structural Matrices 

Component due to 	 Information 	 D.F. 

(I) homogeneity .................................... 11.77 	 13 

(i/i) conditional homogeneity 	 143.61 	 182 

(l,j) homogeneity .................................155.38 	 195 

TABLE 6.10.Test of Homogeneity for Four Annual 
Spatial Matrices 

Component due to 	 Information 	 D.F. 

(i) homogeneity ..................................... 12.6 	 15 

(j/ i) conditional homogeneity 	 74.2 	 90 

(j,i) homogeneity ................................. 86.8 	 105 

TABLE 6.11. Test of Homogeneity for Two Biennial 
Spatial Matrices 

Component due to 	I 	Information 	 D.F. 

(i) homogeneity ..................................... 3.8 	 5 

(i/i) conditional homogeneity 	 24.3 	 30 

(ij) homogeneity ................................. 28. 1 	 35 
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The chapter's first objective is fulfilled; the applications of statistical tests 
have indicated that the use of a first-order Markov model for predicting future 
states of manufacturing activity is justified. Such a model is particularly relevant 
for describing temporal changes among the structural components since their 
highly transient nature is amenable to tests for specific-order properties as well as 
the more general properties of Markovity and stationarity. The latter properties 
are equally tenable for spatial relocations, but the relative "spatial immobility" of 
manufacturing establishments in the short-term yields insufficient observations for 
specific-order tests, in which case the first-order property is assumed. 

Evaluation of the model's predictive power - the second objective - is 
based initially on the 1961 - 62 structural matrix. The actual change in the shape 
of the size distribution for the constant sample that occurred between 1961 and 
1965 is shown in Fig. 6.1. In estimating this change, because of random effects, 
we must expect, as stated by Blumen, Kogan and McCarthy, 1955, p.  54, that 

• . the fIt of the model must therefore be determined by examining the 
magnitude of observed deviations in the light of what one would expect on a 
chance basis." 

Multiplication of the initial distribution 'vector (1961) with successive 
powers of the 1961 - 62 matrix yields the estimated distribution vectors shown in 
Table 6.12 where they are compared with observed frequencies; the respective 
configurations of the estimated and observed distributions are shown in Fig. 6.2. 
The degree of conformity of the powered transition probabilities contained in the 
1961 - 62 matrix with the observed probabilities for the 1961 - 65 period are 
shown in Table 6.13. 

The initial results indicate the limited ability of transition probabilities 
estimated from a one-year interval to describe future annual changes. Even for 
this short time period the computed Chi-square statistic - total 109.15 - used 
as a measure of the accuracy of the model indicates that the "goodness of fit" is 
poor. Still more disturbing for predictive purposes is the tendency of the goodness 
of fit to deteriorate with increasing time. Chi-square statistics for the other three 
annual matrices show the same trends except for the fact that the diagonal 
element is lowest in each case (Table 6.14). 

Although these results illustrate the short-comings of applying a Markov model to 
one specific temporal matrix the information contained in Table 6.13 indicates 
that the patterns of origin and destination do seem to maintain approximately 
the same relative positions in both observed and expected matrices and suggests 
that "something regular" is occurring in the observed structural changes. 
Accordingly, alternatives for improving the predictive capacity of the model are 
now examined. 
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TABLE 6.12. F.sttmated DistrlbuUon Vectors 1962-65 from 1961 -62 
Structural Probability Matrix for Permanent Istablishments 

1 	3 	3 	4 	5 	6 	7 	6 	9 	10 	11 	12 	13 	14 

1962: 
Observed 
Expected.... 

1963: 
Observed 
Expected.... 

1964 
Observed.... 
Expected 

1965: 
Observed 
Expected.... 

568.0 	873.0 	770.0 927.0 763.0 703.0 615.0 503.0 404.0 294.0 194.0 91.0 67.0 58.0 
568.0 	873.0 	770.0 927,0 763.0 702.0 615.0 503.0 404.0 294.0 194.0 97,0 67.0 58.0 
(711- square = 0.00 

554.0 	846.0 	777.0 908.0 748.0 734.0 608.0 501.0 415.0 321.0 187.0 113.0 63.0 65.0 
555.2 	843.5 	739.0 933.0 748.8 680.8 640.5 523.1 421.9 300.2 212.4 96.6 78.8 58.1 
Chi - square = 19.09 

025.0 	819.0 	777.0 888.0 777.0 718.0 806.0 528.0 416.0 327.0 202.0 120.0 61.0 71.0 
541.2 	816.2 	716.1 927.2 738. 1 666. I 656.7 543.4 439.5 309.5 228.0 104.6 89.4 59.2 
ChI -square = 32.27 

542.0 	773.0 	779.0 858.0 767.0 738.0 612.0 517.0 433.0 321.0 213.0 130.0 68.0 78.0 
536.6 	791.2 	696.9 915.1 728.2 655.5 667.6 562.2 457.0 320.6 242.2 110.9 99.5 61.0 
CItE - square 	57.79 

TABLE 6.13. Fourth Power of 1961 -62 Matrix (Expected) and 
1961-65 Matrix (Observed) 

12 3 	45 	6 	7 	8910 	11 	12 	13 	74 

Observed.......5820 .2032 .0950 .0345 .0034 .0017 
Expected ......4009 .3529 .1475 .0700 .0273 .0040 .0021 .0012 .0002 
Observed ......1984 .4723 .2239 .0754 .0188 .0089 .0011 .0011 

2 Expected ......2290 .3527 .2197 .1354 .0457 	0102 .0053 .0032 .0008 .0002 

Observed ......0219 .1876 .4300 .2777 .0633 .0146 .0024 .0024 
Expected ......0811 .2138 .2556 .2732 .1236 .0347 .0129 .0047 .0007 .0001 
Observed ......0090 .0302 .1590 .4502 .2553 .0717 .0168 .0034 .0045 
Expected ......0207 .0794 .1600 .3415 .2438 .7002 .0386 .0131 .0028 .0005 .0001 

	

Obverved.... 	.0025 .0228 .7457 .4613 .2826 .0710 .0127 .0013 
5 Expected ......0041 .0220 .0602 .2189 .2913 .2345 .1191 .0392 .0084 .0013 .0002 

	

Observed.... 	 .0068 .0205 .1216 .4686 .2892 .0697 .0137 
6 Expected ......0012 .0061 .0741 .0809 .1412 .3282 .2849 .1236 .0327 .0059 .0010 

	

Observed.... 	 .0052 .0122 .0174 .1222 .4345 .3211 .0628 .0209 .0035 
'7 Expected ......0001 .0009 .0027 .0081 .0329 . 1388 .3816 .2942 .1219 .0308 .0064 .0004 

	

Observed.... 	 .0020 .0020 .0102 .0287 .1297 .4631 .2807 .0676 .0164 
8 Expected ......0002 .0010 .0029 .0023 .0063 .0385 .1727 .3513 .2790 .1093 .0324 .0036 .0006 

	

Observed.... 	 .0026 .0156 .0963 .5417 .2813 .0547 .0052 .0026 

	

Expected .... 	.0001 .0006 .0002 .0001 .0061 .0437 .1691 .3956 .2585 .1065 .0159 .0029 .0002 

	

Observed.... 	 .0034 	 .0034 .0102 .1194 .5427 .2730 .0478 

	

70 Expected .... 	 .0001 	 .0007 .0075 .0442 .1882 .3739 .2933 .0721 .0183 .0016 

	

Observed.... 	 .0059 	.0118 	 .0118 .0765 .5294 .3000 .0589 .0059 

	

11 Expected.... 	 .0001 .0009 .00118 .0170 .0489 .1728 .4379 .2142 .0946 .0131 

	

Observed.... 	 .0202 .1212 .5859 .2121 .0606 

	

12 Expected.... 	 .0001 .0004 .0028 .0163 .0088 .0107 .0508 .1942 .3358 .3112 .0689 

	

Observed ,,.. 	 .0943 .5849 .3207 

	

13 Expected .... 	 .0002 .0021 .0006 .0006 	0051 .0372 .1561 .5943 .2092 

	

Observed.... 	 .0847 .9152 

	

14 Expected.... 	 .0007 .0008 .0002 .0001 .0015 .0095 .0632 .2419 .6821 

TABLE 6.14, Chi-square Statistics for Four Annual Structural 
Matrices, 1961 -65 

Chi-square values for 13 D.F. 
Transition matrix - 

1962 	1963 1964 1965 

0. 0 19.09 32.27 57.79 
1962-63 	.............................. 7.88 20.04 21.12 
1961 	-62 	............................... .. 

20. .14 
14.11 14.&2 6.60 18.77 

	

1963-64 	............................... 

	

1964-65 	............................... 20.79 18.25 29.58 15.50 
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The iterative procedure used to delimit the initial size categories in Chapter 
IV indicates the potential for rearranging the frequency limits and subsequent 
redefinition of the states, Clark, for example, has suggested that ". . . experimenta-
tion should yield the most useful classes of states." This suggestion, however, 
carries the undesirable implication that the results justify the means, though it 
may be the only alternative where the data are so inadequate that the underlying 
Markov assumptions cannot be tested. But since these assumptions for the 
structural matrices have been statistically verified the central problem is not one of 
selecting the best classification scheme to enable a reasonably simple model to fit 
the data, but is one of developing an adequate model for the accepted set of 
frequencies. Most other Markov applications which have recorded satisfactory 
results have used smaller matrices than those adopted for this study. The Cornell 
model (Blumen, Kogan, and McCarthy, 1955) - the most comprehensive - used 
ten states but generally the number has been smaller than seven. Gale, for 
example, used three and five states. A tempting alternative, therefore, for 
improving the existing model's accuracy is the reduction of the number of states 
through "lumping" adjacent states into a 7 x 7 matrix. This is analogous to the 
procedure outlined in Chapter III. 

The "lumped" seven state probability matrix for the 1964-65 transition 
matrix is given in Table 6.15. As expected, the increased "width" of the frequency 
intervals creates a "heavier" diagonal. Successive powering and multiplication of 
the matrix by the initial vector of state probabilities provide the estimated 
distribution vectors shown in Table 6.16. 

The model's increased capacity to estimate structural changes is clearly evident 
and the Chi-square statistics suggest that the model is "acceptable". Clearly, the 
smaller the matrix the more accurate is its predictive capacity. Weighed against 
the improvement, however, is the marked loss of valuable information which, in 
the present study, is particularly important because of the large variance within 
the size intervals. Since the much lower "within group" variance of the 14 x 14 
matrix provides more accurate information, alternatives for improving the larger 
model are examined below. 

TABLE 6.15. Lumped Seven State Structural Probability Matrix 
1964 -65 for Permanent Establishments 

8936 	.1049 	.0015 
0687 	.8373 	.0922 	.0018 

	

.0676 	.8515 	.0803 	.0007 

	

.0044 	.0653 	.8580 	.0714 

	

.0013 	.0027 	.0431 	.8923 	.0606 

	

.0031 	.0031 	.0466 	.9068 	.0404 

	

.0435 	.9565 
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TABLE 6.16.Estimated Vectors from Seven State 1964-65 
Matrix and Observed Distributions, 1961 -65 

1962: 
Observed ........ 1,441.0 	1,697.0 1.405,0 1,118.0 698.0 291.0 125.0 
Expected ........ 1,441. 2 	1,698,8 1,527.3 1,065.5 693.4 289.8 118.9 

Chi-square - 5.47 
.. 
.. 

1963: 
1,679.0 1,482.0 1.110,0 736.0 300.0 128.0 

Expected ........ 1,682.3 1,531.6 1,070.7 709.4 310.0 126.4 
Chi-square - 4.41 

1964: 
Observed ........ 1,669.0 1,495.0 1,134.0 743.0 322.0 138.0 

Observed .........1,400.0 

1,665.0 1,534.2 1,076.2 725.0 329.6 134.4 

.1,404.6 

Chi-square - 5.35 
1965: 

.1,344.0 
Expected .........1,370,8 

Observed ........ 1,315.0 	1,637.0 1,505.0 1,129.0 760.0 343.0 146.0 
1,647.2 

. 

1,535.2 1,081.8 740.2 348.6 142.8 Expected .........1,339.3 
Chi-squ are - 3.85 

Smoothing Surfaces of Probability Matrices 
Whereas the 7 x 7 matrix possesses a continuously trending probability 

distribution among the off-diagonals the 14 x 14 annual matrices do not. The 
discontinuities appear as small, unstable elements in the matrix representing an 
incomplete estimation of the underlying fixed probabilities. Given a system of 
size categories and given that some plants will move one, two, or four size 
categories in any one time period, it is reasonable to assume that there is an 
underlying probability of a plant's moving three categories. Acceptance of this 
assumption underlies the general assumption of a continuous growth process 
basic to economic theory. Using the movement of plants from category two in the 
1961 -62 matrix (Table 4.9) as an example, there are probabilities of 0.0055 for 
a plant's moving to state five, 0.0011 for transition to state seven, and 0.0011 for 
transition to state eight; but there is an estimated probability of 0.0 for movement 
to state six. Such discontinuities in the initial transition probabilities bounded 
by empirically derived upper and lower limits are not consistent with the 
theoretical expectations of the structural mobility of manufacturing establish-
ments. 

The existence of such limits can be given a theoretical interpretation. 
Consider, for example, the mechanism of structural mobility. The size of a plant 
at any point in time represents its position on a continuum extending from "zero 
employment" to some fixed upper limit. Theoretically, a plant can increase its 
size infinitely but operationally an upper limit does exist. Since transition matrices 
illustrate the varying ability of plants to move along the continuum it is reasonable 
to assume, in view of the short time intervals, that the extreme upper "off-
diagonals" typify the furthest extent to which plants can expand. But is it 
reasonable to make a similar assumption for the lower diagonals? On the lower 
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end of the structural spectrum the death of a plant is the limiting category. A 
plant may reduce its employment for either of two main reasons: increased 
mechanization and subsequent reduction of the labour coefficient, or a decline in 
demand resulting in lower production. Thus, the extreme lower diagonals re-
present limits to which a plant will reduce its employment for either of these 
reasons. However, there is a minimal point to which a plant, no matter what its 
size, can reduce its operations before going out of business. A plant employing 
200 people, for example, forced to reduce its payroll would perhaps require an 
absolute minimum of 50 employees to continue its operations. These minimums 
represented by the lower diagonals explain the lack of a continuous probability 
distribution to "zero employment" from size categories above a certain size (see 
Tables 4.9 - 4.12). 

The provision of a continuous probability distribution around the main 
diagonal suggests a "smoothing" process which can be accommodated with a 
matrix surface. This notion of blanketing a transition matrix with a smoothing 
surface is not entirely new. Tobler, 1967, p. 275, for example, has suggested that 
the contouring of a matrix ". . . might lead to a conventional isarithmic map." To 
date there has been no application of the technique to a Markovian framework 
and its usefulness is explored here as one alternative for improving the fit of the 
Markov model. 

Although any polynomial surface can be fitted in theory the specific form 
of the surface will depend on the underlying processes. It should be noted, how. 
ever, that the concept is only appropriate under conditions of theoretically 
continuous distributions - as exist for the structural transition matrices. The 
fitting of a surface, for example, will smooth out irregularities and will "fill" 
gaps in the distribution. The analyses of Chapter IV and particularly the graphic 
results of Fig. 4.10 demonstrated that the transition probabilities across the rows 
assume an almost normal distribution, the variance of which decreases systematic-
ally with increasing size. In this case, a normal surface, but one that is modified 
to accommodate the "taper" effect along the diagonal, seems appropriate; to 
incorporate this "shifting mean" a three parameter model is minimal. The normal 
probability density function, using only the mean and variance is given by: 

f(x) = 	1 	. exp [(x.m)2/a2 ] - o°<X<o° 	(6.1) 

where in is the mean of the distribution and the variance is a2 . Modifying this the 
required probabilities - the p 1 's - are given by: 

Pij = C 1 exp [(j - i - T)2 I (T2  - iT 3 )] 	 (6.2) 

where the C 1  are normalizing constants, T, T 2  and 1 3  are fitted parameters. 
The search procedure for fitting the surface is applied iteratively using several 
starting points and the solution terminates with the "best fit" measured in terms 
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of the minimum average absolute deviation (m.a.a.d.). This procedure is analogous 
to that used for deriving least squares estimates of the transition probabilities, 
(Ashar and Wallace, 1963). The average absolute error is used to give greater 
weights to the off-diagonal probabilities; the alternative of a "weighted average" 
in which the squares of the errors are summed, would lessen the importance of the 
smaller probabilities in influencing the slope of the surface which would tend to 
"fall off" more readily from the "crest" along the main diagonal. A normal 
surface fitted to the 1961 - 62 matrix with a m.a.a.d. of 0.0062 is shown in 
Table 6.17. It should be noted that this procedure involves the fitting of a 
surface to the whole matrix and is not merely a process of fitting a series of 
normal distribution curves across individual rows. This is apparent from the 
smoothness of the main diagonal as opposed to the irregular diagonals of the 
annual matrices. Each annual matrix was fitted with a surface which was 
successively powered and multiplied by the initial vector of state probabilities. 
In each case the total value of Chi-square for the four estimated vectors was 
approximately half of the respective totals derived for the observed annual 
probabilities; the total Chi-square value for the 1961 - 62 matrix, for example, 

TABI.I; 6.87. Matrit Surface of 1961 -62 Transition Probabilities 

2 	3 	4 	5 	6 	7 	0 	9 	10 	11 	12 	13 	14 

7765 .2200 .0035 

2 ..................8323 	.6773 	.1876 	.0028 

3 .................. 0013 	.1294 	.6821 	.1847 .0026 

4 	 .0011 .1266 .6881 .1819 .0023 

5 ........... 	.0010 .1237 .6942 .1790 .0021 

6 	 .0009 .1208 .7005 .1760 .0019 

7 	 .0008 .1878 .7069 .1729 .0017 

8 	 .0007 .1147 .7134 .1896 .0015 

9 	 .0006 .1116 .7201 .1663 .0014 

10 	 .0005 .7084 .7270 .1629 .0012 

II ............- 	 . 0005 .1051 .7340 .1594 .0011 

12 	 .0004 .1018 .7412 .1557 .0009 

13 ............ 	 .0003 	.0985 .7401 	.1521 

14 	 .0003 .1115 .8881 



- 116 - 

was reduced from 109.15 to 63.6. The four estimated distribution vectors 
derived from the 1961 - 62 surface matrix are shown in Table 6.18 and the 1965 
estimated distribution is compared graphically with the observed 1965 distribu-
tion in Fig. 6.3. The estimated surface configuration is clearly superior to that 
derived from the observed 1961 - 62 probabilities. But the most significant 
result of this approach - as evidenced by a comparison of Table 6.12 and the 
respective Chi-square values of Table 6.18 - is the model's increased stability. 

TABLE 6.18. Estimated Distribution Vectors 1962-65 from 1961-62 
Structural SurFace Matrix for Perm an ent Establishments 

1 	2 	3 	4 	5 	6 	7 

1962: 
568.0 	873.0 	770.0 927.0 763.0 702.0 615.0 
569.9 	845.5 	845.2 866.9 801.1 723.9 591.7 
Chi-square - 17.73 

1963: 
554.0 	846.0 	771.0 908.0 748.0 734.0 609.0 
555.4 	808.3 	847.7 854.7 803.9 722.5 604.0 

Observed ........... 

Chi-square - 19.23 
1964: 

Expected ........... 

525.0 	819.0 	771.0 888.0 777.0 718.0 606.0 

Observed ............ 

539.2 	780.2 	840.9 847.0 803.4 723.4 613.1 

Expected ............ 

Observed ............ 

Chi-square - 15.52 
1965: 

Expected ............ 

542.0 	773.0 	779.0 858.0 767.0 738.0 612.0 
522.9 	756.8 	830.0 840.4 801.8 725.1 620.7 

Observed............ 
Expected ............ 

Chi-square - 12.18 

8 	9 	10 	11 	12 	13 	14 

1962: 
Observed .......... 
Expected .......... 

1963: 
Observed .......... 
Expected .......... 

1964: 
Observed .......... 
Expected .......... 

1965: 
Observed .......... 
Expected .......... 

	

503.0 	404.0 	294.0 	194.0 	970 	67.0 	58.0 

	

491.6 	392.1 	295.5 	183.1 	106.1 	61.9 	60.6 

	

501.0 	415.0 	321.0 	187.0 	113.0 	63.0 	65.0 

	

498.3 	398.9 	300.1 	193.9 	114.3 	69.8 	63.3 

	

528.0 	416.0 	327.0 	202.0 	120.0 	67.0 	71.0 

	

505.9 	405.4 	305.7 	203.4 	122.9 	77.4 	66.9 

	

517.0 	433.0 	327.0 	213.0 	130.0 	68.0 	78.0 

	

513.7 	412.1 	311.9 	212.2 	131.5 	84.8 	71.3 
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Fractional Disaggregation of Long-period Matrices 
A second alternative for improving the accuracy of the model arises from 

the notion of generalizing into an "average annual matrix" the compounded 
information contained in the 1961 - 65 matrix (Table 4.8). The most obvious way 
involves computation of the appropriate fractional power of the matrix to 
provide representative mean annual transition probabilities which, when subjected 
to the usual Markov procedure, would provide annual estimates of the distribution 
vectors. 

One approach to this problem is to calculate the appropriate root of the 
matrix by Newtonian approximation. 

Let 	 (X 1  + D,)n = P 	 (6.3) 
where X 1  is the ith  approximation to the flth  root of P and D 1  is unknown. 
Then 

(X + D 1 ) 	X + nX' D 1 	P 	 (6.4) 
and 

D1 	I[n1y1 p_xj = D 1 * 	 (6.5) 
leading to 

X i + = X + D = 1 ()çn.l),I P + 	 1 	 (6.6) 
Applied to matrices, this technique has uncertain convergence behavior. Prelimi-
nary experimentation with this solution gave satisfactory results for small matrices 
but for the larger 14 x 14 probability matrices too many non-admissible estimates 
of the transition probabilities were obtained. 

Waugh and Abel, 1967, suggest a different approach, involving less com-
putational effort, which is particularly suitable for transition matrices having 
dominant diagonal terms. 

Let B 	cP - I and r = 1/n, with c an arbitrary scalar. 
Then 	Pr = c-r(cP)r = c -rE! + (cPE)Jr = c-r(I + By 	(6.7) 
By formal expansion 

(I + By = I + rB + 	B 2  + r(r-1) (r-2) B 3  +... 	(6.8) 
which holds if the series converges; the series will converge if Bk - 0 as k in-
creases, and this will necessarily occur if the dominant characteristic root of the 
matrix is less than unity. To improve the convergence behavior, Waugh and Abel 
suggest taking 

c = b 1/flb 2 . 	 (6.9) 

Good results were obtained when the formulation was tested with a 7 x 7 lumped 
matrix. But when applied to the 1961 - 65 matrix, even under programmed 
conditions of double precision, a few small negative values appeared. These were 
set to zero and the adjusted fourth root of the 1961 -65 matrix derived from 17 
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Figure 6.3 Estimated Distribution from 1961- 1962 
Structural Surface Matrix and Observed Distribution 

(1965) for Permanent Establishments 
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Figure 6.4 Estimated Distribution from Average 
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iterations is shown in Table 6.19. Estimated distribution vectors, derived from 
multiplication of successive powers of the fourth-root matrix, are shown in 
Table 6.20. The discrepancy of the 1965 Cu-square value which should be zero is 
attributable to the slight inaccuracy of the root. Even so, the total Chi-square 
value (29.3) of the four annual estimates produced by the fourth root matrix is a 
further improvement on the observed annual matrices and the surfaces fitted to 
these matrices. 

The fractional disaggregation of "long-period" matrices has particular 
importance for future applications of Markov chain analysis especially where 
serial realizations are not available and where it is desirable to provide short- or 
medium-term forecasts. If the matrix is for a ten-year interval, for example, it can 
provide only decennial estimates, the value of which, in view of the "stretched" 
assumption of stationarity, is questionable. But decomposition of the ten-year 
span into some average shorter period matrix would yield, for some processes, 
more credible predictions for three, four, or five-year intervals. 

TABLE 6.19. Fourth Root of 1961-85 Probability Matrix 

1 	2 	3 	4 	5 	6 	7 

.8566 .1196 .0187 .0051 .0002 .0002 
0868 .7916 .1071 .0076 .0046 0022 

.0946 .7704 .1391 .0026 
0038 .0002 .0803 .7829 .1242 .0032 .0042 

1............................ 
2 	............................ 

5 .0002 .0707 .7946 1342 

3 .............................. 
4 	............................ 

0001 .0023 .0004 .0575 .7985 .1379 6 	............................ 
7 .0014 .0052 .0577 .7778 
8 .0008 .0040 .0061 .0612 
9 .0005 .0020 

10 .0010 0001 .0004 
11 .0029 .0025 
12 .0001 .0002 0002 
13 .0001 
14 .......................... 

8 	9 	10 	11 	12 	13 	14 

2 	.......................... 
0013 .0002 

.0010 .0001 
0005 .0007 

3 	............................ 

.0028 .0006 

4 .............................. 
5 	............................ 
6 .............................. 

1597 .0012 .0002 7 	............................. 
7918 .1245 .0027 .0026 
0419 .8393 .1157 .0010 .0003 
0004 .0465 .8425 .1112 

8 	............................ 

0001 .0024 .0300 .8366 .1206 .0050 

9 	............................ 
10 	............................ 

12 .0041 0481 .8600 0806 	.0066 
11 	............................ 

.0001 .0339 .86 3 	.1018 13 	........................... 
14 .0255 	.9742 
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TABLE 6.20.E.stimated Distribution Vectors 1962-65 from 
Fourth Root 011961 -65 Structural Probability Matrix 

for Permanent Establishments 

1 	2 	3 	4 	5 	6 	7 

1962: 
Observed ........... 568.0 	873.0 770.0 927.0 763.0 702.0 615.0 .. 

577.7 	861.1 814.8 883.0 786.2 734.2 581.2 :xpected............. 
Chi-square - 13.73 

1963:    

554.0 	846.0 771.0 908.0 748.0 734.0 609.0 )lseryed .............
Ixpected ............. 573.0 	828.0 804.8 873.9 782.8 736.1 588.6 

Chi-square - 7.35 
196 I: 

525.0 	819.0 771.0 888.0 777.0 718.0 606.0 
1 	800.2 792.8 865.0 778.9 737.5 595.2 

ubserved ............. 

Chi-square - 6.85 
1 	pected ............566. 

nserved ............ 542.0 	773.0 779.0 858.0 767.0 738.0 812.0 
i 	l 	.......... 557.7 	776.3 779.7 855.8 774.7 738.4 601.1 

Chi-square - 1.52 

8 	9 	10 	11 	12 	13 	14 

503.0 404.0 294.0 194.0 97.0 67.0 58.0 
498.5 400.1 299.8 181.4 108.0 56.3 63.5 

t)served ...........
Ixpected ........... 

observed ........... 501.0 415.0 321.0 187.0 113.0 63.0 65.0 
............ 508.9 415.2 307.4 192.1 117.2 60.0 68.3 

1994 
OIrvd 	............ 528.0 416.0 327.0 202.0 120.0 67.0 71.0 

519.0 429.6 316.1 202.4 126.5 64.2 73.5 

1965: 
517.0 433.0 327.0 213.0 130.0 68.0 78.0 C)6írv(1 	............. 
528.7 443.3 325.5- 212.4 135.9 68.7 78.9 



The Average Matrix 
Another alternative for improving the accuracy of the model is to determine 

the "average" matrix. Where several realizations of a Markov chain are available 
in average matrix can be computed by summing the elements of the original 
tally matrices and re-estimating the transition probabilities. Such a process, 
\nderson, 1954, shows, would compound the information of several matrices. In 
this respect the authors of the Cornell study (Blunien, Kogan and McCarthy, 
j 95, P. 156) have commented that Anderson's proofs involve: 

more than a trivial application of the usual pooling of observations, 
aiice we are dealing with dependent observations . . . and there is some 
istifiable doubt that we are adding much information with each new 

matrix of observations. 
\iidcrson's proofs show that the traditional statistical techniques of averaging are 

appropriate to Markov processes. Using this procedure, the average transition 
probabilities are given by: 

pij = 	kIj/ffkij 	 (6.10) 

and the average matrix for the 1961 -65 period shown in Table 6.21. Application 
of the usual Markov procedure provides the estimated distribution vectors in 
Fable 6.22 and the 1965 estimated vector is compared with the observed vector 
in Fig. 6,4. Clearly, the accuracy of the model is considerably improved not only 
in terms of total ('hi-square (15.7) hut also with respect to its marked stability. 

I 11111 b. I . .veraie '4tructural Nla(rix for Permanent Fstablishments, 1961 - hi 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	Ii 	12 	13 	14 

7871 .1887 .0189 .0049 .0005 

.1189 .7000 .1602 .0172 .0026 .0006 .0003 .0003 

0080 .1411 .6645 .1714 .0118 .0025 .0006 

.0008 .0097 .1095 .7041 .1623 .0094 .0027 .0011 .0003 

.0009 .0049 .1287 .8874 .1641 .0120 .0019 

.0010 .0007 .0090 .0974 .7252 . 1577 .0083 .0007 

...... .0008 .0017 .0087 .0936 .7187 .1672 .0079 .0008 	 .0004 

	

.0005 .0005 .0020 .0109 .0995 .7327 .1441 .0014 .0020 	 .0005 

.0006 	.0012 .0037 .0772 .7659 .1452 .0062 

a 	 .0008 .0032 .0907 .7733 .1296 .0024 

.0013 .0013 .0027 .0040 .0810 .7703 .1355 .0040 

a,.. 	 .0023 	 .0023 .0979 .7716 .1166 .0093 

.0040 	 .0840 .8080 .1040 

.0119 .036 .9526 
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TABLE 6.22. Estimated Distribution Vectors 1962-65 from 
Average Structural Probability Matrix 

for Permanent Establishments 

1 	2 	3 	4 	5 	6 	7 

1962: 
Observed ............ ...568.0 	873.0 	770.0 	927.0 	763.0 	702.0 	615.0 
Expected ............ ...570.2 	866.6 	803.8 	897.4 	776.9 	731.0 	590.6 

Chi-square 8.75 
1963: 

Observed ............ ...554.0 	846.0 	771.0 	908.0 	748.0 	734.0 	609.0 
Expected ............ ...559.0 	837.9 	787. 1 	895.3 	769.0 	730. 1 	603.6 

Chi-square = 2.10 
1964: 

Observed ............ ...525.0 	819.0 	771.0 	888.0 	:777.0 	718.0 	606.0 
Expected ............ ...546.6 	813.2 	770.8 	889.5 	763.0 	729.3 	613.6 

Chi - scjuaxe = 2.29 
1965: 

Observed ............ .542. 0 	773.0 	779.0 	858.0 	767.0 	738.0 	612.0 
Expected ............ 	533.8 	791.2 	755.2 	881.3 	757.7 	728.8 	621.5 

hi- square = 2.58 

8 	9 	10 	11 	12 	13 	14 

1962: 
Observed............ 
Expected............ 

1963: 
Observed............ 
Expected............ 

1964: 
Observed............ 
Expected............ 

1965: 
Observed............ 
Expected............ 

	

503.0 	404.0 	294.0 	194.0 	97.0 	67.0 	58.0 

	

493.5 	396.9 	300.4 	181.9 	105.3 	57.4 	62.9 

	

501.0 	415,0 	321.0 	187.0 	113.0 	63.0 	65.0 

	

501.6 	408.5 	309.1 	192.8 	112.2 	61.8 	67.1 

	

528.0 	416.0 	327.0 	202.0 	120.0 	67.0 	71.0 

	

510.6 	419.5 	318.4 	203.0 	119.4 	66.4 	71.6 

	

517.0 	433.0 	327.0 	213.0 	130.0 	68.0 	78.0 

	

519.7 	430.1 	328.1 	212.9 	126.8 	71.2 	76.5 



kxatnination ot hotli the fourth-root matrix and the average matrix shows 
that in each case there is still evidence of small, unstable elements in the off-
diagonals. By combining the notions of matrix surfaces and average matrices it 
was hoped that the predictive accuracy of the model could be improved still 
further. A surface fItted to the fourth-root matrix considerably improved this 
model and gave a total Chi-square value of 18.4, but the surface fitted to the 
average matrix with a m.a.a.d. of 0.002 gave a total Chi-square value of 16.3. 
Two additional parameters were added to the surface equation 6.2 in an attempt 
to accommodate the "shallower" slope of the off-diagonal values in the average 
matrix. Although this detracts from the elegant simplicity of the three parameter 
model, the closer fitting surface - m.a.a.d. of 0.001 - made no further improve. 
ments to the model's accuracy. 

\larkov Model with Birth and Death Processes 
I lie above findings encourage the adoption of the average matrix concept 

hi tiirtlier experimentation with the model which is designed to provide short 
and medium term forecasts for a fluctuating population of establishments. Such a 
model must allow for entry into and exit from the system. In his study Gale 
accommodated the birth and death process by using two diagonal matrices: an 
attrition matrix which removes people from the system and a birth matrix which 
adds people to the system. Adelman suggests a much simpler approach: the 

iii ii of an extra state S 0 , so that the row S0  represents deaths. 

ii the structural matrix for those plants which ceased operations between 
I nut and 1965 the average probabilities of their deaths occurring in the respective 
14 size categories can be represented by the following column vector of death 
prohabilities: 

d = 	(.27386, .19417, .14486, .14401, .08576, .06634, .05016, 
.03559, .02427, .00647, .00323, .00161, .00161, .00080) 

In order to combine this vector with the average transition matrix a new average 
tally matrix for "all establishments" is computed. This is achieved by reconverting 
the average probability matrix into a tally matrix on the basis of the average 
number of all establishments in each state. The numerical values of the death 
vector are then arranged alongside the S 1  column of the new 14 x 14 average tally 
matrix for all establishments and the row probabilities of the 14 x 15 transition 
tiatrix are re-estimated. 

I lie initial row vector of 14 average birth probabilities is: 
h 	(.24930, .22160. .15927, .13296, .09002, .05678, .04016, 

.02077, .01662, .00554, .00277, .00104, .00138, .00173) 
I he main difficulty in this case is one of assigning a value to the element 
So which acts as an initial reservoir of potential entrants who may or may not 
cuter the system through S 0  . Once assigned, the value of this reservoir is summed 
ilraieahlv N\idl the clenienic nt the tahlv vCCtnr' fir hirthis and :1 ne r'\ 
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vector of birth probabilities is computed. Clearly, the size of the reservoir will 
affect the values of the birth probabilities. For the reservoir in her study, 
Adelman, 1958, p. 899, uses an arbitrarily large number - 100,000 - which she 
argues does ". . . not affect the economically relevant portion of our results." 
But as indicated in Chapter III Adellnan's, 1958, p.  901, proof of this statement 
applies only to the equilibrium state. Reservoirs ranging from 10,000 to 900,000 
were tested and noticeable differences were recorded among the lower size 
categories for the first four estimated annual distribution vectors;after five years 
the differences became less noticeable and after tell years were very small. The 
best results for the first five annual distributions were obtained from a reservoir 
of 900,000 which, for the short period estimates, stands as an empirically derived 
parameter and assumes an analogous role to the empirically derived exponent of 
the gravity concept. (For a recent discussion see Houston, 1969.) For the longer 
period estimates any "large" reservoir provides essentially the same results. The 
combined average birth and death Markov matrix is shown in Table 6.23 and the 
annual estimated distribution vectors are presented in Table 6.24 which gives also 
the results for the test prediction year of 1966. 

Although the accuracy of the model in terms of Chi-square is not as good 
for the fluctuating population as it is for the constant sample, the general fit for 
1966 (Fig. 6.5) is far better than that derived from any one annual matrix for the 
constant sample. Undoubtedly, if the transition probabilities had been estimated 
directly from all establishments instead of being interpolated from the constant 
sample the accuracy of the model for this experiment would be enhanced. There 
can be no doubt, however, that the Markov procedure is a viable mechanism for 
analysing and estimating the structural dynamics of a population of establish-
ments. 

TABLI 6.23. Average Str..tural Matriv For All Establishements with 
Birth and Death Vectors 

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	II 	12 	13 	14 

9988 .0003 .0002 .0002 .0002 .0001 
2089 .6226 .1493 .0149 .0039 .0004 
1225 .1043 .6143 .1405 .0151 .0023 .0005 .0003 .0003 
1051 0071 .1263 .5947 .1534 .0106 .0023 - 0006 

o 	............... 

0896 .0008 .0088 .0997 .6409 .1478 .0086 .0025 .0010 .0003 

2 	.............. 
3 	.............. 

0645 .0009 .0045 .1204 .6431 .1535 .0113 .0018 
4 	.............. 
5 	.............. 

0575 .0010 .0007 .0085 .0918 .6835 .1486 .0078 .0007 6 	.............. 
7 	.............. 0491 .0008 .0016 .0083 .0890 .6834 .1591 .0075 .0008 

0418 .0005 .0005 .0019 .0104 .0954 .7021 .1381 .0071 .0019 .0005 
0334 .0006 	.0012 .0036 .0746 .7403 .1403 .0060 
0128 .0008 .0032 .0895 .7634 .1279 .0024 

8 	.............. 

0105 .0013 .0013 .0026 .0039 .0802 .7622 .1340 .0039 

9 	.............. 
10 	.............. 

0092 .0023 .0023 .0970 .7644 .1155 .0092 
11 	.............. 
12 	.............. 

0158 .0039 .0827 .7953 .1024 13 	.............. 
14 .0119 .0356 .9526 



6.24. l,stifll.t(d l)iStriL)tItiWl \ cctors 191 i'2 - 66 Irwil 

' rge Structural Probability Matrix with Birth and Death Vectors 
for All l:stahushments with Two or More Employees 

1 	2 	3 	4 	5 	6 	7 

1962: 
1,373 	1,539 1,300 1,346 1,096 972 781 
Chl-square= 38.9 

.1 	. 1,296 	1,571 1,322 1,377 1,118 988 803 
Chi-square = 52.2 

1-xpected 1,251 	1,582 1,341 1,403 1,138 1,005 822 
Chi-square = 51.4 

1,224 	1,585 1,356 1,425 1,157 1,021 839 
Chi-square = 56.6 

1,208 	1,587 1,365 1,444 1,173 1,037 854 
Chi-square = 45.5 

8 	9 	10 	11 	12 	13 	14 

1:xpected 629 486 346 199 114 64 	69 

Total = 10,313 

642 504 353 211 121 67 	74 

Total = 10,446 

Id 657 519 363 222 128 71 	79 

Total= 10,580 

}xpected 671 534 373 232 135 75 	84 

Total = 10,625 

686 547 384 242 143 79 	89 

Total = 10,836 
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As in the structural matrix, the "average spatial matrix" (Table 6.25) is 
derived by compounding the information contained in Tables 5.6 - 5.9 and by 
adding the appropriate birth and death vectors. The initial column vector of death 
probabilities is: 

	

Toronto Toronto Large 	Large 	Small Rest of 

	

suburbs urban 	urban 	urban Ontario 
suburbs 

sd = (.24527, .20144, .08966, .01930, .24366, .20064) 
and the initial row vector of birth probabilities is: 

sb = (.20326, .27124, .08602, .02185, .23100, .18661). 
The annual estimates of the spatial matrix (Table 6.26), in terms of goodness of 
fit, are far superior to those of the average structural matrix and endorse the 
notion of applying a first-order Markov model to the analysis of the spatial 
dynamics of industrial activity. Reasons for the greater accuracy of the spatial 
model relative to the structural model may be due, in part, to its fewer states 
and, in part, to the greater constancy of the spatial probabilities. 

I 	2 	3 	4 5 	6 	7 	8 	9 	10 II 	12 13 14 
Size categories 

Figure 6.5: Estimated Distribution from Average Structural Matrix with 
Birth and Death Vectors and Observed Distribution (1966) 

for All Establishments 
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TABLE 6.25. Average Spatial Matrix with Birth and Death Vectors 
for 411 Establishments with Two or More Employees 

I 

Deaths Toronto 
Toronto 
suburbs 

Large 
urban 

Large 
urban 	Small 

suburbs 	urban 

Rest 
of 

Ontario 

Births 	..................  ..................99920 .00016 .00022 .00007 .00002 .00019 .00015 
Toronto ................06076 .91306 .02259 .00012 .00108 .00239 
Toronto suburbs 06424 .00343 .92602 .00026 .00103 .00502 

05176 .00046 .00074 .93822 .00603 .00186 .00093 
Large urban sub- 

08086 .05728 .81604 .01348 .03235 

Large urban .........

urbs 	................... 
05670 .00030 .00150 .00300 .93578 .00543 Small urban ...........

Rest of Ontario .., 05265 .00021 .00169 .00034 .00034 .01232 .93246 

TABLE 6.26. Estimated Vectors from Average Spatial Matrix for 
All Establishments and Observed Distributions, 1961-66 

Toronto 
Toronto 
suburbs 

Large 
urban 

Large 
urban 

suburbs 
Small 
urban 

Rest 
of 

Ontario 

1962: 
2.450. 0 	1,648.0 1,124.0 184.0 2,730.0 2,295.0 
2,401.5 	1,603.3 1,111.7 190.3 2,757.3 2,313.3 
Chi-square = 2.93 

1963: 
Observed .............. 2,398.0 	1,798.0 1,135.0 180.0 2,764.0 2,354.0 
Expected .............. 2,344.0 	1,745.8 1,119.2 180.8 2,788.6 2,328.0 

Chi-square = 3.55 

Observed ............... 
Expected ............... 

1964: 
Observed .............. 2,316.0 	1,944.0 1,152.0 166.0 2,799.0 2,392.0 

2,292.0 	1.876.5 1,125.8 173.0 2,818.0 2,342.1 
Chi-square = 5.49 

Expected ...............

1965: 
Observed .............. 2,234.0 12,075.0 1,174.0 153.0 2,838.0 2,409.0 
Expected .............. 2,245.0 	1,996.4 1,131.5 166.8 2,845.6 2,355.7 

. 

. 
. 

.Chi-square = 6.87 

1966: 

. 

Observed .............. 2,171.0 	2,130.0 1,186.0 146.0 2,880.0 2,423.0 
Expected .............. 2,202.4 	2,106.4 1,136.6 161.7 2,871.7 2,368.8 

Chi-square = 5.65 
. 
. 
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The results suggest that the Markov model is a viable mechanism for 
estimating future trends of tnanufacturing activity. Within the framework of 
the analysis two sets of forecasts can be generated: (1) the spatial rearrangement 
of manufacturing establishments for the six state system, and (2) the internal 
structural dynamics for the Province and the various states. Conceptually, 
individual industry forecasts for the whole province as well as for the selected 
states can also be projected. Operationally, however, this would be too time 
consuming and is beyond the scope of the present study. Instead, forecasts are 
projected only for selected spatial states and for selected industries of the whole 
province for which the respective stochastic matrices are estimated from a large 
number of observations. 

Forecasts for Number of Establishments 

The total number of establishments with at least two employees, sawmills 
excluded, for the Province of Ontario can be projected by successive powering of 
either the total average structural matrix or the average spatial matrix. Successive 
powering ol' the spatial matrix provides the 1962 - 75 estimated trend line shown 
in Fig. 6.6, and the successive outcomes of each iteration for 1967- 75 with the 
provincial totals are shown in Table 6.27. 

Application of the Markov procedure to the total structural matrix provides 
estimated size distribution vectors for each point on the curvilinear trend line in 
Fig. 6.6. Theoretically, successive powering of the spatial and structural matrices 
should provide identical totals but, in practice, differences of the estimated 
parameters resulting from approximated Markov processes contingent upon the 
classification of states create inequalities. By 1970, for example, the structural 
matrix projects a total of 11,308 plants and for 1975, 11,716. The respective 
estimated size distributions of these establishments are shown in Table 6.28. 

T'BLE 6.27. Expected Distribution Vectors 1967 -75 for the 
Spatial Matrix 

Year Toronto 
Toronto 
suburbs 

Large 	Large 
urban 	surIs 

Small 
urban 

Rest of 
Ontario 0  T tal 

2,164 2207 1,141 157 2.896 2,381 10,946 1967 	....................... 
2,122 2,300 1,145 154 2.919 2,393 11,040 1968 	....................... 

1969 	....................... 2,097 2,385 1,148 152 2,941 2,405 11,127 
1970 	...................... 2,069 2,463 1,152 149 2,961 2,416 11,209 
1971 	...................... 2,043 2,534 1.155 147 2.980 2,427 11.285 

2,020 

. 

2,600 1,157 146 2,999 2.438 11,360 
1973 	......................1,999 

. 

2,661 1,160 145 3,016 2,448 11,428 
1972 	....................... 

1974 	......................1,980 2,716 1,162 144 3,032 2,458 11,492 
1975 	......................1,963 2,767 1,164 143 3,048 2,467 11,552 
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TABLE 6.28. Expected Size Distribution Vectors 1970 and 1975 

Year 1 2 3 4 5 6 7 

1,185 1,583 1.391 1.494 1,227 1,094 909 
1,182 1,584 1,402 1,521 1,260 1,135 953 

8 9 10 11 12 13 14 

1970 ....................... 
1975 ....................... 

738 598 430 281 172 98 113 1970 ....................... 
1975 ....................... 781 644 474 320 203 118 141 

The elements of these vectors show clearly that although the total number 
of establishments will continue to increase at a significant pace - a predicted 
increase of almost 1,000 from 1961 - 75 - the actual size distribution will change 
very slightly. Most of the change will occur in the higher size categories but even 
by 1975 there will still be a greater proportion of small establishments than is 
predicted by the lognormal distribution (see Fig. 6.7). 

Projected trend lines for individual industries will, of course, assume 
different configurations depending on the initial stochastic matrices. As indicated 
in Chapter V the two largest industries, in terms of number of establishments, 
with contrasting birth and death rates resulting in differential expansions, are 
metal fabricating, and foods and beverages. Successive powering of the respective 
average transition matrices yields the trend lines shown in Fig. 6.6. It is expected 
that the sharply increasing trend line for the metal fabricating establishments will 
continue to climb, at least to 1975, but the slightly decreasing trend line for foods 
and beverages is expected to level off after 1971 and maintain approximately 
2,000 establishments. If total population continues to increase at its existing rate 
then we may expect a greater concentration of food and beverage output among 
a slightly greater proportion of medium size and large scale production units. Such 
a trend probably results from recent technological innovations in the manufacture 
of less perishable pre.packed food products which are not so market oriented as 
they have been in the past. Moreover, improvements in transportation facilities 
have also encouraged food and beverage plants to take advantage of scale-
economies in large, well integrated establishments. 

Predicted changes in the annual size distribution for foods and beverages 
are shown in Table 6.29. The significant decrease in the predicted number of 
establishments with less than 18 employees and the marked increase in the 
predicted number employing between 28 and 960 people has the effect of 
straightening the upper tail of the distribution drawn on logarithmic probability 
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paper (Fig. 4.7 and Fig. 6.8) and by 1975 it is predicted that there will be fewer 
"small" establishments in the food and beverage industry than one might expect 
from the lognormal distribution. In contrast, each size category in the metal 
fabricating industry is expected to increase its number of establishments (Table 
6.30). These changes are proportionately equal in most size categories so that the 
form of the expected distribution in 1975 will be very similar to that estimated 
for 1962 (Fig. 6.9). 

TABLE 6.29. Lxpected Size Distribution Vectors for Food 
and Beverages, 1962-75 

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1962.... 428 421 350 284 207 162 123 90 71 48 31 12 6 8 
1963.... 404 394 336 282 213 164 125 93 75 48 31 13 7 8 
1964.... 383 375 324 279 216 166 126 95 79 49 31 14 7 8 
1965.... 366 360 314 276 218 168 128 98 82 51 32 15 7 8 
1966.... 353 348 306 273 218 170 130 100 85 52 32 16 8 8 
1967.... 342 339 299 270 218 171 132 102 87 54 33 17 8 8 
1968.... 332 331 293 267 218 172 134 103 89 55 34 17 8 8 

196 	..... 325 324 288 264 217 173 135 105 92 57 34 18 9 8 
1970 319 319 284 261 216 173 136 107 94 58 35 19 9 8 

314 315 281 259 215 174 137 108 95 60 36 19 9 8 1971 .......
1972 310 311 278 257 214 174 138 109 97 61 37 20 9 8 

307 308 275 256 213 174 139 110 99 63 38 21 10 8 1973 .......
1974 304 306 273 254 212 174 140 111 101 64 39 21 10 8 

1975 302 304 272 253 211 174 140 112 102 65 40 22 10 9 

TABLE 6.30. Expected Size Distribution Vectors for Metal 
Fabricating, 1962, 1970 and 1975 

Year 1 2 3 4 5 6 7 8 91011121314 

1962 156 197 199 213 181 144 99 69 50 35 27 15 6 2 
1970 172 247 269 297 266 207 169 122 76 59 52 31 15 7 
1975 180 260 280 320 300 232 186 149 90 64 58 35 17 9 
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The long-term spatial trends of Ontario's manufacturing activity are 
observable from the equilibrium vector of the average spatial matrix. When 
normalized this vector takes the form: 

(.153, .275, .094, .013, .256, .209) 
and is very similar to the initial distribution of 

1961: 	(.240,.141,.107,.020,.266,.224) 
except that in 1961, 24% of Ontario's manufacturing was located in Toronto and 
14.l in the suburbs; in the limiting equilibrium state we would expect to find 
15.3% in Toronto and 27.5% in the suburbs. Separate trend lines for these two 
areas up to 1975 were shown in Fig. 6.6. For Toronto two trend lines are 
presented: one is derived from powering the spatial matrix for all establishments 
in Ontario and the other is given by the structural matrix for Toronto. In the 
latter matrix relocations out of the city are added to the death vector and 
relocations into the city are added to the birth vector. Although differences 
exist between the two trend lines the maximum deviation is 1.5% for 1965 and 
is not considered significant enough to detract from the value of the forecasts. 

Changes in the internal structure of Ontario's manufacturing activity are 
provided in Table 6.31; by 1970 Toronto will have far more small and medium 
size establishments than is predicted by the lognormal distribution (Fig. 6.10). As 
indicated in Chapter V, this trend is a result of the increasing tendency of large 
establishments to relocate to the suburbs rather than as a result of an increasingly 
high birth rate among the smaller establishments. The total effect as indicated in 
Chapter V is to emphasize the growing phenomena of an industrial doughnut 
centred around the city of Toronto. 

TABLE 6.31. Expected Size Distribution Vectors for Toronto, 
1962- 75 

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

302 325 291 328 291 262 189 136 102 68 38 23 15 11 
1963 278 318 279 324 289 255 187 130 102 65 39 23 15 11 
1964 262 309 272 320 287 249 184 127 100 63 39 24 16 11 

250 300 265 315 284 245 181 124 99 61 39 24 16 12 
1966 241 293 260 311 280 241 178 121 97 60 39 24 16 12 

1962 ....... 

1967 235 287 256 307 277 237 175 119 95 59 38 24 16 12 
1968 229 282 253 304 274 235 172 117 94 57 38 25 17 12 

1965 ....... 

1969 226 278 250 301 272 232 170 115 93 56 38 25 17 12 
1970 223 275 248 298 270 230 168 114 91 55 37 25 17 13 
1971 220 273 246 296 267 228 166 112 90 55 37 25 17 13 
1972 219 271 244 294 265 226 164 111 89 54 37 25 17 13 
1973 217 269 243 292 263 224 163 110 88 53 36 25 18 13 
1974 216 268 242 291 262 223 162 109 87 52 36 25 18 13 
1975 215 267 241 290 260 221 160 108 86 52 36 25 18 14 
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Generalizations concerning the spatial interdependence of Ontario's manu-
facturing establishments among the various states can be abstracted from 
information contained in the matrix of mean first passage times. Following 
the procedure outlined in Appendix A the mean first passage times for the average 
spatial matrix are given in Table 6.32. A measure of their reliability is given by 
the matrix of standard deviations in Table 6.33. 

This matrix shows that the means cannot be taken as typical values so that 
they are best discussed in relative terms. In general. the "migrant distance" from 
Toronto to other larger urban areas is five times greater than that from Toronto 
to its suburbs on the oilier hand, the migrant distance from the suburbs to 
Toronto is almost as great as any from any other state. Perhaps the most 
surprising aspect is the exceptionally high migrant distance from the four larger 
urban centres to their respective suburbs in relation to the migrant distances 
from these centres to other areas, especially other small urban centres and 
suburban Toronto. Although these analyses indicate that the Markov procedure 
as used in this study has a limited ability for long-term forecasts the technique 
remains attractive for analysing differential movements within a given system of 
states. One of the main attractions is that such a system can be enlarged to any 
size so that generalizations concerning migration differentials for a large number 
of areas can be readily obtained from the same simple matrix operations used 
for a small system of states. 

TABLE 6.32. Matrix of Mean First Passage Times 

1 
T oron 0 

2 
Toronto 
suburbs 

3 
Large 
urban 

4 
Large urban 

suburbs 
5 

Small 
urban 

6 
Rest of 
Ontario 

57. 2 320.3 1,547.0 4,009.7 503.8 595.1 
635. 1 31. 5 1 543.2 4,008.0 501. 1 579.6 
662.8 428.8 93.0 3,624.0 495.5 663.7 

2............................. 

663.3 427.5 1,064.3 715.0 454.2 502.9 
3............................. 
4............................. 

663.7 422.8 1, 543.9 4,009.2 32.7 571.9 5............................. 
6 ............................. 665. 2 422.1 1,542.4 3,993.4 423.7 41.5 

TABLE 6.33. Matrix of Standard Deviations 

1 
Toronto 

2 
Toronto 
suburbs 

3 
Large 
urban 

4 
Large urban 

suburbs 

5 
Small 
urban 

6 
Rest of 
Ontario 

264.6 402.5 1,535.9 3,993.2 499.4 606.3 
650. 7 156.6 1.535.9 3,993.2 499.3 605.5 
651. 1 416.8 523.7 3,974.6 499.2 606.5 

1 ............................. 
2............................. 

651.4 416.7 1,459.9 2. 278.5 496.4 596.7 
3............................. 
4 ............................. 

651. 5 416.7 1,535.9 3,993.2 175.0 604.8 5............................. 
6 ............................. 651.5 416.7 1,535.9 3,993.1 491.4 217.9 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The study's twofold aim, to analyse recent trends of selected aspects in 
Ontario's manufacturing activity and to project these trends through an 
operational forecasting model, has been approached in a Markovian framework. 
Several recent studies have suggested that Markov chain analysis may be a viable 
mechanism for analysing changes in the locational patterns of industrial 
activity: this study has attempted to demonstrate that it can be a valuable 
analytic concept possessing considerable flexibility for more extensive and 
detailed applications. 

The spatial and structural dynamics of manufacturing activity have been 
examined in terms of the establishment which is considered to be the most 
appropriate variable for analysing industrial migration patterns. Analysis of the 
structural dynamics has focused on frequency size distributions and is accom-
plished within the conceptual framework of Gibrat's law of proportionate growth 
embodied in the Pareto and lognormal distributions which can be generated by a 
simple stochastic or Markov process. The distribution of Ontario's manufacturing 
establishments is closely approximated by the lognormal model but only large 
plants with more than 400 employees fall within the range of the Pareto tail. 
Among the permanent establishments which exhibit Brownian movement Gibrat's 
law describes very well the changes in the configurations of the respective 
frequency distributions; the Markovian matrices indicate that although there is a 
slight tendency towards a systematic decrease in the variance of proportionate 
growth with increasing size of plant, all plants, regardless of size, have an almost 
equal probability of increasing to the next higher size category as of decreasing 
jO the next smaller size category. 

The dispersive tendency of the permanent establishments to change the 
form of the prevailing distributions for all establishments is offset by a birth and 
death process which has marked sectoral and spatial variations. Our knowledge 
of the causes for these variations is still limited and if we are to concern ourselves 
with influencing or planning future industry patterns much more detailed and 
extensive research is required. 

The successful application of a Markov chain model to the analysis of any 
social science data depends in part on a meaningful system of states, the selection 
of which is a fundamental problem of Markov chain analysis. In many cases the 
adopted system of states is defined by the available data but in this study the 
system of states for the structural matrices is calibrated in accordance with the 
size frequencies computed for the evaluation of Gibrat's law of proportionate 
growth. The system of spatial states, however, requires more subjectivity and 
emerges from the analysis of recent spatial trends in Ontario's manufacturing 
activity. 



Iii :iiial\ ii c tCk 	H 	itLml Ii 	HLC 	eaItotc('i proviie 

JctiilcI or causal relationships of the obscrved spatial patterns since such 
i-elatioiiships, especially those concerned with spatial variations in industrial 
)pport unities for new plants, branch plants, and relocations, would be more 
appropriately analysed with the aid of questionnaire data drawn from a wide 
range of plants distributed across Ontario. Such data would facilitate the 
analysis of spatial linkages, site factors, and entrepreneurial perception of 
locational attractiveness. Nevertheless, the statistical analyses of this study have 
shown that between 1961 and 1965 the dominant trend in Ontario's manufac-
turing activity was towards the development of an industrial doughnut centred 
on the city of Toronto. Toronto has declined both relatively, due largely to a 
negative birth/death differential, and absolutely, as a result of the significant 
number of relocations to the surrounding suburbs and to smaller towns and 
cities elsewhere in Ontario. On the other hand, the ring of intensive development 
in suburban Metropolitan Toronto as well as in the fringe areas of Chinguacousy, 
Toronto, Vaughan, Markham, and l'ickering townships, is being accentuated by a 
highly favourable birth/death differential, the relocation of plants outwards 
from the city of Toronto as well as the relocation inwards from the rest of 
Ontario, and the establishment ofa large number of foreign-owned branch plants. 
Flie net result is one of increasing concentration of manufacturing establishments 
in and around Metropolitan Toronto. Outside this area, the Kitchener-Waterloo-
Preston complex is seen as an important growth centre and if present trends 
continue it should firmly establish itself as a dominant secondary area of 
manufacturing activity. As Ontario's second major "Growth Pole" it is favourably 
situated to Hamilton, the major producer of unfinished steel products used as 
input to the "light industries" which typify the industrial structures of both 
\lctropolitan Toronto and the Kitchener-Waterloo-Preston complex. It is suggested 
:L.t. if in the future, industry is to be "steered away" from Metropolitan 

i - onto, the Kitchener-Waterloo-Preston complex, where external economies 
apparent, should be considered the prime reception area. 

The analysis of these trends substantiates their projection in the framework 
i two interrelated Markovian models. Simple Markov models using one year 

tiansition matrices do not provide adequate test predictions for the study period, 
but the refinement of the matrices involving the fitting of smoothing surfaces and 
the fractional disaggregation of long period matrices increases the stability of the 
annual estimates. The introduction of these two concepts to Markovian analysis 
provides scope for further research; both techniques are particularly useful for 
investigations lacking the detailed data sources available for this study. The 
concept of fitting matrix surfaces is easily extended to fitting surfaces to the 
nInerved state probability distributions, and where the underlying processes are 
irkntifiable the technique may be more viable than least squares estimates based 
ni -  linear and quadratic programming procedures. Together, these refinements 

c Markov chain models an advantage over conventional data analysis techniques 
ii that they provide a means for estimating a growth process, in the absence of 

iritcrrceional establishment movements, using only historical data on interregional 
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establishment distributions. The concept of fractional disaggregation of long-
period matrices, in the absence of short-term transition matrices, is particularly 
attractive for deriving short-term estimates. Where adequate data are available 
the best results are obtained from average matrices which compound all the 
information contained in the parameters of a series of stochastic matrices. 
Successive powering of both average spatial and structural matrices provides 
iiiight into the short- and medium-term trends of Ontario's manufacturing 
tt lvii V. 

'rojectiOns of the 1961 -65 trends indicate a continued increase in the total 
mmnhcr of establishments for the province, but in the city of Toronto where 
there was a sharp decrease in the number of establishments between 1961 and 
1965 the downward trend is anticipated to level off between 1970 and 1975. One 
independent interpretation that may be attached to such a levelling off is that the 
continued growth of Metropolitan Toronto is contingent on a solid core of 
industrial activity characterized by types of operations that are highly dependent 
on agglomeration economies. On the other hand, the projected continued upward 
swing in the number of establishments in the suburbs almost parallels the 
estimated provincial trend line. In the short term this seems most likely, though 
a physical saturation point must inevitably be reached. Such constraints are not 
embodied in the existing model but future research might consider further 
refinements. Similar configurations of the estimated trend lines for spatial units 
are also evident for industrial groups. All these trend lines, however, have 
relevance only in the framework of the simplifying and highly generalized 
Markov assumptions, especially that of stationarity which is dependent on the 
tlrst-)rder assumption and adopted classification of states. 

I his study's exploratory experiments represent but one step in what might 
be envisioned as the beginning of a much broader research design oriented 
towards a deeper understanding of the structural and spatial dynamics of 
manufacturing activity. The analyses have used three variables only: size of 
establishment measured by total employment, type of activity, and location. 
but future research could augment them with other variables such as value added, 
sales or cost of materials. Moreover, changes in the pattern of manufacturing 
establishments are not necessarily the same as those changes exhibited by other 
variables such as total employment; thus a possible related avenue of research 
might be the application of Markov chain analysis to small area labour force 
estimation. It is hoped that this study will motivate further research in this and 
It icr d irectitlils. 



APPENDIX A 

For regular Markov chains two important theorems relating to the existence 
and uniqueness of an equilibrium solution are provided by Kemeny and Snell, 
1967, p. 70 . 

Theorem I 
If P is a transition matrix for a regular Markov chain then: 

(I) the powers of P approach a matrix A 
(2) each row of A is the same probability vector a 
(3) the elements of a are all positive. 

Theorem II 
If P is a regular transition matrix for a regular Markov chain and A and a are 

is in Theorem I, then the vector a is the unique probability vector such 
lhit a P = a. The matrix A is defined as the limiting matrix. 

These theorems are best exemplified by specific reference to a hypothetical 
example which extends the simplified single town example of Chapter 11. Consider 
a constant sample of manufacturing establishments distributed in three towns 
possessing varying degrees of industrial attractiveness. Assume that at time to, 20 
of the total number of plants of the three towns are located in town A, 20 are 
in town B, and 60; are in town C. Thus, the initial state of the system can be 
represented by the initial distribution vector - p(0) - which can be expressed as: 

p(°) = (.2, .2, .6) 
Assume also that the probability of a manufacturing establishment relocating 
from one state (town) to any other state during a specified time period is 
described by the following transition matrix: 

S 1 	S 2 	S 3  
(town A) (town B) 	(town C) 

	

S 1  (town A) 	.6 	.2 	.2 

	

P = S,(town B) 	.3 	.4 	.3 

	

S 3 (town C) 	.2 	.2 	.6 
The matrix shows that the probability of a plant's remaining in town A during a 
given time period is .6, whereas the probability of a plant's moving from town 
A to town B is .2, and so forth. Given this initial transition matrix it is now 
possible to compute the transition probabilities after I ,2,3, . . .n, stages by 
calculating the relevant power of the matrix. Thus after two stages: 

S 1  S2  S 3  
S 	.46 .24 .30 

p2 = S2 	.36 .28 .36 
S 3 	.30 .24 .46 
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and after four stages: 

S i 	S2 	S 3  

S 1  .3880 .2496 .3624 
P4  = S 2  .3744 .2512 .3744 

S 3  .3624 .2496 .3880 
This displays a rapid convergence towards some average state of the system, which 
is represented by the limiting or A matrix: 

S i  S 2  S 3  

S 1 	.3750 .2500 .3750 
A = 	S2 	.3750 .2500 .3750 

S 3 	.3750 .2500 .3750 
and the probability vector ct = (.3750, .2500, .3750) holds the system in 
equilibrium. In the present context, the notion of equilibrium can be defined 
as that distribution for which the average number of plants entering a given 
town per period equals the average number of plants leaving it. The concept of 
equilibrium is thus statistical in nature for the industry or system and dynamic 
for the individual plant (Adelman, 1958, p. 896). In Markov chain analysis the 
equilibrium distribution is of interest not as a forecast of the future state of the 
industry but as a projection of what it would be if the observed pattern of move-
inent continued (Padberg, 1962, p.  192). Thus the proportion of plants in any one 
town at the end of each time period is derived by multiplying the pN  transition 
matrix by the initial distribution vector p(0). After two stages, for example, the 
proportion of plants in each town is given by: 

p(0)P 2  

The limiting probability a j  of being in state Sj is independent of the starting 
state and represents the fraction of the time that the process can be expected to 
be in state S j  during a large number of transitions and after a large number of 
steps from p(0). This arises from the law of large numbers for regular Markov 
chains. Applying this theorem to the example above, after a large number of 
time periods 37.5% of the plants will be in town A, 25% will be in town B and 
37.5t will be in town C. 

The limiting matrix is but one important property of a regular Markov 
chain. Most of the other interesting descriptive quantities for the behaviour of 
these chains are computed from the Z or fundamental matrix (see Kemeny and 
Snell, 1967, pp.  75 -84). They are reproduced below in a simplified format, 
again in the context of the hypothetical three town example. In matrix notation: 

Z = (l-(P-A))-' 
where 	 I is an identity matrix 

P is a regular matrix 
A is the limiting matrix of P. 
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For our example, 
SI 	S2 	S3  

S 1 	1.36458 -0.06250 -0.30208 
Z = S2  -0.09375 	1.18750 -0.09375 

S 3  -0.30208 -0.06250 	1.36459 

The Z matrix describes how the system approaches equilibrium from a given 
initial distribution: from any initial state, the expected percentage of time the 
system will spend in state j approaches a j  as the number of time periods n be-
comes large: however, starting from a given state i, this expected percentage differs 
from a by approximately (Z1-a)/n. 

The Z matrix can he employed also to provide a descriptive measure of an 
areas industrial stability. Several studies (e.g. Kerr and Spelt. 1957: Moses and 
Williamson, 1967), have shown, for example, that core areas of large cities act as 
incubator areas for numerous small establishments which, once nurtured, relocate 
to less congested areas where expansion is more practical. Once born, therefore, 
how long does it take an average plant to move from Si to S j  for the first time? 
The distribution describing this random variable is called the first passage time 
distribution, and the expected value is called mean first passage time. The matrix 
of mean first passage times is denoted by M and the entries, the mj j 's. give the 
expected time to move from S i  to Sj  for the first time. For a regular Markov chain 
the mean first passage time matrix is given by: 

M = (I Z + EZdg )D 

where 	I is an identity matrix 
Z is the fundamental matrix 
E is a matrix with all entries I 
Zd g  results from Z by setting off-diagonal entries equal to 0 
D is the diagonal matrix with j-th entry I 

For our three town example: 

Si S2  S 3  
S 2.667 5.000 4.444 

M = S2  3.889 4.000 3.889 

S 4.444 5.000 2.667 

Since the entries mj  = M 1  [f11 represent the mean number of time periods - in 
our case one year intervals - to arrive in any given state, the average plant would 
take 5.0 years to relocate from town A to town B. and 3.9 years to relocate from 
town B to town C. 
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Computation of the variance of the first passage times proceeds as a simple 
matrix operation: 

Var 1 [f,] = M 1 [f2 ] - M[f]2  
Kemeny and Snell denote M 1[f2 1 ] by W which represents the matrix of second 
moments of the first passage times. The matrix W satisfies the equation: 

W = M(2ZdgD - I) + 2(ZM - E(ZM)dg) 

where (ZM)d g  results from the product of the fundamental and mean first 
passage matrices by setting off-diagonal entries equal to 0. The entries of the 
matrix M 1ffJ 2  are the squares of the first moments for the M matrix. The 
hadamard product of M is best denoted by M sq . A simple matrix operation gives: 

{ Var 1 [fJ} 	V = WM sq  

(Matrix notation in this equation differs from that used by Kemeny and Snell. 
They denote Var 1 [f] by M2 .) 

so that 
S 1  S 2  S 3  

S 1  9.630 20.000 14.074 
V= S2  13.087 18.600 13.087 

S 3  14.074 20.000 9.630 

Since, in the present example, the standard deviations of the first passage 
times - the V 1 's - are of the same order of magnitude as the means - the 
mjj 's - the means are not to be taken as typical values. 

The most important descriptive measure is derived from the Central Limit 
Theorem for Markov chains. The computation of this property requires the 
elements of the limiting covariance matrix. The entries, the c d 's - of the C 
matrix are given by: 

c ij  = a 1Z 1  + aZ - 	- a 1 a3  
where 	 a 1  are the limiting probabilities 

Z jj  the entries of the fundamental matrix 
S jj  = 1 i=j 

= 0 i*j 

In the illustrative example the limiting covariance matrix is: 
S I  S2  S 3  

S 1  0.50781 -0.14062 -0.36718 
C = S2  -0.14062 0.28125 -0.14062 

S 3  -0.36718 -0.14062 0.50781 
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The limiting variances, the diagonal entries of C, are denoted by: 
= [b] = [c] 

and in the example the vector 
13 = (0.50781,0.28125,0.50781) 

These quantities appear in the Central Limit Theorem defined in the following 
manner by Kemeny and Snell, 1967, P.  89. For any regular Markov chain, let 
y(n) be the number of times in state S i  in the first n steps and let CI = aj  and 
3= b respectively be the fixed vector and the vector of limiting variances. 
Then if b * 0 for any numbers r < s 

(n) - na 	 i Prk<.' 	_!_.<si 	>_.._.. 	e 	dx Ir '] 
as n - o, for any choice of starting state k. 

Using the alpha and beta values the Central Limit Theorem gives for town B 
(S2 ) in the illustrative example: 

- _25n 

.J.28 1 25 n 
which would for large n have approximately a normal distribution. The high 
limiting variances, however, suggest the low predictive value for the long term of 
this illustrative model. For example, after approximately 100 time intervals 
(years) the percentage of plants in town B would, with probability 0.68, not 
deviate from 25% by more than 

sJ 100 x .28 12 = 5.3% 
Thus the attractiveness of Markovian theory emanates from both its 

operational simplicity in the form of well tested matrix techniques and its 
ability to provide a probabilistic measure of the reliability of its forecasts. 



APPENDIX B 

MAXIMUM LIKELIHOOD RATIO CRITERION TEST FOR MARKOVITY 

This tests the null hypothesis that a stationary transition matrix is of "zero" 
order, that is p = p for all i, against the alternative of a first-order chain. 
The ratio criterion is: 

X= 7 (P 	 (1) 

where the margmal probability 

I 	1.1 

and 	 Pij = f1  I ;f1  = f1  / f1 . 

and f, is the number of observations in each cell. The required statistic is-2 logX 
which under the null hypothesis has an asymptotic Chi-square distribution with 
(n-I)2  degrees of freedom. Equation (1) may be written as: 

-2 log X= 2 	log ii 
1=1 jsI 	f 1 f J  

The logarithms are Naperian. 
Reference: Anderson and Goodman, 1957. 

MAXIMUM LIKELIHOOD RATIO CRITERION TEST FOR A FIRST-ORDER 
MARKOV CHAIN 

This tests the null hypothesis that the chain is first-order against the alternative 
that it is second-order.The null hypothesis is that p1 jk = P2Jk = = Pnik = Pjk' 
for j, kl, . . . n. The likelihood ratio criterion for testing this hypothesis is: 

fr (P / Pjjk)hjk 
i,j,k1 

where 	 = 	/ 	ijk = .Jk 
/

ik 

and 	 Pjk = jk / 1 fjjk = fijk 1 t i.  

Under the null hypothesis, -2 log X is asymptotically x2  with n(n-1)2  degrees of 
freedom. 
Reference: Anderson and Goodman, 1957. 
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3. PROBABILITY TREE FOR A FIRST-ORDER MARKOV CHAIN 

1+1 t+2 
k ktl 	 S1 (105) 

S 1  S2(5) 

S3(I0) 

S1 	(2) 

<(40) s2 S2(28) 

S3(10) 

I 	(2) 
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S1 (28) 

S3 	 S2 (2) 
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INFORMATION TABLE FOR STATISTICAL TESTS OF HOMOGENEITY 

The conditional homogeneity component provides a test of the null 
hypothesis that r realizations come from the same (unspecified) matrix of 
transition probabilities of a Markov chain of order 1. The indices used here 
differ from those of the reference. 
Component 	 Information 	 D.F. 

due to 

(i) 
homogeneity 

I 
2 	'ki. log (r-l)(n-1) 
k=I 	i=t 

(jfi) 
r 	nfl 

2 	kij log 
f kij n(r-1)(n-I) 

conditional k=I 	L=i j=1 kI. 

homogeneity 

(i,j) 2 	fki; log (r-l)(n 2 .I) 
homogeneity k1 	11 	j=1 

Reference: Kuilback, Kupperman and Ku, 1962. 
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