

* 54186

SURVEY OF ALBERTA APPRENTICES AND JOURNEYMEN

8810

Microdata Documentation

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

TABLEOFOCNTENTS

1. INTRODUCTION
2. SURVEY OBJECTIVES
3. POPULATION
4. SURVEY DESIGN
4.1 LFS Survey Design
4.1.1 Self-representing Units
4.1.2 Non-self-representing Units
4.1.3 Special Areas
4.2 Sample Rotation
4.3 The Survey of Alberta Apprentices and Journeymen
5. COLLECTION
6. PROCESSING
7. DATA OUTPUT
8. ESTIMATION
8.1 LFS Weighting
8.2 Weighting for the Survey of Alberta Apprentices and Journeymen
8.3 Types of Estimates
8.4 Weighting Policy
9. RELEASE POLICY AND DATA RELIABILITY
10. SURVEY DOCUMENTS
11. RECORD DESCRIPTION
12. SAMPLING VARIABILITY TABLES
13. TECHNICAL SPECIFICATIONS

This package should enable analysts to access and manipulate the microdata file from the 1988 Survey of Alberta Apprentices and Journeymen (APP). Any questions about the data set or its use should be directed to:
T. Scott Murray

Special Surveys Group
Statistics Canada
5D5 Jean Talon Building
Ottawa, Ontario
k1A 0T6
(613) 951-9476

Both Statistics Canada and Alberta Manpower provided financial support for the current study. The contact in Alberta Manpower is:

```
Lawrence Bortoluzzi
Research Manager
Demography and Immigration Planning Secretariat
Alberta Manpower
Park Square
l0001 Bellamy Hill
Edmonton, Alberta
T5J 3C1
(403) 427-8501
```

Apprenticeship is a combination of on-the-job and technical training which leads to certification as a qualified journeyman in a specific trade. There are 52 trades designated in Alberta. Alberta Manpower administers the program, which is jointly funded by the federal and provincial governments.

To become an apprentice, an individual must be at least 16 years old and have a minimum level of education (usually Grade 9). The individual must also be employed with an employer who is a journeyman or employs a journeyman in the required trade. Once this condition is met, the individual can become a registered apprentice by signing a contract with his employer. Depending on the trade, the term of apprenticeship varies in length from two to four periods, generally two to four years. On successfully completing the term of apprenticeship, the apprentice becomes a journeyman on receiving an Alberta completion of Apprenticeship Certificate and a Journeyman Certificate informally known as a 'ticket'. Journeyman certification can also be obtained by other means, such as the successful completion of the Interprovincial Red Sear program in another province; practical experience and successful completion of an examination; or accredited programs and successful completion of an examination.

At present in Alberta, there are approximately 18,000 registered apprentices and $40,000-60,000$ journeymen. Under the apprenticeship and trade certification program, Alberta Manpower monitors the status of registered apprentices and schedules them for technical training at post-secondary institutions. Therefore, it is possible to determine when apprentices become unemployed in their trade. With current data, however, it is not possible to determine if apprentices not working in their registered trades are working in related occupations.

Once an apprentice has received a journeyman certificate, it is possible to determine if he/she is active in his/her trade only if he/she is working for an employer who has apprentices registered. As a result, nothing is known about those journeymen working for employers who do not have registered apprentices in their trade or about journeymen who are not working in their registered trade themselves.

I I

 I I I I I I I
I I
I
I

The survey data will be used to identify, in a reliable manner, Alberta-registered apprentices and Albertacertified journeymen who are active in their trade, as well as the trades in which they are active. This data will then be used to help plan enrollment levels in the various apprenticeship programs for the next five to ten years. The data will also be useful in the refinement of labour supply projection models developed by Alberta Manpower.

Data were collected for the civilian non-institutional population of Alberta aged 16 to 65. Residents of Indian reserves were excluded from the survey population. The study will use two reference periods:
(1) the LFS reference week in October, 1988 , i.e., the week of October 17-22;
(2) the 12 months preceding the LFS reference week in october, 1988.

I
I

The Survey of Alberta Apprentices and Journeymen was conducted as a supplementary survey to the Canadian Labour Force Survey (LFS) of October 1988. Hence, the survey design is based on the LFS frame and sampling procedures. This section provides a brief overview of the methodology of the LFS as well as highlighting those aspects of the survey design particular to the Survey of Alberta Apprentices and Journeymen.

4.1 LFS Survey Designl.

The LFS uses a multi-stage area sample which is based upon information from the 1981 Census of Canada. It has recently been redesigned to reflect the changes in population characteristics shown by the 1981 Census and to respond to changes in information needs. Basically, the sample consists of three main parts: selfrepresenting units (SRUS), non-self-representing units (NSRUS), and special areas. Each of these parts is discussed separately below, following a brief discussion of the stratification.

Stratification in an area frame is basically a process of classifying (usually compact) area units into certain collections called strata. Each of the ten provinces in canada is divided into a number of economic regions (ER's). An ER has areas of similar economic structure formed on the basis of recent information and is stable over a period of time. These ERs are treated as primary strata and further stratification is carried out within the selfrepresenting and non-self-representing parts independently in each ER.

1. A detailed description of the old design is available in the Statistics Canada publication entitled Methodology of the Canadian Labour Force Survey 1976 (catalogue 71-526). A description of the redesign can be found in the paper M.P. Singh, J.D. Drew and G.H. Choudry, "Post, ' 81 Censal Redesign of the Canadian Laboaur Force Survey", Survey Methodology a Journal of Statistics Canada, December 1984 (catalogue No. 12001 , Vol. 10, No. 2).

This stratification is carried out using the following methods: 1) using an optimization procedure which forms a prespecified number of strata, each of which is homogeneous with respect to up to 17 Census characteristics, (labour force, dwelling and population related variables) ; 2) using simple geographic criteria; or 3) using the optimization procedure with a constraint that geographic contiguity be maintained within strata.

4.1.1 Self Representing Units (SRUs)

The self-representing part of the sample comprises those cities whose population exceeds a certain predetermined value, this value varying from region to region. ${ }^{2}$. Some cities with population less than this lower limit are also classified as SRUs, in cases where they possess unique labour force characteristics. Within all SRUs, the sample is selected independently so that each of them is represented in the survey by a sample of its own papulation and hence, the name selfrepresenting'. Three different stratification schemes are used depending on the size and composition of the SRU. The larger SRUs are subdivided geographically into 'super-strata', within which non-geographic strata are formed using the optimization procedure. In the smaller block-faced SRUs, these optimal non-geographic area strata are formed directly. In the non-blockfaced cities with considerably less scope for stratification, simple geographic strata are used.

Within each stratum, a sample of clusters (normally a city block or block-face) is selected by a sampling procedure known as the ramdom group method. Clusters are randomized and assigned to groups and then within each group, a cluster is selected with probability proportional to the number of dwellings contained in it. Generally, six clusters (and in some cases, 12 clusters) are selected from each stratum.

The second and final stage of selection in the SRUS is the systematic selection of dwellings within selected clusters. This is done by first obtaining a listing of
2. SRUs are defined as cities giving a minimum sample yield of 50 dwellings. The minimum city size, therefore, varies due to the difference in sampling ratios from region to region.
the dwellings in each cluster and then performing the selection. On average, approximately 4-5 dwellings are selected from a cluster in block-faced areas and 6-8 dwellings in non-block-faced areas. Basic demographic information is obtained for all permanent residents of the household and LFS questionnaires are administered to all individuals 15 years of age or older, within a selected household.

In the 17 largest self-representing units, a special selection is made of large apartment buildings (30 or more units and 5 or more stories) to improve the representativeness of the sample and to reduce the variance of the sample estimates. The sampling procedure for the apartment sample is similar to that of the regular sample, each apartment building constituting a cluster.

4.1 .2

Non-Self-Representing Units (NSRUs)

The NSRUs are the areas outside the SRUs containing rural portions and small urban centers. Before discussing the selection stages used in the NSRUs, it is necessary to briefly describe the two methods of stratification and PSU formation.

In economic regions with sufficient NSR urban and rural populations (70% of the ERs), separate urban and rural strata are set up. Stratification is done using the optimization procedure separately within urban and rural portions. Each stratum of an NSRU within an economic region is delineated into a number of primary sampling units (PSUs). The delineation is done using a modified version of the optimization procedure used for stratification, so as to form similar rather than dissimilar groupings, each representing the stratum in which they are located with respect to the census characteristics.

In the remaining 30% of economic regions which do not have sufficient NSR urban and rural population for explicit urban/rural stratification, strata are formed using the optimization procedure and PSUs are formed in such a way as to represent the stratum with respect to the census characteristics and the urban/rural population split in the stratum (according to 1981 census figures). Within those PSUs selected for the
sample, urban and rural portions are sampled independently.

Two to four PSUs are selected in each stratum. Urban areas (selected urban PSUs or urban portions of selected PSUs where explicit urban/rural stratification was not done) are further subdivided into clusters; a cluster being a well-defined area with bourdaries recognizable both on maps and in the field. A number of clusters are selected from each group using systematic sampling with probability proportional to the number of households in it. Dwellings are systematically selected within selected clusters. From selected rural areas (consisting of nearby rural census enumeration areas or EAS), seondaries (EAS) and dwellings are selected as described for urban areas.

Special Areas

In addition to the SRUs, a small proportion of the LFS population is found in institutions such as hospitals, schools, hotels, on military establishments, in remote areas, etc. Because the labour force characteristics of people in these institutions are unique and because some of these areas are not regularly accessible to LFS interviewers, they are handled by the special area frame, which for sampling purposes is divided into the following strata: military establishments, hospitals and other institutions, and remote areas. It may be noted that only the civilian population living on military establishments is included in the survey and that in the case of institutions, inmates of the institutions are not included in the survey.

The special areas are sampled in three stages. The first stage units correspond to census enumeration areas and are selected systematically with probability proportional to size, the eligible labour force population as of the 1981 census being the size measure. Subsequent stages of sampling are clusters and households, as described earlier.

Sample Rotation

Each household in the LFS sample remains in the sample for a period of six consecutive months. After the sixth month, the household 'rotates out' of the sample and is replaced by a new household. One-sixth of the

I I I I I I
 I
 I I I I I I
 1

sample is rotated out in this manner each month and a new sixth is brought in to replace it. This rotation, as it is called, is done primarily to minimize the nonresponse that might occur if respondents were asked to remain in the survey for a longer period of time. The rotation procedure is designed in such a way as to effectively divide the whole sample into six equally representative parts. This facilitates subsampling of the LFS sample.

The Survey of Alberta Apprentices and Journeymen
the Survey of Alberta Apprentices and Journeymen was conducted on a subsample of the 0ctober 1988 Labour Force Survey sample. Five of the six LFS rotation groups were used, rotation groups $1,2,3,5$, and 6 . Each person residing in Alberta in one of these rotation groups aged 16 to 65 were asked the survey questions.

The interviewing was done using the regular interviewing procedures of the Labour Force Survey. Data were collected during the week of 0ctober 17-22, 1988. Most of the labour force variables relate to the reference week of October 9-15, 1988. Supplementary questions were completed for each person 16-65 years of age in the household.

PROCESSING
Data entry was completed in the Statistics Canada Regional offices using the mini computers situated there. Following capture, the data were subjected to validation, edit and correction procedures.

Partial non-response to the APP was identified by subjecting the raw data to an exhaustive computer edit. Records with missing or inconsistent data were imputed from similar records.
7.
data output
This microdata file represents the sole vector of dissemination planned by Statistics Canada for the Survey.

The principle behind the estimation procedure in a probability sample such as the LFS is that each person in the sample 'represents', beside himself or herself, several other persons not in the sample. For example, in a simple random sample of 2%, each person in the sample represents 50 persons in the population.

For the LFS, the file created for tabulation purposes contains one record per person in the sample. Each record contains all labour force and demographic characteristics concerning the selected individual. Instead of physically duplicating the sample record according to the number of persons that record represents, an overall weighting factor is placed on each record. The weighting factor refers to the number of records that a particular record represents in order to obtain population estimates. For example, if the number of persons who are married is to be estimated, it is done by selecting the records, referring to those persons, in the sample with that characteristic and summing the weights entered on those records.

In a probability sample, the sample design itself determines weights which must be used to produce unbiased estimates. Each record must be weighted by the inverse of the probability of selecting the person to whom the record refers (in the example of the 2% simple random sample, this probability would be 0.02 for each person and the records must be weighted by 1/0.02=50). This is called the simple estimate.

Since the Survey of Alberta Apprentices and Journeymen used a subsample of the LFS sample, the derivation of weights for the survey records is closely tied to the weighting procedure used for the LFS. The LFS weighting operation is described briefly below.

8.1

LFS Weighting
In the LFS, the final weight attached to each record is the product of the following factors: the basic weight, the cluster sub-weight, the balancing factor for non-response, the rural-urban factor, and the subprovincial and the province-age-sex ratio adjustment factors. Each is described below.

8.1.1 Basic Meight

The basic weight is essentially the inverse of the probability that the individual is selected in the sample.

Cluster Sub-Weight

The cluster delineation is such that the sample take increases very slightly with moderate growth. Substantial growth can be tolerated in an isolated cluster before the additional sample represents a field collection problem. However, if growth takes place in more than one cluster in an interviewer assignment, the cumulative effect of all increases may create a problem. In clusters where substantial growth has taken place, sub-sampling may be resorted to as a means of keeping assignments manageable. The cluster subwe ight represents the inverse of this sub-sampling ratio in clusters where sub-sampling has occurred.

8.1.3 Non-Response

Notwithstanding the strict controls in the LFS, some non-response is inevitable, despite all the attempts made by the interviewers. The LFS non-response rate is approximately 5%. For certain types of non-response (temporarily absent, refusal), if the previous month's data is available, it is imputed for the non-responding record.

In other cases non-response is compensated by dividing the sample into geographic balancing units. The weight of each responding record is increased by the ratio of the number of households that should have been interviewed, divided by the number that were interviewed. This adjustment is based on the assumption that the households that have been interviewed represent the characteristics of those that should have been interviewed. If this assumption is not true, the estimates will be somewhat biased.

Rural-Urban Factor
In NSRUs without sufficient rural and urban pópulation for explicit urban and rural strata to be formed, each

I I
 I

 I I II
I
I
I
I

I
I
primary sampling unit (PSU) is composed of both urban and rural parts. Information concerning the total population in rural and urban areas is available from the 1981 census for each PSU as well as for each economic region (a geographically contiguous subprovincial area). Using the selected PSUs only and dividing their 1981 rural or urban population by the known probability of selection a simple estimate' of the 1981 rural or urban population is obtained for each economic region (ER) in which explicit urban/rural stratification is not done. Comparison by ER with the actual 1981 rural or urban census counts indicates whether the selected PSUS over- or under-represent the respective areas. The ratio of the actual rural-urban counts is divided by the corresponding estimates. These two factors are computed for each relevant ER and are used in the form of ratio adjustments. They are computed at the time of selection of the PSUs and are entered on each sample record according to the appropriate area (rural or urban) of the NSRU. Changes in these factors are incorporated at the time of PSU rotations.

8.1.5 Subprovincial and Province-Age-Sex Adjustments

By applying the previously described four weighting factors, a valid estimate could be derived for any aggregates for which information is collected by the LFS. In particular, estimates of the total number of persons $15+$ in subprovincial regions comprised of 67 individual or combined economic regions and 24 large cities (census methropolitan areas) as well as in designated age-sex groups in each of the ten provinces are produced. Independent estimates are available monthly for the totals in each of these classes by projecting forward the 1981 Census counts. A 'raking ratio' procedure is applied in which two ratio steps are repeated or iterated until both the subprovincial and province-age-sex adjustment is done. Beginning the procedure with the weights produced as the product of the first 4 factors, for each adjustment and within each class, the independent estimate is divided by the sum of the weights and this factor is applied to the weights on records in that class. After these repeated adjustments have been made, the estimated aggregates will agree with the projected census counts for each classification.

I
 I
 I
 I

I
I
I
I
,
I
,

I
I

Weighting for the Survey of Alberta Apprentices and Journeymen

The principals of the calculations for the weights for the Survey of Alberta Apprentices and Journeymen are identical to those of the LFS. Three adjustments are made to the final LFS weights in order to derive a final weight for the individual records on the Apprentices and Journeymen Survey microdata file. The adjustments made to the LFS weights account for:
(1) a factor to adjust for the use of a five-sixth sample;
(2) a factor to adjust for the non-response to the Apprentices and Journeymen Supplement;
(3) a factor to adjust for subprovincial and provincial age-sex projections.

The first weight adjustment mentioned above is to account for subsampling of rotation groups.

The second is to account for the non-response rate to the Apprentices and Journeymen Supplement. Some households that responded to the LFS refused to respond to the supplementary questions.

The third adjustment, which is actually a series of adjustments, is identical to what is done for the LFS as outlined in 8.1.5.

8.3

Types of Estimates

Two types of estimates are possible from the survey of Alberta Apprentices and Journeymen: qualitative estimates (estimates of counts or proportions of people possessing certain characteristics) and quantitative estimates (estimates of total or average amounts). It should be noted that the data on the Apprentices and Journeymen Survey tape are almost exclusively qualitative in nature.

8.3.1 Qualitative Estimates

Qual itative estimates are estimates of the number or proportion of the surveyed population possessing certain characteristics. The number of persons in Alberta who are registered apprentices is an example of this type of estimate. These estimates are readily obtained by summing the final weights of the supplementary survey records possessing the characteristic in question.

8.3.2 Quantitative Estimates

A few variables on the Apprentices and Journeymen Survey microdata file are quantitative in nature (e.g., number of weeks looking for work by apprentices). From these variables, it is possible to obtain such estimates as the average number of weeks without work. These estimates are of the following ratio form:

$$
\text { est(average) }=\underset{Y}{X}
$$

The number (X) is a quantitative estimate of the total of the variable of interest (number of weeks without work). The denominator (Y) is the qualitative estimate of the number of participants (those persons who were apprentices).

8.4 Weighting Policy

Users are cautioned against releasing unweighted tables or performing any analysis based on uneweighted survey results. As was discussed in Sections 8.1 and 8.2 , there were several weight adjustments performed on the survey data. Sampling rates as well as non-response rates varied significantly from region to region within province.

I
I

I

I
I
I
I
I
I
I

TABLEONE

Interview/Non-Interview Classifications

Category	Code	Explanation
Interview	X	compteted interview = LFS questionnâre completed for all eligible members of the household.
	E	Parital interview - LFS questionnaire completed for some, but not all, eligible members of the household.
No-n-response	T	Househotd temporarity absent
	N	No one at home
	R	Refusal
	K	No interview due to circumstances within the household (e.g., sickness, death, language problems)
	A	No interviewer available
	L	No interview due to weather conditions
	2	'No Shows' - survey forms arrived too late for processing or were lost in the mail.
Vacant	V	vacant dweltings
	S	Vacant seasonal dwellings
	C	Dwelling under construction
	B	Usual place or residence elsewhere, military or embassy personnel
Non-existance	D	Dwelting was demotished, removed, converted into business premises or listed in error

> Noモe: The sampling variability policy should be applied to rounded estimates.

I
 I
 I
 I

I
I
I

I

I

RELIABILITY

!rs became familiar with the I before publishing or otherwise derived from the Survey of Journeymen microdata file.

```
mentation provides guidelines
    With the aid of these
    microdata should be able to
nt with those produced by
    conformance with the
or rounding and release. The
    into two broad sections -
    rounding policy.
```


delines

```
om this survey are based on a
mmewhat different figures might
zomplete census had been taken
aire, interviewers,
nethods, etc. than those
3rence between the estimates
    and the results from a
zr similar conditions is called
? estimate.
```

 ng error of the estimate, as
 measured from sample results
 estimate a statistical measure
 andard error, from the sample
 error, confidence intervals
 he effects of non-sampling
 der the assumption that the
 stributed about the true
 ances are about 68 out of 100
 en a sample estimate and the
 ld be less than one standard
 0 that the difference would be
 rors, and virtually with
 ences would be less than three
 ety of estimates that can be
 he standard deviation is
 e to the estimate to which it
 measure, known as the
 of an estimate is obtained by
 or of the estimate by the
 pressed as a percentage of the
 estimate. Before releasing and/or publishing any estimates from the microdata file, users should determine whether the estimate is releasable based on the following guidelines:

TYPE OF	COEFFICIENT
ESTIMATE	OF VARIATION
	$(I N ~$

1 Unqualified 0.0 to 0.5% 0.6 to 1.0% 1.1 to 2.5\% 2.6 to 5.0% 5.1 to 10.0%
10.1 to 16.5%

2 Qualified 16.6 to 25.0%

ALPHABETIC INDICATORS

GUIDELINE STATEMENT

> Estimates can be considered for general unrestricted release. No special notation is required, although the alphabetic indicators at the left are suggested.

Estimates can be considered for general unrestricted release but should be accompanied by warning of high sampling variability associated with the estimates. Such estimates should be identified by the letter G cor some other similar fashion).

TYPE OF estimate

COEFFICIENT
 OF VARIATION (IN \%)

4 Not for Release (i) 33.4% or over

ALPHABETIC INDICATORS

H

J

```
Estimates can be
considered for
general unrestricted
release only when
sampling
variabilities are
obtained using an
exact variance
calculation
procedure. The
estimates should be
accompanied by a
warning of high
sampling variability
associated with the
estimates.
Estimates should not
be released in any
form under any
circumstances. In
statistical tables,
such estimates
should be deleted.
```


I

I
I
I
I
I
I

I
I

Estimates of Variance

Variance estimation is described separately for qualitative and quantitative estimates.

9.2.1 Sampling Variability for Qualitative Estimates

Derivation of sampling variabilities for each of the estimates which could be generated from the Apprentices and Journeymen Survey would be an extremely costly procedure, and for most users, an unnecessary one. Consequently, crude measures of sampling variability, in the form of tables, have been developed for use and are included in Section 12 (Crude Sampling Variability Tables). These tables have been produced using the coefficient of variation formula based on a simple random sample. Because estimates from the Survey of Alberta Apprentices and Journeymen were made from a multi-probability sample design (the LFS design), a factor called the design effect was introduced into the formula. This factor accounts for the increase in variance that resulted from using the LFS sample design over a simple random sample design. When sampling variability is obtained using these tables, only estimates falling into the unqualified or qualified range (i.e., estimates with a coefficient of variation less than or equal to 25%) may be considered for release. Two such tables, one for apprentices, and one for journeymen, are included in section 12 of this package. The following table provides standard thresholds below which estimates must either be qualified or suppressed completely if the crude sampling variability tables are used.

Subpopulation

Apprentices
Journeymen
\% of C.V.

$$
25.0 \% \quad 16.5 \%
$$

3,500 8,000
4,000
9,000

The following rules should enable the user to determine coefficients of variation for aggregates (totals), percentages, ratios, differences between totals or percentages, and differences between ratios

Rule 1 Estimates of Aggregates (Totals)

The coefficient of variation for totals depends only on the size of the estimated total itself. On the crude Sampling Variability Table for the appropriate group,
locate the estimated total (in thousands) in the leftmost column of the table (headed 'Numerator of Percentage') and follow the asteristks across to the first figure encountered. This figure is the coefficient of variation.

Rule 2 Estimates of Percentages

The coefficient of variation of an estimated percentage depends on the size of the percentage and the size of the group upon which the percentage is based. Estimated percentages are relatively more reliable than the corresponding estimates of the numerators of the percentages, particularly if the percentages are 50 percent or more. (Note that in the Crude Sampling Variability Tables, the coefficients of variation drop in going from left to right.)

To estimate the coefficient of variation of a percentage, reference should be made to the percentage (across the top of the table) and to the numerator of the percentage, in thousands (down the left side of the table). The intersection of the appropriate row and column gives the appropriate coefficient of variation.

Rule 3 Ratios

In the case where the numerator is a subset of the denominator, the ratio should be converted to a percentage and Rule 2 applied.

In the case where the numerator is not a subset of the denominator, the coefficient of variation of the ratio of the two estimates is approximately equal to the square root of the sum of squares of each coefficient of variation considered separately; that is, the coefficient of variation of a ratio:

$$
R=\frac{X}{Y}
$$

is

$$
c v(R)=c v(X)^{2}+c v(Y)^{2}
$$

This formula will tend to overstate the error if X and Y are positively correlated and understate the error if X and y are negatively correlated.

I
 I
 I

I
I I
I I
I
I
I
I
I
1
1

Rule 4 Difference Between Totals or Percentages

The standard deviation of a difference between two estimates is approximately equal to the square root of the sum of squares of each standard deviation considered separately. That is, the standard deviation of a difference:

$$
\begin{aligned}
d & =X-Y \\
\operatorname{sd}(d) & =X \operatorname{cv}(X)^{2}+Y \operatorname{cv}(Y)^{2}
\end{aligned}
$$

The coefficient of variation of d is approximately

$$
\operatorname{cv}(d)=\operatorname{sd}_{d}^{d}(d)
$$

This formula is accurate for the difference between separate and uncorrelated characteristics but is only approximate otherwise.

Rule 5 Differences of Ratios
In this case, Rules 3 and 4 are combined. The coefficients of variation for the two ratios are first determined using Rule 3, and then the coefficient of variation of their difference is found using Rule 4.

Sampling Variability for Quantitative Estimates
In order to provide variability estimates for quantitative (non-attribute) type variables, special tables would have to be produced. Since the variables on the Apprentices and Journeymen Survey microdata file are primarily qualitative in nature, this has not been done. As a general rule, however, the coefficient of variation of a quantitative total from this file will be larger than the coefficient of variation of the corresponding qualitative estimate (i.e., the number of persons contributing to the quantitative estimate). If the corresponding qualitative estimate is not releasable, the quantitative total will not be.

I I
 I I I I I I I I

Rounding Policy

In order that estimates for publications or any other data released from the Apprentices and Journeymen Survey microdata file correspond to those produced by Statistics Canada or any others analyzing the data, users are urged to adhere to the following guidelines regarding the rounding of such estimates. It is unwise to release unrounded estimates, as they imply greater precision than actually exists.

9.3.1 Rounding Guidelines

1. Estimates of totals in the main body of a statistical table should be rounded to the nearest thousand using the normal rounding technique (see definition below).
2. Marginal sub-totals and totals in statistical tables are to be derived from their corresponding unrounded components and then are to be rounded themselves to the nearest thousand units using normal rounding.
3. Averages, proportions, rates and percentages are to be computed from unrounded components and then are to be rounded themselves to one decimal using normal rounding.
4. Sums and differences of aggregates and ratios are to be derived from corresponding unrounded components and then rounded to the nearest thousand units or the nearest one decimal using normal rounding.
5. In instances where due to technical or other limitations, a different rounding technique is used, which results in estimates being released which differ from the corresponding estimates produced by Statistics Canada, users are encouraged to note the reason for such differences in the released document.

9.3.2 Normal Rounding

In normal rounding, if the first or only digit to be dropped is 0 to 4 , the last digit to be retained is not changed. If the first or only digit to be dropped is 5 to 9, the last digit to be retained is raised by one. For example, the number 8499 rounded to thousands would be 8 and the number 8500 rounded to thousands would be 9.

I I I I
 I I

10. SURVEY DOCUMENTS

```
42 is this owellimg owned s a memegh or mis mousehion
            ven O
```

 COMPLETE AT END OF INTERVIEW
 43 for all mousemodid

I I
 I I

I
 I

I
I
I
I
I
I
I
I
I

I I I I

- Statistlque Canada Statistics Conoda \therefore

2

$3 \square$ 4 \qquad
 \square $7 \stackrel{m+\infty}{\square}$ $8 \square$ 10
Aurowe thent

\qquad 11 it whencuele

13 PREFERE 2 VOUS ETRE INTERVIE WEILI EN
20

15 VEULEZ MOUMER TOUTES LES MESONDES OU DEMEUAEMT ACTUELEMENT ICI
macruer int noms at
16 YAIX DES PERSONES OU SONT AESEMTES DU MEMAGE BARCE OUELES SONT AUXETUOCS.
2 YA.TR QUELOUUN O AUTAE OUI DEMEURE OANS CE LOGE MENT, PAR EXEMPLE
On O macreves ny noms ip REVDi,SSE es sesies
mon^{2}

- Povi un mromew suosegumin. pucert 42

RCMPLSEEZ L LA FIN DE L WTERVIEW

43 row tous les uenages

I

1

I

I
I
I
I
I
I
I
I
I
I
I I

NOTA：OBTENEZ LES REPONSES DIRECTEMENT DE CHAQUE ENOUETE IL FAUT RAPPELER TROIS FOIS AVANT D ACCEPTER UNE DECLARATION PAR PERSONNE INTERPOSEE．

10．．．．EST－IL（ELLE）UN（E）APPRENTI（E）ENREGISTRE（E）EN ALBERTA？

11．DANS QUEL METIER ．．．FAIT－IL（ELLE）SON APRRENTISSAGE？

12．LA SEMAINE DERNIERE，．．．A－T－IL（ELLE）PRATIQUE SON MĖTIER？
oul º
NON ${ }^{-}$
13．．．．EST－IL（ELLE）UN MANOEUVRE TITULAIRE D＇UN CERTIFICAT DE COMPETENCE EN L＇ALBERTA？

$$
\text { OuI' } \bigcirc \text { NON' } \bigcirc \text { PASSEZ A } 17
$$

14．DANS QUEL METIER ．．．EST－IL（ELLE）TITULAIRE D＇UN CEATIFICAT DE COMPETENCE DE L＇ALBERTA？

SI ．．．EST TITULAIRE DE PLUS D＇UN CERTIFICAT DE COMPETENCE OE L＇ALBERTA．INSCRIVEZ LE CODE DU MÉTIER QUE L＇ENQUÉTE（E）CONSIDERE COMME SON METIER PRINCIPAL
15．LA SEMAINE DERNIERE ．．．A－T－IL（ELLE）PRATIQUÉ SON MÉTIER？
OUI：OPASSEZ A 17 NON：O
16．．．．A－T－IL（ELLE）PRATIQUE SON MĖTIER A UN MOMENT DONNÉ AU COURS DES 12 DERNIERS MOIS？

17．5OURCE DIINFORMATION：INSCRIVEZ LE NUMERO DE LA PAGE LIGNE DU DM DE LA PERSONNE FOURNISSANT LES INFORMATIONS \square ch－Dessus

Code Name of Trade

01 Agricultural Mechanic

02 Appliance Serviceman
03 Auto Body Mechanic (P)
04 Baker
05 Barber (P)
06 Beautician (P)
07 Boilermaker
08 Bricklayer
09 Cabinetmaker (1)
10 Carpenter
11 Cement Finisher
12 Communication Electrician
13 Cook
14 Electrical Rewind Mechanic
15 Electrician (P)

16 Electronic Technician (P)
17 Elevator Constructor (P)
18 Floorcovering Mechanic
19 Gastitter (P)
20 Glassworker
21 Heavy Duty Mechanic (P)
22 Meavy Equipment Operator (2)
23 Instrument Mechanic
24 insulator
25 Ironworker

Description

CODE SHEET
Services, repairs, and sets up agricultural machines.
Repairs and services household appliances.
Repairs and refinishes automobile bodies.
Makes bread, pastries, cookies, and cakes.
Cuts, trims. waves, and colours hair; shaves beards, mustaches, etc.
Cuts, trims, waves, and colours hair; gives facial treatments, etc.
Builds, tests, and repairs airtight and liquid-tight containers.
Lays brick, hollow tile, and concrete block for buildings or other structures.
Builds custom or production-lype fixtures and furniture of wood and wood substitutes.
Works with wood and wood substitutes in the construction of buildings and other structures.
Places, finishes, cuts, and repairs concrete.
Installs, services, and repairs telephone equipment and related communication systems.
Prepares food and meals in hotels, restaurants, and institutions.
Repairs and rebuilds electric motors, generators. transformers, controls, and other electrical equipment.
Installs, alters, repairs, and maintains electrical systems in buildings to supply heat, light, power, controls, signal or fire alarms.
Services and repairs radio and television-receiving equipment.
Installs, repairs, and maintains elevators, escalators, moving walkways, etc.
Installs many types of resilient and carpet floor coverings in buildings.
Installs piping and appliances for heating with natural and propane gas.
Cuis and installs glass for windows, showcases, and curtain-wall building construction.
Services and repairs construction and other heavy industrial mobile and stationary equipment.
Operates power cranes or mobile cranes to lift;and swing materials during construction.
Maintains, services, repairs, and installs measuring and control instruments used in process industries.
Installs insulation materials in commercial and industrial structures.
Builds, erects, constructs, ànd joins structural steel on buildings, bridges, and towers.

Name of Trade

51 Welder (P)
Lather-Interior Machinist Millwright

Motorcycle Mechanic (P)

Painter and
Decorator
Partsman
Plasterer
Plumber (P)
Power Lineman
Power System
Electrician

Arts Craftsman Mechanic (P)
Refrigeration
Mechanic (P)
Roofer
Sawfiler
Sheet Metal Mechanic (P)

Sprinkler Fitter

Steel Fabricator

Tilesetter Mechanic
Water Well Driller

Other Trade

Landscape Gardener Systems Mechanic

Motor Mechanic (P)

Printing and Graphic
Recreation Vehicle

Steamfitter-Pipefitter (P)

Tool and Die Maker

Transport Refrigeration

CODE SHEET

Grows, installs, and maintains trees, plants, and grasses in all environments.
Installs metal, plaster lath. and interior finishes in construction of buildings.
Works with metals and operates metal-cutting and shaping machinery.
Installs and maintains machinery in factories and other production plants.
Assembles, services. and repairs two-wheeled single-tracked motor vehicles.
Services and repairs automobiles.
Applies paint, varnish, and wallpaper to interior and exterior building surfaces, and to other fittings and furnishings.
Stores and dispenses automotive, heavy duty, or farm machinery parts.
Applies plaster and stucco including decorative finishes.
Installs water services and sanitary drainage.
Constructs, maintains, or operates electrical transmission or distribution systems.
Constructs or maintains elecirical utility power system and power station equipment, or metering, prptection. and control apparatus.
Prepares, produces, and finishes printed material.
Repairs mobile moter homes and recreation vehicles.
Installs and services refrigerating and air conditioning systems.
Installs and maintains built-up rools, composition roof coverings, shakes, shingles, and plastic membranes.
Repairs. sets, and sharpens band saws, chain saws.
hand saws, circular saws, and other types of saw blades.
Designs, fabricates, installs, and repairs ducts and
fittings for heating, ventilating, air conditioning, exhaust. and dust collecting systems.
Installs and maintains fixed fire extinguishing systems.
Instails steam and hot water heating systems and industrial process piping systems.
Works in the shop fabrication, preparation, layout, assembly, or repair of structural and miscellaneous components or vessels.
Works with ceramic tile, terazzo, and marble.
Manufactures and repairs jigs. fixtures, gauges, dies. molds. press tools. and various iypes of small mechanical
devices. devices.
Installs. repairs. and maintains equipment in mobile units used to haul perishable loads.
Drills, installs, and services water wells and installs and services water well pumps.
Joins metal by fusion using oxyacetylene flame, electric arc, or other welding processes.
Specify in notes

I
I
I

AUTOMATIC RECORD LAYOUT

FIELD	ACRONYM	LENGTH	POSITION	QUESTION AND VARIABLE OESCRIPTIONS	page
1	RECNO	6	0001-0006	RECORD NUMBER	
2	SUROTE	4	0007-0010	SURVEY OATE (MMYY)	
3	PROV	2	0011-0012	REGION ANO PROVINCE	
				01 AREA 1	-
				02 AREA 2	
				03 AREA 3	
4	FILLER	1	0013	FILLER	
5	MARSTAT	1	0014	MARITAL STATUS 1 MARRIED 2 SINGLE 3 OTHER	
6	RELHD	1	0015	RELATIONSHIP TO HEAD OF FAMILY 1 HEAD 2 SPOUSE 3 SON-DAUGHTER 4 PARENT (IN-LAM) 5 SON-DAUGHTER (IN-LAH) 6 OTHER RELATIVE	
7	AGE	1	0016	AGE GROUP 1 15-24 YEARS 2 25-44* YEARS 3 45-64 YEARS 465 YEARS AND OVER	
8	EDUCER	1	0017	EDUCATION 1 NONE OR ELEMENTARY 2 HIGH SCHOOL (SOME OR COMPLETEO) 3 SOME POST-SECONDARY 4 POST-SECONDARY CERT. OR DIPLOMA 5 UNIVERSITY	
9	ACTIV	1	0018	ACTIVITY IN REFERENCE WEEK 1 AT HORK. 2 NOT AT HORK, HAS A JOB 3 NOT AT MORK, NO JOB 4 PERMANENTLY UNABLE TO HORK	
10	MULTIJOB	1	0019	MULTIPLE JOB MOLDER 1 YES 2 NO	

UTOMATIC RECORD LAYOUT

FIELD	ACRONYM	LENGTH	POSITION	QUESTION AND VARIABLE DESCRIPTIONS	PAGE
11	TOTMRSWK	2	0020-0021	TOTAL USUAL HOURS NORKED 00:65	
12	WHYPT	1	0022	REASON FOR PART-TIME WORK BLANK 1 PERSONAL OR FAMILY RESPONSIBILITIES 2 GOING TO SCHOOL 3 COULD ONLY FIND PART-TIME WORK 4 DID NOT WANT FULL-TIME WORK 5 OTHER REASONS	
13	EXTRMRS	2	0023-0024	EXTRA HOURS NORKED BLANK 00:30	
14	HRSLOST	2	0025-0026	$\begin{aligned} & \text { MOURS LOST } \\ & \text { BLANK } \\ & 00: 41 \end{aligned}$	
15	WHYLOSS	1	0027	REASONS FDR TIME LOSS BLANK 1 ILLNESS OR DISIBLITY OR PERSONAL 2 BAD WEATHER 3 LABOUR DISPUTE 4 LAYOFF 5 LOST JOB/NEW JOB 6 VACATION 7 WORKING SHORT - TIME 8 OTHER	
16	STARTJOB	2	0028-0029	HEEKS UNTIL NEW JOB STARTS BLANK $00: 13$	
17	HRSWRKED	2	0030-0031	TOTAL ACTUAL MOURS WORKED BLANK $00: 65$	
18	PAIDOFF	1	0032	HAGES OR SALARY FOR TIME OFF BLANK 1 YES 2 NO	
19	WKSOFF	2	0033-0034	WEEKS OF CONTINUOUS ABSENCE BLANK $00: 18$	

AUTOMATIC RECORD LAYOUT

FIELD	ACRONYM	LENGTH	POSITION	QUESTION AND VARIABLE DESCRIPTIONS	PAGE
20	LOOKED6M	1	0035	LOOKED FOR WORK IN PAST SIX MONTHS BLANK 1 YES 2 NO 3 N/A	
21	LOOKED4N	1	0036	LOOKED FOR WORK IN PAST FOUR WEEKS $1 \mathrm{YES}$ 2 NO	-
22	HOWLOOK 1	1	0037	```METHODS USED: CONTACTED EMPLOYERS BLANK 1 YES 2 NO```	
23	HOWLOOK2	1	0038	METHODS USED: USED PUBLIC EMPLOYMENT AGENCY BLANK 1 YES 2 NO	
24	HOWLOOK 3	1	0039	METHODS USED: LOOKED AT ADS BLANK 1 YES 2 NO	
25	HOWL OOK 4	1	0040	METHODS USED: USED OTHER METHODS BLANK. 1 YES 2 NO	
26	LOOKING	2	0041-0042	```WEEKS LOOKING FOR FORK BLANK 01:39```	
27	WHYLEAVE	1	0043	REASON FOR LEAVING LAST JOB BLANK 1 ILLNESS OR DISABILITY 2 PERSONAL OR FAMILY RESPONSIBILITIES 3 GOING YO SCHOOL 4 LOST JOB OR LAID OFF 5 RETIRED 6 OTHER REASONS 7 LAST HORKED MORE THAN 5 YEARS AGO 8 NEVER HORKED	
28	DOBEFORE	1	0044	ACTIVITY BEFORE STARTED LOOKING FOR WORK BLANK 1 WORKING 2 KEEPING HOUSE 3 SCHOOL	

AUTOMATIC RECORD LAYOUT

AUTOMATIC RECORD LAYOUT

FIELD	ACRONYM	LENGTH	POSITION	QUESTION AND VARIABLE DESCRIPTIONS	page
36	CLSHKER	1	0052	$\begin{aligned} & \text { CLASS OF WORKER } \\ & 1 \text { PAID } \\ & 2 \text { OTHER } \end{aligned}$	
57	IND	2	0053-0054	Industry	*
				01 AGRICULTURE	
				02 OTHER PRIMARY	
				03 MANUFACTURING, NON-DURABLES	
				04 MANUFACTURING, DURABLES	
				05 CONSTRUCTION	
				06 TRANSPORTATION, ETC.	
				07 WHOLESALE TRADE	
				08 RETAIL TRADE	
				09 FINANCE, ETC.	
				10 COMMUNITY SERVICES	
				11 PERSONAL SERVICES	
				12 BUSINESS AND MISC. SERVICES	
				13 PUBLIC ADMINISTRATION	
				14 NEVER WORKED ..	
				15 LAST WORKEO MORE THAN 5 YEARS AGD	
				16 PERMANENTLY UNABLE TO WORK	
38	OCC	2	0055-0056	OCCUPATION	
				01 MANAGERIAL.	
				02 PROFESSIONAL.	
				03 TEACHING	
				04 MEDICINE	
				05 CLERICAL	
				06 SALES	
				07 SERVICES	
				08 PRIMARY OCCUPATIONS	
				09 MINING, PROCESSING, MACHINTNG	
				10 FABRICATION	
				11 CONSTRUCTION	
				12 TRANSPORTATION, MATERIALS HANOLING,	
				OTHER CRAFTS	
				13 NEVER WORKED BEFORE 14 LAST WORKED MORE THAN 5 YEARS AGO, OR	
				PERMANENTLY UNABLE TO WORK	
39	DURUNEMP	2	0057-0058	DURATION OF UNEMPLOYMENT	
				BLANK	
				00:53	
40	TENURE	1	0059	JOB TENURE	
				BLANK	
				1 1-6 MONTHS	
				2 7-12 MONTHS	
				$\begin{array}{lll}3 & 1-5\end{array}$	
				4 6-10 YEARS	

I I
I
I
I

AUTOMATIC RECORD LAYOUT

FIELD	ACRONYM	LENGTH	POSITION	QUESTION AND VARIABLE DESCRIPTIONS	PAGE 6
40	TENURE	1	0059	JOB TENURE 5 11-20 YEARS 6 OVER 20 YEARS	* CONTINUEO **
41	DURNOJOB	1	0060	DURATION OF JOBLESSNESS BLANK 1 0-1 MONTH 2 1-3 MONTHS 3 4-6 MONTHS 4 7-12 MONTHS 5 13-24 MONTHS 6 2-5 YEARS 7 6-10 YEARS 8 OVER 10 YEARS	-
42	DURLSTWK	1	0061	DURATION OF PREVIOUS $J O B$ BLANK 1 NEVER WORKED 2 1-3 MONTHS 3 4-6 MONTHS 4 7-12 MONTHS 5 1-5 YEARS 6 OVER 5 YEARS	
43	FLOWS	1	0062	FLOWS INTO UNEMPLOYMENT BLANK 1 JOB LOSERS 2 JOB LEAVERS 3 NEW ENTRANTS - 4 RE-ENTRANTS-ONE YEAR OR LESS 5 RE-ENTRANTS-GREATER THAN 1 YEAR	
44	FILLER	33	0063-009	FILLER	
45	Q10	1	0096	IS ... A REGISTEREO APPRENTICE IN ALBERTA? 1 YES 2 NO 0 NOT STATED BLANK	
46	Q11	2	0097-0098	IN WHICH TRADE IS ... TAKING HIS/HER APPRENTISHIP? 01 CONSTRUCTION TRADE 02 ELECTRICAL TRADE 03 INDUSTRIAL TRADE 04 MECHANICAL TRADE 05 METAL TRADE 06 PIPING TRADE 07 SERVICE TRADE 08 OTHER TRADE	

AUTOMATIC RECORO LAYOUT

AUTOMATIC RECORO LAYOUT

\section*{| I |
| :--- |}

I
I
I I
I
I
I
I
I
I

NOTES:
(1) SAMPLING VARIABILITIES (COEFFICIENTS OF VARIATION) ARE IN PERCENTS. 00610000

121 TO OETERMINE SAMPLING VARIABILITIES FOR ESTIMATES OF TOTALS, LOCATE 00620000 THE ROW CLOSEST TO THE ESTIMATED TOTAL. THE LEFT-MOST COLUMN GIVES 00630000 THE SAMPLING VARIABILITY.
(3) TO DETERMINE SAMPLING VARIABILITIES FOR ESTIMATES OF PERCENTAGES, USE THE ROW CLOSEST TO THE NUMERATOR OF THE PERCENTAGE AND THE COLUMN CLOSEST TO THE PERCENTAGE.
(4) SAMPLING VARIABILITIES IN THIS TABLE ARE CRUDE INDICATORS AND IN GENERAL ARE HIGHER THAN THOSE THAT WOULD BE OBTAINED USING MORE EXACT TECHNIQUES. UNDER NO CIRCUMSTANCES ARE THEY OFFICIAL. 00660000 00670000 00680000 00690000 00700000

I

12. SAMPLING VARIABILITY TABLES

13. TECHNICAL SPECIFICATIONS

Dataset Name: Spec.APP8610
Volume Serial Number:----NT
Record Length: 113
Blocksize:
Recording Density: 1600 BPI
Label: Standard IBM

