Special
 Surveys
 Program
 Programme des enquêtes spéciales

CURRENT POPULATION PROFILE

1280
MICRODATA DOCUMENTATION
91) MOOUIGE 1980? c. 1

Canadă

]
1

\# 56100

CURRENT POPULATION PROFILE
1280
MICRODATA DOCUMENTATION

1980 CURRENT POPULATION PROFILE

MICRODATA DOCUMENTATION AND USERS GUIDE

Table of Contents

1. Introduction
2. Survey Objectives
3. Population
4. Survey Design
5. Collection
6. Processing
7. Data Output
8. Estimation
8.1 Introduction
8.2 LFS Weights
8.3 Supplementary Survey Weights
9. Release Policy and Data Reliability
9.1 Sampling Variability Policy
9.2 Where to obtain Sampling Variabilities
9.3 Rounding Policy
9.4 Weighting Policy

Appendix A - Questionnaire
Appendix B - Sampling Variabilities
Appendix C - Record Layout
Appendix D - Control Totals

1. Introduction

The attached package was designed to enable interested users to access and manipulate the microdata file for the 1980 Current Population Profile. Although this package contains sufficient detail to satisfy most questions, further information may be obtained from the following:

Planning Secretariat
Advanced Education and Manpower
Government of Alberta
loth Floor East, Devonian Building
11160 Jasper Avenue
Edmonton, Al berta
T5K OL1
Attention: Dr. William H. Wong
Telephone (403) 427-8501

Research and Planning Branch
Ministry of Labour
Government of British Columbia
3rd Floor
880 Douglas Street
Victoria, British Columbia
v8V 1 X4
Attention: Mr. Patrick Stanton
Telephone (604) 387-5071
Users are asked to respect the Statistics Canada release, rounding and weighting policies outlined in this package. Questions regarding the application of these guidelines may be directed to:

Special Surveys Group
Operations Branch
Social Statistics Field
Statistics Canada
Station C-7 3rd Floor
Jean Talon Building
Tunney's Pasture
Ottawa, Ontario
Canada KIA OT6
Attention: Mr. T. Scott Murray Telephone (613) 996-5717

2. Survey Objectives

The Current Population Profile was conducted as a supplement to the December 1980 Labour Force Survey. Its primary objective was to identify and characterize recent in-migrants to Alberta and British Columbia. Recent in-migrants were defined as those persons 15 years of age and over who had moved to the province in or since June 1 1976, and who were still residents of Alberta or British Columbia during the week of December 8-14, 1980.

3. Population

The target population for which estimates can be generated is the civilian, non-institutional population of Alberta and/or British Columbia (excluding residents of Indian reserves) 15 years af age and over.

4. Survey Design

This section provides a brief overview of the methodology of the LFS, highlighting those aspects of the design felt to be of general interest to users. A detailed description of the methodology is available in the Statistics Canada publication entitled Methodology of the Canadian Labour Force Survey 1976 (Catalogue \#71-526)

The LFS is a stratified multi-stage area sample which is based upon information from the 1971 Census of Canada. Basically, the sample consists of three main parts: self-representing units (SRU's), non-self-representing units (NSRU's) and special areas. Each of these parts is discussed separately below, following a brief discussion of the stratification.

4.1 Stratification

Stratification in an area frame is basically a process of classifying (usually compact) area units into certain collections called strata. Though the main advantage of stratified sampling is the possible increase in efficiency per unit cost in estimating the population characteristics, stratification also introduces considerable flexibility in the sense that, depending upon the information available, sampling and estimation procedures may differ from stratum to stratum. Further, in a continuous survey like the LFS, stratification provides an added flexibility of updating or redesigning the sample of a specified stratum or groups of strata, without affecting the design in the remaining strata.

Each of the ten provinces in Canada is divided into a number of economic regions (ER's). An ER has areas of similar economic structure formed on the basis of recent information and is stable over a period of time.

These ERs are treated as primary strata and further stratification is carried out within the self-representing and non-self-representing parts independently in each ER.

4.2 Self-Representing Units (SRUS)

These cities whose population exceeds a certain predetermined value, this value varying from region to region (1). Some cities with population less than this lower limit are also classified as SRUs, in cases where they possess unique labour force characteristics. Within all SRUs the sample is selected independently so that each of them is represented in the survey by a sample of its own population and hence the name "selfrepresenting".

The larger SRUs are subdivided into subunits, the subunit size ranging from 1,000 to 12,000 dwellings. These subunits are classified as built-up, fringe or combinations of built-up and fringe, depending upon potential for future growth. This classification helps to ensure geographic representativeness, as households in core areas of larger cities are likely to have different labour force characteristics than those in fringe areas.
(1) For example, SRUs in Ontario and Québec are generally cities whose 1971 population exceeded 24,000 persons whereas in the prairies, the population criterion is 15,000 persons.

Within each subunit a sample of clusters (normally a city block or block face) is selected by a sampling procedure known as the random group method. Clusters are randomized and assigned to groups and then within each group a cluster is selected with probability proportional to the number of dwellings contained in it. Generally six clusters (and in some cases 12 clusters) are selected from each subunit.

The second and final stage of selection in the SRUs is the systematic selection of dwellings within selected clusters. This is done by first obtaining a listing of the dwellings in each cluster and then performing the selection. On average, approximately 5-6 dwellings are selected from a cluster.

In the 17 largest self-representing units a special selection is made of large apartment buildings (30 or more units and 5 or more stories) to improve the representativeness of the sample and to reduce the variance of the sample estimates. The sampling procedure for the apartment sample is similar to that of the regular sample, each apartment building constituting a cluster.
4.3 Non-Self-Representing Units (NSRUS)

The NSRUs are the areas outside the SRUs containing rural portions and small urban centers. Before discussing the selection stages used in the NSRUs it is necessary to briefly describe below how these areas are stratified.

4.3.1 Stratification within NSRUs

As mentioned earlier, the NSRU part of each economic region (ER) is further subdivided into a number of strata, based upon the following requirements:
(i) The stratification variables should be related to the variables under study. In this case the stratification is intended specifically for the LFS, therefore, the stratification variables should be related to the characteristics of the labour force.
(ii) The characteristics should be stable over time in order to retain the efficiency of stratification for a longer period of time.
(iii) The number of persons having the characteristics should vary from area to area within the ER making meaningful the concept of similar and dissimilar areas with respect to the characteristics.
(iv) The number of persons having the characteristic should account for a sizeable proportion of the ER population.

Following these guidelines, the proportions of the labour force employed by industry as reported by the 1971 census were decided upon as the stratification groups for each ER. The seven categories considered for this purpose are: agriculture, forestry or fishing, mining, manufacturing, construction, transportation and services. Of these seven, the three best fulfilling requirements (iii) and (iv) above were used as stratification variables for and ER.

Within each stratum in an ER, the NSRU sample is selected as described in the sub-sections following.

4.3.2 Primary Sampling Unit (PSUs)

First, each stratum of an NSRU within an economic region is delineated into a number of primary sampling units (PSUs). The delineation was done in such a way that resulting PSUs represent the stratum within which they are located with respect to important labour force characteristics and with respect to the urban-rural population split of the stratum (according to 1971 census figures). Generally between 10 and 20 PSUs are created in a stratum, each averaging between 2,000 and 2,500 population.

4.3.3 Clusters

Each urban center located within a selected PSU is further subdivided into a number of clusters, a cluster being a well-defined area with boundaries recognizable both on the maps and in the field; they consist of somewhere between 2 and 50 households. A number of ciusters is then selected from each group using systematic sampling.with probability proportional to the number of households contained in it. A similar procedure is used to define and select clusters in the rural groups of a selected PSU.

4.4 Special Areas

In addition to the SRU's, a small proportion of the LFS population is found in institutions such as hospitals, schools, hotels, on military establishments, in remote areas, etc. Because the labour force characteristics of people in these institutions are unique and because some of these areas are not regularly accessible to LFS interviewers they are handled by the special area frame, which for sampling purposes is divided into the following four strata: military establishments, hospitals, other institutions and remote areas. It may be noted that only the civilian population living on military establishments is included in the survey and that, in the case of institutions, inmates of the institutions are not included in the survey.

The special areas are sampled in three stages. The first stage units correspond to census enumeration areas and are selected systematically with probability proportional to size, the eligible labour force population as of the 1971 census being the size measure. Subsequent stages of sampling are clusters and households, as described earlier.

4.5 Sample Rotation

Each household in the LFS sample remains in the sample for a period of six consecutive months. After the sixth month, the household "rotates out" of the sample and is replaced by a new household. A one-sixth of the sample is rotated out in this manner each month and a new sixth is brought in to replace it. This rotation, as it is called, is done primarily to minimize
the non-response that might occur if respondents were asked to rema in in the survey for a longer period of time. The 1980 Current Population Profile Survey was conducted using Rotation Groups one to five in the December 1980 Labour Force Survey.
5. Collection

The interviewing was done using the regular interviewing procedures of the Labour Force Survey. Data was collected during the week of December 15-21 1980. Most of the Labour Force variables relate to the reference week of December 8-14, 1980.
6. Processing

Data entry was completed in the Statistics Canada Regional Offices using the mini computers situated there. Following capture, the data was subjected to validation, edit and correction procedures.

Partial non-response to the CPP was identified by subjecting the raw data to an exhaustive computer edit. Because of the small number of records involved missing or inconsistent data was flagged rather than imputed.

Table 1 presents the partial non-response rates for selected questions.

Data Output
The Economic Characteristics staff of Statistics Canada is presently undertaking an analysis of the data with the intention of publishing the results in The Labour Force, Statistics Canada, Catalogue 71-001.

8. Estimation

8.1 Introduction

The principle behind the estimation procedure in a probability sample such as the LFS is that each person in the sample "represents", beside himself or herself, several other persons not in the sample. For example, in a simple random sample of 2%, each person in the sample represents 50 persons in the population. This could be achieved by oroducing 50 duplicates of each record in the sample and then proceeding to compile any aggregates or cross-classifications which would now refer to the entire population and would represent the estimates for the corresponding quantities in the population as obtained from the 2% sample.

For the LFS the file created for tabulation purposes contains one record per selected person in the sample. Each record contains all labour force and demographic characteristics concerning selected individuals. Instead of physically duplicating the sample records, an overall weighting factor is entered on each record. The weighting factor refers to the number of times a particular record should be duplicated. For example, if the number of persons employed in manufacturing is to be estimated, this is done by selecting the records referring to those persons in the sample employed in manufacturing and summing the weights entered on these records.
In a probability sample, the sample desian itself determines weights which may be used to produce unbiased estimates. Each record may be weighted by the inverse of the probability of selecting the person to whom the record refers (in the example of the 2% random sample this probability would be 0.02 for each person and so the records could be weighted by $1 / 0.02=50$). This may be called the simple estimate.

ーーーーー
I

1

Frequently we come across situations where objective information on certain relevant characteristics for the same universe is available from sources other than the survey itself. There are several estimation methods which utilize such auxiliary information in order to increase the reliability of the estimate. Ratio estimation is one of the most prevalent techniques of utilizing relevant information external to the survey. The main principle of ratio estimation may be summarized as follows: suppose that simple estimates of aggregates are produced for certain classifications of the population (e.g., for age-sex groups or for the population in rural and urban areas, etc.) utilizing the simple estimating procedure described above. Assume also that reliable estimates or actual counts are available by aggregates from sources outside the survey for the same classifications of the population. One may then compare the estimates derived from the survey with those obtained from outside sources. The estimates from the outside sources are divided by the simple estimates for each classification: and the weights of the records in each classification are adjusted by multiplying the weights by this factor. After the adjustment of the weights the estimated aggregates will now agree with the estimate from the independent source for each classification. Ratio estimation is quite simple as compared for other methods of using external information and at the same time results in increased efficiency. The choice of external information is however, very crucial to the procedure as its leads to higher efficiency only if such information is highly correlated with the characteristics of interest in the survey.

8.2 LFS Weights

In the LFS, the final weight attached to each record is the product of five factors. These are the basic weight, rural-urban-factor, balancing factor for non-response, cluster subweight and province-agesex adjustment (ratio estimate). Each of these is described below.

8.2.1 Basic Weight

The sample design itself determines a set of basic weights to be applied to each record referring to persons in the sample. this is called the basic weighting factor. The sample design is such that within the same province and same type of area

(NSRU, SRU or special area), the basic weights are identical (except where specified) for each record (person) in the sample and are equal to the inverse of the sampling ratio. If data on all sampled households are available then the simple estimate is derived by applying the basic weights to each record in the sample.

8.2.2 Rural-urban Factor

Each primary sampling unit in the NSRU is composed of rural and urban areas, and the proportion of population belonging to the area differs from province to province and also from stratum to stratum within each province. Information concerning the total population in rural and urban areas is available from the 1971 Census for each PSU (whether it is in the same sample or not) as well as for each province. Using the selected PSUs only, and dividing their 1971 rural or urban population by the known probability of selection, a "simple estimate" of the 1971 rural or urban population is obtained for each province. Comparison, by province, with the actual 1971 rural or urban census counts indicates whether the selected PSUs over or under represent the respective areas. The ratio of the actual rural-urban counts is divided by the corresponding estimates. These two factors are computed for each province and are used in the form of ratio estimates. These two factors are computed for each province at the time of the selection of the PSUs and are entered on each sample record according to the appropriate area of that province. Changes in these factors are incorporated at the time of PSU rotations.

8.2.3 Balancing Factor for Non-Response

Some non-response is virtually certain to occur in any survey of human populations whether it is because there is no one at home during the enumeration or for some other reason. In the LFS each month, the sample design completely specifies the households that are to be interviewed during interview week. Each interviewer is assigned a set of households and is given firm instructions to make

- $-=-$
every effort to interview these households. If, in spite of all attempts by the interviewer, certain households remain nonrespondent, then the interviewer is asked to provide a reason for non-response for each of these households. Non-interviews fall into two basic categories:
(a) non respondent households (Codes N, R, T, K, L, A, Z)
(b) Vacant or non-existent dwellings (Codes $V, S, C, B, D)$ The definitions of the non-interview codes and their algebraic definitions are presented below:

Interview/Non-Interview Classifications

Category	Explanation Interview	Completed interview - LFS questionnaire completed for all eligible members of the household.

Let $N()=$ no. of dwellings/households with response to status
Then, \quad interviews $=n(X)-n(E)$
non-response $=n(T)-n(N)-n(R)-n(K)-n(A)-n(A 9)-n(L)-n(Z)$
vacants $=n(V)-n(S)-n(C)-n(B)$
non-existent dwellings $=n(D)$
(i) actual no. of households = interviews - non-response
(ii) selected no of dwellings = actual no of households - cants - non-existent dwellings
(iii) overall non-response rate $=\frac{\text { non-response }}{\text { actual no of households }} \times 100 \%$
(iv) R rate $=\frac{n(R)}{\text { actual no. of households }} \times 100 \%$
(similar definitions for T rate, N rate and A rate, etc.)
REVISED LABUUR FORCE SURVEY

-PESPO TOTAL	VSE/REP	E
2,398	2395	2
96.3	96.2	1
7,834	7315	19
95.9	95.6	- 2
6,296	6290	6
95.8	95.7	. 1
2,296	2266	10
96.7	90.3	. 4
6,619	6603	16
96.5	96.2	. 2
7,016	7007	9
96.5	96.4	1
7:145	7129	17
96.5	95.2	. 2
4,984	4976	3
95.0	94.9	. 2
44,589	44502	87
96.2	96.1	. 2

$\stackrel{\sim}{0}$	$\stackrel{-}{\sim}$	N	M	$\stackrel{10}{10}$	N	$\stackrel{O}{\sim}$	$\stackrel{\infty}{8}$	9	N
3	$\stackrel{ }{0}$	\cdots	19	3	0	\cdots	$\underline{\square}$	\cdots	\cdots
完	c	0	0	\cdots	\bigcirc	N	n	เก๋	0

In certain types of non-response such as "no one at home", "refusal to answer questions", or a "temporarily absent household" if the previous month's responses are available, then records are copied with suitable Eransformations being applied to certain fields and the response status is changed to that of the previous month. For estimation purposes these households are treated in the same way as any other responding household. These records are then flagged so that records will not be copied for more than one consecutive month.

To compensate for other types of non-response, such as "no call made due to weather conditions," "no interviewer available", or newly rotated households which are non-respondent for a second consecutive month, the "interviewed" households have their weight increased by a balancing factor. Balancing is carried out within each balancing unit.

In the NSR areas, each sampled PSU is divided into two balancing units (a-urban and b-rural parts) and in the SRUs each subunit is a balancing unit. For each balancing unit the number of households which should have been interviewed is divided by the number actually interviewed or imputed for on the basis of last month's records, and this ratio (the balancing factor) is then entered on each sample record in that balancing unit. This ratio is based on the assumption that the households that have been interviewed represent the characteristics of the household that should have been interviewed. However, if this assumption is not true the estimates will be biased and the bias will increase with a higher rate of non-response. The exact magnitude of bias introduced by the adjustment for non-response is impossible to calculate. Consequently, rather than depending entirely on the adjustments for non-response, every effort is made to reduce it in the field.

-8.2.4

Cluster Subweight

Each interviewer is assigned a specific set of households to enumerate during the interview week of each month. In the NSRU's each PSU is designed to yield an expected take suitable to make up an interviewer assignment, while the SRU assignments are formed from contiguous subunits taking into account the expected sample take at the design stage.

Further, each cluster has been designed to yield a sample take of two to three or four to six households respectively in NSRU or SRU areas. The actual take is fairly robust against departure from these figures when growth is moderate; indeed, each 100\% increase in the number of households listed in a cluster versus design count results in an increase of only two to six households. Thus, substantial growth can be withstood in an isolated cluster before the additional take presents a field problem. If growth takes place in more than one cluster in an assignment, then the cumulative effect of smaller increases may create a problem. In clusters where substantial growth has taken, place, sub-sampling may be resonted to as a means of avoiding disruptions in field operations. Rather than enumerate all of the households which should be selected, the inverse sampling ratio of the cluster is modified, say to k times its orignal value, which results in only 1 out of every k originally selected households being selected. The records for these households are then weighted by an additional factor equal to k, as each of these records represent k times as many records as was expected by design.

8.2 .5

Age-Sex Adjustment
By applying the previously described four weighting factors, a valid estimate could be derived for any aggregates for which information was obtained during the enumeration. In particular, estimates of the total number of persons are produced in each of the ten provinces in each of 40. age-sex groups. Independent estimates are available monthly for the totals in these 400 province-age-sex classes, by projecting forward the 1976 Census counts. In each class the independent estimate is divided by the simple estimate and this ratio is called the province-age-sex factor (ratio estimate). This factor is entered on all records belonging to the appropriate class.

Final Weight
The final weight for each record is the product of the five factors described above. In the final tabulations the estimated aggregate of each classification is obtained by summing the final weights of those records which indicate the presence of the characteristics. For example, to obtain the estimated aggregate of unemployed, the final weights of those records that indicate "unemployment" are summed.

Supplementary Survey Weighting
The principles of the calculation of weights for the LFS itself and for supplementary surveys are identical. However, modifications are usually necessary for two reasons:
(1) The supplement is often conducted using only a sub-sample of the full LFS (eg., Rotation Groups 1 to 5 in the case of the CPP.)
(2) The non-response of the LFS and the supplement differ. For example, a household may answer the LFS but refuse the supplement. A more common situation is when the household cannot be interviewed at all, but the LFS data can be "imputed" from previous month's data. This shows up as a "response" to the LFS and a "non-response" to the supplement. Table 2 details non-interviews to the CPP by type.

Table 2 Non-interviews to the CPP by type

The methods usually adopted to account for these differences are, respectively:
(1) adjust the LFS subweight (the product of the first four factors in the LFS weight) by the appropriate "sample reduction" factor. For example when 5 out of 6 rotation groups are interviewed for the supplement, multiply all weights by 1.2
(2) rebalance the LFS subweight to account for the (additional) nonresponse to the supplement. The adjustment factor usually used is
number of persons expected to be enumerated
number of persons actually enumerated

The balancing units used for the supplement are ideally the same as those for the LFS, although if the amount of sub-sampling is substantial balancing units must be collapsed (ie., combined).

For further documentation concerning estimation procedures for LFS supplements users may contact:

Special Surveys Section
Census and Household Survey Methods Division
Statistics Canada
Jean Talon Bldg.
3rd Floor, Area C
Tunney's Pasture
Ottawa, Ontario
K1A OT6
Attention: Mr. D. Royce
Telephone (613) 996-5717

 I

\qquad

LD	SIZE	POSITION	QUES	CODES
2	1	17		
				1
				2
				3
				4
				5
				7
				8
				9
				6
13	1	18		

$\frac{1}{2}$ illness or discibility 2 perexal on taring repsisidrtity 3 going to school 4 - lost job or laid off 5 retired
6 other reascies
7 last worked more than 5 years age.
8 never worked

9 bia reason
W Blank.

Activity before starting
to Hock for work.

2	keeping hearse
3	school
4	other
6	Blank
	necks locking for ukerk

01-39 Number of woks.

I at xhex

3 no longer intercested ar finet job
4 awinting recall or repliy
5 beleives ho work auilible.
6 ether reasins
D flank
$1711 \quad 23$

Acalability for work
1 Net ainibeble:gaig te shleel
2 Not avaikible: ohier reasons 3 avac able
\qquad

\qquad

Duration of judessics:s

$$
1 \quad 0-1 \mathrm{mon} \pi
$$

$$
\begin{array}{c|c}
2 & 1-3 \text { months } \\
\hline 3 & 4-6 \text { months }
\end{array}
$$

$$
4 \quad 7-12 \text { mentors }
$$

$$
5 \quad 13-24 \text { mantis }
$$

$$
\begin{array}{c|cc}
6 & 2-5 & \text { gater } \\
\hline 7 & 6-10 & \operatorname{tacar}
\end{array}
$$

$$
\begin{array}{c|c}
7 & 6-10 \text { yeses } \\
8 & \text { over lo years }
\end{array}
$$

Duration of previous job

$$
\begin{array}{c|c}
1 & \text { Never worked } \\
\hline 2 & 1-3 \text { mouths } \\
\hline 3 & 4-6 \text { months } \\
4 & 7-12 \text { neath } \\
\hline 5 & 1-5 \text { years } \\
\hline 6 & \text { ever } 10 \text { years } \\
\hline
\end{array}
$$

\qquad

-0

I
I
\qquad

\qquad

1

I

\qquad

28. DURING THE ONE MONTH PERHOD PRIOR TO ... IS MOVE TO THIS PROVINCE, ORD ...
A. DO ANY WORK AT ANY TIME?

B. LOOK FOR WORK AT ANY TIER

c. have a job to start at a definite DATE IN THE FUTURET

D. ATTEMD A SChOOL AS A FULL-TIME STUDENT?

29. FOR WHOM DID ... LIST WORK BEFORE MOVING TO THIS PROVINCE?

- Never worked before
moving to this province \qquad Go to 34

0 O

\qquad
30. WHEN DID ... LAST WORK FOR THIS EMPLOYER?
31. What kind of a business, industry or service WAS THIS?

32. WHAT KIND OF WORK WAS ... DOING?

33. how many hours per week did ... usually WORK AT THIS JOe?

34. ourame the one month period after mono TO THIS PROVINCE, DID ...
A. DO ANY WORK AT ANY MME?

8. LOOK FOR WORK AT ANY TME?

C. have a jos to start at a definite DATE IN THE FUTURE?

D. ATtend a SChOOL AS A FULL-TIME STUDENTT

35. FOR WHOM DID ... FRST WORK AFTER MOVINO TO THIS PROVINCE?

0

- SAME AS ITEM 72 ON POS \qquad Oates
- Didn't work after moving to this province
${ }^{2} \bigcirc_{\text {END }}$

OR \qquad

36. WHEN OID ... START WORKING FOR THIS EMPLOYER?

37. WHAT KIND OF A BUSINESS, INDUSTRY OR SERVICE WAS THIS?

\qquad
\qquad
38. WHAT KIND OF WORK WAS ... DOING?

39. HOW MANY HOURS PER WEEK DID ... USUALLY WORK AT THIS JOE?

Canadä'

