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This guidance document was written to help you 

collect, summarize, visualize, and analyze data on 

harvesting of migratory game birds. To use this 

guide, you are not required to have had any prior 

experience working with data. All that is required 

of you is motivation to learn, and maybe a little 

patience. 

Collecting harvest data to estimate the annual 

take of migratory birds is, in a word, research. 

This document is organized according to the 

steps you need to take as a researcher conducting 

a study. We start with getting acquainted with 

some fundamental terms. We brush up against the 

philosophical problem inherent to research – that 

is, how do we know that our research is telling us 

the truth? We then move onto the importance of 

carefully considering what we're actually trying 

to measure, and how best to take measurements. 

We overview the importance of creating a data 

collection protocol, and of regular communication 

with our data collectors – the hunters - to avoid 

biases and errors. Next we overview the basics of 

data summary and visualization using Microsoft 

Excel. The rest of the document works through 

the process from data summary to analysis and 

interpretation using example data sets of harvest 

data, provided on the CD accompanying this 

document.

Four computer programs are used in this guide. 

Microsoft Excel is used for data summary and 

I n t r o d u c t I o n
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visualization, R is used for statistical analysis, and GoogleEarth and ArcGIS are used for mapping. This 

guide was written assuming you have no prior experience working with these programs. You will need 

to work through Appendix 3 Getting Started with R, before you work through the sections on statistical 

analysis.  

A considerable amount of statistical theory has been distilled into this guidance document. If you find 

some of the concepts difficult to grasp at first, know that you are not alone. Learning statistics is learning a 

new language – it takes time and patience and a lot of practice. Almost all of the background mathematical 

theory has been left out – if you are interested, you will find good translations of the math theory, in 

addition to much more thorough statistical theory and tools, in the books listed in the bibliography. You 

don't need to be a mathematician to be a good researcher. However, it will help you to be able to visualize 

statistical tests, to really understand how the tests are helping you as a researcher find the truth. 
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Data is information. We use data to answer questions. When we ask questions, we want truthful 

answers. 

We almost never have data on everything. Statistical analysis is the practice of deriving truth from 

a part of something we define as everything. In statistical terms, everything is referred to as the 

population, and the part that we observe to say something truthful about the whole, is referred to as the 

sample. 

Imagine you’re standing in front of a field of f lowers, and your job as a scientist is to find out what 

proportion of the f lowers in the field are blue. Everything in this case - the population - is the whole 

collection of every single f lower in the field. Intuitively, you can imagine that you do not need to count 

and record the colour of every single f lower in the field to answer your question. Instead of counting the 

whole population, you take a sample. 

To ensure that f lower counting will be manageable, you decide that your sample unit will be a 2 x 2 foot 

square area. A sample unit is the unit of observation used to answer the question. 

In your sample unit of an area of 2 x 2 feet, you count 12 f lowers, and 3 of these are blue. The proportion 

of blue f lowers in your sample is 3/12 = 25%. You conclude that the proportion of blue f lowers in the 

entire field is about 25%. We practise the science of statistics when we use data collected from samples 

to estimate the truth about an entire population. 

But we must always remember that our efforts do not result in the real truth; the best we can ever do is 

to estimate truth. Your estimate of the proportion of blue f lowers in the field would be more accurate 

if you used more sample units to derive the estimate. Sample size refers to the number of sample units 

used to estimate truth. Sample size is a key issue in statistical analysis. The higher the sample size used 

to represent the population, the more accurate the estimate of truth.

Because we can only estimate truth, as good scientists we are obligated to imagine all the ways we could 

be wrong. This where science becomes something of an art, because deriving truth from data requires us 

to think imaginatively about the world. For example, what if there were no blue f lowers in the back half 

of the field, because a blue-f lower-eating pocket gopher lived there? What if the blue-f lowered plants in 

Sunlight and Pocket goPherS
the Science and Art of Answering Questions with Data
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this field love sunlight and thus grow better along the edges of the field? 

If we imagine that these conditions were actually true, then your estimate of 25% blue f lowers was 

wrong; the true proportion was much lower. You happened to count the blue f lowers where there were 

many of them, and thus you over-estimated the true proportion. Gasp.

Because the distribution of blue f lowers varied across the field due to sunlight and a pocket gopher, the 

data that you collected at the perimeter of the front half of the field was biased. Bias refers to systematic 

inaccuracy – that is, biased data is sample data that does not represent the population because of certain 

attributes of the sample. In this case, bias resulted from the positioning of the sample within the field.

To avoid collecting biased data, you need to count f lowers at random locations across the whole field. In 

other words, you need to take a random sample. For example, you might mark out a grid of 2 x 2 foot 

squares across the field, resulting in 552 squares. You decide you want a sample size of 100, which is 

about 18% of the population (i.e. the field). You assign a number to each square, write numbers from 1 

to 100 on individual pieces of paper, put them in a hat, shake it, and withdraw 100 numbers. You would 
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then go count f lowers in each numbered square, and the result would be a random sample, and the 

sample size would be 100.

You need to consider one more important characteristic of your 

sampling design to ensure the data are not biased. Sample units 

must be independent of one another. Imagine that two of the 2 x 2 

randomly chosen squares were adjacent to one another. You count 

f lowers in each square in the morning when there was no wind, 

and then you count f lowers again in the afternoon when the wind 

is blowing from the east. You don’t count the same number of blue 

f lowers in each square in the morning as in the afternoon. 

What could have happened? The wind blew the blue f lowers that 

grew on the border between the two squares into the western 

square in the afternoon. Because what happened in one square was 

related to what happened in the other square, in statistical terms, 

these two sampling units were not independent. Non-independence 

of sampling units results in inaccurate estimation. 

Now let’s apply these terms to the questions you’re interested in and the types of data you’ve collected. 

The main question you want to know from the data your organization collected from hunters is: 

“What was the total number of birds of each group (e.g. ducks, geese, ptarmigan, etc.) harvested in each 

year?” 

You may find it useful to ask other questions, such as, how do harvest levels differ across areas, across 

seasons, or between age groups of hunters?

The population for these questions is the total number of hunters within your organization that 

Sunlight and Pocket goPherS 
the Science and Art of Answering Questions with Data

Harvest data
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harvested migratory birds in a given year. The sample is the collection of hunters that provided 

information on their harvest, and the sample size is the number of hunters that provided information. 

The sample unit is a hunter.

The simplest way to answer the question is by calculating the average number of birds harvested per 

hunter and then multiplying by the total number of hunters.

Total estimated number of birds harvested = 

Average number of birds harvested x Total number of hunters

 

The table below shows the harvest success of 15 duck hunters, 9 of which responded to a harvest survey 

and provided information on how many ducks they harvested. In this scenario, there are only 15 hunters 

in the whole region for which harvest levels are being estimated. In reality, you likely must estimate 

the total number of hunters in your region. As you’ll see below, either the actual or estimated total 

number of hunters is essential to estimate the total annual harvest.

Reported Number
 of Ducks Killed

Responded
to Survey?

Hunter
ID

X02

Q30

N30

M90

B77

N10

R45

E33

A22

P12

U38

G23

T67

Y09

D88

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

12

12

3

22

16

3

0

7

20

95

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Total

Table 1. Harvest success of 15 duck hunters, 9 of which responded to the harvest survey
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Applying statistical terms, the population of hunters in this scenario is 15, and the sample size of 

hunters is 9, because 9 hunters answered the survey and provided data. 

Now let’s apply the simple formula to calculate the total number of birds harvested. 

The average number of ducks killed per hunter of the sample of 9 hunters is 95/9 = 10.6. The total 

number of hunters is 15. And the total estimated number of ducks harvested = 10.6 x 15 = 158.3.

Now let’s imagine that all hunters had responded. 

Note that the total number of ducks harvested is very close to the estimate of 158 that we calculated 

using the simple formula.

In fact, if we took any random sample of 9 hunters from the total population of 15 hunters, we would 

arrive at similar estimates. 

Reported Number
 of Ducks Killed

Responded
to Survey?

Hunter
ID

X02

Q30

N30

M90

B77

N10

R45

E33

A22

P12

U38

G23

T67

Y09

D88

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

12

12

3

22

16

3

0

7

20

15

10

7

5

12

8

Total 152

Table 2. Harvest success of 15 duck hunters, all of which responded to the harvest survey
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Let’s try. Throw these Hunter Identification numbers into a hat, pull out 9, calculate the average, and 

multiply the average by 15.

Example of random sample of 9 hunters: 

Average = 12 + 3 + 16 + 3 + 20 + 10 + 7 + 12 / 8 = 10.4

Sample average x Total number of hunters = 10.4 x 15 = 156

Now, just as with the blue f lower example, we need to consider how we could be wrong if we answer our 

questions from sample data. One possibility is that hunters who felt unsuccessful in their harvesting 

do not respond to harvest surveys. Unsuccessful hunters are those that went out hunting but did not 

harvest any birds, or, hunters that harvested birds but not as many as they’d hoped to harvest. Perhaps 

they didn’t feel that one or two birds was worth reporting. This is referred to as non-response bias. Let’s 

observe the effect of such non-response bias on our estimate of the total number of ducks harvested.

Imagine that only successful hunters responded to our harvest survey. Refer to Table 2 on previous page. 

Example: Sample average = 12 + 12 + 22 + 16 + 20 + 15 + 10 + 12 / 8 = 14.9

Sample average x Total number of hunters = 14.9 x 15 = 223

Non-response bias resulted in an over-estimate of the true number of ducks harvested by the total 

population of 15 hunters. This was because hunters that did not harvest many ducks did not respond 

to the survey. The numbers of ducks killed by successful hunters was used to represent the whole 

population of hunters, which included successful and not so successful hunters.

It is clear that the sample of hunters must be a random sample; otherwise, the estimated total 

harvest of birds will be wrong.

Now let’s investigate the effect of non-independence of sample units on the estimated total harvest of 

sources of bIas In Harvest data
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birds. Recall that the sample unit is a hunter. Suppose that one hunter decided to respond to the survey 

three times with his duck kills for the same area and time frame. The duck kills from the same hunter 

were entered as though the kills were made by three different hunters - Q30, B77, and P12. Refer to Table 

2 on previous page. These counts of duck kills are not independent of one another, because they were 

kills made by the same hunter.

If we were unaware that Q30, B77, and P12 were indeed the same hunter, the estimated total harvest of 

ducks from a sample size of 10 hunters who responded to the survey would be 110 / 10 *15 = 165.

Now suppose the hunter called to inform us that he had responded to the survey three times, and that he 

had actually killed 16 ducks.

The independent data set, now with a new ID number assigned to that hunter results in an estimated 

total harvest of ducks of 83 / 8 *13 = 135. Note that the number of hunters is now 13 and not 15, because 

the non-independent entries are deleted. Also note that the sample size is 8 hunters.

Ensuring that our data set only included independent data resulted in a different estimate of the total 

number of ducks harvested (135 versus 165). Since 125 is the true number of ducks harvested, the 

independent data set resulted in a much more accurate estimate.
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One of the most important tools in your tool box as a researcher trying to gather the truth from data 

is a data collection protocol. A data collection protocol is essentially a recipe book that details your 

research goals and questions, exactly what data you collected, exactly how you collected it, issues you 

encountered while collecting the data, and the decisions you made to deal with these issues.

In the absence of a data collection protocol, many research efforts have gone seriously awry. Suppose for 

example that you conducted a harvest survey and asked hunters to report on their effort. But you didn’t 

define exactly what you meant by effort. One hunter correctly reported just the days she spent in the 

field hunting. Another hunter reported the days he spent hunting, plus all the days he spent preparing 

to hunt, including travel time to get to his hunting location. Clearly in this case you would be collecting 

inaccurate data.

Without first defining for yourself exactly what effort means, you will be more likely to neglect to 

inform your study participants what you expect them to report for their hunting effort. A data collection 

protocol forces you as a researcher to think carefully and thoroughly before you conduct research. This 

avoids expensive mistakes and helps in highlighting potential biases and ways to deal with them.

A key component of a data collection protocol is the data sheet you will be using to collect data, along 

with a very detailed description of each entry on the data sheet. An example data sheet is provided in 

Appendix 1, and a detailed description of each entry is provided in the table below. In our case, hunters 

are our data collectors, and thus it is very important that hunters be sent very clear instructions along 

with the data sheet (Appendix 1).

A data collection protocol also helps to identify potential pitfalls and ways to avoid them. Aside from 

reporting bias, there are at least three major pitfalls that must be avoided when conducting a harvest 

survey:

1. Hunters believing that they don’t need to report unsuccessful hunting trips. That would mean that 

your data would contain no zeros, and your data would be for successful hunters only. It may be that 

a large portion of hunters are unsuccessful in some years due to environmental conditions. If these 

hunters failed to report on their effort, you would overestimate the harvest. But equally important, 

you would not be able to rigorously test for environmental effects of, for example, climate change 

the importance of data
collection protocols 
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and development pressure on hunting success. This pitfall is easily overcome simply by stating clearly 

in the instructions to hunters that they need to report on their hunting effort even if they were not 

successful.

2. Inability of hunters to identify the common names of the species they harvested. This is easily 

overcome simply by sending along a photo identification guide with common names of species.

3. Hunters reporting a confusing array of hunting locations that you are not able to pinpoint on a map. 

You can avoid this by asking hunters to report coordinates, or, simply by providing them with a sub-

regional map, and asking them to mark their hunting locations on the map as accurately as possible.

A general rule of thumb is to collect data at the ‘highest resolution’ possible, while still collecting data 

efficiently. A data collection protocol helps to separate core data needs from unnecessary data. This 

is especially important when conducting research based on a voluntary survey. The ideal survey is a 

careful balance of being quick and easy to fill out and return, while also collecting all the necessary 

information. An example of this careful balance on the example data sheet is the entry for month. 

Asking hunters to report the month of harvest is better than asking them to report season, because the 

definition of seasons may vary across regions. For example, a hunter on the southwest coast of BC where 

there is very little snow might define fall as September to December, while hunters in the rest of the 

province would likely define fall as September to November. ‘Month’ presents a higher resolution of data 

than ‘season’. 

Collecting harvest data depends on hunters voluntarily, and accurately, reporting their harvests. One of 

the key issues with a harvest survey is non-response, as we have investigated. Addressing non-response 

bias is thus one of the most important aspects of collecting reliable harvest data. There are two ways 

to address it. The first is to encourage higher reporting rates. For example, the US Fish and Wildlife 

Service conducts an annual harvest survey for migratory birds http://www.fws.gov/birds/surveys-and-

data/harvest-surveys/diary-surveys.php. They have achieved a 50% response rate from approximately 3.5 

million hunters in the US every year! Their method depends on sending out repeat reminders to hunters 

addressIng reportIng bIas

http://www.fws.gov/birds/surveys-and-data/harvest-surveys/diary-surveys.php
http://www.fws.gov/birds/surveys-and-data/harvest-surveys/diary-surveys.php
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to fill out survey forms. They send out the initial survey package (data sheet, instructions, species ID 

sheets, etc) at the start of the hunting season so that hunters can record their take as they hunt. This 

avoids memory bias, resulting from hunters forgetting their harvest and thus reporting inaccurately. A 

reminder is then sent to all hunters at the end of the hunting season to fill out the harvest survey, then a 

month later, another reminder to hunters that haven’t yet responded. A third reminder is sent a month 

later to the remaining non-responders.

Another way to address non-response bias is to measure it, which requires conducting a follow-up phone 

survey to ask non-responding hunters the same information on the data sheets. This is labour intensive, 

and it may be more fruitful to put the added effort into increasing the response rate.
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So your organization has conducted a harvest survey, and you now have a stack of data sheets in front of 

you. Now what?

The first step is to store the data in a way that the information is very accessible. In short, you need to 

create a database. The easiest program for this is Microsoft Excel.

In essence, a database is a digital copy of the data sheets.

Open the excel file named <example_harvest_data.xls> provided on the CD in the back page of this 

document.

Excel can be used to store, organize, and summarize data, which all together are called data 

management. Excel stores data in ‘spreadsheets’. Different spreadsheets within the same excel document 

usually contain different subsets of the same kinds of data. The basic layout of a spreadsheet is a very 

large number of columns labelled with letters, and a very large number of rows, labelled with numbers.

You’ll see two tabs at the bottom left hand corner – one tab is named ‘2015’. If you click on ‘2015 NB’, 

you’ll see that you’ve now entered a different spreadsheet. You can add spreadsheets to your file simply 

by pressing the + button next to the spreadsheet tabs. And you can rename each spreadsheet by right 

clicking on a tab, and then scrolling to ‘rename’.

Excel is used is to create a table of information, with each column containing a different set of 

information. Usually, the first row is used to label the columns, and often it is helpful to bold the 

typeface to make the labels stand out more.

Compare the example data sheet in Appendix 1 with the ‘2015’ spreadsheet. Note that the column titles 

match the entries on the data sheet, and follow one another in roughly the same order as the data sheet 

boxes are read from left to right, and top to bottom. Setting up a data base in this way makes data entry 

easier, because you need only move your cursor across the excel spreadsheet as your eyes move across the 

data sheet.

data entry and
management in excel 
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Another tip for creating a good database is to keep column titles simple, one or two words rather than 

phrases. This makes it easier especially with large databases with many columns to find columns with a 

quick glance at the title. Note how the entry for “Number of days you spent hunting” on the data sheet is 

simply “Effort” in the database.

Note also that instead of creating a column for “Year”, the spreadsheet is simply named ‘2015’. The 

spreadsheet contains all the data for 2015, so a column for year is unnecessary. The other spreadsheets 

could be used for future years of data.

It is essential that every cell within a row of a database contain data (See Tools and Tricks). As you 

enter data, you may be tempted to leave out information that repeats. For example, in the 2015 NB tab 

there are 3 lines of data for the first hunter (Hunter ID BB200), so the information for the first eleven 

columns is exactly the same. You might be tempted to not enter the data on the second and third lines 

for those columns. But, if you did not enter the second and third rows of repeated information, and the 

information in the database were sorted (which we learn how to do in a moment), then you would lose 

track of which hunter harvested the mallard and the green winged teal and the northern shoveler. Avoid 

the frustration of having to re-enter your data!

One handy menu is the View menu, accessed by pressing the View tab from the main menu on the top 

of the screen. Here you can zoom into and out of the document (which is just like in Word). The Freeze 

Panes button is also very useful. This allows you to keep your column titles showing as you scroll down 

the page. This is handy when you have a lot of data and can’t remember the title for each column. If you 

freeze the top row and then scroll down the page, you’ll see that the column titles don’t move and are 

thus always visible. Note you can also freeze the first column so that it always shows as you scroll from 

left to right.

tools and trIcks

view Menu
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Moving data

shortcuts

Moving data in excel is relatively easy. You can select columns of data to move, delete, or copy simply by 

left clicking the mouse, holding the clicker down, and then dragging over the column letters. You can 

select rows in the same way, except this time by holding and dragging over the row numbers. When data 

is selected, it shows up as shaded in grey.

Once you have columns or rows selected, right clicking brings up the cut, copy, and paste menus. Cut 

will delete your selection, which you can then paste elsewhere. Put the cursor in the top left hand corner 

of the block where you want the data to be.

You can also insert columns or rows by first selecting where you would like a new column or row to go. 

Then right click, and press insert. New columns are inserted to the left of the selected column, new rows 

on top of the selected row.

Once you’ve made a selection, simultaneously pressing the control and c keys will copy the information, 

which you can place where ever you want by moving the cursor. Simultaneously pressing the control 

and v keys will paste the information you just copied, starting in the cell where you’ve placed the cursor. 

If you want to move information and place it somewhere else, highlight want you want to move, press 

the control and x keys simultaneously, move the cursor where you want the information to go, and then 

press control and v to paste.

If you ever mess up and need to undo what you just did, simply press the control and z keys at the same 

time. If you want to re-do something you just did, press control and y keys at the same time.

And the control and s keys pressed simultaneously will save the file.

It’s a good idea to get in the habit of pressing control and s (save) often as you work.
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It is inevitable that you will have to sort your data at some point. Data sorting is used to group 

information together in the database. This can make it easier to check over data, to get a sense of general 

patterns in the data, or simply to create summary columns, which we will do in a moment.

It is essential when sorting data that you select the entire data sheet. Otherwise, if you select just 

one column, the data will be sorted only in that column. This will result in a mismatch in the data, as 

the information in the sorted column will end up in the wrong rows. Because this essentially ruins a 

database, and has been a common issue in the past, new versions of Excel will automatically select the 

entire spreadsheet for you when press the sort button.

Under the Data tab on the main menu, press Sort (note that the entire spreadsheet is selected).

Under Column, you’ll see Sort by – this is where you can choose the column by which you want to sort 

your data. Sort on gives a few options, but values is pretty much all you need. Then you can choose 

whether to sort small to large numbers (A to Z for words), or large to small numbers (Z to A for words).

If you check the My data has headers button, then your column labels won’t be sorted and end up 

somewhere in the data – they’ll stay on the top as columns labels.

Suppose we wanted to sort by Region. Under Sort by and Column, scroll to and click on Region, and 

then okay. You’ll see that the spreadsheet is now organized according to region, in alphabetical order 

from A to Z. Note that you can sort by multiple columns by clicking on the Add Level button. If you 

need to remove a column from the sorting set, select it, and then click on Delete Level.

Often it is useful to create summary columns. For example, from the data sheet you will enter the 

number of birds harvested by species, but you will likely want to be able to summarize the data by 

species groups, such as by ducks, geese, or other species groups of interest.

creating summary columns

sorting data
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The column titled ‘SpeciesGroup’ is just such a summary column. This column was created by clicking 

on the Species column (click on the letter above the first row), right clicking, and scrolling to insert. 

Now there is a blank column in which to enter names for species groups. And now you can see the 

usefulness of the sort function. Instead of having to assign a species group to a mixed up jumble of 

species, you can sort by species, and then more efficiently enter names for species groups. This is even 

faster if you write a name once, copy that cell, and then paste down the column until a different name is 

needed.

Data entry errors can result in very inaccurate answers to research questions. The good news is that 

these errors are the easiest to fix. It is good and highly recommended practice once you have entered 

all your data to check for data entry errors. When you find an error, fix it, and then check back again 

through all of your data entry once more, even the data you already checked. Keep checking your data 

in this way until you find no more errors.

Now you are sure that the information reported by hunters is exactly the information that your database 

contains.

The next step for error checking is simply to ensure that you have spelled things correctly and have 

written the same words in exactly the same way. For example, excel will distinguish between “Surf 

Scoter” and Surf scoter”. To make sure that all the information associated with a grouping is included 

when we summarize and visualize data, we need to make sure that the names for groups appear in 

exactly the same way.

A pivot table is a quick and easy way to check for spelling and format errors. You can create a pivot table 

for any or all columns of data by highlighting the columns of interest (clicking on the letter above the 

column), or to highlight the whole spreadsheet, click on the small arrow in the upper left hand corner of 

the spreadsheet. As an example, highlight the Region column. On the menu at the top, click on Insert, 

Tables, Pivot Table. Then click ok.

cHeckIng for errors
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Under PivotTable Fields, check the box next to Region. Note that Region appears under the Rows  box 

on the bottom right hand side, and a list of the regions in the database appears in the pivot table on the 

left.

There are 5 unique regions. “Vancouver Island & Powell River” and “Vancouver Island and Powell River” 

are redundant – we must choose to use one or the other so that all names in our database are spelled 

exactly the same way. To generate a count of the number of rows in the database for which each region 

appears, click on Region again under the PivotTable Fields, and drag and drop it into the Values box on 

the bottom right hand side. A count of the number of times that each region appears in the database is 

shown in the pivot table.

“Vancouver Island & Powell River” appears only once – thus that’s the name to edit. You can now delete 

the pivot table spreadsheet – right click on the spreadsheet tab, and scroll to delete. Be careful not to 

accidentally delete the spreadsheet with your data!! 

Spreadsheet deletion is not reversible.

Now all you need to do is replace ‘&’ with an ‘and’ in one row for the Vancouver Island & Powell River 

region. But where is that row?

One option is to sort the data by region and then simply look for the ‘&’. But when you have hundreds of 

lines of data, this can be quite onerous. Instead you can use excel to quickly find what you’re looking for. 

A commonly used function in excel is Find and Replace. Under the Home tab on the top menu, press 

the Find and Select button, then scroll to Find. In Find what, write <Vancouver Island & Powell 

River>. The spreadsheet will instantly be moved to the cell containing that exact phrase. You can either 

manually edit the cell, or, you can use the Replace function. In the Find and Replace box, click on the 

Replace tab, and in Replace with, write <Vancouver Island and Powell River>, click Replace, and notice 

how Vancouver Island & Powell River is instantly replaced with Vancouver Island and Powell River in 

the cell.

search and replace
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The data set you created by entering data from the harvest survey data sheets is referred to as raw data. 

Raw data have not been processed in any way; these data are simply a digital representation of what 

was collected in written format on data sheets. In contrast, processed data, sometimes referred to as 

working data, have been summarized to the point that the data are ready for summary and analysis. 

Data management includes the types of actions you’ve already taken, such as sorting, error checking, 

and creating summary columns. Data processing involves manipulating the data so that it can be used 

efficiently to answer research questions. Usually, data processing involves collapsing a raw data set into 

a smaller data set.

Recall that statistical analysis requires that data be independent. For these example data, statistical 

independence was integrated into the study design, such that a random sample of hunters in each season 

were asked to provide information. Thus, note that Hunter IDs are different among the seasons with 

a region. In reality, your organization likely collected data from hunters that harvested in multiple 

seasons. Prior to statistical analysis, it is highly recommended that you draw random samples from your 

data when analyzing seasonal differences in harvest levels so that each season is comprised of data from 

different hunters. 

In order to begin the process of data summary and analysis, we need to ensure that each row in our excel 

spreadsheet contains all the relevant data for one sample unit. In our example data set, the sample unit is 

one hunter. In our raw data, some hunters have several rows of harvest information, because they hunted 

more than one species, or the same species but in different locations. To create an independent data set 

ready for statistical analysis, we need to collapse the raw data set into a working data. In our working 

data, each row will contain the total harvest counts for each hunter. 

Creating a working data set requires us to think about our research questions a bit first before we create 

the data set. We need to ponder, for example, whether we’re interested in analyzing harvest rates per 

species, species group, or whether we just want to know the total harvest of all birds. Perhaps we’re not 

interested in analyzing harvest rates per season, and thus it’s fine to sum harvests across all seasons. 

Usually different working data sets are needed to address different research questions. 

creatIng a WorkIng dataset
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The easiest way to create working data is to use the Pivot Table tool in excel. Begin by selecting the 

entire spreadsheet by clicking on the small arrow in the top left hand corner. Click on Insert in the top 

menu, then tables, then PivotTable, then OK. Note that the default to insert the pivot table into a new 

worksheet is almost always the best option – that way, you won’t overwrite any of your data with the 

pivot table.

Note that on the right hand side, all the column titles are listed in the PivotTable Fields window. Below 

that window, note the Columns, Rows, and Values windows.

Recall that we’re interested in summarizing harvest levels of all birds per region for each hunter. Check 

Hunter ID and note that it automatically enters into the Rows window. That results in each individual 

hunter being listed in the pivot table on the left. Already we have started to collapse our raw data set, 

because each hunter ID is now listed just once. We can add Age to the Rows window, which simply tags 

each hunter’s age to the hunter ID.

For each hunter, we want to know the total number of birds they harvested per region and season. So 

check region and season, and note again that they automatically enter into the Rows window. Note what 

happens in the pivot table. For each hunter, the region and season in which they hunted appear below 

hunter ID.

Now we’re ready to sum the total number of birds they harvested. Check Quantity in the PivotTable 

Fields box – this is the count of birds. Quantity appears in the Rows window, but we want it in the 

( Pivot Tables are fun! )Introduction to pivot tables

For now, suppose we’re interested in summarizing harvest rates of all birds, per region, and per season. 

Thus, we can sum across different locations per hunter, and we can sum across the different species that 

each hunter harvested, to derive one overall count of birds harvested per hunter. 

Since you’re about to create working data from your raw data, start by renaming the 2015 spreadsheet to 

‘Raw Data 2015’.
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Values window, because we’re interested in summing the numbers in this column. Click on Quantity in 

the Rows window and drag it into the Values window.

By default, the operator applied to data placed in the Values window is ‘count’. The count is simply the 

count of the number of rows of data for each of the columns placed in the Rows window. For example, 

for Hunter AA45554 who hunted in the Lower Mainland in fall, there are three rows of data in the 

quantity column, which means that he (or she) harvested three different species, or in three different 

locations in the fall.

We want the sum instead of the count. Click on Count of Quantity in the Values window, then click on 

Value Field Settings, and then click on sum. Now the pivot table is showing the total number of birds 

harvested, per hunter, per season, per Region. The table also shows hunter age. Note the other options 

in the Value Field Settings, such as average, minimum, and maximum. These operators are used very 

frequently when summarizing data with pivot tables.

The pivot table by default is in an inconvenient format – the information for each hunter is listed in the 

rows below the hunter ID. Fortunately, this is easy to change. In the Rows window, click on Hunter ID, 

then Field Settings. On the Subtotals and Filters tab, under Subtotals click on None. On the Layout 

and Print tab, under Layout, check Show item labels in tabular form. Click OK. Notice how Hunter 

ID is now on the same row as Region. Now we have to do the same to Region in the Rows window. And 

once we do that, you now see that all of the unique data for each hunter is contained within one row. 

That’s what we want.

There are three final steps before we can call this a working data set. The data is stored as a pivot table; 

we need to copy the table and paste it so that it becomes just data. Click on the upper left hand corner 

of the spreadsheet, right click copy, scroll to Paste Special, and then check Values. This removes all 

formatting for the cells and pastes just the data.

The second step is to clean up the data table a bit. Remove the top two blank rows. Re-name column A 

back to its original label “Hunter ID”. Scroll to the bottom and delete the last two rows. Re-name the 

cleaning the pivot table up
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‘Sum of Quantity’ column to something more informative, like ‘TotalBirds’.

Okay. Now we have the total number of birds harvested by each hunter, and we have columns telling us 

their age, and the region and seasons in which they hunted.

In addition to using a pivot table, you can quickly generate summary statistics of column data in excel 

using the function window. First make sure the TotalBirds column is column D. Click on an empty cell, 

press the ‘=’ key on the keyboard. Notice an equal sign appears in the function window below the top 

menu. Write min( and then select the values in the TotalBirds column. Then write in the other bracket 

), and press Enter. In the function window it should read =MIN(D2:D186). When you press enter, the 

minimum value in the TotalBirds column appears in the previously blank cell. Move to a blank cell, and 

do the same except this time write max instead of min. It should read =MAX(D2:D186) in the cell, and 

the result should be 26. Now we know that the minimum harvest of birds by one hunter in 2015 was 0 

and the most was 26.

There was considerable variation in the numbers of birds harvested. Hmm. But did hunters with high 

takes simply spend more time hunting? One of the main reasons to collect information on hunting effort 

is so that harvest levels can be compared between strata.

Strata are homogenous sub-groups of a population. An example of a stratum in our example data is 

region. Due to geographic, biological, cultural or other reasons, hunters that live in the same area are 

more likely to hunt the same species, hunt for similar amounts of time, and harvest similar quantities of 

birds.

Without information on effort, we have no way of knowing whether higher harvest levels in one region 

compared to another are due to regional effects, or simply because hunters spent more time hunting 

there. The same is true of the other strata we are considering here – season and age group.

generating descriptive statistics
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Harvest effort

Effort allows us to standardize harvest levels, so that we are comparing the same thing across strata. 

Comparing unstandardized harvest levels across regions is like comparing apples and oranges. By 

standardizing harvest levels to a harvest rate (kills per day), we eliminate the possibility that any 

differences in harvest levels are due to effort.

So now that we’ve summed total take of birds per hunter, we need to also sum their effort. Which is easy 

right? We just have to set up our table as before but this time put Effort in the Values window.

Nooooooo! This brings us to a key point in data summary. It can save you precious time to always think 

carefully about the question you want to answer, and how your data is organized with respect to your 

question. Recall that the data sheet asks hunters to fill in information separately for different months 

and locations. Species harvested in the same month and location have the same information entered into 

the rows in the excel spreadsheet, including effort. Thus, if we were to simply sum effort, we would be 

summing duplicate information.

So first we need to create a pivot table of unduplicated information. The highest resolution of our data 

is hunter- region-location-season-month, so first we need to set up a pivot table with these columns in 

the Rows window. Now we can also place Effort in the Rows window. Note how some hunters harvested 

in different locations, and thus could have different effort in those locations. Now we have a table 

which includes the effort of each hunter in different locations within a region, and different months 

within a season. We first need to ‘clean up’ the table following the steps above, to get all non-duplicate 

information for each hunter on one row.

Now we need to create a second pivot table from this table. Copy, Paste Special, Values, clean up.
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QuIckly fIllIng In blanks

fun trick: filling in blank cells in excel

But wait! Note that there are blank cells in this pivot table. We need to copy down the uppermost cell 

values to fill in the blank cells. This will ensure that if the data were sorted, row information would 

remain correct. We could do this manually, but there is a much faster way. Highlight the columns 

with blank cells down to the bottom most row of data. Do not highlight the whole columns.

Press F5 on the keyboard. On the Go To window, click on Special. On the Go To Special window, 

click on blanks, then OK. Press = on the keyboard, then click on the cell above the first blank 

cell. Then press Control and Enter at the same time. All blank cells should now be filled with the 

information above.

The following step is very important. The previously blank cells contain formatting to copy the 

contents of the cell above. If you were to sort the data, the cell values would change because they are 

formatted to copy the contents above. Thus, as with copying the pivot table, you need to copy all the 

formatted columns, and then paste the contents as values only. Copy, Paste Special, Values.

Now we’re ready to create the second pivot table. HunterID into Rows, and Sum of Effort into Values. 

Change Count to Sum. Copy, Paste Special, Values, clean up, fill in blanks.

The result is the total number of days within a season spent hunting per hunter (recall that the data are 

independent, such that each hunter’s data are from one season only). This column, re-labelled ‘Effort’ 

can be added to the table of Totalbirds. We just need to sort each table of information by HunterID to 

match them up.

Now you have some working data! Rename this spreadsheet ‘working data total birds’. Now you’re ready 

to summarize and visualize these data.
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Data summary is essential for understanding your data, and is the first step toward statistical analysis.

A variable is a characteristic of the world of which measurements have been taken. Our working data is 

comprised of five variables – Age, Region, Season, Effort, and Quantity. Hunter ID is the sample unit.

When we collect data to answer research questions, we are usually asking a question something like, 

‘how do these things (variables) affect these things (variables)? As we ask that question, we observe 

sample units as the basis of our questioning and answering. In statistical terms, the variables that are 

affected are referred to as response variables. The response variables in our case are harvesting effort 

and the quantity of birds harvested. Variables that we think might affect response variables are referred 

to as predictor variables in statistical terminology. These are hunter age, region, and season. In essence, 

we want to test with our data how hunter age, region, and season affect harvest levels of birds and 

harvesting effort.

When we summarize data, we are usually interested in summarizing both predictor and response 

variables. When we summarize predictor variables, it can give us a sense of the layout of our study, 

which is referred to as study design. When we summarize response variables, it gives us a sense of 

general patterns in the data and begins us on the path toward answering our research questions.

Open the excel document titled ‘harvest_worked_data.xlxs. This file contains the raw data, and a copy 

of the working data – click on the spreadsheet titled ‘working data total birds’.

Before we begin analyzing data, it’s important to get a good sense of the study design. One of the main 

questions regarding study design is, what is the sample size? It’s easy to see the total sample size from 

the working data – we created a set of independent working data, so each row corresponds to one hunter. 

The number of rows is our sample size, which is 185 hunters. But when we’re comparing response 

variables among strata, we need to know the sample size per strata. The key question is whether 

sampling was generally balanced with more or less similar sample sizes per strata, or whether it was 

highly uneven. Estimates of responses in strata with relatively low samples sizes may be less accurate 

suMMarIzIng predIctor varIables

summarizing and visualizing
patterns in your data
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than those with higher sample sizes. We want to know, how many hunters comprise our random sample 

per region, season, and age group?

First let’s use pivot tables to do some quick summaries. Create a pivot table from the whole spreadsheet. 

Move Age to the Values window, and change the field value to minimum, then to maximum, and then 

to average. This is a quick way to get some useful summary information on hunter age. We’ve just found 

out that the range of hunter ages is quite broad - 17 to 75, and the average age is 47 years old. Move Age 

out of the Values window.

Now let’s find out sample size per strata. Drag Region into the Rows window, and, since each row 

corresponds to one hunter, any of the columns can be counted per region to generate the number of 

hunters per region. Try that out – place Hunter ID in the Values window, and Season. Both result in the 

same count, which is the sample size of hunters per Region. Sample sizes per Region appear adequate at 

first glance, with at least 24 hunters being sampled per region. The sample sizes for the Lower Mainland 

and Thompson and Okanagan are twice that of the other regions, but this is probably appropriate given 

the higher population size of hunters in those two regions. Removing Region and placing Season in the 

ROWS window results in the sample size per Season.

Ah. The sample size for winter is just 9 hunters. This is likely too low of a sample size to be able to 

generate accurate estimates of harvest levels of all hunters of all ages in all regions of BC during winter. 

It would be okay summarize this information as a cautious estimate of harvest levels in winter, but it 

should not be used in statistical models that test for effects of other strata.

Now we can summarize by hunter age. First create a summary column in the working data sheet 

titled AgeGroup. Sort the working data by age, then fill in the AgeGroup column using the following 

groupings: 17-30, 31-40, 41-50, 51-60, 61-75. Using the pivot table to count sample size per age group 

shows relatively even sampling across age groups. Sampling is relatively lower in age group 31-40, but at 

26 hunters it should be sufficient to generate reliable estimates.

So now what about sample sizes per region per season per age group? This is our full study design. We 

need Region, Season, and AgeGroup in the Rows window, and then any column placed in the Values 

window. By default this will give us the count of rows, which is the sample size. To make the table more 
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compact and readable, shift Season to the Columns window.

The resulting table of sample sizes per strata is a key aspect of your study design, and is a 

recommended table to include your report.

The table shows that the sample size for winter is insufficient for statistical modelling across other 

strata. It also shows that sampling across ages was relatively good – all age groups were sampled in all 

regions, except for two age groups in summer in the north, and 31-40 year olds in Vancouver Island & 

Powell River in spring and summer.

The distribution of sample size across strata is important to keep in mind when conducting statistical 

Age Group Fall Spring Summer WinterRegion

Kootenays

Lower Mainland

North

Thompson and Okanagan

Vancouver Island and Powell

17 - 30
31 - 40
41 - 50
51 - 60
61 - 75

17 - 30
31 - 40
41 - 50
51 - 60
61 - 75

17 - 30
31 - 40
41 - 50
51 - 60
61 - 75

17 - 30
31 - 40
41 - 50
51 - 60
61 - 75

17 - 30
31 - 40
41 - 50
51 - 60
61 - 75

2
1
1
2
2

6
1
5
4
3

2
4
1
2
2

3
3
4
3
6

1
1
2
2
2

2
1
1
3
1

3
1
7
2
3

1
4
1
2
2

3
3
4
3
6

2

1
2
3

2
1
1
2
3

4
1
4
2
2

3
1

1

2
3
3
2
5

2

1
2
3

1

1
1
1

1
1
1
2

Table 3. Sample size (number of hunters) per strata of 2015 harvest data collected from a questionnaire 

sent to BC resident hunters
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modelling. If the effect of age on harvest levels is the same across regions, then harvesting by 31-40 

year olds in other regions can be used to estimate their harvest levels in Vancouver Island and Powell 

River. If it is not, then we cannot make any conclusions about the harvest levels of 31-40 year olds in this 

region.

This study design based on a sample size of 185 hunters is pretty good – the sample size is adequate 

and relatively evenly-distributed across the strata, except for winter. There are no ‘big holes’, such as no 

sampling of a particular age group in any region. In addition, the data a relatively well ‘balanced’. For 

example, sampling was not really high in one region, and really low in other regions.

However, the study design can be improved – note that the sample sizes of hunters per region and per 

season is relatively low. For example, the data for the north in summer is based on a sample size of only 

four hunters. As you begin to work with your data, become aware of any sample size issues. These could 

be addressed increasing your level of engagement with hunters in a particular region, through mail outs, 

phone conversations, community workshops, etc.

As we have seen, the higher the sample size, the higher the proportion of the population we sample, 

and thus the more accurate our estimates and the more truthful our answers. You may be asking, 

how will I know if my sample size is big enough? The answer to that question is not simple, and 

touches on some deep philosophical arguments in the scientific community. There is no simple 

answer, except the reminder that the more variable the data, the higher the sample size needed 

to ‘capture’ that variability. For example, if 31-40 year old hunters from the same region harvest 

relatively the same numbers of birds, then we don’t need data from all that many 31-40 year old 

hunters to be able to get an accurate estimate of their harvest levels. But if hunters of this age group 

do things very differently, then we will need data from a lot of them within each region to be able to 

capture all of that variability in our sampling net.

does size really Matter?
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Now that we have a sense of our predictor variables, let’s summarize our response variables. The average 

and variability of response variables among sample units are the most common summary statistics.

Let’s first make sure we understand these statistics. But let’s first make sure we understand the meaning 

of a statistic.

Recall our earlier discussion about a sample versus a population. We imaginatively took a 2 x 2 foot 

sample of f lowers from a population of f lowers, an entire field. We used the proportion of blue f lowers 

in the sample to estimate the proportion of blue f lowers in the population. In other words, we used the 

sample as representative of the population. The sample proportion is a statistic.

A statistic is a quantified characteristic of a sample taken from a population. When we perform 

statistical analysis, we assume that the sample statistic is an accurate estimate of the same characteristic 

in the population.

We need to introduce one other helpful statistical term – observations. Observations are the 

measurements and descriptions of the world that we collect to form our data to answer our research 

questions. Measurements in the form of numbers are observations, but so are qualitative descriptions, 

such as low and high, small and large, and categorical descriptions like ‘sandy’, ‘blue’, and ‘cloudy’.

The average, otherwise referred to as the mean, of a group of observations is a measure of the ‘central 

tendency’ of the observations ordered from small to large. Let’s look at our imaginary harvest data from 

15 hunters above. Ordering the observations from smallest number of ducks killed to the largest number 

of ducks killed looks like this:

suMMarIzIng response varIables

estimating averages



37

summarizing and visualizing patterns in your datasummarizing and visualizing patterns in your data

We calculate the sample average simply by summing all the values of the observations and dividing by 

the number of observations.

The sum of the values of the observations is 152. There are 15 observations. Thus the average is 152/15 = 

10.1. Note that the average is NOT the centre of the range of values, which is 11.

0 3 3 5 7 7 8 10 12 12 12 15 16 20 22

0     10.1    11           22

Average Mid-range

You can get an intuitive sense that the average is a measure of central tendency by stacking observations 

on one end of the range versus the other. Suppose a higher proportion of the 15 observations had values 

below 10.

With 9 observations with values below 10, the average shifts lower, to 9.5.

0 3 3 4 6 7 7 7 8 12 12 15 16 20 22

0     10.1    11           22

Average Mid-range
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Now let’s see how the average changes if a higher proportion of the 15 observations were above 10.

With 9 numbers with values above 10, the average shifts higher, to 11.4.

The main reason to calculate the average of a sample, is to use that average as a statistic. That is, we 

use the sample average as an estimate of the population average.

Let’s imagine that our 15 observations comprise an entire population, and that we take three random 

samples of 9 observations from the population.

0 3 3 5 7 7 11 12 13 14 15 19 19 21 22

0     10.1    11           22

Average Mid-range

To ensure our sample is random, we number the observations from 1 to 15, write the numbers 1 to 15 

on pieces of paper, throw the pieces of paper into a hat, and then pull out 9 numbers. Or, we can use a 

random number generator available from an online google search (e.g. http://graphpad.com/quickcalcs/

randomN1.cfm). We could also use the R script <round(runif(9,1,15))>.

The first random draw is for observations 2, 3, 4, 5, 7, 10, 12, 13, and 14.

0 3 3 5 7 7 11 12 13 14 15 19 19 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Observation

Duck Kills



39

summarizing and visualizing patterns in your datasummarizing and visualizing patterns in your data

The average of this sample of 9 observations is 11.3.

The second random draw is for observations 1, 2, 3, 8, 10, 12, 13, and 15.

0 3 3 5 7 7 11 12 13 14 15 19 19 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Observation

Duck Kills

0 3 3 5 7 7 11 12 13 14 15 19 19 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Observation

Duck Kills

The average of this sample of 9 observations is 11.5.

The third random draw is for observations 1, 3, 5, 6, 7, 9, 11, 12, and 15.

0 3 3 5 7 7 11 12 13 14 15 19 19 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Observation

Duck Kills

The average of these 9 observations is 10.8.

Each of these sample averages are quite close to the true population average of 10.1 that we originally 

calculated. By now, you may be starting to get an intuitive sense of the importance of sample size. If 

our sample size were 12 instead of 9, our estimate of the population average would have been even 

closer to the true value. The degree of closeness of sample estimates to the true population value is 

referred to as the accuracy of estimates. The degree of closeness of sample estimates to one another 

is referred to as the precision of estimates. The first and second samples above are more precise than 

the second and third samples. The precision of estimates is dependent on sample size, and also on the 

amount of variability in the population and sample data, which is the topic of the next section.
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Other measures that can be used to describe a set of observations include the range, median, and mode. 

The range is simply the difference between the minimum number and maximum number, for example, 

the range of the duck kills data above is 22. The median is the number that divides the data set in half, 

with the observations ordered from smallest to largest. The median duck kill is the 8th number, which is 

12. The mode is the number that appears most often in the data set, which is 3,7, and 19 in the duck kills 

data.

We calculate the sample average because we want to estimate the central tendency of a population. 

Estimates of central tendency alone are sometimes useful, but in terms of inferring the truth about a 

population from a sample, we also need estimates of the amount of difference – the variability - within 

the population.

Variability refers to the spread of differences within a population.

Let’s consider a data set comprised of weights in pounds of 24 Canada geese.

estimating variability

Weight (pounds) of 24 Canada Geese

16
10
4
9

17
12
19
11
10
10
16
15

14
10
8
9

17
9

15
16
13
12
8
7

Table 4. Weight in pounds of 24 Canada Geese
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We can now easily calculate the average goose weight as the sum of weights divided by 24, which is 12 

pounds.

But how can we measure the variability? One way is to simply look at the range of values. The minimum 

weight is 4 pounds (a runt for sure) and the maximum goose weight is a beastly 17 pounds. Goose 

weights in this sample range from 4 to 17 pounds. That might give us a sense of the variability of all 

Canada geese everywhere, but we really have no way of knowing. The more geese we weigh, the larger 

the range in weights we will measure.

We need a measure of variability that measures the amount of difference in the sample that is also a 

reliable estimate of the variability in the whole population. By reliable we mean repeatable. Since the 

average of a sample is a reliable estimate of the population average (provided the data are not biased), a 

measure of variability that is based on the average is also reliable.

Imagine in your mind variability as the difference between the value of each observation and the 

population mean. Each observation deviates from the mean by some amount, some observations are 

larger than the mean, and some are smaller. Some geese are heavier than the average of 12 pounds, and 

some are lighter. One reliable measure of variability is the average deviation from the mean, which is 

referred to as the variance. The variance is a measure of the amount of difference in a population.̀

Some observations are smaller than the mean, and thus the difference between the mean and the 

observation is a negative number. It is the actual amount of the difference that we’re concerned with, 

not whether or not the observation is below or above the mean. We could just take the absolute values 

(just the value, without the positive to negative sign), but various combinations of absolute values of 

deviations can result in the same sum. What we want is a measure that changes as the total amount of 

variability changes.

Thus, to calculate the variance, we first need to multiply each deviate by itself. Then we calculate the 

average of these now scaled deviates. But with one minor difference. Instead of calculating the average 

by dividing by the number of observations, we divide by one less than the number of observations.

This is referred to as the degrees of freedom, which is an infamously difficult concept to grasp at first. 
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It can be understood perhaps best by considering what population parameters we first need to estimate 

in order to derive another estimated population parameter. To estimate the variance, we first need 

to estimate the mean. In general, the degrees of freedom for a parameter estimate are the number of 

observations (n) in the sample minus the number of parameters (p) that need to be estimated first in 

order to estimate the parameter (degrees of freedom = n – p).

The degrees of freedom can be viewed as the information that you can freely ‘spend’ to estimate the 

parameter. If you knew the mean, and you knew the values for all n observations except one, you would 

then know the value of that last observation. You have to estimate the mean to estimate the variance, 

and thus one observation is tied to the mean and can’t be spent to estimate the variance.

Next, we will calculate the variance of our 24 goose weights step by step. We already calculated the 

average, and found it is 12. The differences from each observation from 12 is given in the second 

column. These are the deviates. Each deviate is then squared (multiplied by itself), and then the squared 

deviates are summed, which totals 335. The variance is then calculated as 335 / 24 – 1. Remember that 

instead of a usual average, we divide by the degrees of freedom, which in this case is the number of 

observations minus 1. The variance of our sample of 24 goose weights is 14.6.
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Now, remember that we just squared the deviates, so to get back to our original scale we need to take 

the square root of the variance, which is referred to as the standard deviation. The standard deviation 

is akin to the average difference from the mean in a sample, and is used as an estimate of the average 

difference from the mean in the population from which the sample was taken. The standard deviation of 

our sample of goose weights is √14.6 = 3.8. That means that on average goose weights in our sample vary 

from the mean weight by 3.8 pounds.

Using these two sample statistics, we can now make the statement that we estimate that ALL Canada 

geese weigh on average 12 pounds, and that Canada goose weights vary from the mean on average by 

3.8 pounds.

Now that we know how to calculate two important statistics, and more importantly, we know what these 

Deviates - Difference
from Average of 12

Differences Squared
(Deviate x Deviate)

Weight (pounds)
of Canada Geese

16
10
4
9

17
12
19
11
10
10
16
15
14
10
8
9

17
9

15
16
13
12
8
7

4
-2
-8
-3
5
0
7
-1
-2
-2
4
3
2
-2
-4
-3
5
-3
3
4
1
0
-4
-5

16
4

64
9

25
0

49
1
4
4

16
9
4
4

16
9

25
9
9

16
1
0

16
25

SUM = 335

Table 5. Weight, deviates and deviates squared for 24 Canada Geese
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represent, we can apply them to create summaries of our response variables.

Step by step calculations have been created for you to ‘manually’ calculate the standard deviation in the 

excel file excel_SD_calculations.xls.

Back to our working data <harvest_worked_data.xls>. We have two response variables – the total 

number of birds harvested per hunter, and their effort, the number of days they hunted. And we have 

three predictor variables – hunter age, region, and season. A good way to begin summarizing these data 

is to begin by asking how harvest levels vary across seasons. We can calculate average harvest levels and 

the variability of harvest levels across seasons.

We can do this easily using pivot tables. These steps are a repeat of what we’ve already done, but it’s good 

to practise. Remember that we created the working data as the sum of birds for each hunter per season 

and region. Thus, we know that the averages calculated across seasons are statistically independent 

– there is one row of data per hunter per season. If we created a pivot table from our raw data, with 

multiple rows of data per hunter, our average would be calculated incorrectly, because the raw data are 

not independent.

Select the entire sheet, click Insert, Tables, PivotTable, OK. Our question is how harvest levels of birds 

varies across seasons, so then we need to place the predictor variable Season in the Rows window. Click 

Season. We want to know the average number of birds harvested by hunters per season. Thus, click 

on Totalbirds and drag it into the Values window, click on it, and then scroll to Value Field Settings 

and change Count to Average. Click OK. Now the pivot table is showing the average number of birds 

harvested by hunters in fall, spring, summer, and winter. We can see that these averages are what we 

would expect, harvest levels are highest in spring and fall, and low in summer and winter.

Now we just need the standard deviation and the sample size. Click and drag Sum of Totalbirds once 

more into the Values window, click on it, scroll to Value Field Settings, and this time change Count 

to StdDev (NOT StdDevp). Click OK. For the sample size, drag any of the columns into the Values 

using pivot tables to calculate averages and 
standard deviations
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window.

Once again, we have a pivot table with all its fancy formatting that must be converted to just a table 

of data. Select and copy the spreadsheet, Paste Special, Values, clean it up, re-label the columns (e.g. 

Season, Average birds harvested, Standard deviation), and fill in any blanks (in this case there are none). 

If you need to, refer back to the instructions above.

Note the very long string of numbers after the decimal point. These are not necessary. It’s standard 

practice to just have one or two digits after the decimal point. Select the table, right click, scroll to 

Format Cells, under Category, select Number, then insert a 2 in the window for Decimal places. Click 

OK.

Voila! Your first summary table. Now we just need to give it a title and format it. It’s important to write 

informative table titles so that readers know exactly what the table is showing. Here’s an example:

It’s good practice to follow these general guidelines when writing table titles. 

The table title states:

1. what the numbers represent. Standard deviation is usually represented in brackets after the 

average using the ± symbol (recall that deviates can be below or above the mean),

creating Informative summary tables

Average Birds
Harvested

Standard Deviation Sample Size
(Number of Hunters)

Season

Fall
Spring
Summer
Winter

10.72
7.61
3.20
1.89 

6.19
5.82
2.56
1.76

65
61
50
9

Table 6. Average numbers (± standard deviation) of migratory birds harvested across seasons in 2015 

throughout BC by members of the Metis Nation BC
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2. more specifically than the table column that these are counts of migratory birds, 

3. where the birds were harvested,

4. by whom the birds were harvested,

5. when the birds were harvested.

Note that the table is very simply formatted with just three lines – two to separate the column titles, 

and one at the bottom of the table. Simple formatting is easy to read and avoids the fuss of wasting 

your valuable time on unnecessary formatting.

Before we move onto visualizing summary data, let’s rename the sheet ‘Summary Data’. It’s good 

practice to store summary tables with their titles written to the side or above the table in the same 

spreadsheet. You should now have one excel file with one spreadsheet of raw data, one spreadsheet of 

working data, and one spreadsheet for summary tables.

It’s often very helpful to visualize data summaries using plots. We have calculated average and standard 

deviations of bird harvests across the four seasons. Averages are best visualized using column or bar 

charts. These are very easily created in excel.

First let’s organize the information a little more logically. Note how the seasons are listed alphabetically. 

It would be easier to understand the chart if the seasons were displayed chronologically. Let’s start the 

list with spring – move the Fall row until the seasons are in the correct order. 

Select the Average Birds Harvested column, click on Insert in the top menu, and then on the column 

chart icon. You should get a chart something like this:

vIsualIzIng suMMary data usIng excel

creating bar charts
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This needs some work. First, we need to change the x (horizontal) axis numbers 1 to 4 to the seasons, 

and we don’t really need two digits after the decimal place on the y (vertical) axis. Most importantly, we 

need to visualize the variability, the standard deviation.

So let’s clean this up. First we’ll add the seasons to the x axis. Right click on the chart and scroll to 

Select Data. Under Horizontal Axis Labels, click Edit. When the Axis Labels window pops up, with 

the cursor clicked into the Axis label range box, select the seasons in the Season column, from column 

2 to 5. Click OK and OK again. The seasons should now appear on the chart.

Right click on the y axis and scroll to Format Axis. This opens to many options for formatting the axis. 

Under Number, put 0 in the Decimal places window.

Now we need to show the standard deviation.

Depending on the version of excel you’re using, the following instructions may or may not work. If not, 

you can google the version of excel you’re using and ‘adding error bars to charts’ and it should bring you 

to step by step instructions. 

Click on the chart, under the Chart Tools menu, click on Design, Add Chart Elements, Error Bars, 

More Error Bar Options. In the Vertical Error Bar window, select Plus, and then under Error Amount 

select Custom and click on Specify Value. The Custom Error Bars window should pop up. Click in the 

1 2 3 4

Average Birds Harvested

12.00

10.00

8.00

6.00

4.00

2.00

0.00
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window under Positive Error Value, and then select the four values in the standard deviation column in 

the spreadsheet. Click OK.

We are now two steps away from charting perfection:

1. Our chart needs a title,

2. We need to indicate the sample size used to calculate these averages.

Just as for the summary table we created, the title for our chart needs to be informative, and in fact, 

can be exactly the same. In reports, it’s customary to present either a summary table or the visual 

representation of the table, because they show the same information.

And now for the sample sizes. The easiest way to show the sample sizes on the chart is to simply write 

them into the season column beside each season name.

Below is the finished product:

Note that these are unstandardized averages – we did not divide harvests by effort, and thus we 

Figure 1. Average numbers (± standard deviation) of migratory birds harvested across seasons throughout 

Ontario by members of the Metis Nation of Ontario in 2015.

Average Birds Harvested
18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00
Spring (n=61) Summer (n=50) Fall (n=65) Winter (n=9)
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are left with the question, were harvest levels highest in the fall because hunters spent more time 

hunting then?

We can answer this question by first dividing the Totalbirds column by the effort column, to derive the 

harvest rate per hunter per season. To create this new variable, place the cursor in the second row of 

column. Press the = key on the keyboard, click in the cell in the second row of the Totalbirds column, 

then press the / key on the keyboard, and then click in the cell in the second row of the Effort column. 

Then press Enter on the keyboard. You’ve just used excel as a calculator. The value showing in the 

Harvest Rate column should be equal to the value of the Totalbirds in the second row divided by the 

value of the Effort in the second row.

Then we repeat all of the above steps, but this time on our newly created HarvestRate column. We 

change the chart title accordingly.

Here we can see that high harvest levels in fall were not the result of higher effort. High harvest levels in 

the fall is in fact not surprising, and is the seasonal effect on harvest levels that we would expect, given 

that that’s when migrating birds are most abundant and visible.

Now let’s summarize harvest levels with respect to hunter age. Age is a continuous variable, 

which means that it is a numerical variable that varies from the lowest possible number (0) to the 

highest possible number. In contrast, season is a categorical variable, since it contains categories of 

Average HarvestRate 
Average HarvestRate

8

7

6

5

4

3

2

1

0
Spring (n=61) Summer (n=50) Fall (n=65) Winter (n=9)
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information. We could transform age into a categorical variable by grouping ages into categories, such as 

young, middle age, senior, elderly, or simply into numerical categories, such as 20-30, 31-40, and so on. 

For now, let’s leave age as a continuous variable. This allows us to create a scatter plot of harvest rates 

on hunter age. To create a scatter plot, move the Harvest Rate column adjacent to the Age column. When 

creating scatter plots in excel, the horizontal axis must come before the vertical axis, from left to right. 

Select both columns, then click on Insert on the main menu at the top, and then on the scatterplot icon.

The plot displays harvest rates by hunter age.

There is one easily noticeable pattern in these data? Can you see it?

Hunters aged 36 to about 58 were always successful – note that there are no 0’s for this age range.

Patterns in data result from one of two processes – either from real processes, or, from biases in the data. 

A good data analyst always considers both. Unless we measure bias, we never really know whether the 

patterns we observe in data are real living patterns out there in the world, or whether they result from 

creating scatter plots

0 10            20            30            40             50            60              70             80

HarvestRate
18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00
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biases in our data collection. Let’s consider both.

A real age effect in harvest rate makes sense – we would expect that with age comes experience, and 

more experienced hunters would be more likely to always kill at least one bird every time they go 

hunting. But at some point, the effects of old age kick in. Older hunters perhaps aren’t the sharp shooters 

they used to be, which might explain the decline in harvest rate noticeable on the scatter plot after about 

age 60.

Alternatively, it could be that middle aged hunters are reluctant to admit when they got skunked, so 

they didn’t report on the harvest survey questionnaire the hunting trips when they didn’t get any birds, 

which is referred to as non-response bias. The relatively high takes of middle aged hunters might be real, 

or, these might be exaggerations, which is referred to as prestige bias – the tendency of some hunters to 

report a higher take than they actually harvested. Without conducting a follow-up study to ask hunters 

of this age group about their reporting, we have no way of knowing whether this pattern is real, or the 

result of bias.

However, data summaries can help us get a sense of whether we’re seeing real patterns or the effects of 

bias. For example, we might expect that prestige bias in this age group exists in one or two regions, but it 

would be more unlikely to exist across all regions. In fact, we might expect that prestige bias would exist 

more prominently in the youngest age group, in at least one region.

So let’s investigate the relationship of harvest rate on age per region. The easiest way to do this is to 

sort the data by season, and then just create separate scatter plots of harvest rate on age, with the data 

selection limited to data for one region only.

You’ll notice that scatterplots created from selections that don’t include the column title are labelled 

“Chart Title”. You can edit this by clicking on the label, and then entering a label of your own choosing. 

Title each chart you create by the corresponding region.

Let’s change the range of the horizontal axis. Right click on each horizontal axis, then Format Axis. 

There are no hunters less than 17 years old or older than 75 so let’s change the range to 15 to 75. In 

Bounds, change the minimum to 15 and the maximum to 75.
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Kootenays
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Thompson and Okanagan

Vancouver Island and Powell River
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0             10             20             30             40             50             60              70             80

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

These plots of harvest rate on age don’t really provide any conclusive evidence to help us decide whether 

we’re seeing real patterns or biases. For example in Vancouver Island and Powell River and Thompson 

and Okanagan, all hunters except one reported harvesting at least one bird. Middle aged hunters in the 

North and Kootenays are clearly the drivers of the observed pattern, but we have no way of knowing 

whether this is real or not. This pattern isn’t as clear in the Lower Mainland. 

However, a decline in harvest rate after about age 60 is fairly consistent across regions, suggesting this is 

a real effect. 

Now let’s summarize regional differences in harvest rates per season. We will ignore winter since 
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sample sizes were low. Region is a categorical variable, so we need to create a bar chart of the average 

and standard deviation of harvest rates per region.

If you have difficulty calculating the averages and standard deviations, refer back to the instructions 

above. Creating pivot tables will become automatic to you before long, since it is the same steps repeated 

over and over. A hint here is to put the Region column in the Rows window, and the Season column in 

the Columns window. Remember to change the field values for Harvest Rate to Average. Once you’ve 

calculated the average, copy and paste the average values to the Summary Data spreadsheet. Now go 

back to the pivot table, and change the field values from averages to standard deviation. Add sample 

sizes to the table. Then copy and paste the standard deviation values next to the average values in the 

Summary Data spreadsheet.

You should end up with a summary table that looks something like this:

We can now chart these averages with their corresponding standard deviations and sample sizes. Note 

that on each chart the regions are arranged geographically, the charts are presented chronologically, 

and the range of the vertical axis is the same across all charts. It is good practice to lay out charts in 

ways that help in thinking about patterns, whether just for your own use or as a figure in a report. Note 

Fall Spring Summer

Region
Average
Harvest

Rate
Standard
Deviation n

Average
Harvest

Rate
Standard
Deviation n

Average
Harvest

Rate
Standard
Deviation n

Kootenays

Lower Mainland

North

Thompson and Okanagan

Vancouver Island and Powell River

1.46

5.70

2.35

4.03

7.08

0.34

3.86

0.87

1.54

2.33

8

19

11

19

8

0.60

5.37

0.40

3.02

4.41

0.42

2.82

0.52

1.36

2.14

8

16

10

19

8

0.73

1.73

0.70

1.32

2.19

0.36

0.36

0.84

1.09

0.59

9

13

5

15

8

Table 7. Average harvest rate, standard deviation and number of samples (n) for five areas of BC in the 

fall, spring and summer
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also that the two decimal places on the vertical axes are unnecessary, and should be removed. You will 

become familiar with creating charts with practice. The key is simplicity – less is better – so that the 

data are on display, not the chart formatting.

Average Harvest Rate in Spring

Average Harvest Rate in Summer
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Average Harvest Rate in Fall
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R is a programing language, and is equivalent to having many different computer programs all in one 

place. People worldwide have contributed to R more than 4,000 different software programs, which are 

referred to as R ‘packages’. Thus, R is much more powerful than any one ‘canned’ software program. R 

users have access to a vastly wider array of statistical tests, and much more control over the inputs and 

outputs of statistical analyses.  

Not only is R powerful, it’s also free. Yahoo! 

And not only is R powerful and free, it’s also really user-friendly, provided you understand the language 

and get over the initial, rather steep and somewhat frustrating learning curve. One of the reasons R is 

user-friendly, is because you can access help readily. R users around the world communicate regularly 

through email, and the communications are posted on the R website. So if you have a particular 

problem, chances are someone else has had that problem too. If you ‘google’ your problem, you’ll 

encounter relevant discussions on the web. 

R also has an online help function, and, it’s actually helpful! 

Using an internet browser such as ‘Explorer’ or ‘Firefox’ or ‘Google Chrome’, go to this website:

http://cran.stat.sfu.ca

Click on Download R for Windows (or Download R for (Mac) OS X if you have a Macintosh computer). 

On the R for Windows page, click on install R for the first time, then on the next page click on 

Download R 3.3.x for Windows. (the x refers to the version number) The executable file titled R-3.3.x-

win.exe (.x refers to the version number) should now automatically download to your computer. Double 

click on the file, and then click on Run to install the R onto your computer. 

GettinG started with r

WHat Is r and WHy sHould you use It?

doWnloadIng r

http://cran.stat.sfu.ca/


59

GETTING STARTED WITH R

In the Setup window (Welcome to the R for Windows 3.2.x Setup Wizard), press Next > for the 

following six windows (press Next > seven times), until the program begins installing. Once R has been 

installed, click Finish.

You should now see two icons for R on your desktop. One icon R i386 is for a 32 bit operating system, 

and the other R x64 is for a 64 bit operating system. It is likely that your computer is a 64 bit operating 

system, so you can just delete the R i386 icon and use the R x64 icon to interface with R from your 

desktop. To make sure your operating system is 64 bit, open System by clicking the Start button      , 

right-clicking Computer, and then clicking Properties. The View basic information about your 

computer will open, and next to System type: the operating system will be shown.

When you open R for the first time, you’ll see a couple of menu buttons on the top of the screen, and 

then the rectangular R console box with this…  

> |  

… blinking at you expectantly. Now what, says you? 

Let’s get started simply by mucking about.

27 + 30 – 23

You can see that R can function like a simple calculator. The + and – are called operators. 

1:10

understandIng HoW r Works

operators, objects, and Workspace



60

GETTING STARTED WITH R

The : operator means ‘output this range of numbers’. 

10:1

100^2

The ^ operator means ‘to the power of ’

(100^2)/(400 + 23.4)

Note that just as with excel, you need to put brackets around calculations that need to be performed 

first. Otherwise, 100^2 would be divided by 400 and then 23.4 would be added to the result.

Here are some other simple operators:

An important thing to understand is that R is an object-based programing language. The primary way 

you tell R to do something is by assigning data and analyses to objects. And the main way you do that is 

by the assignment operator <- 
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To show you how to assign something as an object, put an object name and the object assignment 

operator <- before the calculation. Let’s assign this calculation to the object ‘goats’. You can use whatever 

object name you want.

goats<-27 + 30 - 23

What happened when you pressed the enter key? R saved your calculation as the object ‘goats’ in your 

workspace.

The workspace is a virtual memory space for your current analysis session. Anytime you assign 

something to an object, it is then stored in your workspace. You can then retrieve the something (data, 

stats analysis, graph plot, etc) simply by typing the object name.

goats

[1] 34

Or you can do further analysis on the something by inserting its object name into further calculations. 

Note the number 1 in the square brackets above is just R telling you that there’s only one result to return 

to you (34). 

If you want R to remember the output, you have to assign the calculation to a new object. If you use the 

same name, R will overwrite and thus you won’t be able to retrieve the previous object.

goats333<-goats-2

goats333

[1] 32

Here’s the original object retrieved …

goats

[1] 34
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Just to prove that R will overwrite your first object, let’s do all that again …

goats<-27 + 30 - 23

goats<-goats-2 

#Do this on your calculator to satisfy how R can be used as a calculator.

goats

[1] 32

So, an important thing to keep in mind is that R only ‘remembers’ the last object assignment you gave to 

the workspace. 

Suppose you’ve been working all day and you’ve lost track of how many objects you’ve assigned, or 

maybe you just want to clear the whole thing and start again. 

ls()  Lists all objects in your workspace

rm(x)   Remove object x from your      workspace

rm(list=ls())  Removes all objects from your     workspace

Now make sure your workspace only contains the object aa.

exercises

Assign the calculation 9 squared times 2 to the object x. What is x?

Assign the calculation x to the power of 4 to the object aa. What is aa?

Assign the value 8 to x. 

Did changing the value of object x change the value of object aa? How can you quickly find out the 

new value of aa if you change x to 8?
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Almost all of R’s ability to run statistical analyses comes from programs called packages, which must be 

loaded into R in order for them to function. A bunch of packages are already loaded into R; these are the 

default packages.

To see a list of default packages loaded onto R type

search()

There are over 4000 R packages, but in order to use one of them, you first need to download it onto your 

computer. Press the Packages menu button on the top of the window, and then Install Packages. You’ll 

see that you need to choose a Cran mirror, which is a server from which to download the packages. 

Choose Canada (BC). If HTTPS CRAN mirror opens first, scroll to the bottom of the list and select 

(HTTP mirrors), then select Canada (BC). Next a window will open called Packages, which lists all of 

the available packages to download. Click on the package gam (which stands for Generalized Additive 

Modelling), and then let it download.

That’s the first step. Now you have to load the package in order to use it. Under the Packages menu, 

simply click on Load Package. The packages you have installed on your computer will be listed. Now 

click on the package you want to load, and it will now be ready for you to use.

Alternatively, to load a package you can type 

library(package name)

In this case we type

library(gam)

packages, functions, arguments, and scripts
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If you have difficulty getting packages to load once they have been installed on your computer, 

it may be because the anti-virus software on your computer is blocking R files. Most anti-virus 

software allows you to manually select programs that you want don’t want to block. A google search 

can usually help you find out to do this for the anti-virus software installed on your computer.

So how do packages work? Packages are created around specific types of statistical analyses, and are 

usually created by statistician programmers who are considered to be experts in that particular type of 

analysis. Often the names of the packages are abbreviations of the type of analysis, e.g. gam is short for 

Generalized Additive Modelling.

Packages work because they contain functions. Functions are the engines of the stats analysis. Most 

packages contain several functions. 

If you want to see the functions contained in a package, type

 ls(‘package:package name’) e.g. 

ls('package:gam')

So what is a function? Let’s work with something familiar. First let’s figure out what simple packages are 

loaded as default programs.

search()

The package ‘base’ contains all of the basic functions needed to run basic analysis. Let’s practice loading 

a package by loading that one (it’s already loaded as a default package so there’s actually no need to load 

it, but we’re practising).

library(base)

troubleshooting
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Now let’s see what functions are available in the package base.

ls('package:base')

Scroll to line [691]. The function “mean” is a function built into R to calculate the average of a group of 

numbers. 

To check what a function does, you can access the online help for any function simply by typing

?function name 

for example

?mean

R webpages for functions can appear a bit daunting at first. But once you get used to the language, 

they’re actually very helpful. 

Usage 

mean(x, trim = 0, na.rm = FALSE, ...)

After the description of the function, the full extent of all possible attributes for the function are given, 

with all possible inputs. Here you can see why R is a powerful program. This is a function simply 

for calculating the average of a group of numbers, and R gives you at least two additional options for 

calculating the average exactly the way you want it calculated. 

At this point, you simply need to understand that a function, in this case, mean, is comprised of 

arguments. Arguments are the inputs into the function. Entering values into the arguments of functions 

is where YOU, the R User Statistician Nerd, enter into the equation. ha ha. 

The trim argument of the mean function allows you to cut off data from either end of your group of 

numbers to make a smaller data set, and then the average is calculated from the smaller data set. 

The na.rm argument is a very common argument. It’s shorthand for ‘NA remove’. NA is shorthand for 
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‘not applicable’ or ‘not available’, which is simply what you would enter in your database if, for example, 

you were missing data for a particular measurement. You can input TRUE into the na.rm argument, 

in which case R will ignore the NAs in your dataset and calculate the average as if those values did not 

exist at all. If you do not specify anything for the na.rm argument, R will use the default value, which in 

this case is FALSE. The default is to not remove NA values from the dataset – if NA values are present, 

then the average cannot be calculated. 

Let’s see how all this works.

First, let’s create some data. Imagine we had just caught 25 geese, and we weighed each goose in pounds 

and rounded up to the nearest pound. 

Our data set then is the weights in pounds of 25 geese. To create this data set in R, we need to do three 

things – we need to write out the weights for each goose, we need to group the 25 weights together into 

one data set, and we need to assign an object name to our data set.

geeseweights<-c(16, 10, 4, 9, 17, 12, 19, 11, 10, 10, NA, 16, 15, 14, 10, 8, 9, 

17, 9, 15, 16, 13, 12, 8, 7)

geeseweights is the object name

<- is the assignment operator. This assigns everything to the right of the operator to the name on the left 

of the operator. 

The ‘c’ is a function, and stands for concatenate, which simply means ‘stick together into one thing’. 

Brackets are used after function names and basically mean, ‘apply this function to the numbers inside 

the brackets’.

And the brackets go around our data set of goose weights. Note the comma in between each weight.

Also note that one goose f lew away before we could weigh it. Hence the NA value. 
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So, now we’ve just said to R – “here’s a bunch of numbers, stick them all together, and call this bunch of 

numbers geeseweights”. Please. Thank you.

Now type geeseweights and R will recall your data set.

To check and make sure that all 25 weights were entered, you can use the length function, which 

computes the number of elements in an object.

length(geeseweights)

[1] 25

Now we’re ready to try out the mean function! (mean as in average, not mean as in not very nice)

mean(geeseweights)

[1] NA

Oops. What happened? Hmm, let’s find out. Back to our help page for the mean function

 ?mean 

Aha!

## Default S3 method:

mean(x, trim = 0, na.rm = FALSE, ...)

On the help page it states that the default for the na.rm argument is FALSE. That means that if you don’t 

specify a value for the na.rm value, which we did not in our line of code above, then R uses the default 

which is FALSE in this case. That means that the NA values were not removed from the dataset before 

R tried to calculate the average. Since there was an NA value in our dataset, the average could not be 

calculated, because a value was missing.

So, we need to write in the na.rm argument into the coding for the mean function, and set it to TRUE. 
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We do indeed want R to remove the NA values, and then calculate the average of the goose weights.

mean(geeseweights,na.rm=TRUE)

[1] 11.95833

You can check that this is correct, by using R as a calculator (or by using a hand calculator).

sumgeeseweights<-sum(geeseweights,na.rm=TRUE)

sumgeeseweights

[1] 287

average<-sumgeeseweights/24

average

[1] 11.95833

Remember that we divide by 24, not by 25, because we had one missing (NA) value.

Probably by now you have a sense that operators and functions are two different things. Operators are 

the very basic language of R, and are like the buttons on a calculator. Functions are like task managers, 

designed to perform a suite of tasks, which are defined by the values you give to the function’s 

arguments.

R requires a folder on your computer from which to retrieve data. It will also output data for some 

functions into this folder. Call the folder whatever you want, the important thing is that you tell R where 

to find the folder by using the “set working directory” function setwd. It’s best to create a folder just 

for R on your desktop and store everything you need for R in it. You might call the folder ‘R Working 

Folder’.

The working directory for your R working folder might look something like this. 

IMportIng, exportIng, and ManagIng data
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setwd('C:/Users/yourname/Desktop/R Working Folder')

To find out exactly what it is, right click on the folder, then click Properties. Under the General tab, 

you’ll see Location: and that’s what you need to write in between the brackets of the setwd function. But 

note that you need to replace backward slashes \ with forward slashes /. You also need to add the name 

of your R working folder.

Now that we’ve set the working directory, we can import data into R.

You import data into R using a command. In order for R to recognize the data, it must be saved as a 

‘comma separated values’ file, or .csv file.

Let’s work with the excel file provided in the CD. 

Use excel to open the file example_harvest_data.xls 

Under the file menu in excel, click on ‘save as ‘ and then select your R working folder. Rename the 

file simply ‘harvest’ in the File name: window.  In the Save as type: window, scroll to CSV (Comma 

delimited). Note that the file extension changes to .csv. Also note that there are three .csv file types, you 

don’t want the macintosh or msdos types. Then click on save, and check that ‘harvest.csv’ appears in 

your R working folder.

 In R, you can retrieve the data from the working folder using the read.csv function. You need to assign 

it to an object. Let’s call the data h for harvest

h<-read.csv("harvest.csv")

To see the data, simply type h and R will display your data set.
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Did you just get this error message? If so, then this is your first lesson in how finicky R can be. 

Error: unexpected input in "h <- read.csv(""

R is telling you that it doesn’t like your quotation marks. R needs straight up and down quotation 

marks, and not slanting quotation marks. 

Not this: “10”

This: "10"

To get straight quotation marks, you’ll need to set the preference for that in a word processing 

program like Word. 

In Word, on the Tools menu, click Options, then click Proofing, and then click AutoCorrect Options. 

In the AutoCorrect dialog box, click the AutoFormat tab, and under Replace, select the “Straight 

quotes” with “smart quotes” check box.

There are a number of different ways to export a dataframe from R. In this script, you would just change 

‘mydata’ to whatever name you gave your dataframe.

To tab delimited text file:

write.table(mydata, "c:/mydata.text", sep="\t")

To an excel spreadsheet:

library(xlsx)

troubleshooting
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To an html file in your R working folder. You then open the file called ‘mydata’ in your R working folder 

in a web browser, press control and ‘a’, then control and c for copy, then you can paste into excel. 

library(xtable)

mydata<-xtable(mydata)

print(table, type="html", file="mydata.html")

One of the most important first steps once you’ve imported your data is to make sure that R knows what 

kind of data you have. There’s some terminology you need to be familiar with first. These terms are used 

in the help webpages for all the R functions, so it’s important you understand what these terms mean.

A vector is a string of values. Usually your data columns are the vectors you’ll be concerned with; 

each column is a vector. Sometimes we might want to create vectors. We can create vectors using the 

concatenate, sequence, and replicate functions. 

c(1,40,37,3)

seq(1,100,1)

rep(1:100,3)

A dataframe in R is simply a dataset stored in your workspace as a table. You need to make sure your 

data is set up the way R reads it. R reads each column of data in the dataframe as a variable (vector), and 

each row contains the observations collected for each sample unit. In our case, each row should be the 

harvest data for one hunter. 

You can create a dataframe in R, using … ta da! the dataframe function

dataframe1<-data.frame(hunters=1:20, regions=1:5, seasons="Fall")

dataframe1

classes of data
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Now that you understand vectors and dataframes, it’s important that you understand what kind of data 

you have, and to make sure R has classified your data the way you want. So, you need to understand the 

concept of classes. In R, objects fall into a number of different classes – a function is a class ‘function’, 

a dataframe is a class ‘dataframe, and vectors can be one of a number of different kinds of classes. And 

you can tell R to change the class of a vector from one to a different class. If you want to check to make 

sure that R has coded your data columns correctly, you can use the class function, and R will output the 

class type for your data column.

Here are some common examples:

class(c(1.2,1.5,1.9))

[1] "numeric"

class(c(1:39))

[1] "integer"

class(c(TRUE,FALSE))

[1] "logical"

class(c("one", "1.2", "thirty nine"))

[1] "character"

Now let’s focus on learning what happens when we convert vectors from one class to another. We can 

use the ‘as._____’ function to convert vectors from one class to another

ducks<-(c("one", "1.2", "thirty nine"))

class(ducks)

[1] "character"

ducks2<-as.numeric(ducks)

class(ducks2)

[1] "numeric"
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ducks2

[1]  NA 1.2  NA

Notice what happens when we try to convert a character vector to a numeric vector – all character 

elements are returned as NA, and all numeric elements are returned as numbers. 

And now to find out the classes of each vector in our dataset ‘harvest.csv’ we can use the structure 

function str

str(h)

Age is classed as an integer (int), latitude and longitude as numbers. If we had a vector of true and false 

in our dataset, R would class it as ‘logical’.

R tells us that it recognizes HunterID as a factor with 250 levels, meaning there are 250 unique 

identification numbers of hunters. A factor is a special case of a character vector, for which each unique 

level is assigned a number. Categorical variables have levels designated by text and can be treated in R as 

character vectors or as factor vectors. An example is the categorical variable Season in our harvest data, 

which has four categories of season. 

R by default imports categorical variables as factor vectors. It does this because character vectors can’t 

be used for any kind of numerical analysis. Also by default, R assigns numeric levels to the factor 

categories alphabetically. Depending on the statistical modelling you plan to do, you may need to pay 

attention to this because you may need to re-order the levels for your categorical variable. For example, 

R would assign level 1 to ‘Fall’ because it’s first in the alphabet. But you may want to re-assign ‘Winter’ 

to level 1 if you suspect, for example, that hunting is low in winter, such that winter becomes a reference 

against which you compare hunting in all other seasons. 

We’ll come back to how to do this later, for now let’s just play around with converting a factor vector to 

a numeric vector.

data<-c("good", "seven", "5", "10")
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data2<-as.factor(data)

data3<-as.numeric(data2)

data3

[1] 3 4 2 1

Whoa nelly! What happened? 

The as.numeric function is simply changing the numeric values assigned to the factor levels to numbers, 

rather than the actual value of the numbers. To correctly convert the numbers contained within factor 

vectors to numbers in a numeric vector, you must first convert to a character vector, then convert that to 

a numeric vector.

Here’s a list of common conversions for changing vector classes:

as.character

as.numberic

as.integer

as.logical

as.factor

as.Date

The easiest way to deal with missing values is by creating a dataset in excel with just the variables you’re 

interested in analyzing, and then delete the rows with missing values, before you import your data into 

R.

You can create a data set without missing values in R easily. The na.omit function is used to delete 

missing values

catz<-c(1:120, NA, 1:4)

catz

Missing values
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catz2<-na.omit(catz) 

catz2 

Now let’s try with our data set

h2<-na.omit(h)

h2

Oops, what’s the problem here? Using na.omit on a data frame results in all rows containing an NA 

value being deleted from the data frame. Removing rows with NA for some variables means you’ve just 

cut out valuable data that you do have for other variables. 

Because missing values are so commonplace in datasets, most R functions contain an argument (‘na.

action’) for dealing with missing values, which are coded by R as NA (not available). Usually the default 

is na.action=na.omit, so therefore you don’t have to worry about it. The function automatically ignores 

missing values.

 

It’s important to keep in mind that some functions don’t have an NA argument. If you find yourself 

trying endlessly to get a function to work, it may be because the function needs a dataset free of NAs 

in order to work, or the function doesn’t have a default na.action set to na.omit. Some of the most basic 

functions have a na.rm (na remove) argument instead of an na.omit, and it needs to be set to TRUE to 

work. We discovered this fact when we used the mean function.

At some point, you’ll find it necessary to be able to extract parts of your data frame to analyze 

separately from the whole data set. Again, sometimes it’s easiest just to create a subset of your data in 

excel and then import it into R. But, real R users know how to subset, so we’d better learn.

There are two main ways to extract portions of a data frame. The [ ] operator and the subset function. 

The [ ] operator has two positions separated by a comma, the first is to specify the row (s) you want 

referencing and sub-setting
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extracted, the second is for columns. [row, columns]

h[ , "Age"]

or you can specify the ‘Age’ column by its order in the dataframe as the second column

h[ , 2]

Rows are specified by their number

h[1:11]

hmm… that didn’t work. Why? We left out the comma! Try again

h[1:11,]

We can also use the subset function to do the same thing, but it’s more f lexible. The arguments are as 

follows: subset(dataframe from which you want to subset, column title == “level of the factor by which 

you want to subset)

subsetharvest<-subset(h, Region=="Kootenays")

subsetharvest

Note the == operator – this means exactly equal to and is needed when specifying categorical values of 

vectors. Here we have just subset our harvest dataframe to pull out just the Kootenay data.

FUN! 

R has a huge graphics capacity and it’s worthwhile to gain some proficiency in graphics. There are a lot 

grapHIng In r
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of options that you don’t normally find in ‘canned’ packages like Sigmaplot. For example, it’s relatively 

easy to create a three-dimensional plot in R. There are a lot of graphics packages, but the default 

graphics packages in R are pretty good and will likely fill your graphics boots. To see a bunch of options 

type

demo(graphics)

Each time you create a new plot in R it will over-write your existing plot. To avoid that, use the 

windows() function to create a new window. 

windows()

Then you need to set up the amount of white space between the plot and the window border. You can 

change these numbers depending on your preferences, but this is a standard layout for plots that tends 

to work well.

par(mai=c(1, 1, 0.1, 0.1)) 

Then you’re ready to create a plot.

plot(Quantity/Effort ~ Age, data=h)

 

Congrats! You’ve made your first data plot in R. This is a simple plot of the total birds harvested by each 

hunter, standardized by their effort (number of days that they hunted), plotted against the age of the 

hunter. This is across all seasons, and so hunters that hunted in more than one season have more than 

one data point on the plot. The plot clearly shows that middle-aged hunters, those around 30 to 55 years 

old, are more successful than younger or older hunters. 

Note that the vertical y axis is given before the ~ operator, and the x axis is given after. The ~ operator 

means “plot this against that”. Note also that we had to use the data argument. This is a very common 

argument in functions; it tells R in which dataframe to find the variables you want to plot.



GETTING STARTED WITH R

78

The plot function has many arguments. In the code above, we only used the two essential arguments. 

Without those two arguments the function would not have worked. From the basic function, we can 

build a plot using additional arguments to suit our preferences. 

plot(Quantity/Effort~Age, xlab="Hunter Age", ylab="Bird Harvest", cex.axis=2, 

cex=2, data=h)

The xlab and ylab arguments add x and y labels to the plot, while the cex.axis argument changes the size 

of the numbers on each axis. The cex argument changes the size of the data points.

Here are some additional arguments for the plot function

xlim=c(lower limit,upper limit)   

specifies lower and upper limits for the x axis

ylim=c(lower limit,upper limit)   

specifies lower and upper limits for the y axis

add=TRUE       

superimposes a plot on the previous one

axes=FALSE       

adds just the plotted data to a plot (no axes or box)

type="p"       

"n"  nothing plotted, "p" points, "l" lines, "b" points connected by lines, "h" vertical lines, "s" top of 

vertical lines, "S" bottom of vertical lines

And here are some functions that will add bits and pieces to your plot at the x, y coordinate that you 

specify. The x, y coordinate is dependent on the data you plotted, e.g. if your x axis is a plot of data from 

0 to 210, and y axis from 0 to 100, then you can plot a point in the middle of your graph by specifying 

105, 50.
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usIng scrIpts

As you can probably guess by now, using R requires you to constantly write out code. Rather than 

having to write fresh code every time you use R, most R users write scripts for analyses in a word 

processor such as Word. 

It’s a good idea to start all of your scripts with the following commands – the first sets the working 

directory, which you must do every time you open R, the second creates a clean slate (which is clean if 

you’ve just opened R, but not if you’ve been working all day), and the third imports your data into R as 

an object. I’m assigning my data to the object ‘bird’.

legend(x,y,legend)  

The location may also be specified by setting x to a single keyword from the list  

"bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center”"

e.g. 

legend("topleft", legend="Density", pch=16, 

col="blue")

title()    

Adds a title and sub-title 

points(x,y)   

Adds points, and ‘type=’ can be specified

lines(x,y)   

Adds lines

text(x,y,label)   

Adds text at x,y given by label. 
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setwd('C:/Users/yourname/Desktop/R Working Folder')

rm(list=ls())

You can organize code and write notes to yourself within your code by using the # symbol followed by 

the title for each analysis. When you copy and paste the code into R, any text following the # sign is 

ignored by R as just text. 

Here’s the full script for the plot coding that we just finished, which we could save in a Word file and 

label using an informative name like ‘harvest analysis R code’.

setwd('C:/Users/yourname/Desktop/R Working Folder')

rm(list=ls())

h<-read.csv("harvest.csv")

windows()

par(mai=c(1, 1, 0.1, 0.1)) 

plot(Quantity/Effort~Age, xlab="Hunter Age", ylab="Bird Harvest", cex.axis = 

1.5, cex.lab = 1.5, cex = 1, col = "green", pch = 3, data=h)

And once again, a reminder that you have to be as finicky with your coding as R demands.

This code below resulted in an error. Can you tell why?

plot(Quantity/Effort~Age, xlab="Hunter Age", ylab="Bird Harvest", cex.axis = 

1.5, cex.lab = 1.5, cex = 1, col = "green", pch = 3, data=h)

Error: unexpected symbol in “plot(Quantity/Effort~Age, xlab="Hunter Age", ylab="Bird Harvest", cex.

axis = 1.5, cex.lab = 1.5, cex = 1, col = "green" pch”

You can use the error statement to try to figure out what went wrong. Here R returns the code up to the 

point that it encountered an error. So from this you can tell that there was some kind of error around 

the pch argument. Right. R expected a comma in between the col argument and the pch argument. The 

correct code is:
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plot(Quantity/Effort~Age, xlab="Hunter Age", ylab="Bird Harvest", cex.axis = 

1.5, cex.lab = 1.5, cex = 1, col = "green", pch = 3, data=h)
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As we have seen so far, statistics is the science of measuring a small part of the world to say something 

truthful about a much bigger part of the world. We’re using the harvest levels of a sample of hunters to 

estimate the total harvests of all hunters.

So then, let’s say that we conducted a harvest survey, analyzed the data, and estimate that the total 

harvest of all birds in 2015 was 12,713 birds. Does it feel like something is missing? If someone said to 

you, ‘I think this is true’, isn’t there a tiny voice inside you asking, ‘how certain are you about that?’

Statistics is not just about estimating characteristics of populations, such as the average or standard 

deviation. Such characteristics of populations are referred to as population parameters.

Inherent in any estimate is uncertainty. How certain we are about our estimates of population 

parameters is probably the most important aspect of statistical analysis. Perhaps it isn’t a life or death 

situation when estimating bird harvesting (at least not for the humans), but there are many instances 

on a daily basis where lives depend on the certainty of statistical estimates. Think about the science 

behind sending a space shuttle to the moon, and the administering of the correct dosage of medicine in 

emergency rooms.

Suppose for a moment that we had conducted a harvest study, and we measured the average number of 

birds harvested per hunter. We found the average to be 2.2 birds per hunter. We state that we estimate 

the population average is 2.2 birds per hunter. How can we be certain that our sample average of 2.2 is a 

good estimate of the population average?

We could repeat the study again. If we get a similar result, it suggests that our estimate is good. If we 

get a much different result, we know that either our first or second or both estimates were off. It may 

be intuitively obvious that the more we repeat studies, the more certain we will become of the true 

population average, because eventually most of the sample averages will begin to cluster around the true 

population average.

HoW do We Measure certaInty?

statistical modelling
of your data
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It might also be intuitively obvious that the more variable the population, then the more variable our 

samples will be, thus the more variable our sample averages, and the more times we need to repeat the 

study until the sample averages begin to cluster around the true population average.

Let’s see this in action. Our imaginary situation is that we have just weighed in pounds every single 

individual of a duck species. There are 30,000 individuals of this duck species in the whole world. The 

population is thus 30,000 individual ducks.

Open R. Review chapter 5 if you need help getting started. 

Create a column (a ‘vector’) of data in R using the following code.

set.seed(1234)

x<-rnorm(30000, mean=12.3, sd=2.1)

populationweights<-round(x,0) 

#the round function with ‘0’ in the decimal argument tells R to round up to whole numbers

#Calculate the population average and the population standard deviation.

mean(populationweights)

12.3

sd(populationweights)

#though, actually, R sd function is for the sample sd not the population sd but the difference is 

negligible for a population of 30000

2.12

Now we will take random samples of 12 duck weights per sample from the population of 30000 duck 

weights, and calculate the average of each random sample.Actually, rather than repeating that code 

‘manually’, here is a simple function that will run that code for you as many times as you want. It’s been 

set to repeat the code 100 times, which results in 100 sample averages, of a sample of 12 duck weights per 

sample, from a population of 30,000 duck weights. You just need to change the 100 in bold if you want 

more or less sample averages.
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Sample 1

set.seed(1234)

sample _ duckweights<- 

sample(x=populationweights, size=12, 

replace=TRUE) 

sample _ duckweights

[1] 14 9 13 12 11 11 11 13 13 12 16

13 

mean(sample _ duckweights)

[1] 12.3

Sample 2

set.seed(1235)

sample _ duckweights<- 

sample(x=populationweights, size=12, 

replace=TRUE) 

sample _ duckweights 

[1] 12 12 14 11 13 11 13 11 16 12 11 

11 

mean(sample _ duckweights)

[1] 12.3

sampleaverages<-rep(NA,100) 

n<-100

for(i in 1:n) {

set.seed(i)

randomsample<-sample(x=populationweights, size=12, replace=TRUE) 

sampleaverages[i]<-mean(randomsample)

}

What we’ve just done in essence is conduct 100 individual studies to measure duck weights. In each 

study we randomly sampled 12 ducks, weighed them, calculated the average of the 12 weights, and 

entered the average into our ‘sample averages’ data set. By the way, we put the ducks back into the 

population after we weighed them.

Here is our sample of 100 sample averages:

round(sampleaverages,2)

[1] 12.75 13.17 11.42 12.83 12.42 13.08 12.67 12.33 12.83 12.92 11.92

[12] 12.17 11.08 12.42 12.33 12.50 12.08 12.50 13.25 12.67 11.17 11.17

[23] 11.67 12.25 11.92 12.00 12.92 11.17 13.75 12.92 12.58 13.75 12.00

[34] 12.17 11.83 12.83 11.67 11.92 12.17 11.92 11.75 12.33 12.25 12.08

[45] 12.67 12.00 12.00 13.75 11.58 12.75 11.33 12.50 13.58 12.25 11.17

[56] 13.08 11.42 11.17 12.42 12.00 11.58 12.17 11.17 12.50 14.08 12.33
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[67] 12.75 11.58 12.08 11.50 12.17 11.75 10.92 12.17 11.50 12.00 11.83

[78] 12.75 12.58 12.67 13.00 12.58 11.83 12.83 11.67 12.33 12.08 11.58

[89] 12.75 12.50 11.75 12.50 12.83 12.08 11.50 12.00 12.83 10.83 12.08

[100] 11.42

Remember that our population average, that is the true average, is 12.3 pounds. You can see from our 

sample of sample averages that some are pretty close to the true average, some are up to 1.8 pounds 

heavier, and some up to 1.5 pounds lighter (sort(sampleaverages)).

We expect there to be clustering around the true population average, that is, we can measure the central 

tendency of our sample of average duck weights by measuring the average of our averages.

mean(sampleaverages)

12.2

Pretty good. That’s pretty close to the true population average of 12.3.

But in terms of actually measuring certainty, it would be helpful to know how many sample averages 

are close to the true average versus how many are further from the true average.

To begin to measure certainty around our estimate of the true population average, we count the number 

of sample averages within say half pound intervals across the range of sample averages, from 10 up to 

14.5. That would give us an actual measure of the amount of sample averages that were close to the true 

mean. We could do this manually, but heck, let’s get R to do all the work for us.

h<-hist(sampleaverages, plot=FALSE)

h$breaks

[1] 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5

h$count

[1] 2 14 24 29 22 4 4 1

This means that of our 100 sample averages, two averages are within 10.5 to 11 pounds, 14 averages are 
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between 11 and 11.5 pounds, and so on. We can view the distribution around the average of the sample 

averages as a plot,

referred to as a histogram. 

h<-hist(sampleaverages, breaks=9) 

h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the vertical axis is the count of the number of sample averages per interval of sample averages. We 

can see visually that 14 sample averages were between 11 and 11.5 pounds, etc.

This is referred to as a sampling distribution; it shows in a histogram the distribution (i.e. counts per 

interval) of sample estimates across the range of sample estimates.

This sampling distribution is based on 100 samples of averages. What if we had taken 1000   samples  

instead? We just need to change our code a wee bit:

sampleaverages<-rep(NA,1000) 

n<-1000

for(i in 1:1000) {
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set.seed(i)

randomsample<-sample(x=populationweights, size=12, replace=TRUE) 

sampleaverages[i]<-mean(randomsample)

}

hist(sampleaverages)

The shape of the sampling distribution didn’t really change, but it did become smoother, that is, 

more symmetrical. For example, there were the same number of averages in the intervals 4  and 10 

(corresponding to averages from 9.0 to 9.5, and 12 to 12.5). Also, the counts of averages on the vertical 

axis changed, because the sample size increased from 100 to 1000.

Let’s try 10,000 samples 

sampleaverages<-rep(NA,10000) 

n<-10000
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for(i in 1:10000) {

set.seed(i)

randomsample<-sample(x=populationweights, size=12, replace=TRUE)

sampleaverages[i]<-mean(randomsample)

}

h<-hist(sampleaverages,breaks=12)

That’s even smoother. If we had a very large sample of estimates of the population average derived from 

random sampling from a population of a continuous variable, each column on the histogram would 

become tiny. As our sampling increases to infinity, the separate columns would merge into one smooth 

curve. The distribution of parameter estimates then becomes the normal distribution, otherwise 

known as the normal curve.

Here’s what the same histogram looks like with more intervals (‘breaks’) 

h<-hist(sampleaverages, breaks=120)

The following is true for any sample of averages from any population of anything on earth – the 
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sampling distribution of the sample averages will approach the normal distribution as sample size 

increases.

One way to derive a measure of certainty around our estimate of the true population average, is to 

measure the variability in the sampling distribution of sample averages. The standard deviation of 

the sampling distribution is a measure of the variability we could expect across sample averages if we 

were to repeat the study many times. The standard deviation of sample averages is referred to as the 

standard error of the mean. The standard error of the mean is the standard deviation of averages 

calculated from random samples drawn from a population. More generally, the standard error of a 

sample statistic, is the standard deviation of the sampling distribution of the statistic. For example, 

we can also estimate the standard error of a regression coefficient.

If the standard deviation is high relative to the average, we expect that our repeated draws of samples 

would have very different averages. That would mean we would be relatively uncertain that any one 

particular sample average is close to the true population mean. If the standard deviation of sample 

averages is low, then we expect the opposite – that with each repeat study, we would get similar sample 

averages, with most of them being close to the true mean.

In this imaginary situation, we know the true population weight and we’ve been pretending to conduct 

a very large number of repeat studies. In reality, we don’t know the true population parameter – in fact 

the reason we conduct studies is to estimate it. And we usually only have the time and money to conduct 

one study.

Now what? Well, we’re in luck. Turns out that we can estimate the standard deviation of the sampling 

distribution of the sample averages using the standard deviation of one sample.

So again, the standard deviation of one sample of 12 duck weights drawn randomly from our population 

of 30,000 duck weights can be used to estimate the standard deviation of sample averages that would be 

measured if we had repeated the study many times. The standard deviation of individual samples tends 

to over-estimate the standard deviation of sample averages, so the sample standard deviation needs to be 

divided by the square root of the sample size, in this case by the square root of 12.

The standard deviation of our sample of 10,000 average duck weights (10,000 random samples of 12 
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ducks per sample) ...

sampleaverages<-rep(NA,10000) 

n<-10000

for(i in 1:n) {

set.seed(i)

randomsample<-sample(x=populationweights, size=12, replace=FALSE) 

sampleaverages[i]<-mean(randomsample)

}

standarderror<-sd(sampleaverages)

... is 0.61

This is what we could consider to be the ‘true’ standard deviation of sample averages (for a particular 

sample size), or the ‘true’ standard error of the mean. The actual way to calculate this is:

‘True’ standard error = standard deviation of the population / squareroot of sample size = 

2.12 / sqrt(12) = 0.61

Now we’ll draw one random sample of 12 ducks weights from our population of 30 000 duck weights

set.seed(1)

sample _ duckweights<-sample(x=populationweights, size=12, replace=TRUE) 

sample _ duckweights

[1] 16 15 9 12 12 9 14 12 11 16 12 15

mean(sample _ duckweights)

[1] 12.75

The sample standard deviation is 

sd(sample _ duckweights)

[1] 2.454125

Thus, an estimate of the standard deviation of sample averages, the standard error of the mean, is equal 
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to the sample standard deviation divided by the square root of 12.

sd(sample _ duckweights)/sqrt(12) 

[1] 0.7084447

That’s pretty close, 0.71 versus 0.61.

Recall that the standard deviation of a group of numbers is akin to the average amount by which the 

numbers deviate from the mean. The same is true of the standard error of the mean – the group of 

numbers is a collection of sample averages – and the standard error of the mean is akin to the average 

amount by which each sample average deviates from the average of the averages.

So now from one study, we can state that we estimate that ducks of this particular species weigh on 

average 12.8 pounds, and an estimate of the average deviation of sample means (if we had repeated the 

study many times) is 0.71 pounds higher or lower than 12.8 pounds. Make sure you understand the 

difference between the sample standard deviation, which is 2.45, and the standard error of the mean, 

which we estimated from the sample standard deviation, as 0.71.

The usual way to write the estimated average and certainty in the estimate is 12.8 ± 0.71 (SE) pounds. 

Because 0.71 could refer to the sample standard deviation, you need to state whether you’re referring to 

either the sample standard deviation (SD) or the standard error of the mean (SE).

All of that may have been a bit confusing on first read through, so you are invited to run through 

it all again. Keep in mind that in measuring statistical certainty, there are two sets of numbers 

you’re dealing with. One set of numbers is your actual data, from which you calculate the average 

and which you use to estimate the population average. The other set of data is imaginary – it’s a 

collection of sample averages as though you had repeated your study a zillion times. You want to 

know the amount of variability in that imaginary set of sample averages, so you need to know the 

standard deviation of these imaginary sample averages. But you didn’t repeat the study a zillion 

times. Luckily statisticians, bless their hearts, have figured out that you can estimate the standard 

deviation of sample averages quite simply as the standard deviation of your real sample of real 

numbers divided by the square root of the number of numbers in your real data set (i.e. your sample 
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size), aka, the standard error of the mean.

On the left is the distribution of the population of 30,000 duck weights, and on the right is the sampling 

distribution of the average weight of 12 ducks per randomly selected sample, and 10,000 of these 

samples of size n=12 were drawn from the population of 30,000. It makes sense that the variability in 

the sample averages is less than in the population. The average is a measure of central tendency. So it’s 

like sticking your hands into a barrel of apples (the histogram on the left), pulling handfuls of apples 

again and again, and each time choosing the most average looking apple (the histogram on the right).

Before we move on let’s confirm our original intuition that the more variable the population that 

we’re sampling from, the more uncertain our estimate will be - that is, the larger the standard error 

of the mean. This time we measured weights of every single duck (30000 in total) of a different duck 

species, with the same average weight as the first species, but weights in this second species are more 

variable. Note the larger standard deviation of this second duck species is 4.2 (versus 2.1).

set.seed(1234)

x<-rnorm(30000, mean=12.3, sd=4.2) 

populationweights2<-round(x,0)

#Calculate the population average and standard deviation.

mean(populationweights2)
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12.3

sd(populationweights2)

4.20

As before we generate a sampling distribution of averages, as though we had conducted the study 10,000 

times. Note the standard deviation of the sampling distribution for this species is larger (1.21 versus 

0.61).

sampleaverages2<-rep(NA,10000) 

n<-10000

for(i in 1:10000) {

set.seed(i)

randomsample<-sample(x=populationweights2, size=12, replace=TRUE) 

sampleaverages2[i]<-mean(randomsample)

}

sd(sampleaverages2)

1.21

And once again we randomly choose ONE sample of 12 ducks, weigh them, calculate the average weight 

and then estimate the standard error of the mean.

set.seed(2)

sample _ duckweights2<-sample(x=populationweights2, size=12, replace=TRUE) 

sample _ duckweights2

[1] 13 12 22 15 14 11 13 11 8 15 16 16 

mean(sample _ duckweights2)

13.8

sd(sample _ duckweights2)

3.49

Standard error of the mean

sd(sample _ duckweights2) / sqrt(12)

1.01
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The standard error of the mean for the more variable duck population is about 40% larger than that of 

the less variable duck population (1.01 versus 0.71). So we’ve just confirmed our intuitive sense that we 

will be less certain of our estimates when we’re sampling from a variable population.

Let’s also now confirm our intuitive sense that larger sample sizes will result in more certain estimates.

Instead of 12 ducks per sample, let’s randomly select 144 ducks per sample. We’ll sample from the 

original duck species.

set.seed(2)

sample _ duckweights<-sample(x=populationweights, size=144, replace=TRUE) 

sample _ duckweights

[1] 13 12 17 14 13 12 13 12 10 14 14 14 13 14 14 12 15 13 10 16 10 12 11 11 13

[26] 11 13 14 14 10 11  9 14 11 17 16 11 12 11 13 12 14 14 14  8 13 17 16 16 14

[51]  9 13  7 14 16 11 12 13 12 13 11 10 14 14 12 13 13 14 13 13 15 13 13 16 12

[76] 15  9 13 15 14 14 11 13  8 12 12 10 12 11 16 12  9 12 11 11 10 16 12 13 14

[101] 15 13 17 11 12 11 11  8 12 11 13 13 11 14  7 13 11  9 17 14 14 16 13 13 11

[126] 12 12 13 10 10 14 14 10  8 12 15  5 13 14 17 11 12 15 10

sd(sample _ duckweights)

2.25

Standard error of the mean 

sd(sample _ duckweights)/sqrt(144) 

0.19

Increasing the sample size from 12 to 144 resulted in the standard error of the mean decreasing by a 

factor of 3.4 (0.71 to 0.21).
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Okay, now back to our histogram. 

sampleaverages<-rep(NA,10000)

n<-10000

for(i in 1:10000) {

set.seed(i)

randomsample<-sample(x=populationweights, size=12, replace=TRUE)

sampleaverages[i]<-mean(randomsample)

}

h<-hist(sampleaverages, breaks=12)

Calculating the standard error of the mean is one way to measure certainty in our estimation of the 

population mean. There is another way, referred to as confidence intervals. Let’s see how these are 

calculated, and more importantly, what they actually mean.

Instead of displaying counts of sample averages on the vertical axis of a histogram, we can convert 

the counts (which are called frequencies on the R histogram) to proportions (called densities on 

the R histogram), as the counts of observations within a certain interval out of the total number of 

observations. For example, in our sample of 10,000 averages of duck weights

h$breaks

[1] 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 

h$counts

[1] 16 186 808 2215 3218 2396 947 193 21

just 16 of the 10,000 averages are between 10 and 10.5 pounds. Thus the proportion (or density) of 

averages between 10 and 10.5 pounds is 16/10,000 = 0.0016 = 0.16%. Less than 1 percent of the 10,000 

sample averages were between 10 and 10.5 pounds. Calculating the proportions for the other intervals 

and plotting the results looks like this ...

probabIlIty
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h<-hist(sampleaverages, breaks=5, prob=TRUE)

... which shows us that about 30% of the averages were between 11 and 12 pounds. Note that the prob 

argument has been added to the hist function, which tells R to convert counts to proportions (densities). 

Note also that the intervals have been changed from half to full intervals (e.g. from 10 to 10.5 to 10 to 

11), simply by lowering the number of intervals (breaks).

We can check the exact proportions by taking the output from the histogram function for the intervals 

(breaks), counts, and proportions (density) and putting them all in one table.

intervals<-h$breaks[1:5]

counts<-h$counts

proportions<-h$density

data.frame(intervals, counts, proportions)
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Now we can see that exactly 30.23% (3023 of 10,000) of the averages of ducks weights were between 11 

and 12 pounds in our sample of 10,000 averages.

Let’s add the curve to the histogram.

x<-seq(9, 16 , 0.01)

curve(dnorm(x,mean=mean(sampleaverages),sd=sd(sampleaverages)),add=TRUE)

and note that the proportions sum to 1

sum(h$density)

ProportionsFrequenciesIntervals

10

11

12

13

14

Sum

202

3023

5614

1140

21

10,000

0.0202

0.3023

0.5614

0.1140

0.0021

1

Table 8. Intervals, frequencies and proportions for a sample of 10,000 average duck weights.  
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Consider that the proportion of 10,000 samples of average duck weights that are between 11 and 12 

pounds is 30%. Given that no matter how many samples of averages we take from this population, 

we will always end up with a sampling distribution with this normal shape. The shape itself depends 

only on the variability in the data – with high variability (and thus high standard deviation), the 

shape will look fat, and with low variability it will look skinny. But as long as sampling is from the 

same population, the shape of the sampling distribution will be the same. With low sample sizes, the 

distribution will look more ‘bumpy’, and with high samples sizes it will begin to resemble a smooth 

curve. Given that the shape of the sampling distribution from the same population does not change, 

then if we were to take an additional say 100 samples of averages, chances are that about 30 of the 

sample averages would be between 11 and 12 pounds.

Let’s try:

sampleaverages<-rep(NA,100)

n<-100

for(i in 1:100) {

set.seed(i)

randomsample<-sample(x=populationweights, size=12, replace=TRUE)

sampleaverages[i]<-mean(randomsample)

}

h<-hist(sampleaverages,breaks=4)

h

intervals<-h$breaks[1:5]

counts<-h$counts

proportions<-h$density

data.frame(intervals, counts, proportions)

Sure enough – 38 sample averages are between 11 and 12 pounds. Note that we used the words chances 

are. By chances we are referring to probability. Probability is the most fundamental concept to statistics. 

Probability refers to the likelihood of getting a certain study result, which we can estimate based on 

a sampling distribution. 
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About 30% of our samples of average duck weights are between 11 and 12 pounds. We got nearly the 

same result from a sample size of 100 averages, and from 10,000 averages. 

Let’s have another look at our histogram for our sample of 100 averages. The coloured in bar on the 

left is the count of averages between 11 and 12 pounds. We’ve seen how we can convert these counts to 

proportions (aka density) – that’s the histogram on the right.

Based on the sampling distribution of 100 sample averages, we can now say that if we were to repeat our 

duck weighing study yet another 100 times, average duck weights would be between 11 and 12 pounds in 

about 38 of the 100 studies. In other words, the chances of getting average duck weights of between 11 

and 12 pounds is about 38%.

But we’re basing this statement of certainty on a pretty small sample size of 100. It would be much better 

to base it on an infinite sample size – that is, from the normal curve. Using the normal curve, we can 

make statements of probability from the expected distribution of data across the observed range.

Given any normally distributed data, we can figure out the probability associated with any values 
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within a certain interval within the range of observed data.

We can use the rnorm function in R to create a data set from random samples drawn from a normal 

distribution. You simply need to input sample size, and the mean and standard deviation. In fact, 

that’s how we created our original data set of 30,000 duck weights. Note the set.seed function – this 

ensures that you get the same random draw each time. If you change any of the numbers in the set.

seed function you will get a different random draw.

It’s a very nifty fact that many continuous variables in nature are normally distributed, especially 

the sizes of living things – measurements like height, weight, and length of animals and plants are 

usually normally distributed (or the logarithm of the measures are normally distributed).

Let’s consider our sample of 10,000 averages again. The curve on the histogram is THE normal 

distribution curve for a population with mean 12.3 and standard deviation 1.6. The histogram shows 

the sampling distribution of our 10,000 average weights, with the proportions shown instead of the 

frequencies. Our sample data is pretty close to normal, but it is not exactly normal. So we can’t use the 

histogram of our sample data to say for example that we should expect to measure about 3000 ducks 

between 11 and 12 pounds in our sample of 10,000 ducks. Instead we assume that if we had sampled 

enough, our data would become THE normal distribution, and thus to derive an exact probability of 

weighing ducks between 11 and 12 pounds, we instead use the proportions from the normal curve.

By THE normal curve, we mean the standard normal curve, which is centred on 0 and has a standard 

deviation of 1. Statisticians have worked out exact probabilities for all possible values along the x axis. 

The only thing you need to do is take your normally distributed data, and standardize it to the standard 

normal curve. Standardizing your data to the standard normal curve is like lifting up your sampling 

distribution curve and sticking it on top of the standard normal curve, such that every value in your 

data has an equivalent value on the standard normal curve. Basically, you’re just re-scaling your data 

to a standard. That way, you can figure out probabilities for your data using the standard, for which 

probabilities have been calculated already.
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# for the right sample number

set.seed(1234)

x<-rnorm(30000, mean=12.3, sd=2.1)

populationweights<-round(x,0) 

sampleaverages<-rep(NA,10000)

n<-10000

for(i in 1:n) {

set.seed(i)

randomsample<-sample(x=populationweights, size=12, replace=TRUE)

sampleaverages[i]<-mean(randomsample) 

}

 

# to create the histogram

h<-hist(sampleaverages, breaks=40, main="", prob=TRUE)

 x<-seq(9,16,0.01)

curve(dnorm(x,mean=12.3,sd=0.61),add=TRUE)
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intervals<-h$breaks[1:44]

counts<-h$counts

proportions<-h$density

table2<-data.frame(intervals, counts, proportions)

 #output table to excel

 #intall package xtable

library(xtable)

table2<-xtable(table2)

print(table2, type="html", file="table2.html")

 

#open the file in your R working folder, press control and a to select everything, then press control and c 

to copy, then open excel and paste in the table.
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ProportionsCountsIntervals

10.10 

10.20

10.30

10.40

10.50

10.60

10.70

10.80

10.90

11.00

11.10

11.20

11.30

11.40

11.50

11.60

11.70

11.80

11.90

12.00

12.10

12.20

12.30

12.40

12.50

12.60

12.70 

12.80

12.90 

13.00 

13.10 

13.20 

13.30 

13.40

13.50

13.60

13.70

13.80

13.90

14.00

 14.10

14.20

14.30

14.40

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

2

2

5

7

16

19

24

26

101

63

93

116

129

407

273

312

347

400

883

528

539

544

573

1034

501

476

465

334

620

224

212

196

111

204

66

38

27

31

31

7

4

2

7

1

0.00

0.00

0.00

0.01

0.02

0.02

0.02

0.03

0.10

0.06

0.09

0.12

0.13

0.41

0.27

0.31

0.35

0.40

0.88

0.53

0.54

0.54

0.57

1.03

0.50

0.48

0.47

0.33

0.62

0.22

0.21

0.20

0.11

0.20

0.07

0.04

0.03

0.03

0.03

0.01

0.00

0.00

0.01

0.00

Table 9. Intervals, frequencies and proportions for a sample of 10,000 average duck weights from data 

that was standardized to a normal distribution curve. 
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Standardizing our 10,000 sample averages to the standard normal curve (mean=0, sd=1) is pretty 

simple.

Each deviate is simply scaled in units of standard deviation, which is akin to the average deviation. 

What does that mean? Remember that a deviate is the amount of difference between an observation 

and the average. To standardize to the standard normal distribution, we calculate the deviation of 

each sample average from the true population average, and scale these by the true standard deviation. 

Our average of sample averages happens to be exactly the same as the population average, but we’ll be 

technically correct here.

Recall the true average of our population of 30,000 duck weights is:

mean(populationweights)

12.3

And the true standard deviation of the averages of all possible samples of size 12 drawn from this 

population (aka the true standard error of the mean) is:

sd(populationweights)/sqrt(12) 

0.61

Therefore to standardize our 10,000 averages to the standard normal distribution, for each average 

we need to calculate

Z = sampleaverage – population mean / true standard error of the mean

Z<-(sampleaverages - 12.3)/0.61

These are referred to as Z scores (for some unknown reason).

Let’s see what the distribution of our now standardized data looks like.

standardizing to the standard normal curve
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Don’t forget the brackets!! Otherwise R will do the division first, and then the subtraction. If you got an 

error, it may have been because you input a long dash – instead of a short dash - for subtraction. Yes, R is 

THAT picky.

mean(Z) 

sd(Z)

Because our sample of averages was a bit off normal, so too is our standardized data. But, it’s pretty good 

(mean = 0.0240 and sd = 1.0004)

Let’s add the standard normal curve.

x<-seq(-4,4,0.01)

curve(dnorm(x,mean=0,sd=1),add=TRUE)

  

 

In order to calculate probabilities now, we just need to match up our standardized data with the 

probabilities that have been calculated for the standard normal curve.

Well, actually, we don’t. That’s the way things used to be. Now we can actually just use R to calculate 

probabilities for any normally distributed data. This time it’s like doing the opposite – we’re shifting the 

Histogram of Z
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standard normal curve on top of our data. And then as before, matching up our data values within those 

on the standard normal curve. But keep somewhere in the back of your mind that we can standardize 

any data set to a standard distribution to calculate probabilities, because that will be very important in 

the next section.

We’re going to see the functions dnorm and pnorm in action. The dnorm function gives us the same 

information as the proportions output from the histogram function, but is instead the proportions from 

the standard normal curve.

Let’s compare the proportions in our sample data to the proportions (densities) expected from the 

normal curve. Note that the function needs to know where the normal curve will be centred (the mean) 

and its shape (how fat or skinny it is), which is defined by the standard deviation, and then it needs to 

know the value for which you want to find the proportion. Let’s arbitrarily choose 13.4

dnorm(13.4, mean=12.3, sd=0.61) 

0.13

Compare the proportion under the normal curve with the proportion of our sample data in the table. 

Pretty close. Try another value

dnorm(12.9, mean=12.3, sd=0.61)

0.41

Again, quite close. Read off the figure to see that 12.9 is indeed associated with a density of 0.41 on the 

normal curve.

We know that all of the proportions (densities) under the normal curve sum to 1, since the curve is 

simply showing us the distribution of counts of values across the set of values. For the normal curve, the 

set of values is infinite.

Now we are ready to make the jump from the frequency of observations to probability.

Let’s ponder human psychology a bit first. We tend to think that things that have happened often will 
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happen again. Thus, it feels intuitively right to say, hey, I just grabbed a handful of nuts off this tree here 

and squirrels had chewed 80% of them. On this next tree, I expect that about 80% of those nuts will be 

chewed too.

That is pretty much statistics in a nutshell.

Given that the area under the normal curve is equal to 1, we can figure out the probability of sampling 

certain values based on the proportion of the total area associated with that value. For example, from 

eye-balling the curve, the proportion of the area under the normal curve associated with 11.5 pounds is 

about ... say 12% ish of the total area?

No need to guess. pnorm(11.5,12.3,0.61) Ah. It’s 9.48%.

How about 12.8?

pnorm(12.8,12.3,0.61) 

79.4%

Now we can make a probability statement. Given a sample of average duck weights of mean 12.3 and 

standard deviation 0.61, the probability of weighing a duck of 11.5 pounds or less is 9.5% and the 

probability of weighing a duck of 12.8 pounds or less is 79%.

What about a duck of weight greater than 13.2?
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1-pnorm(13.2,12.3,0.61)

7.0%

What about a duck between 11 and 12 pounds?

pnorm(12,12.3,0.61)-pnorm(11,12.3,0.61)

29.4%

Aha. That’s familiar. Referring back to our histogram of 10,000 duck weights, and note the density 

associated with weights between 11 and 12 pounds – 30%.

We’ve just seen how we can calculate the probability associated with a particular value or range of values 

given normally distributed data. What this actually means is, given a normally distributed sample from 

a population, we can calculate the number of times we would expect to get that value, or a less value, if 

we had repeated our study many times. Remember that the normal distribution is continuous, which 

means there is no exact probability of getting a particular value. We can only state the probability of 

getting a particular value or a value that is less than or greater than that value.

Histogram of sampleaverages
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Back to our sampling distribution of sample averages. Aside from the standard error of the mean, what 

other way could we measure certainty around our estimate of the population average of duck weights?

We can use the qnorm function to figure out the value on the x axis associated with a given probability. 

Values associated with probabilities are referred to as quantiles (hence the q in qnorm).

qnorm(0.60,12.3,0.61) 

12.4

Thus, 60% of the sample averages are less than 12.4. In other words, the probability of weighing a 12.4 

pound duck is 60% (if you repeated the study again and again, 60% of sample averages would be 12.4 

pounds or less).

And once more ...

qnorm(0.40,12.3,0.61)

12.1

40% of the sample averages are less than 12.1

You can see that the qnorm function calculates the value associated with the probability to the left of the 

value.
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What we’re really interested here is the amount of sample averages clustered around the average of the 

sample averages. Let’s say we want to know the range of average duck weights associated with 50% of 

the sample averages, 25% above the average and 25% below the average? If we were to input 0.50 into the 

probability argument of the qnorm function, it would just return 12.3, the average. We want to take that 

50% and shift it onto the average. That means that 25% remains below and 25% is above. For the upper 

value, that’s the same thing as inputting into the probability argument 0.50+0.25=0.75

qnorm(0.75,12.3,0.61)

12.711

And the lower is 25% so 0.25

qnorm(0.25,12.3,0.61)

11.889

Therefore, 50% of sample averages are between 11.899 and 12.711.

Recall that the shape of the normal curve is defined by the standard deviation – the average deviation 

of values from the mean. Thus for any normal curve, the range of values that represents different 

proportions of values can be defined as a factor of the standard deviation.
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For example, the upper range value defining 50% of the sample averages is 12.711, which is 0.411 pounds 

above the sample average of 12.3. Likewise, the lower range value of 11.899 is also 0.4111 pounds below 

the sample average of 12.3 (the normal distribution is symmetrical after all).

The standard deviation of our sample averages is 0.61. Thus, 50% of the sample averages are 0.411/0.61 = 

0.674 standard deviations either above or below the sample average. In fact, for any normal curve, 50% 

probability is found within 0.674 standard deviations of the average.

What about 80% probability? That would mean 20% probability on either end, so the lower range value 

is half of that

qnorm(0.10,12.3,0.61)

11.518

and the upper range is 80% + 10% 

13.082

Thus, if we repeated the study many times, in 80% of studies average duck weight would be between 

11.518 and 13.082.

Defined in terms of standard deviations

13.082-12.3 = 0.782

0.782 / 0.61 = 1.28 standard deviations.

Thus, 80% of average duck weights would be 1.28 standard deviations above the mean and 1.28 standard 

deviations below the mean.

And now for 95% probability, which you will learn is a standard used to define statistical certainty.

95% probability means that 5% probability is ‘leftover’, 2.5% at the lower end and 2.5% at the upper.
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So the lower range value is

qnorm(0.025, 2.3, 0.61)

11.104

The upper range values is 95% + 2.5%

qnorm(0.975, 12.3, 0.61)

13.496

(13.496-12.3)/0.61 #or (11.104-12.3)/0.61

1.96

For any normal curve, 95% of the observations are found within 1.96 standard deviations of the 

mean.

What does this mean in terms of certainty around our estimate of average duck weights?

For our sample of 10,000 duck weight averages, it means that 95% of duck weight averages are found 

within 1.96 standard deviations of the average of the averages.

12.3 + 1.96 x 0.61 = 13.496 

12.3 – 1.96 x 0.61 = 11.104

If we conducted 10,000 duck weight studies, in 9500 studies, the average of the 12 ducks per sample 

would be between 13.5 and 11.1.

#And now we are ready to calculate the 95% confidence interval of the average duck weight.

set.seed(27)

sample _ duckweights<-sample(x=populationweights, size=12, replace=TRUE) 

sample _ duckweights

mean(sample _ duckweights)



statistical modelling of your data

114

12.9

upperinterval<-mean(sample _ duckweights) + 1.96 * sd(sampleaverages) 

lowerinterval<-mean(sample _ duckweights) - 1.96 * sd(sampleaverages)

upperinterval

14.1

lowerinterval

11.7

This allows to make the statement that 11.7 to 14.1 is one interval of many intervals that contains the 

true population average 95% of the time.

A standard practice for reporting confidence intervals is to write them as follows: 

sample mean ± 1.96*SE

e.g. 12.9 ± 1.20 (95% CI)

Note that the probability contained within the interval is stated in brackets.

So now you have learned two ways to measure certainty around estimates – the standard error of the 

mean, and confidence intervals around the mean.

By the way, the branch of statistics that we have been applying is referred to as frequentist statistics, 

because it is based on probability being measured with reference to the relative frequency of 

observations, in other words, from sampling distributions.
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We’ve figured out how to estimate a population parameter, the average, and how to state how certain we 

are of our estimate.

Next up: using data to answer research questions. In other words, hypothesis testing.

In order to more fully explore hypothesis testing, we first need to understand an important sampling 

distribution called the t distribution.

In the previous section, we calculated the Z score, which standardized our 10,000 sample averages to 

the standard normal curve. But note that in order to calculate the Z score, we needed to know the true 

standard error of the mean, which is the same as the standard deviation of the 10,000 sample averages.

Z = sampleaverage – population mean / true standard error of the mean 

But we almost never know the true standard error of the mean. Now what?

Remember that we can estimate the ‘true’ standard error of the mean from the sample, simply as sample 

standard deviation / square root of sample size. So now instead of the ‘actual’ standard deviation of the 

sample averages, which is 0.61, we estimate it from one sample. We’ve done that a few times now but 

let’s do it again. We’ll use a different number in the set.seed function to ensure we get a completely new 

random sample.

set.seed(390)

sample _ duckweights<-sample(x=populationweights, size=12, replace=TRUE) 

sample _ duckweights

mean(sample _ duckweights)

13.1

HypotHesIs testIng and p values

the t distribution
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sd(sample _ duckweights)

1.56

estimatedstandarderror<-sd(sample _ duckweights)/sqrt(12)

0.45

When we replace the ‘true’ standard error of the mean with the estimated standard error of the mean, 

the z statistic becomes the t statistic. Just like the z statistic, the t statistic is a deviate expressed in units 

of the standard deviation, only this time we don’t know the standard deviation, we have to estimate it 

from our data.

t = deviate / average of deviates

= (sample average – population average) / estimated standard error of the mean

The t statistic has a sampling distribution, just like any statistic does – as we have seen the sampling 

distribution of the average is the normal distribution. The sampling distribution for the t statistic is 

called (drum roll) .... the t distribution.

The t statistic does exactly the same thing as the z statistic – that is, it standardizes any normal curve of 

data to a standard curve, from which probabilities can be calculated. Only, it standardizes the curve to 

the t distribution.

To see what this looks like, we have to also estimate the standard error of the mean from each of our 

10,000 random samples.

estimatedSEmean<-rep(NA,10000) 

n<-10000

for(i in 1:10000) {

set.seed(i)

randomsample<-sample(x=populationweights, size=12, replace=TRUE) 

estimatedSEmean[i]<-sd(randomsample)/sqrt(12)

}
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This is the t distribution for our 10,000 sample averages 

tdistribution<-(sampleaverages - 12.3)/estimatedSEmean 

h<-hist(tdistribution)

It looks like the normal distribution but the t distribution is different.

The t statistic is derived from the standard error of the mean, which itself is derived from the sample 

standard deviation, which is dependent on the sample size. The t statistic will be different for different 

sample sizes, and thus the shape of the t distribution will be different for different sample sizes. The t 

distribution gets skinnier with increasing sample size.

Because of the dependency of the shape on sample size, there are an infinite number of t distributions. 

In order to find the probability associated with values on the x axis of the t distribution, you have to find 

the right t distribution for your sample size.

The only kink is that the right t distribution is the one associated with your sample size minus the 

number of population parameters you’re trying to estimate, in other words, with the correct degrees of 
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freedom. In our case of average duck weights, it’s 12-1 = 11. The degrees of freedom can be understood 

most simply as the sample size minus the number of parameters being estimated. When we conduct a t 

test for the population mean, we need to estimate the population mean from the sample, and thus one 

observation is tied to the sample mean, and is not ‘free’. So the degrees of freedom for a t test about the 

population mean is n – 1.

The t distribution is useful for two things in particular – hypothesis testing and deriving confidence 

intervals for estimates of the mean of a population.

What the heck says you? We already derived confidence intervals for the mean using the normal 

distribution. Welllll, remember, we never actually know the true standard error of the mean, we almost 

always have to estimate it. That means we need to standardize our data to the t distribution in order 

to get probabilities. BUT, the t distribution approaches the normal distribution when sample sizes are 

above about 40. So really, it’s only small sample sizes for which you need to use the t distribution to 

calculate confidence intervals on the sample mean. Otherwise, the normal distribution is fine, because 

the t distribution is just like the normal anyway when sample size is greater than about 40.

For sample sizes below about 30, the 95% confidence interval is no longer mean ± 1.96 x standard error 

of the mean. Just like qnorm, R has a function for the quantile associated with 95% probability. But 

remember that the t distribution depends on sample size, so there is a second argument for the sample 

size. The mean of the t distribution, since it is a standard distribution, is always 0.

#with large samples sizes the t distribution is the normal distribution, for example

qt(0.975,500)

1.96

#for small sample sizes, the quantile is different from the normal curve

qt(0.975,30)

2.04

Therefore, for a sample size of 30, the confidence interval would be calculated as mean ± 2.04 x 
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estimated standard error of the mean.

For a sample size of 15, the confidence interval would be 

qt(0.975,15)

2.13

mean ± 2.13 x estimated standard error of the mean

Now back to hypothesis testing, the other useful application of the t distribution.

Now we can talk about hypothesis testing. Statistical hypothesis testing arises from a research question. 

For example, our research question might be something like, are surf scoters larger than white-winged 

scoters?

To answer this research question, we conduct statistical hypothesis testing, which in brief proceeds like 

this:

1. State a null hypothesis. Null refers to 0 or none. In this case, our null hypothesis is that the average 

wing length of surf scoters and white-winged scoters are equal, there is no difference.

2. State the alternative hypothesis. Given our research question, the alternative hypothesis is that surf 

scoters are larger than white-winged scoters. For other questions, the alternative might simply be that 

wing length does differ, or that surf scoters are smaller than white-winged scoters.

3. Choose a test statistic such that the sampling distribution of the test statistic defines the null 

expectation of no difference.

4. Calculate the test statistic for your actual data, and determine the probability associated with the test 

one and two sample Hypothesis testing
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statistic of your data on the null sampling distribution.

5. If your test statistic is associated with a low probability on a sampling distribution that assumes 

no difference, then conclude that the null sampling distribution is wrong. Therefore, reject your null 

hypothesis of no difference, and accept your alternative hypothesis. Conclude there is a difference 

between the populations. For example, we would conclude that white-winged scoters are indeed larger 

than surf scoters.

6. If your test statistics is associated with a high probability on a sampling distribution that assumes no 

difference, then conclude that you have no evidence to state that the null sampling distribution is wrong. 

Therefore, conclude that you have no evidence suggesting that there is any difference in size between 

surf scoters and white-winged scoters.

Think that’s convoluted thinking? You’re not alone - there have been many arguments against it. Two 

issues are particularly important to keep in mind:

1. What should a low probability on the null distribution be in order to decide that the null hypothesis 

of no difference is incorrect?

2. It is often the magnitude of differences between things that we care about. We could conduct a very 

elaborate and expensive study and conclude that yes, this is different from that. But what a waste of time 

and money if we had not also stated by how much this is different from that, and how certain we are of 

our estimation of difference.

A more general way to calculate the t statistic is:

t = sample statistic – true population value / estimated standard error of the statistic

In other words, the t distribution is relevant for other types of statistics, as we’ll see in the next section.

Instead of the true population value, we could enter into the calculation a hypothetical population value. 

For example, suppose we think (we hypothesize) that surf scoters and white winged scoters have the 
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same wing length. We happen to have a fairly good estimate of white winged scoter wing length of 26.0 

± 2.27 (SE) cm.

So now we have a null hypothesis regarding surf scoters, which is symbolized by Ho. 

Ho = 26

The alternative hypothesis that we’ll test is that surf scoters are smaller than white winged scoters and 

thus have smaller average wing lengths.

Ha < 26

Now we ask hunters to send us wings of surf scoters that they’ve harvested. We end up with a sample 

of wings from 67 surf scoters. We measure each one, calculate the average of 20.0 cm and the standard 

error of the mean, of 0.29 cm.

First let’s generate these data 

set.seed(407)

surfwings<-rnorm(67,20.3,2.11) 

meansurfwings<-mean(surfwings) 

meansurfwings

SEmeansurfwings<-sd(surfwings)/sqrt(67)

SEmeansurfwings

In order for us to figure out probabilities associated with these data, they have to be standardized to the 

t distribution with degrees of freedom = n – 1, which is 66. Recall that the shape of this t distribution 

will be quite similar to the normal distribution.

To test our null hypothesis, we need only match our sample data to the t distribution with 66 degrees 

of freedom and figure out the probability associated with our sample average. Remember that this t 

distribution describes our null expectation, which in this case is that average surf scoter wing length is 
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not different from 26 cm.

To match our sample data to the t distribution, we calculate the t statistic,

t = sample statistic – hypothetical population value / estimated standard error of the statistic = 20.0 – 

26.0 / 0.29

= -20.7

WHOA! Perhaps you can already tell that it is highly unlikely that the null hypothesis is supported 

a -20.7 is waaaaaay off to the left on the histogram. In other words, our data are nowhere near the 

sampling distribution of the t statistic that describes the null hypothesis that surf scoter wing length is 

equal to 26 cm.

But let’s find out the probability associated with that t test statistic anyway. 

pt(-20.7,66)

[1] 7.200705e-31

uh huh. The probability that average surf scoter wing length is equal to 26 cm is 

0.00000000000000000000000000007200705 %

OR LESS.
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Therefore, we reject the null hypothesis, and accept the alternative hypothesis. We conclude that average 

surf scoter wing length is less than 26 cm, and therefore surf scoters are smaller than white winged 

scoters.

What we’ve just done is called a one-sample t test. And more specifically, a one-tailed one-sample t test. 

One sample because we are testing hypotheses about just one population, surf scoters. Even though our 

research question is actually about two species, our statistical hypothesis is only about one species.

This was a one-tailed t test because our alternative hypothesis was concerned only with one tail of the 

t distribution, the left side. That’s because our alternative hypothesis was that surf scoters were smaller 

than white- winged scoters.

We can use the R t.test function to do exactly the same thing. 

t.test(surfwings, alternative = "less", mu = 26, conf.level = 0.95)

R output:

One Sample t-test

data:  surfwings

t = -20.865, df = 66, p-value < 2.2e-16

alternative hypothesis: true mean is less than 26

95 percent confidence interval:

     -Inf 20.48395

sample estimates:

mean of x 

 20.00457

Let’s try another example and this time we’ll visualize it as we work through it. 

Ho = 20.4
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Ha < 20.4

t = 20.0 – 20.4 / 0.29 = -1.3761

pt(-1.3761, 66)

=0.0867

OR

t.test(surfwings, alternative = "less", mu = 20.4)

Output from R:

One Sample t-test

data: surfwings

t = -1.3761, df = 66, p-value = 0.08672

alternative hypothesis: true mean is less than 20.4

95 percent confidence interval:

-Inf 20.48395

sample estimates:

mean of x

20.00457

Let’s look at this:
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On the left is the expected distribution of samples if the null hypothesis is true, that is, that average 

surf scoter wing length is 20.4 cm (white arrow). The result that we got from our study was average 

wing length of 20.00 cm (grey arrow). The probability of getting the result we got, given that the null 

hypothesis is true, is P =0.08672, or 8.67%. In other words, if the null hypothesis is true and we had 

repeated this study 100 times, we would get the result we got in only 9 studies out of the 100 studies. 

That seems pretty low, therefore, we conclude that the null hypothesis is unlikely to be true, and 

therefore we accept our alternative hypothesis that the wing length is less than 20.4. We were able 

to calculate that exact probability, because we standardized the plot on the left to tdistribution, the 

plot on the right, with degrees of freedom = 66. On the t distribution, 20.5 corresponds to 0, and 20.0 

corresponds to t = -1.3761 (black arrow), which corresponds to the probability of 0.08673.

Another way of saying this plain speak is:

“If the null hypothesis is true that average surf scoter wing length is 20.4 cm, what is the probability 

of drawing a sample with average wing length at least as far from 20.4 as 20.0 cm, or even shorter 

wings?”

That last part refers to the direction of the alternative hypothesis.

distribution_if_null_is_true tdistribution

Fr
eq

ue
nc

y

D
en

si
ty

Histogram of ditribution_if_null_is_true Histogram of tditribution



statistical modelling of your data

126

The probability of getting the average length that we got in this study (i.e. average of 20.0 cm) or even 

shorter wing lengths, is referred to as the P value.

Stated more accurately, if you had repeated your study many times, a P value is the probability of 

getting the study result you got, or a more extreme result (in this case smaller) given that the null 

hypothesis is true.

It is a convoluted misunderstood sorry beast that P value, so best that you really understand what a P 

value means. Feel free to review the last few pages again and again if you need to.

Now what about an alternative hypothesis in the opposite direction?

Ho = 20.4 

Ha > 20.4

t = 20.0 – 20.4 / 0.29 = -1.3761

1-pt(-1.3761, 66)

=0.913

OR

t.test(surfwings, alternative = "greater", mu = 20.4)

One Sample t-test

data:  surfwings

t = -1.3761, df = 66, p-value = 0.9133

alternative hypothesis: true mean is greater than 20.4

95 percent confidence interval:

 19.5252     Inf

sample estimates:

mean of x 

 20.00457
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The t statistic is exactly the same. But now our alternative hypothesis is that surf scoter wing length is 

greater than 20.4. 

In layman terms it would be:

“If the null hypothesis is true that average surf scoter wing length is 20.4 cm, what is the probability 

of drawing a sample with average wing length at least as far from 20.4 as 20.0 cm, or even longer 

wings?”

At least as far from 20.4 as 20.0 but larger than 20.4 is all of the area under to curve to the left of t = 

1.3761, which is equal to 0.9133, which of course must be 1 – 0.0867.

Thus, given that the null hypothesis is true, that average surf scoter wing length is 20.4 cm, the 

probability of getting surf scoter wings of 20.0 cm average length or larger wings is 91.33%. That’s a 

pretty high probability, so we’re going to conclude that our data are consistent with the null hypothesis 

and we reject the alternative hypothesis that average surf scoter wing length is larger than 20.4 cm.

And now how about an alternative hypothesis is both directions, that is, that average surf scoter wing 
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length is not equal to 20.4? This is referred to as a two sided test. This is the recommended test in 

most situations.

Ho = 20.4

Ha ≠ 20.4

t = 20.0 – 20.4 / 0.29 = -1.3761

pt(-1.3761, 66) + (1-pt(1.3761, 66))

0.173

OR

t.test(surfwings, alternative = "two.sided", mu = 20.4)  

One Sample t-test

data:  surfwings

t = -1.3761, df = 66, p-value = 0.1734

alternative hypothesis: true mean is not equal to 20.4

95 percent confidence interval:

19.43087 20.57828

sample estimates:

mean of x 

20.00457

Again, it helps to visualize what we’re doing and write it out in plain speak.

“If the null hypothesis is true that average surf scoter wing length is 20.4 cm, what is the probability 

of drawing a sample with average wing length at least as far from 20.4 as 20.0 cm, either shorter or 

longer?”

Remind yourself that the arrow on the histogram corresponds to 20.0, and the 0 corresponds to 20.4. 

We’ve simply lifted our data distribution up and stuck it onto the t distribution, so we can figure the 

probabilities associated with getting a sample average of 20.0 cm, given the null distribution centred on 
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P Values and Statistical Significance

20.4 cm.

Notice that the P value for a two sided test is twice the P value for the left hand one sided test. 

Given that the null hypothesis is true, the probability of getting average surf scoter wing lengths at 

least 0.40 cm from 20.4 cm in either direction is only 17.34%. Hmm. That’s not a very high probability, 

implying that the null hypothesis is unlikely, but it’s also not a low probability either. So do we reject the 

null hypothesis or not? That conundrum brings us to the next section.

Notice in the last section that when we arrived at a P value, we used phrases like, ‘that seems like a 

pretty high probability’, or, ‘that seems like a pretty low probability’. Well, that doesn’t cut the mustard. 

When conducting statistical hypothesis testing, you must decide before you conduct the test the 

probability that you’re willing to accept to reject the null hypothesis. This is referred to as the alpha 

level, at which we state whether the test is statistically significant (P < alpha) or not (P > alpha).
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The typical alpha level is 5%. In our example above, if we had specified our alpha level to be 5%, then 

we would not have rejected the null hypothesis. We would have concluded that we have no evidence to 

support that average surf scoter wing length was different from 20.4 cm.

If our sample average had been 19.9 instead of 20.0, then our left hand one sided test (Ha < 20.4) would 

have resulted in a P value of 0.045. Since this is less than the 5% cut off, we would have rejected the null 

hypothesis and concluded that we feel justified in rejecting the null hypothesis that average surf scoter 

wing length is equal to 20.4.

There is no good reason to use a 5% alpha level.

The value of statistical tests depends on sample size and the variability in the data, because the 

estimated standard error of the mean depends on sample size and variability. High sample sizes result 

in large t statistics, which are associated with small P values, in the tails of the null distribution. High 

variability results in small t statistics, which are associated with large P values, and with not rejecting 

null hypotheses. Ecological data tend to have small sample sizes and high variability, and thus P values 

greater than the religious standard of 0.05. 

These arguments have been raised repeatedly in the last decade or so. Lately, there has been a general 

shift toward treating P values up to about 20% as fair game to reject the null hypothesis. 
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Now that we know how to conduct statistical hypothesis testing, we’re going to construct our first 

statistical model. A statistical model is a measure of the strength of relationships between a response 

variable and predictor variables. 

One of the simplest statistical models is the simple linear regression model, which relates a response 

variable on the y axis to a predictor variable on the x axis. As an example, here is 10 years of data 

measuring plant growth in a study plot from the length of leaves. Each data point represents the average 

leaf length of 15 plants randomly chosen from the plot per year since the beginning of the study (year 0).

Linear regression

Leaf Length (cm)
(Response Variable)

Years
(Predictor)

3.2
2.1
9.9
8.4
6.5
11
9.5
6

16
12.3
15.6

0
1
2
3
4
5
6
7
8
9

10

Table 10. Leaf length, in cm, each year of growth.
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So how can we measure the relationship between plant growth and time? 

A regression line is comprised of two parameters that describe it – where the line hits the x axis, called 

the y intercept, and the slope of the line – the steepness or f latness of the line. The slope of the line, the 

slope coefficient, is the quantitative relationship between the response, in this case leaf length, and 

predictor, in this case, time in years. 

The y intercept is the value of the y axis at which the value of the predictor is 0. The slope is the 

amount by which the response variable changes per unit of predictor variable. As easy way to estimate 

the slope from eye-balling a scatter plot like this is simply the amount by which the response variable 

changes from one end of the line to the other, here about 14.2 – 3.9, divided by the amount by which the 

predictor variable changes from one end to the other, here it is 10 - 0 = 10. So then an eyeball estimate of 

the slope is 1.03, which means that leaf length increases by about 1.03 cm per year.

The problem with drawing in a regression line from eye balling your data is that different people will 

draw different lines.  Instead, we need to use the mathematics of a linear regression model to find the 

‘best fit line’ through the data.

A regression line can be described mathematically as the following:

predicted response = y intercept + slope * predictor

Let’s have a look at this. Instead of eyeballing the scatter plot above, regression analysis was run and 

resulted in an estimate of the y intercept of 3.71 (which you can see looks about right) and the estimate 

for the slope of 1.08 (our eye balling was pretty close). Thus, for every value of the predictor, the value 
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on the regression line, which is referred to as the predicted value, is equal to 3.71 + (1.08 * years). For 

every year, the predicted value has been calculated and added to the table below. Note for example that 

the predicted leaf length at year 4 is 8.06. 

Now let’s find out how these parameters (y intercept, slope coefficient) were estimated. 

Let’s generate and use some normally distributed data. Suppose we harvested 30 mallard ducks, weighed 

them (grams) and measured the length of one wing per bird (cm) as a measure of the size of each 

mallard. We’re interested in estimating the relationship between mallard size and weight. 

First let’s simulate these data (create the data set using random sampling from a sampling distribution), 

which we will call ‘mallards’ with the following fancy ish R code:

set.seed(1114)

data.fn<-function(n = 50, alpha = -12 , beta = 0.03)

{

weight<-rnorm(n, 1200, 40)

predictedlength<-alpha + beta * weight

sampledlength<-rnorm(n = n, mean = predictedlength, sd=1.2)

Leaf Length (cm)
(Response Variable)

Predicted Leaf Length (cm)
(y = 3.7 + 1.08*Years)

Years
(Predictor)

3.2
2.1
9.9
8.4
6.5
11
9.5
6

16
12.3
15.6

3.70
4.79
5.88
6.97
8.06
9.15
10.2
11.3
12.4
13.5
14.6

0
1
2
3
4
5
6
7
8
9

10

Table 11. Leaf length (cm), measured, and predicted leaf length from the regression line (y=3.7+1.08*Years) 

for each year of growth.
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return(list(n = n, alpha = alpha, beta=beta, predictedlength=predictedlength, 

sampledlength=sampledlength, weight=weight) )

}

mallards<-data.fn()

plot(mallards$sampledlength~mallards$weight)

Here is the scatterplot of the data. As you can see, there appears to be quite a strong positive relationship 

between length and weight. But what is the relationship? In other words, what is the one and only 

regression line that best fits these data? 

As we have seen, a regression line is described by:

predicted y = y intercept + slope x predictor

A simple linear regression model is described by:

observed y = y intercept + slope x predictor + randomness

In our example, it’s:

 observed mallard length = y intercept + slope x mallard weight + randomness

What is the randomness about? 

You are now familiar with the concept of a population average versus a sample average. There is a 
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population out there, for example, of all mallard ducks in the world, and if we calculated the average 

weight of every last mallard we would get THE population average. But we don’t need to do that. We just 

need to take one sample, and use the average of the mallards in our sample to estimate the population 

average.

The same is true of the y intercept and slope. If we related the wing length to the weight of every last 

mallard in the world, we would calculate THE y intercept and THE slope of the relationship. But of 

course, we can’t and we don’t need to – we just need to take one sample of ducks, measure the wing 

length and weight for each, and use the y intercept and slope of our sample to estimate the population y 

intercept and slope. 

Now, you need to imagine that for every predictor value, there is an entire population of y values. For 

example, for each mallard weighing 1300 g in the world, there is a range of wing lengths (they don’t all 

have the same wing length, because that’s the way nature works – everything is variable), and this range 

of wing lengths is normally distributed. 

So there is a normal distribution around every y value. 

The mean of each of these normal distributions is the value on THE population regression line – in 

other words, the regression line is the line through the mean of the y values at each x.

The standard deviation is the same for all the normal distributions at every y value. 

Each observed y value, each wing length we measured, is one random draw from the population of all 

mallard wings for mallards at that corresponding weight.  

Each observed y value deviates from the true population mean. In regression this is referred to as the 

residual error – that’s the randomness part of the regression equation. If we repeated the study many 

times, we would have a sampling distribution of residuals. These are normally distributed with mean 

of 0 and their standard deviation is the same across all y values. Because it is the same, then we can 

estimate it as the average of the residuals across all y values. These need to be squared before averaged 

(because some are negative and sum positive), so this is referred to as the mean squared error. The sum 
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of the squared residuals is the total variation not explained by the regression line, and is referred to as 

the residual sum of squares.

The best fit line is simply the line for which the difference between the observed lengths and predicted 

lengths is minimized. To find the y intercept and slope coefficient we could do the math by hand, but 

let’s let R do the work for us. 

But first, two things. The first is that we need to pause and remember that what we’re about to do is test 

a statistical hypothesis. Since we want to know whether there is a relationship between size and weight, 

what we really want to know is whether the slope of the regression is different from 0. If it was a f lat 

line, the slope would equal 0, and there would be no relationship. The null hypothesis is that the slope is 

equal to zero; typically we test alternatively that the slope is not equal to 0.

Second thing: the estimated slope from a regression has a sampling distribution – it is one sample 

regression slope of the true population slope. Like the average, its sampling distribution is also the t 

distribution. So even though this might seem like a more complicated statistical analysis, we’re really 

just doing the same thing we did before. That is, we’re testing the probability associated with the 

regression slope estimated from our data on a t sampling distribution describing the null expectation of 

slope = 0.

mallardsmodel<-lm(sampledlength~weight, data = mallards)

summary(mallardsmodel)
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#the summary function in R is used often to summarize the output from statistical models 

Call:

lm(formula = sampledlength ~ weight, data = mallards) 

Residuals:

   Min         1Q       Median        3Q          Max 

-2.42897   -0.77762     -0.02165      0.78235      2.59560 

Coefficients:

               Estimate   Std. Error  t value   Pr(>|t|)    

(Intercept)  -13.577443    5.271572    -2.576     0.0131 *  

weight         0.031334     0.004396     7.128   4.68e-09 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.189 on 48 degrees of freedom

Multiple R-squared:  0.5142,    Adjusted R-squared:  0.5041 

F-statistic: 50.81 on 1 and 48 DF,  p-value: 4.683e-09

The only output that we need to know right now is the part in bold. The estimate for weight is the 

slope of the regression line, 0.03. Next to it is the standard error of the slope estimate – again picture 

repeating the study a zillion times, estimating a zillion slope estimates and calculating their standard 

deviation. The t value is our trusty t statistic from the t distribution describing the null expectation that 

the slope is 0. Remember, we calculate the t statistic as:

t  

= estimated statistic – hypothetical value of population parameter / standard error of statistic

= estimated slope – hypothetical slope / standard error of slope

 = 0.03 – 0 / 0.0044

= 7.128 which you can see is the t value in the output table.

And the two sided P value associated with that t statistic is very small at 0.00000000468.

Since the probability of getting the slope that we got from our data is very small under the null 

hypothesis, we reject the null hypothesis that the slope is 0 and that there is no relationship between size 

and weight in mallards. Instead we accept the alternative hypothesis that the slope is greater than or less 
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than 0, and therefore there is a ‘statistically significant relationship between mallard wing length and 

weight’.

Of course, what we’re really interested in is the magnitude of the slope and our certainty around our 

estimate. That we can now state easily. 

We estimate that for every one gram increase in mallard weight, mallard size measured as wing 

length increases by 0.03 ± 0.004 (SE) cm. In other words, across the range of 200 gram difference in 

mallard weights, wing length is estimated to vary by 6 cm. Just check the plot above and satisfy for 

yourself that rise over run is ~ 6 / 200 = 0.03.

A note about the y intercept, which technically is the wing length at weight = 0. The y intercept is 

estimated to be negative 13.6, which is biologically impossible, but then, it’s biologically impossible for a 

mallard to weigh nothing. Y intercepts are often meaningless biologically, but are obviously still needed 

to estimate the best fit line. 

Before we go on to slightly more complicated models, we need to pause a moment and ref lect. Okay, so 

we found a statistically significant relationship between mallard size and weight. But, how much of the 

variability in our data is explained by this statistically significant relationship?

Consider for a moment the data we’ve been working with on the left, and the data on the right (on the 

next page), which was generated using the same code, but this time the standard deviation of the normal 

distributions around each y value was decreased by a third from 1.2 to 0.4. A regression model fit to 

these data results in very similar parameter estimates and the same highly statistically significant result 

(try it yourself). But because the amount by which each observation deviates from the regression is less, 

then the model will fit the data better. In other words, if the regression line were used to predict wing 

length for a given weight, the regression line for the data on the right (with lower variability) will be 

more accurate.
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Hence, the process of data analysis does not end simply with finding statistically or biologically 

significant results. It is also necessary to describe how well the model fit the data – in other words, to 

measure the residual error. Recall the residual error (or just ‘residuals’) is another term for the difference 

between an observation and its corresponding predicted value, which is itself an estimate of the true 

population mean of y values at that x.

The residual error is used to derive a measure of how much variability in the data is explained by the 

model. This is quite simply calculated as 1 – (sum of the squared deviations of observations from their 

corresponding predicted values, divided by the total variation). This is referred to as the R Squared 

value; it is interpreted as the proportion of the total variation explained by the regression model.

You could calculate R squared by hand but R does the work for you. It’s given as a part of the model

output from the summary function.

Call:

lm(formula = sampledlength ~ weight, data = mallards) 

Residuals:

   Min            1Q     Median         3Q        Max 

-2.42897   -0.77762      -0.02165    0.78235    2.59560 

Coefficients:

               Estimate       Std. Error   t value   Pr(>|t|)    

(Intercept)  -13.577443    5.271572    -2.576     0.0131 *  

mallards$weight mallards$weight
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weight         0.031334  0.004396      7.128  4.68e-09 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.189 on 48 degrees of freedom

Multiple R-squared:  0.5142

F-statistic: 50.81 on 1 and 48 DF,  p-value: 4.683e-09

Thus, 51% of the variability in the mallard wing lengths is explained by their weight (either measure of 

R squared is fine to use).In the second data set (with lower variability), the R squared is much higher at 

90%.

Residuals are also used to check the assumptions of the model. Model assumptions matter. For simple 

linear regression, it is assumed that:

1. The population of y values are normally distributed, and the deviations of the observed y values from 

the mean of the population of y values are also normally distributed. Again, the normal distribution 

arises from imaginary repeat studies over and over again. This assumption matters because the 

predicted values are chosen by the model fitting process such that they are the mean of a normal 

distribution, and the observations are a random draw from that normal distribution.

2. It is assumed that the standard deviation of each population of Y values is the same.

3. It is assumed that each y value is independent of all other y values. In our case, independence means 

that each x,y pair represents measurements on different ducks, that no two x,y pairs are of the same 

duck.

Residuals can be used to visually check model assumptions by plotting them against predictors (weight) 

or against predicted y values, which in this case is length. Again, you could calculate ‘raw’ residuals ‘by 

hand’:

rawresiduals<-mallards$sampledlength – predict(mallardsmodel) 

#the predict function generates a predicted value for each predictor
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Or you can just use the R function residuals: 

rawresiduals<-residuals(mallardsmodel) 

plot(rawresiduals~mallards$weight) 

windows() 

predicted<-predict(mallardsmodel) 

plot(rawresiduals~predicted)

These plots are showing us exactly what we want to see – nothing. There is no pattern in the residuals. 

That is, the size of residuals does not increase or decrease with increasing predictors or increasing 

predicted values, both of which would suggest non-normal data and different variances across the data 

set.

The residuals are assumed to be random draws from a normally distributed population of deviates, 

with mean centred on 0. The standard deviation of the residuals is simply calculated as their average 

deviation from 0 (which is just their average), after squaring them of course since some are positive 

and some are negative. The catch is that to calculate the average, instead of dividing by the number 

of residuals, we divide by the number of residuals minus 2. The average deviation of the residuals is 

referred to as the Mean Squared Error.

meansquarederror<-sum(rawresiduals*rawresiduals)/48 
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1.41

The square root of the mean squared error is the ‘residual standard error’, which is given as output 

from the linear regression summary function in R:

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.189 on 48 degrees of freedom

Multiple R-squared: 0.5142, Adjusted R-squared: 0.5041 

F-statistic: 50.81 on 1 and 48 DF, p-value: 4.683e-09

When you become more experienced with statistical analysis you will see firsthand how it is important 

when applying a statistical model to make sure that the assumptions are met by your data. That is, it is 

important to use the right model for your data. For example, simple linear regression is not the right 

model for count data, which is the type of data you will analyze from harvest surveys (counts of bird 

kills). In the next section, we’ll find out why.
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Load the example data set harvest.csv in R, and give it the object name h (don’t forget to set your 

working directory if this is the first time you’ve opened R today). This dataset is similar to but larger 

than the working data we created in excel above.

Let’s produce a histogram of the total birds harvested per hunter. 

hist(h$Totalbirds)

In the last section, we used simple linear regression to fit a regression line to normally distributed data. 

Another name for a simple linear regression model is a general linear model.

What if our data are not normally distributed? For data that are not normally distributed, we can use 

a type of model called a generalized linear model. Generalized linear models are suitable for ‘discrete’ 

variables, which are not normally distributed. Unlike continuous variables like weights and lengths, 

discrete variables can only be certain values. An example is a count – you can only count 2 or 3 or 4 

ducks, not 2.5 or 3.5 ducks.

The sampling distribution of counts is the Poisson distribution, with which we are about to become 

familiar. 
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Clearly these data are not normally distributed. So then, what sample distribution do these data have?

Install the package dplyr. Instead of using excel to create a pivot table, we’re going to learn how to create 

one in R.

library(dplyr)

pivot<-group _ by(h, Region, Season, AgeGroup)

pivot<-summarize(pivot,average=mean(Totalbirds),variance=var(Totalbirds))

#This is to export the pivot table from R

library(xtable)

pivot<-data.frame(pivot)

pivot<-xtable(pivot)

print(pivot, type="html", file="pivot.html")

Here are the first few lines of the output ... you can see that, for the most part, the average and variance 

within a region x season x agegroup stratum are roughly equal.

Season Age Group Average VarianceRegion

Kootenays

Kootenays

Kootenays

Kootenays

Kootenays

Kootenays

Kootenays

Kootenays

Kootenays

Kootenays

Fall

Fall

Fall

Fall

Fall

Spring

Spring

Spring

Spring

Spring

18 - 30

31 - 40

41 - 50

51 - 60

61 - 75

18 - 30

31 - 40

41 - 50

51 - 60

61 - 75

2.4

2.67

2.5

2.33

0.25

3.5

0.5

1.5

1.5

0.71

3.3

0.33

0.5

4.33

0.25

12.5

0.5

4.5

0.33

0.9

Table 12. A few lines of the output from R showing the region, season, age group, average and variance 

from the harvest.csv document.
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Harvest data are comprised of counts, and the appropriate sample distribution for counts is the Poisson 

distribution. An important characteristic of the Poisson distribution is that the mean is equal to the 

variance. Thus, we have good reason to suspect that a model including region, season, and age fit to 

these data to predict harvest levels will be a Poisson model.

Note that if you calculate the mean and variance of the whole data set, the variance is much bigger than 

the mean. That’s because the variance in the whole data set is comprised of the variability in harvest 

levels across seasons and regions (which we estimated from our data summaries). As an initial eye-ball 

to determine whether our data are Poisson distributed, we’re concerned with the sample distribution of 

our data at the smallest level of resolution, which in our case, is a Region x Season x Age combination.

It is very common for the variance of ecological count data to be larger than the mean. One of the most 

common reasons for the added variability is a ‘missing’ variable that wasn’t measured. For example, 

if we didn’t have data on when and where hunters harvested birds, then we would have highly over-

dispersed data. Because we have data on these factors, then the variability in harvest levels across 

regions and seasons is accounted for, and thus the data are Poisson distributed within each strata. If 

the variance were still higher for each region x season combination, then it could be possible that we’d 

still be missing a variable. For example, we have no data on hunter preferences. In some regions in the 

fall preferences by just a few hunters for hunting large numbers of migrating geese could cause the 

variability in the harvest levels to be higher than the mean.

A sample distribution for which the variance is larger than the mean is referred to as the negative 

binomial distribution. It is described by three parameters, the mean, the variance, and the dispersion 

parameter, which is the amount by which the variance is greater than the mean.

We’re going to see how important it is to correct for over-dispersion in count data by using a model 

based on the negative binomial versus the Poisson sample distribution.

Be aware that data can also be under-dispersed, for which the variance is less than the mean. This can 

arise from highly aggregated data, that is, data that are clustered around a few values. Under-dispersed 

data are probably more common in ecological data than generalist statisticians think. Most statistical 

tools have been developed for over-dispersed data; there has been much less focus on under-dispersed 
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data, and thus it’s more difficult to find R statistical programs to help deal with it. That is starting to 

change, and so if you’re so inclined to explore on your own, the COM Poisson model has recently been 

promoted as one of the best ways to deal with under-dispersed count data.

Hopefully you now have a fairly good sense of general linear regression, because you’ll need to 

understand the concepts we learned in that section to be able to understand this one. We learned that, 

for each predictor value on the x axis, there is a normal distribution of possible Y values. That normal 

distribution of possible Y values is centred on the regression line – that is, the mean of the normal 

distribution is the predicted value on the regression line. The actual observed y value is assumed to 

be one random draw from this normal distribution (one normal curve for each y observation). The 

regression line was fit such that the difference between the mean of the distribution and the observed 

value was minimized across all y observations. Because some of these differences, referred to as

residuals are negative and some are positive, it is their squared value that is minimized. This is called 

least squares fitting. Finding this minimum distance for general linear regression is fairly simple math.

There is another way that regression parameters are estimated from data; the math is complex but the 

process can be relatively easily visualized. Minimizing the distance between the mean of a population, 

which is what the predicted value estimates, and the actual observation would increase the probability of 

pulling that observation as a random sample from the population. For example, a duck weighing close to 

the average weight will be more likely to be randomly selected from a normal distribution population of 

ducks simply because there are more ducks of that weight than ducks either lighter or heavier.

For every possible population mean, there is an associated likelihood of the observed value. The 

combined likelihoods of the observed value for many possible population means is referred to as the 

likelihood function, and this is combined across all the y values. Maximum likelihood estimation is 

kind of like a trial and error machine that tries out many different possible values of the population 

mean of the sample distribution at each y, and finds the mean that maximizes the probability of 

randomly pulling that y value. The best fit regression line is the one for which the observed data are 

the most likely to have been randomly selected given each population mean. The best estimate of each 

MaxIMuM lIkelIHood estIMatIon
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population mean are the predicted values at each x.

Maximum likelihood estimation begins with the set of observed data, then means of the population 

distribution at each y value are proposed. It’s then determined the probability of pulling each y value 

given that particular population mean, and this probability is combined across all y values into an 

overall likelihood. Then a different population mean is proposed for each y value, the probability again 

calculated for each observation, summed across all y values, and the overall likelihood calculated across 

all y values. That’s the second trial. This process is repeated over and over across all possible values for 

the population mean at each y value so that we end up with many individual likelihoods that together 

form a likelihood function. The likelihood function has a maximum value, and the population means 

that result in that maximum likelihood are the predicted values, which line up to form a regression 

line, from which the y intercept and slope are derived. The best fit line then, is the line that makes the 

observed data the most likely.

In addition to the way they are fit to data, GLMs differ from general linear models in two important 

ways.

First, the sampling distribution around the y values can be normal, Poisson, negative binomial, or 

one of a few other sampling distributions. These sampling distributions are usually not symmetrical, 

and for that reason, least squares regression will not work to find the predicted values and thus the best 

fit line.

Let’s try to confuse you a little. The normal distribution is symmetrical, and thus least squares 

regression will work to find a best fit line. Maximum likelihood estimation will also work to find 

the best fit line given normally distributed data. In fact, it will result in exactly the same best fit line 

minimizing the distance between observed and predicted values. Minimizing the distance from the 

observed to predicted values represents maximizing the probability of randomly drawing the observed 

value from a population with mean = predicted value. Because the normal distribution is symmetrical, 

then the probability will be the same if the predicted value is less than or greater than the observed. For 

non-symmetrical distributions, this no longer works – an observed value 2 units higher than a predicted 

value will have a probability different than an observed value 2 units lower than the predicted value. 

Maximum likelihood estimation instead finds the likelihood of different predicted values, given the 
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observed value, and thus the fitting process is no longer dependent on the symmetry of the distribution.

So that means that general linear models (normally distributed data) can be fit with least squares or 

maximum likelihood estimation using a generalized linear model. Non-normally distributed data (i.e. 

count) can only be fit with maximum likelihood estimation using a generalized linear model.

The second way GLMs differ from general linear models is that the model fit is on the logarithm 

scale. Huh, says you.

That part is a bit tricky to understand at first. So, let’s start with understanding what we mean by the 

logarithm (or log for short) scale.

The logarithm (with base 10) of a number is the power to which 10 must be raised to equal that number. 

For example, the log of 100 is equal to 2 because 10 must be raised to the power of 2 to get 100.

log1000=3=101 x101 x101 

log(430) = 2.63 = 10 x 10 x 100.63

The natural logarithm of a number is the power to which e must be raised to equal that number. e is one 

of those slightly strange numbers like pi (3.14....). It has the value 2.71828.... etc etc and to distinguish it 

from log with base 10, ln is used instead of log.

ln 100 = 4.61 = 2.718 x 2.718 x 2.718 x 2.718 x 2.7180.61 

ln 2.718 = 1

ln 7.3875 = 2

So the logarithm is really just a way of expressing numbers on a different scale. We can transform back 

to the original scale simply by exponentiating. When we exponentiate we call it back-transformation.

e.g. log (base 10) 100 = 2 then back-transformed is 102 = 100. ln(6) = 1.79 then back-transformed is e1.79 

= 6
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The log of the mean of each distribution is equal to the predicted value. So you need to imagine a 

background log scale where predicted values are found. The model is fit on the log scale. The log 

scale is always positive. We need the log scale to find predicted values for counts to ensure that the 

sampling distributions never include negative numbers, i.e. you can’t count negative ducks! This is 

not the same as taking your observations, log transforming them, and then fitting a general linear 

model.

Fitting a Poisson GLM on the log scale to count data means that you need to back-transform to the 

count scale if you want to interpret your model in terms of counts. Otherwise, you need to interpret 

your model in terms of log counts.

Now we’re ready to fit our first Poisson GLM.

Load the harvest data into R and name it to object

h (h<-read.csv(“harvest.csv”)) 

We’re going to test the effect of hunter age on the total take of birds per hunter.

When you analyze data using GLMs with Poisson error, imagine a Poisson distribution (green 

distribution in the figure below) around each observed y value (the red dot in the figure below). 

The blue line in the figure is the regression line fit using maximum likelihood estimation for the 

relationship of counts of bird kills to hunter age.



generalized linear models

152

It’s good practice to plot data prior to running analyses to get a visual sense of the relationship you’re 

attempting to estimate

plot(h$Totalbirds~h$Age)

Our model is:

Totalbirds = y intercept + slope * hunter age + random error

This is the corresponding R code for that model given a Poisson error distribution. 

glm<-glm(Totalbirds~Age, data = h, family=(poisson(link=log)))

Note the similarity of the summary output to that of the general linear regression we tested in the 

previous section. That makes sense because we’ve just tested the same statistical hypothesis. We just 

What does ‘Poisson error distribution’ mean? It means that the sample distribution around each 

Totalbird count per hunter is a Poisson distribution, and the predicted value is the best estimate of 

the mean of the population of bird kills of all hunters of that age. The actual total number of birds 

killed by a hunter of a particular age is a random draw from this population distribution of the kills 

of hunters of that age. The predicted value, the estimate of the mean of the population, is the mean 

that makes the observed kill count the most likely to have been observed.

And that’s it. The function is glm (i.e. generalized linear model), the relationship we want to test is 
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Totalbirds~Age, the data set is specified by the data argument, the type of sampling distribution is given 

in the family argument and that we need a log transformation is given by the link argument. Since the 

default for the poisson distribution is the log this argument isn’t actually necessary and can be left out.

glm<-glm(Totalbirds~Age, data = h, family=poisson)

To see the output, we use the summary function

summary(glm)

Call:

glm(formula = Totalbirds ~ Age, family = (poisson(link = log)), data = h)

Deviance Residuals: 

  Min         1Q     Median        3Q        Max  

-3.3018   -1.7485    -0.5571     0.5668     5.7861  

Coefficients:

              Estimate   Std. Error  z value   Pr(>|z|)    

(Intercept)   1.884831     0.091856    20.520    < 2e-16 ***

Age            -0.008594    0.001897   -4.529   5.91e-06 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 965.81  on 249  degrees of freedom

Residual deviance: 945.35  on 248  degrees of freedom

AIC: 1648

Number of Fisher Scoring iterations: 5

degrees of freedom

Residual deviance: 945.35 on 248

degrees of freedom

AIC: 1648

Number of Fisher Scoring iterations:

5
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Model InterpretatIon

tested the null hypothesis that the slope of the relationship is 0, versus the alternative hypothesis that the 

slope is not equal to 0. 

Notice, however,  that instead of a t value the output from glm gives a z value. Because the model was 

fit to the data using maximum likelihood estimation, the standard errors for the slope coefficients are 

approximations. Thus, the null hypothesis test that the slope is equal to 0 is based on a slightly different 

test than the t test, which is referred to as the Wald test. The Wald test statistic is the same as the t test, 

slope coefficient/standard error of the slope coefficient, except that the standard error of the slope is an 

approximation. The Wald test is compared to a standard normal curve (the z curve, hence the z value is 

given).

The best fit line is estimated to have a y intercept of 1.89 and slope of -0.009. Before interpreting 

estimates of regression coefficients from GLMs, we have to remember that this estimation is on the log 

scale. It’s okay to interpret on the log scale, but you need to carefully state that the relationships you are 

reporting are on that scale. In this case, you would report that the predicted log-number of birds killed 

decreased by 0.009 with each year of hunter age.

In order to report on numbers of birds, we have to back-transform to our original counting scale, 1 duck 

2 duck etc

So, the best estimate of the y intercept is e1.89 and the best estimate of the slope is e-0.009, which is 6.61 

and 0.99 respectively. Recall that often y intercepts are meaningless when fit to ecological data, as they 

are from these data. The y intercept is the estimated birds killed by hunters of age 0, which is certainly 

meaningless.

The slope of 0.99 means that for every increase in age of hunters by one year, their total take per year 

of birds decreases by 1% ( (1-0.99)*100 ). It’s very important to interpret the back-transformed slope 

coefficient from a GLM model as a rate ratio – the ratio of two rates.
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The P value for the slope is less than 0.001, which is highly statistically significant. What does this 

mean? Remember that the null hypothesis is that the slope is 0. Given a sampling distribution with 

mean = 0, the probability of sampling a slope of exp0 = 1 or of -1, or more extreme in either direction, 

is very very small – in fact, it is 0.00000591. Thus, given a mean slope of 0, we would get the slope that 

we got essentially never. Thus, it seems likely that the null hypothesis is not true. We do reject the null 

hypothesis. We conclude that there is a relationship between hunter age and the total number of birds 

they harvested.

Note in the output that statement: “Dispersion parameter for poisson family taken to be 1”. That’s R 

telling you that this model was fit to the data under the assumption that the data are Poisson distributed, 

that is, that there is no over-dispersion. You can calculate the amount of over-dispersion in a model quite 

simply, since it is just the amount of variability in the sample data above the amount that is expected 

from a Poisson model.

#Dispersion statistic

dispD<-glm$deviance/glm$df.residual 

dispD

[1] 3.811911

Ooops! That’s quite a lot of over-dispersion. For a Poisson model, the dispersion statistic should be 1 or 

fairly close to 1 (less than about 1.5).
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Before we move on with how to deal with over-dispersed data, we have a few topics to cover and another 

ooops to deal with first. We found a statistically significant effect of decreasing harvests with hunter age. 

But what if that effect is due to decreased effort on the part of older hunters? Maybe older hunters are 

not able to go hunting for as long as younger hunters, and therefore they harvest less?

Right, we forgot. We have to standardize the total birds harvested by dividing each count of total 

birds kills by effort, the number of days spent hunting. Recall that a Poisson model is used for discrete 

data – non-integers are not allowed. Therefore, we can’t use HarvestRate as a response variable in the 

model, because those numbers are proportions i.e. 0.33 birds per day, etc.

Of course the smart R programmers thought of this. Hence the offset argument in the glm function. 

The offset allows conversion from counts to rates, while still fitting the model to the counts as integers.

plot(h$HarvestRate~h$Age)

glm<-glm(Totalbirds~Age + offset(log(Effort)), data = h, family = poisson)

Before we describe a quadratic effect, we need to first understand that the linear part of a general 

or generalized linear model is not actually referring to a straight linear line. Instead it’s referring 

to the model components being linear combinations - that is, the sum of the parts rather than the 

multiplication of parts. Linear means sum of separate parts in stats street talk. For example, the y 

intercept is added to the slope*x variable to form the linear regression equation. y = intercept + slope*x 

variable

So it’s quite possible to have a generalized linear model that is actually a curved line. Sometimes a 

curved line fits data better than a straight line, and it’s up to you as a reliable analyst to

off-settIng

QuadratIc effects
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test for that. A curved line is referred to as a quadratic model or quadratic effect. In our case, a 

quadratic model that was humped shaped would mean that harvest levels increase with age to a certain 

point, and then begin to decline. It would be prudent to test for a quadratic effect in our data, because 

it’s easy to imagine that harvest levels increase to an intermediate age with hunting experience, but then 

decline with decreasing physical abilities by older hunters (with vision problems, etc).

If you suspect from a data plot that the response variable has a quadratic relationship with a predictor, 

you can test for this simply by adding the square of the predictor to the model. In our case, Age x Age, 

or Age2. This is treated as another variable with its own slope coefficient. The way to view the quadratic 

coefficient is simply as a factor that works to take the straight line relationship of the response to the 

predictor and bend it to whichever curve is the best fit. In the glm code, a capital I needs to be added 

outside brackets around the quadratic part. Note we have added the offset to the model to ensure we’re 

modelling the rate of harvesting (totalbirds/effort), not the total number of birds harvested.

#Straight line linear model

glm<-glm(Totalbirds~Age + offset(log(Effort)), data = h, family = poisson) 

summary(glm)

#let’s see how the predicted regression line looks 

Age<-seq(18,75,1)

Effort<-rep(1,58)

Age<-data.frame(Age,Effort)

predicted<-predict(glm, newdata = Age, type = “response”)

predicted<-data.frame(predicted=predicted, Age)

plot(h$HarvestRate~h$Age)

lines(predicted~Age, data=predicted, col=1, pch=16)
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#Curved line linear (‘curvilinear’) model

glmquadratic<-glm(Totalbirds~Age + I(Age^2) + offset(log(Effort)), data = h, 

family = poisson)

summary(glmquadratic)

predicted<-predict(glmquadratic, newdata = Age, type = “response”)

predicted<-data.frame(predicted=predicted, Age)

plot(h$HarvestRate~h$Age)

lines(predicted~Age, data=predicted, col=1, pch=16)

Now we have a little bit of a problem – how do we know which model is the better fitting model?

AIC to the rescue! One extremely important piece of information that we’ve been ignoring so far is the 

AIC value. It’s given on the second last line of the output from the summary of the glm function. The 
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AIC of the linear model is 1371 and that of the quadratic model is 1336. We’ll find out what that means 

and how to use the AIC value in the next section.

AIC stands for Akaike’s Information Criterion, which is named after the Japanese statistician who 

invented it. The rule is: the lower the AIC value, the better fit the model. Thus, the quadratic model 

fits the harvest data better than the straight line model, which means that we have good evidence that, 

indeed, harvesting levels increase to an intermediate age, and then decline with age thereafter rather 

than increasing across all ages.

But what exactly does the AIC measure? Recall that maximum likelihood estimation finds the 

regression parameters that maximize the likelihood of the observed data. It’s the largest value of the 

likelihood function, created by iteratively (over and over again) proposing predicted values for the y 

intercept and slope, then combining the individual probabilities of the observed values for each set of 

proposed values. The likelihood value is a measure of how well the model fits the data, the larger the 

likelihood the better the fit. The natural logarithm of this maximum likelihood value is referred to as 

the .... log likelihood (it should be ln likelihood but statisticians like to be difficult). Log likelihoods are 

usually negative numbers, because the likelihoods are usually less than 1 (the ln of any proportion is a 

negative number).

The AIC value is twice the difference between the number of parameters estimated by the model, 

symbolized by k, and the log likelihood. Because larger negative log likelihood convey poorer fit, then 

larger AIC values convey poorer fit of the model to the data.

AIC = 2(k – log likelihood)

It’s important to remember that the number of population parameters we’re measuring in our model is 

3 – one y intercept, one slope, and one quadratic coefficient.

Thus for our totalbirds model

aIc
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AIC = 2(3 – log likelihood)

R has a function to derive the log likelihood

logLik(glmquadratic)

'log Lik.' -665.15 (df=3)

The df symbolizes degrees of freedom and in this case is referring to the number of parameters being 

estimated by the model, the y intercept, the slope, and quadratic coefficient.

So AIC = 2(3-(-665.15)) = 1336, which is exactly the same as the AIC value given in the summary output. 

That still doesn’t really tell us what the AIC does.

First, let’s think deep thoughts about what a statistical model represents. It represents an idea about how 

the world works. Given our harvest data, we’re testing whether harvest levels are related to hunter age. 

Imagine we had data on every single factor that affected harvest levels, in addition to region and time of 

year. Examples could include hunter preferences, environmental conditions that affect bird abundance, 

whether hunter A’s great auntie died the day before he went hunting which affected his ability to hunt 

well. Imagine a model then with as many predictors for harvest levels as we have hunters in our data 

base. We would end up with a model that would connect every single observation.

To get a regression line through all the data points, we would have to estimate a lot of complicated 

parameters from the data. The more parameters we estimate from data, the wider our confidence 

intervals around each parameter. Which means we would end up with a perfectly fit model and no 

confidence in our ability to say anything about any other hunters out there in the world. A model like 

this would tell the truth only about our 185 hunters. This is called over-fitting the data. The ‘best’ model 

then does the job – that is, offers us the ability to describe truth beyond our sample with a comfortable 

degree of certainty - with the fewest predictor variables and thus the fewest parameters. This is referred 

to as the principle of parsimony – do the best with the fewest. 

So then, Akaike came up with a pretty simple way to penalize models with a lot of predictor variables, 

i.e. parameters. AIC = 2(k – log likelihood). You add the number of parameters to the log likelihood. 

Models with the same log likelihood but fewer parameters will have lower AIC values. The lower the 
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In the section on general linear models with normal error distributions, we learned that the R squared is 

a measure of the amount of variability in the data that is explained by the model. The R squared is part 

of the summary output from the general linear model function of R (lm). The glm function does not 

output the R squared, and that’s because there isn’t an R squared for generalized linear models. 

But there are what are referred to as pseudo R squared estimators for GLMs. There are several 

estimators, and they result in slightly different values, but they all are meant to represent the same thing 

– the proportion of the variability in the data explained by the model. 

But first we need to understand the term deviance as it is applied to GLMs. In short, the deviance is the 

GLM analogue to the sum of the squared residuals from a general linear model. Recall the residuals are 

simply the difference between observations and predicted values, these are squared, and then summed 

to arise at a measure of the unexplained variance.

A saturated model is a model with one parameter per observation, that is, a model that explains all the 

variability in the data. The deviance is twice the difference in log likelihood of a specific model and 

that of the saturated model. Thus, the deviance statistic is a measure of the likelihood that the data 

were produced by the specific model compared to the likelihood of the data being produced by a perfect 

model. The smaller the difference, the smaller the deviance and thus the better the model fits the data.

The deviance statistic = -2 x (log likelihood of a model - log likelihood of the saturated model)

  

The glm output calculates the deviance for the null model – that is, the model with no predictors – and 

for the fitted model. The deviance for the fitted model is referred to as the residual deviance. 

AIC value, the higher the likelihood that the underlying population distributions estimated by the 

model produced the data you observed. A general rule of thumb is that the best (most parsimonious) 

model is at least 2 AIC units lower than any other model.

MeasurIng Model fIt
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By the way, you can fit the null model simply by using ~ 1 instead of any predictors in your model.

glmnull<-glm(Totalbirds~1 + offset(log(Effort)), data = h, family = poisson)

summary(glmnull)

Null deviance: 681.28  on 249  degrees of freedom

Residual deviance: 681.28  on 249  degrees of freedom

AIC: 1381.9

Note that the residual deviance of the null model is the same as the null deviance of the quadratic 

model. 

We can use the deviance of the null compared to the specified model to approximate the amount of 

variability in the data that is explained by the model.

Here is R code to calculate the Nagelkerke’s pseudo R squared for a glm model. 

Rcsnagel<-function(glm) {

n<-length(glm$fitted.values)

Rcs<-1 - exp( (glm$deviance - glm$null.deviance)/n)

Rnagel<-Rcs/1 - exp(-glm$null.deviance/n))

out<-list(‘Rcs’=Rcs, 'Rnagel'=Rnagel)

class(out)<-c("list", "table")

return(out)

}

Rcsnagel(glmquadratic)
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dealIng WItH over-dIspersIon

Back to our data set (h<-read.csv("harvest.csv"). Recall that we found considerable over-

dispersion in our model of the total take of birds per hunter in relation to hunter age. Now what? 

We have a couple of choices but typically, we can choose one of two roads. We can fit more predictors to 

the data to ‘take care’ of all that additional variability, or, we can fit a negative binomial model, which 

has a parameter in its distribution that accounts for added variability. 

Let’s start with fitting additional predictors. When you add anymore than one predictor to a model, you 

are entering the sometimes scary but also interesting realm of multiple regression. Suddenly things are 

more complicated. Instead of one x axis, you now have two, or three, or four. 

With a little mental effort, we can picture a multiple regression with two predictors. Let’s imagine 

that harvest levels increase with hunter age as before, but decreases with hunter height (for some 

strange reason that probably isn’t realistic but is good for illustrating the point). Tall hunters harvested 

less birds. So, now we have harvest levels increasing with hunter age on one horizontal axis, while 

simultaneously decreasing on another horizontal axis with hunter height. 

A multiple linear regression estimates the relationship between the response and predictors 

independently. The slope coefficient for each predictor is the estimate of the effect of the predictor 

on the response, with values for the other predictors held constant. Thus, for 23 year old hunters, 

the tallest 23 year olds would have the lowest harvests and the shortest 23 year olds would have the 

highest harvests, and the slope of the line for all 23 years olds of varying heights would equal the slope 

coefficient for height. Same for all other ages. Conversely, older 5 foot tall hunters would have higher 

harvests than young 5 foot tall hunters, and the slope of the predicted line would equal the slope 

coefficient for age. The effects of the predictors are added up to give one overall predicted value at each 

possible combination of predictors.

Confused? Let’s add to that. Once you add a predictor to a model, you now have two models. The 

original model with only one predictor (Model A), and a second model which contains an added 
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InteractIons

Another potential layer of complication arises if there is an interaction effect between predictors. 

Interactions are sometimes hard to visualize, because our brains don’t work that way. But like quadratic 

effects, it is upon you good analyst to test for interactions if you suspect they may be present in your 

data. And just like a quadratic effect, you would test for an interaction by comparing the AIC value of a 

model without an interaction term to the AIC of a model with an interaction term. 

The way to visualize an interaction is actually quite simple. Let’s imagine a regression model with two 

predictors:

harvest level = y intercept + hunter age + hunter height + error

As we have discussed, the effect of hunter age is independent of hunter height, and vice versa. The slope 

of the line for the effect of hunter height on harvest levels is the same across all hunter ages. Likewise, 

the slope of the line for the effect of hunter age on harvest levels is the same across all hunter heights. 

Now here is the same model with an interaction between hunter age and height

harvest level = y intercept + hunter age + hunter height + hunter age * hunter height + error

The interaction term has its own slope coefficient, which like the quadratic term, works to change 

the relation of hunter age to harvest levels as the values of hunter height change. Thus, the slope 

predictor (Model B). Your task as an analyst is to find the most parsimonious model. How do you choose 

which model is best? The selection process to choose the most parsimonious model is referred to as 

model selection, which we’ll review in the next section. The punch line is that we use AIC to compare 

models, and we choose the model with the lowest AIC. But we must only compare nested models 

using AIC. That is, we compare models fit to the same data, the only difference being the numbers of 

predictors in each model. For example, Model A is nested within Model B. If we were to add another 

predictor to Model B, and call that Model C, then Model B is nested in Model C.  
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coefficients, that is, the effect of both hunter age and hunter height on harvest levels are no longer 

independent of one another. And thus their individual slope coefficients must be carefully interpreted. 

For example, in the interaction model above, the slope coefficient for hunter age is the relationship 

between harvest level and hunter age only at hunter height 0. The relationships between harvest level 

and hunter age are different at all other hunter ages. 

Knowing the relationship between harvest level and hunter age for 0 year old hunters is of course very 

unhelpful. There is a simple trick to make models with interactions more interpretable - predictors first 

need to be centred before the model is applied. Centring is done simply by subtracting the mean from 

each predictor value.

For example

h$CentredAge<-h$Age-mean(h$Age)

adds a column to the data set that is just a re-scaling of the ages, with mean now equal to 0.

Now with CentredAge added to the interaction model, the slope coefficient for hunter age is the 

relationship between harvest level and hunter age for the average age of hunters. That’s more helpful.

If evidence (i.e. lower AIC value) suggests that our model needs to include an interaction, then the best 

way to deal with this is simply to calculate the slopes of one predictor at different values of the other 

predictor. For example, we would determine the estimated slope of harvest level on hunter age, for short, 

medium, and tall hunters. In the ‘putting it all together’ example, we will investigate an interaction and 

how to interpret it in more detail.
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categorIcal predIctors

Last but not least, categorical predictors. Until now, all of our examples have been of continuous 

predictors, like age, height, length, and weight. But two of our three predictors in our harvest data 

are categorical. There are four categories of Season, and five categories of Region. As you will see, 

slope coefficients between response and categorical predictors can also be estimated using general or 

generalized linear modelling. 

To fit a model with a categorical predictor, dummy variables are created. This is done by glm (or any 

model fitting function) automatically for you, but you can do the same thing yourself by creating one 

‘dummy’ variable per category of a categorical predictor, with the exception of a reference category. For 

example, four dummy variables for region are created with one category being set as the reference. If we 

set North as the reference, then in the dummy variable for Kootenays, 0’s are input for Lower Mainland, 

Thompson and Okanagan, and Vancouver Island and Powell River, and 1’s are input for hunters from 

the Kootenays. Dummy variables have been created in the harvest.csv file for you so you can visualize 

how this works.

R glm will automatically choose the reference category by alphabetical order, so you have to specify in 

the relevel function which category you want as the reference. This is up to you and generally you would 

just choose whatever makes the most sense. If from data summaries you knew that harvest levels were 

on average lowest in the north, you might decide to set the north as the reference. Or perhaps it really 

doesn’t matter and alphabetical choice is as good as any. 

Note how these models result in exactly the same output.

#set north to be the reference level

h$Region<-relevel(h$Region, ref=”North”)

glmcategorical<-glm(Totalbirds~Region, family=poisson, data=h)

summary(glmcategorical)

glmcategorical2<-glm(Totalbirds~dummykootenays+

dummylowermainland+dummythompson+dummyvancouverisland, family=poisson, 
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data=h)

summary(glmcategorical2)

Call:

glm(formula = Totalbirds ~ Region, family = poisson, data = h)

Coefficients:

                                        Estimate Std. Error z value Pr(>|z|)    

(Intercept)                              0.79159    0.08839   8.956   <2e-16 ***

RegionKootenays                         -0.11864    0.13423  -0.884    0.377    

RegionLower Mainland                     0.96774    0.10712   9.034   <2e-16 

***

RegionThompson and Okanagan              1.01607    0.10472   9.702   <2e-16 ***

RegionVancouver Island and Powell River  1.09970    0.10640  10.335   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 965.81  on 249  degrees of freedom

Residual deviance: 711.08  on 245  degrees of freedom

AIC: 1419.8

     

The p values are indicating that the slope coefficient for the Kootenays is not different from that of 

the North. The slope coefficient for the Lower Mainland, Thompson, and Vancouver Island regions 

are statistically different from that of the north. If this were the end of our analysis, we would report 

the magnitude of the slopes and use the standard errors of the slopes to calculate confidence intervals 

around them.

How do we interpret these coefficients? Note that there is no coefficient for the North region, and that’s 

because we set it to be the reference against which all the other regions are compared. As the reference, 

the slope coefficient for the north is the y intercept. The slope coefficients for the other regions is the 

best estimate of the difference in harvest levels in that region compared to the north region, with all 

other variables in the model held constant. 
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The slope of one region is an estimate of the average amount by which harvest levels differ between 

that region and the north region (with all other variables held constant). For example, an estimate of 

the harvest levels in the lower mainland is 0.7916 + 0.9677 = 1.759. Remember this all on the natural 

logarithm scale to get the estimate on the counting scale, we back transform. e1.759 = 5.808. 

This is simply the sample average of harvest levels for the lowermainland!

lm<-subset(h,Region==”Lower Mainland”)

mean(lm$Totalbirds)

[1] 5.808511

Fitting a model with only one categorical predictor is not interesting. It only becomes interesting when 

we add another predictor. If we added a continuous predictor like hunter age, then the slope coefficient 

for a particular region would be an estimate of the difference in harvest rate between a particular region 

and the north region, with hunter age held constant. 

glm<-glm(Totalbirds ~ Region + Age+I(Age^2) + offset(log(effort)),family=poisson, 

data=h)

summary(glm)
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Now that we have all of that background knowledge simmering away in our heads, we’re ready to take on 

GLM modelling. 

So to review, we have one response variable, the total count of birds harvested in one year by a sample 

size of 250 hunters. These hunters come from five regions, and they hunted across three seasons (we 

exclude winter data because there isn’t enough of it). We also know their age. So we have three predictor 

variables. We need to standardize harvesting by effort, which we can do simply by adding ‘effort’ to the 

offset argument. 

We think the data might be Poisson distributed, but we’re not totally sure. We know that if we fit the 

fullest possible model we have (that is, with all three predictors), and the variance in the data is greater 

than that expected by the Poisson model, then we have an over-dispersed Poisson model. That could 

mean we’re missing a variable to explain that extra variation. But since all we have are three predictors, 

then we’ll have to fit a negative binomial glm instead. But we’re not there yet, since we have yet to fit a 

full model. 

We’re also aware that we have to keep a look out for quadratic effects in our continuous variable age, and 

that there could be an interaction effect between any of our predictors. 

We know we will use AIC to compare nested models to the full model to select the most parsimonious 

model. 

So let’s begin!

We’re working with ‘harvest.csv’.

Let’s start with the fullest possible model, excluding quadratic and interaction effects …

#make sure you set the references to north and summer

h$Region<-relevel(h$Region, ref="North")

Modelling Harvest Data Using Poisson and Negative Binomial GLM
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h$Season<-relevel(h$Season, ref="Summer")

summary(glm(Totalbirds~Age + Region + Season + offset(log(Effort)), data = h, 

family = poisson))

The AIC is 1045. 

We’ve already seen good evidence that the effect of age on harvest levels is quadratic. In reality, you 

might have suspected something from the scatter plots in excel during the data summary process. 

Intermediate aged hunters were often successful and there was a decrease in harvest levels by older 

hunters, suggesting a humped relationship.

glm<-glm(Totalbirds~Age +I(Age^2)+ Region + Season + offset(log(Effort)), data = 

h, family = poisson)

summary(glm)

The AIC is 1034.

Thus, the data are much more likely to have been sampled from a population in which the relationship 

of harvest levels to hunter age is quadratic rather than a straight line. 

The P values for all categories of Region except Kootenays are highly statistically significant, meaning 

that we reject the null hypothesis that the slope coefficients in each region are the same as in the north. 

We do not reject this null hypothesis for the Kootenays, and conclude that the slope coefficient for the 

Kootenays is the same as in the north. Given the very high probability that there is a region effect, we 

would definitely keep Region in the model. But let’s just see what happens to the AIC value if we drop it. 

summary(glm(Totalbirds~Age +I(Age^2)+ Season + offset(log(Effort)), data = h, 

family = poisson)) 

The AIC is 1246.

Since this AIC is much higher, it indicates that this model without the Region effect represents a model 

of the world that is much less likely to have produced the observed data than the model with the Region 

effect.
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Same goes for Season and Age. Test out how dropping Season and Age result in much higher AIC values 

than the full model. 

Okay, so model selection by AIC has resulted in all three of our predictors staying in the model. All of 

them contribute meaningfully to explaining variation in harvest levels. The effect of Age is quadratic.

glm<-glm(Totalbirds~Age +I(Age^2)+ Season + Region + offset(log(Effort)), data = 

h, family = poisson)

Let’s pause here and see if we’ve got the right model. Are the data Poisson distributed? 

dispD<-glm$deviance/glm$df.residual

dispD

[1] 1.3

Well look at that. Recall that the dispersion statistic was 3.8 in the model that included only a straight 

line effect of age (it is 2.6 for a quadratic effect). Region and Season thus accounted for the added 

variation, above that expected by a Poisson model. Thus, the Poisson error distribution is the correct 

distribution to use for these data. A rule of thumb for when to correct for over-dispersion by adding 

predictors or using the negative binomial is an over-dispersion statistic greater than about 1.5.

Now that we’ve confirmed we’re working with the correct error distribution, we need to determine 

whether there are interactions between the predictors. 

Before testing for interaction effects, it is prudent to first think about what an interaction would actually 

mean. It doesn’t make any sense to test for an interaction that is highly unlikely to occur. In our case, 

interactions between each set of two predictors could conceivably occur, so we need to test for them. 

Note that three way interactions are possible, but are difficult to interpret so we’ll leave that discussion 

out.

An interaction between hunter age and region would mean that the effect of hunter age on harvest 

levels differs between regions. This could arise, for example from cultural differences between regions. 
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Perhaps in some regions, younger hunters are the successful hunters, while in another region it is the 

older hunters who harvest more. 

An interaction between hunter age and season would mean that the effect of hunter age on harvest levels 

differs across seasons. This could arise, for example if hunter experience is correlated with hunter age, 

and birds that require considerable experience to kill are harvested more in one season than another. 

In that season, the older hunters would have the highest harvest levels. In the other seasons, there could 

be no relationship between hunter age and harvest levels if birds are simply killed in proportion to their 

encounter rate. 

An interaction between region and season would mean that the difference between regions in 

comparison to the reference region would not be the same across all seasons. Again, that could be due 

to cultural reasons, with hunter preferences for a particular season in one region causing the interaction 

effect. 

So let’s test for these interactions in turn. Recall that the AIC of our most parsimonious model so far is 

1034.

summary(glm(Totalbirds~Age +I(Age^2)+ Region + Season + Region*Season + 

offset(log(Effort)), data = h, family = poisson))

summary(glm(Totalbirds~Age +I(Age^2)+ Region + Season + Region*Age + 

offset(log(Effort)), data = h, family = poisson))

summary(glm(Totalbirds~Age +I(Age^2)+ Region + Season + Season*Age + 

offset(log(Effort)), data = h, family = poisson))

Of these three models, the model with the lowest AIC units by far stands out as the most parsimonious 

model: 

glm<-glm(Totalbirds~Age +I(Age^2)+ Region + Season + Season*Age + 

offset(log(Effort)), data = h, family = poisson)
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The predict function can be used to generate predicted values from a model. If you input ‘response’ into 

the type argument, the predictions are given on the count scale; ‘link’ gives predictions on the log scale. 

You can either supply a new predictor dataset, or by default, simply use your observed data set, as we do 

below.

predicted<-as.numeric(predict(glm, type="response"))

h$predicted<-predicted

spring<-subset(h,Season=="Spring")

plot(spring$predicted~spring$Age)

windows()

fall<-subset(h,Season=="Fall")

plot(fall$predicted~fall$Age)

windows()

summer<-subset(h, Season=="Summer")

plot(summer$predicted~summer$Age)

vIsualIzIng an InteractIon effect
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Now we can see more clearly visualize an interaction at work – put simply, the relationship between 

harvest levels and age is not the same across the three seasons. Summer stands out as the odd ball. 

We can confirm this by setting the reference level to be either spring or fall, and then running the 

model again to see if the P value suggests whether the slopes between spring and fall are different. 

You’ll find that the P value is 0.95, and the slope coefficient is very small, indicating no difference in the 

relationship between harvest levels and age between spring and fall, which is what we can see above.

Rather than interpret this model any further, we’re now going to switch over to what might be a more 

realistic data set for a harvest study. The data we’ve been working with are nicely, almost perfectly 

Poisson distributed. Too perfect! Let’s become familiar with working with the negative binomial model.

To fit a negative binomial model, you need to install the package MASS and use the glm.nb function

library(MASS)

Load the negative binomial data set (‘harvest_nb.csv’) on the CD and name the data set h. Don’t forget 

tHe negatIve bInoMIal Model
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to set the reference levels.

h$Region<-relevel(h$Region, ref="North")

h$Season<-relevel(h$Season, ref="Summer")

Let’s have a look at these data first.

library(dplyr)

pivot<-group _ by(h, Region, Season, AgeGroup)

pivot<-summarize(pivot,average=mean(Totalbirds),variance=var(Totalbirds))

pivot

Unlike the Poisson data, you can see in the pivot table that many of the variances per 

Region*Season*Age Group are much larger than the mean. That’s an indication of over-dispersed data. 

To account for that extra variability, we could try fitting an additional predictor to the model to see 

if it can ‘take care’ of all that added variability. But we don’t have one. Let’s compare the Poisson and 

negative binomial models fit to these data. 

glm<-glm(Totalbirds~Age +I(Age^2)+ Region + Season + Season*Age + 

offset(log(Effort)), family=poisson, data = h)

glmnb<-glm.nb(Totalbirds~ Age +I(Age^2) + Region + Season + Season*Age 

+offset(log(Effort)), data = h)

So first of all, note that the negative binomial model is very similar to the Poisson model – each 

predictor contributes significantly toward explaining variability in harvest levels. Feel free to proceed 

with model selection using AIC to confirm that this is the most parsimonious model by far. 

We can also see from the output of this negative binomial model that the data are indeed over-dispersed. 

The amount of over-dispersion (the amount by which the variance is larger than the mean) is measured 
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by the dispersion parameter, which is 

overdispersion = 1 + mean/theta

The model output gives 13.01 as an estimate for theta. The expected mean count is 

mean(exp(predict(glm)))

28.8

Thus, the over-dispersion, the multiplicative amount by which the variance is greater than the mean is

1 + 28.8 / 13 = 3.2

Or we can estimate this way …

dispD<-glm$deviance/glm$df.residual

dispD

2.9

Now, let’s see if the negative binomial model did a good job of accounting for that added variability ….

dispD<-glmnb$deviance/glmnb$df.residual

dispD

1.3

In calculating the dispersion statistic (note that the dispersion parameter theta, and the dispersion 

statistic are not the same thing!), we see that it is less than 1.5, which is great – that means the negative 

binomial has done its job. The negative binomial function has fit a model to these over-dispersed data 

so that the over-dispersion was accounted for by the dispersion parameter of the negative binomial 

sampling distribution. The model was then fit using a sampling distribution with the mean equal to the 

variance, and the actual variance was very close to the variance expected by this distribution.  
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predIctIng total Harvest

the consequences of fitting the Wrong Model

Fitting a Poisson model to over-dispersed data results in smaller P values that the observed data 

actually support. That’s because the parameters are fit assuming that the true variance is not 

different from the population mean. Predicted values are the best estimates of population means 

at each x, but these are predicted using a sampling distribution with a smaller variability than is 

actually present in the data. The actual observations are much further from the predicted values 

than they should be. This results in biased estimates of the true population means, and lower P 

values leading analysts to conclude that there is a relationship when in fact there may be no evidence 

for one.

Once you have arrived at the most parsimonious model given your data, you’re ready to estimate the 

total number of birds harvested per year by hunters in your organization. Keep in mind that you can 

easily construct models per species group, i.e. ducks, geese, upland birds, rather than models for all 

species combined, as we have done. The only difference is at the data summary stage – you need to sum 

within species groups per hunter, rather than the total number of birds per hunter. 

Estimating the total harvest is really just a matter of arithmetic once you have a good model. The 

hardest part practically may be arriving at a good estimate of the actual number of hunters per region 

per season per age. Once you have created a data set of all hunters, you can use the predict function 

applied to the most parsimonious model to generate the estimated harvest per hunter, which you simply 

add up. To generate confidence intervals around this estimate, you can use a method referred to as boot-

strapping. 

Boot-strapping is a process of re-sampling your data, usually with the original sample size. Say your 

sample size is 185. You would create one bootstrap sample by random selection of one observation, 

which you would put ‘back’ in the dataset, then random selection of a second observation, then you 
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would put that one back, and so on until you reached 185 randomly selected observations. That means 

that any particular observation might get selected more than once for the same bootstrap sample. For 

a bootstrap sample of 100, you would create 100 bootstrap samples of 185 observations each. Then you 

would apply the model to each of the 100 datasets. At the end, you would end up with 100 predictions of 

the total harvest using the model, from which you can calculate the standard error and thus confidence 

intervals.

In an ideal situation, you have a very good estimate of the total number of hunters that went hunting 

each year per hunter age, region, and season. For permitted hunts, these data are collected as part of 

the permit issue. For example, migratory bird hunters in the US must provide their age and region of 

harvesting when they purchase a hunting licence. Since not everyone who buys a licences uses it, the 

total number of active hunters must be estimated. The proportion of active hunters is calculated from 

those who responded to a harvest survey, and then simply multiplied by the number of licences issued. 

For example, if 1,000 licences were issued, and 300 hunters responded to the survey, of which 250 used 

the licence and went hunting, and 50 did not, then the total number of active hunters is estimated to be 

1000 x 250/300 = 833. 

Since the harvesting you are trying to estimate is not permitted, it will be more difficult for you to 

estimate the total number of hunters per strata, and thus to derive accurate estimates of the total bird 

harvest. You could perhaps overcome this challenge through community engagement, by encouraging 

hunters who intend to hunt to register every year. 

Another less rigorous way to overcome this challenge is to use local knowledge to estimate the total 

number of hunters in each strata. Local community members may have a very good idea of the number 

of hunters, their age, and when they generally hunt. Regular communication with several key local 

knowledge holders could be used to build a data base containing estimated total numbers of hunters per 

sub-region, season, and age group, which you could then merge into a regional database. 

It may be easier to estimate the actual numbers of hunters per age group, and then just assume a 

uniform distribution of numbers of hunters per age within that age group. For example, if you estimate 

creating a data set of all Hunters



Putting it all together 
Modelling Harvest Data Using Poisson and Negative Binomial GLM

180

there were in total 40 hunters aged 20-29, then you’d just assume there were four hunters per age.

Okay, suppose you got there. You have an estimate of the numbers of active hunters per region, season, 

and age group. Open the csv file titled ‘totalhunters.csv’. Let’s pretend that this is your final estimate 

of the total number of active hunters per stratum. The ‘Hunters’ column is the count of hunters per 

stratum. 

We need to transform this table into a data set, then apply our parsimonious model to this data set, to 

derive estimates of total harvest.

We first start by creating a matrix of our predictor variables. Note that this has already been created in 

the csv file, but it’s handy to know how to do this in R. 

#create matrix of predictors

total<-read.csv("totalhunters.csv")

Season<-c('Fall', 'Spring', 'Summer') 

#define a vector called Season

Region<-c('Kootenay', 'Lower Mainland', 'North', 'Thompson and Okanagan', 

'Vancouver Island and Powell River')

AgeGroup<-c('17-30', '31-40', '41-50', '51-60', '61-75')

allcombos<-data.frame(expand.grid(Region, Season, AgeGroup)) 

#the expand.grid function creates a matrix of all possible combinations of the categories of predictors, 

e.g. Fall + Kootenays + 17-30, then Fall + Kootenays + 31-40, etc

allcombos$Hunters<-total$Hunters 

#add to this data frame the count of hunters. Again, this is just a copy of the csv file.
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#now we start using R to create the data set we want

library(splitstackshape)

fulldataset<-expandRows(allcombos, "Hunters") 

#the expandRows function replicates rows according to the number of hunters per strata combination. 

For example, 24 rows are created of Kootenays + Fall + 17-30.

#now change the categorical variable AgeGroup to a continuous variable “Age” assuming uniform 

distribution of ages within each age group. 

age1<-c()

for(i in c(24,45,27,51,24,19,35,21,39,18,14,27,16,30,14)){

x<-round(seq(17,30, length.out=i),0)

age1<-c(age1,x)

}

age2<-c()

for(i in c(32,60,36,68,32,25,47,28,53,25,14,27,16,44,14)){

x<-round(seq(31,40, length.out=i),0)

age2<-c(age2,x)

}

age3<-c()

for(i in c(49,90,54,101,49,38,70,42,79,38,15,15,15,40,18)){

x<-round(seq(41,50, length.out=i),0)

age3<-c(age3,x)

}

age4<-c()

for(i in c(32,60,36,68,27,25,47,28,53,20,14,27,16,35,14)){

x<-round(seq(51,60, length.out=i),0)
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age4<-c(age4,x)

}

age5<-c()

for(i in c(25,60,25,30,25,19,35,21,39,19,15,25,15,20,15)){

x<-round(seq(61,75, length.out=i),0)

age5<-c(age5,x)

}

fulldataset$Age<-c(age1,age2,age3,age4,age5) 

#add the continuous age predictor to the data set

library(plyr)

fulldataset<-rename(fulldataset,c("Var1"="Region","Var2"="Season","Var3"="AgeGro

up"))

#now we need to add an Effort column, where effort is set to 1

fulldataset$Effort<-rep(1, 2528)

#that completes the creation of the full data set containing the estimated total number of active hunters 

per age, season, and region.

#Now apply the most parsimonious model to this data set to generate predicted harvest of birds per 

hunter per day. 

Predict on the log scale. Here we use the negative binomial data set

#most parsimonious model, and just in case, the sample data and reference categories are provided again

library(MASS)
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h<-read.csv('harvest _ nb.csv')

h$Region<-relevel(h$Region, ref="North")

h$Season<- relevel(h$Season, ref="Summer")

glm<-glm.nb(Totalbirds~Age +I(Age^2)+ Region + Season + Season*Age + 

offset(log(Effort)), data = h)

HunterHarvest<-predict(glm, newdata=fulldataset, type="response") 

#the predict function applies the best model to our full data set of all hunters to generate a predicted 

total harvest per hunter. ‘Response’ in the type argument means we’re telling R to give us the predictions 

on the counting scale, not on the log scale. 

TotalHarvest<-sum(HunterHarvest) 

#then we simply sum these to derive the total harvest across all hunters.

fulldataset$Totalbirds<-round(HunterHarvest,0) 

Note that if we preferred to predict the rate of harvest per hunter, we would need to include an Effort 

column in the newdata dataframe, with each row =1. That way, the predict function will output the 

harvest per day rather than the total harvest per hunter.



Putting it all together 
Modelling Harvest Data Using Poisson and Negative Binomial GLM

184

#Bootstrapping the total harvest. First we need to create a function to extract the total predicted harvest 

library(boot)

#function to derive total harvest from the data

totalharvest<-function(formula, data, indices) {

d<-data[indices,]

fit<-glm.nb(formula, data=d)

return(sum(predict(glm, newdata=d, type="response")))

}

#bootstrapping with 1000 replications. The full data set of all hunters is re-sampled 1000 times, each 

time the model is applied to the data set and the predicted total harvest calculated, resulting in 1000 

predicted total harvests.

set.seed(123)

results<-boot(data=fulldataset, statistic=totalharvest, R=1000, formula= 

Totalbirds~Age +I(Age^2)+ Region + Season + Season*Age+offset(log(Effort)))

results

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = fulldataset, statistic = totalharvest, R = 1000, 

    formula = Totalbirds ~ Age + I(Age^2) + Region + Season + 

        Season * Age)

Bootstrapping to Derive Confidence Intervals
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Bootstrap Statistics :

    original    bias    std. error

t1* 24112.42 -3.521493    368.3359

plot(results)

#95% confidence intervals note that this assumes normality (which the plot suggests is an ok 

assumption)

boot.ci(results, type=”norm”)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL : 

boot.ci(boot.out = results, type = “norm”)

Intervals : 

Level      Normal        

95%   (23394, 24838 )  

Calculations and Intervals on Original Scale

The median of the bootstrap samples is our best estimate of the total annual harvest.

median(results$t)

[1] 24099.71

Thus, we conclude that we estimate the total annual harvest of migratory birds to be 24,100 (23394-

24838 95% CI), or stated differently … 24,100 ± 3% (95% CI) migratory birds per year.
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Example Harvest Survey and Instructions

THIS SURVEY IS CONFIDENTIAL. YOUR INFORMATION WILL BE KEPT CONFIDENTIAL 

AND WILL ONLY BE USED FOR MONITORING PURPOSES
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Instructions

Please give your age, and whether or not you have a Migratory Game Bird Hunting permit.

Refer to the map for the name of the region where you hunt. 

Fill in the month, day, and year that you filled out the form.

The form is organized so that you can record the birds you harvested separately for each place and 

month that you hunted. If you hunted in the same place in different months, fill out a separate block for 

each month. For each location and month, record the number of days you spent hunting.

Please describe where you hunted, with reference to approximate distance and direction from nearby 

towns or other landmarks, and mark the approximate locations on the map. Do not give descriptions of 

place names that are only locally known.

Please also give the geographic coordinates if you know them, either in UTM (e.g. 522770 E 5456836 N), 

decimal degrees (e.g. 49.263860 -122.687025), or degrees, minutes, and seconds (e.g. 49° 15’49.90 N  122° 

41’ 13.29 W). Give either the actual location where you harvested birds, or the approximate centre of the 

area where you hunted within a hunting location.

For each location and month, give the names (species) of the birds you harvested, and the number of 

each species of bird that you harvested. Please be specific with names, for example, write ‘surf scoter’ 

instead of ‘scoter’, as there are three different species of scoters in Canada.

The information you provide is completely confidential and will only be used for environmental 

monitoring purposes.
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Description ExampleVariable

Hunter ID

Hunter Age 

Permit

Region

Date 

Location

Month

Effort

Geographic coordinates

Species 

Quantity

A unique identification number assigned to each individual hunter

The age of the hunter in years

Whether the hunter holds a Migratory Game Bird Hunting Permit

The name of the geographic area where birds were harvested. A map provided to 
hunters with regions clearly marked will ensure consistency in the data. The map can 
also be used to mark approximate hunting locations.

The month and day that harvesting effort was recorded on the data sheet

The area where harvesting occurred, in reference to nearby towns, major rivers or 
other landmarks. Locations are distinct if, for example, they occur in different types
of landscapes, or are separated by more than ~25 km.

The month in which harvesting occurred at each hunting location

The number of days spent in the field actively searching for birds for each hunting 
location and for each month

Geographic coordinates where birds were harvested - either the actual location, or, 
the approximate centre of multiple places where harvesting occurred within the same 
general area. Coordinates can be given in UTM, decimal degrees, or degrees, 
minutes or seconds.

The common names of birds harvested at each hunting location and for each month

The number of birds of a particular species harvested at each hunting location and for 
each month

GH29784

Yes or no

Kootenay BC, Interlake Manitoba

Siwash Mountain, approximately 
20 km southwest of Nelson, BC

UTM 522770 E 5456836 N
Decimal degrees 49.263860 -122.687025
Degrees, minutes, and seconds
49° 15'49.90 N 122° 41' 13.29 W 

Surf scoter, Brant, Snow Goose, etc

 Definitions of variables being asked in survey. It is important to include to minimize ambiguity and 

ensure respondents all understand the questions being asked in the same manner.
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You may have a data set from a harvest survey for which hunters provided geographic coordinates for 

where they hunted. This is the ideal. Alternatively, hunters may have written descriptions of where they 

hunted. In either case, you can generate maps of hunting locations very easily using either GoogleEarth, 

which is freely downloaded from the internet, or using ArcGIS, which is not free but can be downloaded 

from the internet for a 60 day free trial. Site licences can be purchased for about $150 per year.

Let’s begin with the less-than-ideal scenario. Hunters wrote down descriptions of where they hunted on 

the harvest survey questionnaire forms. Hopefully, hunters followed the instructions mailed along with 

the questionnaires and referenced places that you can find online using Google maps, or that you know 

from your own knowledge. As a back-up in case you’re not able to pin point their hunting locations, 

hopefully they also marked their hunting locations on the map you provided.

Now you just need to generate geographic coordinates from these descriptions. This is easiest in 

GoogleEarth. 

First let’s overview geographic coordinate systems.

There are two geographic coordinate systems commonly used. You may be familiar latitude and

longitude, measured in degrees, minutes, and seconds – one for the north location (latitude) and one 

for the west location (longitude). All latitude and longitude coordinates are in reference to the Prime 

Meridian over in England.

Example: 

49°14’39.38”N 

122°32’40.54”W

appendix 2
Mapping Your Data
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Decimal degrees is a different way to write latitude and longitude. For example, Latitude 49.356074 is 

Latitude 49°21’21.87”N. The 21 degrees and 21 seconds part of the latitude unit can be re-written as a 

proportion of 1, hence decimal 356074 (21 degrees of 60 degrees of a full circle).
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The Universal Transverse Mercator (UTM) system is a completely different system than latitude and 

longitude. The system is based on a grid of the entire planet, each square or ‘zone’ is assigned a number 

and letter. Vancouver BC is in zone 10 U. Each UTM unit of ‘easting’ is one metre east to west, each unit 

of ‘northing’ is one metre north to south.

Example for Vancouver BC: 

10 U

533340.53 m E 

5454658.34 m N

The easting coordinates are the distance in metres from the centre of a zone, with the centre being 

arbitrarily assigned the value of 500,000. The northing coordinate is measured as distance from the 

equator. Thus, Vancouver is about 5400 km from the equator.

UTM Zones of the world
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If there is not already a copy of GoogleEarth downloaded on your computer, download and install it 

from http://www.google.com/earth. Click on the icon to open it.

Note on the left hand side of the screen beside the map are two windows – Places and Layers. Under 

Places, right click on My Places, Add, Folder, and then title the folder Harvest. Click OK. You’ve just 

created a folder to store the hunting locations you are about to create. Make sure the Harvest folder is 

always highlighted as you work to ensure your work is saved in the right folder.

Click on the yellow push pin button (in the top right corner of the photo). A push pin appears on the 

centre of the map, with a blinking square around it. When the square is blinking, the pin can be moved 

wherever you want to move it, by clicking and dragging.

Based on hunter descriptions of their harvest locations, you can add pins to the map, one pin for each 

location. The ruler button will be handy for this, to measure out distances from hunting locations to 

points of reference, such as towns or waterbodies.

In the New Placemark window, after Name: you can add whatever labels you like. Perhaps you will 

create a map of hunter locations by Hunter ID. Thus, you would pin point a hunting location on the map 

based on a description, and then label the pin by the hunter’s ID. When you press OK, you can no longer 

move the pin. To make further edits to the pin, you need to right click the pin’s label in the harvest 

folder, in the Places window, then click Properties. The Edit Placemark window will open, and the 

blinking square will once again appear around the pin, signalling that it can be moved. You can change 
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the pin colour on the Style, Colour tab, and you can change the pin symbol by pressing the pin icon next 

to the Name: window.

Now suppose you have entered all hunting locations, and labelled these according to Hunter ID. You can 

now easily produce a map in the format of a digital picture, which can be inserted into a report, emailed, 

or printed. Under File, Save, Save Image, give your map a title and save it on your computer. You can 

now open the file and view your map as you would a photo on your computer.

An example map produced using GoogleEarth is shown below – these map hunter locations for the 

Kootenay region in the example data set. From a quick glance, it’s very easy to see that hunting locations 

are primarily in wetland valley bottoms, unsurprisingly.
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Another key thing to know when using Google Earth is how to set the units. Under Tools on the main 

menu at the top of the screen, click Options. You’ll see options for showing the location in UTM versus 

degrees, minutes, seconds, and also the units of measurement. You can set it to metres versus feet.

Not only do you now have a map, you also have a file containing the approximate geographic 

coordinates of hunting locations. You can export these from GoogleEarth into your working data set in 

excel. Making sure the harvest folder is highlighted, click on File, Save, Save Place As..., change Save as 

type: .kmz to .kml, then click Save.

Open the .kml file in excel (ignore any warnings). The file isn’t exactly friendly-looking, but you’ll see 

that it does contain three columns of interest (ignore the rest). Copy the hunter ID and latitude and 

longitude columns, and then Paste Special, Values, into the working data. Match up the hunter IDs and 

now you have geographic coordinates for hunting locations as part of your working data.

Now let’s consider our options given that hunters provided geographic coordinates for hunting locations, 

and you have entered these into the data spreadsheet. Unfortunately it isn’t possible to upload an excel 

file of coordinates into GoogleEarth. You can manually enter each coordinate using the push pins. This 

time instead of placing the pin on the map, you already know the coordinates and you just need to enter 

these into the coordinate windows on the New Placement window that pops up when you press the pin 

icon. When you press OK after entering the coordinates manually, the pin will be placed at that location.

A faster alternative is to use ArcGIS to convert an excel file to a kml file, and then open the kml file 

with GoogleEarth. However, if you are able to do this in ArcGIS, then you can make a map in ArcGIS, 

which will be of higher quality because the mapping options are much broader. Compare the map above 

in which all the hunter IDs are not shown, to the same map below made using ArcGIS.

Instructions for importing and mapping data in ArcGIS are found in Appendix 3 below.
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When you open ArcMap, the first thing you’ll notice is that it’s asking you whether you want to open an 

existing map or create a new one. Let’s create a new one.

New Maps

Blank Map

Now you’re staring at a blank screen.

The first thing to notice is the Table of Contents dock. You should see 

Layers

This is where all the action is. The Layers icon is called a ‘data frame’ and it functions like a folder in 

Windows Explorer, holding all the layers in it, like a folder holds different files. 

GIS analysis and mapping relies on layers of data. A layer of data is simply a data set of information, 

called attributes, with spatial reference. In other words, a layer is a table of information with varying 

numbers of columns for attributes, and one column for x coordinates and one column of y coordinates. 

Because this information has a spatial reference, it can be shown visually on a map. 

Just above layers, you’ll see five buttons. If you hover the mouse over each button, dialogue windows pop 

up explaining what each button does. All these buttons do is change the way the layers in your map are 

listed in the table of contents window. Usually, you want the first button – list by drawing order. Under 

this button, the layers are drawn on top of each other as they appear in the list. 

appendix 3
Creating a Map Using ArcGIS

gettIng started
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In ArcGIS, one of the first things you do when creating a new map is to set the coordinate system. 

Right click on 

Layers

Then scroll to 

Properties

Coordinate System

Click on 

Geographic Coordinate Systems

North America

NAD 1983 (2011)

They updated this datum in 2011, I think to account for shifting of the tectonic plates!

The scroll down to get into the Projected options

settIng up your Map
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Projected Coordinate Systems

UTM

Then you can choose either the NAD 1983 or WGS 1984 datums. 

Before you make a further selection, you need to know the UTM Zone for the map you want to make. 

Choose WGS 1984

then your UTM zone

Now we need to set the units that our map will display in. Still under Data Frame Properties

General

Display

UTM

Now we’re ready to start creating a map.

First let’s start with a basemap. In the future, you will have your own basemap already created. But for 

now, let’s just add some satellite imagery.

One of the most important buttons, is the Add Data button in the top menu.
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Notice the little tiny down arrow next to it.

Add Basemap

Imagery

Now we actually have something to work with.

Before we start learning how to add things to the map, let’s learn how to move around a map.

Find the Tools toolbar 

navIgatIng around Maps
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Some of these will be familiar to you from GoogleEarth, but they work differently in ArcGIS. Click on 

the pan tool (the white hand) to activate it. This works by clicking on an area where you want to centre 

the map. Once you left click, the hand ‘grabs’ that area. And then with the mouse clicker held down (left 

click and hold), you can move the map around as you want.

Now that we have the map centred on an area, we can zoom in by clicking on the zoom in tool to 

activate it.

Once it’s activate, the cursor becomes the zoom in tool. You can keep clicking on the area you want to 

zoom to, 

OR

An easy way to navigate is to left click and hold on the top left corner of the map extent you want – 

you’ll notice a rectangle is outlined depending on where you move the mouse. Then when you let go of 

the mouse, the map will zoom to the extent of that rectangle. Saves a lot of time! 

You can also move in and out using the set scale menu, next to the add data button. The bigger the 

number, the more zoomed out the map.

panning

zooming
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refresh or reload

A few of the buttons can be helpful for refreshing the map. Maybe you zoomed in too far somewhere and 

got lost. You can press the Full Extent button     and it will move to the fullest extent of whatever 

layers are in the data frame.

Press it and you’ll see you’re back to the whole world again. You can reverse that by using the          Back 

button. It’ll take you back to the extent you were before the last button pressed.

One other button that’s important for refreshing your map is helpful for when Arc stops thinking and 

you get stuck with a half drawn map. 

Right at the bottom of the map, you’ll notice very tiny buttons.

If you ever get stuck with a half drawn map, if you look under those tiny buttons and it says ‘cancelled’, 

it means ArcGIS got overwhelmed and cancelled the drawing of the map. Pressing the Refresh button 

will force the program to draw the map again, this time without cancelling.

The other tools we will learn later on. For now, just note the measurement tool.         Same as in 

GoogleEarth, you can measure distances on your map, only in ArcGIS we have more options. 
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The squiggle lets us measure one or several line segments, the polygon with give us total area as we 

create a shape with by left clicking. Use the down arrow to select the units of measurement. 

The Drawing toolbar is another toolbar that we commonly use. 

f it isn’t showing in your program, then under

Customize

Toolbars

check

Draw

and it’ll show up on your top menu options. Take note of the zillion other toolbars you could add. Note 

the ones that are checked, and then compare that with what you see at the top of your screen. Note also 

that you can actually move these around however you want them.

The drawing toolbar is usually used most often when you’re just about finished with your map, and you 

want to add some text to it.

The key to not being frustrated with the drawing options is to remember to activate the Select Elements                

         button (the thick black arrow). Once you create text, you then might want to move the text around. 

You’ll need to activate the Select Elements button to do that. Instead of cutting and pasting into an 

appendix what each drawing button means (as I did for the Tools toolbar), you can simply access the 

functions on the ESRI website here http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?topicname=draw_

toolbar

draWIng on Maps

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?topicname=draw_toolbar
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?topicname=draw_toolbar
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(they have nice explanations of all the toolbars on their website)

So let’s add text

then left click on the map where you want to add the text

Let’s say it’s too small and the wrong colour of text. To change the size, make sure the text box is 

highlighted – it should be a bright colour. If it isn’t, then use the Select Element tool          and click on 

the text. 

Just like in Word, you can change the font type, the size, and the colour simply by pressing the 

appropriate buttons. The red arrow is pointing to where you change the font, and next to it is the size of 

the text. Etc…

You can also left click and hold on the text box and move it around where ever you want.

Now let’s say you want to draw something on your map. You have lots of options under the polygon   

button. But first note the little downward arrow next to the polygon button        . Clicking on that lets 

you see all the options. Choose freehand. Now choose circle. Now let’s say you want to change the 

colour of the freehand. You have to move the cursor back to the freehand drawing you made and select 

it. Otherwise you can’t edit it. With a light coloured box showing around the drawing (meaning it’s been 

selected), now you can change the colour of the lines using the          button.
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Now you want to change the colour of the circle. You need to use the         fill button. But first you have 

to select the circle.

You can access the menus to change the properties of any drawing object simply by right clicking when 

the cursor is hovering some part of the object. Scroll down to Properties, and it’ll open a box with lots 

of options for changing things like the thickness of drawn lines.

Now we’re ready to create and then save a map.

First, you need to introduce yourself to the two map views. One is called the Data View, and the other is 

called the Layout View. You can switch between the two in two ways. 

View at the top main menu

or at the bottom of the map next to the Refresh button …

… you’ll see those teensy tiny buttons again. If you press on the second one to the right, it’ll switch the 

view to Layout View.

You can see that you were working in Data View, which is normally the view we use in ArcGIS. Then, 

when we’re ready to actually create a map, we switch to Layout View, so we can actually get a sense of 

creatIng and savIng a Map



205

appendix 3
Creating a Map Using ArcGIS

what our map will look like once it’s printed out.

Once this view is selected, you should see a new toolbar at the top menu. If not, under 

Customize

Toolbars

make sure 

Layout is ticked

Now you’ve got different zoom and pan buttons for moving around your map. These are different than 

the buttons you used in the Data View. Check out how.

The main things you’ll need when finalizing your map are on the main top menu under

Insert

It’s almost always a good idea to insert a scale bar and a north arrow. Under each of those are lots of 

options. The main one under scale is to change the units to something that you like, usually metric. 

Once you select Scale Bar, under Properties, Scale and Units tab, you can change the units. 

You can change the colour of the text on the scale and of the scale bar line under the Format tab. To 

change the colour of the ticks (vertical lines) on the scale bar, under Numbers and Marks, in the Marks 

section, you’ll see Division Height and Subdivision Height. To the right of both, is Symbol, and the 

Symbol Selector menu opens up with options for colour and width. 

In addition to our north arrow and scale bar, let’s add some text to our map, then save it.

The document we’ve created in ArcGIS is a GIS document, from which we can make endless maps. This 

is very different from this one map that we’re going to save from this GIS document.

When you save a GIS document, the file extension is .mxd, which is an ArcGIS document. When you 

export a map, you save it as a picture file – and there are a number to choose from. The best is JPEG .jpg 
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– these can easily be inserted into Word documents as pictures.

Under 

File

Export Map

choose where you want to save your map, name it e.g. map.jpg, then 

Save

Now open up a word document

Under 

Insert

Pictures

browse for your map.jpg, click on it, then it’ll appear in your word document. This is an easy way to 

insert nice maps into reports.

One the best things about ArcGIS is a very easy ability to make a map showing the locations of things, 

for example, hunting locations. Of course, that means that you have to have some coordinate data. You 

can create coordinate data in Google Earth and then export it to ArcGIS, if you want a higher quality 

map than can be produced in Google Earth.

From the .kml file that you saved in Google Earth (see above), you first need to convert the .kml file to a 

layer file. 

addIng poInts

from a .kMl file
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Geoprocessing

Arc Toolbox

Conversion Tools

From KML

KML to Layer

Browse for your kml file on your computer in Input KML File, then choose where you want to save it on 

your computer, then click ok.

Now you have your GPS waypoints saved as a layer. You’ll see that ArcGIS saved the layer as a header 

layer, which doesn’t contain the spatial coordinates, and a points layer which does. 

Now we want to save our layer file as a shapefile. Right click on the Points layer, then Data, Export 

Data, use the same coordinate system as the data frame, and under Output feature class, you can 

change the name of your shapefile to whatever you want, and save it to wherever you want. Once you 

click on ok, ArcGIS will then ask if you want to add the shapefile to the map. Click ok. And now you can 

delete your layer file. 

You’ve just created your first shapefile, which is the basis of everything in ArcGIS.

One thing you might want to do right away is add the x,y coordinates of your data to the shapefile’s 

Attribute Table, which is where all the information about the layer is stored.

Right click on the shapefile’s name, then Open Attribute Table. You’ll see a bunch of pretty useless 

columns, the only one you’re interested in is the Name column. The rest are basically empty columns, 

which you can populate with information, like the x,y coordinates. Right click on a column, then 

Calculate Geometry, under Property you can change between x and y, then Use coordinate system of 

the data frame, then choose your units, like degrees, minutes, seconds. 
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labels and syMbols

To change the symbology (e.g. do you want blue or green dots, how big, etc), simply left click on the 

symbol for the layer, and it brings up the symbol selector menu. 

To change the labelling (and a bunch of other stuff), right click on the title of the layer, and scroll down 

click on properties. You’ll see a bunch of tabs, click on labels. To label each record in your layer (which 

is each row in your attribute table, for example, each waypoint), select Label features in this layer, and 

then there a bunch of options for changing the way labels show.

from an excel file

You may also have an excel file of coordinates, if for example, hunters provided coordinates of hunting 

locations on the harvest survey data sheet. This is very straightforward. But you must first save the excel 

file containing the coordinates as a .csv file (see above). Click on File, Add Data, Add xy Data, browse 

to your .csv file, and then in X Field, choose the column in your file for the east to west coordinate, and 

in the Y Field, choose the column for the north to south coordinate. Click ok, and each hunting location 

will now display on the map.
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Accuracy The degree of closeness of sample estimates to the true value.

Biased Refers to systematic inaccuracy – that is, biased data is sample data that does not represent the 

population because of certain attributes of the sample.

Categorical variable Contains categories of information (ex. season).

Clustering Measure of the central tendency of our sample of average.

Confidence interval Measure of certainty in our estimation of the population mean.

Continuous variable A numerical variable that varies from the lowest possible number (0) to the highest 

possible number.

Data management The combined actions of storing, organizing, and summarizing data.

Degrees of freedom Your sample size minus the number of population parameters you’re trying to 

estimate.

Frequentist statistics The branch of statistics that is based on probability being measured with reference 

to the relative frequency of observations, in other words, from sampling distributions.

Median The number that divides the data set in half, with the observations ordered from smallest to 

largest. 

Mode The number that appears most often in the data set.

Non-response bias The tendency of not reporting when nothing is harvested.

Observations Measurements and descriptions of the world that we collect to form our data to answer 

our research questions.

appendix 4
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Precision The degree of closeness of sample estimates to one another.

Prestige bias  The tendency of reporting a higher number than is true. 

Probability The likelihood of getting a certain study result, which we can estimate based on a sampling 

distribution.

Quantiles Values associated with probabilities.

Range The difference between the minimum number and maximum number.

Raw data Data that has not been processed in any way; this data are simply a digital representation of 

what was collected in written format on data sheets.

Sample size Refers to the number of sample units used to estimate truth.

Sampling distribution Counts per interval.

Standard deviation The square root of the variance.

Standard error Of a sample statistic, is the standard deviation of the sampling distribution of the 

statistic.

Statistic A quantified characteristic of a sample taken from a population.

Strata Strata are homogenous sub-groups of a population.

Variability The spread of differences within a population.

Variable A characteristic of the world of which measurements have been taken.

Variance The average deviation from the mean.
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Working data Data that has been summarized to the point that the data is ready for summary and 

analysis.
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b i b l i o g r a p h y

Crawley, M. J. 2012. The R book. Wiley, New York.

This is a good book for getting started with R. It starts at the very beginning – installing R - and works 

through to some moderately complicated statistical analyses. It is best as a recipe book for learning the 

basics of R – especially how to manage data once you’ve imported it into R.

Hilbe, J.M. 2014. Modeling Count Data. Cambridge University Press, New York.

This book is a relatively easy read, and provides a thorough overview of Poisson versus negative binomial 

modelling. There are, however, mistakes, typos, and gaps throughout the book that make it hard to follow 

in places. R code is provided to work through all the examples, which are particularly useful for learning 

how to test for over-dispersion, how to deal with it, and the consequences of not dealing with it. A go-to 

handbook for count data despite it needing a thorough edit.

Quinn, G. P., and M. J. Keough. 2002. Experimental Design and Data Analysis for Biologists. 

Cambridge University Press, New York.

This is probably the best overall introductory statistics book for ecologists. The authors are careful to 

explain statistics in plain speak, and use many examples to describe in detail what they’re trying to convey. 

Unfortunately generalized linear modelling is only brief ly introduced, so the book is best used a reference 

on basic statistical terms and tests. 

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed Effects Models and 

Extensions in Ecology with R. Springer, New York. 

This book picks up where Quinn and Keough leave off. The authors use a similar informal style, explaining 

concepts in plain speak and avoiding dense mathematical explanations. Generalized linear modelling is 

explained in detail, using examples of typical messy and hard-to-analyze ecological data. And excellent, 

easy to read book. It may be worthwhile to review their introductory book first (“Analyzing Ecological 

Data”). 
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