WINTER GIRCULATION IN LARE ONTARIO

by
T.J. Simons ${ }^{1}$, C.R. Murthy ${ }^{1}$ and J.E. Campbe11 ${ }^{2}$

```
lNational Water Research Institute
Canada Centre for Inland Waters
Burlington, Oṇtario
Canada L7R 4A6
2Great Lakes Environmental
Research Laboratory/NOAA
Ann Arbor, Michigan
U.S.A. }4810
NWRI UM.NS ,#84-38
```

Current meter data from a north-south cross section of Lake Ontario covering a 140-day period from 4 November 1982 to 23 March 1983 and Lagrangian drifter data from Niagara River are analysed to understand the winter circulation. Current fluctuations in nearshore are large and generally coherent with wind variations while currents in deep water tend to flow in opposite direction and are quite uniform in the vertical. Mean currents show a pronounced maximum of eastward flow along the south shore balanced by westward flow in the central part of the cross section, while the net transport near the northern shore tends to vanish. The total transport in the belt of eastward flow is ten times larger than the hydraulic transport associated with the Niagara-St. Lawrence flow thus suggesting a recirculation of 90% of the Niagara River inflow into Lake Ontario. There is a high degree of correlation between these observed circulation features and the distribution of toxic contaminants such as mercury and mirex in the sediments of Lake Ontario. In particular, the mercury distributions exhibit clear indications of westward displacements of the Niagara River Plume.

The authors plan to publish this paper in the Journal of Great Lakes Research since the conclusions are of particular interest to the Great Lakes scientific community.

Les données provenant des courantomètres situés sur une ligne coupant le lac Ontario du nord au sud portant sur une période de 140 jours, du 4 novembre 1982 au 23 mars 1983, et les données provenant du chalutier Lagrangian sur la rivière Niagara sont analysées afin de mieux comprendre le débit hivernal. Les fluctuations des courants dans la zone précôtière sont importantes et correspondent généralement aux variations du vent tandis que les courants en eau profonde ont tendance à se diriger en direction opposées et sont presque uniformes à la verticale. Les courants moyens indiquent une valeur maximale prononcée du débit en direction de l'est, le long de la rive sud, compeñée par un débit en direction de l'ouest dans la partie centrale de cette coupe nord-sud, tandis que le transport net près de la rive nord a tendance à disparaftre. Le transport total dans le courant de ceinture dirigé vers l'est est dix fois plus important que le transport hydraulique associé au debit de la rivière Niagara et du fleuve Saint-Laurent, laissant supposer une recirculation de 90% de toute l^{\prime} eau de la rivière Niagara qui pénètre dans le lac Ontario. On observe un fort degré de corrélation entre les caractéristiques observées de la circulation et la répartition des contaminants toxique comme le mercure et le mirex dans les sédiments du lac Ontario. Notamment, la répartition du mercure indique clairement des déplacements vers l'ouest du panache de la rivière Niagara.
Les auteurs prévoient publier ce rapport dans le Journal of
Great Lakes Research étant donné que les conclusions sont
particulièrement importantes pour les scientifiques étudiant les Grand
Lacs.

Abstract

Data from a high resolution array of self-recording current meters in a north-south cross section of Lake Ontario are presented. The measurements cover a 140-day period from 4 November 1982 to 23 March 1983. Nearshore current fluctuations are large and generally coherent with wind variations while currents in deep water tend to flow in opposite direction and are quite uniform in the vertical. Time-averaged currents show a pronounced maximum of eastward flow along the south shore balanced by westward flow in the central part of the cross section, while the net transport near the northern shore tends to vanish. The total transport in the belt of eastward flow is ten times larger than the hydraulic transport associated with the Niagara-St. Lawrence flow, thus suggesting a recirculation of 90% of the river inflow. Corroboration of the south shore current measurements is provided by satellite-tracked drogues.

RESUME

Ce rapport présente les données d'un ensemble à forte résolution de courantomètres auto-enregistreurs placés sur une ligne traversant le lac Ontario du nord au sud. Les mesures couvrent une période de 140 jours, du 4 novembre 1982 au 23 mars 1983. Les fluctuations des courants précôtiers sont importantes et correspondent aux variations du vent, tandis que les courants en eau profonde ont tendance à se diriger dans la direction contraire et sont presque uniformes à la verticale. Les courants pondérés en fonction du temps indiquent une forte valeur maximale du courant dirigé vers l'est, le long de la rive sud, équilibré par un débit en direction de l'ouest dans la partie centrale de la coupe nord-sud, tandis que le transport net des sédiments près de la rive nord a tendance à disparartre. Le transport total qui se fait dans le courant de ceinture dirigé vers l'est est dix fois plus important que le transport hydraulique associé au débit rivière Niagara-St-Laurent, ce qui laisse supposer une recirculation de 90% de l^{\prime} apport d'eau de la rivière Niagara. Les mesures du courant de la rive sud sont confirmée par̆ des bouées surveillées par satellite.

1.
 INIRODUCTION

The circulation of large lakes is characterized by complicated variations in space and time. Detailed measurement of such circulations would require deployment of self-recording current meters at numerous locations and various depths, which is not a practical proposition. In the past, therefore, lake circulation studies have generally relied on a sparse network of instruments covering the whole lake and have tried to fill the voids by interpolation and by recourse to hydrodynamical models (see e.g., Pickett, 1976). While circulation models of large lakes appear to give adequate simulations of the current response to strong wind impulses, their overall reliability is less impressive (Allender, 1977; Simons, 1980; Schwab, 1983). Clearly, it would be desirable to design a measurement program which permits unambiguous interpolation between instruments and allows for verification of mass conservation requirements. This suggests a high resolution array of current recorders in one or more cross sections of a lake. Such an experiment was carried out in Lake Ontario in the winter of $1982 / 1983$ and will be reviewed in this paper.

One of the most striking results of the above measurement program was a strong and persistent eastward current along the south shore of Lake Ontario. An independent verification of this result was made the following winter by using satellite-tracked drogues. The
drogue displacements confirm the earlier observations and will also be reviewed in this paper.

2. CURRENT MEASUREMENTS

During the winter of $1982 / 1983$ extensive current measurements were made in Lake Ontario. Current meters were deployed in two arrays, the first one following the 50 m depth contour along the north shore, the second one extending across the lake from Port Hope, Ontario to Point Breeze, New York (Figure 1). Instruments were located at depths of 12 m below the surface and 1 m above the bottom and at an intermediate depth in the cross-lake array. A total of 34 complete records were obtained for the 140 -day period of measurement, 4 November 1982 to 23 March 1983. Data from the alongshore array were used to study alongshore propagation of topographic waves and the results have been described by Simons (1984). The present analysis is concerned with the cross-shore array. The offshore location of the stations and measurement depths are summarized in Table 1 . The depth profile of the section is shown in Figure 2 with instrument positions indicated by black circles. The contour lines shown in Figure 2 will be discussed presently.

Currents were decomposed into alongshore and onshore components with the alongshore direction defined to be 80° from north. Our primary concern is with the alongshore current and the
distribution of this flow throughout the cross section. All time series were smoothed by a digital low-pass filter. The filter is designed to eliminate fluctuations shorter than one day without affecting current variations with periods longer than one day. This eliminates all effects of free surface seiches and any wave-induced noise in the current meter records.

For many practical considerations it is important to determine long-term mean water movements in a lake. Figure 2 presents the cross-lake distribution of the alongshore current averaged over the entire period from 4 November 1982 to 23 March 1983. Positive contour values indicate eastward currents, negative values represent westward currents. The currents show remarkable consistency in the vertical as should be expected under homogeneous conditions. Most striking is the strong eastward current along the south shore with compensating return flow in deep water.

Alongshore current variations in time and space are illustrated in Figure 3. The first record shows the current 12 m below the surface at a distance of 5 km from the north shore with a sounding depth of 28 m . The current is characterized by largeamplitude oscillations with periods of 5-10 days. It was analyzed as part of the data from the alongshore current meter array by Simons (1984). In essence, the current fluctuations are caused by local wind impulses with secondary effects of wind-induced topographic waves
propagating around the perimeter of the lake in a counterclockwise direction.

The three records in the centre of Figure 3 represent currents in the deepest part of the cross section at 12 m and 50 m below the surface and 1 m above the bottom. They show that the current is essentially uniform in the vertical and generally runs against the direction of the coastal current. This deep return current is primarily driven by pressure gradients associated with the slope of the free surface against the wind (Bennett, 1974). In addition, deep currents exhibit low-frequency oscillations due to topographic vorticity modes of rotating basins (see e.g., Saylor et a1, 1980)

Finally, the last current record of Figure 3 shows the near-surface current at distance of 3 km from the south shore with a water depth of 29 m . The fluctuating component of the current is very similar to that observed at the north shore, both in amplitude and in phase. However, the long-term mean component is quite different with a pronounced eastward net flow raising the overall level of the south shore current record.

3. TRANSPORT CALCULATIONS

Abstract

The spatial resolution of the above current measurements should be adequate to compute an accurate distribution of water transport through the cross section. The first step is to obtain vertically integrated currents or transports per unit width for each vertical string of current meters. Since the currents are quite uniform in the vertical as illustrated by the example of Figure 3, a simple linear interpolation should be acceptable. Thụ, for strings of three current meters, the integrated current, U, is obtained as follows:

$U=50 \frac{u_{1}+u_{2}}{2}+(h-50) \frac{u_{2}+u_{3}}{2}$
where u_{1}, u_{2} and u_{3} are the currents at depths of 12 m and 50 m below the surface and 1 m above the bottom and h is the local water depth in meters.

For moorings with observations at two depths, the formula
used is
$\mathrm{U}=\mathrm{h} \frac{\mathrm{u}_{1}+\mathbf{u}_{2}}{2}$
where u_{1} and u_{2} are the currents at 12 m and the bottom. The latter approximation is also used for moorings with observations at a single depth. In that case the missing current is estimated as follows. First, the ratio of standard deviations between surface (12 m) and bottom currents is obtained for stations where both measurements are available. For moorings in water shallower than 100 m the values range from 1.2 to 1.4 . Thus, the missing surface records in stations C10 and C11 are obtained by adding one third to the bottom current and the missing bottom current for station $C 1$ is estimated by subtracting one quarter from the surface current.

The vertically-averaged current is equal to the vertically-integrated current divided by the local water depth. The long-term mean values of the vertically-averaged currents for each string of current meters are presented by black circles connected by solid lines in the left hand panel of Figure 4. Positive values represent eastward flow. The standard deviations of the fluctuations around the long-term means are denoted by triangles connected by broken curves in the same drawing. The current fluctuations are large in both coastal zones and decrease with offshore distance much more rapidly near the steep south shore than over the gently sloping bottom of the north shore.

The right hand panel of Figure 4 presents the long-term mean values and standard deviations of the vertically-integrated currents
or transports per unit width. Integration of the area under the mean transport curve gives a total eastward water transport of $70 \times 10^{3} \mathrm{~m}^{3} / \mathrm{s}$ and a total westward transport of $66 \times 10^{3} \mathrm{~m}^{3} / \mathrm{s}$, the net transport being $4 \times 10^{3} \mathrm{~m}^{3} / \mathrm{s}$ to the east. This may be compared with the hydraulic flow associated with the Niagara inflow and St. Lawrence outflow which is approximately $7 \times 10^{3} \mathrm{~m}^{3} / \mathrm{s}$ as illustrated by the shaded rectangle in Figure 4. Expressed in terms of the one-way transport, the error is about 4\%. This small error in the total water balance, together with the horizontal and vertical consistency of the current observations shown in Figures 2 and 3, lend considerable credence to the data.

The cross-lake distribution of water transport divides the lake into three zones. In the northern part, the mean transport tends to vanish but the fluctuating component of the transport is very large. This is consistent with concurrent wind observations which show large day-to-day variations in speed and direction but a nearly vanishing net forcing when averaged over the entire period of measurement. The southern part of the section, on the other hand, shows a strong eastward mean transport which is apparently compensated by return flow in the central part of the basin. Here, the standard deviations reach a maximum at the line separating the belts of mean eastward and mean westward transport. This suggests a north-south meandering of the eastward and westward flow maxima at this point in contrast to the northern border of the return flow which appears quite stable with low standard deviations of fluctuating transport components.

As noted above, the one-way transport averaged over the period of observation is ten times as large as the hydraulic flow. If it is assumed that the eastward flowing Niagara River water is mixed throughout the belt of eastward transport, then it follows that 90% of this inflow must be recirculated, since only 10% of the total eastward transport can leave through the St. Lawrence River. With a mean speed of $5 \mathrm{~km} / \mathrm{day}$ in the belt of eastward transport and a length of the lake less than 300 km , the time scale of the recirculation is a few months. In reality, the recirculation must be expected to be greater than 90% since the Niagara River water will not be confined to the belt of easterly transport as illustrated by the following Lagrangian drogue experiments.

To conclude this discussion of the current meter data, Figure 5 shows cross-lake distributions of vertically-integrated currents as a function of time for the entire period of observation, 4 November 1982 to 23 March 1983. Solid lines denote reversals from eastward to westward transport and vice versa. Vertical shading repiresents eastward transport greater than $10 \mathrm{~m}^{2} / \mathrm{s}$, horizontal shading represents westward transport greater than $10 \mathrm{~m}^{2} / \mathrm{s}$. The meandering of the transport maxima in the southern part of the basin is quite noticeable.

4. LAGRANGIAN DROGUE EXPERIMRETS

With a view to establish the long-term fate of the Niagara River plume and its relationship to the strong and persistent eastward transport along the south shore of Lake Ontario, two Lagrangian drogue experiments were conducted in the fall of 1983 . Two satellite tracked drifters were released at the Niagara River mouth and their movement was followed during two periods: October 3-18, 1983 and October 20 - November 1, 1983. The current drifters used in these experimencs were of the Mini-TOD type manufactured by Dolar Research Laboratory of Carpinteria, California. The buoy hulls are constructed of aluminum and fibreglass, weighing 33 kg with batteries in place. The buoys are 1.5 m long and have a maximum diameter of 0.3 m . The drogue, which is tethered one meter below the hull, is 0.6 m wide and 3.65 m long (Fig. 6).

The transmitter inside the buoy emits a 401 MHz pulse every 54 seconds. The doppler shift of this frequency as it reaches a satellice is used to calculate the buoy position. Successive locations are stored in files on a computer system. When plotted in sequence these positions show the trajectory, or "track" of the buoy.

Remote tracking of the buoys was made possible by the Argos Satellite-Based Data Collection and Platform Location System. The system consists of a user platform, in this case a buoy, two polar
orbitting Tiros-N satellites, a data processing centre in Toulouse, France, and a computer system to permit user access to the data. After the buoy signal is received by the satellite, it is transferred to the NESS (National Environmental Satellite Service) center at Suitland, Maryland, I.S.A. Here the Argos data is separated from the other information the sarellite collects and is transmicted to the CNES (Centre National d'Études Spatiales) Space Centre in Toulouse, France. The data is processed in Toulouse and then sent to the computer system at NESS. The position of the buoy, as calculated from the doppler shift of its signal, is accurate to $\pm 0.5 \mathrm{~km}$ (Pickett et al., 1983).

Restrictions on the NESS computer limit the storage of accessible data to the last five positions. Since the file is continuously updated, interrogation by the user must also be continuous to avoid data loss. In this case, a Hewlett Packard minicomputer interrogated the NESS system at hourly intervals and scored the data points in a file.

5. RESULTS OP LAGRANGIAN EXPERIMENTS

Satellite-tracked current drifters have been successfully used in other circulation studies in the Great Lakes (Pickett et al, 1983, 1984). The present two experiments were also quite successful and have provided valuable data for independent verification of the
winter circulation in Lake Ontario as inferred from the current meter observations presented above. In particular, the Lagrangian experiments confirm the existence of a belt of strong eastward water movement along the south shore.

The Lagrangian drogue tracks for the two experiments are shown by the heavy solid and dashed lines in Figures 7 and 8. For comparison, the thin solid lines show progressive vector diagrams of the wind stress with the origin located at an arbitrary point in the lake. Note that in each experiment the two drogues were released at the same point and the same time. In spite of this fact, the two drogue tracks of the first equipment are totally different, thus providing a glimpse of the effect of small-scale turbulent motions in lakes and the resulting unpredictability of water displacements. At the same time, however, the drogue tracks also exhibit clear evidence of the significant effects of wind impulses and large-scale current regimes.

Wind impulses are primarily responsible for sudden changes in direction of drogue movements such as those observed on Occober 9 during the first experiment and October 26 during the second. On the other hand, large-scale current regimes determine the actual displacements of the drifters. For example, in the first experiment one of the drogues (solid line) is imediately trapped in the belc of eastward currents along the south shore and consequently moves to the
east about four to five times as far as the track of the wind stress vector. At the same time, the second drogue (dashed line) is temporarily pushed out of this belt of fast currents and, as a result, it stays far behind the first drogue. The strong easterly winds of October 9 - 10 cause both drifters to move out of the boundary current into the interior of the lake. As illustraced in Figures 3-4, the currents here are much weaker and the drogue displacements are die partly to direct wind effects and partly to free topographic current oscillations mentioned in the discussion of Figure 3.

The results of the second experiment are equally interesting since they reveal the remarkable variability of the Niagara River plume. An extensive field study of this phenomenon was carried out in 1982 and the results have been published by Murthy et al. (1984). One of the principal conclusions of that study concerned the dominating effects of winds and large-scale circulations on the path of the Niagara River outflow. Thus, the concept that the Niagara River effluent hugs the southshore and does not directly affect the open lake, is clearly too limited. On numerous occasions, the Niagara River plume bends to the west as illustrated by the second drogue experiment and also by hydrodynamic model studies (Simons, 1972). Again, the second experiment shows large drogue movements when the drogues are trapped in the eastward boundary currents, while the displacements are smaller than those of the wind stress vector plot when the drifters move into open water.

A statistical summary of currents calculated from the drogue tracks is given in Table 2. Maximum speeds range from 60-75 cm s-1 while mean speeds range from $20-25 \mathrm{~cm} \mathrm{~s}^{-1}$. These values agree quite well with the foregoing current meter data with the high speeds being associated with the strong and persistent eastward flow along the south shore.

In conclusion it is of interest to illustrate the correlation between these observed circulation features and the distribution of toxic contaminants such as mercury and mirex in the sediments of Lake Ontario. Figures 9 and 10 show examples of such distributions reproduced from Thomas (1983). The dominating effect of the boundary current along the southshore is evident. In particular, the mercury distribution; however, exhibits clear indications of westward displacements of the Niagara River plume. Also, the recirculation of up to 90 percent of the water masses at che eastern end of the lake, as inferred from the foregoing transport calculations, is quite apparent in the sediment distributions.

ACKNOWLEDGEMENTS

The authors express their thanks to J.A. Bull, R.C. Miners, M. Rerman and W.M. Schertzer of NWRI and A.H. Clites of GLERL/NOAA for their contributions to the field program and data analysis. Project support at NWRI was provided by the Great Lakes Water Quality Agreement.

REFERENCES

Allender, J.H., 1977. Comparison of model and observed currents in Lake Michigan. J. Phys. Oceanogr. 7:711-718.

Bennetr, J.R., 1974. On the dynamics of wind-driven lake currents. J. Phys. Oceanogr. 4:400-414.

Murthy, C.R., D.C.L. Lam, T.J. Simons, J. Jedrasik, K.C. Miners, J.A. Bull, W.M. Schertzer, 1984. Dynamics of the Niagara River plume in Lake Ontario. National Water Res. Inst., Burlington, Ont., Canada, Contribution ${ }^{1} 84-7,120 \mathrm{pp}$.

Pickett, R.L., 1976. Lake Ontario circulation in November. Limnol. Oceanogr., 21:608-611.

Pickett, R.L., J.E. Campbell, A.H. Clites and R.M. Partridge, 1983. Satellite-tracked current drifters in Lake Michigan. J. Great Lakes Res. 9:106-108.

Pickett, R.L., R.M. Partridge, A.H. Clites and J.E. Campbell, 1984. Great Lakes satellite-tracked current drifters. GLERL/NOAA Contribution No. 351:14 pp.

Saylor, J.H., J.C.K. Huang and R.O. Reid, 1980. Vortex modes in southern Lake Michigan. J. Phys. Oceanogr., 10:1814-1823.

Schwab, D.J., 1983. Numerical simulation of low-frequency current fluctuations in Lake Michigan. J. Phys. Oceanogr., 13:2213-2224.

Simons, T.J., 1972. Development of numerical models of Lake Ontario. Proc. Conf. Great Lakes Res., IAGLR, 15:655-672.

Simons, T.J., 1980. Circulation models of lakes and inland seas. Can. Bull. Fish. Aquat. Sci., 203:146 p.

Simons, T.J., 1984. Topographic response of nearshore currents to wind: an empirical model. J. Phys. Oceanogr. 14 (August issue). Thomas, R.L., 1983. Lake Ontario sediments as indicators of the Niagara River as a primary source of contaminants. J. Gṛeat Lakes Res. 9:118-124.
table 1. CURRENT METER mOORINGS IN lake ONTARIO WITH COMPLETE DATA RECORDS FOR 140-DAY PERIOD, 4 ROVEMBER 1982 - 23 MARCH 1983

Station	Distance from north shore (km)	Water depth (m)		Instrument depths (m)	
Cl	5.2	28	12		
C2	8.3	54	12		53
C3	15.1	74	12		73
C4	21.7	100	12		99
C5	24.0	112	12	50	111
c6	30.7	147	12	50	146
C7	40.2	180	12	50	179
C8	47.4	171	12	50	170
C9	55.6	95	12	50	94
C10	57.3	74			73
Cll	59.2	52			51
C12	61.4	29	12		28
South shore	64.2				

table 2. Statistical sumary of lagrangian currents

	Drogue	Maximum		
No.	Speed $\mathrm{cm} \mathrm{sec}^{-1}$	Mean $\mathrm{cm} \mathrm{sec}^{-1}$	Standard $\mathrm{cm} \mathrm{sec}^{-1}$	
		D3387	61.2	18.2
Experiment \#1	D3389	77.6	20.1	15.0
3-18 Oct 83			18.8	
Experiment \#2	D3387	66.3	18.4	12.1
20 Oct - 1 Nov 83	D3389	64.2	25.1	14.3

FIGURE CAPTIONS

Figure 1 Current meter moorings in Lake Ontario, 4 November 1982 23 March 1983.

Figure 2 Time-averaged eastward current (cm/s) in Lake Ontario cross section of Figure 1,4 November 1982 - 23 March 1983. Instrument locations denoted by black circles.

Figure 3 Filrered time series of alongshore currents in Lake Ontario cross section of Figure 1 at indicated depths and distances from north shore.

Figure 4 Left: Long-term means (solid lines) and standard deviarions in time (dashed) of vertically-averaged currents in Lake Ontario cross section of Figure 1, 4 November 1982-23 March 1983.

Right: Same for vertically-integrared currents. Shaded rectangle illustrates contribution from river flow.

Figure 5 Cross-lake distribution of vertically-integrated currents as a function of time. Solid lines denote current reversals (zero transport), vertical shading represents eastward transport greater than $10 \mathrm{~m}^{2} / \mathrm{s}$, horizontal shading is westward transport greater than $10 \mathrm{~m}^{2} / \mathrm{s}$.

Figure 6 sketch of satellite-tracked drogue.
Figure 7 Drogue tracks of first Lagrangian experiment (heavy solid and dashed lines) and progressive vector diagram of wind stress (thin line).

Figure 8 Same as Figure 7 but for second Lagrangian experiment.
 Figure 9 Mercury distribution in Lake Ontario sediments (from Thomas, 1983).
 Figure 10 Mirex distribution in Lake Ontario sediments (from Thomas, 1983).

mercury (quartz corrected) in p.p.b.

응우웅

10

