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MANAGEMENT PERSPECTIVE

Ice cover failure at spring breakup is governed by thermo-
dynamic and physical laws. In principle therefore, it is possible to
describe the initial breakup procesé This paper describes possible
mechanlsm, backed up by observation, for the breakup process and the
subsequent form of the loose ice cover.

.The analysis brings order and 1ns1ght to the early stages of
breakup which is an essential first step to logical forecasting and
management of rivers subject to spring ice jams. ’

T. Milne Dick
Chief
Hydraulics Division

PERSPECTIVE-GESTION

La rupture de la couche de glace durant 1e'dége1Adu‘printempsi
est régie par les principes de la thermodynamique et de la physique. Il est
donc possible de décrire, en théorie, le processus initial d'une débdcle.

Ce document présente une description, fondée sur des observat1ons, du méca-
nisme de rupture des glaces et du comportement subséquent des plaques de

glace détachees.
Cette analyse exp11que le déroulement des phases initiales du

phénoméne de la débacle, étape importante du processus de prévision logique
et de la gestion des embdcles printaniers dans les cours d'eau.

Le chef,

T. Milne Dick
Division de 1'hydraulique



ABSTRACT

River ice breakup is often attended by destructive ice
Jams. While considerable progress has been made in predic;%pg
features of jams once they have formed, lTittle 1is known about “the .
processes by which an intact ice cover is fractured during the early
phases of the breakup period. Understanding these processes would be
of benefit to forecasting the onset and severity of breakup. ,

Two frequently observed types of early fracture are
longitudinal and transverse cracks. When runoff begins, uplift
pressures develop on the underside of the shore fast ice cover.
Analysis, based on the theory of beams supported by elastic
foundations, shows that longitudinal cracks are likely to develop soon
after the flow begins to increase. For usual stream sizes hnd ice
conditions, two cracks (sometimes called "hinge" «cracks) -are
predicted, thus subdividing the ice cover into a main, central part
and two side-strips. Where ice thickness is very large or the channel
width too small, a single mid-channel crack is predicted. Field
observations support the theory. .

With continued increase in discharge, the central portion of
the ice cover may eventually detach from the side strips and thus
become subject to transverse fracture. Transverse cracks may form by
bending on vertical or horizontal planes. Vertical bending may arise
from the deformed shape of the water surface owing to unsteady flow.
It is shown that fracture of this type requires extreme water surface
slopes, unlikely to result from runoff processes alone but possibly
occurring briefly during surges from released ice jams.

Horizontal bending results primarily from flow shear and the
meandering planform of natural streams. Fracture by horizontal
bending does not require surge action and could account for trqn%verse
crack patterns observed in the Thames River (Ontario).
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RESUME

La rupture de la couche de glace sur les. cours d'eau est souvent
suivie d'embdcles destructeurs. Meéme si des progrés considérables ont été
réalisés dans les méthodes de prévision du comportement des emb@cles aprés
leur formation, on posséde peu de détails sur les premiéres phases du processus
de rupture d'une couche de glace intacte. Il serait utile d'en savoir plus
long sur le sujet, de facon & &tre en mesure de prévoir le déclenchement et la
gravité des embicles. ; - |

On a remarqué qu'il se produisait tout d'abord des fissures
Tongitudinales et transversales. Lorsque le ruissellement débute,,deé sous-
pressions sont créées & la surface interne de la couche de glace solide prés
du rivage. Les analyses, fondées sur la théorie des poutres soutenues par une
base élastique, démontrent que des fractures longitudinales semblent apparaitre
dés que le courant commence & s'intensifier. Pouk des cours d'eau moyéns et
dans des conditions normales de glace, on prévoit que deux fractures (quelquefois
appelées fractures “charniéres”) se formeront, divisant ainsi 1a couche de
glace en une plaque centrale principale avec deux bandes latérales. On pense
que si 1a couche de glace est trds épaisse ou si le canal est &troit, une seule
fracture apparaitra. Cette théorie est appuyée par des observations sur le
“terrain. , |

Si le débit continue d'augmenter, la plaque centrale de la couche
de g]aée pourra éventuel]emént se détacher des bandes latérales et @ son tour,
sera peut-€tre divisée par des fractures transversales. Ces fractures transver-
sales peuvent &tre produites par des courbures des plans vertical et horizontal.
La déformation de la surface de 1'eau causée par 1'irrégularité des courants
peut produire une courbure verticale de la glace. I1 a été démontré que ce
phénoméne ne se produira que si la pente de la surface de 1'eau est trés
prononcée, condition ne résultant vraisemblablement pas du ruissellement seul,
mais plutdt du déferlement des glaces d la suite de 1a dislocation d'un embdcle.

Les courbures horizontales sont principalement causées par 1'action
des crétes'de courant et la forme en plan sinueuse des cours d'eau naturels. La
surpression n'est pas nécessaire d la formation du fractionnement causé par des
courbures horizontales; ce fr&étionnement pourrait expliquer le plan des
fractures transversales obserVétdans la riviére Thames (Ontario). |



1.0 INTRODUCTION

The breakup of river ice is a brief but important period of
the year because of the frequent formation of destructive ice jams.
- While considerable progress has been made in predicting features of
ice jams after they have formed, little is known about the processes
- by whlch a continuous ice cover is broken into the small fragments
that comprise an ice jam. Understanding these processes would be -of
benefit to forecasting both the onset and the severity of river ice
breakup. o

Two common occurrences of the initial phases of breakup are
investigated herein, namely the formation of longitudinal and
transverse cracks. In this manner, the initially continuous ice cover
is broken down into separate ice sheets which often sets the stage for
breakup "initiation", if this event is defined as the time when the
ice cover is set in motion. Once this occurs, further fHagmentation
is rapid, owing to impacts of moving ice sheets eitherion channel
boundaries or on other sheets. Clearly, the initial ipattern of
fracture governs the sizes of separate ice sheets which in turn may
have an effect on the conditions for breakup initiation and, later on,
on fhe location and persistence of ice jams. '

2.0 LONGITUDINAL CRACKS
2.1 Physical Consjderations and Assumptions

‘ Consider the casé of an ice-covered river reach, in which
steady unifom flow prevails, as is approximately the case during the
winter period.  The flow under the cover can be described as
grav1ty-dr1ven with nearly hydrostat1c pressure distribution.

When warm weather and increased runoff start, the discharge
will begin to increase with time and upstream distance. So long as
the cover remains integral and attached to the river banks, a pressure
gradient'must develop to accommodate the increased discharge. The
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flow will thus become of the conduit type and be partly pressure-
driven. Increasing uplift pressures will be applied to the ice cover
until the latter's strength is exceeded and cracks form. Once this
occurs, the water will be free to assume a higher stage and revert to
pureTy gravity-driven flow while the cracked cover will float to a
higher pos1t1on

Prior to crack formation, the. structura1 situation is that
of a floating ice plate, supported at the edges and subgected to a
distributed load, p, as illustrated in Fig. 1. -Considering the total
upward pressure, P, \app]ied on the underside of the ice cover at
its deformed state, we obtain: '

Pt * pt Y(S'ihi - W) = Y1h1 (1)

in which v, v{ = unit weight§ of water and ice, respectively; hj
ice cover thickness; w = deflection of the ice cover; and s;
vi/y = specific gravity of ice = 0.92. Eq. 1 can be simplified to

which suggests that the ice cover may be viewed as a plate subjected
to an upward distributed load, p, and sUpportéd by an elastic
foundation* of modulus y. Eqs. 1 and 2 are valid so long as the bottom
of the ice cover does not emerge above the water level, i.e., whs_
sihj. _This condition is usually satisfied in practice and will be
assumed to épp]y herein. The load p is laterally uniform but must
vary with 10ngitudina1 distance and time in view of the unsteady flow
conditions that prevail when the discharge starts to increase. The
actual situation is thus too complex for analytical solution but can

* An elastic foundation produces a reaction that is proport10na1 to
the local deflection, The coeff1c1ent of proport1ona11ty is termed
the foundation modulus.
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be considerably simplified by making the following two assumptions:
(a) dynamic effects are negligible; and (b) the longitudinal gradient

of p is small. - These assumptions can be verified by an.

order-of-magnitude analysis (see Appendix A). The solution can thus

be based on the theory of beams resting on elastic foundations-

(Hetenyi 1946). A. solution for infinitely long beams (very wide
channel) has been obtained by Billfalk (1981).

2.2 . Analytical Relationships

For a beam of arbitrary length, Hetenyi (1946) gives"the
foT]owing expressions for the bending moment: | -

24 . . 1 U R e ‘ _-
- 2X°M _ sinhAzsiniz +:slqh}§;§1nkz_; hinged ends (3)
p cosh AW + cosiW
%M . 1

1. (sinhAzcosAz! + cosAzsinhiz!
P sinhAW + sinAW ; v

_sinAZCOShAzl - coshkzsinkzl); fixed ends  (4)

in which M = bending moment. per unit width; p = uniformly distributed

load per unit width applied on the beam; z = distance from the left:

ice edge; b = distance . from the right ice edge = W - z; and A is
defined by ‘ | | ' -

e ®

in which E = elastic modulus of ice; ahd'I-é moment of inertia of ice
cover per unit width = h;3/12.
’ Eqs. 3 and 4 may be used to study the location of maximum M

‘and the uplift pressure necessary to cause cracking of the cover,
~ First, the case AW»= is considered. Eqgs 3 and 4 reduce to

oMo Azsinlz, hinged ends . (6)

P




2)2 Y '
EEILLEE *2(sinkz - cosrz), fixed ends " )
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These expressions. are identical to Billfalk's (1981) for.the infinite-:
1y wide channel case. -

For finite channel widths, Eqs. 3 and 4, along with
corresponding equations for ice deflection (Hetenyi, 1946) can be used
to determine moment and def1e¢tion variations across the channel.
Typical results for hinged ends are shown in F1gs._2 and 3. Fig. 2
shows. that maximum bending occurs at mid-stream for AW < 3 0 wh1ch
suggests that only one central crack should form in th)s case.
However, as AW increases above 3, the maximum bending moments are no
longer 1ocated at mid-stream which implies that two 1ongitud1na1
cracks should form, each located a distance Ig off the respect1ve_
channel end.  For the case of fixed ends the calculations have
indicated that 1g = 0, i.e., maximum bending occurs at the channel
edges. S - o L
“Figure 4 shows the variation of 1g/W with ANAwhi]e Fig. 5
gives the uplift pressure required to cause crack formation, pg, as
a function of AW as well as ice thickness and ice properties (note
that o = flexural strength pf the ice cover). Figs. 4 and 5 indi-
cate that an ice cover may be considered "infinitely" wide if AW > 6.

v The present results aléo apply . to the case\of an ice cover

subjected to a dfop in the water level, provided the bottom of the
cover is everywhere in contact with water. This property was utilized
by Billfalk (1981) tovtesf,his analysis and obtain good agreement with
observation, using £ = 6.5 GPa. The latter figure is practically the
same as 6.8 GPa, recommended by Gold (1971) for _good- qua11ty freshf
water ice.

Where cracking is the result of up11ft pressures, as happens
near the time of breakup, it is not possible to know before hand
whether the end supports are fixed or hinged. However, ;When
longitudinal cracks are offset, i.e., theyvare located some distance
off the edges ("hinge" cracks), one could assume hinged supports.
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Where no cracks are present, even though the ice cover is detached
from the river banks, one must assume that either the end supports
were fixed, or the adhesion of the ice to the banks was too Tow to
permit development of hinge cracks. ‘In the writer's 'eXperience,.
_Tongitudinal cracks are usual]y offset so that the h1nged support type
would seem to be a common occurrence.

-Another comp11cation that may arise in nature may be due to
creep effects. Ice is known to be a viscoelastic mater1a1.that‘on1y_
exhibits elastic behav1our dur1ng brief 1oad1ng times. However, the
creep characteristics of ice are not well understood at present while

the 1oad1ng history of the ice cover under the present conditions: is

difficult to determ1ne. As shown in Appendix A, the loading time is of
-the order of a few hours which guarantees substantial creep effects.
A s1mp1e empirical approach in this case is to use the results of" the
elast1c analysis but introduce reduced values of E and gje. '

From observations of crack locations in the Thames River
(Ontario), a value of E = 1.4 GPa has been deduced. This is about
five times less than the elastic modulus of good-quality ice subjected
-to rapid loading. The difference is large but can be attributed to
‘creep effects. In Appendix ‘A it is shown that the ice cover s
subjected to an increasing distributed load while the time to failure

is of the order of a few hours. Sinha's results (1977) with small ice
specimeﬁs subjected to constant compressive stresses, indicate similar
reductions in the apparent value of E for similar loading times.
Though the respective loading configurations and histories differ, the
approximate coincidence' of Sinha's results with the present ones
supports the hypothe51s that creep is 1arge1y respons1b1e for the low
" value of E proposed herein.

2.3 Case Studies and Examples

Using E = 1.4 GPa, we now proceed to describe a few field
observations and compare them.to prediction.
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Thames River at Thamesville, 1981 and 1982. Observed 1¢ = 5.0
m; hj = 0.32 m; W =140 m. From Eq. 5 we find A = 0.16 m ' and
AW = 6.4 which exceeds 6.0 so that the infinite-width formulae
apply. It follows that the predicted value of lg is equal to
7/4x (see Eq. 6), i.e., lg = 4.9 m which is close to the
observed value.

Thames River near Louisville, 1983. Observed 1g ~ 2.0 m; h;
='0.11 m; W =5 m We find » = 0.35 m' and AW = 19.5.

" Therefore, predicted 1g = #/4x = 2.2 m which is close to the

observed value.

For several Manitoba streams, it has been observed that a single
central crack occurs for widths less than 30 m (J.. Wedel,:
personal communication). Fig.:4 then implies that AW should' be
less than 3.0. Therefore A should not exceed 3/30 = 0.1 m-'.
Using Eq. 5 gives hj > 0.6 m which was indeed the case for the
streams under consideration (J. Weddel, personal communcation).

Grand River near Leggatt, 1982. A single, mid-channel crack was

~observed in this reach prior to breakup. Accurate values of h;

and W are not available. Ice thickness has been estimated as

-0.45 m from measurements elsewhere on the Grand River. The
~ channel width has been assumed to be 27 m, a value measured under
- open water conditions at a stage similar to that which prevailed
-when' the crack was observed. Putting E = 1.4 GPa and hj =

0.45 m in Eq. 5 gives A = 0.12 m -} and AW = 3.3 which, from
Fig. 4, suggests that two cracks should form, contrary to what
was observed. However, the accuracy of hj and W is' such that
AW could easily have been 3 or less which would indicate only one
crack formed. Moreover, inspection of Fig. 2 indicates that when
AW is between 3 and 3.5, the maximum bending moment is only
slightly more than‘the central moment. If, as is often the case,



h; varies somewhat across the stream, ‘being thinner near the
centre; a central crack would form even if XW > 3 (note that
bending stress varies as h; -2), | |

"As an example of -épp]ying the present results, let hy =
0.50m, W =5 m, E=1.4 GPa and oj = 600 KPa; then Eq. 5 gives

x = {9.81 x 10%/(4 x 1.4 x 10° x 0.5%/12)}/* = 0.11 w!.

‘Hence AW = 5.7 and Ah; = 0.057. From Fig. 5, we find that
peloj(ahy)? = 1.08, hence ps = 2.0 kPa.  After formation of
cracks, the ice cover would float at an elevation that would exceed
_the pre-stressing one by 2.0 x 103/9.8 x 10° = 0.21 m. Fig. 3
indicates that the maximum deflection is about 1.1 pg/a = 1.1 x 0.21
= 0.23 m which is less than sijh; (.92 x .5 = 0.46 m), as fis
required for the theory to apply.. For AW = 5.7, Fig. 4 gives 1g/W =
0.137, hence 1g = 50 x 0.137 = 6.9 m. ‘ '

3.0 TRANSVERSE CRACKS - BENDING ON VERTICAL PLANES

Transverse cracks are often observed in the river ice cover
when breakup is imminent. The mechanisms responsible for transverse
cracking are not clearly understood at present and can only be studied
by consideration of the spacing of the cracks and the stresses
required to cause cracking. An obvious candidate is bending of the
ice on vertical planes by an advancing flood wave. This possibility
is explored in this section. '

3.1 Physica]'pgnsiderations ahd Assumptions

When runoff is increased, the ice cover will first crack
longitudinally and eventually detach from :the river banks. Once this
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has occurred, the ice cover will become subject to bending on vertical
planes, owing to the shape of the water surface. The latter may
exhibit a wave-like form that travels in the downstream direction.
The wave could be the result of increasing runoff or ice jam release
or a combination of these effects. With reference to Fig. 6, the
total upward pressure app]iéd on the ice cover can be shown to be
equal to y8 - yw for the region where the water level is below the top
of the ice cover (x > 0); and equal to vy (1 - sj)hj where_the‘top
ice surface is submerged (x < 0). Therefore, for x > 0, the ice cover
may be considered a beam subjected to a distributed load (= ¥8) and
supported by an elastic foundation of modulus equal to v. For x <O,
the ice cover acts as a free beam subjected to the uniform load v(1 -
sj)hj. Because & and 1, (= length of ice cover submergence, see
Fig. 6) are time-dependent, w is also time-dependent, i.e., w =
w(x,t). It follows that the differential equation deséribing w (e.g.,
see Fllugge 1962) shogld include a term proportional to the vertical
ice acceleration, :%4; . Based on an order of magnitude analysis,
Billfalk (1982b) argued that this term can be neglected, so that any
instantaneous distribution of w is produced by the static loading
v8(x) that prevails at the same time. This assumption is retained
herein (see Appendix B). |

To obtain &(x), the form of the water surface should,
strictly speaking, be determined from fluid dynamic considerations.
However, this is a highly complex task and a first approximation is to
use an assumed shape of the water surface profile. - This problem was
first considered by Billfalk (1982a) who used a linear water surface.
However, Billfalk's analysis did not consider the loss of the elastic
"foundation" along the submerged portion of the ice cover or the
effect of the ice deflection on the location of point A (Fig. 6).

Herein, these effects are taken into account and a more
realistic water surface shape is assumed, i.é.,



s(x) = s ey

in which &, = value of § at x = 0; and.u is a dimensionless coeffi- .
cient. S

3.2 Analytical Relationships

Details of the solution are given in Append]x C wh11e the
ma1n relat1onsh1ps are reproduced below. -

for- . x> 0: 'A‘q'hl = %(a; sing + opcosE) - age™S 9
. |

in -which & = 2x; dg. = v(l = sj)hj; and op,ap,a3 are dimension-
less coefficients defined by

Q0092 | yqa¥y |
S oL A L I
()2 2 - | 11
R CETLES R )
ag = ——iligli—— o S | (12).
(u-)+ 1
voeoay | - (13)

Of interest are also the deflections we (at x = -1y, i.e., at the
ice edge) and wy (at x = 0):

Mo . Doy - (14)
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Y6 2 : ‘ :

o . Lﬂg_:l (1 + y)2 o (15)
qg W ' .

W, YW ey g ' ’ | |
& e Cap )y ¢ B (16)
aq ag , u 2 .

Eq 14 expresses the cond1t1on that the water surface and
the top ice surface intersect at x = 0. If g (and y) are set equal
to zero 1n the above - equat1ons, we will obtain the solutlon for the
| “case where the edge of the ice cover 1s at the thresho]d of

.submergence. . o .
o However, if 1, = 0 and the »ice' coVer is st111 energvng
-above the water. level (i.e., Ywp/qg < (Ysolqs) - 1), the

- solution becomes

2 . 21'. : ‘ ' : '

XM o W et (1w sing ¢ cost} - €] (17)
Y6 44y

o . 2w) o (18)
5 T e -

It is noted that the ana]ys1s ignores the deformation of the water
surface that takes place near the ice edge due to local stagnation
- effects. This, however, is a rather localized occurrence and should
“not greatly 1nf1uence the results.

| ‘Figure 7 shows d1mens1on1ess plots of maximum bending
moment; edge .deflect1pn and crack 1ocat1on versus u, prior. to
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submergence of the ice cover. Plots of bending moment versus x have
jndicated that the moment drops to negligible values beyond distances
of 6/ to 10/A. When a part of the ice cover is submerged, Eqs. 9-16
apply. Figures 8 and 9 show dimensionless moments and crack locations
plotted versus u with ¢ as a parameter while more detailed results are
presented in Table 1.

3.3 Examples

As an example, consider a 0.5 m thick ice cover with oy =
600 KPa and E 6.8 GPa (because the wave travels relatively fast,
there is 1little time for creep and thence for reduction of the

apparent modulus of elasticity. Then, from Eq. 5, A = 0.077 m! and
Ahj = 0.038. The bending moment, M¢ (per unit width) required to
cause a crack is ‘

_ 1 2 |

and the dimensionless quantity AZMf/qS works out to

20 1 2 %
= A°M./ = = (Ah. — 20

For the present example, m¢ = 0.37. Inspection of. Fig. 8 suggests
that, to effect cracking without submerging the ice cover (y = 0), the
flood wave must have a value of u that is no more than 0.25. For u =
0.25, Egqs. 14-16 (or Table 1) indicate that we = wy = .1;60'rn and
80 = 1.64 m which are large but not implausible values. The crack
location (x = 1o ) can be determined from Fig. 9, i.e., Al = 2.2
and ]c = 28.6 m so that ]c/hi = §57. The “averagé“ s]ope'3§, of the
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wave can be defined over é‘distante Xg such that the value of § at
xo becomes (say) 2% of §, *. Then '

AS = 0.25 u A8 (21)

: 0 , ,
and works out to _Zg = 0.008. This value is rather large and it is
questionab]é whether it can horma]]y occur in nature, unless the wave
is a Surge>causéd by ice jam‘release. As the wave moves downstream,
the value of u must decrease due to subsidence. If u were, for
exémple, equal to 0.10, Fig..8 suggests that a crack would form before.
the edge of the ice cover reaches the water surface. Then, the graphs
of Fig. 7 would apply. For u = 0.1,‘ ma,x|M|_>\2/y6'0, = 0.002 and
max|M|A*/qs = 0.002 v85/qs. To effect cracking, the latter
quantity should be equal to m¢, i.e., 0.37. Hence vy§y/qq = 185
and thence 8, =.7.4 m which is an extreme value, unlikely to be
encountered in nature. The corresponding value of 1¢ is also given
in Fig. 7 as Alg = 2.55. Hence 1. = 33.1 m or 1c/hj = 66 and
AS = 0.014 which, too, is implausibly large.

Another example can be worked out if u is set equal to 1.00.
Fig. 8 indicates that, for y = 0, the value of m is 0.21 which is less
than 0.37 and thus the dice cover will not fracture without
submergence.Using Table 1, the required value of ¥ can be determined
by interpolation. This gives ¢ = 0.22 and Aly, = 1.63. Therefore,
Te 21.1 m and 1./hy = 42. Moreover, Eqs. 14-16 indicate that
§ = 0.30 m, wy = 0.26 m and we = 0.29 m, all of which are
plausible. The average slope (Eq. 21) is 0.006 which again would be

expected to occur under jam release conditions.

* Note thét this slope is in _addition to thé channel slope under
steady flow conditions. '
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3.4 Implications

The preceding anaTysis has shown that advancing flood waves
~can break an ice cover by bending on vertical planes provided the wave
slope (i.e., the slope in excess of the steady-state value) is about
5 x 10-2 or more*, Such slopes are rather extreme and unlikely to be
produced by runoff alone; they could, however, prevail for a brief
time after the release of a 1aﬁge ice jam. At the same time, it
should be recognized that major jam releases are often attended by
very large flow veiocities and shear  stresses. It is possible,
therefore, that an ice cover will be destroyed'by hydrodynamic forces
or by the advancing ice jam well before it can be fractured by:
vertical bending. The mechanisms involved in this type of breaking'
are unclear at present and thus no quantitative analysis is possible.

4.0 - TRANSVERSE CRACKS - BENDING ON "HORIZONTAL®" PLANES

Shulyakovskii (1972) proposed a breakup mechanism which
would result in transverse cracks due to stressing on planes parallel
to the water surface (herein called, with some 11cense,'“horizonta1“
planes for simplicity). This mechanism 1is illustrated in Fig. 10
where it is shown that stresses develop in the ice due to the accumu-
lated effects of the flow shear stress and the downslope component of
the weight of the ice cover. In a straight river, only compressive
stresses can deVelop but, in a meandering channel, shear stresses and
bending moments are also present. It can be shown that tensile
stresses caused by bending are the most likely to cause fracture of
the ice cover. Moreover, an order-of-magnitude calculation has
indicated that cracks caused by horizontal bending would be spaced

T

* The required slope is roughly proportional to Yoj. If oy drops
to as low a value as 100 kPa due to thermal deterioration, the
limiting wave slope would be 2 x 10~3 which too is a large value.
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very far apart relative to what was determined for the case of
vertical bending. Transverse crack patterns with -average spacings of

1,000 to 1,600 ice thicknesses have been  observed ‘recently 1in-the

lower Thames River (Ontario). An.example is shown in Fig. 11 while
the:statiética] distributions of 1; (= distance between consécutive
cracks) are illustrated in Fig. 12. ' ‘
!To test whether horizontal bending might have been
responsible for the Thames River results, it is necessary to estimate
the associated bending moments. This is not a 'simple matter because

the forces transferred between adjacent ice sheets depend on-local

channel geometry and re-a11gnment of sheets after crack formation.
With reference to Fig. 13, a crude est1mate can be obtained by

assuming that crack C forms solely as a result of (a) bending caused -

by tangential forces along the arc BC; and (b) bending caused by the
force transmitted from sheet AB to sheet BC. Contributions from ice

sheets ‘farther upstream, are neg]ected.' The bending moment at C is

then (see Appendix D for derivation)
M= 21Wa | | (22)

in which Wj = width of ice cover; a = shaded area in Fig. 13; and =
= 1y + y sjhj S, with 13 = flow shear stress applied on the
underside of the ice cover; S = slope of water surface. When ‘a crack
forms, M is equal to ojh;W; 2/6. ~ Using Eq. 22, the flexural
strength oj can be estimated from ‘

a) ¢ o ' (23)

i%
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_ Table 2 summarizes observed characteristics of the Thames
River ice sheets and estimated values of o based on Eq. 23. The
Yatter range from 60 to- 100 kPa which is.low relative to 600 kPa, a
common f]exura] strength value for good- qual1ty 1ce, determined by the
well-known : beam _test (Frankenstein '1961; Korzhavin 1971; Butyagin
1972). However, the value of o has been found to decrease with
sbecimen size.  For the present loading configuration,' Butyagin's
(1972) results suggest a reduction factor of at least 3 and possib]y
‘as much as 5 for the flexural strength of the entire ice cover,
re]atlve to that obtained from beam tests. This would bring gy up
to. at least 180- .300 kPa which is well above the lower limit of oj
measured near the time of breakup (= 100 kPa - Frankenstein 1961)..
Reductions in strength could also resuit from creep effects or from
penetrating short wave radiation ‘(e.g., see Bulatov 1972; Ashton
1983). | o
v In conclusion, it may be stated that "horizontal" bending -
could account for the crack :patterns observed in the Thames River. It
may also be noted that this mechanism does not require "surge" action
as it can be effective withvrelative1y low values of t (Table 2).

5.0 DISCUSSION

The preceding analysis has illustrated some of the patterns
by which an ice cover 1is likely to be fractured before it is set in
motion. Tt is emphasized that patterns not considered herein are also
possible, for example, 1ntense thermal deterioriation can cause large
open leads and frequent d1scont1nu1t1es in the ice cover. Thus, the
present results are most applicable to the premature breakup, i.e.,
where conditions of rap1d runoff prevall with 1ittle heat input to the
ice cover. _

The first occurrence of fracture appears soon after the
discharge begins to increase and is manifested by the formation of
longitudinal cracks that , in streams of fair widths, are parallel and
close to the banks. HOwever; as the channel width decreases, the two
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cracks may éhift towards fhe centre and eventually merge into a
single, mid-channel crack. The relative location of the longitudinal"
or "hinge" cracks, 1g¢/W, js'governed by the parameter AW, i.e., it
depends on channel width as well as ice thickness, density énd modulus
of elasticity. In the case of a single crack, continuing rise in the
water level is likely to 1ift the free ice edges at midstream and
submerge the two ice strips if the far edges remain attached to the
river banks (e.g., see Fig. 14). Eventually, heat transfer will cause
detachment and free flotation of the side strips.

In the more usual case where two hinge cracks form, the
middle portion of the ice cover will rise with the water 1eve1 and
eventually lose any sUpport that might have been provided‘at points of
contact with the side strips. At this time, the ice cover is still
unable to move but is subject to relatively large stresses owing to
loss of boundary support. In turn, these stresses may lead to .
formation of transverse cracks. | | .

' Two mechanisms of transverse crack formation have been
studied herein. The first mechanism involves bending on vertical
planes due to an advancing water wave that tends to 1ift and deform
the ice cover. Analysis suggests that rather steep waves are

| necessary to cause fracture. Except for very steep and small streams,

such waves can only occur artificially* or following the release of a

major ice jam upstream.

A different mechan1sm of transverse crack formation produces
ice sheets of the order of thousands of ice thicknesses long. This is
Tikely related to "horizontal" bending which arises essentially from
the meandering planform of - natural streams. This type of fracture
- does not require wave action, though it wvqu be assisted by it
through augmented flow shear stresses. |

The present study has considered some of the phenomena
associated with early breakup phases, with focus on mechanisms that

* e.g., by sudden reservoir releases
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can reduce the ice cover to a sequence of separate ice sheets.
- Further breakage -and the onset of jamming may then' result from
increased stage and channel width which allows some of the ice:sheets
to move (e.g., see Beltaos 1984). -

A more violent type of ice cover destruction may result from

releases of major ice jams (Gerard et al. 1984; Beltaos 1985 -
Unpublished data). In ‘this case, a "breaking front" develops with a
sharp transition between broken and intact ice. Front speeds of up to

5 m/s have been reported. It is not known what mechanisms are at work.

and thus it is difficult to consider the conditions under which the
front would keep moving or eventually be arrested, leading to a hew
jam. It should be recognized, however, that flow ve]ocities during
ice jam surges can be 10 or more times the ordinary steady-state
values which would result in amplification of the hydrodynamic forces
by a factor of 100 or more. Therefore, processés that ordinarily have
little effect on the ice cover, may contribute to its breaking during
surge action, '

6.0 SUMMARY

Two frequently observed types of early fracture of the river
ice cover have been studied, namely the longitudinal and transverse
cracks. Longitudinal cracks result from uplift pressure caused by
increasing discharge. These cracks appear soon after the start of
runoff and usually occur in pairs, one near each bank. A single
central crack occurs when ice thickness is large or channel width is
small.

Where two longitudinal cracksrform, the central portion of

the cover detaches ”eVentu$11y from the side strips, as the flow
increases. Transverse cracks may then form, by bending on vertical or
horizontal planes. Vertical bending requires rather extreme water
surface slopes, unlikely to occur in most streams, except during
surges from ice jam releases. However, during surge action,
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hydrodynamic forces are greatly amplified so that vertical bending, if
it occurs, could be of minor significance in ice breaking. o

Horizontal ‘bending results principally from flow shear and
the meandering planform of natural streams. Transverse crack
patterns, observed in the . Thames. River favour horizontal bending -as
the formative process.
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o TABLE 1
Bgsu}ts of "Vertical Bending" Analysis -

Full Submergence of Ice Cover

A2max |M W W 3
v u » | |. _A1c ;;”,Q . c A5
qg 4(]'Si)hi (]'Si)hi (1-si)Ahi

0 0.25 0.368 2.20 40.00 40.00 2.56
0.50 0.291 1.90 12.00 12.00 - 1.63

1.00 0.208 157 - 4,00 4.00 1.25
1.50 0.162 | 1.40 2.22 - 2.22 1.21

- 2.00 | 0.132 | 1.30 1.50 1.50 1.25

3.00 0.096 1.15 0.89 0.89 1.42

4.00 0.075 1.05 0.63 0.63 1.63

6.00 | 0.052 1.00 0.39 0.39 2.09

10.00 0.032 0.90 0.22 0.22 3.05

0.50 0.25 0.895 2.35 91.25 101.00 5.77
0.50 0.764 2.05 28.25 33.53 3.66

1.00 0.623 1.75 10.25 13.28 2.81

1.50 0.545 1.60 6.25 8.53 2.72

2.00 0.495 1.50 4.63 6.53 2.82

3.00 0.434 1.40 3.25 4.78 3.19

4.00 0.397 1.30 2.66 4.00 3.67

6.00 0.355 1.25 2.13 3.28 4.70

10.00 0.316 1.15 1.75 2.75 " 6.88

1.00 0.25 1.646 2.70 163.00 199.50 10.25
0.50 1.452 2.40 51.00 71.50 6.50

1.00 1.248 2.10 19.00 31.50 5.00

1.50 1.137 1.95 11.89 21.72 4.84

2.00 1.066 1.90 9.00 17.50 5.00

3.00 0.979 1.75 6.56 13.72 5.67

4.00 0.926 1.70 5.50 12.00 6.50

1 6.00 0.864 1.60 4.56 10.39 8.34

10.00 0.807 | 1.55 3.88 9.18 12.20
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®  TABLE 1

(continued)
A2max |M W W =
" u y | | AR 0 e AS
dg y (1-51)h1 (l-si)h1 (1-s )Ahi
1.50 0.25 2.623 3.05 255.30 344,00 . '16.02
- ] 0.50 | 2.361 | 2.80 80.25 131.50 10.16
1.00- 2.093 2.50 30.25 - 62.78 7.81
1.50 1.950 2.35 19.14 - 45,42 7.55
2.00 | = 1.858 2.30 14.63 37.78 7.82
- 3.00 1.745 2.20 10.81 30.84 8.86
4,00 1.678 2.10 9.16 27 .63 10.16
6.00 1.598 2.05 7.68 24.59 13.02
10.00 1.522 2.00 6.63 22.28 19.08
2.00 0.25 3.828 3.50 368.00 544.00 23.06
0.50 3.496 3.20 116.00 220.00 14.63
1.00 3.164 2.95 44.00 112.00 11.25
- 1.50 2.990 2.80 28.00 84.00 10.88
2.00 2.879 2.70 21.50 71.50 11.25
'. 3.00 2.743 2.60 16.00 60.00 12.75
4.00 2.661 2.55 13.63 54.63 14.63
© 6.00 2.564 2.50 11.50 49.50 18.75
10.00 2.471 2.40 9.98 45.58 27.45
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: TABLE 2
Characteristlcs of .Ice Sheets 0bserved

in the Thames River

Date of _
Observation

Reach

Description

| (cm)

Approx.

W,
(m)

Avera
‘ li(m

();e

Avergge

T(Pa)

Approx.

Estimated

o;(kPa)

ar. 17/82

Feb. 14/84

{Mar. 16/84

Upstream of
Chatham;
30-40 km
above river
mouth

Upstream of
Chatham;
31-42 . km
above river
mouth

Upstream of
Kent Bridge
51-56 km
above river
mouth

28

10

30 |

53

57

43

315

307

159

23,000

23,950

6,690

4.9

5.8

3.4

91

97

63
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Fig. 7. Location and magnitude of maximum bending moments for
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versus u. Vertical bending case.
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PLAN VIEW

Fig. 10. Generation of stresses at section 1 due to tangential

force t: shear = (rwids) cose ; axial force = (rwids)sine;
bending moment = (rwids)r.
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Fig. 11. Observed transverse crack pattern, Thames River above
Chatham, Ontario, March 17, 1982.




800+ o MAR.17,1982
1 R
400~ 00®®
] asn0°®
£ 300 o
< A .oogs 4
o _e
200+ 3 Celp®® aa 2
o] @ 7 A
) ° anbs84 a8
A A
A
100-: A a
‘ac T T T T T T T T T TT T I
89 88 95 90 80 : 50 30 20 10 5 2 05

PROBABILITY OF /; BEING EQUALLED OR EXCEEDED (%)

Fig. 12. Statistical distributions of lengths of ice
. sheets observed in the Thames River.

- A
p . | M y

Fig. 13. Definition sketch for Equation 22; horizontal
bending case.



Fig. i4. Single longitudinal crack and unlifted
strips due to rise in water level.
Channel width =10m (courtesy E. Kuusisto).
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Fig. A.1. Variation of coefficient K with AW '
0 (K = averaged ice deflection/uplift pressure head).

:‘. _ Fig. D.1. Sketch illustrating bending moments at point C.
' Horizontal bending case.
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APPENDIX A

Relationship of Uplift Pressure to Flpw_Characteristics

When the discharge begins to increase in the channel, the flow
becomes unsteady. The continuity equation reads

3A .30 . 9 (A1)
ot X :

in which A = flow area; Q = discharge; t = time; and x = longitudinal
distance. Prior to crack formation, i.e., while the ice cover remains

attached to the sides, the flow area is equal to Ao + Bo W, with Ab’ Bo =
jnitial area and width respectively and w = average ice deflection. Hence,

Eq. A.1 gives

W aq -
. | — = - — Au2
- At ax (A-2)

in which q = Q/B,. For relatively short times and channel lengths, the
unsteady flow could be assumed to approximately behave as a "frozen" wave
form so that

Q,c¥M.9 (A.3)
at X

in which C ée]erity. ‘Eq. A.3 may then be substituted in Eq. A.2 to
obtain, after integration S E

W = aq/C | o C(A.8)
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in which Aq = q = qg. Moreoever, thé ~average ice deflection can be

expressed as

W o= kp/y B - (A.5)
‘in which p-= uplift pressure; Yy = unit weight of water; and k = a
coefficient that can be calculated by integration of ice def]ections across

the channel (see Fig. A.l). Substituting Eq. A.5 in Eq. A.4 gives

%yAq/C i (A.6)

o
1]

As an examp]e; consider the Thames River near Thames?i]]e where
typical values of hj and W are 0.3 m and 40 m vespectively. Using E = 1.4
GPa and oj = 600 kPa gives AW = 6.7, ahj = 0.050 and pg¢ = uplift
pressure for crack formation = 1.5 kPa. The value of C is about 1 m/s while
Fig. A.l indicates k = 0.85. Using Eq. A.6 gives Aq = 0.13 m2/s whereby the
rise in discharge, required to form longitudinal cracks is 0.13 x 40 = 5.4
m3/s which, at the site undér consideration, occurs within 3 to 4 hours from
the start of discharge rise. The longitudinal pressure gradient 3p/3x can
be estimated using Eqs. A.6 and A.3, as

3 . _Y 2a A.7
ax kCZ ot (R.7)

For'thé Thames River example, 3q/3t = 10-> m?/s%. Over a distance of (say)
100 m, the change in pressure is only 0.01 kPa which is negligible relative
to ps. Hence, the 1longitudinal variation of p 1is very small which
jusitifies the use of the'simp1e beam theory.

| The effects of the vertical ice acceleration can be neglected,
if (Billfalk 1982b)

2
a°w
ah, | szél << gw , .(A.8)
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Using Eq. A.4, Eq. A.8 can be recast as -

4h. 2 ' - .
— a_g | «1 (A.9)
ghq | at | | ‘

If azq/at2 is approximated by Aq/At2 with Aot = time elapsed since the start
of runoff, Eq. A.9 can be re-written as

4h._i : . _
g« (A.10)

gAt2

For the Thames River example, h; = 0.30 m so that Eq; A.10 is satisfied
for At's exceeding 2s. i
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APPENDIX B

Conditions for'Negleéting'Vertical-Icé Acceleration - Wave Breaking

Using data by Sorensen (1978), Billfalk (1982b) deduced that the
vertical acceleration of the ice can be neglected, if '

4 h, ' K gw S (B.1)

Assuming that during the short time interval for which an ice sheet is
deformed and fractured by the incoming wave, the ice deflection form moves
downstream without changing in shape and amplitude, we have

oW ow
2 o cR : B.2
ot ax ( )

in which C = celerity of the wave form. Hence

82w 2 82w A
K o= A )
32 el (8.3)

Moreover, azw/,ax2 = M/EI so that Eq. B.1 may be recast as:

4',‘1C2 IM'. .
el <« 1  (B.4)

It may now be noted that !M| is limited by the flexural strength of the ice
cover, i.e., 'Ml 5-%'°ihi Noting also that I = hi3/12’ Eq. B.4 becomes

(__) - << 1 (B.5)
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For an order-of-magnitude estimate, Billfalk assumed that w =
hj. Putting o = 600 kPa, E = 6.8 GPa and C = 8 m/s (one of the largest
values observed during ice jam releases), the LHS of Eq. B.5 works out to 45
x 10"*/h; (hy is in metres). For hy = 0.5 m, this becomes 0.01 which
satisfies Eq. B.5 However, it can be shown that the value of w could be as
1ittle as 0.1 h; ‘at the locus of the maximum bending moment so that the
LHS of Eq. B.5 would be about 0.1. This may still be considered negligible
relative to 1.0, but, for wave celerities exceeding 8 m/s, Eq. B.5 may no
longer be satisfied. '
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APPENDIX C
Bending of Ice Cover by Incoming Water Wave

Case 1. 15 =0

Nith'reference to Fig. 6, we consider first the case 15 = O,
i.e., an ice cover whose top surface is nowhere submerged. The load is:

a = q e-qu ‘ (c.1)
in which

q, = Y8, (C.2)
and 8§, = rise of water surface above pre-wave value at the edge of the
cover (x = 0); and x = distance downstream of the edge.

The ice cover is assumed to respond as a semi-infinite beam on
an elastic foundation. The bending moment M is then (Hetenyi 1946):

™o Yeo : 1

in which
E = AX : (C.4)

and wy = deflection at x = 0; 96 = ice slope at x = 0, i.e., 6, =
(dw/dx)y- The functions F3,F, and F,,F, (not explicitly shown in Eq.
'C.3) are defined by: "

Fi(E) = Coshf cosE - (C.5)
Fa(E) = % (CoshE sing + SinhE cosk) (C.6)
Fa(5) = = Sinhg sine - (c.7)




Fy(g) = l.(Coshg sing - Sinh& cosk)
: 4 :

The following relatithhips apply (Hetenyi 1946):

dFy dfF, dF3 F dFy

~—‘-4F;_——=F;__= 3 — = F
A T: T 29 3

The quantity 6 in Eq. C.3 is given by:

6 = -1— I3 q (u) Fz2 [A(x-u)ldu

APPEN. C.2

(c.8)

(C.9)

(c.10)

in which u is a dummy variable and q is defined in Eq. C.1. Let}

o = A(x-u)
Then, Eq. C.10 can be manipulated to obtain

: -ug '
qoe £ _uo
G = = IO e Fa(o) do

Using Egs. C.5 to C.9, Eq. C.12 can be further reduced to

o
fl

4+p

Substituting Eq. C.13 in Eq. C.3 and re-arranging gives

M= aF3 + bFy + c(Fy - e %) - dFp

in which

: u-iz {F3 - wFy - i-uz(Fl - ™) +~l-u3F2}
A 4 4

(C.ll)_

(C.12)

(C.13)

(C.14)




Substituting Eqgs.
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W 4q

0 0 | (C.15)

22 A2 (443"

Yo 4q u

04 _° . (C.16)
A3 A% (annt) : o

2
u2q
—— (C.17)
A2 (44" |

3

Hq .

9 (C.18)
A2(4+u“)

C.5 to C.8 and C.13 in Eq. C.3 and re-arranging, gives:

Efes a,b dy , - c b d
e 1sin -t — = ) + COSE(= ~ - - —
{ § ( i 4) | (2‘ 3 4)}
£ . b a d b,c,d
+ ! —_———-) — =+
e {sing( £ - 2 - g + cost(z + 2 =l
- ce'"g . (C.19)

Since we have assumed a semi-infinite beam, M*0 for &+=, hence

K-

<
2

+R-i=0 (C.ZO)
8 4

w|or

) _
-4=0 c.21
7 | (€.21)

Solving for a and b gives

b

2(d~c). ' . (C.22)

2(2c-d) _ | (C.23)

Using Egs. C.15 to C.18 and C.22, C.23 gives after some algebra
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Wy = 2 ";1 | o (C.24)
v (w)?+1 |

(which is the same as Eq. 18 of the main text)

ZAq0 ,

9. = < K | | | | (C.25)
0 y )il o S |
u'zq '
M o= 2 [e™{(1-u)sing + cosg} - e™*] (.26)
AS(4+u7) .

which is the same as Eq. 17 of the main text)
To ensure that the top of the edge of the ice is not submerged
we should have the condition

Wy + (1 - s3)hy > 8, (C.27)

(It may bé noted via Eq. C.24 that the bottom of the edge of the ice cover
is always submerged as should be the case in order for the analysis to be
valid.)

Case 2, 15> 0

With reference to Fig. 6, we denote the distance from the
start of submergence by X, so that the edge of the cover is located at x =
-1o- The bending moment for x < 0 is: ’

mo= "L q x'? (0 <x'<1) (c.28)
2 s - - o0

in which x' = distance downstream of the edge = x + 15. At x = 0, the
moment becomes
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-q ] :
My, = 3?%; v (C.29)
in which ‘
- boEoA, - o e, (e.30)

The beﬁding moment in the region x > 0 is then (Hetenys 1946)

v o= % .Y
M = MoFl(E) + — FZ(E) + -5 F3(E) +
X A

i, |
R _:_é_O. Fu (€) % [¥ q FalA(x-u)Jdu (c.31)

in which Q, = shear force at x = 0. Proceeding as for the case 15 =

0, gives
M = aFs + bFy, + ¢' (Fi-e %) - d'F, + Moe'"E (C.32)
in whiéh
¢ = cHM (0.33)
Q
d' = d --;2 (C.34)

Applying the condition M = O for g+, gives

a = 2(d' -c') | | (C.35)
b =2(2c' -d') ‘ (C.36)

from which, after substitution of M, and Q,, we can obtain w, and
6o as (see also Egs. C.15 to C.18): |

q +1 4
wo= 2{20_¥*t1l .50+ (€.37)
° Yy (u+l)%+1 v 2
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0, = -2x{ _2,___2_5__ + 391+ )} . (C.38)
Y (u1)™1 v |

Since the water surface intersects the top ice surface at x = 0, we have
d, '
w = — (1 - S.i) h.i (C.39)

° Y

and, using Eq. C.37 and recalling tha gqg = v(1 - sj)hy:

5

oo () 1oy 42 (C.40)
qg o |

which is identical to Eq. 15 of the main text. Eq. C.39 may also be
re-cast as: '

' q
[ 2 - 2. | (C.41)
9 9 |

The ice deflection in the region x < Olcan be determined from:

12
2 q X
3L | (C.42)
dx' 2
Integrating once and noting that 6 = Cﬁi ) , gives
. , 0 Cdx® xlg]o. _
dw 1 . y3,1 .3
—_— = 0 -= = t .
EI ™ EI8, . ql,” + . qgx (C.43)
"Integrating once more and  noting that wy = (w)x'=1o, gives the

variation of w with x'.
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The maximum ice deflection, we occurs at the edge of the cover and is

given by

q.1
w o= w -18 + 3520

Substituting earlier findings and re-arranging:

YWe

W 4
=_9%4 2¢(¢+1)(""L;1. +y) + L
4 .qs u 2

which is the ‘same as Eq. 16 of the main text.

(C.44)

(C.45)

With the above results, the bending moment becomes (Eq. C.32):

L2 ) -
: M. et [o1 sing + ap cosE] -aze
9%
~in which
. 2
a = LTy 4 Y
(u-1)° +1 2
2 2
o = DT ¥
(n-1)° + 1 2
2
(v-1)° + 1

Note that Eqs, C.46 to C.49 are identical to Eqs. 9 to 12 of the main

text.

(C.46)
(C.47)

(C.48)

(c.49)
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- APPENDIX D

vBendjng;qn quizonta] P]anes

Consider an ice sheet AB of width W;, as sketched in Fig.
D.1.. The force at an element ds, is equal to jds. The projections
of this force on AD and BD are equal to the elementary normal and
transverse forces exerted at B due to the element dsl. The total force,
F, at B due to ice sheet AB is then given by

F = W, (AB) - (D.1)
The bending moment caused by F at a point C, downstream of B is equal to

F(CE). Taking - into ‘account Eq. D.1 shows that this moment, Mag, is
equal to tWi(AB)(CE) which, by inspection of Fig. D.1, gives:

Mg = 21 Wy a1 ‘ , (D.1)
in which a; = area of triangle ABC.

Considering next the bending moment at C due to an element ds;
between points B and C, we have

dMge = T W, dsz (C6) (D.3)

But ds2(CG) is equal to twice the area of the elementary triangle CMN.
Therefore

in which az is the area of the segment defined by the curve BMNC ahd the
chord BC. The total moment is obtained by the sum of Eqs. D.2 and D.4
which results in Eq. 22 of the main text.




