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MANAGEMENT PERSPECTIVE 

Ice cover failure at spring breakup is governed by thermo- 
dynamic and physical laws. In principle therefore, it is possible to 
describe the initial breakup process. This paper describes possible 
mechanisn, backed up by observation, for the breakup process and the 
subsequent form of the loose ice cover. ‘A 

' 

\ . 

.The analysis brings order and insight to the early stages of 
breakup which is an essential first step to logical forecasting and

l 

management of rivers subject to spring ice jams. 

T. Milne Dick 
E

‘ 

Chief " 
Hydraulics Division 

PERSPECTIVE-GESTION 

V La rupture de la couche de glace durant le dégel du printempsi 
lest régie par les principes de la thermodynamique et de la physique. Il est 

donc possible de décrire, en théorie, le processus initial d'une débficle. 
- '.,, . 

Ce document présente une description, fondée sur des observations, du méca-_ 

nisme de rupture des glaces et du comportement subsequent des plaques de 

glace détaehées. 
7 

Cette analyse explique le déroulement des phases initiales du 
phenoméne de la debacle, étape importante du processus de prévision logique 
et de la gestion des embicles printaniers dans les cours d'eau. 

Le Chef, 

T. Milne Dick » 

Division de l'hydraulique 
.
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ABSTRACT 

River vice breakup is‘ often attended by destructive ice 

jams. While considerable progress has been made in predicting 
1-" 

features of jams once they have formed, little is 'known about *the 
processes by which an intact ice cover is fractured during the early 
phases of the breakup period. Understanding these processes would be 
of benefit to forecasting the onset and severity of breakup.

_ 

Two frequently observed types of early fracture are 
longitudinal and transverse cracks. when runoff begins, uplift 
pressures develop on the underside of the shore fast ice cover. 
Analysis, based on the theory of beams supported- by elastic 
foundations, shows that longitudinal cracks are likely to develop soon 
after the flow begins to increase. For usual stream sizes and ice 

conditions, two cracks (sometimes called "hinge" cracks) ~are 

predicted, thus subdividing the ice cover into a main, central part 
and two side-strips. Where ice thickness is very large or the channel 
width too small, a single mid-channel crack is predicted. Field 
observations support the theory. , 

with continued increase in discharge, the central portion of 
the ice cover may eventually detach from the side strips and thus 
become subject to transverse fracture. Transverse cracks may form by 
bending on vertical or horizontal planes. Vertical bending may arise 
from the deformed shape of the water surface owing to unsteady flow. 
It is shown that fracture of this type requires extreme water surface 
slopes, unlikely to result from runoff processes alone but possibly 
occurring briefly during surges from released ice jams. 

Horizontal bending results primarily from flow shear and the 
meandering planform of natural streams. Fracture by horizontal 
bending does not require surge action and could account for transverse 
crack patterns observed in the Thames River (Ontario). -

i
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RESUME 

La rupture de la couche de glace gur leg. cours d'eau est souvent 
suivie d'emb5cles destructeurs. Méme si des progrés considérables ont été 
réalisés dans les méthodes de prévision do comportement des emb5cles aprés 
leur formation, on posséde peu de details sur les premiéres_phases du processus 
de rupture d'une couche de glace intacte. Il serait utile d'en savoir plus 
long sur le sujet, de facon 5 étre en mesure de prévoir le déclenchement et la 
gravité des emb5cles. 

;
_ 

,0n a remarqué qu'il se produisait tout d'abord des fissures 
longitudinales et transversales. Lorsque le ruissellement débute, des sous- 
pressions sont créées 5 la surface interne de la couche de glace solide prés 
du.rivage. Les analyses, fondées sur la théorie des poutres soutenues par une 
base élastique, démontrent que des fractures longitudinales semblent apparaitre 
dés que le courant commence 5 s'intensifier. Pour des cours d'eau moyens et 
dans des conditions normales de glace, on prévoit que deux fractures (quelquefois 
appelées fractures "charniéres") se formeront, divisant ainsi la couche de 
glace en une plaque centrale principale avec deux bandes latérales. On pense 
quesi la couche de glace est trés épaisse ou si le canal est étroit, une seule 
fracture apparaitra. Cette théorie est appuyée par des observations sur le 
terrain. A 

i

5 

Si le débit continue d'augmenter, la plaque centrale de la couche 
de glaée pourra éventuellement se détacher des bandes latérales et 5 son tour, 
sera peut-étre divisée par des fractures transversales. Ces fractures transver- 
sales peuvent étre produites par des courbures des plans vertical et horizontal. 
La déformation de la surface de l'eau causée par l'irrégularité des courants , 

peut produire une courbure verticale de la glace. Il a eté démontré que ce 
phénoméne ne se produira que si la pente de la surface de l'eau est trés 
prononcée, condition ne resultant vraisemblablement pas du ruissellement seul, 
mais plut6t du déferlement des glaces 5 la suite de la dislocation d'un emb5cle. 

' Les courbures horizontales sont principalement causées par l'action 
des crétes de courant et la forme en plan sinueuse des cours d'eau naturels. La 
surpression n'est pas nécessaire 5 la formation du fractionnement causé par des 
courbures horizontales; ce fractionnement pourrait expliquer le plan des 
fractures transversales observé dans la riviére Thames (Ontario).

_ 
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1.0 INTRODUCTION 

The breakup of river ice is a brief but important period of 

the year because of the frequent formation of destructive ice jams. 

While considerable progress has been made in predicting features of 

ice jams after they have formed, little is known about the processes 

by which a continuous ice cover is broken into the small fragments 
that comprise an ice jam. Understanding these processes would be of 

benefit to forecasting both the onset and the severity of river ice 

breakup. 
i 

i
' 

To common occurrences of the initial phases of breakup are 

investigated herein, namely the formation of longitudinal -and 

transverse cracks. In this manner, the initially continuous ice cover 
is broken down into separate ice sheets which often sets the stage for 
breakup "initiation", if this event is defined as the time when the 
ice cover is set in nntion. Once this occurs, further fnagmentation 
is rapid, owing to impacts of moving ice sheets either on channel 

boundaries or on other sheets. Clearly, the initial ipattern of 
1 .

l 

fracture governs the sizes of separate ice sheets which in turn may 
have an effect on the conditions for breakup initiation and, later on, 

on the location and persistence of ice jams.
' 

2.0 LONGITUDINAL CRACKS 
2.1 Physical Considerations and Assumptions 

'Consider the case of an ice-covered river reach, in which 

steady unifun flow prevails, as is approximately the case during the 
winter- period, The flow under the cover can be described as 

gravity-driven with nearly hydrostatic pressure distribution. 
when warm weather and increased runoff start, the discharge 

will begin to increase with time and upstream distance. So long as 

the cover remains integral and attached to the river banks, a pressure 
gradient must develop toa accommodate the increased discharge. The
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flow will thus become of the tconduit type and be- partly pressure- 

driven; Increasing uplift pressures will be applied to the ice cover 

until the latter‘s strength is exceeded and cracks form. Once this 

occurs, the water will be free to assume a higher stage and revert to 

purely gravity-driven flow while the cracked cover will float to a 

higher position. I T e
. 

» Prior to crack formation, the structural situation is that 

of a floating ice plate, supported at the edges and subjected to a 

distributed load, p, as illustrated in Fig. 1. "Considering the total 

upward pressure, pT, applied on the underside of the ice cover at 

its deformed state, we obtain! a

' 

PT = p + Ylsihj " W) '- (1) 

in which Y, vi = unit weights of water and ice, respectively; hi = 

ice cover~ thickness; w = deflection of the ice cover; and si = 

Y1/Y = specific gravity of ice = 0.92, Eq. 1 can be simplified to 

pT 
= jp-vwi l 

'(2) 

which suggests that the ice cover may be viewed as a plate subjected 
to an‘ upward distributed load, P, and supported by “an elastic 

foundation* of modulus Y. Eqs. 1 and 2 are valid so long as the bottom 
of the ice cover does not emerge above the water level, i.e., w §_ 

sihi. This condition is usually satisfied in practice and will be 

assumed to apply herein, The load p is laterally uniform but must 
vary with longitudinal distance and time in view of the unsteady flow 
conditions that prevail when the discharge starts to increase. The 

actual situation is thus too complex for_analytical solution but can 

* An elastic foundation produces a reaction that is proportional to 
the local deflection, The coefficient of proportionality is termed 
the foundation modulus. - 

~ 

' .v
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be considerably -simplified by making the following two assumptions: O 
(a)‘dy'namic effects are negligible; and (b) the long"itud,in'al_ gradient 

of p is small. - These assumptions. can be verified by and 

or‘der-'of-magnitude anallysfils (see Appendix A). The solution can thus 

be based on the theory of" beams resting on elastic .foun,dations* » 

(Hetenyi 1946)‘. _A<< solution for infinitely long beams (very wide 

channel) hasbeen obtainedlby Billfalk (19814). i 

Y2 .2 4 Anal ytica_l .i Re1l,ajtjons‘~hi‘ps _ 

' 

For a beam of arbitrary'l'ength, Hetenyi (19.46) gives the
l 

following expressions for the bending moment: 
- 

-

' 

gr ; V. 1 U . 
- 1 . 

‘

_ 

" 
2)‘ M =v 

SmhAzsm)‘z -+;-SJ-:7]-'1.?‘Zs;_$f1n>‘z~ 
; hinged ends (3), 

p cosh kw + coskw 

1.2 , 

' 

. . 2. M = 
__ W (sinhlzcoslzl + coslzsinhkzl p - sin . 

s-in =
V 

1-sin>»zcosh.>\z1 - coshlzsinlzl); fixed ends (4') i 

in which M ibending moment per unit ‘width; p = uniformly distributed 
‘load. per» unit width applied on the beam; z =g distance from the left 
-ice sedge; zl = dist,lanvce»fLr"'om the right: ice edge = H - z; and X is 

definéd by l 

i 

‘ 

- 

- 

‘ 

. 

’ 

. 

' 

- 
_ t 

>~ = 1/ Y/451. n 
('5') 

in which E = elastic modulus of ice; and iI- = moment of inertia of ice 

‘cover'per unit width“? hi3/12. 
'

~ 

Eqs. 3 and 4 may be used to study the location of maximum M 

and the uplift pressure necessary to cause cracking of the cover. 

V 

First, the case '>.w:+.~ is considered; Eqs 3 and 4 reduce» to 

, .2 __ q 

g 

, 

g

. 

-Z-A-I! = e Azsilnkz, hinged ends (6) 
P 

s " C
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. 
2 

.

l 

vgi-E = e'AZ(sinAz - coskz), fixed ends (7) 
, P ,

t 

These expressions-are identical to Billfalk's (1981) for the infinite- 

ly wide channel case. _, 

For finite channel widths, Eqs. 3 and 4, along with 
corresponding equations for ice deflection (Hetenyi, 1946) can be used 
to determine moment and deflection variations across the Achannel. 
Typical results for hinged ends are shown in Figs. 2 and 3. Fig, 2 

shows.that maximum bending occurs at midestream for AN_§ 3.0 which 
suggests that only .one central gcrack should form, in this case. 
However, as Aw increases above 3, the maximum bending moments are no 
longer ‘located at mid-strem' which implies that two longitudinal 
cracks should, form,_ each located a distance .l5 off the, respefitive 
channel end. For the case of fixed ends the calculationsfi have 
indicated that.lS = 0, i.e., maximum bending occurs at the channel 

edges. V ., 
b 

, 
.- _, ._ _ 

V »Figure 4 shows the variation of ls/H with Aw while Fig. 5 

gives the uplift pressure required to cause crack formation, pf, as 

a function of AN as well as ice thickness and ice properties (note 
that oi = flexural strength of the ice cover). Figs. 4 and 5 indi- 
cate that an ice cover may be considered "infinitely" wide if xw Z_6. 

The present results also apply to the case of an ice cover 
subjected to a drop iri the water level, provided the bottom of the 
cover is everywhere in contact with water. This property was utilized 
by Billfalk (1981) to test.his analysis and obtain good agreement with 
observation, using E = 6.5 GPa. The latter figure is practically the 
same as 6.8 GPa, recommended by Gold (1971) for good-quality fresh- 
water ice.

1 

where cracking is the result of uplift pressures, as happens 
near the time of breakup, it is not. possible to know before, hand 
whether the end _supports are fixed or hinged. However, §when 
longitudinal cracks are offset, i.e., they are located some distance 
off the edges (“hinge" cracks), one could assume hinged supports.
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where no cracks are present, even though the ice cover is detached 

from the river banks, one must assume that either the end supports 

were fixed, or the adhesion of the ice to the banks was too low to 

permit development of -hinge »cracks. ‘In the writer's iexperience, 

.longitudinal cracks are usually offset so that the hinged support type 

would seem to be a common occurrence. " 

‘

_ 

l jAnother complication that may arise in nature may be due to 

creep effects. Ice is known to be a viscoelastic_material.that only 

exhibits elastic behaviour during brief loading times. However, the 

creep characteristics of ice are not well understood at present while 

the loading history of the ice cover under the present conditions is 

difficult to determine. As shown in Appendix A, the loading time is of 

the order of a few hours which guarantees substantial creep effects. 

A simple empirical dPProach in this case is to use the results of the 

elastic analysis but introduce reduced values of E and oi.
' 

From observations of crack locations in the Thames River 

(Ontario), a value of E = 1.4 GPa has been deduced. This is about 

five times less than the elastic modulus of good-quality ice subjected 

to rapid loading. The difference is large but can be.attributed to 

creep effects. In Appendix A it is shown that the ice cover is 

subjected to an increasing distributed load while the time to failure 

is of the order of a few hours. »Sinha's results (1977) with small ice 

specimens subjected to constant compressive stresses, indicate similar 

reductions in the apparent value~ of E for similar loading times. 

Though the respective loading configurations and histories differ, the 

approximate coincidence_ of Sinha's results with the present ones 

supports the hypothesis that creep is largely responsible for the low 

value of‘E proposed herein. " 

' 

.g 
‘

_ 

2.3 Case Studies and Examples, 

Using E = 1.4 GPa, we now proceed to describe a few field 

observations and compare them to prediction.
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Thames River at Thamesville, 1981 and 1982. .0bserved ls = 5.0 
m; hi = 0.32 m; w = 40 m. From Eq. 5 we find}. =. 0.16 m'1' and 
Aw = 6.4 which exceeds 6.0 so that the infinite-width formulae 
apply. It follows that the predicted value of ls is equal to 
n/4A i(see Eq. 6), i.e., ls = 4.9 m which is close to the 
observed value. 5 

V 

u 
. . 

Thames River near Louisville, 1983. Observed ls ~ 2.0 nu _hi 
-= 0.11. m; w = 55 m. We ma A = 0.35 m-1 and AW s=. 19.5. 
Therefore, predicted ls = n/4A = 2.2 m which is close to the 
observed value. 

V 

» 

"

_ 

For several Manitoba streams, it has been observed that a single 
central cracks occurs for widths less than 30 m (J._ Wedel, 
personal communication). Fig. 4 then implies that AN should be 
less than 3.0. Therefore A should not exceed 3/30 = 0.1-m‘L. 
Using Eq. 5 gives hi > 0.6 m which was indeed the case for the 
streams under consideration (J. weddel, personal communcation). 

Grand River near Leggatt, 1982. A single, mid-channel crack was 
observed in this reach prior to breakup. Accurate values of hi 
and- W are notj available. Ice ithickness has been estimated as 
0.45 m from measurements elsewhere on the Grand River. ‘The 

channel width has been assumed to be 27 m, a value measured under 
open water conditions at a stage similar to that which prevailed 
when‘ the crack ‘was observed. Putting. E "= 1.4 GPa and hi ~= 

0.45 m in Eq. 5 gives A =5 0.12 m -1 and Aw = 3.3 which, from 
Fig. 4, suggests that two cracks should form, contrary to what 
was observed.' However, the accuracy of hi and W is such that 
AW could easily have been 3 or less which would indicate only one 
crack formed. Moreover, inspection of Fig. 2 indicates that when 
AH is between 3 and" 3-5, the maximum bending moment sis only 
slightly more than the central moment. If, as is often the case,
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hi varies somewhat across the stream, dbeing thinner near the 

centre. a central crack would form even if xw > 3 (note that 

bending stress varies as*h1 -2), ' 

'
' 

"As an example of -applying the apresent results, let hi 
'= 

0.50 m, H = 50 m, E = 1.4 GPa and oi = 600 KPa; then Eq. 5 gives 

~ A = {9.a1 X 103/(4 "x 1.4 X 10° x 0.53/12)}1/" = 0.11m-1. 

Hence AW = 5.7 and Ahi = 0.057. From Fig. 5, we find that 

pf/o1(xh1)2 = 1.04, hence pf = 2.0 kPa. After formation of 

cracks, the ice cover would float at an elevation that would exceed 

the pre-stressing one by 2.0 x 103/9.8 x 103 = 0.21 m. Fig. 3 

indicates that the maximum deflection is about 1.1 pf/A = 1.1 x 0.21 
= 0.23 m which is less than sihi (=-92 x .5 = ,0-46 m). as is 

required for the theory to apply.. For AN = 5.7, Fig. 4 gives ls/H_= 

0-137, hence ls = 50 X 0.137 = 6.9 m. 
‘ ’ 

.

" 

3.0 'TRANSVERSE CRACKS - BENDING ON VERTICAL PLANES 

Transverse cracks are often observed in the river ice cover 

when breakup is imminent. The mechanisms responsible for transverse 

cracking are not clearly understood at present and can only be studied 
by‘ consideration of the spacing of the cracks and the stresses 

required to cause cracking. An obvious candidate is bending of the 
-

< 

ice on vertical planes by an advancing flood wave. This possibility 

is explored in this section.
' 

3.1 
V 

' 

Physical Qonsiderations and Assumptipns 
l

1 

~ when runoff is increased, the ice cover will first crack 

longitudinally and eventually detach fromithe river banks. Once this
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has occurred, the ice cover will become subject to bending on vertical 

planes, owing to the "shape of the water surface. The latter may 
exhibit a wave-like form that travels in the downstream direction. 

The wave could be the result of increasing runoff or ice jan release 
or a combination of these effects. with reference to Fig. 6, the 

total upward pressure applied on the ice cover can be shown to be 

equal to Y5 - vw for the region where the water level is below the top 

of the ice cover (x Z_0); and equal to Y (1 - s1)hi where the top 

ice surface is submerged (x < 0). Therefore, for x Z_0, the ice cover 

may be considered a beam subjected to a distributd load (= Y6) and 

supported by an elastic foundation of nndulus equal to Y. For x <,0, 

the ice cover acts as a free bean subjected to the uniform load Y(l - 

si)h1, 
_ 

Because 6 and lo (= length of ice cover submergence, esee 

Fig. 6) are time-dependent,, w is ialso time-dependent, i.e., w = 

w(x,t). It follows that the differential equation describing w (e.g., 
see Flflgge 1962) should include a term proportional to the vertical 
ice acceleration, 

gig 
. Based on an order of magnitude analysis, 

Billfalk (1982b) argued that this term can be neglected, so that any 
instantaneous distribution ‘of w is produced by the 'static loading 
v6(x) that prevails at the same time. This assumption is retained 
herein (see Appendix B). 

To obtain s(x), the form of the water surface should, 
strictly speaking, be determined frun fluid dynamic considerations. 
However, this is a highly complex task and a first approximation is to 
use an assumed shape of the water surface profile. aThis problen was 
first considered by Billfalk (1982a) who used a linear water surface. 
However, Billfalk's analysis did not consider the loss of the elastic 
"foundation" along the submerged portion of the ice cover or the 
effect of the ice deflection on the location of point A (Fig. 6). 

Herein, these effects are taken into account and a more 
realistic water surface shape is assumed, i.e.,



i 

V 

(u*1) 1 2 

. 6(x)J _6Oe-“Ax u 

v(8)" 

1" which 6° = value of_6 at x_=-0; and u is,a dimensionless coeffi~ 
Cient, 

_ 

_ 

V 
'f 

3.2- . Analytical Relationships 

, 
Details of the_solution are given in Appendix C while the 

main relationships are reproduced below;- - 

__ 

'

' 

_ 
2 ‘_ 

. __ .

V 

for" 4 x Z_0: §E!.= e €(a1 sin£»+ ugcosi) - Q38 ug ' (9) - 

S 
'

. 

in -which 5 = ‘Ax; qs. = v(l e si)hi; land a1,q2,a3 are dimensione 
less coefficients defined by - 

°“ " “W? i<1<>> 

- We W2 
32 ' " -' (1-1')‘ 

-
| 

as = __ll1§li__ . (12) 
. (p-1) 1+ 1 

w = Al6_ (13) 

Of interest are also the deflections we (at x = -lo, i.e., at the 

ice edge) and wo (at X = 0)!
’ 

YW ‘ Y5 __9_=_°-1 v(14) 
qs qs ~
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l 5 . 

:_Q_ = l£fl%i_:_l (1 + ¢)Z (15) 
<1, 11, 

l 
l 1

V 

. 

' |-I» 

= lwi 
+_ z¢(“1+lq,)(fll,+l,) + JL (16)- 

qs qs 
i u 2 

A 

Eq. 14 expresses the condition that the water surface and 
the top ice surface intersect at x = 0. Alf la (and ¢) are set equal 
to zero in the above-equations, we will obtain the solution for the 
case where “the edge of the_ ice cover is at the threshold of 

submergence. ’ 

, 

s 

' 

- 

, 
_‘ ' 

- 

_ 
4 

e 

. 

i ,~ V‘.
' 

' 

e 

h 

_ However,_ if lo = O, andl the »icel cover: is still _aDerging 

above the water _level- (i.e., vwo/q; P§ (160/qs) - Y1), th€ 
solution becomes 

Q 

e 4‘ 
1. _; 

1 
§1 I 

“ 
» 

‘ '

V 

2 .2___ 
_ 

Y __ e 

.§_M = __£,E [e €e{(1-u) s1n€ + cosé} - e "£1 
j 

(17) 
v60 V 

4+u 

h W0 u 

2(u+1) ’ 

V - 

t _ = e 

1 

r 18 
' 

so , e(,;+1)? T. 1 
)

V 

It is noted that the analysis ignores the deformation of the water 
surface that takes place near the ice edge due to local stagnation 
effects. This, however, is a rather localized occurrence and should 
not greatly influence the results.

_ 

' ' ,'Figure shows dimensionless plots of maximum, bending 
moment, edge .deflection and crack ’l0cation versus u, eprior, to
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submergence of the ice cover. Plots of bendi.ng moment versus x have 

indicated that the moment drops to negligible values b€_YOnd distances 
of 6/xto 10/A. when a part of the ice cover is submerged, Eqs. 9.-16 

apply. Figures 8 and 9 show dimensionless moments and crack locations 
plotted versus u with ll! as a parameter while more detailed results are 
presented in Table 1.. 

3.3 Examples 

As an example, consider a 0.5 m thick ice cover with 01 = 

600 KPa and E = 6.8 GPa. (because the wave travels relatively fast", 

there is little time for creep and thence for reduction of the 

apparent modulus of elasticity. Then, from Eq. 5, >; = 0.077 m'1 and 

Ahi = 0.038. The bending moment, Mf (per unit width) required to 

cause a crack is 

,_ 1 2 
Mf. - 

.6. oihi 4 
(19), ' 

and the dimensionless quantity AZM‘/q works out to f s 

, 

=’2M/' =l h-2-_--Oi 20' 
mi’ A 

1’ qs 6 
(A ‘)~ v(1-<s,)hi

) 

For. the present example, mf # 0.37. Inspection of. Fig. 8 suggests 

that, to effect cracking without submerging the ice cover (iv = 0), the 

flood wave must have a value._of u that is no more than 0.25. For u = 

0.25, Eqs. 14-.16 (or Table ,1) indicate that we = wo = _1.60 m and 

so = 1.64 m which are large but not implausible values. The crack 

location (x = Tc. ) can be determined from Fig. 9, i.e., Alc = 2.2 

and lc = 28.6 m so that lc/hi = 57. The "average" slope TE, of the
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.

: 

wave can be defined over a distance xo such that the value of 6 at 

xo becomes (say) 2% of 6° *. Then 
V 

_ 
,

. 

AS =1 0.25 ll-15 (21) 

and works out to AS = 0.008. This value is rather large and it is 
questionable whether it can normally occur in_nature, unless the wave 
is a surge caused by ice jam release. As the wave moves downstream, 
the value of u must decrease due to subsidence. If u were, for 
example, equal to 0.10, Fig. 8 suggests that a crack would form before 
the edge of the ice cover reaches the water surface. Then, the graphs 
_of‘ Fig. 7 would apply. For u = 0.1, max|M|)2/v80. = 10.002 ‘and 

max|M|A2/qs = 0.002 Ydo/qs. To effect cracking, the latterfi
' 

quantity should be equal to mf, i.e., 0.37. Hence v60/qs = 185 
and thence 60 = 7.4 in which is an extreme value, unlikely to be 
encountered in nature. The corresponding value of lc is also given 
i_n Fig. 7 as >.l¢ = 2.55. Hence lc’ = 33.1 m or lc/hi "=, _6sr and 
AS = 0.014 which, too, is implausibly large. 

- Another example can be worked out if u is set equal to 1.00. 
Fig. 8 indicates that, for w = 0, the value of m is 0.21 which is less 
than 0.37 and thus the' ice cover will not fracture without 
submergence.Using Table 1, the required value of w can be determined 
by interpolation. This gives ip = 0.22 and A10 = 1.63. Therefore, 
lc = 21.1 m and lc/hi = 42. Moreover, Eqs. 14-16 indicate that 
so = ,0.30 m, wo = 0.26 m‘ and we = 0.29 m, all of which are 
plausible.’ The average slope (Eq. 21) is 0.006 which again would be 
expected to occur under jam release conditions. 

* Note that this slope is in addition to the channel slope under 
steady flow conditions.

p
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The preceding analysis has shown that advancing flood waves 
can break an ice cover by bending on vertical planes provided the wave 
slope (i.e., the slope in excess of the steady-state value) is about 
5 x 10'3 or more*. Such slopes are rather extreme and unlikely to be 
produced by runoff alone; they could, however, prevail for a brief 
time after the release of a large ice jam. At the same time, it 

should be recognized that major jan releases are often attended by 
very large flow‘ velocities and shear, stresses. It is possible, 
therefore, that an ice cover will be destroyed by hydrodynamic forces 
or by the advancing "ice jam well before it can be fractured by 
vertical bending. The mechanisms involved in this type of breaking 
are unclear at present and thus no quantitative analysis is possible. 

4.0 - TRANSVERSE CRACKS - BENDING ON "HORIZONTAL" PLANES 

Shulyakovskii (1972) proposed a breakup mechanism which 
would result in transverse cracks due to stressing on planes parallel 
to the water surface (herein called, with some license, "horizontal" 
planes for simplicity). This mechanism is illustrated in Fig. 10 
where it is shown that stresses develop in the ice due to the accumue 
lated effects of the flow shear stress and the downslope component of 
the weight of the ice cover. In a straight river, only compressive 
stresses can develop but, in a meandering channel, shear stresses and 
bending moments are also present. .1t can be shown that tensile 
stresses caused by bending are the most likely to cause fracture.of 
the ice cover. Moreover, an order-of-magnitude calculation ‘has 

indicated that cracks‘ caused by horizontal bending would be spaced 

* The required slope is roughly proportional to /5;. If 01 drops 
to as low a value as 100 kPa due to "thermal deterioration, the 
limiting wave slope would be 2 x 10'3 which too is a large value.

r
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very far apart- relative to what was determined for the case of 

vertical bending. Transverse crack patterns with average spacings of 
1,000' to 1,600 ice‘ thicknesses have been -observed =recently in» the 

lower Thames River (Ontario). An example is shown in Fig. 11 while 
the statistical distributions of li (= distance between consecutive 

cracks) are illustrated in Fig. 12. ' ' 

tTo test whether horizontal bending might have "been 

responsible for the Thames River results, it is necessary to estimate 
the‘associated bending moments. This is not a simple matter because 
the forces transferred between adjacent ice‘ sheets depend on ~1@¢a1 

channel geometry and re-alignment of sheets after crack formation. 
with reference to Fig.) 13, a crude estimate can be ‘obtained Vby 

assuming that crack C forms solely as a result of (a) bending caused 

by tangential forces along the arc BC; and (b) bending caused by the 
force transmitted_fran sheet AB to sheet BC. Contributions from ice 

sheets farther upstream, are neglected. The bending moment at Cpis 
then (see Appendix D for derivation) 

M‘ = 2 1 wia (22) 

in which Hi = width of ice cover; a = shaded area in Fig. 13; and 1 

= 11 + Y ,sihi .S, with 11 = flow shear stress applied on the 
underside of the ice cover; S = slope of water surface. when a crack 
forms, ,M Ais equal, to oihiwiz/6._ Using Eq. 22, the~ flexural 
strength, 05 can be estimated from _ 

‘-
_ 

“i = 12 (I3?) 
I (23)
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: Table 2 summarizesobserved characteristics of the Thames 
River ice sheets and estimated values of oi based on Eq. 23. The 
latter range from 60 to-100 kPa which is low relative to 600 kPa, a 

common flexural strength value for good-quality ice, determined by the 
well-known ibeam .test (Frankenstein‘*1961;' Korzhavin 1971; .Butyagin 
197Z)- However,_ the _value of oi has been 1found to decrease with 
specimen size; For .the present loading configuration, Butyagin's 
(1972) results suggest a reduction factor of at least 3 and possibly 
as much as 5 for the flexural strength of the entire ice cover, 
relative to that obtained from beam tests. This would bring_o1 up 

to at least 180=300 kPa which is well above the lower limit.of'o1 
measured near the time of breakup (= 100 kPa - Frankenstein 1961). 

Reductions in strength could also result from creep effects or from 
penetrating short wave radiation ’(e.g,, see ,Bulatov 1972; Ashton 
1983). ' 

A

l 
- In conclusion, it may be stated that "horizontal" bending 

could account for the crack patterns observed in the Thames River. It 

may also be noted that this mechanism does not require "surge" action 
as it can be effective with relatively low values of 1 (Table 2). 

5.0 . DISCUSSION 

vThe preceding analysis has illustrated some of the patterns 
by which an ice cover is likely to be fractured before it is set in 

motion. It is emphasized that patterns not considered herein are also 
possible, for example, intense thermal deterioriation can cause large 
open leads and frequent discontinuities in the ice cover. Thus, the 
present results are most applicable to the premature breakup, i.e., 

where conditions of rapid runoff prevail with little heat input to the 
ice cover. '

. 

" The first occurrence of fracture appears soon after the 
discharge begins to increase and is manifested by the formation of 

longitudinal cracks that , in streams of fair widths, are parallel and 
close to the banks. However, as the channel width decreases, the two
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cracks may shift towards the centre and eventually merge into a 

single, mid-channel crack. The relative location of the longitudinal 
or "hinge" cracks, ls/H, is governed by the parameter AH, i.e., it 

depends on channel width as well as ice thickness, density and modulus 
of elasticity. In the case of a single crack, continuing rise in the 
water level is likely to lift the free ice edges at midstream and 
submerge the two ice strips if the far edges remain attached to the 
river banks (e.g., see Fig. 14). Eventually, heat transfer will cause 
detachment and free flotation of the side strips., 

, , _ 

In the more usual case where two hinge cracks form, the 
middle portion of the ice cover will rise with the water level and 
eventually lose any support that might have been provided at points.of 
contact with the side strips. At this time, the ice cover is still 
unable to move but is subject to relatively large stresses owing to 
loss of boundary support. In turn, these stresses~ may _lead to 
formation of transverse cracks. ' 

»

. 

I 

Two mechanisms of transverse crack formation have been 
studied herein. 

A 

The first mechanism involves bending on vertical 
planes due to an advancing water wave that tends to lift and deform 
the ice cover. Analysis suggests that rather steep waves are 
necessary to cause fracture. Except for very steep and small streams, 
such waves can only occur artificially* or following the release of a 
major ice jam upstream.

. 

A different mechanism of transverse crack formation produces 
ice sheets of the order of thousands of ice thicknesses long. This is 
likely related to thorizontal" bending which arises essentially from 
the meandering planfonn of natural streams. This type of fracture 
does not require wave action, though it would be‘ assisted by it 
through augmented flow shear stresses. 

i

~ 

The present study has considered some of the phenomena 
associated with early breakup phases, with focus on mechanisms that 

* e.g., by sudden reservoir releases
_
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can ‘reduce the ice cover to a sequence of separate, ice sheets. 
Further, breakage ¢and_ the onset of jamming may then result from 
increased stage and channel width which allows some of the ice sheets 
to move (e.g., see Beltaos 1984). 

4 

"» 
l ' 

A more violent type of ice cover-destruction may result from 
releases of major ice. jams (Gerard ~et al. 1984; Beltaos 1985" - 

Unpublished data). In this case, a "breaking front" develops with a 
sharp transition between broken and intact ice. Front speeds of up to 
5 m/s have been reported. It is not known what mechanisms are at work 
and thus it is difficult to consider the conditions under which the 
front would keep moving or eventually be arrested, leading to a new 
jam. It should be recognized, however, that flow velocities during 
ice jam surges can be 10 or more times the ordinary steady-state 
values which would result in amplification of the hydrodynamic forces 
by a factor of 100 or more.' Therefore, processes that ordinarily have 
little effect on the ice cover, may contribute to its breaking during 
surge action. 

6.0 SNMARY 

Two frequently observed types of early fracture of the river 
ice cover have been studied, namely the longitudinal and transverse 
cracks. Longitudinal cracks result from uplift pressure caused by 
increasing _discharge. These cracks appear soon after the start of 
runoff and usually occur in pairs, one near’ each bank. A single 
central crack occurs when ice thickness is large or channel width is 
small. . 

, Where two longitudinal cracks form, the central portion of 
the cover detaches ‘eventually from the side strips, as the flow 
increases. Transverse cracks may then form, by bending on vertical or 
horizontal planes. 

V 
Vertical bending 'requires' rather extreme .water 

surface slopes, unlikely to occur in most streams, except during 
surges from ice jam releases. However, during surge action,
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hydrodynamic forces are greatly amplified so that vertical bending, if 

it occurs, could be of minor significance in ice breaking. 
, Horizontal bending results principally from flow shear and 

the meandering planform of natural streams. Transverse crack 
patterns, observed in the Thames.River favour horizontal bending as 

the formative process. , .
» 
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TABLE 2 

_in the Thames River 

Date of
_ 

Observation 
Reach‘ Approx. Average 

T Description 1 hi ~Ni 1i(m 
cm) (m) 

'- 
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Estimated 
¢i(kPa) 

Mar. 17/82 

F&b. 14/84 

Mar; 16/84 

Upstream of 
Chatham; 
30-40 Mn 
above river 
mouth 

Upstream of 
Chatham; 
31-42,km 
above river 
mouth 

Upstream of 
Kent Bridge 
51-56 km 
above river 
mouth 
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Fig. 14. Single longitudinal crack and uplifted 
strips due to rise in water level. 
Channel width =10m (courtesy E. Kuusisto)
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APPEN. A.1 

APPENDIX A 

y 

Relationship of Uplift Pressure "to Flow Characteristics’ 

when the discharge begins to increase in the channel, the flow 

becomes unsteady. The continuity equation reads
> 

J-+93. = 0 '(A.1) 
at 8x 

in which A = flow area; Q = discharge; t" = time; and x = longitudinal“ 

distance. Prior toacrack formation, i.e., while the ice cover -remains 

attached to the sides, the flow area is equal to A0 + BO w, with Ab, Bo = 

initial area and width respectively and fi‘= average ice deflection. Hence, 

Eq. A.1 gives _ 

~ .
. 

aw 
w ._ = -all A2 
-Pal; ax 

('4) 

in which q = Q/Bo. For relatively short times and channel lengths, the 

unsteady flow could be assumed to approximately behave as a "frozen" wave 

form so that . 

3-‘l+ C?.‘l= 0_ (A.3) 
at Bx

1 

in which C = celerity. ‘Eq. A.3 may then be substituted in Eq. A.2 to 

obtain, after integration 
‘ 

'

E 

a = Aq/C 1 (A.4)

I
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in fwhich Aq = q ~ qo. 
’ Moreoever, the ‘average ice deflection .can be 

expressed as 

W = KP/Y t (A-5) 

in which p- 2 uplifti pressure; Y .= unit weight of wat€P;. and _k = a 

coefficient that can be calculated by integration of ice deflections across 
the channel (see Fig. A.1). Substituting Eq. A.5 in Eq. A.4 gives 

l T 

D = %YAq/C (A-6) 

' 5 

As an example, consider the Thames River near Thamesville where 
typical values of hi and N are 0.3 m and 40'm respectively.“ Using Ef= 1.4 
GPa and oi = 600 kPa gives AN = 6.7, xhi = 0.050 and pf _= uplift 

pressure for crack formation = 1.5 kPa. The value of C is about 1 m/s while 
Fig. A.1 indicates k = 0.85. Using Eq. A.6 gives Aq = 0.13 m2/s whereby the 
rise in discharge, required to form longitudinal cracks is 0.13 x 40 = 5.4 
m3/s which, at the site under consideration, occurs within 3 to 4 hours from 
the start of discharge rise. The longitudinal pressure gradient 8p/ax can 
‘be estimated using Eqs. A.6 and A.3, as 

Q: X.

I 
K‘. 

q1< "_p= 11 A7 ‘ 

at 
(') 

For the Thames River example, aq/at = 10'5 m2/s2. Over a distance of (say) 
100 m, the change in pressure is only 0.01 kPa which is negligible relative 
to pf. Hence, the longitudinal variation of p is very small which 
jusitifies the use of the simple beam theory. 

The effects of the vertical ice acceleration can be neglected, 
if. (Billfalk 1;98.2b,)'_ ~

_ 

4hi' 2%?‘ 
<< gw (A.8)
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Using Eq. A.4, Eq. A.8 can be recast as‘! 

4h 32
_ +1 

I 
-2 

I 

<< 1 (A-9) 
gAq 31; . 

If azq/atz is approximated by Aq/Atz with At = time elapsed since the start 

of runoff, Eqt A.9 can be re-written as 

4h] m 

.__2 << 1 (A.10) 
gAt A 

For the Thames River example, in = 0.30 m so that Eq; A.10 is satisfied 

for At'$ exceeding 2s.
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APPENDIX B ' 

Conditions for Neglecting Vertical Ice Acceleration — Nave Breaking 

~ Using data by Sorerisen (1978), Billfalk (19a2b) deduced that the 
vertical acceleration of the ice can be neglected, if ~

' 

it 

-4 ni|§.;l | 
<< gw" 

' 

‘(B.'1) 

Assuming that during the short time interval for which an ice sheet is 

deformed and fractured by the incoming wave, the ice deflection form moves 
downstrean without changing in shape and amplitude, we have ~ 

V 

321 = -c°_"' (3.2) 
at 8x 

in which C = celerity of the wave form. Hence 

(DO) <"l'l\l

2 
('7
N 

QJOJ XN 
»s 

f\ @ O0 Qfz 

Moreover, 82w/8x2 = M/EI so that Eq. B.1 may be recast as:

2 4hiC |M| 
EEf_- -:7! << I (8.4) 

It may now be noted that !M| is limited by the flexural-strength of the ice
1 cover, i.e., |M| §_E.oihi . “Noting also that I = hi3/12, Eq. B.4 becomes 

80- 2 
(-E-') 5-; 

<<1 (5.5)
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For an order-of-magnitude estimate; Billfalk assumed that w = 

hi. Putting oi = 600 kPa, E = 6.8 GPa and C = 8 m/s (one of the largest 
values observed during ice Jam releases), the LHS of Eq. B.5 works out to 45 
x 10""/hi (hi is in .metYres').- For hi = 0.5 m, this becomes 0.01 which 
satisfies Eq. B.5 However, it can be shown that the value of w could be as 

little as 0.1 hi at the locus of the maximum bending mnment so that the 
LHS of Eq. B.5 would be about 0.1. This may still be considered negligible 
relative to 1.0, but, for wave celerities exceeding 8 m/s, Eq. B.5 may no 
longer be satisfied.



Case 1, lo = 0 
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APPENDIX C . 

Bending of Ice Cover by IncQming.Hater Have 

with reference to Fig. 6, we consider first the case lo = 0, 

i.e., an ice cover whose top surface is nowhere submerged. The load is: 

q = <10 
e'"“ (C-1) 

in which 
A qo 

= v60 (C.2) 

and 6° = rise of water surface above pre-wave value at the edge of the 

cover (x = 0); and x = distance downstream of the edge. 
The ice cover is assumed to respond as a semi-infinite bean on 

an elastic foundation. The bending.moment M is then (Hetenyi 1946): 

Ywo Yeo 1 

in which 

E = Ax (C.4) 

and wo = deflection at' x = 0; eo = ice slope at x = 0, i.e., so = 

(dw/dx)°. ‘The functions F3,Fq and F1,F2 (not explicitly shown in Eq. 

C.3) are defined by: 
g

' 

F1(€) = Coshfi cos£ - 

l 

(C.5) 

F2(:) = é (Cosh€ sin€ 
’+ Sinhi cosfi) (c.s) 

Fa(€) = %5inh£ sine (0.7)



Fq(§) = (Cosh; sin: - Sinhiecosz) (0.8)
Q 

P 4 
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The following relationships apply (Hetenyi 1946): 

an dF2 ara an, —=-4F;_—-=F;—-=Fs;—=F 
as 

“ d€ 
1 d€ 2 dE 3 

The quantity G in Eq. C.3 is given by: 

G = I3 q (u) F2 [X(><-u)]du 

(C.9) 

(C.10) 

in which u is a dummy variable and q is defined in Eq. C.1. Let: 

Then, Eq. C.10 can be manipulated to obtain 

o = 1(x-u) 

q e 
u§ 

G = _2i_- I2 
euo Fz(0) do 

~ (c.11). 

(0.12) 

Using Eqs. C;5 to C.9, Eq. 0.12 can be further reduced to 

4+ 

q . . 

_v 
e = Lil {F3- - uF'q-- L p2(F1 - e “§) +._1. SE2} A(c.13;) 

u A 4 4 
‘

F 

Substituting Eq. C.13 in Eq. C.3 and re-arranging gives 

in which 

M = aF3 + uh. + c('F1 -~e'"E’) - dF2 
” 

(0.14)



O

6

b

C 

'

d 

YWO 
__ 

4qO -5” '75___77 
A A (4+u ) 

yeo 
+ 

4qou 
A3 A2(4+u“) 

n uzqo 

7575 
uaqo 
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(0.15) 

»i ~16-16) 

(c,17) 

(C.18) 

Substituting Eqs. C.5 to C.8 and C.13 in Eq. C.3 and re-arranging, gives: 

'

M 

Since we have assumed a semi-infinite beam, M+0 for &+~, hence

3
4 

S.
2 

Solving for a

a

b 

+.E
8 

-.E
8 

and 

e€{sin£ ( %+ - 
%) +‘cos£(%- -g - %)} 

-E . b 6 d b C d + e {s1n£( § E E) + cos£(-é + 5 + ii) 

Q 
I 

_ Ce-u€ 

_Q=0
4 

- g_= 0
4 

b gives 

2(d-c) 

2(2c-d) 

(C.19) 

(C;Z0) 

(c.21) 

A (C.22) 

(C.23) 

Using Eqs. C.15 to C.18 and C.22, C.23 gives after some aigebra
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y zql ‘

y 

we =_ -_____ »_" i (c.24) 
Y‘ (n+1) + 1 . 

(which is the same as Eq. 18 of the main text) ' 

4 _ 
2M1 a l 

‘ Y " 

(.v+1) + 1 l

Z 
1 

u-q _ 
s

_ 
v M .= T__‘?_u_ [e €{(1.-u)s"in€ + cosfi} - e "51 

u (.26) 
g 

A (4+u ) 
A 

'

, 

which is the same as Eq; 17 of the main text). _

‘ 

To ensure that the top of the edge of the ice is not submerged 
we should have the condition i

_ 

w0l+ (1 - si)hi Z_6O (C.27) 

(It may be noted via Eq. C.24 that the bottom of the edge of the ice cover 
is always submerged as should be the case in order for the analysis to be 
valid.) .

_ 

Case 2, lg > 0 

with reference to Fig. 6, we denote the distance from the 
start of submergence by x, so that the edge of the cover is located at x = 

-10. The bending moment for x_§"0 is: 
l

t 

r M 
qs 

X'2 (o < x- <10) (c.2a) 

in which x‘ = distance downstream of the edge = x + lo. At x = 0, the 

moment becomes ' 

_v .



APPEN. C.5

q 
M0 e __; wz (c.29) 

' 21 

in whieh
_ 

The bending moment in the region x > 0 is then (Hetenys 1946) 

M - Q0 _ YWO 
M = MoF1(£) +—"F2(€) +-2- F3(£) + 

A A 

+ F"~(£) - 1 I: q Fz[A(X-u)]du 
i 

(C-31) 
A A

~ 

in which Q0 = shear force at x = 0. Proceeding as for the case 10 = 

0, gives _ 

i 

A

, 

M = aF3 + bFb + ¢' (F1-e'"€)-- dYF2 + Moe'"€ (c.32) 

in whieh ' 

V c‘ = c + Mo (C.33) 

Qo_ 
d - q-T i 

(c.34) 

Applying the condition M = 0 for 5+”, gives -‘ 

a = 2(a' - ¢') 
' 

(c.3s) 

b = 2(2c' - d‘) (C.36) 

from which, after substitution ,of M0 and Q0, we can obtain wo and 

6° as (see also Eqs. C.15 to C.18): -

H 

q I q 
w = 2 { _2.e_E_i_l_ +._§ ¢(1 +.! )} (c.37) O Y (H+1)2+1 Y 2



APPEN. C.6 

q Q 
6° = -vi is-if + -3 v (1 + w)} (c-38) 

Y (n+1) +1 Y i
‘ 

Since the water surface intersects the top ice surface at x = 0, we have 

_ qo 

and, using Eq. C.37 and recailing tha qs = v(1 - s1)h1: 

q 2 I 

.2 (¢+1)2 (c.4o) 
qs v 

iwhich tis identical to Eq. 15 of the main text. Eq. C.39 |nay- also be 
re-cast as: 

YWO q 
1 

_ = 3 -1 (0.41) 
qS qS 

The ice defiection in the region x_< 0 can be determined from: 

2 q X12 
EI d_"2 = - M = (0.42) 

dx' 2 

Integrating once and noting that 9 = Q9! ) , gives 
_

. 

- 

V 

° » dx' x'=1°' 

E1d_" = EI9 -l.q'13+lq X” (c.4s) 
dx' ° 6 5° 6 S 

Integrating once morei and- noting that wo = (w)x-=10, gives the 
variation of w with X‘. ‘

‘



The maximum ice deflection, we occurs at the edge of the cover 
given by 

‘ W 
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and is 

q 1
“ 

(c.44) = w - 1 9 + _§_2_
1 

Substituting earlier findings and re-arranging: 

fiL=fi&mwmMfl+w+£ 
' 

qs qs u 2 
(C.45) 

which is the same as Eq. 16 of the main text. 
* 

i with the above results, the bending moment becomes (Eq. 

in which ? 

‘Q1 

Q2 

as 

Note that Eqs 
126_X11. :_ 

-Y
t 

;. 

_

2 
; §EH = e [G1 sin€ + dz cosE] -age "5 (x Z_0)

s 

C.32): 

" ' 
(c.4s) 

=<_1_—¢1<_.v+1£-¢<1+1, 
(u-1)2 +1 2 

(C.47) 

, <¢+1>2 _f 
(u_1)2 + 1 2 

(c.4s) 

= +*L2¥i—ll€ (C.49) 
(u-1)2 + 1 ’ 

C.46 to C.49 are identical to Eqs. 9 to 12 of the main
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' APPENDIX D . 
‘Bending on Horizontal Planes 

Consider an ice _sheet AB of width Hi, as sketched in Fig. 

D.1.. The force at an element dsl is equal to rwids. The projections 
.of this force. on AD and BD are equal to the. elementary normal and 

transverse forces exerted at B due to the element dsl. The total force, 

F, at B due to ice sheet AB is then given by 
' 

F = 1u.(AB) 
B 

(0.1) 

T 

The bending moment caused by F at a point C, downstrean of B is equal to 
l

. 

l 
F(CE). Taking -into ~account Eq. D.1 shows that this- moment; _MAB, is 

i 

equal to rwi(AB)(CE) which, by inspection of Fig. D.1, gives: 

in which a1 = area of triangle ABC. 
* Considering next the bending moment atlfi due to an element dS2 

between points B and C, we have 

dMBC = 1 wi as; (co) (0.3) 

But ds2(CG) is equal to twice the area of the elementary triangle CMN. 
Therefore < 

. MBC = 2 1 wi a2 (0.4) 

in which a2 is the area of the segment defined by the curve BMNC and the 
chord BC. The total moment is obtained by the sum of Eqs. D.2 and D.4 

which results in Eq. 22 of the main text.


