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Executive Summary

For practical considerations such as the movement of
contaminants and other dissolved or suspended matter in large
lakes, the net displacements of water masses over long periods of
time are of primary importance. During the past few decades, a
great deal of effort has therefore beén devoted to the study of
monthly, seasonal and annual mean water circulations in the Great
Lakes. In these studies it has been customary to assume a linear
relationship between the curtrents in the lake and the forcing exerted
by‘the wind field over the lake. At mid-latitude regions such as
the Great Lakes Basin, the winds are characterized by rapid
fluctuations in speed and direction. While Stroﬁg winds are common
on a day-to-day basis, the frequent reversals of direcfidn cause
the mean wind vector to become small if the wind is averaged over
a sufficiently long‘period. According to conventional linear models
the resulting mean circulation of the Great Lakes must therefore
be expected to be quite weak. However, extensive field ﬁeasurements
made on Lake Ontario by NWRI during the fall and winter of 1982/83
showed that the mean seasonal water circulation was very strong
although the wind averaged over the season was almost negligible.

Experiments with various hydrodynamic models showed that this mean




circulation was caused by nonlinear flow dynamics and that the
‘generally-accepted linear models should be rejected. In order to
support that conclusion, model calculations of mean winter circulations
were made on the basis of 12 years of climatological wind records.

For each year, the mean circulation obtained from the nonlinear

model was typically two to three times stronger than the result

of the linear model and the circulation patterns were drastically
altered by the nonlinear effects. From a practical point of view

it is therefore concluded that this new model must be used for all
problems where the long-term displacements of water masses in the

Great Lakes play an important role.



Résumé administratifs

A des fins pratiques, il faut tenir compte du mouvement des
contag}qants et d'autres matiéres dissoutes ou en suspension dans
de vasteé lacs. C'est pourquoi les déplacements nets de masses
d'eau sur de longues périodes sont si importants. Au cours des
dernidres décennies, on a déployé de nombreux efforts pour &tudier
les circulations moyennes mensuelles, saisonni&éres et annuelles
dans les.Grands Lacs. Dans le cadre de ces &études, on avait comme
habitude de prendre pour hypoth&se qu'il existait une relation
linéaire entre les courants du lacs et des forces exercées dans
le champ de vent au-dessus dudit lac. Aux latitudes moyennes, comme
c'est le cas du bassin des Grands Lacs, les vents sont caractérisés
par des fluctuations de vitesse et de direction. Méme s'il n'est
pas chose rare d'enregistrer des vents forts tous les jours, leurs

fréquents changements de direction font qﬁe le vecteur vent moyen

s'en. trouve réduit, si le vent est pondéré sur une période suffisamment

longue. Selon les modéles linéaires contentionnels, la circulation
moyenne des Grands Lacs devrait par conséquent &tre trés faible.
Toutefois, les mesures exhaustives faites sur le lac Ontario méme
par 1'INRE pendant 1'automne et 1'hiver 1982-1983 ont révélé que la
circulation moyenne saisonnidre &tait trés forte méme si le vent qui
avait soufflé en moyenne au cours de cette période &tait négligeable.

Des expériences effectuées au moyen de divers mod&les hydrodynamiques

ont révélé que cette circulation moyenne résultait de la dynamique

non linéaire du débit et qu'il y avait lieu de rejeter leés modéles
lin&aires normalement acceptés. Afin d'étayer cette conclusion, on
a fait des calculs modélisés des circulations moyennes enregistrées
en hiver, en se fondant sur les registres climatologiques du vent de
douze hivers. Pour chaque année, la circulation moyenne obtenue du
modéle non linéaire &tait, de fagon réguligre, deux ou trois fois
plus forte que le résultat du moddle linéaire et la circulation &tait
radicalement modifiée par les effets non lin8aires. D'un point de
vue pratique, on conclut donc que ce nouveau modéle doit étre utilisé
chaque fois qu'on étudie des problémes ol les déplacements a long
terme de masses d'eau dans le bassin des Grands Lacs jouent un rdle

important.



ABSTRACT

-

= 4& critical evaluation is presented of the conventional view
that long-term mean circulafions of homogeneou£ basing may be
identified with‘ the quaéi-ateady resﬁonse of 1linear models to -
atmospheric forcing. Based on climatological wind records for the
Great Lakes region, it is shown that the mean circqlation for
udstraéified seasons is dominated by rectified effects of nonlinear

topographic wave interactions.



RESUME

-

11 s'agit d'une é&valuation critique d'un point de vue
conventionnel, 3 savoir que les circulations moyennes i long terme
de bassins homogénes peﬁvent‘étre‘identifiées par la réponse quasi=
constante de modéles linéaires aux mouvegeﬁts atmosphériques. D'aprés
les registres climatologiques du vent pour la région des Grands-Lacs,
on constaté que la circulation moyenne pour des saisons non stratifides
est domin€e par les effets rectifiées par des interactions non lindaires

entre le relief et les vagues.



IRTRODUCTION

Theoretical studies of the mean circulation of unstratified
lakes or shallow seas have concentrated. on the steady-state or
long-term averaged response of linear mo;IeIs to atmospheric forcing.
In particular, the work by Birchfield (1967, 1972, 1973) has
elucidated the characteristic properties of such circulations. The
picture that emerges from these theoretical istudies and the many
numerical models of actual lakes is the following. Along the shores
aligned with the wind the water moves in the direction of the wind and
these nearshore currents are balanced by adjacent belts of return
flow. 1Imn t‘ﬁe invisced deep portion of the basin the flow is confined
to Ekman drift to the right of the wind. With increasing friction the
belts of return flow tend to merge into a single broad band of upwind
transport in the open lake and the overall circulation pattern appears
as two counter-rotating gyres (see Simons, 1980, ch. 5 for a review).

A recent studies of the 1982/83 winter circulation of Lake
Ontario (Simons, 1985) has shown that the above model may indeed be an
acceptable approximation for intermediate time scales of a few weeks
to a month. However, the long-term seasonal circulation did not
resemble the solution of the steady-state linear model buf could only
be simulated by allowing for nonlinear dynamics. The reason for the
failure of the linear model in the seasonal mean calculations was that

the wind stress nearly vanished vwhen averaged over the whole 1982/83



season and hence the mean linear response of_ the curreant to wind
became equally small. On the other hand, the nonlinear response,
wvhile relatively small on a day-to-day basis, was highly persistent
and produced a sizable seasonal-mean ciiculétid@.

For practiqal considerations ‘such as the movement of
dissolved or suspended matter in large lakes, the net displacements of
water masses over long periods of time are of great importance.
Therefore, it.is of interest‘to investigate whether the above result
is likely to occur under typical weather condi;ions in the Great Lakes
regién. This is done in the present study by comparing the linear and
nonlinear current response to ten years of climatological wind data.
The calculations are confined to the unstratified season from
1 Novémber to 30 April. In addition, solutions are presented for
idealized wind variations to illustrate the dependence of the
circulations on forcing frequency. To facilitate comparison with
earlier theoretical work, the model lake is a circular basin with.

batabolic depth profile.

Model

The governing equations are the hydrostatic.. vertically
integrated equations of motion for a homogeneous basin. The ratio of
scale length to surface wave speed is taken to be sufficiently small
for the rigid-lid approximation to be valid. The VOrticity equation

for the vertically averaged flow is then
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" where g = v.(n-lvw), % the mass transport stream function, t is the.

time, V the horizontal gradient operator, J the Jacobian, H the depth,

T the wind stress, B a depth-dependent bottom friction coefficient,

and f the Coriolis parameter. The dimensions of the basin are taken

to be smaller than those of typical weather systems such that the w:i.nd.
stress is approximately uniform in space. The Coriolis parameter is
treated as a constant and the bottom stress“;:oefficien_t is inversely
proportional to the square of the depth (Si.mons s, 1985). The last term
of Eq. (1) represents the nonlinear effect to be evaluated in the:
present study. .

For application to a circular basin, the vorticity equation
is written in polar coordinates. Since the depth is o‘hly a function
of the radius, solutions may conveniently be obtained by the
energy—conserving spectral methods familiar from atmosphej._'ic studies
(e.g. Simons', 1972). Thus, for each azimuthal wave number, an
equation is obtained wherein the radius of the basin appéars as the
only spatial variable. For a uniform wind the wind stress components
are proportional to the sine and cosine of the azimuthal angle and

hence the wind forcing appéars only in the equation for the first




azimutha‘l_: i;ave number. The nonlinear self-interactions of the forced
wave generate a circular vortéx of zero wave number as well as the
second azimuthal wave. In the lowest order energy-conserving system,
the second wave number is discarded but the- first wave itself must be
allowed to change due to feed-back from the circular vortex. The
‘next-order system includes the generation of the second azimuthal
wave. To close this system on energy, the nonlinear interaction
between the circular vortex and the second wave must be included as
well as the interaction between the first and second wave and the
self-interaction of the second wave. Again, the waves of higher wave
number which would, in principle;, be generated are to be ignored to
make this low-order system energy conserving.

The spectral method may be contrasted with the method of
computing second-order rectified effects as done by Benmnett (1978) and
Ou and Bennett (1979) for a stratified circular basin. In that case,
the first azimuthal wave which is forced by the wind is considered a
first-order quantity while the result of nonlinear self-interaction of
this wave is assumed to be small of second order. In that framework
the feed-back from the azimuthal-mean rectifiec;l flow is of higher
order and hence can be neglected. It will be found that this approach
is léss accurate for the present problem than the apectrai technique.
However, in a qualitative sense, the results from both methods are
similar and, since the former method is much simpler than the latter,

it can provide a useful first approximation to the azimuthal-mean
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flow. As an example, the second-order solution for the case of
periodic forcing will be formulated. -
For a spatially uniform wind periodic in time with frequency

o and amplitude T, the forcing term in (1) becomes

=1 T =1 . . _
curl(l) =-1 9 Jine sinot = - _°21. Re[el(e-ot)-el(ewt)]
H dr 2 dr
(2)

where r is the radius and @ the azimuthal angle measured countérclock-
wise from the downwind end of the basin. The'first-order solution is

a wave of the first azimuthal wave number of the form

1 i(e-ot)

2

¥ (r,0,7) = Re [@a(t) e - 1;8(1') e

which must satisfy the linearized form of (1), thus

d r(o+iB) dy . <1 )
— LY CAc Y S R B (4)

dr H dr rH dr dr

The equation for yg is the same but with the sign of o reversed.

The solution of the finite-difference form of (P) is readily
obtained by direct matrix inVetsion. Since topographic waves
propagate in counterclockwise direction around the basin, resonance
can occur only for the first component of the forcing (2) and hence
the first component of (3) contributes most of the current respounse.

The present solutions are therefore also applicable to the case of a
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periodic wind propagating alongshore in the same direction as a shelf
wvave (see Simons, 1983).
‘The second-order circular vortex is determined by the

azimuthal mean of the equation of motion for the azimuthal current

component
= _ 2
WL ow-LA g (5)
at r? ar H

whgre U and V are the components of the vertically integrated current
in radial and azimuthal direction, the subscript 1 denotes the first
order solution (3) and the bar denotes an azimuthal average. For the
case of periodic forcing, Eq. (5) may be averaged in time and (3) may

be substituted to obtain the time-averaged circular vortex

dap * dy_*
In (4, — + ¥, B

sz[t
8br2 dr H dr

vV =

)] (6)

dr

where the double bar denotes an average over time, t, as well as
azimuth, 0, and as noted below Eq. (1) the bottom stress coefficient
has been written as B=b/H2 vhere b is a constant. Since the term
within brackets vanishes at the centre and the border of the basin,
the product Vr?/H2 must vanish when integrated over the radius and

hence the c¢ircular vortex must have at 1least one reversal in

direction.



RESULTS _ _ .

-

It is intuitively clear that the ratio of nonlinear to

~ linear mean seasonal circulations will tend to be proportional to. the

ratio of the variance to the mean of the atmospheric forcing and will
depend on the shape of the wind spectrum. With this in mind,
calculations were made of wind-driven currents as a function of the
frequency of periodic forcing. The results are of course affected by
bottom friction and the eigenfrequencies of the topographic normal
modes of the basin. A typical solution i; presented below. The
circular basin has a radius of 40 km and'- a parabolic depth profile
with a maximum depth of 100 m. The rigid-lid normal modes of the
first azimuthal wave number for this type of basin have periods of
2n(n+2)+1 times the inertial period where n is the radial mode
number. The bottom stress coefficient in (1) is set at‘ B = 5x10~3H~2
where H is expressed in meters and B has dimensions of s~!. The wind
stress is uniform in space and periodic in time with amplitude of 107}
Mm=2 .

Figure 1 shows the offshore profile of alongshore transport
in the circular vortex as a function of forcing frequency. The
results have been averaged over the forcing period and the transport
units are wls~! with positive values representing cyclonic circula-
tions. The normal modes of the basin are denoted by triangles at the

bottom of the graph. In this case the circular vortex was calculated



from (6) “a8 the rectified effect of the wind—driven wave (3) without
permitting the feedback included in energy-comserving spectral models.

The above second-order solution is contrasted with results

" from low-order spectral models and two-dimensional finite differenmce

models in Figure 2. In this example the forcing period is 15 days and
all model parameters are the same as in Figure 1. The curves on the
left show the.time-averaged circular vortex while the curves on the
right show the time-avéraged alongshore transport of the second
azimuthal wave number in a cross section of the basin perpendicular to
the wind. The dashed curves are the second-order solutions
corresponding to Figure 1 without feedback from the rectified flow to
the first azimuthal wave. The second wave is seen to be an order of
magnitude smaller than the azimuthal-mean circular vortex. The dotted
curve shows the solution of the lowest-order energy-conserving system
consisting of the circular vortex and the first wavé number. As
expected, the rectified transport is substantially reduced by the
feedback mechanism. The solid curves are solutions of the energy-
conserving two-wave model. Apparently, including the second wave has
a relatively small effect on the circular vortex and the second wave
itself is quite similar to that obtained from the second-order
solution without feedback. Finally, the black circles show the

azimuthal mean of the solution of a two-dimensional finite-difference

"model with a grid spacing of 2 km. In such a model the number of

waves generated by nonlinear processes is limited only by the spatial

resolution.



~According to Figure 2 and other computations for a range of
parameter values, the results: of low-order spectral models are in
close agreement with two-dimensional finite-difference solutions. It
) may also be noted that the results are remarkably similar to those
produced by interaction of a planetary yﬁve and the zonal flow in an
atmospheric model (Simons, 1972). This is not surprising since the
topographic vorticity tendency in the circular basin is equivaleht to.
the beta-effect in the atmosphere.

-Proceeding next to calculationg for realistic wind
conditions, solutions of Eq. (1) were ob;ained for ten consecutive
unstratified seasons between 1973 and 1983. The unstratified seasons
vere defined to cover the six-month period from 1 November to
30 April. The winds were taken from climatological records at Toronto
Island Airport which were previously found to be in close agreement
with wind measurements on Lake Ontario (Simons, 1985). Figure 3 shows
seasonal-mean transports computed by the low-order spectral model for
the same basin parameters used in Figure 1. The solid curves
represent the azimuthal-mean circular vortex while the dashed curves
show the alongshore transports of the first azimuthal wave in a basin
cross section perpendicular to the wind. The seasonal-mean wind is in
all cases directed from left to fight in Figure 3 and hence the linear
solution (Birchfield, 1973) consists of wind-driven coastal transport
to the right of the page balanced by an adjacent band of return flow

and vanishing alongshore transport in deep water. The nonlinear
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solutions” for the first wave (dashed curves of Figure 3) are seen to

be similar to the 1linear results in the nearshore zone but the

alongshore transports in the middle of the basin no longer vanish.

V‘ Note that the dashed curves are symmetric with respect to the top of

Figure 3 while the solid curves are anti-symmetric.

SUMMARY AND CORCLUSIORS :

Using ten years of climatological w':'i‘.nds from the Great Lakes
region to generate currents in a homog’gnéous c¢ircular basin with
parabolic depth profile, the seasonal-mean circulation was found ’.to be
dominated by an azimuthal-mean cyclonic vortex concentrated at the
centre of the basin. This flow is generated by nonlinear self-
interaction of the first azimuthal wave _whi.ch is excited by a uniform
wind. The seasonal-mean flow pattern of the first azimuthal wave
itself is a modified form of the response of linear models to the
seasonal-mean wind. If a circulation index is defined as the one-way
transport through a cross section of the basin, then the transport of
the circular vortex is found to exceed that of the wave in all cases.
Averaged over the ten years of study, the ratio of vortex to wave
transport is 2.1 if the nonlinear wave solution is used while the
ratio is 2.8 if the wave is computed from linear models. This
indicates that conventional linear modeia are not suitable for

computing seasonal-mean circulations of homogeneous lakes or shallow
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' seas. While the present calculations were made for a circular basin '
with spatially-uniform wind, equivalent results are obtained for shelf

circulations forced by sPaéially-periodic winds.
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FIGURES

Figure 2

Figure 3

Figure 1 - Rectified circular vortex flow as a function of forcing

frequency. Positive -values represent cyclonic circulations.
Comparison of second-order solutions with results from
low—-order spectral models and a two-dimensional model.

Seasonal-mean alongshore tramsports of circular vortéx
(solid) and first azimuthal wave (dashed) corresponding to
climatological Lake Ontario winds for unstratified seasons

from 1 November to 30 April.
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