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i Executive Summary 

For practical considerations such as the movement of 

contaminants and other dissolved or suspended matter in large 

lakes, the net displacements of water masses over long periods of 

time are of primary importance. During the past few decades, a 

great deal of effort has therefore been devoted to the study of 

monthly, seasonal and annual mean water circulations in the Great 

Lakes. In these studies it has been customary to assume a linear 

relationship between the currents in the lake and the forcing exerted 

by the wind field over the lake. At midélatitude regions such as 

the Great Lakes Basin, the winds are characterized by rapid 

fluctuations in speed and direction. While strong winds are common 

on a day-to-day basis, the frequent reversals of direction cause 

the mean wind vector to become small if the wind is averaged over 

a sufficiently long period. According to conventional linear models 

the resulting mean circulation of the Great Lakes must therefore 

be expected to be quite weak. However, extensive field measurements 

made on Lake Ontario by NWRI during the fall and winter of 1982/83 

showed that the mean seasonal water circulation was very strong 

although the wind averaged over the season was almost negligible. 

Experiments with various hydrodynamic models showed that this mean
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Qirculation was caused by nonlinear flow dynamics and that the 

generallyvaccepted linear models should be rejected. In order to 

support that conclusion, model calculations of mean winter circulations 

were made on the basis of 12 years of climatological wind records. 

hFor each year, the mean circulation obtained from the nonlinear 

model was typically two to three times stronger than the result 

of the linear model and the circulation patterns were drastically 

altered by the nonlinear effects. From a practical point of.view 

it is therefore concluded that this new model must be used for all 

problems where the long—term displacements of water masses in the 

Great Lakes play an important role.



Résumé administratifs 

K des fins pratiques, il faut tenir compte du mouvement des 
contaminants et d'autres matiéres dissoutes ou en suspension dans 
de vastes lacs. C'est pourquoi les déplacements nets de masses 
dYeau sur de longues périodes sont si importants. Au cours des 
derniéres décennies, on a déployé de nombreux efforts pour étudier 
les circulations moyennes mensuelles, saisonniéres et annuelles 
dans les Grands Lacs. Dans le cadre de ces études, on avait come 
habitude de prendre_pour hypothése qu'il existait une relation 
linéaire entre les courants du lacs et des forces exercées dans 
le champ de vent auedessus dudit lac. Aux latitudes moyennes, comme 
c'est le cas du bassin des Grands Lacs, les vents sont caractérisés 
par des fluctuations de vitesse et de direction. Méme s'il n'est 
pas chose rare d'enregistrer des vents forts tous les jours, leurs 
fréquents changements de direction font que le vecteur vent moyen 
s'en.trouve réduit, si le vent est pondéré sur une période suffisamment 
longue. Selon les modeles linéaires contentionnels, la circulation 
moyenne des Grands Lacs devrait par conséquent étre trés faible. 
Toutefois, les mesures exhaustives faites sur le lac Ontario meme 
par l'INRE pendant l'automne et l'hiver 1982-1983 ont révelé que la 
circulation moyenne saisonniére était trés forte meme si le vent qui 
avait soufflé en moyenne au cours de cette période était négligeable. 
Des experiences effectuées au moyen de divers modéles hydrodynamiques 
ont révélé que cette circulation moyenne résultait de la dynamique 
non linéaire du débit et qu'il y avait lieu de rejeter les modéles 
linéaires normalement acceptés. Afin d'étayer cette conclusion, on 
a fait des calculs modélisés des circulations moyennes enregistrées 
en hiver, en se fondant sur les registres climatologiques du vent de 
douze hivers. Pour chaque année, la circulation moyenne obtenue du 
modéle non linéaire était, de fagon réguliére, deux ou trois fois 
plus forte que le résultat du modéle linéaire et la circulation était 
radicalement modifiée par les effets non linéaires. D'un point de 
vue pratique, on conclut donc que ce nouveau modéle doit étre utilisé 
cheque fois qu'on étudie des problémes ofi les déplacements 5 long 
terme de masses d'eau dans le bassin des Grands Lacs jouent un r6le 
importantt



ABSTRACT

, 

_=.A critical evaluation is presented of the conventional view 

that long—term mean circulations of homogeneous basins may be 

identified with the quasi-steady response of linear models to 

atmospheric forcing. Based on climatological wind records for the 

Great hakes region, it is shown that the mean circulation for 

unstratified seasons is dominated by rectified effects of nonlinear 

topographic wave interactions.



0 R1§SUMIé 

ll s'agit d'une evaluation critique d'un point de vue 

conventionnel, 5 savoir que les circulations moyennes 5 long terme 

de bassins homogénes peuvent étre identifiées par la réponse quasi= 

constante de modéles linéaires aux mouveqents atmosphériques. D'apres 

les registres climatologiques du vent pour la région des GI&HdS—LaQ3, 

on constate que la circulation moyenne pour des saisons non strgtifiées 

est dominée par les effets rectifiées par des interactions non linéaires 
entre le relief et les vagues.
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IIHIODUCTIOI
a 

Theoretical studies of the mean circulation of unstratified 

lakes or shallow seas have concentrated on the steady—state or 

long-term averaged response of linear models to atmospheric forcing. 

In particular, the work by Birchfield (1967, 1972, 1973) has 

elucidated the characteristic properties of such circulations: The 

picture that emerges from these theoretical studies and the many 

numerical models of actual lakes is the following. Alongnthe shores 

aligned wi.th the wind the water moves in the direction of the wind and 

these nearshore currents are balanced by adjacent belts of return 

flow. In the invisced deep portion of the basin the flow is confined 

to Ekman drift to the right of the wind. Wit-h increasing friction the 

belts of return flow tend to merge into a_ single broad band of upwind 

transport in the open lake and the overall circulation pattern appears 

as two counter-rotating gyres (see Simon_s, 1980, ch. 5 for a review). 

A recent studies of the 1982/83 winter circulation of Lake 

Ontario (Simona, 1985) has shown that the above model may indeed be an 

acceptable approximation for intermediate time scales of a few weeks 

to a month. " However, the long-term seasonal circulation did not 

resemble the solution of the ste_ady—‘state linear model but could only 

be simulated by allowing for nonlinear dynamics. The reason for the 

failure of the linear model in the seasonal mean calculations was that 

the wind stress nearly vanished when averaged over the whole 1982/83
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season afid7 hence the mean linear response of_ the current to wind 

became equally small. On the other hand, the nohlinear response, 

while relatively small on'a day—to—day basis, was highly persistent 

and produced a sizable seasona1—mean circulation. 

For practical considerations such as the movement of 

dissolved or suspended matter in large lakes, the net displacements of 

water masses over long periods of time are of" great 'importance. 

Therefore, it is of interest to investigate whether the above result 

is likely to occur under typical weather conditions in the Great Lakes 

region. This is done in the present study by comparing the linear and 

nonlinear current response to ten years of climatological wind data. 

The calculations arei confined to the unstratified season from 

1 November to 30 April. In addition, solutions are presented for 

idealized wind variations to illustrate the dependence of the 

circulations on forcing _frequency. To facilitate comparison with 

earlier theoretical work, the model lake is a circular basin with 

parabolic depth profile. 

Model 

The governing equations are the hydrostatic, vertically 

integrated equations of motion for a homogeneous basin. The ratio of 

scale length to surface wave speed is taken to be sufficiently small 

for the rigid—lid approximation to be valid. The vorticity equation 

for the vertically averaged flow is then
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-ii -= curl (1) - v. (Z vw) + J (.5, w + J (5, 4-) (1) 
3t H H H - H 

where ; = V.(H'1V¢), w the mass transport stream function, t is the 

time, V the horizontal gradient operator, J the Jacobian, H the depth, 

1 the wind stress, B a depth—dependent bottmn friction coefficient, 

and f the Coriolis parameter. The dimensions of the basin are taken 

to be smaller than those of typical weather systems such that the wind 

stress is approximately uniform in.space. The Coriolis parameter is 

treated as a constant and the bottom stress coefficient is inversely 

proportional to the square of the depth (Simone, 1985). The last term 

of Eq. (1) represents the nonlinear effect to be evaluated in the 

present study. 

For application to a circular basin, the vorticity equation 

is written in polar coordinates. Since the depth is only a function 

of the radius, solutions may conveniently be obtained by the 

energy-conserving spectral methods familiar from atmospheric studies 

(e,g. Simona’, 1972). Thus, for each azimuthal wave number-, an 

equation is obtained wherein the radius of the basin appears as the 

only spatial variable. For a uniform wind the wind stress components 

are proportional to the sine and cosine of the azimuthal angle and 

hence the wind forcing appears only in the equation for the first
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azimuthal‘w‘ave number. The nonlinear self—interactions of the forced 

wave generate a circular vortex of zero wave number as well as the 

second azimuthal wave. In'the lowest order energy—conserving system, 

the second wave number is discarded but the first wave itself must be 

allowed to change due to feed—back from the circular vortex. The 

next-order system includes the generation of the second azimuthal 

wave. To “close this system on energy, the nonlinear interaction 

between the circular vortex and the second wave must be included as 

well as the interaction between the first and second wave and the 

self—interact:ion of the second wave. Again, the waves of higher wave 

number which would, in principle, be generated are to be ignored to 

make this low—order system energy conserving. , 

The spectral method may be contrasted with the method of 

computing second—order rectified effects as done by Bennett (1978) and 

Ou and Bennett (1.979) for a stratified circular basin. In that case, 

the first azimuthal wave which is forced by the wind is considered a 

first-"order quantity while the result of nonlinear self-interaction of 

this wave is assumed to be small of second order. In that framework 

the feed-back from the azimuthal-mean rectified flow is of "higher 

order and hence can be neglected. It will be found that this approach 

is less accurate for the present problem than the spectral technique. 

However, in a qualitative sense, the results from both methods are 

similar and, since the former method is much simpler than the latter, 

it can provide ,a useful first approximation to the azimuthal‘-mean



_ 5 _ 

,- 

flow. -5}“ an example, the second-order solution for the case of 

periodic forcing will be formulated. ' 

For a spatially uiform wind periodic in time with frequency 

q and amplitude to the forcing term in (1) becomes 

_1' I _1 . .
_ 

curl(l) = - 1 sin B sin at = - _° £1. Re[e1(e-at)-e1(e+°t)] 
n ° at 2 41» 

" (2) 

where r is the radius and B the azimuthal angle measured counterclock- 

wise from the downwind end of the basin. The first-order solution is 

a wave of the first azimuthal wave number of the form 

*1 (nefl) 8 ills Huh) ei(6-ot) _ $8“) ei(6+ot)] (3). 

which ust satisfy the linearized form of (1), thus 

d r(0+iB) db . .1 -1 
[ b 

°]-[°**”-:‘“]¢u=-110:1‘! <4) 
dr H dr rH dr dr 

The equation for $3 is the same but with the sign ofuo reversed. 

The solution of the finite-difference form of (W) is readily
\ 

obtained by direct matrix inversion. Since topographic waves 

propagate in counterclockwise direction around the basin, resonance 

can occur only for the first component of the forcing (2) and hence 

the first component of (3) contributes most of the current response. 

The present solutions are therefore also applicable to the case of a
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periodic'§ind propagating alongshore in the same direction as a shelf 

wave (see Simona, 1983). - - 

“The second-order circular vortex is determined by the 

azimuthal mean of the equation of motion for the azimuthal current 

COIIIPOHBIIC 

- _ 2 al I — BV ' UIVI) 
3t r2 3r H 

where U ad V are the components of the vertically integrated current 

in radial and azimuthal direction, the subscript 1 denotes the first 

order solution (3) and the bar denotes an azimuthal average. For the 

case of periodic forcing, Eq. (5) may be averaged in time and (3) may 

be substituted to obtain the time-averaged circular vortex 

== ¢¢ * ¢¢ * 
v = L2 i.[.'_m(wu__°‘ we _._“ >] (6) 

Sbrz dr H dr dr 

where the double bar denotes an average over time, t, as well as 

azimuth, 6, and as noted below Eq. (1) the bottom stress coefficient 

has been written as B=b/H2 where b is a constant. Since the term 

within brackets vanishes at the centre and the border of the basin, 

the product Vrz/H? must vanish when integrated over the radius and 

hence the circular vortex must have at least one reversal in 

direction.
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It is intuitively clear that the ratio of nonlinear to 

linear mean seasonal circulations will tend to be proportional to the 

ratio ofthe variance to the mean of the'atmospheric forcing and will 

depend on the shape of the wind spectrum. With this in mind, 

calculations were made of wind—driven currents as a function of the 

frequency of periodic forcing. The results are of course affected by 
bottom friction and the eigenf;requencie_s of t-he topographic normal 

modes of the basin. A typical solution is presented below. The 

circular basin has a radius of 40 km and a parabolic depth profile 

with a maximum depth of 100 m. The rigid-lid normal modes of the 

first azimuthal wave number for this type of basin have periods of 

2n(n+2)+l times the inertial period where n "is the radial mode 

number. The bottom stress coefficient in (1) is set at B = 5x10'3H'2 

where H is expressed in meters and B "has dimensions of s'1. The wind 

stress is uniform in space and periodic in time with amplitude of l0'1 

Nm'2. 

Figure 1 shows the offshore profile of alongshore transport 

in the circular vortex as a function of forcing frequency. The 

results have been averaged over the forcing period and the transport 

units are m2s'1 with positive values representing cyclonic circula- 

tions. The normal modes" of the basin are denoted by triangles at the 

bottom of the graph. In this case the circular vortex was calculated



from (6)§a8 the rectified effect of the wind-driven wave (3) without 

permitting the feedback included in energy-conserving spectral models. 

The above secondrorder solution is contrasted with results 

from low—order spectral models and two—dimensional finite difference 

models in Figure 2. In this example the forcing period is 15 days and 

all model parameters are the same as in Figure 1.. The curves on the 

left show the time—averaged circular vortex while the curves on the 

right show the time~averaged alongshore transport of the second 

azimuthal wave number in a cross section of the basin perpendicular to 

the wind. The dashed curves are the second—order solutions 

corresponding to Figure l without feedback from the rectified flow to 

the first azimuthal wave. The second wave is seen to be an order of 

magnitude smaller than the azimuthal—mean circular vortex. The dotted 

curve shows the solution of the lowest—order energy-conserving system 

consisting of the circular vortex and the first wave number. As 

expected, the rectified transport is substantially reduced by the 

feedback mechanism. The solid curves are solutions of the energy- 

conserving two—wave model. Apparently, including the second wave has 

a relatively small effect on the circular vortex ad the second wave 
itself is quite similarb to that obtained from the second—order 

solution without feedback. Finally, the black circles show the 

azimuthal mean of the solution of a two-dimensional finite—difference 

model with a grid spacing of 2 km. In such a model the number of 

waves generated by nonlinear processes is limited only by the spatial 

resolution.‘
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‘According to Figure 2 and other computations for a range of 

parameter values, the results- of low-order spectral models are in 

close agreement with two-dimensional finite-difference solutions. It 

may also be noted that the results are remarkably similar to those 

produced by interaction of a planetary wave and the zonal flow in an 

atmospheric model (Simona, 1972). This is not surprising since the 

topographic vorticity tendency in the circular basin is equivalent to 

the beta-effect in the atmosphere. 

vProceeding next to calculations for realistic wind 

conditions, solutions of Eq. (1) were obtained for ten consecutive 

unstratified seasons between 1973 and 1983. The ustratified seasons 

were defined to cover the six-month period from l November to 

30 April. The winds were taken from climatological records at Toronto 

Island Airport which were previously found to be in close agreement 

with wind measurements on Lake Ontario (Simona, 1985). Figure 3 shows 

seasonal-mean transports computed by the low-order spectral model for 

the same basin parameters used in Figure 1. The solid curves 

represent the azimuthal-mean circular vortex while the dashed curves 

show the alongshore transports of the first azimuthal wave in a basin 

cross section perpendicular to the wind. The seasonal-mean wind is in 

all cases directed from left to right in Figure 3 and hence the linear 

solution (Birchfield, 1973) consists of wind-driven coastal transport 

to the right of' the page balanced by a adjacent band of return flow 

and vanishing alongshore transport in deep water. The nonlinear
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solutions? for the first wave (dashed curves of Figure 3) are seen to 

be similar to the linear results in the nearshdre zone but the 

alongshore transports in the middle of the basin no longer vanish. 

Note that the dashed curves are symmetric with respect to the top of 

Figure 3 while the solid curves are anti-symmetric. 

SUIQIARY AID GOHCLUS IOIS . 

Using ten years of climatological winds from the Great Lakes 

region to generate currents in a homogeneous circular basin with 

parabolic depth profile, the seasonal-mean circulation was found to be 

dominated by an_ azimuthal-mean cyclonic vortex concentrated at the 

centre of the basin. This flow is generated by nonlinear self- 

interaction of the first azimuthal wave which is excited by a uniform 

wind. The seasonal-mean flow pattern of the first azimuthal wave 

itself is a modified form of the response of linear models to the 

seasonal-mean wind. If a circulation index .is defined as the one-way 

transport through a_ cross section of the basin, then the transport of 

the circular vortex is found to exceed that of the wave in "all cases. 

Averaged over the ten years of study, the ratio of vortex to wave 

transport is 2.1 if the nonlinear wave solution is used while the 

ratio is 2.8 if the wave is computed from linear models. This 

indicates that conventional linear models are not suitable for 

computing seasonal-mean" circulations of homogeneous lakes or shallow
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seas.“ While the present calculations were made for a circular basin 

with spatially-uniform wind, eduivalent results are obtained for shelf 

circulations forced by spatially-periodic winds. 
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.FIGURBS 

Figure l ~ 

Figure .2 

Figure 3 

Rectified circular vortex flow as a function of forcing 

frequency. Positive values represent cyclonic circulations. 

Comparison of second—order solutions Qith results from 

low-order spectral models and a two-dimensional model. 

Seasonal-mean alongshore transports of vortex 

(solid) and first azimuthal wave (dashed) corresponding to 

climatological Lake Ontario winds for unstratified seasons 

from l Hovember to 30 April.
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