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EXECUTIVE SUMMARY

Historically, optical properties of natural water masses and
their influence on the social/technical impact of such waters have
been inferred utilizing a wide variety of scientific, non-scientific,
and. quasi-scientific methods and techniques. Direct visual
impressions of aqu#tic colour and clarity have long been reported as
the need and/or opportunity has presented itself. Secchi.discs have

for many decades been 1included as part of limnological and oceano-

graphic research vessel payloads. The development and continual

modification of submersible electronic instrumentation has added
another dimension to the overall capaﬁility of evaluating the aquatic
envi:onmenf through direct measurements of the optical characteristics
of natural Qaters. The launching of eanvironmental satellites, coupled
with the development and application of airborne remote sensing
devices, has added yet andther dimension.

The Environmental Optics Section at the National Water
Research Institute has concerned itself with the study of inland lakes
utilizing their optical propert;es as revealed from both in situ data
collected beneath the air-water interface and ;emotely-sensed data
collected above the air-water interface. This report focuses on the
former, in particular on the iﬂ.EiEE data collected by the Environmen-—
tal Optics Section since 1973 in four of the Laurentian Greaﬁ Lakes
(no direct measurements were performed in Lake Michigan), and presents

such data in the form of an optical atlas.



These direct optical measurements were performed as part of
the CCIW SurVeillange Program wutilizing transmissomeﬁer systems
(ﬁartek XMS and Multiband Transmission Temperature Profiler MTTP) and
irradiance @eter systems (Techtum QSM Quanta Spectrometer). The
principal highlights of these measurements are presented in graphical,
picﬁbfial,'andlor tabular form in such a manner as to allow, whére
possible, méximum ease in intefcdmparing the proéerties of Lake Erie,
Ontario, Superior, and Huron/Georgian Bay.

The optical properties and parameters included within this
atlas are surface ;ransmission contours, Ssummer fhotic depths,
transmission transects, relationships between beam attenuation
coefficient and Secchi disé¢ gepth, relationships bétWeen irradiance
attenuation coefficient and beam attenuation 'coefficient,
relationships between irradiance attenuatian coefficient and Secchi
disc depth, spectral band (blue, green, and red) values of irradiance
attenuation coefficients, spectral dependence of irradiance
attenuation coefficients, and horizontal optical layering.

in addition to the above intercomparable Great Lakes opticai
properties,‘ discussions are preégnted on the determination of
subsurface sighting range, photosynthétic available radiation,
"optical cross sections"; and water quality parameters from direct

measurements of optical parameters.




This optical atlas is the second part of a two-part report
concerning the in situ optical measurements performed by the
Eavironmental Optics Section at NWRI. Its companion volume 'Direct
Optical Measurements of the Laurentian Great Lakes Part 1I:
Theoretical Concepts and Measurement Techniques" presents an expanded
discussion of the nature of the optical interactions occurring among
impinging electromagnetic radiations and the aquatic components
defining a natural water mass. Consequently, Part I of this report
may provide a valuable background to the material presented in this

atlas.




RESUME ADMINISTRATIF

Au cours des années, on ar d€duit & partir de diverse;
méthodes et techniques scientifiques, intuitives et pseudo-
‘scientifiques les propriétés optiques des étendues d'eaux paturelles,
leur influence sur la soci€t€ et leurs répercussions techniques.
Pendant longtemps, 1'évaluation de la couleur de 1'eau et de -sa
transparence a reposé sur les constatations visuelles directes, selon
que les besoins apparaissaient ou que les occasions se préesentaient.
Depuis plusieurs dizaines d'anndes maintenant, les disques de Secchi
font partie du matériel que 1l'on retrouve & bord de tout navire de
recherche limnologique ou oc€anographique. La mise au point et la
constante améiioration d'instruments ¢&lectroniques sous-marins ont
ajouté une nouvelle dimension & 1la capacite globale d'evaluer le
milieu aquatique en mesurant directement les caractétistiqdes optiques
des eaux naturelles. Le lancement de satellites ernvironnementaux, en
plus de 1'€laboration et 1'utilisation pratique de t€le€capteurs
aéroportés, a permis d'accéder & une dimension de plus.

La Section de la spectro-optique de 1'environnement‘ a
1'Institut nationai'de recherche sur les eaux s'est voude & l'¢tude
des lacs de l'intérieur, en ayant recours aux propriétds optiqués qui
ont été précis€es au moyen de données recueillies sur place en-dessous
de 1'interface air/eau et par télécapteurs au-dessus de l’interface,v

Le rapport met l'accent surtout sur les donne€es recueillies sur place




par la Section de la spectro-optique &e l1'environnement depuis 1973
dans quatre des Grand Lacs laurentiens (aucune mesure n'a été€
effectuée dans le lac Michigan) et fournit ces donne€es sous la forme
d'un atlas optique.

Ces mesures optiques directes ont éte prises 4 1'aide de
transmissométres (le Martek XMS et le bathyphotothermogramine) et
d'apéareils de mesure de l'€clairement é&nergetique (spectrométre de
quanta Techtum), dans‘lé cadre du Programme de surveillance du CCEIL.
Les principaux résultats de ces mesures apparaissént sous forme de
graphiques et de tableaux qui facilitent autant que possible 1la
comparaison des propriétés entre les eaux des lacs Eri¢, Ontario,
Supérieut, et Huron (Baie Georgienne).

Les propridtds et les paramétres optiques figurant dans cet
atlas sont les suivants: la transmission en surface, la profondeur
limite de la visibilité€ en éte’, les transects de la mesure de la
transmission optique, ies relations entre le coefficient d'extinction
du faisceau et la profondeur limite de 1la viéibilité du disqﬁe de
Secchi, les relations entre le coefficient d'extinction de 1'€claire-
ment énergé€tique et le coefficient d'extinction du faisceau, les
felations entre le coefficient d'extinction de 1'éclairement
énergétique et la profondeur limite de la visibilite du disque de
Secchi, les valeurs du sﬁectre de bandes (bleu, vert et rouge) des
coefficients d'extinction de 1'éclairement éhergétique,vla débendance‘
spectrale dgs coefficients d'extinction de 1l'é€clairement é&nergétique

et la superposition spectrale de la lumiére selon la profondeur.




En plus de compérer les ptopfié%é% optiques 'des eaux
provenanf. des Grand ﬁacs, 1'atlas prééente des discussions Qur la
détermination de la visibilité sous-marine, &u rayonnement disponible
pour la photosyhthése, de "coupes transversales" optiques et de
paramétres de la qualité de l'eau & partir dé mesyres directes‘ de
paramétres optiques.

Cet "atlas optique" constitue le deuxiémé volet d'un rapport
en &euxAparties qui rassemble les données éur les mesures optiques
prises ig_gigg_par la Section de la spectro-optique de l'environnement

due INRE. Le premier volume, Direct Optical Measurements of the

Laurentian Great Lakes Part I: Theoretical Concepts and Measurement

Techﬁigugg, présente des analyses d€taillées sur la nature des
intéfactions optiques qui agissent sur le rayonnement flectro~
magnétique incident et les composants aquatiques qui de€finissent les
étendues d'eau natu?elles. La premiére paftie du rapport comnstitue

donc une information de base valable pour la lecture de cet "atlas".




ABSTRACT

The Environmental Optics Section at. the National Water
Research Institute has been actively engaged in various aspects of
in situ and remote optical sensing of inland lakes since 1972. During
that time c¢ounsiderable optical data have been directly acquired for
four of the Laurentian Great Lakes (Lake Michigan has been excluded).
This report presents, in atlas form, a review of such directly
acquired optical data along with short narratives, where appropriate,
which 1illustrate similarities and/or differences among the Great
Lakes.

The optical properties and parameters considered herein
include surface transmission, summer photic depth, transmission
transects, beam attenuation coefficient, irradiance attenuation
coefficient, Secchi disc depth, optical .1ayering, sighting range,
photosynthetic available radiation, scattering, absorption and water
quality determinations. TheseAproperties and parameters are presented

in pictorial, graphical, and/or tabular form in this atlas.




| RESUME

Depuis 1972, la Section de la spectro-optique de
1'environnement 4 1'Institut national de recherche sur les eaux a
conduit des travaux sur divers aspects des données recueillies sur
place et au moyen de télécapteurs optiques dans les lacs de
l'intérieur. Au cours de cette période; on a obtenu ine foule de
données optiques sur quatre des Grands Lacs laurentiens (on a exclu le
lac Michigan). Le rapport présente sous forme d'atlas‘un apergu de
ces données en plus de courtes descriptions, lbrsqu'elles s 'imposent,
pour illustrer les similitudes et les différences des Grands Lacs.

Les propridtés et les paramétres optique & 1'é€tude sont les
suivants: transmission en surface, profondeur limite de la visibilite
en ét&, transects de la mesure de la transmission optique, coefficient
d'extinction du faisceau, coefficient d'extinction de 1l'éclairement
énergétique;.profondeur limite de la visibilite au disque de Secchi,
superposition spectrale de la lumiére selon la profondeur, angle de
champ, énergie radiante utilisable par les organismes
photosynthétiques, dispersion, absorption et autres indicateurs de la
qualité de 1l'eau. Ces propriétés et paramétres apparaissent sous

forme d'images, de graphiques et de tableaux dans 1l'atlas.
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INTRODUCTION

Direct measurements of the optical properties of the water
masses found in four of the Laurentian Great Lakes (no measurements
were taken in Lake Michigan) have been routinely performed in
conjunctidn with the Canada Centre for Inland Waters Surveillance
Program, by the Environmental Optics Section at the National Water
Research Institute “since 1973. These measurements were performed by
tﬁe use of transmissometer systems (Martek XMS and Multiband
Transmission Temperature Profiler MITP) and irradiance meter systems
(Techtum QSM Quanta Spectrometer). The use of these instruments and
the nature of the data analyses associated with them have been
extensively discussed elsewhere (see, for example, Bukata et al, 1979;
Jerome et 3_1_, 1983; Jerome et _ai, 1984; as well as Part 1 gf this
report).

This report presents, in atlas form, the principal
highlights of these measurements. The data will be presented in
graphical, pictorial, and/or tabular form, in such a manner that,
where possible, intercomparison among the four Great Lakés will be
readily apparent. Included within this atlas will be surface
transmission contours, summer photic depths, transmission tranmsects,
relationships between beam attenuation coefficient and Secchi disc
depth, relationships between irradiance attenuation coefficient and
beam attenuation co'efficient:,‘ relationships between. irradiance

attenuation coefficient and Secchi disc depth, spectral band (biue,
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green and red) values of irradiance attenuation coefficients, spectral
dependence of irradiance attentuation coefficients, and horizontal

optical layering.

In addition, discussions are presented concerning the

determination of subsurface sighting range, photosyntheti¢ available
radiation, "optical cross sections", and water quality parameters from

direct measurements of optical parameters.
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SURFACE TRANSMISSION CONTOURS

Figures 1-~32 illustrate contours of transmission values at a
depth of 1 ﬁmtr;'as directly.;masured in the Creat Lake§ at‘various
"intervals from 1973 to 1979. All measureménts‘wefe performed with
MARTEK XMS transmissometers of 1 m or 0.25 m path lengths and a
Wratten 45 optical filter. Specific breakdown of these figu;es are
giveh in Table 1. The data for Lakes Superior, Huron, Erie and
Georgian Bay are ptesénted on a‘per-cruiée basis. The data from Lake
Ontario are presented dn a seasonal basisr. Such a presentation was
possible for Lake Ontario since considerébly more attention was given
to this lake during the surveillance activities of the past decade.
Consequently, the data collected during the months 6f March, April and
May (17 cruises during the years 1974-79) were averaged to represent a
spring condition. Similarly, the data collected-during the months
June, July and August (22 cruises during 1974-79) were averaged to
represent a summer condition; the data collected during September,
October and November (20 cruises during 1974-79) were averaged to
represent an autumn condition; the data collected during December and
March (5 cruises during 1974-79) were gveraged to represent -a winter
condition. The surface transmission contours foriLake Ontario waters
are, therefore, a more realistic representation of Athe inherent
properties of the lake than are the corresponding contours for the

other Great Lake water regimes which are based solely on single cruise
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values. Such single cruise values are, understandably, much more

vulnerable to aberrant meteorological conditions occurring prior to or

during the measurement interval.

The salieiit features of thé surface transmission contours of

Figures 1-32 inclﬁde:

a)

b)

c)

In general Lake Superior displays a high degree of clarity
(transmission values >-~60% for 1 m path length). The lowest
lake-wide values of transmission occur in September, while the
highest lake-wide valués occur during May and June. Areas of
generally low transmission throughout the year include the tip of
the western basin (neaf Duluth), the north shore area (Thunder,
Black and Nipigon Bays), and the south shdre (west of the
Keweenaw Peninsula)u

While not as optically transparent as Lake Superior, Lake Huton
also displa}s a high degree of clarity (transmission values
>~50% for 1. m path length). The loﬁest lake~wide values of
transmission occur in May, while the nighes£ lake-wide values
occur during July and August. Areas of éenerally"lbw
transmission thtdughout the year include Saginaw : Bay
(transmission <5% for 1 m path léngth), the inflow into the North
Channel from the St. Mary's River, and coastal portions of the

southern tip of Lake Huron.

‘Transmission values observed in Georgian Bay are comparable to

those transmission values observed at mid-lake stations in Lake




d)

e)
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Huron (55-70% for 1 m. path length). Areas of generally low
transmission include the north shore (near the mouth of the
French River and the entrance to the North ChanneL) and the
Nottawasaga Bay areas.

In general Lake Erie displays a low degree of optical clarity
combined with a high degree of spatial variability. Throughout
the year, measured transmission values range from as low as 1%
for a 0.25 m path length (corresponding to -l x 10~ % fdr alm
path length) to as high as 90% for a 0.25 m path length
(corresponding to <“66% for a 1 m path length). While a
seasonal variation is in evidence (lowest transmission in April
and November; highest transmission in June), the most noteable
feature 1is the transmission gradient along the lake from
west-to—east. The shallowest western  basin of Lake Erie is
characterized by the least clarity, while the intermediate depth
central basin is often characterized by a clarity intermediate to
those characterizing the shallow western and deep eastern basins.
Lake Ontario generally displays an optical transmission
intermediate to the optical transmissions displayed by Lake Erie
and the Upper Lakes. Lake Ontario transmission values usually
lie in the range 50-85% for 0.25 m path length ( ~6-52% for 1 m
path length). The lowest lake-wide transmission values occur

during the summer, the highest during the spring and winter.



£)

g)

h)

-6 -

Areas of generally lowest transmission values throughout the year
include Hamilton Harbour, Niagara River plume region, Toronto
area, Black Bay, and, in general, the nearshore zone. These
regions are particularly evident in the yearly-average comtours
of Figute 32.

Throughout most of the year (summer possibly excluded), a
distinct "onion skin" pattern 1is evident in the 'surface
transmission contours of Lake Ontario, the clarity increasing
the maximum transmission contour (the 74% contour line) which is
in almost direct alignment with the 180 m depth contour.

Such "onion skin" patterns are not readily recognizable features
of the transmission contours of the other lakes, although more
extensive surveillance techniqdes might extract such a pattern
for tﬁe Upper Lakes.

The largest seasonal variations in optical clarity are observed
in the lower Great Lakes while the minimal seasonal variations in

optical clarity are observed in the upper Great Lakes.




TABLE 1
Figure Lake Path Length Date

1 Superior lm May 12-26, 1973
2 Superior lm June 15-29, 1973

3 Superior lm July 26-Aug 9, 1973

4 Superior lm Sept. 5-18, 1973

5 Superior lm Oct. 9-29, 1973

6 Superior lm Nov. 13=30, 1973

7 Huron lm Apr. 24-May 2, 1974

8 Huron lm May 14-18, 1974

9 Huron lm June 22-29, 1974

10 Huron lm July 22-28, 1974

11 Huron lm Aug. 26-Sept. 1, 1974
12 Huron lm Sept. 30-Oct. 6, 1974
13 Huron 1m Dec. 4-10, 1974

14 Georgian Bay lm Apr. 28-May 1, 1974
15 Georgian Bay lm ‘May 18-22, 1974

16 Georgian Bay lm June 17-22, 1974

17 Georgian Bay lm ‘July 28-Aug. 2, 1974
18 Georgian Bay lm Sept. 1-6, 1974

19 Georgian Bay lm Oct. 6-11, 1974

20 Georgian Bay lm Dec. 5-7, 1974

21 Erie 0.25 m Apr. 3-10, 1975

22 Erie 0.25 m May 12-25, 1975

23 Erie 0.25 m June 24-29, 1975

24 Erie 0.25 m Aug. 5-11, 1975

25 Erie 0.25 m Oct. 6-11, 1975

26 Erie 0.25 m Oct. 27-31, 1975

27 Erie 0.25 m Nov. 25-30, 1975

28 Ontario 0.25 m Mar ;Apr. ;May 1974-=79
29 Ontario 0.25m June,July,Aug. 1974-79
30 Ontario 0.25 m Sept.,Oct.,Nov.,1974-79
31 Ontario 0.25 m Dec., Mar. 1974-79

32 Ontario 0.25 m Mar.-Dec. 1974-79
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PHOTIC DEPTH

Figures 33-41 ilidstrate contours of the calculated photic
depths.(defined as the depth of the 1% subsurface irradiance level).
The optical surface c:ahsmiésion data were combined for periods shoﬁn
in ‘Table. 2 to provide a "shmmef" value of photic depth for Lakes
Superior, Huroﬁ and Erie and Georgian Bay. The wealth of Lake Ontario
data once nagéiq ehabled # ‘more statistically rigorous seasonal
analysis for that laké.v Singe the optical surface traﬁsmissign data
were utilizedi in the determination of bhotic depth, there 1is an
undérstandable similarity between the surface t;ansmission contours
and the'phdtic depth contouts for gach body of water.

Salient Ffeatures of the photic depth contours of Figures
33-41 include:

a) For the sumfer period, the Uppef Lakes (including Georgian Bay)
are characterized by consistentlyllarge values of photic depths
(>20 metres with values >30 metres not uncommon) .

b) For the summer period; the Lower Lakeé are characterizéd by
consistently . smaller values of phocig‘ depths (<20 metres with
values <15 metres not uncommon). |

c) In general, the afeas‘of low transmission in each lake (as listed
in the previous section) are réflected as areas ?f small photic
depths, while the areas of high'trénsmission in each lake (as
listed in the previous section) are reflected as areas of large

photic depths.




d)

- 4] -

'1"he "onion skin" pattern in the photic depth contours of Lake
Ontario which is so distinctly prominent in spring and winter
(and thé yearly average shown in Figure 41) is very indistinct in
the fall andv totally absent in the summer during which time the
entirety of Lake Ontario is characterized Sy photic depths of

~11-14 metres (see Figure 38).
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TABLE 2
Figure Lake Date
33 Superior June—Oct.,‘1973
34 Huron May-Oct., 1974
i 35. Geéorgian Bay May-Oct., 1974
| 36 Erie May-Oct., 1975
37 Ontario Mar-May, 1974-79
3é Ontério June-Aug, 1974-79 -
39 Ontario ‘Sept.-Nov., 1974-79
40 Ontario Dec., Mar., 1974-79
4] Ontario Mar.- Dec., 1974-79
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TRANSMISSION TRANSECTS

Figures 42-71 illustrate the geographical locations of the
surveillance stations comprising the tramsects utilized for each Great
Lake'studied, followed by the transmission transects dgtermined for
those sté;ion locations. Table 3 lists the particulars for each of
these figures. The Lake Superior transmission data are presented as

five separate south-to-north transects for the month of September,

. 1973. The Lakes Huron, Ontario and Erie and Georgian Bay transmission

data are presgnted as one longitudinal tramsect per month for each

lake; While data for only a single year are displayed for each’ of

Lakes Huron and Erie and Georgian Bay, data from three years are

included in the transects of Lake Ontario. ‘The transmission data for

ﬁhe Upper Lakes were obtained with a 1 metre path length
tranémisSomgter while the transmission data for the Lower Lakes were
obtained with a O.25 metre path length, transmissometer.

Salient features of the transmission transects of Figures 42-71
include:

a) Lakes Huron, Erie and Ontario and Georgian Bay all display the
same distinct seasonal cycle. In the spring when the lakes are
characterized by isothermal conditions, the transmission
transects indicate a similar tendency towards an isotropic
condition. No vertical gradient in transmission is in evidence.

A slight horizontal gradient in transmission, however, can be
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seen. As the season progresses and the lakes become therxﬁally
stratified, distinct layering develops among the water masses of
equivalent transmission. In general, a significant amount of
this layering is associated with the actual location of the
thermocliné. In Lakes Superior and Huron and Geofgian Bay, the
thermocline is characterized as the layer of minimum mid-lake
transmission. ‘Below and above the the_rmocline, the. waters
diépla)l' a higher degree of clarity. The triple basin nature of
Lake Erie, however, produces a considérably' more cm;lplex
transmission transect structure. The shallow western basin of
Lake Erie is characterized ’by both a horizontal and a vertical
t;.ransmission gradient with extremely low values of transmission
Ab'eing obsefved at lake-bed. The intermediate-depth central basin
is generally chgracterized, by higher transmission values above
the ' thermocline and 1lower transmission values below the
thermocline. - The deeper eastern basin tends to display the
qualities of the Upper Lakes. In the early summér Lake Ontario
displays a transmission structure similar to that of the Upper
Lakes (thermocline as the region of minimal transmission). As
the summer progresses, however, the eplimnion becomes the most
t‘urbi:d (lowest values of transmission) and the hypolimnion
t;ecomes the most clear (highest values of transmission). During
the summer, therefore, the deep eastert; basin of Lake Erie

displays a transmission transect structure similar to those of



b)

c)

d)

- 54 -

tﬁe Upper Lakes and Lake Ontario displays-an inverse transmission
transect structure to that of the central basin of Lake Erie. In
the fall, as the lakes return to an isothermal coundition, the
transmission transect structure also collapses and returns to the
spring conditions.

Although seasonal déta for Lake Superior are not included in this
report, existing optical data. for this lake indicates its
seasonal’beh;viour is similar to that of Lake Huron and Georgian

Bay. Figures 43-47 display a lake-wide regime of minimal

transmission in conjunction with the thermocline.

An obvious feature of many of the transmission transects of Lakes
Erie and Ontario and Georgian Bay 1is the region of low
transmission near the bottom. This region, generally referred to

as the nepheloid layer, is most prominent in Lake Ontario during

.the summer and early fall.  This nepheloid' layer is most

prominenit in the Qestern and central basins of Lake Erie during
the summer. In fact the entire hypolimnion of central Lake Erie
may be considered as comptising the nepheloid layer. The
nepheloid layer of Georgian Bay, while most prominent during the
summer, is neither as clearly defined nor as physically extensive
as 'its Lower Lake counterparts.

An inability to momitor tranamiséion at aepths >100 m prohibits
any speculationslas to the,existence and nature of such nepheloid

layers in Lakes. Superior and Huron.
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TABLE 3

Figure Lake En& Point Stations Date

42 Superior Transect Location -

43 Superior 16, 9 Sept., 1973
4k Superior 17, 28 Sept., 1973
45 Superior 50, 36 Sept., 1973
46 Superior 51, 86 Sept., 1973
47 Superior 165, 177 Sept., 1973
48 Huron Transect Location -

49 Huron 33, 1 May, 1974

50 Huron 33, 1 June, 1974

51 Huron 33, 1 July, 1974

52 Huron 33, 1 August, 1974
53 Huron 33, 1 October, 1974
54 Georgian Bay Transect Location -

55 Georgian Bay 55, 7 May, 1974

56 Georgian Bay 55, 7 June, 1974

57 Georgian Bay 55, 7 July, 1974

58 Georgian Bay 55, 7 Sept., 1974
59 Georgian Bay 55, 7 October, 1974
60 Erie Transect Location -

61 Erie 60, 4 April, 1975
62 Erie 60, 4 May, 1975

63 Erie 60, 4 June, 1975

64 ‘Erie 60, 4 Auguét, 1975
65 Erie 60, 4 October, 1975
66 Ontario Transect Location -

67 Ontario 1, 78 May, 1982

68 Ontario 1, 78 July, 1982
69 Ontario 1, 78 August, 1981
70 Ontario 1. 78 October, 1982
71 Ontario 1. 78 October 1983
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BEAM ATTENUATION COEFFICIENT AND SECCHI DISC DEPTH

Figures 72—77‘i11ustrate the intercomparisons between the
.inverse Secchi depth S~1 and the beam attenuation coefficient c. The
values of ¢ were caiéulated in the manner described in Part I of this
report utilizing the percent transmission values directly obtained at
a depth of 1 metre. Power law regressions between tlie (c,'S’l) data
pairs were performed for each lake and the results are illustrated in
Table 4. From Table 4 it is seen that the number of data pairs used
in the regressions varied from 171 to 1442. The number of points
defining the regressions illustrated in figures 72-77 appear to be
considérably less., For display purposes onl}, the data pairs have
been averaged:. All data pairs, however,.have been included in the
regression analyses.
Figure 78 illustrates an intercomparison of the regressions

between ¢ and S™! for each of the lakes. It is evident thdt, in

Huron to Lake Erie, a higher ratio of ¢ to s—1 is generally

encountered.
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IRRADIANCE ATTENUATION COEFFICIENT ARD BEAM ATTENUATION COEFFICIENT

Figures 79-83 illustrate the intercomparisons between the
beam attenuation coefficient ¢ and the irradiance attenuation
coefficient of the photosynthetic available radiation, kpag, (See
Part I of this. report).v Linegr. régressidns were performed for the
(c,kpaR) data pairs, and the results are summarized in Table 5. The
path léngth and field of view (FOV) appropriate for all the data
utilized to calculate c are ! m and 2.3°, respectively.

Figure 84 illustrates an intercomparison of these
regressions between ¢ and kppg for the general range of values of

these parameters observable in each lake.



TABLE 5

Figure Lake Date Number of Points Mathematical
in Regression Relationship
79 Superior 1973 34 kppAr=0.195C+0.08
80 . Huron 1974 29 kPAR%o.léoC+o.06
81 Georgian Bay 1974 23 kPAR=0.1850+0.06
82 Erie 1975 25 kpAR=0.220C+0.01
83~ Ontario 1975 22 kpag=0- 185C+0.02
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Irradiance attenuation coefficient: (m-1)
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IRRADIANCE.AITENUAIION COEFFICIENT AND SECCHI DISC DEPTH

The equations defining  the irradiance attenuation
coefficient for PAR (kppr) as a function of the beam attenuation
coefficient, ¢, for each Ia?é monitored are'given in Table 5. Thé
equations defining the beam attenuation coefficient, c, as a function
of the inQerse Secchi disc depth, S'i, ére given in Table 4. Gléarly,
therefore, kppr may be expressed )as a function of S~1. These
mathematical relationships between kpar and S;1 WOu;d reflect tﬁe
power law relatiomnship that exists between c and S'l. Howevér, since
the éower exponents teqorded in Table 4 for the 2.3° FOV transmisso-
meter data are very close to unity (the largest departure from unity
is the 0.80 exponent #pprdpriate to Lake Superior), the regression
curves of Figures 72-77 were fitted to straight lines. Thus the
relationships between kpsp and s=! have been simplified to linear
representations. These relationships relating kpap to s=! for each
lake are included. in Table 6 along with the range of Secchi disc¢ depth
values for which the linearity approximation will apply. Theése ranges
of Secchi -disc depth values, however, generally encompass the range of
values normally observed in those waters.

Figure 85 illustrates the relationships between kpasr and
s-! for each lake monitored. It is readiiy seen that Lakes Huronm,

Superior and Ontario and Georgian Bay display distinctly similar
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similar (kpAR, s=1) regressions, while Lake Erie displays a markedly
different regression vwith a slope. which is ~50% hiéher than the -
slopes observed for the other water bodies. Figure,86 illustrates the
(kpAR,VS';) regressions over the common tange‘of Secchi disc depths
>2 m. Figure 87 illustrates ﬁhe effect of averaging the regressions
of Lakes Superior, Huron and Ontar;o and Georgian Bay into é.single
relationship over the range 2m £ S 5_10 m. Consequentiy, with the
exclusion of Lake Erie, the Great Lakés waters monitored by the NﬁRI

surveillance program may be defined by the single relationship

kpar = 0.757 =1 + 0.07

over the range 2 m £ S £ 10 m.

The average . éercent difference between the use of this
single equation and the actual regréssion obtained for each lake is as
follows: | | |

Lake Huron : 2%

Lake  Superior : 5%

Lake- Ontario : 7%

Georgian Bay : 5%
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TABLE 6
Lake Range of Secchi Mathematical
Disc Values Relationship
Superior 2m<S <20 kpaR=0.675"140.10
“Huron lm<S <20 kpar=0.745~1+0.07
Georgian Bay 2m<S<20 kpar=0.815~1+0.07
Erie 5m<S <10 kpar=1.285"!
Ontario l1m<s< 3 kPAR=0‘76S'1+0.06
Ontario 3m<s<10 kpar=0.865~1+0.03




Irradiance attenuation coefficient- (m-)

13

-10b -~

12+

11

1.0

a8f

07F

0.6F"

05r

04r

0.2+

01

O ——
————————

HURON
GEORGIAN BAY
SUPERIOR

-a‘o‘-oo"..oc ONTAR'O

ERIE

1

01 02

03 04 05 06 07

Inverse Secchi depth (m-1)

0.8

09 1.0

.G, Bs




_\Q"(_

9%k O\ 3

¥'o

(j-w) yidep 1yodag esianuj
m._o ¢0 40
: T

G0

Jy3 ———

OIHVLNQO seccesececs
HOIH3dNS -------
AvE NVIOHO3IOD ———
NOUHNH ——m

. (Y0)

1¢0

€0

14V

150

90

L0

(1-W) JUSI01}800 UOIIEBNUS}E SOUEBIPR.|



-10& -

S0

- ¥$0

(-w) yidep 1yodeg assanu|
1 T B

WOLS SSWZ /0" +,_S /6L =)

- AvE NVIDHOID ANV HOIHIJNS ‘NOYNH ‘OIHVLNO SIMV1

HO4 SdIHSNOILV13H 40 39VH3AV

10

(1-w) .Jua101}}300 UOlBNUAlE SdUBIPR.



- 109 -

SPECTRAL BAND VALUES OF IRRADIANCE ATTENUATION COEFFICIENTS

Figures 88-99 illustrate the results of regressing the

irradiance attenuation coefficients appropriate for each of the

spectral bands 400nm-500nm (blue); 500nm-600nm (green); 600nm-700nm

(red) against the irradiance attenuation coefficient for PAR, kpag,

(400nm-700nm). Specific breakdown of these regressions are given in

Table 7 which includes the least squares regression relationships

between kpar (kyo0-700) and each of kygo-500, Ksoo-600 and Kgoo-700

and for each lake monitored.

a)

b)

c)

d)

The salient features of Figures 88-99 are as follows:
For the Upper Lakes,'the statistical scatter between Kygp-500
(blue) and kppr and bétWeen ksgo-600 (green) and kppr are
quite small. The statistical scatter between kggg-709 (red) and
kpAR, however, is quite large. |
For the Lower Lakes the statistical scatter between kpar and
any of the three spectral band ‘values of the irradiance
attenuation coefficients is quite small.
The high intercept value of the regressions between Kkggg-7¢9p
(red) and kppp apparent in all the lakes is due to the high
absorption of pure water in this wavelength band.
For each lake the slopes between kggg-ggo (green) and kppr and
between kggg-799 (red) and kpar are generally comparable but -

significantly lower than the slope between k,gg-599 (blue) and

KpAR.



e)

"1_.1.0'

On a per-lake basis, the relationships between k,gg-s500 (blue)
and kppagr show the least amount of variance while the

relationships between kggg-g00 (green) and kpsR show the

‘greatest amount of variance.
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TABLE 7
Figure Lake Number of Per-Band Mathematical
Regression Points Relationship
88  Superior 66 ky00-500=1 - 24kpaAR—0.04
89  Superior 66 ksp0~600=0.76kpar+0.01
90  Superior 66 Kg00-700=0 74kpar+0.27
91  Huron & 102 Ky 00-500=1.31kpag=0.05
Georgian Bay
92 Huron & 102 ks500-600=0.76kpag+0.01
Georgian Bay
93  Huron & 102 K 00— 70060+ 84kpaR+0. 24
Georgian Bay
9  Erie 40 K400-500=1-31kpag=0.05
95  Erie 40 K500~ 600=0-92kpar-0.04
96 Erie 40 Kg00-700=0.86kpar+0.24 .
97  Ontario 57 Ky00- 500651 - 23kpar+0. 04
98 Ontario 57 k500-600=0-82kpaR
99  Onmtario 57 Kg00~700=0-77kpar+0. 28
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SPECTRAL DEPENDENCE OF IRRADIANCE ATTENUATION COEFFICIENTS

Figures 100 and 101 illustrate the lS—pointvspectra obtained

from the calculation of the’irradiance attenuation coefficient at 20

nanometer increments over the spectral range 410 mm to 690 nm for each

lake and for several kpar values ranging from 0.10 to 0.50 m~! for
the Upper Lakes and ranging from 0.20 to 1.20 m~! for the Lower Lakes.

.?igures 102 and 103 illustrate the 15-point spectra of the
subsurface irradiance at the 100% level (incident) and at the 10% and

1Z levels for two values of kpar for each bf Lakes Huron (0.10 m?

and 0.50 m~!) and Erie (0.20 m~! and 1.20 m™1).

The salient features of Figures 100-103 include:

a) For the Upper Lakes, the wavelength with which the miﬁimum.
attenuation coefficient 1is associated gradually shifts <from-
~490 nm to -570 nm as the kpar increases. Due to the rapid
increase in attenuation for ‘the‘ blue region of the visible
spectrum, the wavelength at which minimum attenuation coefficient
is observed becomes more sharply defined.

b) For the Lower Lakes, the wavelength with which the minimum
attepuafion coefficient 1is ass;ciated displays a very slight
shift from =550 nm to <590 nm as the kpar increases. Once

again the wavelength at which minimum attenuation coefficient is

observed becomes more sharﬁly defined as kpasr increases.
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c) Fdrdlow values of kpap in Lake Hurom, the irradiance at the 1%
level has virtually lost its red component while retaining a
considerabie portion of its blue component. Consequently, the
sgb_surface irradiance rapidly becomes '"bluer" with increasing
depth in Lake Huron waters displaying low kpaR.

d) For high values of kpap in Lake Huto't; the subsurface irradiance
rapi&ly becomes peaked in the green with increasing 'de[.;tfh.

e). TFor low values of kpag in Lake Erie the irradiance at the 1%
level has virtually lost its red component but 'has' retained a
significant portion of its green component and some of its blue.

f) For high values of kpar 'in Lake Erie, the ir-radiaﬁc‘e at the 1%
level has lost most of its blue component .while retaining
significant portions .'of both- its green and red components.

| >Figt.1re 104 plots the photosynthetic usable radiation (PUR)
against the photosynthetic available radiation (PAR) [see Part 1 of
this report], both expressed as a percentage of their incident values
for Lakes Huron and Erie utilizing both the upper and lower limits of-

! and

KkpAR for each lake (0.1 m~! and 0.5 m—! forvHuron and 0;2 n-
1.2 m~! for Erie). As a result of the spectral changes with depth
discussed above, the maximum amount of PUR per PAR is displayed for
low kppr in Lake Huron. The minimum amount of PUR per PAR is

displayed by high kpAR in both Lakes Huron and Erie. Low values of

kpar in Lake Erie produce almost a 1l:1 ratio of PUR to PAR.
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SUBSURFACE SIGHTING RANGE

The subsurface sighting range 1is generally taken to
represent the maximum distance at which an object may be detected
underwater. -Although the term is somewhat subjective, the largest
impact on its numerical value is, obviously, the optical properties of
the water. Large values of subsurface sighting range are associated
with waters of high clarity, while small values of subsurface sighting
range are associated with turbid waters. The two most obvious
turbidity ' indicators from an optical standpoint are the beam
attenuation coefficient ¢ and the irradiance attenuation coefficient
k. The sum of these two optical properties (k + c) m~! is frequently
employed as an indication of the state of optical clarity.

In addition to the aquatic medium influencing the subsurface
sighting range associated with a submerged object; the p:operﬁies of
the submerged object itself strongly influences its ability to be
visually detected. In particular, the contrast of the object to its
surroundings is of major importance. - The reflectivity of the object,
Ry and the reflectivity of the background, Rp (this latter
parameter is well approximated by either the'bottom reflectance if the
object is near lake bottom, or the volume reflectance of the water
column if the object is not near lake bottom) are the two factors that
determine the contrast of the object.

The remaining factors of major influence on the subsurface

sighting range associated with a submerged object are the physical
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size of the object, the direction of viewing, and the availability of
subsurface light (this latter factor being directly related to the
incident radiation).

Figure 105 illustrates a nomograph by which the sighting
~range can be obtained once the optiéél'parameters k, ¢, R, and Rp
are kiown. This particular figure considers physical objects of
projected area >100 cmz viewed from the Sufface veftically downward
for all lighting conditions beEWeenvone hour subsequent to sunrise and
one hour prior to sunset. To determine the subsurface ‘sighting range,
thefefore, a direct measurement of the total attenuation coefficient c
is first required. For a particular location and time the transmis-
sion.contours of Figureés 1-32 may be used if direct measureménts are
not readily available. The corresponding value of the irradiance
attenuation coefficient k may be calculated from the mathematical
relationships of Table 5. The value of Rg, to a first -approxi-
mation, can be expressed as 0.015(c + 1.0)...The reflectivity of the
object, RT may be estimated as a number between O and 1 depending
upon 1its colour and finish (shiny .objects would display higher Ry
values, for example, than would objects with a matte finish. Secchi
discs are generally déscribed by an Ry of 0.70). Thus the
parameters (c+k) and Ry-Rp/50Rg may be readily determined, and a
straight line drawn between these values yields the sighting range.as
its interception point with the curve of Figure 105. For smaller
objects, non-vertical viewing directions, and differing conditions of

incident
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radiation, other nomographs describing these situations would be
required. Additional information on the nature and applications of
such nomographs may be found in Preiéendorfer (1976).

Using the above nomograph technique, the sighting ranges for
an object >100 cm? projected area and characterized by an Rt of 0.70
were calculated fér Lakes Ontario, Erie, Superior, Huron and Georgian
Bay. Figure 106 displays these calculated sighting ranges as a
function of the transmission values appropriate to the offshore
near—surface waters of eachb of the Great Lakes during the summer
months. As is evident from the figure, sighting ranges vary from as
high as 20 metres in Lake Superidt to as low as 1 or 2 metres in Lakes

Erie and Ontario.
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DETERMINATION OF THE PHOTOSYNTHETIC AVAILABLE RADIATION, PAR

The spectral distribution of the igcideﬁ; PAR was measured
during both clear and CIOudy sky conditions from near sunrise to near
sunset. Simultaneous measurements of the total doﬁnWeLling irradiance
Erors £from 300 to 2800 nm were made with an Eppley pyranometer.
Figure 107 displays the regression of PAR on Ergr for 71 incident
spectra collected under conditions of constant incident radiatioq.

The regression is defined by
PAR (einsteins/m%/sec) = 1.848 EToT (W/m?)

For each of the incident spectra the specttral distribution
of quanta in PAR was determined for 20 nm bands, centred at 20 nm
intervals from 410 nm to 690 nm. The quanta irradiance in each band
was then calculated as a percentage of PAR. The spectral distribution
of incident PAR is shown in Figure 108. Also indicated in the figure
are the percentages of blue, green and red light comprising PAR.

Figurés 107 and 108 can therefore be utilized, along with
pyranometer measurements, to determine both PAR énd its vspectral

distribution.
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DETECTION OF OPTICAL LAYERING

Figure 109 illustrates reéresgntati&e vertical transmission
‘and temperature profiles for a mid-lake station in Lake Huron during
the summer. The optical layering in the vicinity of the thermocline
is a most obvious feature of the transmission profile.

Similarly, Figures 110 and 111 illustrate optical layering
in the summer in Lakes Erie and Ontario, respectively. Such structure
has been discussed in a previous section.

Figures 112 and 113 illustrate a time series of transmissioh
profiles in Georgian Bay and Lake Erie, respectively. Generétion,
decay and migration of optical layers are apparent. Of particular
note 1is the development "of an .epilimnionic layer in Lake Erie
(Figure 113) in the late morning on August 19 and again on August 20,

1980.
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DETERMINATION OF "OPTICAL CROSS SECTIONS"

"Optical cross sections" refer to the attenuating influence

on a per unit concentration basis of each component that defines a

water mass and can influence its optical properties through the

scattering and/or absorption of penetrating radiation. The obvious
importance of such "optical cross sections" to the water quality
parameters of naturai waters has been extensively discussed elsewhere

(Bukata gﬂ, 1985; 1983; 198la; 1981b) and will not be belaboured

here. Rather, a brief discussion of three generally used methods of

estimating such "cross sections" will be presented.

1) Defining the "optical cross section" of a component of a water
mass as the change in the value of the irradiance attenuation
coeffic.ientv k per unit change in concentration of the component
(irrespective of whether the predominant process responsible for
the change in k is scattering, absorption, or a combination of
both), omne Eechnique for estimating such "optical cross sections"
consists simply of linearly regressing k against the
concenitrations of each of the components. Figures 114 and 115
show such linear regressions of k on chlorophyll a concentrations
and particulate organic carbon concentrations, respectively. It
must be cautioned, however, that this is a highly hazardous
approach to the analysis. Such regre,ésions represent, at best,
partial derivatives existing between the variables at the time

that the regreéssion was performed, and are strongly dependent
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upon the influences of the components not being considered. Such
partial derivatives can be confidently considered to be
equivalent to a total derivative only in‘either the absence of
other influencing components, or in the presence of constant
concentrations of ‘su,c,h other influencing components. 1f the
component being regressed was the only variable influencing the
jrradiance attenuation coefficient, then curves such as éhown in
Figures 114 and-llS could be readily used, with subsequent
measurements of k, to reliably infer the concentrations of such
water quality indicators as chlorophyll a and particulate organic
carbon. However, since such conditions of constancy and/or
absence of convoluted components are virtually non-existent in
the waters coinprising the L'a-uten’tian Great Lakes, this first
method of estimating "optical cross sections” utilizing linear

regressions cannot be generally recommended.

One instance; howéver, where such a simple linear regression
approaches a reasonable degree of reliability is shown in Figure
116, Herein is the regression between the beam attenuation
coefficient, c, and the suspended mineral concentration in Lake
Erie. It is known that the high concentrations of suspended
mineral optically overwhelm the small-to-moderate concentrations
of chlorophyll a and other water quality indicators.
Consequently, the suspended minergl concentration may be
confidently considered to be the predominant factor influencing

the beam attenuation coefficient. In this instance, therefore,
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direct measurements of c¢ may be utilized to directly infer the
suspended mineral concentrations in Lake Erie, provided that the

range of ¢ values plotted in Figure 116 is not exceeded. As will

" be seen ‘later relationships such as considered here do not

necessarily retain their linearity over extended ranges of values
of independent variables.

Again defining the "optical cross section" of a component of a

water mass ‘as the change in the value of the attenuationl
coefficient per unit change in concentration of the responsible

aquatic component, a second method suggested by Tyler (1976) has

often been used. Figures 117 and 118 illustrate applications of

this method. Therein afre plotted scatter diagrams of all the
data p#irs. (The enormous amount of scaftét evident in Figures

li7 and 118 vividly illustrate.the generallfutility of the single

linear regression technique described above). A straight line is

generated and taken as defining the lower limit of the envelope

containing all the data pairs. The »y—in,tercept‘: of this line is

taken as the distilled water value of the optical parameter being

regressed (c and k, for Figures 117 and 118, respectively).

The basic premise of this method is that the data points defining

this bottOm,envélope represent water masses which are comp;ised

solely. of the water quality component of interest. All other

water quality components are absent (not merely constant, but

totally absent). If thisv is indeed the <case (i.e. the

constructed line applies to water masses comprised of but a
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single component), then the slope of the line truly represents a
total derivative, and therefore a true "6ptica1 cross section".
However, if such is not the case (a situation which c‘ouldve,asily
arise if, for instance, no such uni-component water masses have
been encountered in the sampling activities), then this technique
would clearly overestimate the numerical values of the "optical
cross section,sv"., |

Defining the "optical cross seét’io‘n"' of a component of a water
mass more specifically as the amount of either absorption or
scattering at waveleng;h A for a unit conce_ntrati.on of a
particular ¢omponent [two distinct ‘''cross secr,iﬁns" therefore
emerge for the ith compdnent of a water mass: an "absorption
cross section", aj(}), and Va "scattering cross sectiom,
bi(}\)], a third and more rigorous method of estimating cross

sections involving the use of multiple linear regressions and/or

non-linear optimization techniques has been employed at NWRI.

These techniques and the. results of such analyses And their
applications to water quality estimations have been dism;ssed in
great depth in a recent report (Bukata et al, 1985). The
discussions wili not be tei)eated here. However, Figures 11§ and
120 1illustrate ‘the spectral nature of the absorption and
scattering "cross sections", respectively, for total suspended
mineral, cﬁlorophy’ll a and dissolved organic carbon. These

"eross sections” were determined for Lake Ontario waters.
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The use of such absorption and scattering "cross sections"
in estimating water quality parameters is illustrated in the next

section of this report.
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ESTIMATION OF WATER QUALITY PARAMETERS

As outlined in Bukata et al (1983; 1985), the "optical cross
sections” of Figures 119 and 120 may be wutilized, along with
appropriate radiative transfer theory, to generate the subsurface
irradiance reflectance (volume reflectancé) spectra that would be
observed for water masses comprised of any combination of component
concentrations. Figures 121-123 illustrate the mathematically
determined volume reflectance spectra for a variety of Lake Ontario
water masses displaying variations in their concentrations of
suspended minerals, chlorophyll a and dissolved organic carbon.

The estimation of water quality from in situ determinations
of subsurface irradiance reflectance spectra would then proceed as
follows: The volume reflectance spectrum is directly measured. A
non-linear optimization technique (Bukata et al, 1985), along with the
spectral values of the "optical cross sections" is used to optimize
those values of chlorophyll a, suspended mineral, and dissolved
organic carbon that generate a subsurface irradiance reflectance
spectrum which most closely resembles the directly measured spectrum.

The above methodology uses the entire visible optical
spectrum. Other NWRI attempts to estimate water quality have utilized
restrictive regions of the visible spectrum. For example, Figure 124
illustrates a duo-isoplethic¢ curve (the 2 parameters being the

concentrations of chlorophyll a as indicated by the first number, and
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suspended twineral as indicated by the second- number; the DOC
concentration is kept constant). Figure 124 utilizes as its axes the
subsurface irradiance reflectances at the single waveléngth valﬁes 550
mm (yellow-green) and 670 mm (red). Clearly, such duo-isopleths may
be constructed for any pairs of wavelengths, although not all pairs of
wavelengths would be equally appropriate or even usable (Bukatavsg_glj
1981b).

Curves such as shown in Figure 124 may be directly utilized
to estimate chlorophyll a and suspended mineral concentrations from in
3222. measurements of the volumé reflectance at two .wavelquths.
Figure 125 illustrates the scatter between estimated and directly
measured chlorophyll a concentrations in Lake Ontario. Similarly
Figure 126 illustrates the scatter between estimated and directly
measured suspended mine:al concentrations.

The use of a single wéVeléngth determination of the
subsurface irradiance reflectance in the estimation of water quality
in optically complex lake waters can be all but totally eliﬁinated.
There exists, however, one very significant exéeption, namely the use
of the volume reflectance at red waveleﬂgths ﬁo estimate with a
reasonable confidence the éuspended. fiineral concentratipns in Great
Lake waters: This is illustrated in Figure 127 which displays the
anticipated volume reflectance at 650 nm as a function of increasing
suspended mineral concentration. The uncertainty bars AB at each

plotted point include the .range of calculated values of volume
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reflectance resulting from varying the chlorophylL‘g and dissolved
organic carbon concentrations over the range of values éncountered in
Lake Ontario. Even with the high degree of optical complexity arising
from such large observed fluctuations in component concentrations, a
single wavelength measurement of volume reflectance in the red does
display an ability to estimate suspended mineral concentration.
Figure 128 éhows the scatter arising from a direct comparison of
directly measured subsurface irradiance reflectance at 670 nm and
directly sampled suspended mineral concentrations.

One final technique for estimating suspended ﬁineral
concentrations is shown in Figure 129 wherein the relationship between
)
suspended mineral concentration and beam attenuation coefficient ¢
suggests that a determination of ¢ should yield reasonable estimate of
the suspended mineral concentration. As stated in the previous
rsec-tion, such a technique may be considered since the impact on ¢
brought about by suspended mineral cpncéntrations is considerably
larger than the impacts on c brought ;bout by competitive component

1

concentrations. It should be noted that for 0 i_c 5_10 m~ " a linear

relationship between ¢ and suspended minerals is readily apparent (see

1

previous section). However, for values of ¢ > 10 m- the effects of

multiple scattering manifest as a distinctly exponential relatiomship.
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