

519

²¹⁰Pb dating of riverine sediments from the St. Lawrence River (Core 079, Station 3-1), Ontario. L.J. Turner

> CONTRIBUTION 96-03 February, 1996

National Water Research Institute Canada Centre for Inland Waters Burlington, Ontario L7R 4A6

Turner, L.J., 1995. ²¹⁰Pb dating of riverine sediments from the St. Lawrence River (Core 079, Station 3=1), Ontario. National Water Research Institute, Burlington, Ontario. NWRI CONTRIBUTION 96-03, 28p.

Summary

A riverine sediment core was dated from the St. Lawrence River, Ontario. The ²¹⁰Pb profile of the sediment core was used to determine the chronological age of the sediment as well as the sedimentation rate. The mean specific gravity was determined to be 2.512 g·cm⁻³. The sedimentation rate was calculated to be 0.79 cm·yr⁻¹ for core 079 using a CIC model.

The average mass sedimentation rate was determined to be 0.16 $g \cdot cm^{-2} \cdot yr^{-1}$ using the CIC1 model, 0.18 $g \cdot cm^{-2} \cdot yr^{-1}$ using the CIC2 model, and 0.16 ± 0.03 $g \cdot cm^{-2} \cdot yr^{-1}$ using the CRS model.

INTRODUCTION

In this study, a core (079) taken from the St. Lawrence River (Station 3-1), near Cornwall, Ontario, was dated using a ²¹⁰Pb method (Eakins and Morrison, 1978). The core was collected by Technological Operations personnel (National Water Research Institute, Burlington) and submitted for analysis by N. Rukavina (CCIW, NWRI). Other eastern Canadian cores have been dated using this method (Turner and Delorme, 1988a-b, 1989a-g, 1990, 1992; Turner, 1990a-e, 1991a-g, 1992a-c, 1993a-d, 1994a-b, 1995a-g, 1996).

LOCATION AND CORE PREPARATION

The location of the sample site from which the core was taken (Station 3-1; 45°1'25.489"N, 74°40'59.434"W) is shown in Figure On August 5, 1993, the St. Lawrence River was cored using a 1. benthos corer (6.67 cm diameter) at a water depth of 9 m. Core 079 was transported to Burlington, Ontario where it was placed in On October 10, 1995, core 079 was subsectioned cold storage. into 1-cm intervals giving thirty-eight (38) samples. The samples were then weighed, freeze-dried, and then re-weighed. These weights were used to calculate porosity and the uncompacted depth (see Appendices A - B, Delorme, 1991). A plot of porosity versus uncompacted mid-depth and cumulative dry weight for core The porosity profile illustrates a 079 is shown in Figure 2. in lithology for several samples (between slight change uncompacted mid-depths 43.37 and 68.91). The decrease in porosity in this region may indicate an increase in particle size. Specific Gravity was determined using an automated Accupyc pycnometer (Micromeritics, 1992). Mean specific gravity for the sediments of core 079 is 2.512 \pm 0.032 g·cm⁻³ based on 9 samples

1

and 45 determinations (see Appendix C this report).

Figure 1. Location map of the sampling site for core 079, St. Lawrence River, Ontario.

METHOD

Laboratory Procedures

Homogeneous portions of 23 samples (Table 1, including 2 sets of replicates) from core 079 were treated using a variation on the Eakins and Morrison (1978) polonium distillation procedure. Details of the laboratory procedure are found in a laboratory manual (Turner, 1990).

Following grinding and homogenizing, 1 g (upper core) to 3 g (lower core) of sediment were treated with concentrated HCl to remove carbonate materials, then mixed with approximately 10 dpm ml^{-1} of ²⁰⁹Po spike in a test tube. The ²⁰⁹Po spike was prepared on September 6, 1991 at 6.07 dpm/ml activity. The test tube and contents were then placed in an oven at 110°C until dry.

After cooling, glass wool plugs (one to hold the sediment at the bottom of the tube, one dampened to catch polonium at the opening of the tube) were inserted, then the tubes were placed into a tube furnace and heated to 700°C for ½ hr to distill the polonium from the sediments. At this temperature, polonium passes easily from the sediment, through the dry wool plug and does not condense until reaching the wet wool plug outside the furnace.

After cooling, the tube was cut, and the upper part containing the damp glass wool (condenser) was digested in concentrated HNO_3 under reflux (to destroy organic material). The residue was then

filtered and the filtrate boiled down and digested with two HCl treatments to remove any remaining traces of HNO3.

The polonium was then plated from the remaining solution onto a finely polished silver disk. The disk was counted in an alpha spectrometer. ²⁰⁹Po was identified by its 4.88 MeV alpha particle, and ²¹⁰Po by its 5.305 MeV alpha particle. The ²¹⁰Po counts obtained from the spectrometer were compared to the ²⁰⁹Po counts (of known activity) to determine the activity of ²¹⁰Po in the sediment sample.

Sediment Dating Theory

Dating of sediments has been actively pursued for several decades (Robbins and Edgington, 1975; Matsumoto, 1975; Appleby and Oldfield, 1978; and Farmer, 1978). Sedimentation rates are derived using either the CIC (constant initial concentration of unsupported ²¹⁰Pb; Robbins and Edgington, 1975; Matsumoto, 1975) or the CRS (constant rate of supply; Appleby and Oldfield, 1978) The CIC model assumes a constant sedimentation rate over model. the time period in which unsupported ²¹⁰Pb is measured. The CRS model assumes a variable sedimentation rate. Both models assume a constant flux of unsupported ²¹⁰Pb to the sediment/water interface. Depth can be corrected for sediment compaction in the model using sediment porosity measurements, CIC otherwise cumulative dry weight is used. Sediment compaction is accounted for in the CRS model by dealing with cumulative dry weight instead of sediment depth.

The profile of ²¹⁰Pb in a sediment core can be described as follows:

+ A!

 $A_{Tx} = (A_{IIO})e^{-\lambda t}$

(1a)

where

A_{Tx} is the total activity of ²¹⁰Pb in the sample in pCi·g⁻¹ dry wt at depth x, and of age t.

A' is the activity of ²¹⁰Pb supported by ²²⁶Ra in pCi·g⁻¹ dry wt (represented by constant ²¹⁰Po activities attained at depth),

A_{Uo} is the unsupported activity of ²¹⁰Pb at the sediment/ water interface in pCi·g⁻¹ dry wt,

 λ is the radioactive decay constant for ²¹⁰Pb (0.693/22.26 yr⁻¹ = 0.0311 yr⁻¹),

And since $A_{UX} = A_{TX} - A'$ then $A_{UX} = (A_{UO})e^{-\lambda t}$ (1b)

where A_{Ux} is the unsupported activity of ²¹⁰Pb in the sample in pCi·g⁻¹ dry wt at depth x,

The Constant Initial Concentration (CIC) Model:

In the following derivations, <u>equations</u> which refer to the usage of cumulative dry weight instead of uncompacted depth in the CIC model are designated with an 'a'.

In the CIC model, uncompacted mid-depth, z, can be used instead of natural depth, x, to compensate for sediment compaction. Otherwise cumulative dry weight is used. The uncompacted middepth is calculated from uncompacted thickness (Delorme 1991).

$$t_{ui} = \{ (\phi_0 - \phi_i) / (1 - \phi_0) \} + (TV_i * V_q)$$
(2)

where t_{uj} is the uncompacted thickness of the ith sample,

- ϕ_i is the porosity of the ith sample expressed as a percentage,
- ϕ_0 is the porosity at the sediment-water interface calculated by regressing the top four sample porosities (ϕ_1) against natural mid-depth, and $\phi_0 = y$ intercept,

 TV_i is the total volume of the ith sample,

V_q is the volume of a cylinder 1 cm high and surface area equal to either the inside of the core tube or the stainless steel extrusion ring, whichever is appropriate.

The CIC model assumes a constant sedimentation rate (or mass sedimentation rate) over the time period in which unsupported ²¹⁰Pb is measured, thus

$$t = z/S_0$$
(3)
$$t = c/\omega$$
(3a)

where S_{o} is the sedimentation rate in cm·yr⁻¹ at the sediment/

water interface,

z is uncompacted mid-depth,

c in cumulative dry weight in $g \cdot cm^{-2}$,

 ω is the mass sedimentation rate in g·cm⁻²·yr⁻¹.

The total ²¹⁰Pb activity at the sediment water interface is:

$$A_{\rm TO} = (P/\omega) \tag{4}$$

P is the flux of ²¹⁰Pb at the sediment water interface in where pCi·cm⁻²·yr⁻¹, (assumed constant).

Substituting equations (3) [and (3a)] and (4) into equation (1a) gives: $A_{TZ} = (P/\omega) e^{-Z\lambda/S_0} + A^{\dagger}$

or

$$A_{Tx} = (P/\omega)e^{-C\lambda/\omega} + A'$$
 (5a)

(5)

Equation (5) [5(a)] can or be simplified using natural logarithms:

$$\ln(A_{TZ} - A') = \ln(P/\omega) - (\lambda/S_0)z$$
(6)

$$\ln(A_{TX} - A') = \ln(P/\omega) - (\lambda/\omega)c$$
 (6a)

The form of the equation is y = b + (m) x

A graphical solution for P/ω (the y-intercept) and λ/S_0 [or (λ/ω)] (the slope of the line) is possible from a plot of x and y (z vs $\ln(A_z - A')$ [or c vs $\ln(A_x - A')$] (see Figure 4). As λ is known, then S_0 [or ω] can be calculated.

$$S_{0} = \lambda / \text{slope} = \lambda / (m)$$
(7)

$$\omega = \lambda / \text{slope} = \lambda / (m)$$
(7a)

When using uncompacted depth, the mass sedimentation rate ω $(g \cdot cm^{-2} \cdot yr^{-1})$ is represented by:

$$\omega = S_0 (1 - \phi_0) \rho_s = S_1 (1 - \phi_1) \rho_s$$
(8)

where $\rho_{\rm S}$ is the density of the solid phase of the sample (assumed constant),

> S_i is the sedimentation rate (cm·yr⁻¹) at a given uncompacted mid-depth z.

The flux at the sediment/water interface P ($pCi \cdot cm^{-2} \cdot yr^{-1}$) can be calculated from the y-intercept and mass sedimentation rate.

$$\mathbf{P} = \boldsymbol{\omega} \ (\mathbf{e}^{\mathbf{b}}) \tag{9}$$

Using equation (6) [or (6a)] the time 't' in years since the sample was deposited is given by:

$$t = \underline{\ln (A_{TZ} - A') - \ln(P/\omega)}_{(-\lambda)} = \underline{z}_{S_{O}}$$
(10)

or

$$t = \frac{\ln (A_{TX} - A') - \ln(P/\omega)}{(-\lambda)} = \frac{c}{\omega}$$
(10ai)

which can be written as:

$$t = -\underline{1} \ln \underline{(A_{TZ} - A')}_{A_{TO}} = \underline{z} \text{ or } = \underline{c} \qquad (10aii)$$

The uncompacted mid-depth (cm) divided by the sedimentation rate $(cm \cdot yr^{-1})$ [or cumulative dry weight, $(g \cdot cm^{-2})$ divided by mass sedimentation rate $(g \cdot cm^{-2} \cdot yr^{-1})$] gives t.

The Constant Rate of Supply (CRS) Model:

Since the CRS model assumes a constant rate of supply, then

$$P = A_{Ui} * \omega_t \tag{11}$$

where

P is the flux of ²¹⁰Pb at the sediment water interface in pCi·cm⁻²·yr⁻¹, (assumed constant)

 A_{Ui} is the initial activity of unsupported ²¹⁰Pb in sediment of age t

 ω_t is the dry Mass Sedimentation Rate $(g \cdot cm^{-2} \cdot yr^{-1})$ at time t.

Sediment laid down during time period δt occupies a layer of thickness (δx):

$$\delta x = \underline{\omega}_t \delta t$$
(12)

were

 ρ_X is the dry mass/unit wet volume of the sample (g·cm⁻³) at depth x.

$$\rho_{\rm X} = \underline{d\omega} \tag{13}$$

The rate of change of depth is

Lét

$$\mathbf{\dot{x}} = \underbrace{\omega}{\rho_{\mathbf{X}}} \tag{14}$$

where ' denotes differentiation with regards to t.

and
$$\mathbf{x} \, \rho_{\mathbf{X}} = \omega = \mathbf{x}_{\mathbf{0}} \, \rho_{\mathbf{0}}$$
 (15)

Equation (15) combines with (1b) to give

$$B(x) = \int_{x}^{\infty} \rho_{x} * A_{Ux} dx = \int_{x}^{\infty} A_{Ux} d\omega$$
(17)

represent the total residual or cumulative unsupported 210 Pb beneath sediments of depth x,

and
$$B(0) = \int_{0}^{\infty} \rho_{0} * A_{U0} dx = \int_{0}^{\infty} A_{U0} d\omega$$
 (18)

represent the total residual unsupported ²¹⁰Pb in the sediment column, then

$$B(x) = B(0)e^{-\lambda t}$$
(19)

The age of layer at depth x is thus:

$$t = - \frac{1}{\lambda} \ln \frac{B(x)}{B(0)}$$
(20)

where B(x) and B(0) are calculated by direct numerical integration of the ²¹⁰Pb profile (the plot of unsupported activity versus cumulative dry weight).

The mass sedimentation rate is calculated by dividing the change in the mid-sample cumulative dry weight by the difference of time in years for the sample analyzed.

The mean ²¹⁰Pb supply rate (flux) is calculated from

$$\dot{P} = \lambda B(0)$$

(21)

• 8

Quality Assurance/Quality Control

Quality Assurance: Collection and Preparation of Core Samples

The samples for core 079 were collected using a benthos coring device. When the core was extruded, the outer smeared portion was removed using a stainless steel ring to prevent contamination of sediments from above (following the procedure outlined by Delorme, 1991).

The samples were freeze-dried using a standard procedure. Minimum loss of water from each sample was achieved by keeping tight lids on the vials before weighing and freeze drying. There was no transfer of sediments from the vials until freeze-drying was complete and the dry weights obtained.

Test runs for quality control on the alpha spectrometry equipment were last done in January, 1996.

Quality Control: Contamination and Method Checks

Blanks (no sample, no spike), were run through the same analytical procedures as samples, to determine if there was contamination from analytical reagents. Blanks, prepared at the same time as the sediment samples, exhibited a background activity of 0.03 dpm when run in all detectors, an activity comparable to empty sample holders.

Yield tracer solutions (no sediment sample) were also run through the analytical procedure. No counts above background were detectable in the ²¹⁰Po region of the spectra for disks prepared using only the spike (no sample), indicating no polonium (²¹⁰Po) contamination in the analyses from spike solutions.

Quality Assurance: System Checks

The alpha spectrometer has been monitored since May of 1988. Sample chambers are examined on a monthly basis for contamination. Empty sample holders give a background count rate of 0.01 dpm which equals the equipment specifications.

RESULTS

Table 1 lists the ²¹⁰Po activities for the 23 samples prepared for core 079. Figure 3 depicts the ²¹⁰Po activity profile with depth and cumulative dry weight. The symbols used in figure 3 indicate which detector was used during sample analysis. Circles, triangles and squares represent detectors 3, 2 and 1 respectively.

Sample	Cum. Dry Wt. g/cm ²	Uncomp. Mid Depth cm	210 _{Po} dpm/g	DET No.
1 3 5 7 9 11 11R 11R 11R2 13 15 17 19 20 21 22 26 30 31 31R 31R 31R2 33 35 38	0.30 1.02 1.73 2.57 3.37 4.31 4.31 4.31 5.21 6.16 7.09 8.12 8.60 9.13 9.69 12.29 15.07 15.72 15.78	0.74 3.97 7.39 11.11 14.89 19.03 19.03 23.27 27.50 31.75 36.28 38.58 40.91 43.37 54.57 66.16 68.91 68.91 68.91 73.97 79.07 86.53	$12.8 \\ 13.4 \\ 11.8 \\ 10.3 \\ 10.4 \\ 9.6 \pm 0.3 \\ 9.3 \pm 0.1 \\ 9.6 \pm 0.1 \\ 8.9 \\ 9.4 \\ 8.4 \\ 7.2 \\ 7.5 \\ 6.8 \\ 6.5 \\ 4.8 \\ 4.0 \\ 5.9 \pm 0.1 \\ 5.8 \pm 0.2 \\ 5.9 \pm 0.3 \\ 5.4 \\ 5.1 \\ 6.0 \\ \end{cases}$	1 2 3 1/2/3 1/2/3 1/2/3 1/2/3 1 2 3 3 1 2 1 2/3 1/2/3 1/2/3 1/2/3 1/2/3 1/2/3 1/2/3 1/2/3 1/2/3

Table 1. Activity of ²¹⁰Po in Core 079 Sediment.

Figure 3 shows samples 26 and 30 to have depressed activity values relative to samples deeper in the core. These samples are also located in the zone of decreased porosity observed in Figure 2. The depressed porosity likely arises from an increase in sandy material. This type of material does not retain ²¹⁰Po as well as organic matter and clay minerals, thus leading to depressed activity. Data from samples 26 and 30 were not used in the final analysis.

Reproducibility of Results

Two slices from core 079 were chosen to have the analysis for 210 Po repeated. These are listed in Table 2. The 210 Po activities are given in Table 1.

Table 2 Reproducibility of St. Lawrence River analyses.

Figure 3. Distribution of Total 210 Po activity in dpm·g⁻¹ in relation to uncompacted mid-depth and cumulative dry weight for core 079.

During the analysis of the St. Lawrence River core, a concern arose as to the determination of background. The activity measured in the lower portion of core 079 was high in comparison The core site is not to other cores from the same region. located in an area where high background activity might be natural (ie granitic bedrock), nor is it located near a known source of isotopic contamination (ie uranium processing plant). To ascertain wether core 079 was long enough to have reached background activity levels, three cores acquired from nearby sites were tested for background activity. The activity measured from the bottommost samples in these cores (5.4, 4.9, and 5.4) were similar to that of core 079. Unfortunately these cores were not much longer than core 079, thus there was no guarantee that these values reflected true background.

Data analysis using the CIC and CRS models was performed assuming that the activity profile described decay to background, even though background activity could not be confirmed.

Figure 4. The distribution of uncompacted mid-depth against $ln(A_z - A')$ for core 079. The y intercept of the regression line = 1.4548, the slope = -0.0396.

210 Pb Analysis of St. Lawrence River core 079, using the CIC model.

For the first CIC model, the unsupported activity is plotted against uncompacted mid-depth (Figure 4) using the expanded equation (6). Based on the graphical solution, the y-intercept is $\ln(P/\omega) = 1.4548$ and the slope of the line (λ/S_0) is -0.0396 (see Appendix D). Samples 1 to 15 were used to calculate an average sedimentation rate of $0.79 \text{ cm} \cdot \text{yr}^{-1}$, an average mass sedimentation rate of 0.16 g·cm-²·yr⁻¹ and a flux of 0.68 $pCi \cdot cm^{-2} \cdot yr^{-1}$. The mean dates calculated for each core section, based on a division of the uncompacted mid-depth by the sedimentation rate (equation 3), are given in Appendix G. The '±' values are two standard deviations based on data calculated for the top, bottom, and mid-depth of the sample.

For the second CIC model, the unsupported activity is plotted against cumulative dry weight (Figure 5) using the expanded equation (6a). Based on the graphical solution, the y-intercept is $\ln(P/\omega) = 1.4266$ and the slope of the line (λ/ω) is -0.1771 (see Appendix E). Samples 1 to 15 were used to calculate an average mass sedimentation rate of 0.18 g·cm-²·yr⁻¹ and a flux of 0.73

pCi·cm⁻²·yr⁻¹. The dates calculated for each core section, based on a division of the cumulative dry weight by the mass sedimentation rate (equation 3a) are given in Appendix G. The ' \pm ' values are two standard deviations based on data calculated for the top, bottom, and mid-section of the sample.

Figure 5. The distribution of cumulative dry weight against $ln(A_X - A')$ for core 079. The y intercept of the regression line = 1.4266, the slope = -0.1771.

Ideally, the CIC1 and CIC2 models should give almost identical results. A difference in the mass sedimentation rates and atmospheric fluxes determined from the CIC1 and CIC2 models may indicate a problem in the calculation of uncompacted mid-depth. A comparison of the mass sedimentation and atmospheric flux rates for this core shows good agreement.

²¹⁰Pb Analysis of St. Lawrence River core 079, using the CRS model.

For the CRS model, the unsupported activity is plotted against cummulative dry weight (Figure 3). The profile is integrated to determine B(0) and B(x) and calculate time (see Appendix F) according to equation 20. Since not all samples were analyzed for 210 Pb activity, a multiple regression analysis was performed to obtain the dates for each core section as given in Appendix G. Samples 1 to 16 were used in this example to calculate an average mass sedimentation rate of 0.16 ± 0.03 g·cm-²·yr⁻¹ and flux of 0.72 pCi·cm⁻²·yr⁻¹. The variation in mass sedimentation rate in core 079 is illustrated in figure 6.

Figure 6. Plot of mass sedimentation rate versus cumulative dry weight for core 079. Points represent mass sedimentation rates determined from integrated area defined by activity and cumulative dry weight for the sample, the line represents the running mean of the mass sedimentation rate.

Comparison of CIC and CRS ²¹⁰Pb Analysis.

CIC2

CRS

Table 3 lists mass sedimentation and atmospheric flux rates as calculated from the CIC and CRS models. The rates are in good The year corresponding to individual core sections agreement. (Appendix G) as determined by the CIC and CRS models are plotted against cumulative dry weight in Figure 7. Figure 7 shows a very close agreement between the two models down to an approximate compacted depth of 23 cm or a year of 1935. This indicates that the assumption of a 'constant sedimentation rate' for the CIC is valid from a depth of 23 cm (1935) to the surface. model cm, a change in activity and porosity indicate a Below 23 variation in source material which may have been accompanied by a variable sedimentation rate.

Table 3.	Summary of Mas	s Sedimentation Average Mass	Rate and Atmospheric	Flux.
	Model	Sedimentation Rate g·cm ⁻² ·vr ⁻¹	Atmospheric Flux pCi.cm ⁻² .vx ⁻¹	
	*** OTO1			
	CICI	0.16	0.68	

 $0.16 \pm 0.033^*$ 0.72 Based on incremental mass sedimentation rates (Appendix F)

0.18

14

0.68

0.73

Figure 7. Plot of the Year determined from CIC (squares and circles)/CR (triangles) models versus cumulative dry weight for Core 079.

REFERENCES

- Appleby, P.G. and F. Oldfield. 1978. The calculation of ²¹⁰Pb dates assuming a constant rate of supply of unsupported ²¹⁰Pb to the sediment. Catena 5:1-8
- Delorme, L.D. 1991. The preparation of lacustrine sediment samples from cores for use in dating and paleolimnology. National Water Research Institute, Burlington, Ontario, Contribution 92-188, 18p.
- Eakins, J.D. and R.T. Morrison. 1978. A new procedure for determination of lead-210 in lake and marine sediments. International Journal of Applied Radiation and Isotopes 29:531-536.
- Farmer, J.G. 1978. The determination of sedimentation rates in Lake Ontario using the ²¹⁰Pb dating method. Canadian Journal of Earth Sciences 15:431-437.
- Matsumoto, E. 1975. ²¹⁰Pb geochronology of sediments from Lake Shinji. Geochemical Journal 9:167-172.

Micromeritics 1992. Automated Accupyc pycnometer 1330, for

determining skeletal density and volume of powders, porous materials, and irregularly shaped solid objects. Operators Manual V2.01, Micromeritics Instrument Corporation, Norcross, Georgia.

- Oldfield, F. and P.G. Appleby. 1984. Emperical testing of ²¹⁰Pb dating models for lake sediments <u>IN</u> Lake Sediments and Environmental History (Eds. E.Y. Harworth and J.W.G. Lund). University of Minnesota Press, Minneapolis. pp 93-124.
- Robbins, J.A. and D.N. Edgington. 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochimica et Cosmochimica Acta 39:285-304.
- Turner, L.J. 1996. ²¹⁰Pb dating of lacustrine sediments from Lake Erie (Core 083, Station 351), Ontario. National Water Research Institute, Burlington, Ontario. NWRI CONTRIBUTION 96-02, 31p.
- Turner, L.J. 1995a. ²¹⁰Pb dating of lacustrine sediments from Irondequoit Bay, Lake Ontario (Core 065, Station IB-94-2), New York. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-100, 30p.
- Turner, L.J. 1995b. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour (Core 066, Station JPC94HHD4), Lake Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-108, 24p.
- Turner, L.J. 1995c. ²¹⁰Pb dating of lacustrine sediments from Mud Lake (Core 068), Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-109, 37p.
- Turner, L.J. 1995d. ²¹⁰Pb dating of lacustrine sediments from Preston Lake (Core 074), Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-110, 32p.
- Turner, L.J. 1995e. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour (Core 071, Station HH93-2; Core 072, Station HH93-8; Core 073, and Station HH93-11), Lake Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-113, 35p.
- Turner, L.J. 1995f. ²¹⁰Pb dating of lacustrine sediments from Lake Erie (Core 077, Station 348), Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 95-119, 27p.
- Turner, L.J. 1995g. ²¹⁰Pb dating of lacustrine sediments from Lake Erie (Core 080, Station 348), Ontario. National Water

Research Institute, Burlington, Ontario. NWRI Contribution 95-277, 27p.

- Turner, L.J. 1994a. ²¹⁰Pb dating of lacustrine sediments from Lake Erie (Core 055, Station 84-1), Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 94-116, 25p.
- Turner, L.J. 1994b. ²¹⁰Pb dating of lacustrine sediments from Big Creek Marsh (Core 058, Station 173) and Coletta Bay (Core 059, Station 174), in Inner Bay, Lake Erie, Ontario. National Water Research Institute, Burlington, Ontario. NWRI Contribution 94-127, 32p.
- Turner, L.J. 1993a. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour (Core 047, Station 37-1; Core 051, Station 22-D; and Core 052, Station 20-C), Lake Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-TN-93-42, 41p.
- Turner, L.J. 1993b. ²¹⁰Pb dating of sediments from Malden Creek (Core 053) and Muddy Creek (Core 054), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-TN-93-43, 16p.
- Turner, L.J. 1993c. ²¹⁰Pb dating of lacustrine sediments from Humber Bay (Core 048, Station 42-D1), Lake Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-TN-93-53, 15p.
- Turner, L.J. 1993d. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour (Core 049, Station STP-D1; and Core 050, Station STP-BEN1), Lake Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-TN-93-52, 19p.
- Turner, L.J. 1992a. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour Station 33 (Core 031, Box 1; Core 032, Box 2; Core 033, Box 4; and Core 034, Benthos 1), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-92-07, 30p.
- Turner, L.J. 1992b. ²¹⁰Pb dating of lacustrine sediments from Brewer Lake (Core 035) and Costello Lake (Core 036) in Algonquin Park, Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-92-10, 25p.
- Turner, L.J. 1992c. ²¹⁰Pb dating of lacustrine sediments from Humber Bay (Station H27, Core 041; Station H14a, Core 042; and Station H2a, Core 043), Lake Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-

92-18, 21p.

- Turner, L.J. 1991a. ²¹⁰Pb dating of lacustrine sediments from the Saguenay River (Core 011, Station S90-103), Quebec. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-04, 13p.
- Turner, L.J. 1991b. ²¹⁰Pb dating of lacustrine sediments from Adolphus Reach (Core 012, Station C-2) and the North Channel (Core 013, Station C-4) of Lake Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-06, 25p.
- Turner, L.J. 1991c. ²¹⁰Pb dating of sediments from the St. Lawrence River Estuary (Core 014, Station E₉₀-551 and Core 015, Station E₉₀-552), Quebec. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-11, 20p.
- Turner, L.J. 1991d. ²¹⁰Pb analysis of sediments from the St. Lawrence River Estuary (Core 016, Station LE; Core 017, Station 134A; Core 018, Station 145B; Core 019, Station 168 and Core 020, Station 174), Quebec. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-13, 13p.
- Turner, L.J. 1991e. ²¹⁰Pb analysis of lacustrine sediments from East Lake (Core 021, Station 158 and Core 022, Station 159), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-16, 24p.
- Turner, L.J. 1991f. ²¹⁰Pb analysis of lacustrine sediments from the Bay of Quinte (Core 023, Station 875 and Core 024, Station PM1), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-22, 23p.
- Turner, L.J. 1991g. ²¹⁰Pb analysis of lacustrine sediments from the Bay of Quinte (Core 025, Station D and Core 026, Station F), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-91-26, 25p.
- Turner, L.J. 1990. Laboratory Determination of ²¹⁰Pb-²¹⁰Po using alpha spectrometry, Second Edition. National Water Research Institute, Burlington, Ontario. Technical Note LRB-90-TN-07, 63p.
- Turner, L.J. 1990a. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour (Core 001, Station 31A), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-90-10, 21p.

Turner, L.J. 1990b. ²¹⁰Pb dating of sediments from the St.

Lawrence River (Core 007, Station E90-540; Core 008, Station E90-541; Core 009, Station E90-550), Quebec. National Water Research Institute, Burlington, Ontario, Technical Note RAB-90-17, 28p.

- Turner, L.J. 1990c. ²¹⁰Pb dating of lacustrine sediments from East Lake (Core 002, Station 155; Core 003, Station 156), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-90-21, 40p.
- Turner, L.J. 1990d. ²¹⁰Pb dating of lacustrine sediments from East Lake (Core 004, Station 157; Core 005, Station 160; and Core 006, Station 161), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-90-22, 54p.
- Turner, L.J. 1990e. ²¹⁰Pb dating of sediments from the St. Lawrence River (Core 010, Station E90-542), Quebec. National Water Research Institute, Burlington, Ontario, Technical Note RAB-90-23, 17p.
- Turner, L.J. and L.D. Delorme. 1992. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour Station 26 (Core 027, Box 1; Core 028, Box 2; Core 029, Box 4; and Core 030, Benthos 2), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note RAB-92-06, 38p.
- Turner, L.J. and L.D. Delorme. 1990. ²¹⁰Pb dating of sediments from the St. Lawrence River (core 155, Station E7-510; core 156, Station E7-520; and core 157, Station E7-530), Quebec. National Water Research Institute, Burlington, Ontario, Technical Note LRB-90-TN-04, 32p.
- Turner, L.J. and L.D. Delorme. 1989a. ²¹⁰Pb dating of lacustrine sediments from Lake St. George (core 122), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note LRB-89-13, 26p.
- Turner, L.J. and L.D. Delorme. 1989b. ²¹⁰Pb dating of lacustrine sediments from Round Lake (Core 106), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note LRB-89-15, 24p.
- Turner, L.J. and L.D. Delorme. 1989c. ²¹⁰Pb dating of lacustrine sediments from the Bay of Quinte (core 151), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note LRB-89-28, 16p.
- Turner, L.J. and L.D. Delorme. 1989d. ²¹⁰Pb dating of lacustrine sediments from the Bay of Quinte (cores 149 and 150), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note LRB-89-29, 25p.

- Turner, L.J. and L.D. Delorme. 1989e. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour (cores 152, 153, 154), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note LRB-89-30, 18p.
- Turner, L.J. and L.D. Delorme. 1989f. ²¹⁰Pb dating of lacustrine sediments from Grenadier Pond (Core 145), Ontario. National Water Research Institute, Burlington, Ontario, Technical Note LRB-89-31, 28p.
- Turner, L.J. and L.D. Delorme. 1989g. ²¹⁰Pb dating of lacustrine sediments from Turkey Point Marsh (Core 146), Ontario. National Water Research Institute, Burlington, Ontario Technical Note LRB-89-32, 17p.
- Turner, L.J. and L.D. Delorme. 1988a. ²¹⁰Pb dating of lacustrine sediments from Hamilton Harbour (cores 137, 138, 139, 141, 142, 143). National Water Research Institute, Burlington, Ontario, Technical Note LRB-88-9, 42p.
- Turner, L.J. and L.D. Delorme. 1988b. ²¹⁰Pb dating of lacustrine sediments from Lake St. Clair, (cores 140 and 144). National Water Research Institute, Burlington, Ontario, Technical Note LRB-88-10, 13p.

Appendices

Appendix

A Wet and dry weights for core 079.

B Calculation of porosity and uncompacted depths given 22 sample wet and dry weights, and specific gravity for core 079.

Page

21

24

C Specific gravity determination.

D	Lead sedimentation rate analysis, CIC1 Model.	25
Е	Lead sedimentation rate analysis, CIC2 Model.	26
F	Lead sedimentation rate analysis, CRS Model.	27
G	Mean date calculated for each core slice.	28

Appendix A: Wet and dry weights for core 079.

079 Core Number Station 3 Core 1 34.9416 Surface area cm^2 , 6.67 cm Tube diameter 19.0117 Surface area cm^2 , 4.92 cm Cutter diameter

0 NUMBER OF SAMPLES BELOW THE SURFACE BEFORE THE DIAMETER CHANGES TO CUTTER DIAMETER; IF "ZERO" SURFACE AREA = 19.0117 OR VALUE OF LINE 3.

Sample	Wet*	Dry*	Vial	Spec.
Number	Wt.	Wt.	Wt.	Grav.
1	42.18	18.11	12.36	2.51**
2	38.90	19.11	12.57	2.51
3	40.11	19.24	12.20	2.51
4	37.55	19.03	12.32	2.51
5	37.95	19.41	12.52	2.51**
6	39.59	20.15	12.51	2.51
7	41.23	20.80	12.56	2.52
8	38.60	19.86	12.45	2.52
9	38.84	20.59	12.81	2.53
10	40.53	21.42	12.74	2.53**
11	41.16	21.17	11.92	2.53
12	41.00	21.25	12.18	2.52
13	38.16	20.36	12.38	2.52
14	43.19	21.90	12.39	2.52
15	39.91	20.75	12.15	2.51**
16	39.42	20.76	12.15	2.51
17	39.67	20.95	11.88	2.51
18	39.94	20.04	10.43	2.52
19	39.97	20.41	10.46	2.52
20	38.82	21.32	12.21	2.52**
21	41.16	22.79	12.66	2.53
22	41.58	22.83	12.16	2.53
23	43.09	24.47	12.69	2.54
24	42.53	23.91	10.48	2.55
.25	44.31	25.01	11.89	2.56**
26	39.60	21.52	10.34	2.55
27	39.97	22.34	10.32	2.55
28	44.76	24.34	10.40	2.54
29	45.56	25.93	12.09	2.54
30	45.96	25.66	12.75	2.54**
31	46.75	22.77	10.35	2.52
32	39.42	20.44	10.42	2.49
33	45.34	22.58	10.46	2.47
34	40.82	20.99	10.47	2.45
35	44.91	23.59	12.60	2.43**
36	47.89	24.14	12.01	2.45
37	37.90	20.82	12.41	2.47
38	49.85	25.30	12.28	2.49**

*Includes Vial Weight

**Measured specific gravity. Other values calculated by linear regression.

Appendix B: Calculation of porosity and uncompacted depths given sample wet and dry weights, (Delorme, 1991) and specific gravity for core 079. Time in years calculated from CIC1 sedimentation rate data.

e data		, d ,	S-Le		م	រ៤) r	· σ) –	1 4		• œ	. –	1 4	r vc	> c	<i>א</i> כ	v -	* •	 		~ .		~	~	ío	~			_				_
r a C	Ę	і m	Ye	,					-	I				10	10	٦Č	άV	ה ה	n c	``		4	4	4	<u>n</u>	55	59	62	65	69	72	26		84
ICTART	Uncomp	Mid-pt	ี้ ยู	0.74	2.29	3.97	5.68	7.39	91.9	11 . L T	13.01	14.89	16.90	19.03	21.20	73. 27	25.26	27.50	20.60	81.60 21				30.58	40.91	43.37	45.98	48.85	51.81	54.57	57.29	60.20	63.22	66.16
	Uncomp	Depth	сщ С	1.47	3.10	4.83	6.52	8.25	10.12	12.09	13.92	15.85	17.94	20.12	22.27	24.26	26.46	28.55	30.65	32.85	35.11 11	27. AF		01.90	42.12	44.62	47.34	50.35	53.26	55.88	58.69	61.70	64.74	67.58
+) 	Uncomp	Thick.	E U	1.47	1.63	1.73	1.69	1.73	1.87	1.97	1.83	1.93	2.09	2.18	2.15	1.99	2.20	2.09	2.10	2.20	2.26	2.34	2 2 E	04.4	24.2	2.50	2.72	3.01	2.91	2.62	2.81	3.01	3.04	2.84
	Sample	Poros.	o/o	91.31	88.38	88.15	87.39	87.11	86.47	86.19	86.46	85.56	84.79	84.52	84.61	84.88	84.92	84.83	84.48	83.84	83.90	83.18	87.88		07.20	81.08	80.08	1.6.11	/9.00	80.51	78.90	78.86	78.27	79.95
	Comp.	Mid-pt	E U U	0.69	1.98	3.19	4.37	5.48	6.63	7.85	9.04	10.17	11.33	12.54	13.78	14.94	16.15	17.41	18.58	19.75	20.96	22.20	23.38	24 53	20. HA		20. 40 2 - 40	28 · T / T / OC	29.44	30.6/	31.85	33.12	34.46	35.79
	Comp.	Depth		L.39	2.56	3.81	4.92	6.04	7.23	8.47	9.61	LO. 73	TT-92	13.16	14.39	15.49	16.81	18.00	19.16	20.34	21.59	22.82	23.93	25,11	26 33	27.52	*			07.10	32.44 20	33.80 21.80	35.IZ	36.46
	Comp.	Thick		ר. ג ג. נ ע נ	8T • T	L.24		7 - T	ш. 18 г.	С? - Т		71.1	н. 1. 1. 1. 2.	н. 24 С	Т. 23	1.10	1.32	1.19	1.16	1.17	1.25	1.24	1.11	1.18	1.27	1.00	1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 7 - 1 -	0 0 			L. 32	Т. 34
	Total	•TOV			22. U	23.01	21.12	21-27	14.22	N N	20-12			20.00 10.00	<pre>K1.40</pre>	20.97	25.07	22.59	22.08	22.33	23.72	23.51	21.11	22.38	22.96	23.26	0.0	20.02	22 AR	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20.00 00	20.00		20.02
	Sed.	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10	2	6 4 4 6 7 4 6	00.00		/0 · 0	* • • • • • • •			4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 V 1 V 1 V	00 C	ט י י י י י י י י		8/•n	ν 1 2	54°5	ν.61	ς. 2.0	96°. N	3.61	4.01	4.21	4.63	5.26	5,13	8.6	C 1 1	5 47	2 7 7 7 7 7		
	Water - Cont		24.06	02.01				10 V 01			18.26	19.12	19 90	10.75			21.24		0 0 0 0 0 0 0 0 0 0	7/ 01	19.40 19.40	90. AT	17.50	1.8.38	18.76	18.63	18.62	19.30	18.08	17.63	20.43	19.63	00.00	••••
	Cumm.	q/cm ²	0.30	0.65	1,02	1.37	1.73	2,13	2.57		3.37	3.82	4.31	4,79	5.21	, с 1 с	4 V - V - V	0, F 9 9 9 9		- 02 00		21.0	8.60	9.13	9.69 69	10.31	11.02	11.71	12.29	12.93	13.66	14.39	15.07	
	Dry Wt	ō	5.76	6.54	7.05	6.71	6.89	7.64	8.24	7.40	7.78	8.68	9.25	9.07	7.98	0 1 1 1 1 1 1	109 ° 8	8 61					9.10	T0.13	10.66	11.78	13.43	13.12	11.18	12.02	13.93	13.84	12.91	
	b Wet b Wt.	ש	29.82	26.33	27.91	25.23	25.43	27.07	28.67	26.15	26.04	27.79	2.9.24	28.82	25.78	30.80	27.77	27.27	27.79	29.50		1 C 1 V 1 V 1 V		28.50	29.42	30.41	32.05	32.42	29.26	29.65	34 . 36	33.47	33.21	
į	San Num		Ч	Ń	ņ	4	ഗ	9	2	œ	თ	10 1	Ч	12	13	14	12	16	17	18	61		, c	c 2 c	22	5	24	22 22	26	27	28	50	30	

.

Appenix B continued.

Time	В.Р.	Years	87	06	94	97	100	103	106	110
Uncomp	Mid-pt	сш	68.91	71.44	73.97	76.55	79.07	81.67	84.08	86.53
Uncomp	Depth	щ СЩ	70.24	72.63	75.30	77.79	80.34	83.00	85.15	87.91
Uncomp	Thick.	Щ U	2.66	2.39	2.67	2.49	2.55	2.66	2.15	2.76
Sample	Poros.	o\0	82.92	82.54	82.31	82.24	82.52	82.77	83.40	82.46
Comp.	Mid-pt	E U	37.22	38.58	39.91	41.28	42.59	44.02	45.32	46.64
Comp.	Depth	E U	37.98	39.19	40.64	41.91	43.27	44.78	45.86	47.42
Comp.	Thick	ы С	1.52	1.21	1.46	1.27	1.36	1.51	1.08	1.57
Total	Vol.	CmJ	28.92	23.00	27.66	24.11	25.83	28.69	20.48	29.77
Sed.	Vol.	л Ш U	4.94	4.02	4.89	4.28	4.52	4.94	3.40	5.22
Water	cont.	с Ш С	23.98	18.98	22.77	19.83	21.32	23.75	17.08	24.55
Cumm.	Dry Wt	g/cm ²	15.72	16.25	16.88	17.44	18.02	18.65	19.10	19.78
Dry	Wt.	g	12.42	10.02	12.11	10.51	10.99	12.13	8.41	13.02
Wet	Wt.	ס	36.41	29.00	34.88	30.34	32.31	35.88	25.49	37.57
Samp	qunn		31	32	3.3	3.4	35	36	37	38

Appendix C. Specific gravity determination.

The specific gravities $(g \cdot cm^{-3})$ of St. Lawrence River sediments were determined using an automated Accupyc pycnometer (Micromeritics, 1992).

Cample	No. of	Uncompacted	Specific	
Sampre	<u>_Tests</u>	<u>Mid Depth</u>	Gravity	Moan
1	5	0.74	2.513 ± 0.002	
5	5	7.39	2.510 ± 0.005	
10	5	16.90	2.530 ± 0.001	
15	5	27.50	2.511 ± 0.001	
20	5	38.58	2.518 ± 0.002	
25	5	51.81	2.559 ± 0.001	
30	5	66.16	2.535 ± 0.002	
35 .	5	79.07	2.333 ± 0.002	
38	5	86.53	2.494 ± 0.002	2.512 ± 0.032

Appendix D. Lead Sedimentation Rate Analysis, CIC1 Model.

 $\ln (A - A') = \ln (4.2835) - 3.958E-2$ (Z) R = -0.976

where (A - A') = unsupported ²¹⁰Pb in pCi·g⁻¹, and Z = uncompacted depth in cm. based on data from lines 1 to 15

Specific Gravity = 2.512 g·cm⁻³ P/ω = 4.283 ω = 0.158

The initial porosity at the sediment/water interface is 92.01

Atmospheric flux rate at the time of collection 1993.597 is 1.501 dpm·cm⁻²·yr⁻¹ or 0.676 pCi·cm⁻²·yr⁻¹

Supported ²²⁶Ra activity = 2.275 pCi \cdot g⁻¹ or 5.050 dpm \cdot g⁻¹

Sedimentation Rate = $0.786 \text{ cm} \cdot \text{yr}^{-1}$

Mass Sedimentation Rate = $0.158 \text{ g} \cdot \text{cm}^{-2} \cdot \text{yr}^{-1}$

			SOLUTIVE OF	LN VIVY			
Uncomp Depth	Porosity	Total ²¹⁰ Pb	Total 210 Pb	Unsupp. ²¹⁰ Pb	Unsupp. ²¹⁰ Pb	Sed. Rate	Years (*)
cm.		dpm·g ⁻¹	pCi·g ⁻¹	dpm•g ⁻¹	pCi•g ⁻¹	cm·yr ⁻¹	
0.74	0.9131	12.855	5.791	7.805	3.516	0.7647	1994
3.97	0.8815	13.366	6.021	8.316	3.746	0.7398	1988
7.39	0.8711	11.834	5.331	6.784	3.056	0.7530	1984
11.11	0.8619	10.251	4.618	5.201	2.343	0.7171	1978
14.89	0.8556	10.351	4.663	5.301	2.388	0.7499	1974
19.03	0.8452	9.492	4.276	4.442	2.001	0.7137	1967
23.27	0.8488	8.904	4.011	3.854	1.736	0.7519	1963
27.50	0.8483	9.373	4.222	4.323	1.947	0.7275	1956
31.75	0.8384	8.434	3.799	3.384	1.524	0.7312	1950
36.28	0.8318	7.181	3.235	2.131	0.960	0.7050	1942
38.58	0.8288	7.519	3.387	2.469	1.112	0.7440	1942
40.91	0.8210	6.846	3.084	1.796	0.809	0.7200	1937
43.37	0.8168	6.540	2.946	1.490	0.671	0.7087	1932
68.91	0.8292	5.886	2.651	0.836	0.377	0.6438	1887
73.97	0.8231	5.385	2.426	0.335	0.151	0.6496	1880
79.07	0.8252	5.050	2.275	0.000	0.000	0.6740	1876
86.53	0.8246	5.998	2.702	0.948	0.427		

SUMMARY OF 210Pb ANALYSES

(*) Year calculated using the sedimentation rate of the sample

Appendix E. Lead Sedimentation Rate Analysis, CIC2 Model.

 $\ln (A - A') = \ln (4.1648) - 0.1771 (X) R = -0.977$

where (A - A') = unsupported ²¹⁰Pb in pCi·g⁻¹, and X = cumulative dry weight in g·cm⁻² based on data from lines 1 to 15

Specific Gravity = 2.512 g·cm⁻³ $P/\omega = 4.165$ $\omega = 0.176$ The initial porosity at the sediment/water interface is 92.01 Atmospheric flux rate at the time of collection 1993.579 is 1.625 dpm·cm⁻²·yr⁻¹ or 0.732 pCi·cm⁻²·yr⁻¹ Supported ²²⁶Ra activity = 2.275 pCi·g⁻¹ or 5.050 dpm·g⁻¹ Mass Sedimentation Rate = 0.176 g·cm⁻²·yr⁻¹

Cum. DryWt. g·cm ⁻²	Porosity	Total 210 Pb dpm·g ⁻¹	Total ²¹⁰ Pb pCi•g ⁻¹	Unsupp. ²¹⁰ Pb dpm·g ⁻¹	Unsupp. ²¹⁰ Pb pCi·g ⁻¹	Years (*)
0.15 0.83 1.55 2.35 3.16 4.07 5.00 5.93 6.85 7.86 8.36 8.36 8.36 8.86 9.41 15.40 16.56 17.73 19.44	0.9131 0.8815 0.8711 0.8619 0.8556 0.8452 0.8488 0.8483 0.8384 0.8318 0.8288 0.8210 0.8168 0.8292 0.8231 0.8252 0.8246	12.855 13.366 11.834 10.251 10.351 9.492 8.904 9.373 8.434 7.181 7.519 6.846 6.540 5.886 5.385 5.050 5.998	5.791 6.021 5.331 4.618 4.663 4.276 4.011 4.222 3.799 3.235 3.387 3.084 2.946 2.651 2.426 2.275 2.702	7.805 8.316 6.784 5.201 5.301 4.442 3.854 4.323 3.384 2.131 2.469 1.796 1.490 0.836 0.335 0.000 0.948	3.516 3.746 3.056 2.343 2.388 2.001 1.736 1.947 1.524 0.960 1.112 0.809 0.671 0.377 0.151 0.000 0.427	1994 1989 1985 1980 1976 1970 1965 1960 1955 1949 1946 1943 1940 1940 1906 1899 1893
				~ • - 70	V.4//	

Midean

SUMMARY OF 210Pb ANALYSES

(*) Year calculated using the mass sedimentation rate of the sample

Lead Sedimentation Rate Analysis, CRS Model. Appendix F.

Depth		MidScn					Cum. Avg		
Uncomp	Cum.	Cum.	Unsupp.		Cum	Time	Mass		Mass
Mid-Pt	Dry Wt	Dry Wt	Activity	Area	Area	В.Р.*	SedRate	Date	SedRate
Е U	g/cm2	g/cm2	pci/g	pci/cm2	pCi/cm2	Years	g/cm2/yr		g/cm2/yr
0.74	0.30	0.15	3.516	0.527	0.527	0.741	0.202	1992	0.202
3.97	1.02	0.83	3,516	2.487	3.014	4.487	0.186	1989	0.183
7.39	1.73	1.55	3.746	2.432	5.446	8.627	0.180	1984	0.173
11.11	2.57	2.35	3.056	2.159	7.606	12.812	0.183	1980	0.191
14.89	3.37	3.16	2.343	1.928	9.533	17.073	0.185	1976	101.0
19.03	4.31	4.07	2.388	1.975	11.508	22.117	0.184	1971	0.178
23.27	5.21	5.00	2.001	1.747	13.255	27.353	0.183	1966	0.179
27.50	6.16	5.93	1.736	1.722	14.977	33.514	0.177	1960	0.152
31.75	7.09	6.85	1.947	1.588	16.566	40.481	0.169	1953	0.131
36.28	8.12	7.86	1.524	1.248	17.814	47.265	0.166	1946	0.148
38.58	8.60	8.36	0.960	0.523	18.337	50.598	0.165	1942	0.152
40.91	9.13	8.86	1.112	0.485	18.822	54.031	0.164	1939	0.147
43.37	9.69	9.4 <u>1</u>	0.809	0.403	19.226	57.193	0.165	1936	0.172
68.91	15.72	15.40	0.671	3.135	22.361	109.614	0.140	1883	0.114
73.97	16.88	16.56	0.377	0.309	22.670	126.298	0.131	1867	0.070
4							0.172	Average	0.159
^x B.P. =	: 1993						0.018	Std.Dev.	0.033

0.72 pci·cm⁻²·yr⁻¹ Based on data from lines 1 to 16 Total Area equals 23.12291 Atmospheric flux rate at the time of collection 1993.597 is

Appendix G. Mean date calculated for each core slice.

Incompacted	Cum.	Ciim.			
Mid Depth	Dry Wt.	Dry Wt	CTCI	07.00	+
<u>in cm</u>	<u>q-cm⁻²</u>	Mid Sam	Vear	CIC2	CRS "
0.74	0.30	0.15	$\frac{1001}{1003 + 2}$	$\frac{1 \text{ ear}}{1002 \pm 2}$	<u>Year</u>
2.29	0.65	0.47	1.991 + 2	1001 1 0	1992
3.97	1.02	0.83	1989 + 2	1000 ± 2	1990
5.68	1.37	1.19	1986 + 2	1909 I 2	1989
7.39	1.73	1.55	1984 ± 2	1907 ± 2	1987
9.19	2.13	1.93	1982 + 2	1900 ± 2	1985
11.11	2.57	2.35	1979 + 3	1000 ± 2	1983
13.01	2.96	2.76	1977 + 2	1900 ± 3	1980
14.89	3.37	3.16	1975 + 3	1978 ± 2	1978
16.90	3.82	3,59	1070 ± 3	1976 <u>±</u> 2	1976
19.03	4.31	4.07	1969 ± 3	$19/3 \pm 3$	1973
21.20	4.79	4.55	1967 + 3	1970 ± 3	1971
23.27	5.21	5.00	1964 + 3	1968 <u>1</u> 3	1968
25.36	5.71	5.46	1961 + 3	1965 ± 2	1965
27.50	6.16	5.93	1959 + 3	1960 ± 3	1962
29.60	6.61	6.39	1956 + 3	1960 ± 3	1959
31.75	7.09	6.85	1953 + 3	1957 ± 3	1956
33.98	7.59	7.34	1950 ± 3	1955 ± 3	1953
36.28	8.12	7.86	1947 + 3	1952 ± 3	1950
38.58	8.60	8.36	1945 ± 3	1949 ± 3	1947
40.91	9.13	8.86	1942 ± 3	1940 ± 3	1943
43.37	9.69	9.41	1938 ± 3	1943 ± 3	1940
45.98	10.31	10.00	1935 ± 1	1940 ± 3	1935
48.85	11.02	10.67	1931 + 1	1937 ± 4	1931
51.81	11.71	11.36	1928 ± 1	1933 ± 4	1926
54.57	12.29	12.00	1924 + 3	1929 1 4	1920
57.29	12.93	12.61	1921 + 4	1920 ± 3	1914
60.20	13.66	13.30	1917 + 4	1922 ± 4	1909
63.22	14.39	14.02	1913 + 4	1910 ± 4	1903
66.16	15.07	14.73	1909 + 4	1914 ± 4 1010 + 4	1000 1000
68.91	15.72	15.40	1906 ± 3	1910 ± 4 1906 ± 4	1000 1001
71.44	16.25	15.99	1903 ± 3	1900 ± 4	1991
73.97	16.88	16.56	1900 + 3	1903 ± 3 1899 ± 3	
76.55	17.44	17.16	1896 + 3	1896 + 2	- *
79.07	18.02	17.73	1893 + 3	1893 + 2	
81.67	18.65	18.33	1890 + 3	1880 + 1	
84.08	19.10	18.88	1887 + 3	1886 + 2	
	Jncompacted Mid Depth <u>in cm</u> 0.74 2.29 3.97 5.68 7.39 9.19 11.11 13.01 14.89 16.90 19.03 21.20 23.27 25.36 27.50 29.60 31.75 33.98 36.28 38.58 40.91 43.37 45.98 48.85 51.81 54.57 57.29 60.20 63.22 66.16 68.91 71.44 73.97 76.55 79.07 81.67 84.08	Jncompacted Mid DepthCum. Dry Wt. $\underline{in \ cm}$ $\underline{q-cm}^{-2}$ 0.740.302.290.653.971.025.681.377.391.739.192.1311.112.5713.012.9614.893.3716.903.8219.034.3121.204.7923.275.2125.365.7127.506.1629.606.6131.757.0933.987.5936.288.1238.588.6040.919.1343.379.6945.9810.3148.8511.0251.8111.7154.5712.2957.2912.9360.2013.6663.2214.3966.1615.0768.9115.7271.4416.2573.9716.8876.5517.4479.0718.0281.6718.6584.0819.10	Uncompacted Mid DepthCum.Cum.in cm $q \cdot cm^{-2}$ Mid Sam0.740.300.152.290.650.473.971.020.835.681.371.197.391.731.559.192.131.9311.112.572.3513.012.962.7614.893.373.1616.903.823.5919.034.314.0721.204.794.5523.275.215.0025.365.715.4627.506.165.9329.606.616.3931.757.096.8533.987.597.3436.288.127.8638.588.608.3640.919.138.8643.379.699.4145.9810.3110.0048.8511.0210.6751.8111.7111.3654.572.2912.0057.2912.9312.6160.2013.6613.3063.2214.3914.0266.1615.0714.7368.9115.7215.4071.4416.2515.9973.9716.8816.5676.5517.4417.1679.0718.0217.7381.6718.6518.3384.0819.1018.88	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* Calculation based on a Multiple Linear Regression with an R^2 of 0.9994 and a Standard Error of 0.9226.

LIBRARY, CANADA CENTRE FOR INLAND WATERS 3 9055 1013 0217 1

•

.

ţ

