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In Atlantic Canada, northern Ontario, and various parts of British
Columbia, contaminant migration in groundwater circulating through
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ABSTRACT
A semi-analytical model is developed which accounts for solute transport through a multi-
dimensional netwbrk of fractures having random oriéntations and sparse distribution. Transport

processes including hydrodynamic dispersion, matrix diffusion, retardation, decay and solute transfer

-at fracture intersections, are considered. The model is derived by applicétion of the Laplace

transform to the governing transport equation for each fracture element. The resulting ordinary
differential equations are linked using robust descriptions of mass conservation at the fracture
intersections. Solute concentrations are determined by numerically inverting the transformed

equations in a sequential fashion. The model is verified using a foimal mass balance and through

_comparison to existing solutions for solute transport in porous and fractured media. To illustrate the

use of the model, solute transport in a hypothetical network domain was simulated based on fracture

conditions measured at a real field setting in a granitic rock.



INTRODUCTION
Simulating the transport of contaminants in sparsely-fractured media such as granite;‘s using models
developed for porous media (i.. a continuum approach) can be shown to be ‘or;ly applicableata v‘e‘ry
‘large scale (Bear, 1993). At the scale typical of a contaminant event, definition bf fhe transport in
each discrete frabtu;e is required. In some cases, the groundwater flow system at this scale might be
pr‘edominéted by only one or two fracture features (such as one or two faults) and contaminant
transport can be simulated using Straighthr.ward analytical models which account for solute transport

in a single fracture (eg. Tang et al., 1981). In cases where more than one or two fracture féatures

influence the flow system, definition of the fractures is often conducted using Stoch_astic or

stochastic-deterministic methods in two dimensions and solute transport solved for the resulting .

fracture network uéing particle-tracking methods (Smith and Schwartz, 1984; Cacas et al., 1990;
Dverstorp et al., 1992). For simple orthogonal networks, direct solution of the transport equations
for both the fréctures and the matrix can be undertaken using finite element methods (Sudicky and

McLaren, 1992).

A computationally attractive alternative to these methods, for a multidimensional system of linked
fracture elements, is the direct solution of the transport equétiohs using analytical elements. In this
case, variations of the solution of Tang et al [1981] in semi-analytical form are used in each fracture

element and global concentrations are determined by simultaneous or sequential solution of the

equation set. This method is less difficult to implement for non-orthogonal networks than finite-

element methods (no discretisation required in the matrix) and offers more ﬂeXibility than particle-
tracking methods in accounting for transport processes such as matrix diffusion, multi-species

transport, and biological transformation.
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Semi-analytical models for soltlte transport in a fracture network based on the solution of Tang et
al. [1981] have been developed by Rowe and Booker [1989], Mitchell and Sudicky [1991] and
Kupper et al [1995]. Rowe and Booker [1989] developed a model to account for the. transport of '
conservativ’e species limited to a two- or three—dimen‘sional network of regularly spaced fractures. .
Transport followed only the regular fracture sets aligned in the drrection of flow and mass transfer
at fracture intersections was not considered. Kiipper et al. [1995a] also developed a model for reéular
fracture arrangements although mass transfer at fracture intersections was treated exp11c1tly, in this

case. To account for mass transfer, Kupper etal. [1995a] drscretrzed the breakthrough curve in time

| for each element and used this as input to the next element down-gradrent, Comparison of the model

conﬁgnred with several linked one-dimensional elements to the Tang et al solution showed that
errors accumulate according to the number of mass transfer events and the coarseness of the
discretisation. In an unpublished study, Mitchell and Sudicky [1991] used a Laplace transforrned
version of the Tang et al. solution (neglecting hydrodynamic dispersion) where mass transfer at
fracture intersections was conducted using the equivalent to a Dirichlet houndary eondition_.

Verification of the solution was not conducted.

Mixing at fracture intersections presents an additional problem associated vwith modeling two-
dimensional fracture networks. There are 2 number of possible approaches including 1) assume
complete mtxing at each intersection, 2) transfer the solute mass according to stream tube routes at
each intersection, and 3) assume only partial diffusive exchange between stream tubes (i.e Berkowiti
et al., 1994). Kiipper et al. [1995a], determined that if it is assumed that only two fractures can

intersect at a given point, out of the four possible flow combinations, three are mathematically



equivalent for both stream tube routing and complete mixing corditions.

In this paper, a semi-analytical nio_d'el is developed in which solute transport in é nén-orthogonal
fracture network is solved. Linear transport processes such as hy&rodynamic dispersion, adsorption,
decay, and matrix diffusion are incorporated. The solution ﬁlethpd involves derivation of transport
equations for each fracture element by application of the Laplace transform. Virtually any

transformable source function can be accommodated at any fracture location. Either complete mixing

or stream tube routing and a rigorous definition of mass conservation is used at the fracture

intersections. The equations are then solved sequentially using a propagation method. The model is -

verified by conducting a formal mass balance and by comparison to existing analytical so]utions for
convection-dispersion and matrix diffusion. To illustrate the use of the model, a simulation is

undertaken in a sparsely fractured network typical of fractured crystalline rock.
MATHEMATICAL DEVELOPMENT

To derive a solution to solute transport in a fracture network, a fracture elemcﬁt, as depicted in

Figure 1, is defined as the portion of a fracture that lies between the points of intersection with other
fractures or with a boundary. Thué, the spatial framework of the fracture System is represented by
a set of saturated fracture elements connect_ed:at nodes within a homogenous and isotfopic; matrix.
Groundwater flow is assumed to be stéady and the aperture. along each fracture is assumed to be
constant, although variable aperture coﬁld easily be accommodated following the method of

Nordqyvist et al. [1992] . The groundwaier velocity in each fracture element is determined using the



-method described by Rouleau [1984] and Barker [1991] for steady flow conditions

In the following, a similar approach to that described by Barker [1991] for transient gro:mdwatei'
flow in a network, is used to develop the solution for transport. The transport processes considered
include advection, hydrodynamic dispersion, matrix diffusion, adsofption on the fracture surfaces

and in the porous matrix, and first order decay.

It is assumed that thé porosity of the matrix is sufficiently small such that diffusing solute from
adjacent fracture elements do not int_eréct. This is clearly an approximation which w‘ill lead to an
overestimate of the effect of matrix diffusion for some cond@_tions. The approximation willr be of
most significance for simulations conducted in domains having short fracture elements and long

periods of solute input.

Longitudinal dispersion is assumed to be constant and independent for each fracture element.

- Adsorption is assumed to be completely reversible and to follpw a linear isotherm. Degradation-

follows a first order decay process and occurs in both the matrix and the fracture at the same rate.

Soliite Concentration in a Fracture Element

‘The governing equations are formulated using constant coefficients for each discrete fracture element
within a local co-ordinate system as shown in FigUre 1. The equations are developed independently

for the fracture and for the matrix and then coupled using a continuity condition between the fracture .



and the matrix following the method of Tang et al. [1981]. .

In Cartesian space, the governing equation for solute transport in a fracture element is [adapt_ed from

Tang et al., 1981]

N Al
dc , Vac aDag+)\c_6D8c

—_ —_— —_—— — e =0
dat R 0x 0x R dx "~ bR 0z|,_, ~ : (,1)

where ¢ and ¢’ are the concentration of solute _in the fracturé element and the matrix, respectively,
D'is the effective diffusion coefficient of the matrix (includes geometric properties of the pore
space), D is hydrodynamic dispersion, V is groundwatef velocity, A is the linear decay constant, 6
is the porosity of the matrix, R is the retardation factor in the fracture, and b is % the fracture

aperture (2b/2). The boundary and initial conditions are

c(x,0) =0 (2)
c(eo, t) =0 (3)
(0, t) = c,(t) | . )

where c(t) is the unknown inlet concentration. Note that a specified condition is not applied at the
outlet boundary, located at x=L. Thus, it is assumed that the presence of the outlet boundary (i.e. a
fracture intersection) has no influence on the solute concentration in the immediate vicinity up-

gradient from the boundary.

The differential equation for solute transport in the matrix is given as [after Tang et al., 1981]

dc’ D' 3¢’

ot R’ 9z%

+Ac’ =0 : (5)

5
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where R’ is the retardation factor in the matrix. The boundary and initial conditions for equation )

are
c/(x, o, t) =0 | ' (6)

c'(x,z,0) =0 - N

 el{x, b, t) = c(x. ) | | @)

To solve the system of equations (1) - (8), the Laplace transform method is employed. The solution

for solute concentration in the fracture element is:

The Laplace transgeg?eg )cogceé.;;;{zgsogqp( ;hg fracture is given by c(x,p), ¢;(p) is the Laplace ©)

where
_ v | |
VT 35 : a0
and- |
. 157 ' '
Ep) = |1+ 2D 8YDR(D*N) | o] ' (11) -
NOLv? b.

The overbar indicates the Laplace transformed dependent variable, ¢, (p) is the Laplace ‘transforml of

the inlet concentration, and p is the Laplace variable.
Flux between Fracture Elements

The transfer of mass between fracture elements is determined as a function of concentration at the
fracture intersection. To preserve mass balance, it is necessary to include a dispersive flux term in
addition to advective flux at the point of intersection. Thus, the equation that governs the mass flux

of solute entering a fracture intersection is given by:



. dc
J(L, t) = Ve(L, t) - Da_x(L’ t) (12)

where J is the mass flux tefm (ML?T") that will be used in the assembly of equations for each
fracture intersection. Substitution of equation (9) into the Laplace transform of (12) results in the

final expression for the flux leaving a fracture element

F(L, p) = (p) VT, (p) "E-EE) : a3
where
1+ E
®(p) = +T‘p) (14)

Therefore, the flux .exiting any fracture of length L is dependent only on the inlet concentration and

the transport properties of that fracture element.

’

To determine the solute flux entering a given fracture from a fracture intersectioh, equation (12) is
used with the local CQOrdinate of x=0. Thus, the flux entefing is given by
(0, p) = ®(p) VS, (D) | - (15)

where ®(p) is as given above.
Solute Transport in a Fracture Network

Because the concentration of solute in a given fracture is dependent only on the inlet concentration
for that fracture, a simple propagation method can be used to solve for the distribution of solute in
the network. The nodes used to initiate the solution are usually those that constitute the most

upgradient in the network. It is not necessary for there to be any solute input at these node, as the
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method propagates a null solution until solute input is encountered. However, to simplify the

formulation for general conditions at fracture intersections, solute input is limited to boundary nodes.

To formulate a complete solution, the mass flux entering and leaving each node must be summed.
Both streamtube routing and complete mixing can be accounted for in this formulation. For example,
Figure 2 shows the intersection of two fractures with two different flow arrangements. In Figure 2a,

contributing fractures and receiving fractures are opposite one another, while in Figure 2b,

, 'contributing and receiving fractures are adjacent. The flow arrangements in Figures 2a and 2b can

be classified as mixing and non-mixing (stream tube routing), respectively, according to the

definitions given by Kiipper et al. [1995a].

The nomenclature used in Figure 2 follows that d,é:'Veloped by Barker [1991]. The intersection node
is given an integer value, i, and fracture elements connected to i are deﬁned as j, through j,. Any
properties possessed by these fracture »élements are given the subscript j. The fracture elements
defined as in, are ihose that supply flow, and the fracture elpmcnts defined as out, é.r’e those that

receive flow.

Assuming no storage of solute at nodes, for uniform flux parallel to the fracture walls across a

perpendicular cross-section, 2b,w;, it can be shown that the mass balance at node i is

j=1in j=out

Z J gy ;2bsw; + F; = E J ey 720595 o (16)

where J; is the flux to or from a fracture element, j, F, is the nodal mass rate of flow [M/T] imposed
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as a source/sink condition at that location (can be any Laplace-transformable function), and w; is the
unit width of the fracture elerhent;. The (EX) subscript indjcates that the solute is exiting from a
fracture element, and ther (ENT) subscript indicates that solute is entering a receivin'g‘ ffacture

element. Flux at the exit of an individual fracture element is determined from (13) as

JTieny = ©3(P)VV;€5(Ly, P) (17

where ¢ {(Ls,p) is the concentrati_dn in fracture element, ] at the outlet end. The conceritiation, cj'(I.j P)
where C; (L;,p) is the concentration leaving fracture element, J. ‘Sirnilarl).', flux at the entrance to a
fracture element is determined from equation (15) directly as

Jimmy = 2P V,ci(p) | - (18)
The intersection shown in Figure 2a illustrates an exampie of a configuration in which complete

where ; (p) is concentration at the node as calculated during the previous step (see below).

For the complete mixing case (ie. Figure 2a), equations (17) and (18) are substituted into equation
(16). This implies that all of the unknown concentrations contributed to receiving fracture elements
from the node ére equal at the inlets. Then c (p) is the concentration at the node after mixing has
occurr’ed (in the .case of non-mixing conditions, this reﬁresents the mean concentration Within the

intersection). This allows us to rearrange the terms and to solve for ¢, )

Y. 9,(p)Q,C,(L,, p) + F,(p)
-~ " J=1in L
2, °.(P) o,

c,(p) =
Jj=out

(19)

where Q; is the volumetric flow rate in the fracture. Thus, for complete mixing, the outflow

concentration from the node is given as

Ej(O, D) = c,(p)  j=lout} ' | / (20)
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where ¢j(0,p) and c;(L,p) are concentrations located near the intersection, after solute concentration

" has become homogeneous within the fracture element.

For the one configuration (ie. Figure 2b) that requires incomplete miXing (S_t_re,a_m t;_ch routing), a
different formulation is applied, foilowing the method suggested by Kiipper et al. [1995a]. For the
example shown in Figu_re 2b, Qjl > Q- In general, whé’n determining concentrations at the
intgrsection, the fracture numbering scheme is arranged $0 as to be consistent with this flow relation
(ie. the fractures ére renumbered when Q;; < ng). For thé case shown in Figure 2b, the contribution
of solute to fracture j, is exclusively from fracture j;, therefore

€;3(0, p) = ¢;;,(Ly;, p) | 21

Equation (21) is substituted into (16) to determine the remaining inlet éoncentration. To avoid the

problem of distributing external solute input at these types of intersections, as aforementioned,

extemnal solute input is limited to the boundary. Thus,

[®,,(P)Q;;-®,,(P)0;;]¢,, (L, P)+®,(P) C
@ (P) ;,9,

T,,(0,p) = (22)

To provide' a comparison to models in which complete mixing is assumed at all fracture

intersections, equation (22) can be replaced by equations (19) and (20).

To implerhent the solution, numerical inversion of the Laplace concentrations is required. This is
conducted using the De Hoog et al [1982] algorithm. This algorithm has been evaluated for inversion
of similar transport problems by Moench [1992]. The results indicated that Peclet numbers (the ratio

of distance over dispersivity) were limited to the range from 220 to 10,000 depending on the
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accuracy of the computer. Similar limitations were encountered in the present study, for the network

solution. Further discussion of accuracy is provided in the following section.
Verification and Mass Balance

Additional verification of the model was based on a comparison to existing analytical solutions of
‘Ogata and Banks [1961] and Novakowski [1995]. The results show agreement to 4 significant
figures using simple network configurations and comparisons to line elements. Further discussion

of these verification procedures can be found in Bogan [1996).

The determination -of the total mass of solﬁte in the fracture network is necessary in order to
determine the accuracy of the numerical inve;sion scheme and to evaluate the mass- conservative
nature of the model. To perform a formal mass balance at a given time, the following relaﬁonship_
must be proven
| My = Moot Moy | 23)

where in the case of a network of fractures, M;, is the total mass of solute introduced into the
network at system source nodes, M, is the total mass of solute stored in the fracture network and
surrounding porous matrix?- and M;ut 'is.the total mass of solute that exits the ngtW‘ork at exit boundary
nodes. Exit Boundary nodes are defined as those nodes that have no connected fracture elements to

 receive flow and thus are the points at which solute leaves the network.
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For the purpose of performing the mass balance, only solute concentration in the fracture network
is evaluated (matrix diffusion is not considered). Therefore, to determine the M, for the network,

the mass stored in the each fracture element is determined by integration and then summed over the

~network. Because a spatially dependent equation for the concentration in each element has been’

developed, an integration performed on this equation with respéct to volume yields the mass of the -
solute. It is assumed that concentration is uniform through a lateral 'section, which allows the
equation to be treated as a one-dimensional problem. Therefore, solute mass in a fracture element,

I\7Ij(p), can be defined in local coord;nitcs as
H,(p) = 2bw[c,(x, p)dx | 24)
0

The substitution of equation (9) into (23) and performing the integration yields

_ ‘ c. (0, p)  iEip)
M.(p) = 2b.w. J 7 -
3P = 2B T (o)

1) | (25)

To determine M;, and M., the cumulative mass of solute that has passed through entrance and exit
nodes for the network, respectively, is determined. This mass is accumulated to a given time, M(t),

and may be evaluated by integrating the flux over time as

t : '
M,(t) = [F () dt - (26)
0 ) )

If we perform a Laplace transform on this expression, we obtain .

— F.(p) :
H,(p) = —i— @7

p

Where L-/-Ii(p) is the Laplace tfa_nsfonn of M(t). M,, is determined by applying (26) directly atall
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system source nodes. M, is estimated by applying (26) to all exit boundary nodes, where El(p) is

determined by the addition of the mass rate of flow to the nodes in equation (15).

To evaluate the mass balance, numerical inversion of the Laplace concentration is required.. To
generated fracture network. A mass balance was determined (following the procedure described

above) to quantify the total error in the solution.

A series of stochastic networks of incréasih g fracture density were generated. Log variance of aperturé
- was set to 0.1, in order to include a random component to ‘the flow system. The domain was defined
with a dimension in the direction of flow of twice that of the width. Boundary conditions were applied
using a constant hydraulic head on the left-hand and right-hand sides of the network. A uniform
gradient of 0.002 was induced across the network. The upper and loWer boundaries were defined as

no—ﬂoﬁv. The dispersivity for each fracture ranged from 0.001 to 1.0 for individual realizations. Peclet

numbers for the domain were calculated based on the mean path length across the domain. Relative

error of the mass balance is expressed as

Relative Error = (M°”t+ Mswfed)_ Y i (28)
M*

in
where M, is the simple addition of the mass of all Dirac input_s and is an exactly accurate figure. The
error was determined for ten snapshots in time for each network. The maximum error for each case
is shown in Figure 3, for three fracture densities (F.D.). Due to the stochastic nafur‘c of the generation

process there was some variation in the error readings. The majority of the error was incurred at early

—
o



14

time.

The total error only exceeded the truncation error of the model (1.0x10®) at Peclet numbers of greater

than 1000. This is consistent with the observations of Moench [1991], which suggests that the error

observed at Pe < 1000 is introduced solely by the inversion scheme. The error increases in a

logarithrflic fashioh at Pe greater than 1000. In addition, the Qéncentration_ values at the exit nodes . -
begin to show evidence of increasing "noisé"' in the solution (random over- or under-estimation of the
coricentration), usually at early times for these Pe. These limitations é’re generally enco’unteréd in the
numerical implementation of inverse Laplace transforms at large Peclet numbers. However, it is
important to note that error is small for the range of Pe below 1000. This range is more typical of real
field conditions.

RESULTS AND DISCUSSION

To illustrate the use of the model, example simulations are conducted to explain theoretical aspects
telated to matrix diffusion and to study solute transport using a network which closely follows a field

setting in crystalline rock. The purpose of these simulations is to demonstrate the efficiency of the

3

model in testing conceptual models for fracture atrangemerit and for matrix diffusion.

_ Generation of Fracture Networks

The development of individual realizations of a fracture network is conducted in two steps. First, a

» stochastically generated network is constructed using a defined set of fracture statistics, The statistics
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include the méan and standérd deviation of fracture aperture, length and orientation. The fracture
statistics may be obtained from field locaiions. Second, a set of deterministically defined fractures
are overlain on the stochastically generated network. These fractures are intended to more closely
simuléte field conditions where large scale sheeting fractures. predominate _the flow system such as
- at shallow depths in crystalline rock.

Generation of the stochaétic component of the fracture nétwork follows thevmethod described b}"
Rouleau [1984]. First, length, orie‘nt'atioq, and the location of tﬁe centre of the fractures an;, generated.
The lengths of the fractures have a truncated exponential distribution tSchwaﬂz ‘et al., 1983]. To
produce the exact linear density of fracture traces within the domain, the end-to-end fracture Iength
is determined by mu'ltiplying the area of the domain by the fracture density, and the total generated
fracture ‘lengths never exceed this value. In the following discussion, two sets of fractures are
stochastically generated, the orientations of which are determined from separate mean and variances.

- Based on the mean and variance, a normal distribution function is used to generate the orientation of

the fracture. The placement of the deterministically defined fractures is conducted by locating the end ‘

co-ordinates in the desired positions. The aperture of these fractures were set to values considerably

larger than the mean apértures of the stochastically generated network.

Interseétions with boundaries and between fractures are then determined. The intersections that lie
puts‘ide the specified domain are eliminated as are those that connect fo dead;end fracture elements.
The remaining iﬁterse‘ctions are defined as nodes in the flow path. Fracture elements are then
detefmined, and the aperture of the parent fracture reiained. In the final step, nodes are renurhbered

in order of their y-position. This reduces the bandwidth of the solution for flow by associating the

|}
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spatial position with fracture connectivity, so that the difference in node numbers are more likely to

. be similar in integer value. An example of a stochastically generated network is shown in Figure 4.
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The'Eﬁ’ect of Sheeting Fractures

Sheeting fractures'ovccur as extension fractures pafallel to the ground surface in crystalliné rock
[Holzhauser, 1989]. These fractufes develop after thé form?tion of fracture sets related to tectonism
and are often of larger aperture. In a field study, conducted in monzonitic gneiss [Raven, 1986],
sheeting .fract‘ures were foﬁnd to predominate the groundwater flow system at shallow depth.
Interconnection between these features was controlled by frac’:tﬁrcs of smaller aperture and more

random orientation. Thus, sheeting fractures form conduits for solute migration and increase the

heterogeneity of the network. To investigate the effect that these fractures have on solute transport,

several simple sheeting fracture arrangements are superimposed on a finer fracture network, and flow

and transport are simulated.

A network with the properties shown in Table 1 was combined with deterministically located
fractures shown in the inset of Figures 5a and 5b. The aperture of tﬁe deterministically placed
fractures was set equal to 200 um, and the matrix was defined as impermeable. A Dirac source was
introduced at the point indicated on the left-hand boﬁndary, and monitored at the point indicated on

the right-hand boundary. Errors as determined from mass balance calculations were negligible. |
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Table 1. Network and transport parameters for simulations.

‘Network parameters and boundary conditions:
Fracture Density: 2.5 fractures / m
Domain depth: 30 m
Domain length: 100 m
Mean aperture: 100 pm
Log variance: 0.2 -

Hydraulic Gradient: 0.01

Transport parameters
Dispersivity: 0.5 m
. Matrix Porosity: <1%
Matrix Tortuosity: 0.1
Diffusion Coefficient: 6.1x10° m%d

Figure 5a illustrates tho results for 10 realizat,tons. The shape of the breakthrough curves are
uniformiy a_s}ymmetrica,l, with significant ytailingﬁ observed in some. The asymnietry arises due to
transport in the finer fractures. The time of peak arrival is dependent on the arrangement of the
inter‘connectiohs in the finer fracture sets. The breakthrough curve for the case in which the sheeting -
fractltre is through-goiné and directly connects the entrance and exit (not shown) was observed to
have a time to peak arrival of 4.0 days and a symmetrical shape. Thus, although rapid transport occurs

in the sheeting fractures, the overall rate of migration is limited by the finer fracture sets. -

Figure 5b illustrates a similar scenario in which a third sheeting fracture has been added (see inset).
The presence of this fracture results in bi-modal distributions of concentration for some realizations.
In addition, the time of arrival of the peak concentration, is much advanced relative to that shown in

Figure 5a. Thus, the arrangement of the sheeting fractures can have a profound offect on the transport
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propetties of a domain such as this. To investigate the presence of the bi-modal distribution, Monte

_Carlo simulations with 50 realizations were conducted. The presence of bi-modal curves was

observed at the same frequency. It is surmised, therefore, that the heterogeneity created by the

inclusion of the third sheeting fracture resulted in the breakthrough curves becoming more irregular.
However, the asymmetry in the horizontal axis and the relative spafseness of the sheeting fractures
also contributes to this effect. Denser sheeting fractures will smooth the breakthrough curves while

a sparser arrangement of the vertical fractures will increase the irregular shape of the curves.

Matrix Diffusion

Because the present mode] is based on a semi-analytical solution, concentrations and flux may be
accurately determined over several orders of magnitude. This is useful when analyzing a breakthrough

curve at late times, particularly when matrix diffusion is present. Tsang [1995] investigated transport

processes by simulating transport in a variety of configurations normally used for tracer experiments..

Transport was simulated using particle tracking in a randbml_y generated network. At low
concentrations, random noise was observed, making f(;r a difficult interpretation of the transport
processes at late times. On thevbasis of the reéults of several simulations, Tsang [1995] proposed that
cpncentration_s in the tail of breakthrough curves for 'tracer experiments conducted in radial flow

t-3f2

systems should follow a late-time dependence on t*2. This was observed in the case for both

homogeneous and heterogenous fracture networks.
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In this study, several simulations were conducted to investigate these effects in a uniform flow field.

The network domain and transport parameters are shown in Table 1. These parameters are based on

* fracture statistics obtained from the Chalk River area near Ottawa, Ontario. The tracer is introduced

at a point on a deterministically located fracture along the border (Figure 4), Detenninistiéally located
sheeting fractures were not used in these simulations. The progress of the solute is then monitored

at the exit boundary of the network (right hand boundary). Figure 6 illustrates the mass rate of exit

(g/day) for matrix porosities ranging from 0% to 1%.

An independent test was conducted to determine the relationship between the mass rate of flow across
a boundary and the concentration 'detefmihe_d at a specific point. The concentration was determined
at a point in the center of the boundary, while the mass rate of exit was determined across the entire
exit boundary. For 20 realizations, it was observed that the sloﬁc of the mass rate of exit and the
concentration at late times follow tﬁe same -3/2 log-log slope. In addition, both became inc.ré,asingly.
coincident at late times, indicating that the fracture geometry has a decr’easing influence on

bréakthrough when matfi_x diffusion is included, as shown by Tsang [1995].

In Figure 6, calculation of the log-log slopes show a linear relationship with a slope of approximately

- " below a mass rate of exit of 2.5x10* g/day. This is approximately 0.7% to 9% of the peak rate for

porosities of 0.1% to 1%, respectively. Thus, the linear slope is observed under conditions of uniform .
flow in addition to radial flow Systems. For this set of simulations, there is a direct relationship

between the porosity and the log-intercept, i.e. as the porosity is increased, the linear portion of the

curve is shifted towards a later time by an approximately proportional factor. The lesser the porosity,
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the more likely that a point of inflection on the log-log brgak_t_h,_rough curve will occur. It can be
observed in Figure 6 that there is both negative and positive curvature in breakthrough curves up to
a porosity of 0.5%. At a porosity of greater than 0.5-%, there is exélusive_ly negative curvature. In
addition’, the same effect was observed with increased residence times and coefficients of diffusion.
The exact relationship between the inflection of the breakthrough curve and the pds_i_tion of the

asymptotic t>?

approach in specifié cases could be determined by inverse analysis.

However, when exploring matrix diffusion 'using tracer experiments, analytical difficulties in
identifying the slope in the breakthrough curve could arise. This is because meas’u‘remeﬁt at late times
for low concen,tratibns relative tov the peak concentration are prone to higher error, and standing water
in the borehole will delay the onsét of the slope [e.g. Novakowski, 1992]. Therefore, an analysis of
the iransition zone, before the onset of the -$10pe, for inflection pdints and an asymptotic trend towards
a -3/2. log-log slope would prove more practical. This is possible because tﬁe mid-time curve for zero
porosity (generally increasing in steepness to a log-log slope of -4 to Ty is recognizablyv different from

the curve with a porous matrix (trending toward a log-log slope of -1.47 to -1.60 as in these cases).
SUMMARY AND CONCLUSIONS

A semi-analytical model is developed in this paper that simulates flow and transport in a network of
fractures. The model is developed using Laplace transforms to eliminate the need for time stepping.
Solute transfers at fracture intersections are accomplished with streamtube routing or complete

“mixing, depending on the hydrodynamics of the fracture intersection. The concentration distribution .
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in the network is determined using a step-wise solution method. The model was shown to be robust
and accurate ovef a wide range of Peclet numbers. To illustrate the use of the model, applications to
fr_acture networks were condUctcd to obtajn a better understanding of matrix,'dif_fdsidn and the effect

of sheeting fractures.

The effect of sheeting fractures was simulated using a rudimentary fractute arrangement overlain on
a network of smaller aperture fractures. Significant asymmetry in the breakthrough curves was
observed. Bi-modal curves were observed for some realizations. The shape of the breakthrough curves

was also found to be sensitive to the arrangement of the smaller aperture fractures that interconnect

the sheeting fractures. It is surmised that the denser arrangement of sheeting fractures will smooth the

breakthrough curves while a sparser arrangement of the interconnecting fractures will increase the

irregularity in the shape of the curve.

Several simulationsWe_re also conducted using a network of fractures entirely generated by stochastic
means. The results show that, in responsé to a slug input of solute, the tail of a breakthrough curve
at late times is characterized by a slope of 32 in log-log concentration. This was also observed by
Tsang [1995] for radial flow fields and is attr‘ibut_ed solely t6 the influence of matrix diffusion.
Unfortunately, the slope of t¥? is not apparent until lva;e-_timé and low concentration, thus diagnosis
of matrix diffusion is inhibited. However, based on the simulations conducted for this study,

inflection points in the breakthrough curves that occur at mid-time and higher concentration may be

‘useful in this regard.



NOTATION

2b aperture of tht_i fracture element, L.

c concentration in fracture element’, M/L3 ‘

c concentration in matrix’, M/L>.

D hydrodynamic dispersion, L¥T.

D' effective diffusion coefficient within matrix, L*/T.
E exponential factor for transport processes.

F mass rate of flow’, M/T.

J mass flux ", M/L2T.

L leﬁgth 6f fracture element, L.

M mass of solute’, M. /

Laplace transform of time, 1/T.

o

volumetric flow, L*/T.
retardation vfactor in fracture element.
R’ retardatibﬁ factor in matrix.
t time, T.
\% average linear velocity of groundwater, L/T.
w unit width of fracture, L.
X local co-ordinaté parallel to the axis of a fracture element, L.‘
z . local co-ordinate perpendicular to the axis of a fracture element, L.
) porosity of rock matrix.
A linear decay constant of solute, 1/T.
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\J V72D, 1/L.

L) dimer_x,sionless factor for advective flux.

* May be overlined to indicate that the variable was transformed into the Laplace domain.

~Subscripts

EX)

(ENT)

iA |

j, i1, 12,3, 4
in

out

stored

n

solute is exiting from the fracture element.

solute is entering into the fracture element.

property of a node.

proﬁerty of fracture element.

solute entering a collection of nodes at a given time.
solute exiting a collection of nodes at a given time.
solute stored in the network. at a given time

upper limit of a summation.
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FIGURE CAPTIONS
Figure 1. Schematic of a fracture element and surrounding porous matrix.

Figure 2. Examples of streamline routing at fracture intersections. a) Mixing case. Receiving
fractures and contributing fractures are opposite one another (discontifiuous intersection). b) Non-
mixing case. Receiving fractures and contributing fractures are adjacent to one another

(continuous intersection). Fracture numbers are arranged such that Q;; > Q.
Figure 3. Relative errors from simulation conducted in stochastically generated networks.

Figure 4. Example fracture network. Upper and lower boundaries are no-flow, while the left and

right boundaries are constant head. Direction of flow is left to right.

Figufe 5. Breakthrough curves from simulations conducted in 10 network realizations. The inset
diagram indicates the locations of the determiriistically placed fractures in relation to the domain.

Breakthrough curves are for a) two sheeting fractures, and b) three sheeting fractures.

Figure 6. Log-log linearity in the tail of ‘breakthrough curves in a densely fractured network, due

to matrix diffusion. Slopes approach a value of -3/2.
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Figure 2. Examples of streamline routing' at fracture intersections. a) Mixing

~case. Receiving fractures and contributing fractures are opposite
one another (discontinuous intersection). b) Non-mixing case.

Receiving fractures and contributing fractures are adjacent to one
‘another (continuous intersection). Nomenclature is arranged such

that Q, > Q.
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Figure 5. Breakthrough curves from simulations conducted in 10 network
realizations. The inset diagram indicates the locations of the
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