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MANAGEMENT PERSPECTIVE 

A SEMI-ANALYTICAL MODEL FOR THE SIMULATION OF 
' SOLUTE TRANSPORT IN A NETWORK OF RANDOM 
FRACTURES 

K. Novakowslszi and J. Bogan 

Submitted to Journal of Contaminant Hydrology 

In Atlantic Canada,.northem Ontario, and various parts of British 
Columbia, contaminant migration in groundwater circulating through 
fractures in crystalline rock has contaminated many local water supplies. 
In Atlantic Canada numerous gasoline stations have leaking underground 
storage tanks which are the source of this contamination. In northern 
Ontario, the disposal of low-level nuclear waste in these types of

' 

environments may pose a threat to local water supplies. Therefore, the 
issue is related not only toxics in groundwater but also to the Atomic 
Energy Control Act. ' 

The model developed for this study is being refined and undergoing 
further ver_ificat_ion. 

Study is complete. Model may be expanded to look at biochemical
I 

‘processes i_n granitic rock, Model may be marketed. Value estimated at 
approximately $2K per copy.



ABSTRACT 

A semi-analytical model is developed which accounts for solute transport through a multi- 

dimensional network of fractures having random orientations and sparse distr_ibut_ion_. Transport 

processes including hydrodynamic dispersion, matrix diffusion, retardation, decay and solute transfer 

.at fracture intersections, are considered. The model is derived by_ application of the Laplace 

transform to the governing transport equation for each fracture element. The resulting ordinary 

differential equations are linked using robust descriptions of mass conservation at the fracture 

intersections. Solute concentrations are determined by numerically inverting the transformed 

equations in a sequential fashion, The model is verified using a formal mass balance and through 

_ comparison to existing solutions for solute transport in porous and fractured media. To illustrate the 

use of the model, solute transport in a hypothetical network domain was simulated based on fracture 

conditions measured at a real field setting in a granitic rock.



INTRODUCTION 

Simulating the transport of‘ contaminants in sparsely-fractured media such as granites using models 

developed for porous media (i .e. a continuum approach) can be shown to be only applicable at a very 

large scale (Bear, 1993). At fithescale typical of a c_ont_arninant event, definition of the transport in 

each discrete fracture is requ_ired., In some cases, the groundwater flow system at this scale might be 

predominated by only one or two fracture features (such as one or two faults) and contaminant 

transport can be simulated using straightforward analytical models which account for solute transport 

in a single fracture (eg. Tang et al., 1981). cases where more than one or two fracture features 

influence the flow system, definition of the fractures -is often conducted using stochastic or 

stochastic-deterministic methods in two dimensions and solute transport solved for thegresulting . 

fracture network using particle-tracking methods (Sm_ith and Schwartz, 1984; Cacas et al., 1990; 

Dverstorp et al., 1992). For simple orthogonal networks, direct solution of the transport equations 

for both the fractures and the matrix can be undertaken using finite element methods (Sudicky and 

McLaren, 1992). 

A computationally attractive alternative to these methods, for a multidimensional system of linked 
fracture elements, is the direct solution of the transport equations using analytical elements. In this 

case, variations of the solution of‘Tang et al [1981] in semi-analytical form are used in each fracture 

element and global concentrations are determined by simultaneous or sequential solution of the 

equation set. This method is less difficult to implement for non-orthogonal networks than finite- 

element methods (no discretisation required in the matrix) and offersmore flexibility than particle- 

tracking methods in accounting for transport processes such as matrix diffusion, multi-species 

transport, and biological transformation.



2. 

Serni-analytical models for solute transport in a fracture network based on the solution of Tang et 

al. [1981] have been developed by Rowe and Booker [1989], Mitchell and Sudicky [1991] and 

Kiipper et [I995]. Rowe and Booker [1989] developed a model to account for the transport of
9 

conservative species limited to a twov or th_ree—dimen‘sional network of regularly spaced fractures. _ 

Transport followed only the regular fracture sets aligned in the direction of flow and mass transfer 

at fracture intersections was not considered. Kiipper et‘ al. [1995a] also developed a model for regular 

fracture arrangements, although mass transfer at fracture intersections was treated explicitly, in this 

case. To account for mass transfer, Kiipper et al. [l995a] discretized the breakthrough curve in time 
i 

for each element and used this as input to the next element down-gradient, Comparison of thernodel 

configured with several linked one-dimensional elements to the Tang et al solution showed that 

errors accumulate according-to the number of mass transfer events andithe coarseness of the 

discretisation. In an unpublished study, Mitchell and Sudicky [1991] used a Laplace transformed 

version of the Tang et al. solution (neglecting hydrodynamic dispersion) where mass transfer at 

fracture i_ntersections was conducted using the equivalent to a Dirichlet boundary condition_. 

Verification of the solution was not conducted. 

Mixing at fracture intersections presents an additional problem associated with modeling two- 

dimensionalfracture networks. There are number of possible approaches including I) assume 

complete mixing at each intersection, 2) transfer the solute mass according to stream tube routes at 

each intersection, and 3) assume only partial diffusive exchange between stream tubes (i.e Berkowiti 

et al., 1994). Kiipper et al. [1995a], determined that if it is assumed that only two fractures can 

intersect at a given point, out of the four possible flow combinations, three are mathematically



equivalent for both stream tube routing and complete mixing conditions. 

"In this paper-, a semi’-analytical model is developed in which solute transport in a non-orthogonal 

fracture network is solved. Linear transport processes such as hydrodynamic dispersion, adsorption, 

decay, and matrix diffusion are incorporated. The solut_i_on method involves derivation of transport 

equations for each fracture element by application of the Laplace transform. Virtually any 

transforrnable source function can be accommodated at any fracture location. Either complete mixing 

or stream tube routing and a rigorous definition of mass conservation is used at the fracture 

intersections. The equations are then solved sequentially using a propag_ati'o_n method. The model is ' 

verified by conducting aformal mass balance and by comparison to existing analytical solutions for 

convection-dispersion and matrix diffusion_. To illustrate the use of the model, a. simulation is 

undertaken in a sparsely fractured network typical of fractured crystalline rock. 

MATHEMATICAL DEVELOPMENT 

To derive a solution to solute transport in a fracture network, a fracture element, as depicted in 

Figure 1, is defined as the portion of a fracture_that lies between the points of intersection with other 

fractures or with a boundary. Thus, the spatial framework of the fracture system is represented by 

a set of saturated fracture elements connectedat nodes within a homogenous and isotropic matrix}, 

Groundwater flow is ‘assumed to be steady and the aperture along each fracture is assumed to be 

constant, although variable aperture could easily be accommodated following the method of 

Nordqvist et [1992] . The groundwater velocity ineach fracture element is determined using the



method described by Rouleau [1984] and Barker‘ [1991] for steady flow conditions 

In the following, a similar approach to that described by Barker [1991] for transient groundwater 

flow in a network, is used to develop the solution for transport. The transport processes considered 

include advection, hydrodynamic dispersion, matrix diffusion, adsorption on the fracture surfaces 

and in the porous matrix, and first order decay. 

It is assumed that the porosity of the matrix is sufficiently small such that diffusing solute from 

adjacent fracture elements do not interact. This is clearly an approximation which will lead to an 

overestimate of the effect of matrix diffusion for some conditions. The approximation will be of 

most significance for simulations conducted in domains having short fracture elements and long 

periods of solute input. 

Longitudinal dispersion is assumed to be constant and independent for each fracture element. 

- Adso'rpt_ion is assumed to be completely reversible and to follow a linear isotherm. Degradation» 

follows a first order decay process and occurs in both the matrix and the fracture at the same rate. 

Solute Concentration in a Fracture Element 

- The governing equations are formulated using constant coefficients for each discrete fracture element 
‘ 

within a local coordinate system as shown in Figure l. The equations are developed independently 

for the fracture and for the matrix and then coupled using a continuity condition between the fracture .



and the matrix following‘ the method of Tang et al. [I981]. . 

In Cartesian space, the governingequation forsolute transport in a fracture element is [adapted from 

Tanget al., 1981] 

GD’ ac’ 
'-b—R_’§;z=b=O 

, 0’ 
ac V ac+ 8 I339 _ E $3; "M 

?£E?€?EE 

where c and c’ are the concentration of solute in the fracture element and the matrix, respectively, 

D’is the effective diffusion coefficient of the matrix (includes geometric properties of the pore 

space), D is hydrodynamic dispersion, V is groundwater velocity, A is the linear decay constant, 6 

is the porosity of the matrix, R is the retardation factor in the fracture, and b is 1/2 the fracture 

aperture (2b/2). The boundary and initial conditions are 
c(x, ,0) = O (2) 

c<w, t) = 
o_ (3) 

'c(O, t) = ci(t) 
_ 

i 

_ (4) 

whereci(t) .is the unknown inlet concentration. Note that a specified condition is not applied at the 

outlet boundary, located at x=L. Thus, it is assumed that the presence of the outlet boundary (i;.;e. a 

fracture intersection) has no influence on the solute concentration in the immediate vicinity up-_ 

gradient from the boundary. 

The differential equation for solute transport in the matrix is given as [after Tang et al., 1981] 

ac’ _ D’ 62¢’ 
at R’ 8Z2 

+ Ac’ .= 0 . (5)
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where R’ is the retardation factor in the matrix. The boundary and initial conditions for equation (5) 

are 

c’(x, °°, t) = 0 
I 

' 

(6) 

c’(x,tz, 0) = 0 ('7). 

T 

r 

c’<x, b, c) = c(x.t> 
T 

p 

T 

A (8) 

To solve the system of equations (1) - (8), the Laplace transform method is employed. The solution 

for solute concentration in the fracture element is: 

The Laplace trans§:oe'r}rieid))cor__iceé;:tr':%§ioé1jp(thegflracture is given by c(x,p), ci(p) is the Laplace 
(9) 

where 

2D ~

_ 

and‘
T 

E(p) =\1+ . 

‘ 

(11) . 

The overbar indicates the Laplace transformed dependent variable, 6i (p) is the Laplace ‘transform of 

the inlet concentration, and p is the Laplace variable. 

F lux\between Fracture Elements 

The transfer of mass between fracture elements is determined as a function of concentration at the 

fracture intersection. To preserve mass balance, it is necessary to include a dispersive flux term in 

addition to advective flux at the point of intersection. Thus, the equation that governs the mass flux 

of solute entering a fracture intersection is given by:



. 8 J(L, t) A= Vc(L, t) - Da—:(L, t) (12) 

Where J is the mass flux term (ML'2T"‘) that will be used in the assembly of equations for each 

fracture intersection. Substitution of equation (9) into the Laplace transform of (12) results in the 

_ 
final expression for the flux leaving a fracture -element 

3(L, p) = <I>(p) V31. (p) e“L‘i""””’ . 

q 

(13) 

where

1 
<:>(P) =(p) (14) 

Therefore, the flux ‘exiting any fracture of length L is dependent only on the inlet concentration and 
the transport properties of that fracture element.

/ 

To determine the solute flux entering a given fracture from a fracture intersection, equation (12) is 

used with the local coordinate of x=0. Thus, the flux entering is given by 

3(0, p) = d>(p)VE1.(p) 
V 

V 
I 

(15) 

where <I>Q>) is as given above. 

Solute Transport in a Fracture Network 

Because the concentration of solute in a given fracture is dependent only on the inlet concentration 

for that fracture, a simple propagation method can be used to solve for the distribution of solute in 

the network. The nodes used to initiate the solution are usually those that constitute the most 

upgradient in the network. It isnot necessary forthere to be any solute input at these node, as the
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method ‘propagates a null solution until solute input is encountered. However, to simplify the 

.fonn'ulation for general conditions at fracture intersections, solute input is limited to boundary nodes. 

To formulate a complete solution, the mass flux entering and leaving each node must be summed. 

Both strearntube routing and complete mixing can be accounted for in this formulation. For example,
_ 

Figure 2 shows the intersection of two fractures with two different flow arrangements. In Figure 2a, 

contributing fractures and receiving fractures are opposite one another, while in Figure 2b, 

_ 

‘contributing and receiving fractures are adjacent. The flow arrangements in Figures 2a and 2b can 

be classified as mixing and non-mixing (stream tube routing), respectively, according to the 

definitions given by Kfipper et al. [1995a]. 

The nomenclature used i_n Figure 2 follows that developed by Barker [1991]. The intersection node 

is given integer value, i, and fracture elements connected to i are defined as j , through j4. Any 

properties possessedby these fracture elements are given the subscript j. The fracture elements 

defined as in, are those that supply flow, and the fracture elements defined as out, are those that 

receive flow. 

Assuming no storage of solute at nodes, for uniform flux pa_rallel to the fracture walls across a 

perpendicular cross-section, Zbjwj, it can be shown that the massbalance at node i is 

j: in jfi but 
2 J<2:x)j2bjWj J’ Fr = 2 J(r:zvr)j2bjW2' ‘ 

(16) 

where-Jj is the flux to_or from a fracture element, j, Fi is the nodal mass rate of flow [M/T] imposed



9 

as a source/sink condition at that location (can be any Laplace-transfonnable function), and wj is the 

unit width of the fracture elernent. The (EX) subscript indicates that the solute is exiting from a 

fracture element, and the (ENT) subscript indicates that solute is entering a receiving‘ fracture 

element. Flux at the exit of an individual fracture element is determined. from (13) as 

'J(EX,j. = CD3. (p) Vj-5;..(.Lj. p) (17) 

where cj(L5,p) is the concentration in fracture element, at theoutlet end. Therconcentfation, cl-e(I.j,p) 

where Ej (LJ,p) is the concentration leaving fracture e1err’1ent,‘Similarl3.I, flux at the entrance to a 

fracture element is determined from equation (15) directly as 

-j(ENT)j = ¢'J'(p)VjEi(p) ' 

. 
. 

I 

(13) 

The intersection shown in Figure 2a illustrates an example of a configuration in which complete 

where 6i (p) is concentration at the node as calculated during the previous step (see below). 

For the complete mixing case (ie. Figure 2a), equations (17) and (18) are substituted into equation 

(16). This implies that all of the unknown concentrations contributed to receiving fracture elements 

from the node are equal at the inlets. Then 6i (p) is the concentration at the node after mixing has 

occurred (in the case of non-mixing conditions, this represents the mean concentration within the 

intersection). This allows us to rearrange the terms and to solve for 6i (p) 

Z <Pj(p)QjEj(Lj. p) + Filp) '‘ 
' J:-7-‘T7 ____ _ _, Z <I>j(p)Qj' 

cl. (p) = 

j=b'i1t 

(19) 

where Q]. is the ‘volumetric flow rate in the fracture. Thus, for complete mixing, the outflow 

concentration from the node is given as 

'Ej(o, 15) = Eilp) j={out}‘ 
’ 

if 

(20)
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where cj(0,p) and cl-(L,p) are concentrations located the intersection, after solute concentration 
' 

has become homogeneous within thefracture element. 

For the one configuration (ie. Figure 2b) that requires incomplete mixing (strearn tube routing), a 

different formulation is applied, following the method suggested by Kiipper et al. [1995a]. For the
' 

example shown in Figure 2b,— Q], > Q]-3. In general, when deterrnining concentrations at the 

intersection, the fracture n_urnbering scheme is arranged sofas to be consistent with this flow relation 

(ie. the fractures are renumbered when Q1-I < Q]-'3). For the case shown in Figure 2b, the contribution 

of solute to fracture j3 is exclusively from fracture j,, therefore 

Ej3(0, p) = E,-1(L_,.1, p) 
' 

(21) 

Equation (21) is substituted into (16) to determine the remaining inlet concentration. To avoid the 

problem of‘ distributing external solute input at these types of intersections, as aforementioned, 

external solute input is ’lim_ited to the boundary. Thus, 

_ [<I>.,(p>Q. —<I>.,(p)Q. IE. (L,p)+<I>. (pm 
_C. (Dip) = J .71. J 13 J1 . J2 

74 <I>(p)j4Qj4 (22) 

To provide. a comparison to models in which complete mixing is assumed at all fracture 

intersections, equation (22) can be replaced by equations (19) and (20). 

To implement the solution, numerical. inversion of the Laplace concentrations is required. This is 

conducted using the De Hoog et al [1982] algorithm. This algorithm has been evaluated for inversion 

of. similartransport problems by Moench [I992]. The results indicated that Peclet numbers (the ratio 

of distance over dispersivity) were limited to the.range from 220 to 10,000 depending on the
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accuracy of the computer. Similar limitations were encountered in the present study, for the network
V 

solution. —Furthe_r discussion of accuracy is provided in the following section. 

Verification and Mass Balance 

Additional verification of the model was based on a comparison to existing analytical solutions of 

Ogata and Banks [1961] and Novakowski [1995]. The results show agreement to 4 significant 

figures using simple network configurations and comparisons to line elements, Further discussion 

of these verification procedures can be found in Bogan [I996]. 

The determination -of the total mass of solute in the fracture network is necessary in order to 

determine the accuracy of the numerical inversion scheme and to evaluate the mass— conservative 

nature of the model. To perform a formal mass balance at a given time, the following relationship_ 

must be proven 

Min = Ms‘tored+ Mout
I 

where in the case of a network of fractures, Mm is the total mass of solute introduced into the 
network at system source nodes, Msmd is the total mass of solute stored in the fracture network and 

su'1rdundin g porous matrix, and Mom is the total mass of solute that exits the network at exit boundary 

nodes. Exit boundary nodes are defined as those nodes that have no connected fracture elements to 

‘ 

receive flow and thus are the points at which solute leaves the network.
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Forthe purpose of performing the mass balance, only solute concentration in the fracture network 

is evaluated (matrix diffusion is not considered). Therefore, to determine‘ the MSW, for the network,
‘ 

the mass stored in the each fracture element is determined by integration and then summed over the
I 

' 

network. Because a spatially dependent equation for the concentration in each element has been 

developed, an integration performed on thisequation with respect to volume yiel_ds the mass of the ' 

solute. It is assumed that concentration is uniform through a lateral section, which allows the 

equation to be treated as a one-dimensiona1.prob1em. Therefore, solute mass in a fracture element,
V 

L71,-(p), can be defined in local coordinates as 
Fg.(p> = zbjwjf-a-j(Xl p)dx ' (24)‘

0 

The substitution of equation (9) into (23) and performing the integration yields 

_LZ(p) = 2b'w C3-(0; P) . vLJ-(1¥Ej(P))_ 1 
I

‘ 

J 3 JVj(1—Ej(p)) 
, 

) 

p 

(25) 

To determine Min and M0,", the cumulative mass‘ of solute that has passed through entrance and exit 

nodes for the network, respectively, is determined. This mass is accumulated to a given time, M;(t), 

and may beevaluated by integrating the flux over time as 
It 

. . 

Mi(t) = fFl.(t)dt: 
‘ 

I 

(25) 
o 

_

- 

If we perform a Laplace transform on this expression, we obtain \ 

_ F.( )
- 

M1.<p> = JP 
. (27)P 

Where l\-/-Ii(p) is the Laplace transforrn of M,(t). Mm is determined by applying (26) directly at all
-



13 

system source nodes. Mom is estimated by applying (26) to all exit boundary nodes, where E,(p) is 

determined by the addition of the mass rate of flow to the nodes in equation (15). 

To evaluate the mass balance, numerical inversion of the Laplace concentration is required.. To 

evaluate these limitations, several example simulations were conducted using a stochastically 

generated fracture network. A mass balance was determined (following the procedure described 
above) to quantify the total error in the solution. 

A series of stochastic networks of increasing fracture density were generated. Log variance of aperture 
. was set to 0.1, in order to include a random component to the flow system. The domain was defined 

with a dimension in the direction of flow of twice that of the width. Boundary conditions were applied 

using a constant hydraulic head on the left—hand and_ right-hand sides of the network. A uniform 
gradient of 0.002 was induced across the network. The upper and lower boundaries were defined as 

no-flow. The dispersivity for each fracture ranged from 0.001 to 1.0 for individual realizations. Peclet 

numbers for the domain were calculated based on the mean path length across the domain. Relative 

error of the mass balance is expressed as 

M + M » — M’. 
Relative Error = (23) 

_ 

in 

where M}, is the simple addition of the mass of all Dirac inputs and is an exactly accurate figure. The 

error was determined for ten snapshots in time for each network. The maximum error for each case 

is shown in Figure 3, for three fracture densities (F.D.). Due to the stochastic nature of the generation 

process there was some variation in the error readings. The majority ofthe error was incurred’ at early 
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time. 

The total error only exceeded the ‘truncation error of the model (1.0xl0*’) at Peclet numbers of greater 

than 1000. This is consistent with the observations of Moench [1991], which suggests that the error ' 

. 

observed at Pe < 1000 is introduced solely by the inversion scheme. The error increases in a 

logarithmic fashion at Pe» greater than 1000. In addition, the concentration values‘ at the exit nodes .g
» 

begin to show evidence of increasing "noise" in the solution (random over- or under-estimation of the 

concentration), usually at early tirnes for these _Pe. These limitations are generally encountered in the 

numerical implementation of inverse Laplace transforms at large Peclet numbers. However, it is 

important to note that error is small for the range of Pe below 1000. This range is more typical of real 

field conditions. 

RESULTS AND DISCUSSION 

To illustrate the use of the model, example simulations are conductedto explain theoretical aspects 

related to matrix diffusion and to study solute transport using a network which closely follows a field 

setting in crystalline rock. The purpose of these simulations is to demonstrate the efficiency of the
\ 

model in testing conceptual models for fracture arrangement and for matrix diffusion. 

. 
Generation of Fracture Networks 

The development of individual realizations of a fracture network is conducted in two steps. First, a . 

S 

stochastically generated network is constructed using‘ a defined set of fracture statistics, The statistics
'
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is 

include the mean and standard deviation of fracture aperture, length and orientation. The fracture 

statistics may be obtained from field locations. Second, a set of deterministically defined "fractures 

‘are overlain on the stochastically generated network. These fractures are intended to more closely 

simulate field conditions where large scale sheeting fractures predominate the flow system such as 

- at shallow depths‘ in crystallinerock. 

Generation of the stochastic component of the fracture network follows themethod described by 

liouleau [1984]. First, length, orientation, and the location of the centre of‘ the fractures are generated. 

The lengths of the fractures have a truncated exponential distribution fschwartz et al., 1983]. To 

produce the exact linear density of fracture traces within the domain, the end-to-end fracture length 

is determined by multiplying the area of the domain by the ‘fracture density, and the total generated 

fracture lengths never exceed this value. In the following discussion, two sets of fractures are 

stochastically generated, the orientations of which are determined from separate mean and variances. 
' Based on the mean and variance-, a normal distribution function is used to generate the orientation of 

the fracture. The placement of the detenninistically defined fractures is conducted by locating the end
I 

co-ordinates in the desired positions. The aperture of these fractures were set to values considerably 

larger than the mean apertures of the stochastically generated network. 

Intersections with boundaries and between fractures are then determined. The intersections-that lie 

outside the specified domain are eliminated as are those that connect to dead-end fracture elements. 

The remaining intersections are defined as nodes in the flow path. Fracture elements are then 

determined, and the aperture of the parent fracture retained. In the final step, nodes are renumbered 

in order of their y-pos_i_t_ion. This reduces_the bandwidth of the solution for flow by associating the
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spatial position with fracture connectivity, so that the difference in node numbers "are more likely to 

. be similar in integer value. An example of a stochastically generated network is shown in Figure 4.
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T7ze.EJ'§‘ect of Sheeting Fracmres 

Sheeting fracturesioccur as extension fractures parallel to the ground surface in crystalline rock 

[Ho1zh_auser, 1989]. These fractures develop after the formation of fracture sets related to tectonism 

and are often of larger aperture. a field study-, conducted in rnonzonitic gneiss [Raven-, 1986], 

sheeting ‘fractures were found to predominate the groundw'at_er flow system at shallow depth. 

Interconnection between these features was controlled by fractures of smaller aperture and more 

random orientation. Thus, sheeting fractures form conduits for solute migration and increase the 

heterogeneity of the network. To investigate the effect that these fractures have on solute transport,_ 

several simple sheeting fracture arrangements are superimposed on a finer fracture network; and flow 

and transport are simulated, 

A network with. the properties shown in Table 1 was combined with deterministically located 

fractures shown in the inset of Figures 5a and .5b. The aperture of the deterrninistically placed 

fractures was set equal to 200 um, and the matrix was defined as impermeable. A Dirac source was 
introduced at the point indicated on the left-hand boundary, and monitored at the point indicated on 

the right-hand boundary. Errors as determined from mass balance calculations were negligible.
I
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Table 1. Network and transport parameters for simulations. 

_'Network parameters and boundary conditions: 
Fracture Density: 2.-5 fractures / in 
Domain depth: 30 m 
Domain length: 100 m 
Mean aperture: 100 pm 
Log variance: 0.2 ' 

Hydraulic Gradient:_ 0.01 

Transport parameters" 
Dispersivity: 0.5 m 

_ 
Matrix Porosity: <1% 
Matrix Toxtuosity: 0.1 
Diffusion Coefficient: 6.1x1O'5 m2/d 

Figure ‘5a illustrates the results for 10 realizations. The shape of the breakthrough curves are 

uniformly asymmetrical, with significant tailing: observed in some. The asymmetry arises due to 

transport in the finer fractures. The time of peak arrival is dependent on the arrangement of the 

interconnections in the finer fracture sets. The breakthrough curve for the case in which the sheeting ~ 

fracture is through-going and directly connects the entrance and exit (not shown) was observed to 

have a time to peak arrival of 4.0 days and a symmetrical shape. Thus, although rapid transport occurs 

in the sheeting fractures, the overall rate of migration is limited by the finer fracture sets. - 

Figure 5b illustrates a similar scenario in which a third sheeting fracture has been added (see inset). 

The presence of this fracture results in bi-modal distributions of concentration for some realizations. 

In addition‘-, the time of arrival of the peak concentration, is much advanced relative to that shown.in 

Figure 5a. Thus, the arrangement of the sheeting fractures can have a profound effect on the transport
I’
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properties of a domain such as this. To in'v'e_stiga_te the presence of the bi-modal distribution, Monte 

. Carlo simulations with 50 realizations were conducted. The presence of bi-modal curves was 

observed at the same frequency. It is surmised, therefore, that the heterogeneity created by the 

inclusion of the th_i_rd sheeting fracture resulted in the breakthrough curves becoming more irregular. 

However, the asymmetry in the horizontal axis and_the relative sparseness of the sheeting fractures 

also contributes to this effect. Denser sheeting fractures will smooth the breakthrough curves while 

a sparser arrangement of the vertical fractures will increase the irregular shape of the curves. 

Matrix Difiusion 

Because the present model is based on a semi-analytical solution, concentrations and flux maybe 

accurately deterrniined over several orders of magnitude. This is useful when analyzing a breakthrough 

curve at late times, particularly when matrix diffusion is present. Tsang [1995] investigated transport 

processes by simulating transport in a variety of configurations normally used for tracer experiments,
V 

Transport was simulated using particle tracking in a randomly generated network. At low 

concentrations, random noise was observed, making for a difficult interpretation of the transport 

processes at late times. On theibasis of the results of several simula_tions—, Tsang [1995] pro'posed that 

concentrations in the tail of breakthrough curves for tracer experiments conducted in radial flow 
t-3/2 systems should follow a late‘-time dependence on . This was observed in the case _for both 

homogeneous and heterogenous fracture networks.
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In this study, several simulations were conducted to investigate these effects in a uniform flow field. 

The-network domain and transport-parameters are shown in Table 1. These parameters are based on 
' 

fracture» statistics obtained from the Chalk River area near Ottawa, Ontario. The tracer is introduced 

at a point on a deterrninistically located fracture along the border (Figure Deterministically located
V 

sheeting fractures were not used in these simulations. The progress of the solute is then monitored . 

at the exit boundary of the network (right hand boundary). Figure 6 illustrates the mass rate of exit 

(g/day) for matrix porosities ranging from 0% to 1%. 

An independent test was conducted to determine the relationship between the mass" rate of flow across 

a boundary and the concentration ‘determined at a specific point. The concentration was determined 

at a point in the center of the boundary, while the mass -rate. of exit was determined across the entire 

exit boundary. For 20 realizations, it was observed that the slope of the mass rate exit and the 

concentration at late times follow the same -3/2 log-log slope. In addition, both became increasingly. 

coincident at late times, indicating that the fracture geometry has ‘a decreasing influence on 

breakthrough when matrix diffusion is included, as shown by-Tsang [1995]-. 

In Figure 6, calculation of the log-log slopes show a linear relationship with a slope of approximately 
' 

t‘3” below a mass rate of exit of 2.»5xlO“ g/day. This is approximately 0.7% to 9% of the peak rate for 

porosities of 0.1% to 1%, respectively. Thus, the linear‘ slope is observed under conditions of uniform . 

\,, 

flow in addition to radial flow systems. For this set of simulations, there is a direct relationship 

between the porosity and the log-intercept, i.e. as the porosity is increased, the linear portion of the 

curve is shifted towards a later time by an approximately proportional factor. The lesser the porosity-,
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the more likely that a point of inflection on the log-log breakthrough curve will occur. It can be 

observed in Figure 6 that there is both negative and positive curvature in breakthrough curves up to 
I 

a porosity of 0.5%. At a porosity of greater than 0.5%, there is exclusively negative curvature. In 

addition‘, the same effect was observed with increased residence times and coefficients of diffusion. 

The exact relationship between the inflection of the breakthrough curve and the position of the 

asymptotic E3” approach in specific cases could be determined by inverse analysis.
' 

However, when exploring matrix di_ffusion ‘using tracer experiments, analytical difficulties in 

identifying the slope in the break_through curve could arise‘. This is because measurement at late times 

for low concentrations relative to the peak concentration are prone to higher error, and standing water 

in the borehole will delay the onset of the slope [e. g. Novakowski, 1992]. Therefore, an analysis of 

the transition zone, before the onset of the slope, for inflection points and an asymptotic trend towards 

a -3/2' log—log slope would prove more practical. This is possible because the mid-time curve for zero 

porosity (generally increasing in steepness to a log-log slope of —4 to -7) is recogniztablyi different from 

the curve with a porous matrix (trending toward a log—log slope of -1.47 to -1.60 as in these cases). 

SUMMARY AND CONCLUSIONS 

A serni-analytical model is developed in this paper that simulates flow and transport in a network of 
fractures. The model is developed using Laplace ‘transforms to eliriiinate the need for time stepping. 

Solute transfers at fracture intersections are accomplished with streamtube routing or complete 

mixing, depending on the hydrodynamics of the fracture intersection. The concentration distribution .
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in the network is determined using a step-wise solution method. The model was shown to be robust 

and accurate over a wide range of Peclet numbers._ To illustrate the use of the model, applications to 

fracture networks were conducted to obtain a better understanding of matrixidiffusion and the effect 

of sheeting fractures. 

The effect of sheeting fractures was simulated using a rudimentary fracture arrangement overlain on 

a network of smaller aperture fractures. Significant asymmetry in the breakthrough curves was 

observed. Bi-modal curves were observed for some realizations. The shape of the breakthrough curves 

was also found to be sensitive to the arrangement of the smaller aperture fractures that interconnect 
I 

the sheeting fractures. It is surmised that the denser arrangement of sheeting fractures will smooth the 

breakthrough curves while a sparser arrangement of the interconnecting fractures will increase the 

irregularity in the shape of the curve. 

Several simulationswere also conducted u_s_ing a network of fractures entirely generated by stochastic 

means. The results show that, in response to a slug input of solute, the tail of a breakthrough curve 

at late times is characterized by a slope of t‘3’2 in log—log concentration. This was alsoobserved by 

Tsang‘ [1995] for radial flow fields and is attributed solely to the influence of matrix diffusion. 

Unfortunately, theslope of t‘3"’- is not apparent until late-time and low concentration, thus diagnosis 

of matrix diffusion is inhibited. However, based on the simulations conducted for this study, 

inflection points in the breakthrough curves that occur at mid-time and higher concentration may be 

useful in this regard.



NOTATION 

2b aperture of the fracture element, L. 

c concentration in fracture element’,
A 

c’ concentration in matrix‘, M/L3. 

D hydrodynamic dispersion-, L2/T. 

D’ 
_ 

effective diffusion coefficient Within matrix, L2/T. 

E exponential factor for transport processes. 

F mass rate of flow‘, M/T.. 

J mass flux *, M/LZT. 

L length of fracture element, L. 

M mass of solute",
I 

Laplace transform of time, 1/1‘. 

volumetric flow, L3/TA. 

retardation factor in fracture element. 

R’ retardation factor in matrix. 

tp time, T. 

V average linear velocity of groundwater, L/T. 

w unit width of fracture, L. 

x local co-ordinate parallel to the axis of a fracture element, L.‘ 

z V local co—ordinate perpendicular to the axis of a fracture element, L. 

6 porosity of rock matrix. 

A linear decay constant of solute, 1/I‘.



\

I

. 

iv V/2D, 1/L. 

(I) dirnen_sior_1less factor for advective flux. 

* May be overlined to indicate that the variable was transformed into the Laplace domain; 

_ 
Subscripts 

(Ex) 

(am) 
i

V 

j,j1,j2,j3,j4 

in
_ 

Out 

-stored 

solute is exiting from the fracture element. 

solute is entering intothe fracture element. 

property of a node. 

property of fracture element. 

solute entering a collection of nodes at a given time. 

solute exiting a collection of nodes at a given time. 

solute stored" in_ the network. at a given time 

upper limit of a summation.
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FIGURE CAPTIONS 

Figure 1. Schematic of a fracture element and surrounding porous matrix. 

Figure 2. Examples of streamline routing at. fracture "intersections. a) Mixing case. Receiving 

fractures and contributing fractures are opposite one another (discontinuous intersection). b) Non- 

mixing case. Receiving fractures and contributing fractures are adjacent to one another 

(continuous intersection). Fracture numbers are arranged such that Qjl > Q13. 

Figure 3. Relative errors from simulation conducted in stochastically generated networks. 

Figure 4. Example fracture network. Upper and lower boundaries are no-flow, while the left and 

right boundaries are constant head. Direction of flow is left to right. 

Figure 5. Breakthrough curves from simulations conducted in 10 network realizations. The inset 

diagram indicates the locations of the deterministically placed fractures in relation to the domain. 

Breakthrough curves are for a) two sheeting fractures, and b) three sheeting fractures. 

Figure 6. Logalog linearity in the tail of ‘breakthrough curves in a densely fractured network, due 

to matrix diffusion. Slopes approach a value of -3/2.
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