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Abstract

In this report, a mathematical model of a stream carrying sediment has been described.
This model solves the continuity equation for the sediment-water mixture and the momentum
equation numerically, and corrects the solution at each time step using the continuity
equation for the sediment. This model uses an implicit finite difference approximation
scheme to discretize the governing equations and a Double Sweep method to solve the result-
ing system of algebraic equations. The roughness characteristics of the natural streams
are predicted using a method proposed recently by two Japanese scientists, Kishi and Kuroki.
This method considers the effects of the various bed configurations (sand waves) present
in natural streams in an adequate manner and also considers the flow regime and '"skin fric-
tion' characteristics. The sediment transport rate required for the model is predicted
using the method of Ackers and White, which has been found to be superior to most existing
methods. The model thus incorporates the most recent advances in the field of sediment
transport and should be capable of yielding reliable predictions of the responses of natural
streams to changes in flow and sediment inputs, and to changes in geometry due to river
crossings, protection works, realignment, ete. The application of the model is indicated
using a hypothetical river reach. The flow charts, the description of the input data, the

listing of the computer program and the sample model output are also given.

Résumé

Dans ce rapport, nous décrivons le modéle mathématique d'un cours d'eau transportant
des sédiments. Numériquement, ce modéle résoud 1'équation de continuité pour le mélange
sédiments-eau et 1'équation de la quantité de mouvement et il rectifie la solution & chaque
étape de temps d'aprés 1'équation de continuité pour les sédiments. Ce modele présente un
schéma d'approximation implicite aux différences finies pour discrétiser les équations qui
régissent le phénoméne et une méthode de double balayage pour résoudre les équations algé-
briques qui en découlent. On peut prévoir 1'irrégularité des cours d'eau naturels par la
méthode que viennent de proposer deux savants japonais, Kishi et Kuroki. Cette méthode
tient compte des diverses cohfigurations de lits (ondes de sable) suffisamment présentes
dans les cours d'eau naturels et du régime de 1'écoulement, des caractéristiques de 'frotte-
ment superficiel'. On peut prévoir le transport des sédiments nécessaire pour le modéle
par la méthode d'Ackers et de White, qui s'est révélée supérieure 3 toutes les autres métho-
des existantes. Le modéle réunit donc les progrés les plus récents dans le domaine du
transport des sédiments et doit fournir des prévisions sOres sur les réponses des cours
d'eau naturels touchant les changements de géométrie causés par les conduites sous-fluviales,
les ouvrages de protection, le redressement. Pour 1'application de ce modéle il faut se
servir de la plage hypothétique d'une riviére. On donne aussi les organigrammes, les données
d'entrée, le listage des programmes d'ordinateur et le rendement du modéle qui sert de

spécimen.




List of Symbols

Cartesian coordinate along the length of the river

Cartesian coordinate along the vertical, measured from the bottom of the river
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flow rate of water-sediment mixture (m®/s)
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lateral inflow of sediments from overland flows etc.

density of sediment-water mixture
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acceleration due to gravity
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kinematic viscosity of sediment-water mixture

size of sediment (35% (by weight) of sediment is finer than this size)

porosity

concentration of sediment by weight
bottom slope of the river

energy gradient

average flow velocity = Q/A

shear velocity = /§§§;

friction coefficient = v/v,

vii

(m3/s-m)



relative hydraulic radius = R/D,

- = Ayl
mobility number = pv*/YSD35
. . . s 2y 1/3
dimensionless grain size = Dsngs/(Yv )
dimensionless parameters
pressure force acting on the surfaces of the control volume

frictional force acting along the wetted perimeter

shear stress at the bed




Mathematical Modelling of Sediment-Laden Flows
in Natural Streams

B.G. Krishnappan and N. Snider

1. INTRODUCTION

Flows in natural streams invariably carry sediments either in the vicinity of the bed
or over their entire cross sections. Because of this, natural streambeds are always covered
with sand waves (ripples, dunes). These sand waves are not stationary, but move along with
the flow, thereby introducing further unsteadiness in the basically unsteady character that
is a consequence of the time-dependent discharges of the natural streams. Predicting the
interaction of the sediment movements with the water flow in natural streams is a necessity
in the field of water resources management, where one is often confronted with questions

about the environmental effects of changes in the flow hydrograph or sediment input.

The normal procedure to solve such problems is to build physical models in the labo-
ratory; but with the recent advent of high-speed digital computers, there is great interest
and incentive to replace the physical model with a mathematical one. Mathematical models
have certain advantages over physical models. For example, physical models, because of the
large geographical area involved are usually distorted (i.e. the vertical scale and hori-
zontal scale are different) and are calibrated to study selected aspects of the flow. It
is difficult to model more than one phenomenoh, and flow processes such as dispersion of
mass cannot be studied at all in distorted physical models. Such restrictions do not apply
to the mathematical models and in general they can be used to study all aspects of the flow

processes.,

Mathematical models of physical processes are usually the numerical solutions of the
governing differential equations. The validity of the mathematical model, therefore,
depends on the accuracy of the numerical methods, the adequacy of the differential equations

to describe the natural processes and the accuracy of the various input parameters.

In the case of free surface flows whose boundaries are rigid, the flow behaviour can
be adequately described by ''the de Saint-Venant partial differential equations of unsteady
flow,' which were developed by Barré de Saint-Venant as early as 1871, These equations
are derived by considering the conservation principle for mass and for the momentum of the
flows. As the derived partial differential equations are the hyperbolic type, they are
usually solved by using the method of characteristics and a variety of finite difference

and finite element methods. A summary of the various mathematical models developed for




this case can be found in Ref. 1. One major problem, which is also common to physical
models, is the selection of the parameter to describe the roughness characteristics of the

flow boundaries.

For mobile boundary channels, three equations are needed to describe the sediment-
water mixture. The third equation is obtained from consideration of the continuity equa-
tion of the sediments. In contrast to rigid boundary flows, only a limited amount of work
has been done in building mathematical models for mobile boundaries. The first attempt
was by Cunge and Perdreau (2) in 1973. Another attempt in the same year was by Chen (3)
from Colorado State University. In the case of mobile boundary flow models, in addition
to specifying the roughness characteristics of the channels, there is also a need to specify
the amount of sediment transported per unit time as input parameter. In both of the above
referenced models, neither the Foughness character nor the sediment transport rate is
adequately expressed.  Cunge and Perdreau used a constant roughness factor in terms of a
Strickler coefficient to express the roughness characteristies, and Meyer, Peter and
Mueller's formula to express the sediment transport rate. Chen (3) used Manning's n to des-
cribe Foughness and used Einstein's and Tofalleti's methods to estimate the sediment trans-
port rate. Data collected in laboratery and field indicate that the roughness character
of the flow changes, depending on the flow regimes and the type of bed forms present at
the bottom of the mobile boundary channels, and hence cannot be adequately represented by
a constant value for Strickler or Manning's roughness parameters. A recent paper by white
et al. (9) reviewed the various existing theories for the sediment transport rate in light
of a large number of laboratory and field data and concluded that. the methods used by the
sbove two models exhibit larger variation than some of the other existing methods. For
these reasons, the existing mathematical models cannot predict the behaviour of the mobile
boundary flows over a wide range of flow conditions and hence there is a need for further
work in improving their predictive capabilities. In this report, a model is described
which incorporates the most recent developments in the field of sediment transport in the
areas of the roughness character of the mobile boundary flows and the prediction of the
sediment transport rates. The derivation of the governing equations and the description of
the numerical scheme are elaborated in this report to elucidate fully the underlying assump-

tions and consequently the extent of the applicability of the mathematical model.

2. DERIVATION OF THE GOVERNING EQUATIONS

The governing equations are derived for non-prismatic rivers with irregular cross
sections. The velocity field of the river flow under consideration is assumed to be one
dimensional and the pressure field varies in the vertical direction according to the
hydrostatic pressure distribution. This implies that the river reach to be modelled should

be reasonably straight and the vertical accelerations negligible.




The symbols and the coordinate system used in the derivation are indicated in Figure 1,

which illustrates schematically the river cross section and the longitudinal profile.

A=A
\ Cross sectional area
B
7
:: Y

LA \0.35 (Sediment size) - ' W z
z
| _

o) ' X

Figure 1. Schematic representation of the longitudinal profile and a flow cross section in
a river.

Sediment Continuity Equation

Qs’ in general, is a function of both x and t. Let qg be the total volume of sediment
entering the river because of the overland flow, etc. and it is expressed in volume per
unit length and unit time. Considering the control volume (cv) separately, as shown in
Figure 2, and considering a time interval of At, the mass of sediment entering the control

volume is given by (p_Q At + p_q AxAt). p_ is the density of the sediment particles, and
» s°s s's s

F Let Qs be the total volume of sediment transported by the river flow per unit time.
!
|
|

ds A X

Sediment in suspension

'.; ‘Muil J average volumetric

X concentration : Cgay
: Qs— -y . }—aQs+2Qs
| .Y $Tax M
AZ 5 . . .
Pt 7. o e Sediment in deposited
e bed layer porosity
z 8x= of bed layer: p

Figure 2. Control volume to derive the sediment
continuity equation.




the mass of sediment leaving the control volume is given by pS[Q.s + (aQS/Bx)Ax]At. The

difference between the two, which is

(pQ At + p.a AxAt) - p [Q * (30,/3x)Ax]At = p_q AxAt = p_(3Q/3x)AxAt (1)

should be equal to the change in the mass of sediment stored within the control volume

during the time interval At.

The change in the sediment storage within the control volume is effected in two ways:
firstly, by the deposition or the scour on the bed of the river, which alters the elevation
of the river bed by an amount Az, and secondly, by the change in the average concentration
CaV of the sediment in suspension. Assuming that the deposition or scour occurs uniformly
over the whole bed area, the mass of sediment in a bed layer of thickness Az is given by
pS(PAz Ax)p, where P is the wetted perimeter at the section where the control voiume is
located and p is the volume of sediment per unit volume of the bed layer. If Az is expressed

as
Az = (3z/3t)At, (2)
the change in the mass of sediment storage due to deposition or scour is given by
ppsP(Bz/Bt)AtAx; ' (3)

The change in the mass of sediment due to the chahge in the average concentration of sedi=

ment in suspension can be expressed as

ps(a/at) (AAX caV)At (%)

where A is the area of the flow cross section at the section where the control volume is
located and Cav is the average volumetric concentration of the sediment at that cross

section.

The total change in the mass of sediment storage within the control volume during At is

given by

0, [P(az/at)p ¥ (B/Bt)(ACavﬂ AxAt. (5)‘

By equating (4) and (5) as

Pg [qs - (BQs/axﬂ AxAt = ps[f(az/at)p + (a/at)(AcaV{}AxAt (6)




At

the equation for the sediment continuity is obtained:

(3Q,/3x) * P(3z/3t)p + (3/8t) (AC_ ) = q_. (7)

Continuity Equation for the Sediment-laden Flow

In this case, both the mass of water and the mass of sediment are considered together.

During an increment of time At, the mass of inflow to the control volume is
(p,Q, * PO * 0,8,Ax + p g Ax)At (8)
where O is the density of water, Qw is the water flow rate and q, is the lateral inflow of

water from tributaries, etc. The value q, is expressed in volume per unit length of the

river per unit time. The mass flow out of the control volume is
{pw[Qw + (30,/3%) bx] + o [0, + (3,/3%) Ax]} At (9)
and hence the difference becomes
[pwquxAt * p 9 XAt - pw(aQw/Bx)AxAt - pS(SQs/Bx)AxAt]. (10)

According to the principle of conservation of mass, the difference expressed by Equation 10
should be equal to the change of storage of mass of sediment-water mixture within the

control volume dUrihg the interval of time At.

The change of storage of water within the control volume during At can be expressed as

(3/3t) (o A Ax)Ot + p (1 - p)PAzAX (11)

where Aw is the flow cross-sectional area occupied by the fluid only, while the change of
storage of sediment is given by expression 5. Therefore, the change in the storage of the

sediment-water mixture is given by

0 <8Aw) (32) (3;:) (a ) (12)
w\z/AxAt + pw(1 -p) P 57/ Axbt + o pPlgr | AXAt + p |\ (Acav)AxAt.

Equating (10) and (12), we get




Substituting Equation 7 into Equation 13, we can simplify the latter as

(aQw/ax) + (sAw/at) + (1 - p) P(3z/3t) = q,- (14)

If Q is the total discharge, A is the total cross-sectional area and qg is the total lateral

inflow, then Equation 14 can be expressed in terms of Q, A and - If

0=Q,*
A= Aw + ACav (15)
97 9 * 9

and if we substitute into Equation 14, we get

30 BA 9z aQ 3(AC_) oz
AR a1 T B VL i 1Y ISR (16)
[Bx 3t (81:)] [ax f TR (at)P] %

Again, using Equation 7 in Equation 16, the continuity equation for the sediment-laden flow

can be expressed as

(3Q/3x) + (dA/3t) + P(3z/3t) = Qg - (17)

Momentum Equation for the Sediment=laden Flow

Using the principle of conservation of momentum, which states: ''the net rate of
momentum flux into the control volume plus the sum of the forces acting on the control
volume is equal to the rate of accumulation of momentum within the control volume,' the

momentum equation can be derived as follows.

(18)

Momentum entering the control volume =(pQ2/A) + quUqAx

where ag is the lateral inflow, Uq is the velocity of the lateral inflow in the direction

of the main flow, aihd p is the density of the sediment-water mixture.

. 2 2
Momentum leaving the control volume = Eg_ + 2_ il Ax + pq ngx (19)
A 3x \ A 2\A

The net rate of momentum flux entering the control volume =

--a—-< ), U - L) (20)
ax pA OX +9q2 q A X




The forces acting on the control volume are gravity, pressure and frictional resistance,

which will be considered one by one.

1.

Gravity: The force due to gravity is the weight of the fluid within the control volume.
| f Sx is the slope of the bottom of the control volume with the horizontal, then the

component of this weight along the flow direction can be expressed as

pg A Ax S,. (21)

It is assumed here that within the segment Ax the flow is uniform.

. Pressure force: The pressure force along the direction of the flow can be divided into

two parts: (1) the difference in the pressure forces acting on the two ends of the
control volume, and (2) the difference in pressure force in the direction of the flow
on the banks of the control volume due to widening or narrowing along the length of the
non-prismatic channels. Assuming a hydrostatic pressure distribution, the first part
of the net pressure force acting on the end surfaces of the control volume in the

direction of this flow can be evaluated.

The pressure force acting on the left side of the control volume is

y
Fy =_£pg(y - ME(n) dn (22)

where £(n) is the width of the channel at a height of n from the bottom of the channel
(see Fig. 1).

The pressure force acting on the right side of the control volume is

Fp + (an/ax)Ax. (23)

Therefore, the net pressure force acting on the sides of the control volume is

Y
—(i)Ax = _(3__) f pg(y = n)E(n) dn Ax. (2‘6)
9x Ax (e}

Changing the order of differentiation and integration using the Leibnitz's rule, we can

express the above equation as

oF Y,
-(5—)(—9-)Ax = [—pg(%ﬁ)/* - P9 _!; (y - n)(aggz)) dn] Ax. (25)




The pressure force acting on the banks of the channel as a result of its widening or
narrowing can be calculated as follows. Consider a volume element within the control
volume at a height of n from the bottom with a thickness of dn. The pressure force per

unit length acting at any point within the volume is
pg{y - n)dn. (26)

This normal force cancels itself out at all points within the volume except on those
located on the banks of the channel. The unbalanced pressure force along the flow

direction for a change in width of Af is given by
pgly - n)dn AZ(n). (27)

Expressing AL as (3E/3x)Ax, and integrating over the whole depth of the flow, we can
calculate the pressure force acting on the banks in the direcfion of the flow due to

widening or narrowing of the channel as

Y,
pg [y -n) <M>dn Ax. , (28)

0 X

Combining these two parts of pressure force, we obtain the net pressure force acting on

the control volume as

-[pg A (ay/axmx] (29)

. Frictional resistance: The frictional force which resists the motion of the fluid in the

channel acts along the solid boundaries of the channel and can be expressed as

Fe = '(To P Ax) (30)

where s is the shear stress at its boundary and P is the wetted perimeter. In the
case of a steady flow, the boundary shear stress T is expressed in terms of the

hydraulic radius R and the free surface slope Sf as
= 1
T, = PGRS. (31)

If we assume that the boundary shear stress in an unsteady flow can also be expressed

using Equation 31, the frictional force of the control volume becomes

Fe = =(og ASg Ax). (32)




The rate of accumulation of momentum within the control volume can be expressed as

(3/3t) (pQ) Ax (33)

and therefore the momentum equation becomes
8Q (2 (92 )= gA(s, -5, + -9 -
5'E+(8x)<A> ¥ 9A<ax RO s) ra g mw) - (34).

assuming that the bulk density is a constant with respect to time and space.

When the derivative of the flow cross-sectional area A with respect to t in Equation
17 and with respect to x in Equation 34 is evaluated, the Leibnitz rule for the differentia-
tion of the integrals should be used. With refefence to Figure 1, the flow cross-sectional
area A is given by

Y,

A= fg(x;n) dn. !

ik (35)
, y

Therefore 2A/3t = 3/5t j.E (x;n) dn (36)
[o]
Y.

and 3A/9x = a/axfg (x;n) dn. (37)
[0}

Using the Leibnitz rule, we can express Equations 36 and 37 as

y
% = {(%)E(x;n)dn + E(x;y)(%%) = B(%Z—) (38)
y
and %% = £ (%>€(x;n)dn * €(‘x;y)(%> = AZ( + B(%E) ‘ (39)

where B is the top width of the channel, while Ai stands for the term under the integral
sign in Equation 39, which is the rate of change of area with respect to x with depth y

held constant. With these expressions for 3A/3t and 3A/3x, the governing equations become

el 5e, (30) - o 52)
—— Pl — —— —_— = =
X * ot P+ Bcav ot * A T3t R 0

.a_Q + B(—al) + P(a—z)- q =0
3x 5t ae) X




e v 0 R AL LR O YR Eo
a\ot/ st \a2/\ax ax x F e 4 \ay X (40)
The above set of equations governs the sediment-laden flows in reaches of natural
streams that are reasonably straight. These equations involve five unknowns, namely the
flow rate Q, the flow cross-sectional area A, the bottom elevation z, the sediment trans-
port rate Qs and the frictional slope Sf. (The lateral inflows, qz and 9> the lateral

inflow velocity Uq and the porosity p are expected to be known, and Ca and Qs are related.)

Therefore, in addition to these governing equations, two more independZnt relations are
required to achieve closure of the system of equations. These additional relations are
provided by the sediment transport formulae, which give Qs in terms of flow and sediment
characteristics, and the equations for the friction facter in natural streams, which express
the energy slope Sf in terms of the flow and of the bottom topography of the channels
fesulting from the movement of the sediments. There are a number of sediment transport

and friction factor formulae in the literature, but each of them is limited and there is

as yet no theory that is capable of predicting the above parameters for the whole of the
flow regimes. For the present work, the sediment transport formula of Ackers and White (4)
and the friction factor relations of Kishi (5) are adopted, which can be considered the
best among the currently available theories. The details of those relationships will be
taken up later after the description of the numerical scheme to solve the system of govern-
ing equations. The construction of the present mathematical model is such that as new

and more complete theories on sediment transport and friction factors become available,

they can be easily incorporated into the model.

3. NUMERICAL SCHEME TO SOLVE THE SYSTEM OF GOVERNING EQUATIONS

The governing equations of the sediment-laden flow can be uncoupied if the term
P(3z/5t) in the flow continuity equation is considered negligible in comparison to the term
B(9y/3t). Indeed, since the top width B and the wetted pefimeter P are nearly equal for
wide channels and since the water level changes are more rapid than the bed level changes,
it is possible to drop the term P(92/3t) from the flow continuity equation without losing
accuracy. By doing so, it is now possible to solve the flow continuity equation and the
momentum equation simultaneously for one time-step independent of the sediment continuity
equation and then to use the sediment continuity equation to correct the solution, Such
a technique, which simplifies the solution procedure considerably, is adopted for the

present model.

Solution of Continuity and Momentum Equations

An implicit finite difference scheme first developed by Preissmann (6) in 1960 is

used to solve the flow continuity and the momentum equations simultaneously. According

10




to this scheme, a variable, say f, and its derivatives are discretized as follows:

o) = 9 [h j*1 1-6 | .j J
Fise) =3 [%i+1 MR ] ¥ _5—'[%i+1 MR

[ 41 i J _ gl
of _ 6 fi+1 fi + (1-8) fi+1 fi
9x R Ax Ax
M Z AL
Ei =1 i+1 i+1 - i i (41)
at 2 L At At

where i and j, Ax and At are as shown in Figure 3 and 6 is a weighting coefficient that can
take values between 0 and 1. When 6 = 0, the scheme becomes fully explicit and if 6 = 1 it
is fully implicit. Cunge (7) has analyzed this scheme fully for numerical stability and
accuracy and has shown that the scheme is unconditionally stable for values of 6 between

1/2 and 1 and the accuracy is first order with respect to Ax for arbitrary values of 6 and
second order with respect to Ax when 6 = 0.5. Cunge also indicated that for 6 = 0.5,
Y'parasitic' oscillations are found in the solution that resemble the phenomenon of numerical
instability for small values of the friction factor, and he suggested a practical range for
8 of 0.6 to 1.0.

t %

(j+1)at

jAt b=

AXx

x¥

iAX (i+1)Ax
Figure 3. Discretization scheme (finite difference scheme)
of Preissmann.

)th j+1

If we express the value of the variable, say f, at (j+1 time interval, 3 ) as

a sum of the value of f at the jth interval, fJ, and a difference Af between these two, i.e.

¥ L 2l
(A7 = £+ ar, (42)

1




the relationships in Equation 41 can be rewritten as

-
of _ 1 - -
-,c)—;——A-)-(-[G(AfiH af) o+ (f, fi)J > (43)
of o 1 /
3t e @i 7 AR

The superscript for f is dropped with the understanding that f without superscript
corresponds to the value of f at the jth time step. When these approximations are substi-

tuted for the terms of the flow continuity equation, it becomes
! v 1 L
x [G(AQEH * Q) Qg Qi)] +32 [G(ABM P OB) (Bt Bi)] 7Bt [Aym * Ayi]

Y-

1 .
E(Aqi+] * Aq;) * (ap,, * qiﬂ % = 0. (44)

Rearranging the equation and neglecting second-order terms like (Af/F)%, Af Ag, we can write

Equation 44 as

38y g * BBy T el T di0Q; ey (5)
where
_[Bi+1 Ba] 28 [Q|+1 - Qi]d_B_ b o |Sie difae
l 24t ax 1 * Bi dy|+1 B|+1 * Bi dy c+i
26
bi = Bx
i 20t Ax Bi+1 + BI dy ; Bi+1 + Bi dy ; (46)
20
4 = &x
_ .2 3
e = - & (g = Q) + (g +ap) * 8(8qp + Agp)

lsubscript £ of q will be dropped henceforth and g without subseript will stand for the
lateral inflow of water and sediment mixture.

12




The derivative (dB/dy) appearing in Equation 46 can be evaluated if the steepness of the

banks of the stream is known.

In a similar fashion, the approximations expressed by Equation 43 can be substitited
in the momentum equation and after lengthy algebraic manipuiations we can afrive at an

equation similar to Equation 45

- - - - -

3 BYjaq T B Qg T ep byy tdp A0 ey (47)
where 2 2
IS 3 T UV e 1 L P )
P ) Yier 7Yy A2 i+1 i
i+1 i+1
af Y -
2BV g Tyt ) (A An)]
B 2 2 2
1 [dB Qs iv1 Gap o+ 8O
2 vl e A R e ;
_Fy i+1\ i+ Ai+1 A:
2 2 2
+ %_ dpP 2Qi+; 2 |+l Qi+l i+1\ . 9 Q|+1 i+1 Ai
3
dy i+1 Ci+lA|+l Ci+1 A|+1 A|+1 i+
(2q. -Q.) Q Q B
o = e S LT L Ty
2
20t Ax P41 Ai A|+1
O i G [0 Q4 A
2 2 2 i+1
C|+1\\ A|+1 A|+1
B.Qi B%g?
- _ 8 i _ o i - g
¢ = Ax A? (Q|+1 Qi) Af (y|+1 yl) 2 [Fl(y|+l
B. Q2 B.Q?
+15i+1 i d
Tyt )t (A +Ai)] i %[ YT '_Bl
Ao A vl

(Q_) b }-9{55
A2 i+1 i 2 | dy

2 P.Q%B, 2g.,
() 2
. \c2az c2A? / A ) X




. 1 Q. Q.
ei = - (Q- Q-) |_+]_ + _I— g (A_ A.)(y- +
Ax { i+1 - i —Ai+1 Ai- 2 i1+ 07+
7 1718.,,Q° B.Q? ’
Zivr = Vi - I - —-[ '+; i1 '2' ] (Yigq - Yi)} -
4 2L A At

Py O, P.0% 02 Q?
+ + ‘1 :
l{( ; 1 A; 1, ; 1.2)_( ;+1) AZ’( _( ;)AZ/( } (48)
2 (\ck,, AL, 3 AL \ATL, c+1 \AZ/ 7li

in the derivation of Equation 48, the frictional slope S¢ appearing in the momentum

equation has been expressed in terms of the flow parameters and the friction coefficient

C as follows:
- 2 /52 2
ahS. = (Q2/A?) (P/c2). (49)

The friction coefficient C stands for the ratio between the average velocity v(=Q/A) and
the shear velocity v, (= YgRs ¢ ) and can be related to the Darcy-Weisbach friction facter f

by the following expression

f = 8/c2. (50)

Furthermore, the velocity U of the lateral inflow is assumed to be of the same order
of magnitude as v and hence the term g, [Uq - (Q/A)] appearing in the momentum equation is

also dropped.

Equations 45 and 47 give rise to a system of two (N - 1) linear equations involving
2N unknowns, namely AQ]’ AQZ, AQ3 Cen AQN and Ay1; Ayz, Ay3 e AyN, where N is the number
of grid points along the length of the river. With two known boundary conditions (one at
the upstream boundary and the othér at the downstream boundary for the subcritical flows)
the number of equations matches the number of unknowns and the system of -equations can be
solved using any one of the available standard methods. In this work, the ''Double Sweep
Method'' (8) is adopted, which is the fastest of the available methods. The number of
elementary operations (afd consequently the computer time required) necessary to solve the
system of equations by this method is proportional only to the number of points N, whereas
the number of operations required by the existing standard methods of matrix inVersioﬁ is
proportional to N3. A detailed description of the operations involved in the Double Sweep

method is given in the following subsection.




Double Sweep Method

If we assume that for any point i (for a particular time step j) the following linear

relation holds between Ayi and AQi’ i.e.

bQ; = E\Ay, *+ F; (51)

then it is possible to prove that an analogous linear relationship also exists for the next

point i + 1. Indeed, substituting Equation 51 into Equation 45 we get

30V aq * PRy = cilyy Hdp (Bilyy R ey (52)

from which Ayi can be evaluated as

By; = (Liby,q + MAQ, ) - K. (53)
where Li = Ai/(Ci + diEi) ]

Moo= b /(C + d.E.) > (54)
and Kp = (e + &;F)/(C + dy + Ep)

Similarly, substituting Equation 51 into Equation 47, we get

3T MY P BT A = (T TR Ay (4T R e ) (55)

When the value of Ayi as given by Equation 53 is substituted into Equation 55 and the terms

rearranged, the latter becomes

8yy = iy i * Py (56)
where coolileT diTE) el ¢ diEy)
TS Ml ——
by "e; + d;E;) - by(e;” * dlE;)
P , _r (57)
and e (e " + d;7Fy) o; + diE) = (e + diF)) (c;” + d;7E,)
i+ b.”(c, + d.E.) - b,(c.” + d’E.)
plep * diE ile & _

Therefore, by expressing the upstream boundary condition in the form of Equation 51 the

values of E1 and F] can be evaluated. |If E1 and F1 are known, the values of E2 and F2 can
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be found using Equation 57. By repeating this procedure, the values of E3, Ek’ ES...

N
condition te evaluate AyN and, EN and FN are known, the value of AQN at the downstream

Ey and F3, Fiy» F5 ... F, can be found (Forward Sweep). If we use the downstream boundary

boundary can be determined. Since AQN and AyN are known the value of AyN_1 can be evaluated
using Equation 53. Since EN_,1 and Fn-l are known, it is possible now to determine AQN_1
By the repeated application of Equation 53 the unknowns AyN_Z, AyN_3... Ayl, AQN-Z’

AQN_3... AQ] can be computed (Backward Sweep).

Since the initial condition provides the values of Yi» Ypuee Yy and Ql’ QZ’ Q3...
QN’ the water depth and the flow rates at all the grid points along the river at the end
of the time step can be obtained by simply adding the above solution to the initial condi-

tion. A flow chart description of the Double Sweep method is given in Figure k.

The application of the Double Sweep method, therefore, requires the evaluation of the
coefficients E1 and F1 from the upstream boundary condition and AyN from the downstream
boundary condition. The various possible boundary conditions and the evaluation of E], F1

and AyN are considered in the next two subsections.

Evaluation of E1 and F] from Upstream Boundary Condition

There are three possible ways in which the boundary conditions can be prescribed:

(1) the flow depth y, is known for all time:
i.e. Yy = f1 (t); (58)

(2) the flow rate Q, is known for all time:

ie. Q= f, (t); (59)
and (3) the flow rate Q,1 is expressed as a known function of the flow depth:
i.e. Q.1 = f3 (YI)' (60)

Each of the above conditions is considered separately for the evaluation of E1 and F1.

Case 1 - When the boundary condition is expressed as in Equation 58, it is possible

to compute Ay1 as

Ayy = f (e + at) - F (t). (61)_

i
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Compute E, & F,
from upstream
boundary condition

[

Compute coefficients L, M;,K;
and Ej;q and Fj4q and store

(use equations 54 and 57)

i=i+1

Compute AYN from
downstream boundary
condition.

I |
Compute AQn=ENA N +FN

YN 1. YNT +4 YN
Qy +1= QN+ AQN

/

Compute AYi= LiaYj, =M AQj 4+ Kij;

AQj=EjaYi+Fj;
Qi 1*1 ang ¥; i41:

il (o) =)

Figure 4. Flow chart for the Double Sweep method.
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The Equation 51 corresponding to the upstream boundary can be written as

‘s

AQ] = E1 Ay] +F (62)

1

which can be rearranged as:

by, = (AQ1/E1) - (F1/E1). (63)

Since Ay] and AQ1 are, in general, independent parameters, the above equation can be consid-
ered to be valid only for large values of E1 compared to AQ1 so that the first term on the
right-hand side of Equation 63 approaches zero. By equating E] to a very large value, say

o, we can determine the value of F1 using Equations 61 and 63 as follows.

Fo= = aff,(t +at) - f,(1)]. (64)

1

In practice the value of o should be of the order of 10* to 10°.

Case 2 — When the boundary condftion is given by Equation 59, the value of AQ1 can
be evaluated as
AQ, = fo(t + At) - fo(t). (65)
Since AQ1 and Ayl are independent quantities, the relation connecting them (i.e. Equation 62)

could be valid only when E1 = 0. Therefore, F. becomes

1

Foo=0Q, = fz(t + At) - fz(t). (66)

Case 3 — When the boundafy condition is given by Equation 60, which is termed as the
rating curve and is unique only'under special circumstances, AQ] can be

expressed as

AQ, = Q -Q (67)
1T Meane
By evaluating Q1 and Qq using the rating curve f3, we can show that
t+At t
af, (y,)
171 A 68
pe, = 3 Y, (68)
o e

Comparing Equations 62 and 68, we can see that

. 3f3(y1)
E, = ——
ay1




Evaluation of AyN from the Downstream Boundary Condition

Case 1 — When the downstream boundary condition is expressed as YN = g.(t), the value

1
of AyN can be computed as

byy = g,(t + 4t) - g (1), (69)

Case 2 =~ When the downstream boundary condition is given as QN = gz(t), AQN can be

calculated as AQy = g, (t + At) - gz(t), and since at the downstream boundary
AQN and AyN can be related by Equation 51 as

AQN = ENAYN + FN’ (70)
the value of AyN can be determined as

(g, (£+88) = g, ()]-F,

Case 3 — When the downstream boundary condition is expressed in the form of a rating

curve, i.e. Q= 93(yN), we have

2 0] -
Qy oy
t

Using Equation 70, we can evaluate AyN from Equation 72 as

F

by =N
Y oag vy L o (73)
Jy N N

Solution of Sediment Continuity Equation

Evaluating E1 and F] from the upstream boundary condition and AyN from the downstream
boundary condition the Double Sweep method described earlier can be used to solve the flow
continuity and momentum equations and obtain the values of the flow depths and the flow
rates at all the sections along the length of the river at the end of the first time step
(i.e. at t = ty * At; to corresponding to the time when the initial conditions are given).
If the flow conditions at ty and at tO + At are known, the sediment continuity equation can

be solved, in order to correct the flow condition at to + At as follows.
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The sediment centinuity equation can be rearranged as

0Q oy aC_ \
9z _ 1 a ‘
=5 {[V * Bcav<i;?>]+ [“(afw)' qs]}. (74)

Using the approximations expressed by Equation 41, Equation 74 can be discretized as

s : ] . |- AN
= - ofAt} {8 [pi* J* 10V, ] J S... = s,
e T o B P T B B wy A R o\t ]
Ax
Q-
(1-8) { i1 il | 8 (gitigdtr i+ I A
Ax 2 i+1 av, * i av, 2

bl Jed 1 j*1 Jj*1 - J J
<B‘+1Cavi+1) ’ Bicava] Jax: [8<Ai+-1 A >+ (1 e)(A'i'ﬂ A
A Y B L R N I - A i1 1-6\ (. J -
<)i+1 Yier T Y3 yi>] [2 <qsi+l ¥ qsi "2 qsi+1 * qsi * bz (75)

From the boundary condition for the bed elevation at the upstream the quantity Az,i can be

evaluated as

1 . H
bz, = z? - z? ; (76)

and hence the guantities appearing on the right-haﬁd side of Equation 75 are completely

specified once the quantities O,s and Cav are known. (The method for the evaluation of

Q and C_, will be taken up in the next subsection.) Since AZ?+1 is khown, the bed eleva-

tions at the time t0 + At can be obtained as:

J*1 _ ] .
Z,i“_,l Zi"“] + Azi+1_ ) (77)

The flow depth at time t = tO + At is corrected using Azi+] as

J¥FL iR

Yier = Viaq D

Zis1?

T+ vt
where y€+:

. i+ .
equation. It is assumed that”the computed flow rate Q{+: at t, + At does not change sig*

nificantly due to the consideration of the sediment continuity equation during the inter-

is the ¢corrected flow depth after consideration of the sediment continuity

val At. Howevéer, the change in the flow depth will result in changes in the flow cross-

. j*+1 . J* i+ i i1
sectional areas Ai+1’ wetted perimeters Pi+1’ e the widths Bi+1

i+
the friction coefficients Cg+}. Using these new values for the above parameters, the

hydraulic radii R and
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flow continuity and the momentum equations are solved again for another time step and the
procedure outlined above fé repeated to correct the solution. This process is continued
until the required number of time steps is reached. A flow chart describing the above com-
putational steps is shown in Figufe 5. The subroutine ''Geom'" calculates the geometric
parameters A, P, R, B, Al (dB/dy), dP/dy. The subroutine "Frict' calculates the friction
coefficient C and the subroutine ''Sedi'' calculates the sediment transport rate QS and the

average concentration Cav

Sediment Transport Rate Q

S

The sediment transport rate Qs has been predicted using a new method proposed by
Ackers and White (4). This method has been found to be Superior to the most commenly used
methods such as those of Einstein, Meyer-Peter and Muller, Bagnold, Toffeleti, Rottner,
Engelund and Hansen, Biship, etc. (see Ref. 9). The computations involved in this method

are listed below.

1. Since we know the grain size distribution and hence D35 (grain size for which 35%
(by weight) of the sediments is finer), the submerged specific weight y;, the specific
weight v and the kinematic viscesity v of the fluid, a dimensionless number Dgr is

calculated as
= 2y1/3
Dgr = D3g (gy /yo®) /3. (78)
2. Depending on the value of Dgr’ the sediment transport is considered in two different
modes. When Dgr is greater than 60, the sediment is considered to move as a bed load
and when Dgr is in the range between 1 and 60, it is considered to move both as bed

load and suspended load. The case when Dgr is less than 1 occurs only for cohesive

sediments and hence is not considered.

3. . The general transport function proposed by Ackers and White (4) is
= m
Ggr = oflFg,/A) - 1 , (79)
Xy v:
where G._ = == (80)
ar [(YS/Y) 1 <.V
VEY]/2 1-n
and F__ = - v (81)
gr /ysgn 2:46 1n (IOy/D35)
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SET: Py=P2:
BT1=8T2
AR1= AR2
CAV1=CAV2

QST1=QST2

iS22

CALL SUBROUTINE 'SEDI'

10 CALCULATE QST _AND CA!

YO CALCULATE QST. AND CAV

ALL SUBROUTINE 'SED!' J

SET: P2=p SEYT: P2=P
‘81228 BT2=8
ARZ:~A ARZ=A
CAVZ2:= CAV . CAV2 =CAV
QST2'=0ST : Q8T2=05T

¢ ]
[]

SPECIFY LATERAL SEDIMENT
INFLOW iNFORMATION

COMPUTE THE BED LEVEL
CHANGES USING Pt P2, BTY,
BT.2, AR1, AR2, CAVY, CAV2,
QST18 QST2 AND ADYUST THE
FLOW DEPTH

IAGAIN=1

1AGAIN=17 -

'READ:

1. INITIAL CONDITIONS
2. ‘UPSTREAM .BOUNDARY CONOITIONS

3. DOWNSTREAM  BOUNDARY CONDITIONS
4. GEOMETRY OF FLOW CROSS ‘SECTIONS
5. .SEDIMENT CHARACTERISTICS!

6. CONTROL CONSTANTS

1AGAIN=0

ISED#17

®

CALL SUBROUTINE 'FRICT’
T0 CALCULATE. THE FRICTION
COEFFICIENT FOR MOBILE
FLOW BOUNDARY

YES STOP

CALL SUBROUTINE 'GEOM"
WHICH COMPUTES ALL THE
GEOMETRIC _CHARACTERISTICS

ISED21?

-SPECIFY FRICTION
COEFFICIENT FOR RIGID
FLOW BOUNDARY

"|AVERAGE CONCENTRATION CAV

CALL SUBROUTINE 'SEDH

'SEY

TO CALCULATE THE SEDIMENT
TRANSPORT RATE QST AND

P1="P (WETTED PERIMETER)}
BT1= B (TOP WIDTH)
AR1= A (FLOW AREA)

.CAV1= CAV (AV. CONC.)

QSY1="QST {SED. TR. RATE)

|

-

SPECIFY LATERAL INFLOW ~|

CONDITIONS

COMPUTE DOUBLE SWEEP
COEFFICIENTS
IN THE INTERIOR

l

COMPUTE DOUBLE. SWEEP
COEFFICIENTS
AT _THE UPSTREAM BOUNDARY

SPECIFY 'STORAGE BASIN'
INFORMATION

l

COMPUTE DOUBLE SWEEP
COEFFICIENTS

AT THE DOWNSTREAM BOUNDARY/[:

COMPUTE NEW VALUES OF
FLOW RATE AND FLOW DEPTH
USING DOUBLE SWEEP METHOD

:

Figure 5.

Flow chart of the mathematical model.




and o, A, m are constants. The symbol X in Equation 80 stands for the concentration
of sediment by weight, i.e. the mass flux of sediment divided by the mass flow rate.
The exponent n appearing in Equations 80 and 81 and the constants a, A? m take the

following values, depending on the value of Dgr

When Dgr is greater than 60

= 0.00

= 0.17

1.50 (82)
= 0.025

e 3 » 3
i

and

When Dgp is in the range between 1 and 60

n=1,00 - 0.24 1In (Dgr)

A= (O.23/Dgr) + 0,14

>
m = (9.66/Dgr) + 1.34 (83)

and o = exp {[2.86 n(g) - ln(Dgr)]z /(2.303 - 8.130)}_

Therefore, once Dgr

80 and 81 the value of X can be calculated. When the volume flow rate and the specific

is known, the values of n, A, m and o are known and using Equations 79,

gravity of sediments are known the volume of sediment transported per unit time (Qs) can

be calculated.

Friction Coefficient C

In alluvial streams, the bottom topography changes as the flow changes and the pre-
diction of the friction coefficient in such streams is the most difficult task encountered
so far in the field of hydraulics. Many researchers have attempted to so]ve.this important
problem, but none of them have succeeded in developing a general method that could be applied
over the whole range of flow conditions. Some of the methods available in the literature
were developed by Einstein and Barbarossa (10), Garde and Ranga Raju (11), Engelund (12),
Alam and Kennedy (13), Kikkawa and Fukuoka (5), and Kishi and Kuroki (5). Among the me-
thods listed above the one by Kishi and Kuroki takes into account all the governing charac-
teristic parameters and compares fairly reasonably with the measurements (see Fig. 6).
For the present work the method of Kishi and Kuroki is adopted to predict the friction

coefficient.

Kishi and Kuroki considered the bottom topography in terms of six different geometric

forms. They are dunes I, dunes Il, transition 1, transition 11, flat bed and antidunes.
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Figure 6. Comparison of calculated values of C with experiments (after Kishi and Kuroki,

ref. 5)

The equations for the friction coefficient C for theseé bed configurations are

for

—

for

—
N -
~—

for

—
£ W

for

—

—~
i

for

The criteria

follows:
(1) for
(2) for
(3) for
(4) for
‘and (5) -for

dunes I,
dunes |1,
transition 1,
flat bed,

antidunes,

= g .471/6,71/3

8.9
1.1 x 1082

= 6.92'/6
2-823/10y—l/3

c
C
c 3/2y3
c
C

(84)

for the occurrence of the varjous bed configurations can be stated as

dunes |,
dines 11,
transition 1,
flat bed,

antidunes,

1/2
1/2

Y < 0.022
Y = 0.02Z
0.022'/2
0.022°/2

Y < 0.072

5/9
/5

<Y < 0.,02Z

<Y< 0.07Z2
2/5

(85)

; In the above equations the symbols Z and Y stand for the following dimensionless
|

. gioups consisting of flow and sediment characteristic parameters:

= R/D35
p’Ui/ySD

Il
i
|

I

(86)

'The values of Z and Y afe evaluated at each time step from the computed flow parameters.

Using Equation 84 and the values of Z and Y, we can predict the values of C. These C values

are then used to solve the equation for the next time step.
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Storage Basins

If the river reach to be modelled inciudes a storage basin, the coefficients E, F, L,
M, and K have to be modified at the sections enclosing the control volume, to which the
storage basin is assumed to be connected (see Fig. 7). The nodifications required for

these coefficients are made as follows.

Storage
Basin

Qb

T
{
!
|
L I >
|
|
]

(9]
——————
s — —— — — —
e e e — —
A

i—1

1_-.
-

i+2

Figure 7. Schematic representation of a storage basin present in a river reach.

It is assumed that the water surface elevation at the storage basin (yb) and that at

the river section (yi) are the same, i.e.

n+1 n+tl _ n+i

Y = yi+1 Yy oo (87)
The continuity equation between sections i and i+1 can be written as

n+l _ _.n+l n+1

L =~ G (88)

where Qb is the discharge rate from river into basin or vice versa. Considering the con-

tinuity condition for the storage basin itself, we can write

- an*l
(8,/8¢) Byy = @, (89)

where Ab is the water surface area of the.basin, which is a function of Yp*
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Substituting Equation 89 into Equation 88, we get

6, = (@ - a7,

' Q0L )+ (80, - (A/AD)]. (90)

Equation 87 can be expressed as

n+Ay n

Yi P Yier T By (91)

which can be rearranged as

n
Ayi = Ay.i+1 + (yi+1 - y?). , (92)

Using Equation 92, we can express AQi in Equation 90 as

_ n _.n
8 = By [y * by — Yl 2 Fy

and hence we can write Equation 90 as

n n

80, = [E, = (A /B0 By, q + [E, (0, - v + Fp+ Q] -], ] (93)

Thus the values of Ei+1 and Fi+1 become

Eet Ei - (Ab/At)

n

P S E ey - yD + Fp v ) - o, (94)

The values of the coefficients Li' Mi and Ki can be obtained by looking at Equation 92, which

yields

L. = 1; M, = 0 and K; = N y?. (95)

4, APPLICATION OF THE MODEL. FOR A HYPOTHET!CAL RIVER

To test and debug the computer program performing the various tasks of the model des-
cribed so far, a river reach with the geometric characteristics shown in Figure 8 is chosen,
As can be seen from Figuré 8, the river reach includes both storage basin and a tributary.
The length of the river reach is 2.44 km, It is divided into 20 equal segments each 122 m
long. The initial condition for the flow rate and flow depth is shown in the computer out-

put corresponding to T = 0. A constant inflow of 42 .38 m3/s is taken as the upstream bound-
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ary condition, whereas a constant depth of 2.29 m is assumed to yield the downstream bound-
ary condition. The flow cross sections are approximated as trapeziums and hence the bottom
widths and side angles are used as input parameters to describe the geometric parameters.

The various control constants used in this program are listed below:

INFLOW: o, no lateral inflow from tributaries

n, number of tributaries

I1S: o, no storage basins present in the river reach

N, location of the storage

ISED: o, river bottom is considered to be rigid

, river bottom is composed of sediments

The description of the input data cards, the listing of the computer program and a sample

output with line printer plots are given in the Appendix.

£z / v
) Storage
455 - | __Aas : a5¢
3.05m 3.05m siom 610m
Cross- section at @ Cross-section at” @ Cross-section at @ & @
§ Tributary
Storage basin—ﬂ-‘ HI” —\
£
§ o g
g Bottom widths o e l;
[} . v S
@ @ @ '@—Section number
] .
\ 1220m 305m| 305m 610m
r -

Slope = .0001

Slope=.0002

Datum

Figure 8. Profile and cross sections of the hypothetical river reach.
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A mathematical model describing the flow and sediment transport characteristics in
natural streams has been presented in this report. The governing equations are derived
from first principles in order to understand the simplifying assumptions better and conse-
quently the limitations of the model. The numerical method and the solution techniques are
also elaborated. The methods to predict the sediment transport rates and the friction
coefficients in alluvial streams which are used in the present model are described. Finally,

the application of the model for a hypothetical river reach is indicated.
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APPENDI X

The data cards are read into the program in the following order.
Card 1

N = 21 - number of points of initial data

INFLOW = 1, indicates presence of tributary

IN = 11, location of tributary, must be equal to 1, ..., N

INT = 800, time tributary inflow begins,s

IS = 12, location of storage basin, can be 1, ,.., N

ISED = 1, indicates presence of sediment

Card 2
THETA = .66, weighting coefficient varying .5 < 6<1
DELTAX = 122, distance between sections, m
XLENGH = 2440, total length of channel, m
G = 9.81, gravitational acceleration, m/s
QIN = .06, flow rate of tributary inflow, m®/s
QSED = .0001, flow rate of lateral sediment inflow, m®/s per unit length

SAR = 930.25, water surface area of storage basin, m?

Cards 3 - 5
These cards are the values of depth at time zero at evenly spaced points beginning at

the upstream boundary. Twenty-one values of depth are specified in metres.

Cards 6 - 8
These cards are the values of velocity at time zero at evenly spaced points beginning

at the upstream boundary. Twenty-one values of velocity are specified in metres per second.

Cards 5 - 11
These cards are the values of bottom width at time zero at evenly spaced points begin-

ning at the upstream boundary. Twenty=one values of bottom width are specified in metres.

Cards 12 - 14
These cards are the values of the right slope and left slope of the channel sides at
time zero at evenly spaced points beginning at the upstream boundary. Twenty-one values of

right slope and 21 values of left slope are specified in degrees.
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11.

12,

13.

Garde, R.J. and Ranga Raju, K.G., 1966, Resistance relationships for alluvial channel
flow. J. Hydraul. Div., Proc. Am. Soc. Civ. Eng., Vol. 92, No. Hyh.

Engelund, F., 1966. Hydraulic resistance of alluvial streams. Hydraul. Div., Proc.
Am. Soc. Civ. Eng., Vol. 92, No, Hy2.-

Alam, M.Z. and Kennedy, J.F., 1969. Friction factors for flow in sand bed channels.
Hydraul. Div., Proc. Am. Soc. Civ. Eng., Vol. 95, No. Hyé.
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Cards 15 - 17
These cards are the values of the bed elevation at time zero at evenly spaced points
beginning at the upstream boundary. .Twenty-one values of bed elevation are specified in

metres.

Card 18
GAM = 1000. specific weight (submerged) of sediment, N/m®
GAMS = 1650. specific weight of sediment, N/m?

D35 = ,0003 grain size of average sediment, m
YCR = .04 critical mobility number
ANU = .1 x 10 ® viscosity, m?/s

Card 19

PORS = .8 porosity
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