## Cg anoa InGAND Waters Directorate

 3einatipic series



SCIENTIFIC SERIES NO. 81
GB
707
C335
no. 81
c. 2
(Résumé en français)
INLAND WATERS DIRECTORATE,
CANADA CENTRE FOR INLAND WATERS.
BURLINGTON, ONTARIO, 1977.

Fisheries and Environment Canada

Mathematical Modelling of Sediment-Laden Flows in Natural Streams

B. G. Krishnappan and N. Snider

(C) Minister of Supply and Services Canada 1978

## Contents

Page
ABSTRACT ..... v
RÉSumÉ ..... v
LIST OF SYMBOLS ..... vii

1. INTRODUCTION ..... 1
2. DERIVATION OF THE GOVERNING EQUATIONS ..... 2
Sediment continuity equation ..... 3
Continuity equation for the sediment-laden flow ..... 5
Momentum equation for the sediment-laden flow. ..... 6
3. NUMERICAL SCHEME TO SOLVE THE SYSTEM OF GOVERNING EQUATIONS ..... 10
Solution of continuity and momentum equations ..... 10
Double Sweep method. ..... 15
Evaluation of $E_{1}$ and $F_{1}$ from upstream boundary condition ..... 16
Evaluation of $\Delta y_{N}$ from the downstream boundary condition ..... 19
Solution of sediment continuity equation ..... 19
Sediment transport rate $Q_{s}$ ..... 21
Friction coefficient $C$ ..... 23
Storage Basins ..... 25
4. APPLICATION OF THE MODEL FOR A HYPOTHETICAL RIVER ..... 26
5. SUMMARY ..... 28
ACKNOWLEDGMENTS ..... 28
REFERENCES ..... 28
APPENDIX ..... 30
Illustrations
Figure 1. Schematic representation of the longitudinal profile and a flow cross section in a river. ..... 3
Figure 2. Control volume to derive the sediment continuity equation ..... 3
Figure 3. Discretization scheme (finite difference scheme) of Preissmann ..... 11
Figure 4. Flow chart for the Double Sweep method. ..... 17
Figure 5. Flow chart of the mathematical model. ..... 22
Figure 6. Comparison of calculated values of $C$ with experiments (after Kishi and (Kuroki, ref. 5) ..... 24
Figure 7. Schematic representation of a storage basin present in a river reach ..... 25
Figure 8. Profile and cross sections of the hypothetical river reach ..... 27


#### Abstract

In this report, a mathematical model of a stream carrying sediment has been described. This model solves the continuity equation for the sediment-water mixture and the momentum equation numerically, and corrects the solution at each time step using the continuity equation for the sediment. This model uses an implicit finite difference approximation scheme to discretize the governing equations and a Double Sweep method to solve the resulting system of algebraic equations. The roughness characteristics of the natural streams are predicted using a method proposed recently by two Japanese scientists, Kishi and Kuroki. This method considers the effects of the various bed configurations (sand waves) present in natural streams in an adequate manner and also considers the flow regime and "skin friction" characteristics. The sediment transport rate required for the model is predicted using the method of Ackers and White, which has been found to be superior to most existing methods. The model thus incorporates the most recent advances in the field of sediment transport and should be capable of yielding reliable predictions of the responses of natural streams to changes in flow and sediment inputs, and to changes in geometry due to river crossings, protection works, realignment, etc. The application of the model is indicated using a hypothetical river reach. The flow charts, the description of the input data, the listing of the computer program and the sample model output are also given.


## Résumé

Dans ce rapport, nous decrivons le modèle mathématique d'un cours d'eau transportant des sédiments. Numériquement, ce modèle résoud l'équation de continuité pour le mélange sédiments-eau et léquation de la quantité de mouvement et il rectifie la solution à chaque étape de temps d'après l'équation de continuité pour les sédiments. Ce modèle présente un schéma d'approximation implicite aux différences finies pour discrétiser les équations qui régissent le phénomène et une méthode de double balayage pour résoudre les équations algébriques qui en découlent. On peut prévoir l'irrégularité des cours d'eau naturels par la méthode que viennent de proposer deux savants japonais, Kishi et Kuroki. Cette méthode tient compte des diverses configurations de lits (ondes de sable) suffisamment présentes dans les cours d'eau naturels et du régime de l'ecoulement, des caractéristiques de 'frottement superficiel". On peut prévoir le transport des sédiments nécessaire pour le modẻle par la méthode d'Ackers et de White, qui s'est révélée supérieure à toutes les autres méthodes existantes. Le modèle réunit donc les progrès les plus récents dans le domaine du transport des sédiments et doit fournir des prévisions sares sur les réponses des cours d'eau naturels touchant les changements de geométrie causés par les conduites sous-fluviales, les ouvrages de protection, le redressement. Pour l'application de ce modèle il faut se servir de la plage hypothétique d'une rivière. On donne aussi les organigrammes, les donnees d'entrée, le listage des programes d'ordinateur et le rendement du modèle qui sert de spécimen.

## List of Symbols



Z: relative hydraulic radius $=R / D_{3: 5}$
Y: mobility number $=\rho v_{*}^{2} / \gamma_{s} D_{35}$
$D_{g r}$ : dimensionless grain size $=D_{35} g \gamma_{s} /\left(\gamma \nu^{2}\right)^{1 / 3}$
$\mathrm{F}_{\mathrm{gr}} ; \mathrm{G}_{\mathrm{gr}}$ :dimensionless parameters
$F_{p}$ : pressure force acting on the surfaces of the control volume
$F_{f}$ : frictional force acting along the wetted perimeter
$\tau_{0}$ : shear stress at the bed

# Mathematical Modelling of Sediment-Laden Flows in Natural Streams 

B.G. Krishnappan and N. Snider

1. INTRODUCTION

Flows in natural streams invariably carry sediments either in the vicinity of the bed or over their entire cross sections. Because of this, natural streambeds are always covered with sand waves (ripples, dunes). These sand waves are not stationary, but move along with the flow, thereby introducing further unsteadiness in the basically unsteady character that is a consequence of the time-dependent discharges of the natural streams. Predicting the interaction of the sediment movements with the water flow in natural streams is a necessity in the field of water resources management, where one is often confronted with questions about the environmental effects of changes in the flow hydrograph or sediment input.

The normal procedure to solve such problems is to build physical models in the laboratory; but with the recent advent of high-speed digital computers, there is great interest and incentive to replace the physical model with a mathematical one. Mathematical models have certain advantages over physical models. For example, physical models, because of the large geographical area involved are usually distorted (i.e, the vertical scale and horizontal scale are different) and are calibrated to study selected aspects of the flow. It is difficult to model more than one phenomenon, and flow processes such as dispersion of mass cannot be studied at all in distorted physical models. Such restrictions do not apply to the mathematical models and in general they can be used to study all aspects of the flow processes.

Mathematical models of physical processes are usually the numerical solutions of the governing differential equations. The validity of the mathematical model, therefore, depends on the accuracy of the numerical methods, the adequacy of the differential equations to describe the natural processes and the accuracy of the various input parameters.

In the case of free surface flows whose boundaries are rigid, the flow behaviour can be adequately described by "the de Saint-Venant partial differential equations of unsteady flow," which were developed by Barre de Saint-Venant as early as 1871. These equations are derived by considering the conservation principle for mass and for the momentum of the flows. As the derived partial differential equations are the hyperbolic type, they are usually solved by using the method of characteristics and a variety of finite difference and finite element methods. A summary of the various mathematical models developed for
this case can be found in Ref. 1. One major problem, which is also common to physical models, is the selection of the parameter to describe the roughness characteristics of the flow boundaries.

For mobile boundary channels, three equations are needed to describe the sedimentwater mixture. The third equation is obtained from consideration of the continuity equation of the sediments. In contrast to rigid boundary flows, only a limited amount of work has been done in building mathematical models for mobile boundaries. The first attempt was by Cünge and Perdreau (2) in 1973. Another attempt in the same year was by Chen (3) from Colorado State University. In the case of mobile boundary flow models, in addition to specifying the roughness characteristics of the channels, there is also a need to specify the amount of sediment transported per unit time as input parameter. In both of the above referenced models, neither the roughness character nor the sediment transport rate is adequately expressed. Cunge and Perdreau used a constant roughness factor in terms of a Strickler coefficient to express the roughness characteristics, and Meyer, Peter and Mueller's formula to express the sediment transport rate. Chen (3) used Manning's $n$ to describe roughness and used Einstein's and Tofalleti's methods to estimate the sediment transport rate. Data collected in laboratory and field indicate that the roughness character of the flow changes, depending on the flow regimes and the type of bed forms present at the bottom of the mobile boundary channels, and hence cannot be adequately represented by a constant value for Strickler or Manning's roughness parameters. A recent paper by White et al. (9) reviewed the various existing theories for the sediment transport rate in light of a large number of laboratory and field data and concluded that the methods used by the above two models exhibit larger variation than some of the other existing methods. For these reasons, the existing mathematical models cannot predict the behaviour of the mobile boundary flows over a wide range of flow conditions and hence there is a need for further work in improving their predictive capabilities. In this report, a model is described which incorporates the most recent developments in the field of sediment transport in the areas of the roughness character of the mobile boundary flows and the prediction of the sediment transport rates. The derivation of the governing equations and the description of the numerical scheme are elaborated in this report to elucidate fully the underlying assumptions and consequently the extent of the applicability of the mathematical model.

## 2. DERIVATION OF THE GOVERNING EQUATIONS

The governing equations are derived for non-prismatic rivers with irregular cross sections. The velocity field of the river flow under consideration is assumed to be one dimensional and the pressure field varies in the vertical direction according to the hydrostatic pressure distribution. This implies that the river reach to be modelled should be reasonably straight and the vertical accelerations negligible.

The symbols and the coordinate system used in the derivation are indicated in Figure 1 , which illustrates schematically the river cross section and the longitudinal profile.


Figure 1. Schematic representation of the longitudinal profile and a flow cross section in a river.

## Sediment Continuity Equation

Let $Q_{s}$ be the total volume of sediment transported by the river flow per unit time. $Q_{s}$, in general, is a function of both $x$ and $t$. Let $q_{s}$ be the total volume of sediment entering the river because of the overland flow, etc. and it is expressed in volume per unit length and unit time. Considering the control volume (cv) separately, as shown in Figure 2, and considering a time interval of $\Delta t$, the mass of sediment entering the control volume is given by $\left(\rho_{s} Q_{s} \Delta t+\rho_{s} q_{s} \Delta x \Delta t\right)$. $\rho_{s}$ is the density of the sediment particles, and


Figure 2. Control volume to derive the sediment continuity equation.
the mass of sediment leaving the control volume is given by $\rho_{s}\left[Q_{s}+\left(\partial Q_{s} / \partial x\right) \Delta x\right] \Delta t$. The difference between the two, which is

$$
\begin{equation*}
\left(\rho_{s} Q_{s} \Delta t+\rho_{s} q_{s} \Delta x \Delta t\right)-\rho_{s}\left[Q_{s}+\left(\partial Q_{s} / \partial x\right) \Delta x\right] \Delta t=\rho_{s} q_{s} \Delta x \Delta t-\rho_{s}\left(\partial Q_{s} / \partial x\right) \Delta x \Delta t \tag{1}
\end{equation*}
$$

should be equal to the change in the mass of sediment stored within the control volume during the time interval $\Delta t$.

The change in the sediment storage within the control volume is effected in two ways: firstly, by the deposition or the scour on the bed of the river, which alters the elevation of the river bed by an amount $\Delta z$, and secondly, by the change in the average concentration $C_{a v}$ of the sediment in suspension. Assuming that the deposition or scour occurs uniformly over the whole bed area, the mass of sediment in a bed layer of thickness $\Delta z$ is given by $\rho_{s}(P \Delta z \Delta x) p$, where $P$ is the wetted perimeter at the section where the control voiume is located and $p$ is the volume of sediment per unit volume of the bed layer. If $\Delta z$ is expressed as

$$
\begin{equation*}
\Delta z=(\partial z / \partial t) \Delta t, \tag{2}
\end{equation*}
$$

the change in the mass of sediment storage due to deposition or scour is given by

$$
\begin{equation*}
\mathrm{p} \rho_{\mathrm{s}} \mathrm{P}(\partial z / \partial \mathrm{t}) \Delta \mathrm{t} \Delta \mathrm{x} . \tag{3}
\end{equation*}
$$

The change in the mass of sediment due to the change in the average concentration of sediment in suspension can be expressed as

$$
\begin{equation*}
\rho_{s}(\partial / \partial t)\left(A \Delta x C_{a v}\right) \Delta t \tag{4}
\end{equation*}
$$

where $A$ is the area of the flow cross section at the section where the control volume is located and $C_{a v}$ is the average volumetric concentration of the sediment at that cross section.

The total change in the mass of sediment storage within the control volume during $\Delta t$ is given by

$$
\begin{equation*}
\rho_{s}\left[P(\partial z / \partial t) p+(\partial / \partial t)\left(A C_{a v}\right)\right] \Delta x \Delta t \tag{5}
\end{equation*}
$$

By equating (4) and (5) as

$$
\begin{equation*}
\rho_{s}\left[q_{s}-\left(\partial Q_{s} / \partial x\right)\right] \Delta x \Delta t=\rho_{s}\left[P(\partial z / \partial t) p+(\partial / \partial t)\left(A C_{a v}\right)\right] \Delta x \Delta t \tag{6}
\end{equation*}
$$

the equation for the sediment continuity is obtained:

$$
\begin{equation*}
\left(\partial Q_{s} / \partial x\right)+P(\partial z / \partial t) p+(\partial / \partial t)(A C \text { av })=q_{s} . \tag{7}
\end{equation*}
$$

## Continuity Equation for the Sediment-laden Flow

In this case, both the mass of water and the mass of sediment are considered together. During an increment of time $\Delta t$, the mass of inflow to the control volume is

$$
\begin{equation*}
\left(\rho_{w} Q_{w}+\rho_{s} Q_{s}+\rho_{w} q_{w} \Delta x+\rho_{s} q_{s} \Delta x\right) \Delta t \tag{8}
\end{equation*}
$$

where $\rho_{w}$ is the density of water, $Q_{w}$ is the water flow rate and $q_{w}$ is the lateral inflow of water from tributaries, etc. The value $q_{w}$ is expressed in volume per unit length of the river per unit time. The mass flow out of the control volume is

$$
\begin{equation*}
\left\{\rho_{w}\left[Q_{w}+\left(\partial Q_{w} / \partial x\right) \Delta x\right]+\rho_{s}\left[Q_{s}+\left(\partial Q_{s} / \partial x\right) \Delta x\right]\right\} \Delta t \tag{9}
\end{equation*}
$$

and hence the difference becomes

$$
\begin{equation*}
\left[\rho_{w} q_{w} \Delta x \Delta t+\rho_{s} q_{s} \Delta x \Delta t-\rho_{w}\left(\partial Q_{w} / \partial x\right) \Delta x \Delta t-\rho_{s}\left(\partial Q_{s} / \partial x\right) \Delta x \Delta t\right] \tag{10}
\end{equation*}
$$

According to the principle of conservation of mass, the difference expressed by Equation 10 should be equal to the change of storage of mass of sediment-water mixture within the control volume during the interval of time $\Delta t$.

The change of storage of water within the control volume during $\Delta t$ can be expressed as

$$
\begin{equation*}
(\partial / \partial t)\left(\rho_{w} A w^{\Delta x}\right) \Delta t+\rho_{w}(1-p) P \Delta z \Delta x \tag{11}
\end{equation*}
$$

where $A_{w}$ is the flow cross-sectional area occupied by the fluid only, while the change of storage of sediment is given by expression 5. Therefore, the change in the storage of the sediment-water mixture is given by

$$
\begin{equation*}
\rho_{w}\left(\frac{\partial A_{w}}{\partial t}\right) \Delta x \Delta t+\rho_{w}(1-p) p\left(\frac{\partial z}{\partial t}\right) \Delta x \Delta t+\rho_{s} p p\left(\frac{\partial z}{\partial t}\right) \Delta x \Delta t+\rho_{s}\left(\frac{\partial}{\partial t}\right)\left(A C_{a v}\right) \Delta x \Delta t \tag{12}
\end{equation*}
$$

Equating (10) and (12), we get

$$
\begin{equation*}
\rho_{w}\left[\frac{\partial Q_{w}}{\partial x}+\frac{\partial A_{w}}{\partial t}+(1-p) P\left(\frac{\partial z}{\partial t}\right)\right]+\left[\rho_{s} \frac{\partial Q_{s}}{\partial x}+\frac{\partial}{\partial t}\left(A C_{a v}\right)+P\left(\frac{\partial z}{\partial t}\right) p\right]=\rho_{w} q_{w}+\rho_{s} q_{s} . \tag{13}
\end{equation*}
$$

Substituting Equation 7 into Equation 13, we can simplify the latter as

$$
\begin{equation*}
\left(\partial Q_{w} / \partial x\right)+\left(\partial A_{w} / \partial t\right)+(1-p) P(\partial z / \partial t)=q_{w} . \tag{14}
\end{equation*}
$$

If $Q$ is the total discharge, $A$ is the total cross-sectional area and $q_{l}$ is the total lateral inflow, then Equation 14 can be expressed in terms of $Q, A$ and $q_{\ell}$. If

$$
\begin{align*}
& Q=Q_{w}+Q_{s} \\
& A=A_{w}+A C_{a v}  \tag{15}\\
& q_{\ell}=q_{w}+q_{s}
\end{align*}
$$

and if we substitute into Equation 14, we get

$$
\begin{equation*}
\left[\frac{\partial Q}{\partial x}+\frac{\partial A}{\partial t}+p\left(\frac{\partial z}{\partial t}\right)\right]-\left[\frac{\partial Q_{s}}{\partial x}+\frac{\partial\left(A C_{a v}\right)}{\partial t}+p\left(\frac{\partial z}{\partial t}\right) p\right]=q_{\ell}-q_{s} . \tag{16}
\end{equation*}
$$

Again, using Equation 7 in Equation 16, the continuity equation for the sediment-laden flow can be expressed as

$$
\begin{equation*}
(\partial Q / \partial x)+(\partial A / \partial t)+P(\partial z / \partial t)=q_{\ell} . \tag{17}
\end{equation*}
$$

## Momentum Equation for the Sediment-laden Flow

Using the principle of conservation of momentum, which states: "the net rate of momentum flux into the control volume plus the sum of the forces acting on the control volume is equal to the rate of accumulation of momentum within the control volume," the momentum equation can be derived as follows.

Momentum entering the control volume $=\left(\rho Q^{2} / A\right)+\rho q_{\ell} U_{q} \Delta x$
where $q_{\ell}$ is the lateral inflow, $U_{q}$ is the velocity of the lateral inflow in the direction of the main flow, and $\rho$ is the density of the sediment-water mixture.

Momentum leaving the control volume $=\frac{\rho Q^{2}}{A}+\frac{\partial}{\partial x}\left(\frac{\rho Q^{2}}{A}\right) \Delta x+\rho q_{l}\left(\frac{Q}{A}\right) \Delta x$

The net rate of momentum flux entering the control volume $=$

$$
\begin{equation*}
-\frac{\partial}{\partial x}\left(\rho \frac{Q^{2}}{A}\right) \Delta x+\rho q_{\ell}\left(U_{q}-\frac{Q}{A}\right) \Delta x . \tag{20}
\end{equation*}
$$

The forces acting on the control volume are gravity, pressure and frictional resistance, which will be considered one by one.

1. Gravity: The force due to gravity is the weight of the fluid within the control volume. If $S_{x}$ is the slope of the bottom of the control volume with the horizontal, then the component of this weight along the flow direction can be expressed as

$$
\begin{equation*}
\rho g A \Delta x S_{x} \tag{21}
\end{equation*}
$$

It is assumed here that within the segment $\Delta x$ the flow is uniform.
2. Pressure force: The pressure force along the direction of the flow can be divided into two parts: (1) the difference in the pressure forces acting on the two ends of the control volume, and (2) the difference in pressure force in the direction of the flow on the banks of the control volume due to widening or narrowing along the length of the non-prismatic channels. Assuming a hydrostatic pressure distribution, the first part of the net pressure force acting on the end surfaces of the control volume in the direction of this flow can be evaluated.

The pressure force acting on the left side of the control volume is

$$
\begin{equation*}
F_{p}=\int_{0}^{y} \rho g(y-\eta) \xi\left(r_{1}\right) d \eta \tag{22}
\end{equation*}
$$

where $\xi(\eta)$ is the width of the channel at a height of $\eta$ from the bottom of the channel (see Fig. 1).

The pressure force acting on the right side of the control volume is

$$
\begin{equation*}
F_{p}+\left(\partial F_{p} / \partial x\right) \Delta x \tag{23}
\end{equation*}
$$

Therefore, the net pressure force acting on the sides of the control volume is

$$
\begin{equation*}
-\left(\frac{\partial F_{p}}{\partial x}\right) \Delta x=-\left(\frac{\partial}{\partial x}\right) \int_{0}^{y} \rho g(y-\eta) \xi(\eta) d \eta \Delta x . \tag{24}
\end{equation*}
$$

Changing the order of differentiation and integration using the Leibnitz's rule, we can express the above equation as

$$
\begin{equation*}
-\left(\frac{\partial F_{p}}{\partial x}\right) \Delta x=\left[-\rho g\left(\frac{\partial y}{\partial x}\right) A-\rho g \int_{0}^{y}(y-\eta)\left(\frac{\partial \xi(\eta)}{\partial x}\right) d \eta\right] \Delta x . \tag{25}
\end{equation*}
$$

The pressure force acting on the banks of the channel as a result of its widening or narrowing can be calculated as follows. Consider a volume element within the control volume at a height of $\eta$ from the bottom with a thickness of $d n$. The pressure force per unit length acting at any point within the volume is

$$
\begin{equation*}
\rho g(y-n) d \eta . \tag{26}
\end{equation*}
$$

This normal force cancels itself out at all points within the volume except on those located on the banks of the channel. The unbalanced pressure force along the flow direction for a change in width of $\Delta \xi$ is given by

$$
\begin{equation*}
\rho g(y-\eta) d \eta \Delta \xi(\eta) \tag{27}
\end{equation*}
$$

Expressing $\Delta \xi$ as $(\partial \xi / \partial x) \Delta x$, and integrating over the whole depth of the flow, we can calculate the pressure force acting on the banks in the direction of the flow due to widening or narrowing of the channel as

$$
\begin{equation*}
\rho g \int_{0}^{y}(y-\eta)\left(\frac{\partial \xi(\eta)}{\partial x}\right) d \eta \Delta x . \tag{28}
\end{equation*}
$$

Combining these two parts of pressure force, we obtain the net pressure force acting on the control volume as

$$
\begin{equation*}
-[\rho g A(\partial y / \partial x) \Delta x] \tag{29}
\end{equation*}
$$

3. Frictional resistance: The frictional force which resists the motion of the fluid in the channel acts along the solid boundaries of the channel and can be expressed as

$$
\begin{equation*}
F_{f}=-\left(\tau_{0} P \Delta x\right) \tag{30}
\end{equation*}
$$

where $\tau_{0}$ is the shear stress at its boundary and $P$ is the wetted perimeter. In the case of a steady flow, the boundary shear stress $\tau_{0}$ is expressed in terms of the hydraulic radius $R$ and the free surface slope $S_{f}$ as

$$
\begin{equation*}
\tau_{o}=\rho g R S_{f} \tag{31}
\end{equation*}
$$

If we assume that the boundary shear stress in an unsteady flow can also be expressed using Equation 31, the frictional force of the control volume becomes

$$
\begin{equation*}
F_{f}=-\left(\rho g A S_{f} \Delta x\right) \tag{32}
\end{equation*}
$$

The rate of accumulation of momentum within the control volume can be expressed as

$$
\begin{equation*}
(\partial / \partial t)(\rho Q) \Delta x \tag{33}
\end{equation*}
$$

and therefore the momentum equation becomes

$$
\begin{equation*}
\frac{\partial Q}{\partial t}+\left(\frac{\partial}{\partial x}\right)\left(\frac{Q^{2}}{A}\right)+g A\left(\frac{\partial y}{\partial x}\right)=g A\left(S_{x}-S_{f}\right)+q_{\ell}\left(U_{q}-\frac{Q}{A}\right) \tag{34}
\end{equation*}
$$

assuming that the bulk density is a constant with respect to time and space.

When the derivative of the flow cross-sectional area $A$ with respect to $t$ in Equation 17 and with respect to $x$ in Equation 34 is evaluated, the Leibinitz rule for the differentiation of the integrals should be used. With reference to Figure 1 , the flow cross-sectional area $A$ is given by

$$
\begin{equation*}
A=\int_{0}^{y} \xi(x ; \eta) d \eta . \tag{35}
\end{equation*}
$$

Therefore $\partial A / \partial t=\partial / \partial t \int_{0}^{Y} \xi(x ; \eta) d \eta$
and

$$
\begin{equation*}
\partial A / \partial x=\partial / \partial x \int_{0}^{y} \xi(x ; \eta) d \eta . \tag{37}
\end{equation*}
$$

Using the Leibnitz rule, we can express Equations 36 and 37 as

$$
\begin{equation*}
\frac{\partial A}{\partial t}=\int_{0}^{y}\left(\frac{\partial}{\partial t}\right) \xi(x ; \eta) d \eta+\xi(x ; y)\left(\frac{\partial y}{\partial t}\right)=B\left(\frac{\partial y}{\partial t}\right) \tag{38}
\end{equation*}
$$

and $\frac{\partial A}{\partial x}=\int_{0}^{y}\left(\frac{\partial}{\partial \dot{x}}\right) \xi(x ; \eta) d \eta+\xi(x ; y)\left(\frac{\partial y}{\partial x}\right)=A_{x}^{y}+B\left(\frac{\partial y}{\partial x}\right)$
where $B$ is the top width of the channel, while $A_{X}^{Y}$ stands for the term under the integral sign in Equation 39 , which is the rate of change of area with respect to $x$ with depth $y$ held constant. With these expressions for $\partial A / \partial t$ and $\partial A / \partial x$, the governing equations become

$$
\begin{aligned}
& \frac{\partial Q_{s}}{\partial x}+P\left(\frac{\partial z}{\partial t}\right) p+B C_{a v}\left(\frac{\partial y}{\partial t}\right)+A\left(\frac{\partial C_{a v}}{\partial t}\right)-q_{s}=0 \\
& \frac{\partial Q}{\partial x}+B\left(\frac{\partial y}{\partial t}\right)+P\left(\frac{\partial z}{\partial t}\right)-q_{\ell}=0
\end{aligned}
$$

$$
\begin{equation*}
2 \frac{Q}{A}\left(\frac{\partial Q}{\partial t}\right)+\frac{\partial Q}{\partial t}-B\left(\frac{Q^{2}}{A^{2}}\right)\left(\frac{\partial y}{\partial x}\right)+g A\left(\frac{\partial y}{\partial x}\right)=g A\left(S_{x}-S_{f}\right)+q_{\ell}\left(U_{q}-\frac{Q}{A}\right)+\left(\frac{Q^{2}}{A^{2}}\right) A_{x}^{Y} \tag{40}
\end{equation*}
$$

The above set of equations governs the sediment-laden flows in reaches of natural streams that are reasonably straight. These equations involve five unknowns, namely the flow rate $Q$, the flow cross-sectional area $A$, the bottom elevation $z$, the sediment transport rate $Q_{s}$ and the frictional slope $S_{f}$. (The lateral inflows, $q_{\ell}$ and $q_{s}$, the lateral inflow velocity $U_{q}$ and the porosity $p$ are expected to be known, and $C_{a v}$ and $Q_{s}$ are related.) Therefore, in addition to these governing equations, two more independent relations are required to achieve closure of the system of equations. These additional relations are provided by the sediment transport formulae, which give $Q_{s}$ in terms of flow and sediment characteristics, and the equations for the friction factor in natural streams, which express the energy slope $S_{f}$ in terms of the flow and of the bottom topography of the channels resulting from the movement of the sediments. There are a number of sediment transport and friction factor formulae in the literature, but each of them is limited and there is as yet no theory that is capable of predicting the above parameters for the whole of the flow regimes. For the present work, the sediment transport formula of Ackers and White (4) and the friction factor relations of Kishi (5) are adopted, which can be considered the best among the currently available theories. The details of those relationships will be taken up later after the description of the numerical scheme to solve the system of governing equations. The construction of the present mathematical model is such that as new and more complete theories on sediment transport and friction factors become available, they can be easily incorporated into the model.

## 3. NUMERICAL SCHEME TO SOLVE THE SYSTEM OF GOVERNING EQUATIONS

The governing equations of the sediment-laden flow can be uncoupled if the term $P(\partial z / \partial t)$ in the flow continuity equation is considered negligible in comparison to the term $B(\partial y / \partial t)$. Indeed, since the top width $B$ and the wetted perimeter $P$ are nearly equal for wide channels änd since the water level changes are more rapid than the bed level changes, it is possible to drop the term $P(\partial z / \partial t)$ from the flow continuity equation without losing accuracy. By doing so, it is now possible to solve the flow continuity equation and the momentum equation simultaneously for one time-step independent of the sediment continuity equation and then to use the sediment continuity equation to correct the solution. Such a technique, which simplifies the solution procedure considerably, is adopted for the present model.

## Solution of Continuity and Momentum Equations

An implicit finite difference scheme first developed by Preissmann (6) in 1960 is used to solve the flow continuity and the momentum equations simultaneously. According
to this scheme, a variable, say $f$, and its derivatives are discretized as follows:

$$
\begin{align*}
& f(x ; t)=\frac{\theta}{2}\left[f_{i+1}^{j+1}+f_{i}^{j+1}\right]+\frac{1-\theta}{2}\left[f_{i+1}^{j}+f_{i}^{j}\right] \\
& \frac{\partial f}{\partial x}=\theta\left[\frac{f_{i+1}^{j+1}-f_{i}^{j+i}}{\Delta x}\right]+(1-\theta)\left[\frac{f_{i+1}^{j}-f_{i}^{j}}{\Delta x}\right] \\
& \frac{\partial f}{\partial t}=\frac{1}{2}\left[\frac{f_{i+1}^{j+1}-f_{i+1}^{j}}{\Delta t}+\frac{f_{i}^{j+1}-f_{i}^{j}}{\Delta t}\right] \tag{41}
\end{align*}
$$

where $i$ and $j, \Delta x$ and $\Delta t$ are as shown in Figure 3 and $\theta$ is a weighting coefficient that can take values between 0 and 1 . When $\theta=0$, the scheme becomes fully explicit and if $\theta=1$ it is fully implicit. Cunge (7) has analyzed this scheme fully for numerical stability and accuracy and has shown that the scheme is unconditionally stable for values of $\theta$ between $1 / 2$ and 1 and the accuracy is first order with respect to $\Delta x$ for arbitrary values of $\theta$ and second order with respect to $\Delta x$ when $\theta=0.5$. Cunge also indicated that for $\theta=0.5$, "parasitic" oscillations are found in the solution that resemble the phenomenon of numerical instability for small values of the friction factor, and he suggested a practical range for $\theta$ of 0.6 to 1.0 .


Figure 3. Discretization scheme (finite difference scheme) of Preissmann.

If we express the value of the variable, say $f$, at $(j+1)^{\text {th }}$ time interval, $f^{j+1}$, as a sum of the value of $f$ at the $j^{\text {th }}$ interval, $f^{j}$, and a difference $\Delta f$ between these two, i.e.

$$
\begin{equation*}
f^{j+1}=f^{j}+\Delta f, \tag{42}
\end{equation*}
$$

the relationships in Equation 41 can be rewritten as

$$
\begin{aligned}
& f(x ; t)=\frac{1}{2}\left[\theta\left(\Delta f_{i+1}+\Delta f_{i}\right)+\left(f_{i+1}+f_{i}\right)\right] \\
& \frac{\partial f}{\partial x}=\frac{1}{\Delta x}\left[\theta\left(\Delta f_{i+1}-\Delta f_{i}\right)+\left(f_{i+1}-f_{i}\right)\right] \\
& \frac{\partial f}{\partial t}=\frac{1}{2 \Delta t}\left(\Delta f_{i+1}+\Delta f_{i}\right)
\end{aligned}
$$

The superscript for $f$ is dropped with the understanding that $f$ without superscript corresponds to the value of $f$ at the $j^{\text {th }}$ time step. When these approximations are substituted for the terms of the flow continuity equation, it becomes

$$
\begin{align*}
& \frac{1}{\Delta x}\left[\theta\left(\Delta Q_{i+1}+\Delta Q_{i}\right)+\left(Q_{i+1}+Q_{i}\right)\right]+\left\{\frac{1}{2}\left[\theta\left(\Delta B_{i+1}+\Delta B_{i}\right)+\left(B_{i+1}+B_{i}\right)\right] \frac{1}{2 \Delta t}\left[\Delta y_{i+1}+\Delta y_{i}\right]\right. \\
& \left.-\frac{1}{2}\left[\theta\left(\Delta q_{i+1}+\Delta q_{i}\right)+\left(q_{i+1}+q_{i}\right)\right]^{1}\right\}=0 \tag{44}
\end{align*}
$$

Rearranging the equation and neglecting second-order terms like $(\Delta f / f)^{2}, \Delta f \Delta g$, we can write Equation 44 as

$$
\begin{equation*}
a_{i} \Delta y_{i+1}+b_{i} \Delta Q_{i+1}=c_{i} \Delta y_{i}+d_{i} \Delta Q_{i}+e_{i} \tag{45}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{i}=\left[\frac{B_{i+1}+B_{i}}{2 \Delta t}\right]-\left.\left.\frac{2 \theta}{\Delta x}\left[\frac{Q_{i+1}-Q_{i}}{B_{i+1}+B_{i}}\right] \frac{d B}{d y}\right|_{i+1}\right|^{2}+\left.\theta\left[\frac{q_{i+1}+q_{i}}{B_{i+1}+B_{i}}\right] \frac{d B}{d y}\right|_{c+1} \\
& b_{i}=\frac{2 \theta}{\Delta x} \\
& c_{i}=-\left[\frac{B_{i+1}+B_{i}}{2 \Delta t}\right]+\left.\frac{2 \theta}{\Delta x}\left[\frac{Q_{i+1}-Q_{i}}{B_{i+1}+B_{i}}\right] \frac{d B}{d y}\right|_{i}-\left.\theta\left[\frac{q_{i+1}+q_{i}}{B_{i+1}+B_{i}}\right] \frac{d B}{d y}\right|_{i}  \tag{46}\\
& d_{i}=\frac{2 \theta}{\Delta x} \\
& e_{i}=-\frac{2}{\Delta x}\left(Q_{i+1}-Q_{i}\right)+\left(q_{i+1}+q_{i}\right)+\theta\left(\Delta q_{i+1}+\Delta q_{i}\right)
\end{align*}
$$

[^0]The derivative ( $\mathrm{dB} / \mathrm{dy}$ ) appearing in Equation 46 can be evaluated $i f$ the steepness of the banks of the stream is known.

In a similar fashion, the approximations expressed by Equation 43 can be substituted in the momentum equation and after lengthy algebraic manipuiations we can arrive at an equation similar to Equation 45

$$
\begin{equation*}
a_{i}^{\prime} \Delta y_{i+1}+b^{\prime} \Delta Q_{i+1}=c_{i}^{\prime} \Delta y_{i}+d_{i}^{\prime} \Delta Q_{i}+e_{i}^{\prime} \tag{47}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{i}^{\prime}=\frac{\theta}{\Delta x}\left\{\frac{B_{i+1}^{2} Q_{i+1}^{2}}{A_{i+1}^{3}}\left(y_{i+1}-y_{i}\right)-\frac{B_{i+1} Q_{i+1}}{A_{i+1}^{2}}\left(Q_{i+1}-Q_{i}\right)\right. \\
& +\frac{g}{2}\left[B_{i+1}\left(y_{i+1}+z_{i+1}-y_{i}-z_{i}\right)+\left(A_{i+1}+A_{i}\right)\right] \\
& \left.-\frac{1}{2}\left[\left.\frac{d B}{d y}\right|_{i+1}\left(\frac{Q_{i+1}^{2}}{A_{i+1}^{2}}\right)\left(y_{i+1}-y_{i}\right)+\frac{B_{i+1} Q_{i+1}^{2}}{A_{i+1}^{2}}+\frac{B_{i} Q^{2}{ }_{i}}{A_{i}^{2}}\right]\right\} \\
& +\frac{\theta}{2}\left\{\left.\frac{d P}{d y}\right|_{i+1}\left(\frac{Q_{i+1}^{2}}{C_{i+1}^{2} A_{i+1}^{2}}\right)-2\left(\frac{P_{i+1} Q_{i+1}^{2} B_{i+1}}{C_{i+1}^{2} A_{i+1}^{3}}\right)+\left.2\left(\frac{Q_{i+1}^{2} B_{i+1}}{A_{i+1}^{3}}\right) A_{x}^{y}\right|_{i+1}\right\} \\
& b_{i}^{\prime}=\frac{1}{2 \Delta t}+\frac{\theta}{\Delta x}\left[\frac{\left(2 Q_{i+1}-Q_{i}\right)}{A_{i+1}}+\frac{Q_{i}}{A_{i}}-\frac{Q_{i+1} B_{i+1}}{A_{i+1}^{2}}\left(y_{i+1}-y_{i}\right)+\right. \\
& \left.-\frac{\theta}{C_{i+1}^{2}}\left(\frac{P_{i+1} Q_{i+1}}{A_{i+1}^{2}}\right)-\left.\left(\frac{\theta}{A_{i+1}^{2}}\right) Q_{i+1} A_{x}^{y}\right|_{i+1}\right] \\
& c_{i}^{\prime}=\frac{\theta}{\Delta x}\left\{\frac{B_{i} Q i}{A_{i}^{2}}\left(Q_{i+1}-Q_{i}\right)-\frac{B_{i}^{2} Q_{i}^{2}}{A_{i}^{3}}\left(y_{i+1}-y_{i}\right)-\frac{g}{2}\left[B _ { i } \left(y_{i+1}\right.\right.\right. \\
& \left.\left.-z_{i}-y_{i}+z_{i+1}\right)-\left(A_{i+1}+A_{i}\right)\right]-\frac{1}{2}\left[\frac{B_{i+1}^{Q_{i+1}^{2}}}{A_{i+1}^{2}}+\frac{B_{i} Q_{i}^{2}}{A_{i}^{2}}-\left.\frac{d B}{d y}\right|_{i}\right. \\
& \left.\left.\left(\frac{Q_{i}^{2}}{A_{i}^{2}}\right)\left(y_{i+1}-y_{i}\right)\right]\right\}-\frac{\theta}{2}\left\{\left.\frac{d P}{d y}\right|_{i}\left(\frac{Q_{i}^{2}}{C_{i}^{2} A_{i}^{2}}\right)-2\left(\frac{P_{i} Q_{i}^{2} B_{i}}{C_{i}^{2} A_{i}^{3}}\right)+\left.2\left(\frac{Q_{i}^{2} B_{i}}{A_{i}^{3}}\right) A_{x}^{y}\right|_{i}\right\} \\
& d_{i}{ }^{\prime}=-\left(\frac{1}{2 \Delta t}\right)-\frac{\theta}{\Delta x}\left[\frac{Q_{i+1}-{ }^{2 Q_{i}}}{A_{i}}-\frac{Q_{i+1}}{A_{i+1}}-\frac{Q_{i}{ }^{B}}{A_{i}^{2}}\left(y_{i+1}-y_{i}\right)\right]- \\
& \frac{\theta}{C_{i}^{2}}\left(\frac{P_{i} Q_{i}}{A_{i}}\right)+\left.\left(\frac{\theta}{A_{i}^{2}}\right) A_{x}^{y}\right|_{i}
\end{aligned}
$$

$$
\begin{align*}
e_{i}^{\prime}=- & \frac{1}{\Delta x}\left\{\left(Q_{i+1}-Q_{i}\right)\left[\frac{Q_{i+1}}{A_{i+1}}+\frac{Q_{i}}{A_{i}}\right]-\frac{g}{2}\left[( A _ { i + 1 } + A _ { i } ) \left(y_{i+1}+\right.\right.\right. \\
& \left.\left.\left.z_{i+1}-y_{i}-z_{i}\right)\right]-\frac{1}{2}\left[\frac{B_{i+1} Q_{i+1}^{2}}{A_{i+1}^{2}}+\frac{B_{i} Q_{i}^{2}}{A_{i}^{2}}\right]\left(y_{i+1}-y_{i}\right)\right\}- \\
& \frac{1}{2}\left\{\left(\frac{P_{i+1} Q_{i+1}^{2}}{C_{i+1}^{2} A_{i+1}^{2}}+\frac{P_{i} Q_{i}^{2}}{C_{i}^{2} A_{i}^{2}}\right)-\left.\left(\frac{0_{i+1}^{2}}{A_{i+1}^{2}}\right) A_{x}^{y}\right|_{c+1}-\left.\left(\frac{Q_{i}^{2}}{A_{i}^{2}}\right) A_{x}^{y}\right|_{i}\right\} \tag{48}
\end{align*}
$$

In the derivation of Equation 48 , the frictional slope $S_{f}$ appearing in the momentum equation has been expressed in terms of the flow parameters and the friction coefficient $C$ as follows:

$$
\begin{equation*}
g A S_{f}=\left(Q^{2} / A^{2}\right)\left(P / C^{2}\right) \tag{49}
\end{equation*}
$$

The friction coefficient $C$ stands for the ratio between the average velocity $v(=Q / A)$ and the shear velocity $v_{*}\left(=\sqrt{g R s_{f}}\right)$ and can be related to the Darcy-Weisbach friction factor $f$ by the following expression

$$
\begin{equation*}
f=8 / c^{2} \tag{50}
\end{equation*}
$$

Furthermore, the velocity $U_{q}$ of the lateral inflow is assumed to be of the same order of magnitude as $v$ and hence the term $q_{\ell}\left[U_{q}-(Q / A)\right]$ appearing in the momentum equation is also dropped.

Equations 45 and 47 give rise to a system of two ( $N-1$ ) linear equations involving $2 N$ unknowns, namely $\Delta Q_{1}, \Delta Q_{2}, \Delta Q_{3} \ldots \Delta Q_{N}$ and $\Delta y_{1}, \Delta y_{2}, \Delta y_{3} \ldots \Delta y_{N}$, where $N$ is the number of grid points along the length of the river. With two known boundary conditions (one at the upstream boundary and the other at the downstream boundary for the subcritical flows) the number of equations matches the number of unknowns and the system of equations can be solved using any one of the available standard methods. In this work, the 'Double Sweep Method" (8) is adopted, which is the fastest of the available methods. The number of elementary operations (and consequently the computer time required) necessary to solve the system of equations by this method is proportional only to the number of points $N$, whereas the number of operations required by the existing standard methods of matrix inversion is proportional to $\dot{N}^{3}$. A detailed description of the operations involved in the Double Sweep method is given in the following subsection.

If we assume that for any point $i$ (for a particular time step $j$ ) the following linear relation holds between $\Delta y_{i}$ and $\Delta Q_{i}$, i.e.

$$
\begin{equation*}
\Delta Q_{i}=E_{i} \Delta y_{i}+F_{i} \tag{51}
\end{equation*}
$$

then it is possible to prove that an analogous linear relationship also exists for the next point $i+1$. Indeed, substituting Equation 51 into Equation 45 we get

$$
\begin{equation*}
a_{i} \Delta y_{i+1}+b_{i} \Delta Q_{i+1}=c_{i} \Delta y_{i}+d_{i}\left(E_{i} \Delta y_{i}+F_{i}\right)+e_{i} \tag{52}
\end{equation*}
$$

from which $\Delta y_{i}$ can be evaluated as

$$
\begin{equation*}
\Delta y_{i}=\left(L_{i} \Delta y_{i+1}+M_{i} \Delta Q_{i+1}\right)-K_{i} \tag{53}
\end{equation*}
$$

where

$$
L_{i}=A_{i} /\left(C_{i}+d_{i} E_{i}\right)
$$

and

$$
\begin{equation*}
M_{i}=b_{i} /\left(c_{i}+d_{i} E_{i}\right) \tag{54}
\end{equation*}
$$

Similarly, substituting Equation 51 into Equation 47, we get

$$
\begin{equation*}
a_{i}^{\prime} \Delta y_{i+1}+b_{i}^{\prime} \Delta Q_{i+1}=\left(c_{i}^{\prime}+d_{i}^{\prime} E_{i}\right) \Delta y_{i}+\left(d_{i}^{\prime} F_{i}+e_{i}^{\prime}\right) \tag{55}
\end{equation*}
$$

When the value of $\Delta y_{i}$ as given by Equation 53 is substituted into Equation 55 and the termis rearranged, the latter becomes

$$
\begin{equation*}
\Delta Q_{i+1}=E_{i+1} \Delta y_{i+1}+F_{i+1} \tag{56}
\end{equation*}
$$

where
and

$$
E_{i+1}=\frac{a_{i}\left(c_{i}^{\prime}+d_{i}{ }^{\prime} E_{i}\right)-a_{i}^{\prime}\left(c_{i}+d_{i} E_{i}\right)}{b_{i}^{\prime}\left(c_{i}+d_{i} E_{i}\right)-b_{i}\left(c_{i}^{\prime}+d_{i}^{\prime} E_{i}\right)}
$$

$$
\begin{equation*}
\left.F_{i+1}=\frac{\left(e_{i}^{\prime}+d_{i}^{\prime} F_{i}\right)\left(c_{i}+d_{i} E_{i}\right)-\left(e_{i}+d_{i} F_{i}\right)\left(c_{i}^{\prime}+d_{i}^{\prime} E_{i}\right)}{b_{i}^{\prime}\left(c_{i}+d_{i} E_{i}\right)-b_{i}\left(c_{i}^{\prime}+d_{i}^{\prime} E_{i}\right)}\right\} \tag{57}
\end{equation*}
$$

Therefore, by expressing the upstream boundary condition in the form of Equation 51 the values of $E_{1}$ and $F_{1}$ can be evaluated. If $E_{1}$ and $F_{1}$ are known, the values of $E_{2}$ and $F_{2}$ can
be found using Equation 57. By repeating this procedure, the values of $E_{3}, E_{4}, E_{5} \ldots$ $E_{N}$ and $F_{3}, F_{4}, F_{5} \ldots F_{N}$ can be found (Forward Sweep). If we use the downstream boundary condition to evaluate $\Delta y_{N}$ and, $E_{N}$ and $F_{N}$ are known, the value of $\Delta Q_{N}$ at the downstream boundary can be determined. Since $\Delta Q_{N}$ and $\Delta y_{N}$ are known the value of $\Delta y_{N-1}$ can be evaluated using Equation 53. Since $E_{N-1}$ and $F_{n-1}$ are known, it is possible now to determine $\Delta Q_{N-1}$. By the repeated application of Equation 53 the unknowns $\Delta y_{N-2}, \Delta y_{N-3} \cdots \Delta y_{1}, \Delta Q_{N-2}$, $\Delta Q_{N-3} . . \Delta Q_{1}$ can be computed (Backward Sweep).

Since the initial condition provides the values of $y_{1}, y_{2} \ldots y_{N}$ and $Q_{1}, Q_{2}, Q_{3} \ldots$ $Q_{N}$, the water depth and the flow rates at all the grid points along the river at the end of the time step can be obtained by simply adding the above solution to the initial condition. A flow chart description of the Double Sweep method is given in Figure 4.

The application of the Double Sweep method, therefore, requires the evaluation of the coefficients $E_{1}$ and $F_{1}$ from the upstream boundary condition and $\Delta y_{N}$ from the downstream boundary condition. The various possible boundary conditions and the evaluation of $E_{1}$, $F_{1}$ and $\Delta y_{N}$ are considered in the next two subsections.

Evaluation of $E_{1}$ and $F_{1}$ from Upstream Boundary Condition

There are three possible ways in which the boundary conditions can be prescribed:
(1) the flow depth $y_{i}$ is known for all time:

$$
\begin{equation*}
\text { i.e. } \quad y_{1}=f_{1}(t) \text {; } \tag{58}
\end{equation*}
$$

(2) the flow rate $Q_{1}$ is known for all time:

$$
\begin{equation*}
\text { i.e. } \quad Q_{1}=f_{2}(t) \text {; } \tag{59}
\end{equation*}
$$

and
(3) the flow rate $Q_{1}$ is expressed as a known function of the flow depth:

$$
\begin{equation*}
\text { i.e. } \quad Q_{1}=f_{3}\left(y_{1}\right) \tag{60}
\end{equation*}
$$

Each of the above conditions is considered separately for the evaluation of $E_{1}$ and $F_{1}$.

Case 1 - When the boundary condition is expressed as in Equation 58 , it is possible to compute $\Delta y_{1}$ as

$$
\begin{equation*}
\Delta y_{1}=f_{1}(t+\Delta t)-f_{1}(t) \tag{61}
\end{equation*}
$$



Figure 4. Flow chart for the Double Sweep method.

The Equation 51 corresponding to the upstream boundary can be written as
-

$$
\begin{equation*}
\Delta Q_{1}=E_{1} \Delta y_{1}+F_{1} \tag{62}
\end{equation*}
$$

which can be rearranged as:

$$
\begin{equation*}
\Delta y_{1}=\left(\Delta Q_{1} / E_{1}\right)-\left(F_{1} / E_{1}\right) \tag{63}
\end{equation*}
$$

Since $\Delta y_{1}$ and $\Delta Q_{1}$ are, in general, independent parameters, the above equation can be considered to be valid only for large values of $E_{1}$ compared to $\Delta Q_{1}$ so that the first term on the right-hand side of Equation 63 approaches zero. By equating $E_{1}$ to a very large value, say $\alpha$, we can determine the value of $F_{1}$ using Equations 61 and 63 as follows.

$$
\begin{equation*}
F_{1}=-\alpha\left[f_{1}(t+\Delta t)-f_{1}(t)\right] \tag{64}
\end{equation*}
$$

In practice the value of $\alpha$ should be of the order of $10^{4}$ to $10^{6}$.

Case 2 - When the boundary condition is given by Equation 59 , the value of $\Delta Q_{1}$ can be evaluated as

$$
\begin{equation*}
\Delta Q_{1}=f_{2}(t+\Delta t)-f_{2}(t) \tag{65}
\end{equation*}
$$

Since $\Delta Q_{1}$ and $\Delta y_{1}$ are independent quantities, the relation connecting them (i.e. Equation could be valid only when $E_{1}=0$. Therefore, $F_{1}$ becomes

$$
\begin{equation*}
F_{1}=\Delta Q_{1}=f_{2}(t+\Delta t)-f_{2}(t) . \tag{66}
\end{equation*}
$$

Case 3-When the boundary condition is given by Equation 60, which is termed as the rating curve and is unique only under special circumstances, $\Delta Q_{1}$ can be expressed as

$$
\begin{equation*}
\Delta Q_{1}=\left.Q_{1}\right|_{t+\Delta t}-\left.Q_{1}\right|_{t} \tag{67}
\end{equation*}
$$

By evaluating $\left.Q_{1}\right|_{t+\Delta t}$ and $Q_{\left.\right|_{t}}$ using the rating curve $f_{3}$, we can show that

$$
\begin{equation*}
\Delta Q_{1}=\left.\frac{\partial f_{3}\left(y_{1}\right)}{\partial y_{1}}\right|_{t} \Delta y_{1} \tag{68}
\end{equation*}
$$

Comparing Equations 62 and 68 , we can see that

$$
E_{1}=\left.\frac{\partial f_{3}\left(y_{1}\right)}{\partial y_{1}}\right|_{t}
$$

$$
\text { and } \quad F_{1}=0
$$

Evaluation of $\Delta y_{N}$ from the Downstream Boundary Condition

Case 1 - When the downstream boundary condition is expressed as $y_{N}=g_{1}(t)$, the value of $\Delta y_{N}$ can be computed as

$$
\begin{equation*}
\Delta y_{N}=g_{1}(t+\Delta t)-g_{1}(t) \tag{69}
\end{equation*}
$$

Case 2 - When the downstream boundary condition is given as $Q_{N}=g_{2}(t), \Delta Q_{N}$ can be calculated as $\Delta Q_{N}=g_{2}(t+\Delta t)-g_{2}(t)$, and since at the downstream boundary $\Delta Q_{N}$ and $\Delta y_{N}$ can be related by Equation 51 as

$$
\begin{equation*}
\Delta Q_{N}=E_{N} \Delta y_{N}+F_{N} \tag{70}
\end{equation*}
$$

the value of $\Delta y_{N}$ can be determined as

$$
\begin{equation*}
\Delta y_{N}=\frac{\left[g_{2}(t+\Delta t)-g_{2}(t)\right]-F_{N}}{E_{N}} \tag{71}
\end{equation*}
$$

Case 3 - When the downstream boundary condition is expressed in the form of a rating curve, i.e. ${ }^{Q} N=g_{3}\left(y_{N}\right)$, we have

$$
\begin{equation*}
\Delta Q_{N}=\left.\frac{\partial g_{3}\left(y_{N}\right)}{\partial y_{N}}\right|_{t} \Delta y_{N} \tag{72}
\end{equation*}
$$

Using Equation 70 , we can evaluate $\Delta y_{N}$ from Equation 72 as

$$
\begin{equation*}
\Delta y_{N}=\frac{F_{N}}{\left.\frac{\partial g_{3}\left(y_{N}\right)}{\partial y}\right|_{N}-E_{N}} \tag{73}
\end{equation*}
$$

## Solution of Sediment Continuity Equation

Evaluating $E_{1}$ and $F_{1}$ from the upstream boundary condition and $\Delta y_{N}$ from the downstream boundary condition the Double Sweep method described earlier can be used to solve the flow continuity and momentum equations and obtain the values of the flow depths and the flow rates at all the sections along the length of the river at the end of the first time step (i.e. at $t=t_{0}+\Delta t ; t_{0}$ corresponding to the time when the initial conditions are given). If the flow conditions at $t_{0}$ and at $t_{0}+\Delta t$ are known, the sediment continuity equation can be solved, in order to correct the flow condition at $t_{0}+\Delta t$ as follows.

The sediment continuity equation can be rearranged as

$$
\begin{equation*}
\frac{\partial z}{\partial \tau}=-\frac{1}{P p}\left\{\left[\frac{\partial Q_{s}}{\partial x}+B C_{a v}\left(\frac{\partial y}{\partial t}\right)\right]+\left[A\left(\frac{\partial C_{a v}}{\partial t}\right)-q_{s}\right]\right\} . \tag{74}
\end{equation*}
$$

Using the approximations expressed by Equation 41 , Equation 74 can be discretized as

$$
\begin{align*}
& \left.(1-\theta)\left(\frac{Q_{s}^{j}-Q_{i}^{j}}{\tilde{\Delta x}}\right)\right]+\left[\frac{\theta}{2}\left(B_{i+1}^{j+1}{ }_{i}{ }_{a v_{i}}^{j+1}+B{ }_{i}^{j+1}{ }_{C}{ }_{a v_{i}}^{j+1}\right)+\left(\frac{1-\theta}{2}\right)\right. \\
& \left.\left(B_{i+1}^{j} c_{a v v_{i+1}}^{j}\right)+B_{i}^{j} c_{a v_{i}}^{j}\right]+\frac{1}{4 \Delta t}\left[\theta\left(A_{i+1}^{j+1}+A_{i}^{j+1}\right)+(1-\theta)\left(A_{i+1}^{j}+A_{i}^{j}\right)\right. \\
& \left.\left.\left(y_{i+1}^{j+1}-y_{i+1}^{j}+y_{i}^{j+1}-y_{i}^{j}\right)\right]-\left[\frac{\theta}{2}\left(q_{s}^{j+1}+q_{s}^{j+1}{ }_{i}^{j+1}\right)+\left(\frac{1-\theta}{2}\right)\left(\dot{q}_{s}^{j}{ }_{i+1}+q_{s}^{j}\right)\right]\right\}=\Delta z_{i} \tag{75}
\end{align*}
$$

From the boundary condition for the bed elevation at the upstream the quantity $\Delta z_{i}$ can be evaluated as

$$
\begin{equation*}
\Delta z_{i}=z_{i}^{j+1}-z_{i}^{j} \tag{76}
\end{equation*}
$$

and hence the quantities appearing on the right-hand side of Equation 75 are completely specified once the quantities $O_{s}$ and $C_{a v}$ are known. (The method for the evaluation of $Q_{s}$ and $C_{a v}$ will be taken up in the next subsection.) since $\Delta z_{i+1}$ is known, the bed elevations at the time $t_{0}+\Delta t$ can be obtained as:

$$
\begin{equation*}
z_{i+1}^{j+1}=z_{i+1}^{j}+\Delta z_{i+1} \tag{77}
\end{equation*}
$$

The flow depth at time $t=t_{0}+\Delta t$ is corrected using $\Delta z_{i+1}$ as

$$
y_{i+1}^{j+1} *=y_{i+1}^{i+1}-\Delta z_{i+1},
$$

where $y_{i+1}^{j+1}$ * is the corrected flow depth after consideration of the sediment continuity equation. It is assumed that the computed flow rate $Q_{i+1}^{j+1}$ at $t_{0}+\Delta t$ does not change significantly due to the consideration of the sediment continuity equation during the interval $\Delta t$. However, the change in the flow depth will result in changes in the flow crosssectional areas $A_{i+1}^{j+1}$, wetted perimeters $P_{i+1}^{j+1}$, hydraulic radii $R_{i+1}^{j+1}$, the widths $B_{i+1}^{j+1}$ and the friction coefficients $c_{i+1}^{j+1}$. Using these new values for the above parameters, the
flow continuity and the momentum equations are solved again for another time step and the procedure outlined above is repeated to correct the solution. This process is continued until the required number of time steps is reached. A flow chart describing the above computational steps is shown in Figure 5. The subroutine 'Geom' calculates the geometric parameters $A, P, R, B, A_{x}^{Y}(d B / d y), d P / d y$. The subroutine "Frict" calculates the friction coefficient $C$ and the subroutine "Sedi" calculates the sediment transport rate $Q_{s}$ and the average concentration $C_{a v}$.

## Sediment Transport Rate Q

The sediment transport rate $Q_{s}$ has been predicted using a new method proposed by Ackers and White (4). This method has been found to be superior to the most commonly used methods such as those of Einstein, Meyer-Peter and Muller, Bagnold, Toffeleti, Rot tner, Engelund and Hansen, Biship, etc. (see Ref. 9). The computations involved in this method are listed below.

1. Since we know the grain size distribution and hence $\mathrm{D}_{35}$ (grain size for which $35 \%$ (by weight) of the sediments is finer), the submerged specific weight $\gamma_{s}^{\prime}$, the specific weight $\gamma$ and the kinematic viscosity $u$ of the fluid, a dimensionless number $D_{g r}$ is calculated as

$$
\begin{equation*}
D_{g r}=D_{35}\left(g \gamma_{s} / \gamma u^{2}\right)^{1 / 3} . \tag{78}
\end{equation*}
$$

2. Depending on the value of $D_{g r}$, the sediment transport is considered in two different modes. When $\mathrm{D}_{\mathrm{gr}}$ is greater than 60 , the sediment is considered to move as a bed load and when $D_{g r}$ is in the range between 1 and 60 , it is considered to move both as bed load and suspended load. The case when $D_{g r}$ is less than 1 occurs only for cohesive sediments and hence is not considered.
3. The general transport function proposed by Ackers and White (4) is

$$
\begin{equation*}
\left.G_{g r}=\alpha\left[F_{g r} / A\right)-1\right]^{m} \tag{79}
\end{equation*}
$$

where $G_{g r}=\left[\frac{X y}{\left(\gamma_{s} / \gamma\right)+1}\right]\left(\frac{v_{*}^{n}}{\stackrel{v}{v}}\right)$
and $F_{g r}=\frac{v_{*:}^{n} \gamma^{1 / 2}}{\sqrt{\gamma_{s} g D}}\left[\frac{v}{2.46 \ln \left(10 y / D_{35}\right)}\right]^{1-n}$


Figure 5. Flow chart of the mathematical model.
and $\alpha, A, m$ are constants. The symbol $X$ in Equation 80 stands for the concentration of sediment by weight, i.e. the mass flux of sediment divided by the mass flow rate. The exponent $n$ appearing in Equations 80 and 81 and the constants $\alpha, A, m$ take the following values, depending on the value of $\mathrm{D}_{\mathrm{gr}}$.

When $\mathrm{Dgr}_{\mathrm{gr}}$ is greater than 60

$$
\left.\begin{array}{rl}
n & =0.00 \\
A & =0.17 \\
m & =1.50  \tag{82}\\
\text { and } \quad \alpha & =0.025
\end{array}\right\}
$$

When $D_{g r}$ is in the range between 1 and 60
$n=1.00-0.24 \ln \left(D_{\text {gr }}\right)$
$A=\left(0.23 / D_{\mathrm{gr}}\right)+0.14$
$m=\left(9.66 / D_{g r}\right)+1.34$

Therefore, once $D_{g r}$ is known, the values of $n, A, m$ and $\alpha$ are known and using Equations 79 , 80 and 81 the value of $X$ can be calculated. When the volume flow rate and the specific gravity of sediments are known the volume of sediment transported per unit time ( $Q_{s}$ ) can be calculated.

## Friction Coefficient C

In alluvial streams, the bottom topography changes as the flow changes and the prediction of the friction coefficient in such streams is the most difficult task encountered so far in the field of hydraulics. Many researchers have attempted to solve this important problem, but none of them have succeeded in developing a general method that could be applied over the whole range of flow conditions. Some of the methods available in the literature were developed by Einstein and Barbarossa (10), Garde and Ranga Raju (11), Engelund (12), Alam and Kennedy (13), Kikkawa and Fukuoka (5), and Kishi and Kuroki (5). Among the methods listed above the one by Kishi and Kuroki takes into account all the governing characteristic parameters and compares fairly reasonably with the measurements (see fig. 6). For the present work the method of Kishi and Kuroki is adopted to predict the friction coefficient.

Kishi and Kuroki considered the bottom topography in terms of six different geometric forms. They are dunes 1 , dunes 11 , transition 1 , transition 11, flat bed and antidunes.


Figure 6. Comparison of calculated values of C with experiments (after Kishi and Kuroki, ref. 5).

The equations for the friction coefficient $C$ for these bed configurations are
$\left.\begin{array}{ll}\text { (1) for dunes } 1, & c=2.4 z^{1 / 6} y^{-1 / 3} \\ \text { (2) for dunes } 11, & c=8.9 \\ \text { (3) for transition } 1 ; & c=1.1 \times 10^{6} z^{-3 / 2} y^{3} \\ \text { (4) for flat bed, } & c=6.9 z^{1 / 6} \\ \text { (5) for antidunes, } & c=2.8 z^{3 / 10} y^{-1 / 3}\end{array}\right\}$

The criteria for the occurrence of the various bed configurations can be stated as follows:
and
(1) for dunes $1, \quad Y<0.02 Z^{1 / 2}$
(2) for dunes $11, \quad Y=0.02 Z^{1 / 2}$
(3) for transition $1,0.022^{1 / 2}<Y<0.02 z^{5 / 9}$
(4) for flat bed, $0.02 Z^{5 / 9}<Y<0.07 Z^{2 / 5}$
(5) ..for antidunes, $\quad Y<0.07 Z^{2 / 5}$

In the above equations the symbols $Z$ and $Y$ stand for the following dimensionless groups consisting of flow and sediment characteristic parameters:

$$
\left.\begin{array}{l}
z=R / D_{35} \\
Y=\rho u_{j}^{2} / \gamma_{s} D \tag{86}
\end{array}\right\}
$$

The values of $Z$ and $Y$ are evaluated at each time step from the computed flow parameters. Using Equation 84 and the values of $Z$ and $Y$, we can predict the values of $C$. These $C$ values are then used to solve the equation for the next time step.

## Storage Basins

If the river reach to be modelled includes a storage basin, the coefficients $E, F, L$, $M$, and $K$ have to be modified at the sections enclosing the control volume, to which the storage basin is assumed to be connected (see Fig. 7). The modifications required for these coefficients are made as follows.


Figure 7. Schematic representation of a storage basin present in a river reach.

It is assumed that the water surface elevation at the storage basin ( $y_{b}$ ) and that at the river section $\left(y_{i}\right)$ are the same, i.e.

$$
\begin{equation*}
y_{i}^{n+1}=y_{i+1}^{n+1}=y_{b}^{n+1} \tag{87}
\end{equation*}
$$

The continuity equation between sections $i$ and $i+1$ can be written as

$$
\begin{equation*}
Q_{i+1}^{n+1}=Q_{i}^{n+1}-Q_{b}^{n+1} \tag{88}
\end{equation*}
$$

where $Q_{b}$ is the discharge rate from river into basin or vice versa. Considering the continuity condition for the storage basin itself, we can write

$$
\begin{equation*}
\left(\Delta_{b} / \Delta t\right) \Delta y_{b}=Q_{b}^{n+1} \tag{89}
\end{equation*}
$$

where $A_{b}$ is the water surface area of the basin, which is a function of $y_{b}$.

Substituting Equation 89 into Equation 88 , we get

$$
\begin{equation*}
\Delta Q_{i+1}=\left(Q_{i}^{n}-Q_{i+1}^{n}\right)+\left[\Delta Q_{i}-\left(A_{b} / \Delta t\right)\right] \tag{90}
\end{equation*}
$$

Equation 87 can be expressed as

$$
\begin{equation*}
y_{i}^{n}+\Delta y_{i}=y_{i+1}^{n}+\Delta y_{i+1} \tag{91}
\end{equation*}
$$

which can be rearranged as

$$
\begin{equation*}
\Delta y_{i}=\Delta y_{i+1}+\left(y_{i+1}^{n}-y_{i}^{n}\right) \tag{92}
\end{equation*}
$$

Using Equation 92, we can express $\Delta Q_{i}$ in Equation 90 as

$$
\Delta Q_{i}=E_{i}\left[\Delta y_{i+1}+\left(y_{i+1}^{n}-y_{i}^{n}\right)\right]+F_{i}
$$

and hence we can write Equation 90 as

$$
\begin{equation*}
\Delta Q_{i+1}=\left[E_{i}-\left(A_{b} / \Delta t\right)\right] \Delta y_{i+1}+\left[E_{i}\left(y_{i+1}^{n}-y_{i}^{n}\right)+F_{i}+Q_{i}^{n}-Q_{i+1}^{n}\right] . \tag{93}
\end{equation*}
$$

Thus the values of $E_{i+1}$ and $F_{i+1}$ become

$$
\begin{align*}
& E_{i+1}=E_{i}-\left(A_{b} / \Delta t\right) \\
& F_{i+1}=E_{i}\left(y_{i+1}^{n}-y_{i}^{n}\right)+F_{i}+Q_{i}^{n}-Q_{i+1}^{n} \tag{94}
\end{align*}
$$

The values of the coefficients $L_{i}, M_{i}$ and $K_{i}$ can be obtained by looking at Equation 92 , which yields

$$
\begin{equation*}
L_{i}=1 ; M_{i}=0 \text { and } K_{i}=y_{i+1}^{n}-y_{i}^{n} \tag{95}
\end{equation*}
$$

## 4. APPLICATION OF THE MODEL FOR A HYPOTHETICAL RIVER

To test and debug the computer program performing the various tasks of the model described so far, a river reach with the geometric characteristics shown in Figure 8 is chosen. As can be seen from Figure 8, the river reach includes both storage basin and a tributary. The length of the river reach is 2.44 km . It is divided into 20 equal segments each 122 m long. The initial condition for the flow rate and flow depth is shown in the computer output corresponding to $T=0$. A constant inflow of $42.38 \mathrm{~m}^{3} / \mathrm{s}$ is taken as the upstream bound-
ary condition, whereas a constant depth of 2.29 m is assumed to yield the downstream boundary condition. The flow cross sections are approximated as trapeziums and hence the bottom widths and side angles are used as input parameters to describe the geometric parameters. The various control constants used in this program are listed below:

> INFLOW: $\quad \circ$, no lateral inflow from tributaries
> $n$, number of tributaries IS: $\quad \begin{aligned} & \circ \text {, no storage basins present in the river reach } \\ & \\ & \end{aligned}$

ISED: o, river bottom is considered to be rigid
1 , river bottom is composed of sediments

The description of the input data cards, the listing of the computer program and a sample output with line printer plots are given in the Appendix.


Figure 8. Profile and cross sections of the hypothetical river reach.

A mathematical model describing the flow and sediment transport characteristics in natural streams has been presented in this report. The governing equations are derived from first principles in order to understand the simplifying assumptions better and consequently the limitations of the model. The numerical method and the solution techniques are also elaborated. The methods to predict the sediment transport rates and the friction coefficients in alluvial streams which are used in the present model are described. Finally, the application of the model for a hypothetical river reach is indicated.

## ACKNOWLEDGMENTS

The authors thank Dr. T.M. Dick; Chief, Hydraulics Research Division, and Dr. Y.L. Lau, Head, Hydraulics Section, for reviewing the manuscript and making valuable suggestions for its improvement.

## REFERENCES

1. Mahmood, K. and Yevjevich, V. (eds.), 1975. Unsteady flow in open channels, Vol. I, Water Resources Publications, P.0. Box 303, Fort Collins, Colorado.
2. Cunge, J.A. and Perdreau, N., 1973. Mobile bed fluvial mathematical models. La houille blanche, No. 7.
3. Chen, Y.H., 1973. Mathematical modelling of water sediment routing in natural channels. Ph.D. Thesis, Colorado State University, Fort Collins, Colorado.
4. Ackers, P. and White, W.R., 1973. Sediment transport - new approach and analysis. Hydraul. Div., Am. Soc. Civ. Eng., Vol. 99, No. Hyll.
5. The bed configuration and roughness of alluvial streams, by Task Committee on the Bed Configuration and Hydraulic Resistance of Alluvial Streams, Committee on Hydraulics and Hydraulic Engineering, The Japan Society of Civil Engineers, Nov., 1974.
6. Preissmann, A., 1961. Propagation des intumescences dans les canaux et rivières. 1re Congrès de l'Association française de calcul, Grenoble.
7. Cunge, J.A., 1966. Étude d'un schéma de différences finies applique a l'intégration numérique d'un certain type d'equation hyperbolique d'écoulement. Thesis presented to the Faculty of Sciences of Grenoble University.
8. Preissmann, A. and Cunge, J.A., Calcul des intumescences sur les machines électroniques. IX meeting of the IAHR, Dubrovnik.
9. White, W.R., Milli, H. and Crabbe, A.D., 1975. Sediment transport theories - a review. Proc. Inst. Civ. Ëng., Part 2.
10. Einstein, H.A. and Barbarossa, L., 1952. River channel roughness. Trans. Am. Soc. Civ. Eng., Vol. 117.

## APPENDIX

The data cards are read into the program in the following order.
Card 1
$N=21$ - number of points of initial data
INFLOW = 1, indicates presence of tributary
$1 N=11$, location of tributary, must be equal to $1, \ldots, N$
INT $=800$, time tributary inflow begins, $s$
IS $=12$, location of storage basin, can be $1, \ldots, N$
ISED $=1$, indicates presence of sediment

Card 2
THETA $=.66$, weighting coefficient varying $.5<\underline{\theta} \leq 1$
DELTAX $=122$, distance between sections, $m$
XLENGH $=2440$, total length of channel, $m$
$G=9.81$, gravitational acceleration, $\mathrm{m}^{3} / \mathrm{s}$
QIN $=.06$, flow rate of tributary inflow, $\mathrm{m}^{3} / \mathrm{s}$
QSED $=.0001$, flow rate of lateral sediment inflow, $\mathrm{m}^{3} / \mathrm{s}$ per unit length
$S A R=930.25$, water surface area of $s$ torage basin, $m^{2}$

## Cards 3-5

These cards are the values of depth at time zero at evenly spaced points beginning at the upstream boundary. Twenty-one values of depth are specified in metres.

## Cards 6-8

These cards are the values of velocity at time zero at evenly spaced points beginning at the upstream boundary. Twenty-one values of velocity are specified in metres per second.

## Cards 5-11

These cards are the values of bottom width at time zero at evenly spaced points beginning at the upstream boundary. Twenty-one values of bottom width are specified in metres.

## Cards 12-14

These cards are the values of the $r$ ight slope and left slope of the channel sides at time zero at evenly spaced points beginning at the upstream boundary. Twenty-one values of right slope and 21 values of left slope are specified in degrees.
11. Garde, R.J. and Ranga Raju, K.G., 1966. Resistance relationships for alluvial channel flow. J. Hydraul. Div., Proc. Am. Soc. Civ. Eng., Vol. 92, No. Hy4.
12. Engelund, F., 1966. Hydraulic resistance of alluvial streams. Hydraul. Div., Proc. Am. Soc. Civ. Eng., Vol. 92, No. Hy2.
13. Alam, M.Z. and Kennedy, J.F., 1969. Friction factors for flow in sand bed channels. Hydraul. Div., Proc. Am. Soc. Civ. Eng., Vol. 95, No. Hy6.

Cards 15-17
These cards are the values of the bed elevation at time zero at evenly spaced points beginning at the upstream boundary. Twenty-one values of bed elevation are specified in metres.

Card 18
GAM $=1000$. specific weight (submerged) of sediment, $N / \mathrm{m}^{3}$
GAMS $=1650$. specific weight of sediment, $N / m^{3}$
$D_{35}=.0003$ grain size of average sediment, m
YCR $=.04$ critical mobility number
$\mathrm{ANU}=.1 \times 10^{-6} \mathrm{viscosity}, \mathrm{m}^{2} / \mathrm{s}$

Card 19
PORS $=.8$ porosity

```
            COMMON/A/ Y(41),RANG(41),LANG(41),BW(41),II,V(41)
            COMMON/B/ GAM,GAMS,O35;YCR,ANU,G
            COMMON /E/ DELTAX,DFLTAT,N
            DIMENSION Z(41),B(41),A(41),P(41),R(41),DERS(41),DERP(41),QL1(41)
            1C(41),AYX(41),A1(41),91(41),C1(41),D1(41), E1(41),A2(41), B2(41),C2 (
            241),D2(41),=2(41), 隹(41),F(4i), ((41),M(41),K
            3DELY(41),DELQ(41),Q(41),D(41),T(41),QL2(41)
            OIMENSION QS1(41),QS2(41),QST1(41),OST2(41),ZZ(41),VS(41),0
            1ELZ(41),CAY1(41),GAV2(41),Y1(41),Y2(41)
            OIMENSION AVY(41);
            OIMENSION CAV(41),QST(41)
                    INTEGE? H
C REAL LANG,L,M,K
                            READ(63,1[4) N,INFLOW,IN,INT,IS,ISEO
                            READ(60,105) THETA,DELTAX,OELTAT,XLENGH,G,QIN,QSED,SAR
    104 FORMAT(5I55)
C
C
    READ(EO,101) (V(I),I=1,N)
    1C1 FORMAT (8F1C:4)
    FORMAT(8F8.4)
    READ(ENITIACL CONOIT,I=N,N
    10G FORMAT&SFIO.3)
    READ GEOMETRY CONDITIONS
            READ(60,100) (BW(I),I=1,N)
            READ(60,102) (LANG(I),RANG(I),I=1,N)
    R2 RAD(60,101) (Z(I),I=I,N)
    102 FORMAT &16F5:?
            READ(60,107) GAM,GAMS,D35,YCR,ANU
    107 FORMAT(5E1C:4)
    REAO(60,103) PORN
    103
            I AGAIN =0
            II=1
            IF(ISEO,NE.1) GO TO 300
    OO4COI=1:N
    GO TO 300
            IF(II.GE.1E) GO TO 305
            CALL GEOMET (A,P,R,B,DERB,DERP,Q,AYX,AVY)
            IF(IS EDONET(A,P,R,B,DERB
            CALLFRICTMY,Z,Q,A,R,C,VS)
            IFIII.LE.2IGGO TO 451
            00452 I=1,N
            CAVI(I)=CAV?(I)
    452 QSTI(I)=QST2(I)
    451 IF(II.GEO2) GO TO 405
C
                    TOTAL SEDIMENT RATE AND AVERAGE CONCENTRATION CALCULATIONS
            GALL SEDI(Q,A,AVY,C,CAV,OST)
            00401 I=1,N
    401 QAVI(I)=CAV(I)
    405 CALL SEDI (Q,A,AVY,C,CAV,OST)
            CO404
    4C4 QST2(I)=QST(I)
                                    LATERAL SEOIMENT INFLOW
    454 QS2(IT)=QSED
C
        00 454 I=1,N
                            FLOW DEPTH ANO BEO ELEVATION CORRECTION
    407 00 Q LOT I I=2,H
    1TAT/OELTAX*(QSTR(I+I)-QST2(I-1)+QST1II+1)-QST1(I-1))-1Y2(I+1)*CAV2
    1TAT/OELTAX*(QST2(I+1)-QST2(I-1)+QST1(I+1)-QST1(I-1))-(YZ(I+1)*CAV2
    3)*CAV1(I)-Y1(I-1)+CAV1.(I-1)1)
```

```
            DELZ(N)=DELZ(H)
            0 408 I=1,N
            ZZ(I)=Z(I)+DELZ(I)
            Y(I)=Z(I)+YZ(I)-ZZ(I)
    408
    Z(I)=ZZ(I)
            IAGAIN=1
            IAGAIN=1
            G0 T0 300 N N
    551
                            C(I)=10.0 =1,N
                            LATERAL INFLOW AOJUSTEMANTS
    450
    221
                            0 221 I=1,N
                            QLI(I)=0.C
            IF(INFLOW.EQ.0) GOTO 199
            IT=II*DELTAQ:OELTAT
            ITT=ITT+DELTAT
            OOIT98 I=1,N NO TO 198
            IF(ITNE:INI GO TOG198.GE.INT) GO TO 195
            IF(IT:LT:INT) GO TO 198
            OLI(I)=QIN
            QL2 (T)=0.0
    195
    198
            QLI(I)=O.C
C
                                    OOUBLE SWEEP COEFFICIENTS
            00 200 I=1,H
            A1(I)=(B(I)+B(I+1))/(2.*DELTAT)-(2.*THETA/DELTAX)*((Q(I+1)-Q(I))/1
            1B(I+1)+G(I))*OERB(I+I)i+THETA*((QLi(I+I)+QLI(I)I/(B(I+I)+B(I))*DER
            2B(I+1))
            BI(I)=2.*THETA/DELTAX
            C1(I)=(3(I)+8(I+1))/(2.*0ELTAT)-(2.*THETA/DELTAX)*((Q(I+1)-Q(I))/
            1(E(I+1)+B(I))*DERB(I))+THETA*((QLI(I)+QL1(I+1))/(B(I+1)+B(I))*DERB
            1
            Ci(I)=-C1(I)
            DI(I)=-2**THETA/DELTAX
            01(I)=-01(I)
            E1(I)=2./DELTAX*(Q(I+1)-Q(I))-(QLI(I+1) +QLI(I))-THETA*(QL2(I+1)+QL
    200
            OO 201 T= (I)
                    DO2C1 I=1,H
            A2(I)=THCTA/OELTAX*((Y(I+1)-Y(I))*Q(I+1)*Q(I+1)*B(I+1)*B(I+A)/(A(I
            2A(I)+B(I+1)*(IY(I+1)-Y(I))-(Z(I+1)-Z(I) )})=-5*(IB(I+1
            \*Q(I+1)*Q(I+1)/AA(I+1)*A(I+1))
            *)
            7*AYX(I+1)*B(I+1)/A(I+1)**3
            *)
            3A(I+1))
```



```
        1+1)-Q(II)*Q(I)*S(I)/(A(I)*A(I))+G/Z**((Y(I)+1)-Y(I))*&(I)-(A (I+I)+A
        3B(I)*Q(I)*Q(I)\A(I)*A(I)I-SY(I+I)-Y(I))*Q(I)*O(I)*DERBII)/(A(I)*A
```



```
            C2(I)=-C2(I)
            D2(I)=1;/(2,*DELTAT)+THETA/DELTAX* ((Q(I+1)-Q(I))/A(I)-GQ(I+1)/A (It
```



```
            2I/C(C(I)*C(I)*ARI)*A(I))-Q(I)*AYX(I)/(A(I)*A(I)位)
            E2(I)=1./DELTAX* (Q(I+1)-Q(I) )* (Q(I+1)/A(I+I)+Q(I)/A(I))+G/2.*(CY(
```



```
            2(I+1)*Q(I+1)/(A(I+1)*A(IT+1)+E(I)*Q(I)*Q(I)/(A(I)*A(I))\)+*S*(P(It
            31)*Q(I+1)*Q(I+1)/C(I+1)*C(IT+1)*A(I+I)*A(I+1))+P(I)*Q(I)*Q(I)/(CI*
            5*AYX(I)/(A(I)*A(I))
C
```

```
C
                                    UPSTREAM BOUNDARY CONDITIONS
    2п2
        00 202 I=1,100
        K1=II
C
                        STORAGE ADJUSTEMENTS
        DO 211 I=2,N
        J=I-1
        E(I)=(A1(J)*(C2(J)+D2(J)*E(J))-A2(J)+(C1(J)+D1(J)*E(J)))/(B2(J)*(C
        11(j)+01(J)*E(J))-B1(J)*(r,2(J)+D2(J)*E(J)))
        F(I)=((E2(J)+D2(J)*F(J))*(C1(J)+D1(J)*E(J))-(E1(J)+D1(J)*F(J))*(C2
        1!
    2)!
        IF(I.NE,IS) GO TO 211
        E(I)=E(J)-SAR/OELTAT
    211
        CONTINUE
        M(I)=A1(I)/(C1(I)+D1(I)*E(I)
        M(I)=BI(I)/(C1(I)+01(II)*E(I))
        IF(I.NE.IS) GO TO 212
        L}(I)=1.
        M(I)=0.0
    212 CONTINUE-(Y(I+1)-Y(I))
C
    2 1 6
    DO 216 I=1,100
    TY(I)
        T(I)=T* DELLTAT-DELTAT
    3O(I)=\overline{I*DELTAX-OELTAX}
        IF(II:NE.1) GO TO 8
    WRITE(61,914)
    14 FQRMATTIH1, 1X,\not\TIME = SECONDSt,GX,\not=DISTANCE = METRES#,6X,\not=SLOPE=
    10EGREES\not=)
    WRITE(61,1)
    1 FCRMAT{1H, 1X,\not=GEOMETRIC PROPERTIES#)
```



```
    1\not=,7X,#SLOPE OF LEFT BANK#)
    WRITE(61,4) (D(I),BW(I),RANG(I),LANG(I),I=1,N)
    4FORMAT(1H,F7,0,9X,F10.4,18X,F3.0,23X,F3.0)
        WRITE (61,5)
    5 ~ F O R M A T ( 1 H 1 , 1 X , \neq U P S T R E A M ~ B O U N D A R Y ~ C O N D I T I O N S * ) ~
```




```
    FORMAT(1H,F5.0,4X,F10.4)
    FORMA (IH,F5.0.4X,F
    WRITMATT(1HG),1X,\not=OOWNSTREAM BOUNDARY CONDITIONSF)
        WRITE (51,10
    10 FORMATI(IHC, 1X,\not=TIME\not=, 6X, FFLOW DEPTH\not=)
    WRITE (61,7) (f(I),TY(I);I=1,12)
    & WRITE (61,11)
    11. FORMAT(1H1,1X,\notGSOLUTION AT TIME T= SECONDS&)
        WRTTE(61,12)
```



```
    2OH AREAF, 2X, #WETTED PERIMETER&, 2X, FHYORAULIC'RADIUSFI
        IF(II.NE.1) GO TO 15
        WRITE(61,13)(D(I),Q(I),Y(I),QST1(I),C(I),Z(I),B(I),A(I),P(I),R(I),
    1I=1,NI
    13 FORMAT(1H, 1X,F6.O,2X,F10,4,1X,F1O,4,2X,F10.4,4X,F10.4,4X,F10.4,
    14X,F10,4,2X,F10,4,4X,F10,4,8X,F10,4)
        GORITS(61,13)(O(I),Q(I),Y(I),QST2(I),C(I),T(I),B(I),A(I),P(I),R(I),
    15 WRITE(6
    16 DELY(N)=TY(K1+1)-TY(K1)
    OELQ(N)=E(N)*OELY(N)+F(N)
        Y(N)=Y(N)+QELY(N)
        Q(N)=Q(N)+DELQ(N)
```

```
    C C
        OO \=N=T 2 I=1,H
        DELY(J) =L(J)* DELY(J+1) +M(J)*DELQ(J+1)-K(J)
        Y(J)=Y(J)+OELY(J)
        OELQ(J)=E(J)*OELY(J)+F(J)
    213
        OO 45 S I=1 +DELQ(J)
        DO(453 I=1,N
        IF(IIIEEO:I)
    453
        II=II+1
    305
    IAGAIN=0
        STOP
    END
ZASI FORTRAN DIAGNOSTIC RESULTS FOR FTNOMAIN
    NO ERRORS
IG ARE COMMON BLOCK NANES OR NAMES NOT ASSIGNEO STORAGE
    B
        E
```

```
    SUBROUTINE GEOMET(A,P,R,B,DERB,DERO,Q,AYX,AVY)
    COMMON/A/ Y(41),RANG(41),LANG(41),BN(41),II,V(41)
    COMMON/E/ DELTAXX,DELTAT,N
    OIMENSION A(41),P(41),R(41),B(41),DERB(41),DERP(41),0(41),X1(41),
    1X2(41),AYX(41),AVY(41)
    REAL LANG
    INTEGER H
    DO 3 I=1,N
    XI(I)=LANG(I)*J.C17453293
    x2(I)=RANG(I)*0.017453293
    A(I)=Y(I)*(9W(I)+Y(I)*(TAN{XI(I))+TAN(X2(I)))/2.)
    P(I)=8W(I)+Y(I)*(SEC(X1(I))+SEC(X2(I)))
    R(I)=A(I)/P(I)
    IFIIIOGE,2)GO TO 2
    O(I)=A(I)*V(I)
    2 B(I)=BW(I)+Y(I)*(TAN(X1(I))+TAN(X2(I)))
    AVY(I)=A(I)/B(I)
    DERB(I)=TAN(X1(I))+TAN(X2(I))
    OERP(I)=SEC(XIII))+SEC(X2(I))
    H=N-1
    OO4,I=1,H
    4 AYX(I)=1:/(2.*OELTAX)*((Y(I)+Y(I+1))*(3W(I+1)-BW(I))+(Y(I
    1+1)+Y(I);**2*(TAN(X1(I+1))+TAN(X2(I+1))-TAN(X1(I))-TAN(X2(I)))/4.)
    AYX(N)=AYX(H)
    RETURN
    END
```

IASI FORTRAN DIAGNOSTIC RESULTS FOR GEOHET

NO ERRORS
IG ARE COMMON BLOCK NAMES OR NAMES NOT ASSIGNED STORAGE E

```
SUBROUTINE FRICT(Y,Z,Q,A,R,C,YS)
COMMON/B/ GAM,GAMS,O35,YCR,ANU,G
COMMON/E/ OELTAX,DELTAT,N
OIMENSION C(41),Y(41),Z(41),VS(4:1),YO(41),YR(41),S(41),SF(41),
1Q(41),A(41),R(41)
K=N-1
M,
\
1 0
2TAX)
SF(N)=SF(K)
DC 11 =S =1 N
VC(\frac{1}{I})=SQRTN
YO(I)=GAM*SF(I)*R(I)/(GAMS*D35)
YO(I)=GAM% SF (I)
1 1
S(I)=VS(I)*035/ANU
YCR1=C0.2*NQRT(YR(I)
YCR2=0.01844*YR(I)**(5.19.)
YCRS=C:O7+YR(I) %*(2.%5:)
18
CONTINUE
SF(1)=SF(2)
CONTINUE
IF(YO(I).LT.YCR1) GO TO 12
IF((YD(I;.GO.YCR1),AND.(YD(I).LT.YCRZ)) GO TO 14
    IF((YO(I),GT,YCRZ).AND.(YO(I).LT:YCR3)) GO TO 15
    IF(YD(I),GT:YCR3)GO TO 16
12C(I)=2.4O*YR(I)**(1./5.)/YD(I)**(1./3.)
    GOTO17
    13C(I)=8.9
    14 GOTON17
    4C(I)=1.1E+6*YO(I)**3/YR(I)**(3./2.)
    GO 10 17
    15C(I)=6.9*YR(I)**(1./6.)
    GOTO&17
    17 CONTINUE
    RETURN
    ENO
ZASI FORTRAN OIAGNOSTIC RESULTS FOR FRICT
    NO ERRORS
IG ARE COMMON BLOCK NAMES OR NAMES NOT ASSIGNED STORAGE
    E
```

```
            SUBROUTINE SEDI(Q,A,AVY,C,CAV,QST)
            COMMON/B/ GAM,GAMS,D35,YCR,ANU,G
            COMMON/'E/ DELTAX,OELTAT,N
    DIMENSION Q(41),A(41),AVY゙(41),C(41),CAV(41),OST(41)
                                    SEOIMENT GONSTANTS
                            OGR=П 35*(G*GAMS/(ANU*ANU*GAM)I**(1.0/3.C)
        RN=0.3
        RA=:17
        RM=1.5
        RC=0:025
        GO 10 10
        402
            RA=1;23;5E*ALOG1D(DGR)
            RM=9.66/DGR+1.34
            RCC=2.86*ALOG1:(OGR)-(ALOG10 (DGR))**2-3.53
            RC=10.0##(RCC)
    10 00 11 I=1,N
        FGR=(Q(I)/A(I))*(SQRT(32.0)*ALOG10(10.0*AVY(I)/D35))**(RN-1.0)/
    1(C(I)**RN*SORT(G*O35*(GAMS/GAM)))
            Zx=RC* ((FGR-RA)/RA)**RM
            XX=ZX*((GAMS/GAM)+1)*D35*C(I)**RN/AVY(I)
            CAV(I)=XX/((GAMS/GAM)+1)
                GSTAII=ZX*D35*(Q(I)/A(I))*C(I)**RN
    1 1
    CONTINUE
    RETURN
    ENO
SASI FORTRAN OIAGNOSTIC RESULTS FOR SEDI
    NC ERRORS
IG ARE COMMON BLOCK NAMES OR NAMES NOT ASSIGNED STOPAGE
    E
```





$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$



$\qquad$

$\qquad$








[^0]:    ${ }^{1}$ Subscript $\ell$ of $q$ will be dropped henceforth and $q$ without subscript will stand for the lateral inflow of water and sediment mixture.

