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Abstract 

In this report, a mathematical model of a stream carrying sediment has been described. 
This model solves the continuity equation for the sediment-water mixture and the momentum 
equation numerically, and corrects the solution at each time step using the continuity 
equation for the sediment. This model uses an implicit finite difference approximation 
scheme to discretize the governing equations and a Double Sweep method to solve the result- 
ing system of algebraic equations.‘ The roughness characteristics of the natural streams 
are predicted using a method proposed recently by two Japanese scientists, Kishi and Kuroki. 
This method considers the effects of the various bed configurations (sand waves) present 
in natural streams in an adequate manner and also considers the flow regime and “skin fric- 
tion” characteristics. The sediment transport rate required for the model is predicted 
using the method of Ackers and White, which has been found to be superior to most existing 
methods. The model thus incorporates the most recent advances in the field of sediment 
transport and should be capable of yielding reliable predictions of the responses of natural 
streams to changes in flow and sediment inputs, and to changes in geometry due to river 
crossings, protection works, realignment, etc. The application of the model is indicated 
using a hypothetical river reach. The flow charts, the description of the input data, the 
listing of the computer program and the sample model output are also given. 

Résumé 
Dans ce rapport, nous décrivons le modéie mathématique d'un cours d'eau transportant 

des sédiments. Numériquement, ce modéle résoud l'équation de continuité pour le mélange 
sédiments-eau et l'équation de la quantité de mouvement et il rectifie la solution a chaque 
étape de temps d'aprés l'équation de continuité pour les sédiments. Ce modéle présente un 
schéma dlapproximation implicite aux différences finies pour discrétiser les équations qui 
régissent le phénoméne et une méthode de double balayage pour résoudre les équations algé- 
briques qui en découlent. On peut prévoir l'irrégularité des cours d'eau naturels par la 
méthode que viennent de proposer deux savants japonais, Kishi et Kuroki. Cette méthode 
tient compte des diverses configurations de lits (ondes de sable) suffisamment présentes 
dans les cours d'eau naturels et du régime de l'écoulement, des caractéristiques de "frette- 
ment superficiel”. On peut prévoir le transport des sédiments nécessaire pour le modéle 
par la méthode d'Ackers et de White, qui s'est révéiée supérieure a toutes les autres métho- 
des existantes. Le modéle réunit donc les progrés les plus récents dans le domaine du 
transport des sediments et doit fournir des prévisions sores sur les réponses des cours 
d'eau naturels touchant les changements de géométrie causés par les conduites sous-fluviales, 
les ouvrages de protection, le redressement. Pour l'application de ce modéle il faut se 
servir de la plage hypothétique d'une riviére. On donne aussi les organigrammes, les données 
d'entrée, le listage des programmes d'ordinateur et le rendement du odéle qui sert de 
specimen.
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Mathematical Modelling of Sediment— Laden Flows 
in Natural Streams 

B.G. Krishnappan and N, Snider 

1. INTRODUCTION 

Flows in natural streams invariably carry sediments either in the vicinity of the bed 
or over their entire cross sections. Because of this, natural streambeds are always covered 
with sand waves (ripples, dunes). These sand waves are not stationary, but move along with 
the flow, thereby introducing further unsteadiness in the basically unsteady character that 
is a consequence of the time-dependent discharges of the natural streams. Predicting the 
interaction of the sediment movements with the water flow in natural streams is a necessity 
in the field of water resources management, where one is often confronted with questions 
about the environmental effects of changes in the flow hydrograph or sediment input. 

The normal procedure to solve such problems is to build physical models in the labo- 
ratory; but with the recent advent of high-speed digital computers, there is great interest 
and incentive to replace the physical model with a mathematical one. Mathematical models 
have certain advantages over physical models. For example, physical models, because of the 
large geographical area involved are usually distorted (i.e. the vertical scale and hori- 
zontal scale are different) and are calibrated to study selected aspects of the flow. It 
is difficult to model more than one phenomenon, and flow processes such as dispersion of 
mass cannot be studied at all in distorted physical models. Such restrictions do not apply 
to the mathematical models and in general they can be used to study all aspects of the flow 
processes. 

Mathematical models of physical processes are usually the numerical solutions of the 
governing differential equations. The validity of the mathematical model, therefore, 
depends on the accuracy of the numerical methods, the adequacy of the differential equations 
to describe the natural processes and the accuracy of the various input parameters. 

In the case of free surface flows whose boundaries are rigid, the flow behaviour can 
be adequately described by “the de Saint-Venant partial differential equations of unsteady 
flow,” which were developed by Barré de Saint-Venant as early as 1871. These equations 
are derived by considering the conservation principle for mass and for the momentum of the 
flows. As the derived partial differential equations are the hyperbolic type, they are 
usually solved by using the method of characteristics and a variety of finite difference 
and finite element methods. A summary of the various mathematical models developed for



this case can be found in Ref. 1. One major problem, which is also common-to physical 

models, is the selection of the parameter to describe the roughness characteristics of the 

flow boundaries. 

For mobile boundary channels, three equations are needed to describe the sediment- 

water mixture. The third equation is obtained from consideration of the continuity equa- 

tion of the sediments. In contrast to rigid boundary flows, only a limited amount of work 

has been done in building mathematical models for mobile boundaries. The first attempt 

was by Cunge and Perdreau (2) in l973. Another attempt in the same year was by Chen (3) 

from Colorado State University. In the case of mobile boundary flow models, in addition 

to specifying the roughness characteristics of the channels, there is also a need to specify 

the amount of sediment transported per unit time as input parameter. In both of the above 

referenced models, neither the roughness character nor the sediment transport rate is 

adequately expressed. Cunge and Perdreau used a constant roughness factor in terms of a 

Strickler coefficient to express the roughness characteristics, and Meyer, Peter and 

Mueller's formula to express the sediment transport rate. Chen (3) used Manning's n to des- 

cribe roughness and used Einstein's and Tofalleti's methods to estimate the sediment trans- 

port rate. Data collected in laboratory and field indicate that the roughness character 

of the flow changes, depending on the flow regimes and the type of bed forms present at 

the bottom of the mobile boundary channels, and hence cannot be adequately represented by 

a constant value for Strickler or Manning's roughness parameters. A recent paper by white 

25 El: (9) reviewed the various existing theories for the sediment transport rate in light 

of a large number of laboratory and field data and concluded that the methods used by the 

above two models exhibit larger variation than some of the other existing methods. For 

these reasons, the existing mathematical models cannot predict the behaviour of the mobile 

boundary flows over a wide range of flow conditions and hence there is a need for further 

work in improving their predictive capabilities. In this report, a model is described 

which incorporates the most recent developments in the field of sediment transport in the 

areas of the roughness character of the mobile boundary flows and the prediction of the 

sediment transport rates. The derivation of the governing equations and the description of 

the numerical scheme are elaborated in this report to elucidate fully the underlying assump- 

tions and consequently the extent of the applicability of the mathematical model. 

2. DERIVATIQN OF Th; GOVERNING EQUATIONS 

The governing equations are derived for non-prismatic rivers with irregular cross 

sections. The velocity field of the river flow under consideration is assumed to be one 

dimensional and the pressure field varies in the vertical direction according to the 

hydrostatic pressure distribution. This implies that the river reach to be modelled should 

be reasonably straight and the vertical accelerations negligible.



The symbols and the coordinate system used in the derivation are indicated in Figure 1, 
which illustrates schematically the river cross section and the longitudinal profile. 

A-A 
Cross sectional area 

_ . 
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Figure 1. Schematic representation of the longitudinal profile and a flow cross section in 
a river. 

Sediment Continuity gguation 

F 

Let Qs be the total volume of sediment transported by the river flow per unit time. 
Q5, in general, is a function of both x and t. Let qs be the total volume of sediment 

} 

entering the river because of the overland flow, etc. and it is expressed in volume per 
1 

unit length and unit time; Considering the control volume (cv) separately, as shown in 

R 

Figure 2, and considering a time interval of At, the mass of sediment entering the control 
volume is given by (psQsAt + pSqsAxAt). ps is the density of the sediment particles, and 

QSAX 
Sediment in suspension 
average volumetric 
concentration: Cay 

Qs+_a_Q_s Ax BX 

Sediment in deposited 
bed layer porosity 
of bed layer: p 

Figure 2. Control volume to derive the sediment 
continuity equation.



the mass of sediment leaving the control volume is given by ps[Qs + (BQS/Bx)Ax]At. The 

difference between the two, which is 

(psQsAt + DsqSAXAt) - oslus + (BQS/3x)Ax]At = osqsAxAt - pS(3Qs/3x)AxAt (1) 

should be equal to the change in the mass of sediment stored within the control volume 

during the time interval At. 

The change in the sediment storage within the control volume is effected in two ways: 

firstly, by the deposition or the scour on the bed of the river, which alters the elevation 

of the river bed by an amount A2, and secondly, by the change in the average concentration 

Cav of the sediment in suspension. Assuming that the deposition or scour occurs uniformly 

over the whole bed area, the mass of sediment in a bed layer of thickness A2 is given by 

ps(PAz Ax)p, where P is the wetted perimeter at the section where the control volume is 

located and p is the volume of sediment per unit volume of the bed layer. If A2 is expressed 

as 

A2 = (32/3t)At, (2) 

the change in the mass of sediment storage due to deposition or scour is given by 

ppsP(3z/3t)AtAx-. 
' 

(3) 

The change in the mass of sediment due to the change in the average concentration of sedi- 

ment in suspension can be expressed as 

pS(3/3t) (AAx Cav)At (ii) 

where A is the area of the flow cross section at the section where the control volume is 

located and Cav is the average volumetric concentration of the sediment at that cross 

section. 

The total change in the mass of sediment storage within the control volume during At is 

given by 

ps [P(3z/3t)p 
+ (3/at)(AcaVfi AxAt. (5)‘ 

By equating (h) and (5) as 

95 [qs 
- (aqs/ax)] AxAt = pS[P(3z/3t)p + (3/at) (ACaV)]VAxAt (6)
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.. 

the equation for the sediment continuity is obtained: 

(aqs/ax) + P(3z/Btlp + (a/a:)(AcaV> = qs- (7) 

Continuity_Equation for the Sediment-laden Flow 

In this case, both the mass of water and the mass of sediment are considered together. 
During an increment of time At, the mass of inflow to the control volume is 

(pwflw + DSQS + owqwAx + psqsAx)At (8) 

where pw is the density of water, Qw is the water flow rate and qw is the lateral inflow of 
water from tributaries, etc. The value qw is expressed in volume per unit length of the 
river per unit time. The mass flow out of the control volume is 

{pwiqw + (BQW/Bx) Ax] + os[Qs + (eqs/ax) Axl} At (9) 

and hence the difference becomes 

[pwqwAxAt + psqsAxAt — pw(3Qw/3x)AxAt - ps(3Qs/3x)AxAt]. (10) 

According to the principle of conservation of mass, the difference expressed by Equation 10 

should be equal to the change of storage of mass of sediment-water mixture within the 
control volume during the interval of time At. 

The change of storage of water within the control volume during At can be expressed as 

(8/3t)(pwAwAx)At + pw(1 - p)PAzAx (11) 

where Aw is the flow cross-sectional area occupied by the fluid only, while the change of 
storage of sediment is given by expression 5. Therefore, the change in the storage of the 
sediment-water mixture is given by 

{SAW 3: 32 a 
(12) 9w W AxAt + pw(1 - p) P 5? AxAt + pSpP 3-E AxAt + ps if (ACaV)AxAt. 

Equating (10) and (12), we get



Substituting Equation 7 into Equation 13, we can simplify the latter as 

(BQW/Bx) + (BAW/3t) + (1 - P) P(3z/3t) = qw- (114) 

If Q is the total discharge, A is the total cross-sectional area and qfi is the total lateral 

inflow, then Equation 14 can be expressed in terms of Q, A and qfi. If 

Q=Qw+Q's 
A = Aw + Acav (15) 

q£= qw + qs 

and if we substitute into Equation 1%, we get 

3Q BA 32 BQS 3(ACav) 82
( __ _ _— . ._-_ ____ P _ = — 

_ 
15) 

[ax 
+ 

at 
+ 
P<ac>] [ax 

+ 
3t 

+ 
31: 

F q“ qs 

Again, using Equation 7 in Equation 16, the continuity equation for the sediment-laden flow 

can be expressed as 

(aQ/ax) + (BA/Bt) + P(az/at) = qg. (17) 

Momentum Equation for the Sedimentrlagen_FlQw 

Using the principle of conservation of momentum, which states: “the net rate of 

momentum flux into the control volume plus the sum of the forces acting on the control 

volume is equal to the rate of accumulation of momentum within the control volume,” the 
momentum equation can be derived as follows. 

Momentum entering the control volume =(OQ2/A) + Oq£UqAX (18) 

where qg is the lateral inflow, Uq is the velocity of the lateral inflow in the direction 

of the main flow, and p is the density of the sediment-water_mixture. 

Momentum leaving the control volume = Egi + E_ 3%: Ax + pq Q;Ax (19) 
A 3xA 'QA 

‘The net rate of momentum flux entering the control volume ~ 

-—-3——<pQ—2)Ax p U -9/Ax (20) 3x A ’ + qfl A '



The forces acting on the control volume are gravity, pressure and frictional resistance, 
which will be considered one by one. 

1. Gravity: The force due to gravity is the weight of the fluid within the control volume. 
If Sx is the slope of the bottom of the control volume with the horizontal, then the 

component of this weight along the flow direction can be expressed as 

pg A Ax SX. (21) 

It is assumed here that within the segment Ax the flow is uniform. 

. Pressure force: The pressure force along the direction of the flow can be divided into 
two parts: (1) the difference in the pressure forces acting on the two ends of the 
control volume, and (2) the difference in pressure force in the direction of the flow 
on the banks of the control volume due to widening or narrowing along the length of the 
non-prismatic channels. Assuming a hydrostatic pressure distribution, the first part 
of the net pressure force acting on the end surfaces of the control volume in the 
direction of this flow can be evaluated. 

The pressure force acting on the left side of the control volume is 

rp =Epg<y - n)E(n) dn (22) 

where €(n) is the width of the channel at a height of n from the bottom of the channel 
(see Fig. 1). 

The pressure force acting on the right side of the control volume is 

Fp + (arp/ax)Ax. 
(23) 

Therefore, the net pressure force acting on the sides of the control volume is 

_(:l1>AX = _(_3_) 
fl‘ o9(y - n)€(n) dn Ax. (24) 

3x 8x 0 

Changing the order of differentiation and integration using the Leibnitz's rule, we can 
express the above equation as

3 

_<5_:_F2_)Ax = [.pg(%)A 
- pg Z (Y 

._ 

n)<aa§:)> an] Ax, (25)



The pressure force acting on the banks of the channel as a result of its widening or 
narrowing can be calculated as follows. Consider a volume element within the control 
volume at a height of n from the bottom with a thickness of dn, The pressure force per 
unit length acting at any point within the volume is 

og(y - n)dn. (26) 

This normal force cancels itself out at all points within the volume except on those 
located on the banks of the channel. The unbalanced pressure force along the flow 

direction for a change in width of A5 is given by 

og(.y - n)dn A§(n). (27) 

Expressing A5 as (35/8x)Ax, and integrating over the whole depth of the flow, we can 

calculate the pressure force acting on the banks in the direction of the flow due to 

widening or narrowing of the channel as 

pg by _ U, aam) dn M . 

(28) 

o BX 

Combining these two parts of pressure force, we obtain the net pressure force acting on 
the control volume as 

-[pg A (By/3x)Ax] (29) 

. Frictional resistance: The frictional force which resists the motion of the fluid in the 

channel acts along the solid boundaries of the channel and can be expressed as 

Ff = ‘(To P Ax) (30) 

where To is the shear stress at its boundary and P is the wetted perimeter. In the 
case of a steady flow, the boundary shear stress To is expressed in terms of the 
hydraulic radius R and the free surface slope Sf as 

= 1 To pgRSf. (3 ) 

If we assume that the boundary shear stress in an unsteady flow can also be expressed 

using Equation 31, the frictional force of the control volume becomes 

Ff = -(pg Asf Ax). (32)



The rate of accumulation of momentum within the control volume can be expressed as 

(3/St) (OQ)Ax (33) 

and therefore the momentum equation becomes 

2% + 
gA(—§—)_Z(-) 

= gA(Sx - sf) + 
ql (U4 

- 
%) 2 (31+) 

assuming that the bulk density is a constant with respect to time and space. 

when the derivative of the flow cross-sectional area A with respect to t in Equation 
17 and with respect to x in Equation 34 is evaluated, the Leibnitz rule for the differentia- 
tion of the integrals should be used. with reference to Figure 1, the flow cross-sectional 
area A is given by

Y 
A = E( ;n) dn.

. g x (35) 

,
y 

Therefore BA/3t = a/atfg (x;n) an (36) 
O

y 
and aA/ax = a/axfg (x;n) dn. (37)

0 

Using the Leibnitz rule, we can express Equations 36 and 37 as

y 
%% 

= _([;G-t->E(x;n)dn + E(x;y)(%)tL) = B<-3-3/I-) (38) 

and g‘; = I <%>€(x;n)dn .+ a('x;y)(§§> = A1 + (39) 

where B is the top width of the channel, while Ag stands for the term under the integral 
sign in Equation 39, which is the rate of change of area with respect to x with depth y 
held constant. With these expressions for BA/3t and SA/Bx, the governing equations become 

aos 
P<32> 

. 

(av) (acav) 5'x—+ .5't-'p+Bcav§t_ +A "St _qs=0 

a—M<§*)~<8—Z)« 
ax 3t 3t ‘L



a<e><fl>+w<fl>= <u —Q>+<s>~ 
A at at A2 Bx, ax ’‘ f ‘Z q A A2 X (*0) 

The above set of equations governs the sediment-laden flows in reaches of natural 
streams that are reasonably straight. These equations involve five unknowns, namely the 
flow rate Q, the flow cross-sectional area A, the bottom elevation 2, the sediment trans- 
port rate Q5 and the frictional slope Sf. (The lateral inflows, 

qz 
and qs, the lateral 

inflow velocity Uq and the porosity p are expected to be known, and Ca and Q5 are related.) 
Therefore, in addition to these governing equations, two more independent relations are 
required to achieve closure of the system of equations. These additional relations are 

provided by the sediment transport formulae, which give Q5 in terms of flow and sediment 
characteristics, and the equations for the friction factor in natural streams, which express 
the energy slope Sf in terms of the flow and of the bottom topography of the channels 
resulting from the movement of the sediments. There are a number of sediment transport 
and friction factor formulae in the literature, but each of them is limited and there is 

as yet no theory that is capable of predicting the above parameters for the whole of the 
flow regimes. For the present work, the sediment transport formula of Ackers and White (4) 

and the friction factor relations of Kishi (5) are adopted, which can be considered the 

best among the currently available theories. The details of those relationships will be 

taken up later after the description of the numerical scheme to solve the system of govern- 

ing equations. The construction of the present mathematical model is such that as new 

and more complete theories on sediment transport and friction factors become available, 

they can be easily incorporated into the model. 

3. NUMERLCAL SCHEME T0 SOLVE THE SYSTEM OF GOVERNING EQUATIONS 

The governing equations of the sediment-laden flow can be uncoupled if the term 

P(3z/8t) in the flow continuity equation is considered negligible in comparison to the term 

B(3y/St). Indeed, since the top width B and the wetted perimeter P are nearly equal for 

wide channels and since the water level changes are more rapid than the bed level changes, 

it is possible to drop the term P(3z/8t) from the flow continuity equation without losing 

accuracy. By doing so, it is now possible to solve the flow continuity equation and the 

momentum equation simultaneously for one time-step independent of the sediment continuity 

equation and then to use the sediment continuity equation to correct the solution. Such 

a technique, which simplifies the solution procedure considerably, is adopted for the 

present model. 

Solution of Continuity and Momentum Equations 

An implicit finite difference scheme first developed by Preissmann (6) in 1960 is 

used to solve the flow continuity and the momentum equations simultaneously. According

10



to this scheme, a variable, say f, and its derivatives are discretized as follows: 

=2[+;:: + av] + + a] 
J'+1 _ j+i J _ J 

af _ G 
fi+1 fi 

+ ( 6 
fi+1 fi 5;" —“'/:x‘*— " ’ '"*A7* 

J+1 _ .l 
J'+1 _ J E: l[fi+1 fi+1 + fi fi 

(1,1) Br 2 At At 

where i and j, Ax and At are as shown in Figure 3 and 6 is a weighting coefficient that can 
take values between 0 and 1. When 9 = 0, the scheme becomes fully explicit and if 6 = 1 it 
is fully implicit. Cunge (7) has analyzed this scheme fully for numerical stability and 
accuracy and has shown that the scheme is unconditionally stable for values of 6 between 
1/2 and 1 and the accuracy is first order with respect to Ax for arbitrary values of G and 
second order with respect to Ax when 6 = 0.5. Cunge also indicated that for 6 = 0.5, 
“parasitic” oscillations are found in the solution that resemble the phenomenon of numerical 
instability for small values of the friction factor, and he suggested a practical range for 
6 of 0.6 to 1.0. 

t
% 

(j+1)At 

jAtH 

AX 

xfl mx (i+1)Ax 
Figure 3. Discretization scheme (finite difference schene) of Preissmann. 

)th l If we express the value of the variable, say f, at (j+1 time interval, fj+ 
, as 

a sum of the value of f at the jth interval, fJ, and a difference Af between these two, i.e. 

J” =- .l f ‘F 4’ Af,

ll



the relationships in Equation #1 can be rewritten as 

f(x;t) = %-[b(Afi+1 + Afi) + (fi+1 + fii]

V z-\ 4-‘ \.AJ \_/ 3:‘:=—‘——[e(AfM — Afi) + (fm-F9] 

The superscript for f is dropped with the understanding that F without superscript 
corresponds to the value of f at the jth time step. when these approximations are substi- 
tuted for the terms of the flow continuity equation, it becomes 

fi [e(AQi+1 + ms) '+ (Qi+l J’ Q9] [e(ABi+1 + ABE) * (Bi+1 + Bid 3;/ti:Ayi+1 + AW] 

E(Aqi+1 + Aqi) + (qi+1 + 
qifl 

1% = 0. 
V 

(44) 
mi- 

Rearranging the equation and neglecting second+order terms like (Af/f)2, Af Ag, we can write 

Equation #4 as

~ 

"’iAVa+1 J’ biAQ;+1 = °iAVi ‘“ diAQi "L ‘*1 0'5‘) 

where 

3 =[___.._“i+1 

i 
Bi] _ e [____‘.’i+1’tQi]‘i_-B + 9 

____“i+1 
" “i 18. 

I ZAI AX Bi+1 4‘ Bi Bi+1 4'’ 
C4.‘ 

2e 
bi " 

‘A3? 

C = _[Bi+1+ 31] + [QM ‘ Qi]g3_ _ 6 
‘‘i+1 '' 

‘ii 

gig‘ 
i 2At Ax 3i+1 + Bi dy 

3 Bi+1 + Bi dy 
i (46) 

29 
di ' A_x’ 

- _ .2 _ 
e'i ' K (Qi+1 4' (qi+1+ qi) + e(Aqi+\-1+ Aqi) 

1Subscript Z of q will be dropped henceforth and q without subscript will stand for the 
lateral inflow of water and sediment mixture.
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The derivative (dB/dy) appearing in Equation 46 can be evaluated if the steepness of the 
banks of the stream is known. 

in the momentum equation and after lengthy algebraic manipulations we can arrive at an 
equation similar to Equation 45 

; a 2 z ; 

\ ai AYH1 J’ b AQH1 =* Ci A‘/i + di AQi + ei ll”) 

where 2 2 
a’ = e_ _Bi+1Qi+1( _ 

) 
i+1Qi,+1(Q _ Q) 

I x As i+l Vi’ 
A2 i+1 a 

i+1 Hi 

I 

In a similar fashion, the approximations expressed by Equation 43 can be substituted
l

l

V

l 

l 

l 

l

l 

2 2 -192 Ql+1< —y>+'+1°i+1+BiQ‘ 
2 2 ‘+1 l 2 2 dy ‘+1 Ai+1 Ai+1 Al 

2 2 2 

+ %_ dz Qi+] n+1 Qi+i 1+1 + 2 
Qi+1 1+1 Ay 

2 x dVp.+1 Cl+1Ai+1 Cl+1 A?+1 A?+1 '+l

9 
') ' 

; Bi(Vi+1 

Q2 B Q2B 
1 i+1'+1 " dB ' 

Z: 
' 

Y: + Zs+1)' (Ai+1+Ai)l ' §[T—l_+T|\g_"; 
I i 

i i+l 

Q? P.Q?B. cm. 

i 
cf/A; c§A§ / A? X:



, l Q. Q. 
e. = _ __ [+1 _l__ g 

I 

Ax %(Qi+1 
_ Q” 

[X:::. 
+ 

Ai] 2 [UH+1 + Ai)(yi+1 + 

1 B. ? . ? 
Zi+1 - Vi - Z1) - _. _JilEL:_l ’+ B'Q' 

( 
- 

)
_ 

2 A2 A2 Vi+1 Vi 
. i+l l

2 

l{<Pi+1 Qi+‘1 + 
Piol )_(0‘l+1)Ay _<E:)Ay (48) 

2 C: 

In the derivation of Equation 48, the frictional slope Sf appearing in the momentum 
equation has been expressed in terms of the flow parameters and the friction coefficient 

C as follows: 

The friction coefficient C stands for the ratio between the average velocity v(=Q/A) and 

the shear velocity v*(= ¢gRsf ) and can be related to the Darcy-Weisbach friction factor f 

by the following expression 

f = 8/C2. (50) 

Furthermore, the velocity U of the lateral inflow is assumed to be of the same order 

of magnitude as v and hence the term qz [Uq — (Q/A)] appearing in the momentum equation is 

also dropped. 

Equations #5 and #7 give rise to a system of two (N - 1) linear equations involving 

2N unknowns, namely AQ1, AQ2, AQ3 ... AQN and Ay1; Ayz, Ay3 ... AyN, where N is the number 

of grid points along the length of the river. with two known boundary conditions (one at 

the upstream boundary and the other at the downstream boundary for the subcritical flows) 

the number of equations matches the number of unknowns and the system of-equations can be 

solved using any one of the available standard methods. In this work, the “Double Sweep 

Method“ (8) is adopted, which is the fastest of the available methods. The number of 

elementary operations (and consequently the computer time required) necessary to solve the 

system of equations by this method is proportional only to the number of points N, whereas 

the number of operations required by the existing standard methods of matrix inversion is 

proportional to N3. A detailed description of the operations involved in the Double Sweep 

method is given in the following subsection.



If we assume that for any point i (for a particular time step j) the following linear 
relation holds between Ayi and AQi, i.e. 

AQi = EiAyi + Fi (51) 

then it is possible to prove that an analogous linear relationship also exists for the next 
point i + 1. Indeed, substituting Equation 51 into Equation #5 we get 

aiAyi+1 + biAQi+1 = GiAyi + di (EiAyi + Fi) + ei 

from which Ayi can be evaluated as 

AV: = (LiAyi+1 + ”iAQi+1) ' 
Ki 

where Li = Ai/(Ci + diEi) 

Mi = bi/(Ci + diEi) 

and K. = (ei + diFi)/(ci + di + E3) 

Similarly, substituting Equation 51 into Equation 47, we get 

a.’ Ayi+1 + bi’ AQi+1 = (ci’ + di’Ei) Ayi + (d.’ F. + e.'). 

(52) 

(53) 

(55) 

when the value of Ayi as given by Equation 53 is substituted into Equation 55 and the terms 
rearranged, the latter becomes 

AQi+1 = Ei+1 AYi+1 + Fi+1 

where E = 
ai(°i’ + di Ei) ' ai’(°s + diEi) 

:+1 * 

, , , 
bi (ci + diEi) - bi(ci + diEi) 

and F 
(ei‘ + di’Fi) (Ci + diEi) . (ei + dipi) (ci' + di'Ei) 

i+1 
” ” ‘ 

bi’(ci + diEi) ' bi(ci’ + diEi) 

Therefore, by expressing the upstream boundary condition in the form of Equation 51 the 

(56) 

values of E1 and F1 can be evaluated. If E1 and F1 are known, the values of E2 and F2 can
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be found using Equation 57. By repeating this procedure, the values of E3, EA, E5...

N 
condition to evaluate AyN and, EN and FN are known, the value of AQN at the downstream 
EN and F3, F4, F5 ... F can be found (Forward Sweep). If we use the downstream boundary 

boundary can be determined. Since AQN and AyN are known the value of AyN_1 can be evaluated 
using Equation 53. Since EN_1 and Fn_1 are known, it is possible now to determine AQN_1 
By the repeated application of Equation 53 the unknowns AyN_2, AyN_3... Ay1, AQN_2, 
AQN_3... AQ1 can be computed (Backward Sweep). 

Since the initial condition provides the values of y1, Y2--- YN and Q1. Q2, Q3... 

QN, the water depth and the flow rates at all the grid points along the river at the end 

of the time step can be obtained by simply adding the above solution to the initial condi- 

tion. A flow chart description of the Double Sweep method is given in Figure 4. 

The application of the Double Sweep method, therefore, requires the evaluation of the 
coefficients E1 and F1 from the upstream boundary condition and AyN from the downstream 

boundary condition. The various possible boundary conditions and the evaluation of E1, F1 

and AyN are considered in the next two subsections. 

Evaluation of E1 and F1 from Upstream Boundary Condition 

There are three possible ways in which the boundary conditions can be prescribed: 

(1) ‘the flow depth y1 is known for all time: 

i.e. y1 
= F1 (t); (53) 

i.e. Q1 = F2 (t); (59) 

and (3) the flow rate Q1 is expressed as a known function of the flow depth: 

i.e. Q1 = £3 (y1). (60) 

(2) the flow rate Q1 is known for all time: 

Each of the above conditions is considered separately for the evaluation of E1 and F1. 

Case 1 
- When the boundary condition is expressed as in Equation 58, it is possible 

to compute Ay1 as 

Ay = f1(t + At) - f1 (t). (61)
1
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Compute E. & F. 
from upstream 
boundary condition

7 

Compute coefficients Li , Mi, K; 
and EH1 and F; +1 and store 
(use equations 54 and 57) 

i=-i+1 

Compute AYN from 
downstream boundary 
condition.

7 

Compute AQN7= EN A N + FN 
YN j+1= YNJ +A YN 
QN “’1= QNJ+AQN

7 

Compute Avg: LiAYi+1=Mi AQi+1+ Ki ; 

AQ.i=-EiAYi+Fi; 
J*1 and j-I-12 

“‘*‘ @ ‘=‘ @ 
Figure 4. Flow chart for the Double Sweep method.
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The Equation 51 corresponding to the upstream boundary can be written as
\ 

A0, = E, Av, + F (62)
1 

which can be rearranged as: 

Ay1 = iAQ,/E1) - (F,/E,)- (53) 

Since Ay1 and AQ1 are, in general, independent parameters, the above equation can be consid- 

ered to be valid only or large values of E1 compared to AQ1 so that the first term on the 

right-hand side of Equ tion 63 approaches zero. By equating E1 to a very large value, say 

a, we can determine the value of F1 using Equations 61 and 63 as follows. 

F = — oL[f'1(t + At) - f1(t)]. (61+)
1 

In practice the value of a should be of the order of 10” to 105. 

Case 2 - when the boundary condition is given by Equation 59, the value of AQ1 can 

be evaluated as 

AQ1 = f2(t + At) - f2(t). (65) 

Since AQ1 and Ayl are independent quantities, the relation connecting them (i.e. Equation 62) 

could be valid only when E1 = 0. Therefore, F becomes
1 

F] = AQ, = f2(t + At) - f2(t). (66) 

Case 3 - when the boundary condition is given by Equation 60, which is termed as the 

rating curve and is unique only under special circumstances, AQ1 can be 

expressed as 

AQ = Q - Q (67) 
' lt+At lt 

By evaluating Q1 and Q1 using the rating curve f3, we can show that 
t+At t 

3f (Y ) 8 
AQ1 = 3 1 Ay1 (6 ) 

3Y1 t~ 

Comparing Equations 62 and 68, we can see that 

_ 3f3(~/1) 
E1 — ———————— 

By,



Evaluation of AyN from the Downstream Boundary Condition 

Case l - when the downstream boundary condition is expressed as yN = g (t), the value
1 

of AyN can be computed as 

AyN = g1(t + At) _ g1(t). (69) 

Case 2 - when the downstream boundary condition is given as QN = gzlt), AQN can be 
calculated as AQN = g2 (t + At) - g2(t), and since at the downstream boundary 
AQN and AyN can be related by Equation 51 as 

AQN = ENAyN + FN, (70) 

the value of AyN can be determined as 

_ [g2(t+At) ‘ 92(t)]‘FN 
(71) A)/N - --—--*-;EE‘—————“ '

. 

Case 3 - when the downstream boundary condition is expressed in the form of a rating 
curve, i.e. QN = 93(YN), we have 

_ 393%) AyN. <72) AQN By N
t 

Using Equation 70, we can evaluate AyN from Equation 72 as

F AyN=___'L____ 
Bg3(YN) _ EN (73) 
By N 

Solution of Sediment_Continuity Equation 

Evaluating E1 and F] from the upstream boundary condition and AyN from the downstream 
boundary condition the Double Sweep method described earlier can be used to solve the flow 
continuity and momentum equations and obtain the values of the flow depths and the flow 
rates at all the sections along the length of the river at the end of the first time step 
(i.e. at t = to + At; to corresponding to the time when the initial conditions are given). 
If the flow conditions at to and at to + At are known, the sediment continuity equation can 
be solved, in order to correct the flow condition at to + At as follows.
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The sediment continuity equation can be rearranged as 

SQ By BC . 

{la +Bcav(:a:>l+ liar“)-«ell. 

Using the approximations expressed by Equation 41, Equation 74 can be discretized as 

J+i i+i 
_ . 

A: 6 Q5. - Qs. 
AZ. - " 2 -2- .— |+1 | I” P 2 e + 

AX 

QJ _ QJ 
5- 5- . . . . 

|+[!X‘ V 
I’ + -6. + 

x 2 1+1 avi + 
I av. 2 

J J I J 1 J+1 J+l . 

'

J 
<Bi+1cav,2r1) 

+ Bicam] + W [9<Ai+-1 
J’ A1 >+ (W) (“iii + 

Al) 
I I

‘ 

J” - VJ. 
. 

.J*‘ _. 5 _ 2 J” J” ___"9 -1 VJ‘ _» 

<§i+1 Yi+1 + Y; yi>] [2 <qsi+] 
+ 

qsi 
+ 

2 qsi+1 
T 

Clsi 
- Azi 

From the boundary condition for the bed elevation at the upstream the quantity A21 can be 

evaluated as 

. 

1 
. H 

Azi = z§* - 2? f (75) 

and hence the quantities appearing on the right-hand side of Equation 75 are completely 

specified once the quantities QS and Cav are known. (The method For the evaluation of 

Q5 and Cav will be taken up in the next subsection.) Since Az1+1 is known, the bed eleva- 

tions at the time to + At can be obtained as: 

3+1 _ J 
.- 

Z1+1 ‘ Zi+1 + AZi+1. R 
(77) 

The flow depth at time t = to + At is corrected using Azi+1 as 

j¥] * _ f+] 
Vi+1 ' Y1+1 

' AZ;+1~ 

where y%:: 
* 

is the corrected flow depth after consideration of the sediment continuity 

equation. It is assumed that the computed flow rate Q%:: at to + At does not change siga 

nificantly due to the consideration of the sediment continuity equation during the inter- 

val At. However; the change in the Flow depth will result in changes in the flow cross- 
. 

"1 
. 

' 
. .. "1 

. 
‘+1 

sectional areas A€:1, wetted perimeters P€:1, hydraulic radii R{:1, the Widths B€+1 and 
1+1 
[+1. Using these new values for the above parameters, the the friction coefficients C
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flow continuity and the momentum equations are solved again for another time step and the 
procedure outlined above is repeated to correct the solution. This process is continued 
until the required number of time steps is reached. A flow chart describing the above com- 
putational steps is shown in Figure 5. The subroutine ”Geom“ calculates the geometric 
parameters A, P, R, B, A: (dB/dy), dP/dy. The subroutine ”Frict” calculates the friction 
coefficient C and the subroutine ”Sedi” calculates the sediment transport rate QS and the 
average concentration Cav 

Sediment Transport Rate Q
5 

The sediment transport rate Q5 has been predicted using a new method proposed by 
Ackers and White (4). This method has been found to be superior to the most commonly used 
methods such as those of Einstein, Meyer-Peter and Muller, Bagnold, Toffeleti, Rottner, 
Engelund and Hansen, Biship, etc. (see Ref. 9). The computations involved in this method 
are listed below. 

1. Since we know the grain size distribution and hence D35 (grain size for which 35% 
(by weight) of the sediments is finer), the submerged specific weight y;, the specific 
weight y and the kinematic viscosity U of the fluid, a dimensionless number Dgr is 

calculated as 

D = D 7 

2 1/3‘ 
gr 35 (QYS/YU ) (78) 

2. Depending on the value of Dgr, the sediment transport is considered in two different 
modes. when Dgr is greater than 60, the sediment is considered to move as a bed load 
and when Dgr is in the range between 1 and 60, it is considered to move both as bed 
load and suspended load. The case when Dgr is less than 1 occurs only for cohesive 
sediments and hence is not considered. 

3. . The general transport function proposed by Ackers and White (4) is 

= _ m cg, afirgr/A) 1] 
. (79) 

4Xy V: 
where Ggr '= (80) 

VZYI/2 1-n 
and F = " (81) 

gr VysgD 2.46 ln (lOy/D35)
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and a, A, m are constants. The symbol X in Equation 80 stands for the concentration 
of sediment by weight, i.e. the mass flux of sediment divided by the mass flow rate. 
The exponent n appearing in Equations 80 and 81 and the constants a, A, m take the 
following values, depending on the value of Dgr 

when Dgr is greater than 60 

= o.oo 
= 0.17 
— 1.50 (82) 
= o.o25 

$23293 I 

and 

when Dgr is in the range between 1 and 60 

n = 1.00 — o.2h ln (Dgr) 
A = (0.23/mgr) + 0.14 
m = (9.66/Dgr) + 1.3h 

and u = exp {[2.86 ln(Dgr) — ln(Dgr)]2 /(2.303 — 8.130)} 

Therefore, once Dgr 
80 and 81 the value of X can be calculated. when the volume flow rate and the specific 

is known, the values of n, A, m and a are known and using Equations 79, 

gravity of sediments are known the volume of sediment transported per unit time (Q5) can 
be calculated. 

Friction Coefficient C 

In alluvial streams, the bottom topography changes as the flow changes and the pre- 
diction of the friction coefficient in such streams is the most difficult task encountered 
so far in the field of hydraulics. Many researchers have attempted to solve this important 
problem, but none of them have succeeded in developing a general method that could be applied 
over the whole range of flow conditions. Some of the methods available in the literature 
were developed by Einstein and Barbarossa (10), Garde and Ranga Raju (11), Engelund (12), 
Alam and Kennedy (13), Kikkawa and Fukuoka (5), and Kishi and Kuroki (5). Among the me- 
thods listed above the one by Kishi and Kuroki takes into account all the governing charac- 
teristic parameters and compares fairly reasonably with the measurements (see Fig. 6). 
For the present work the method of Kishi and Kuroki is adopted to predict the friction 
coefficient. 

Kishi and Kuroki considered the bottom topography in terms of six different geometric 
forms. They are dunes I, dunes II, transition 1, transition 11, flat bed and antidunes. 
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Figure 6. Comparison of calculated values of C with experiments (after Kishi and Kuroki, 
re.f. S) . 

The equations for the friction coefficient» C for these bed configurations are 

/\ 

/-\ 

/5 

/-\ 

2-‘ 

\l‘I 

J2‘ 

U) 

‘N3 

'—I 

\/ 

\/ 

\./ 

\/ 

for 
for 
for 
for 
for 

The criteria 

dunes I , 

dunes I I , 

transition 1; C 

flat bed, 
a_n_ti dunes , 

C i 2_4Z1/6y-1/3 
C= 8.9 

= 1.1 x 1o6z"3/2y3 (84) 
c = 6.92‘/6 
C = 2.823/10y-I/3 

for the occurrence of the various bed configurations can be stated as 
follows: 

(1) for dunes I, v. < 0.022‘/2 

(2) for dunes ll, Y = 0.0221/2 

(3) for transition 1, 0.0221/2 <“ Y < 0.0225/9 (85) 

(ii) for flat bed,— 0.0225/9 < v < o.o7z2/5 
‘and (5) "for antidunes, Y < 0.0722/5 

In the above equations the symbols Z and Y stand for the following dimensionless 
Igroups consisting of flow and sediment characteristic parameters; 

= R D 
/235 

:} Y — pU.*/YSD (86,) 
.1

> 

‘The values of Z and Y are evaluated at each time step from the computed flow parameters. 
Using Equation 81+ and the values of“Z and Y, we can predict the values of C.- These C values . 

are. then used to solve the equation for theinext time step. 
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Storage Basins 

If the river reach to be modelled includes a storage basin, the coefficients E, F, L, 

M, and K have to be modified at the sections enclosing the control volume, to which the 
storage basin is assumed to be connected (see Fig. 7). The modifications required for 
these coefficients are made as follows. 

Storage 
Basin 

Qb

I 
I 

I

I ‘> 
| 

—-———> 
I 

I

I 

—_...._.____i 

.____.__._... 

u-——_...._.__.._
A 

i-1 ;. —L i+2 

Figure 7. Schematic representation of a storage basin present in a river reach. 

It is assumed that the water surface elevation at the storage basin (yb) and that at 
the river section (yi) are the same, i.e. 

n+1 n+1 _ n+1 
Vi 

' 
y1+1 ' Yb ° (87) 

The continuity equation between sections i and i+l can be written as 

n+1 _ n+1 n+1 

where Qb is the discharge rate from river into basin or vice versa. Considering the con- 
tinuity condition for the storage basin itself, we can write 

_ +1 
(Ab/At) Mb ‘ Q: (89) 

where Ab is the water surface area of the basin, which is a function of yb.
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Substituting Equation 89 into Equation 88, we get 

AQi+1= <0’? — Q“
) 

I i+1 
+ [AQi - (Ab/At)]. 

Equation 87 can be expressed as 

F1 F1 

Vi + AVi = Vi+1 + AVi+1 

which can be rearranged as 

= n _ n 
AV: AVi+1 + (Vi+1 Vi)‘ 

Using Equation 92, we can express AQi in Equation 90 as 

_ n _ n 
AQi ‘ Ei [AYi+1 + (Vi+1 Vill + F: 

and hence we can write Equation 90 as 

I1 

Ac”, = 
[E-A, 

— (Ab/At,)] mm + [E.('yi+1 — y?) + Pi + Q? 

Thus the values of Ei+1 and Fi+1 become 

Ei+j Ei - (Ab/At) 

. 
I"! n 

Fi+1 Ei(yi+1 "V') + F: + Q? ‘ 
Q?+1

n 
Qi+«l:l‘ 

(90) 

(91) 

(92) 

(93) 

(94) 

The values of the coefficients Li, Mi and Ki can be obtained by looking at Equation 92, which 

yields 

h. APPLICATION OF THE MODEL FOR A HYPOTHET|CAL RIVER 

(95) 

To test and debug the computer program performing the various tasks of the model des- 

cribed so far, a river reach with the geometric characteristics shown in Figure 8 is chosen. 

As can be seen from Figure 8, the river reach includes both storage basin and a tributary. 

The length of the river reach is 2.hh km. It is divided into 20 equal segments each 122 m 

long. The initial condition for the flow rate and flow depth is shown in the computer out- 

put corresponding to T = 0. A constant inflow of h2.38 m3/s is taken as the upstream bound-
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ary condition, whereas a constant depth of 2.29 m is assumed to yield the downstream bound- 
ary condition. The flow cross sections are approximated as trapeziums and hence the bottom 
widths and side angles are used as input parameters to describe the geometric parameters. 
The various control constants used in this program are listed below: 

INFLOW: o, no lateral inflow from tributaries 

, n, number of tributaries 

IS: 0, no storage basins present in the river reach 
N, location of the storage 

ISED: o, river bottom is considered to be rigid 
, river bottom is composed of sediments 

‘ 
. The description of the input data cards, the listing of the computer program and a sample 

output with line printer plots are given in the Appendix. 
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Figure 8. Profile and cross sections of the hypothetical river reach.
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5. SUMMARY 

A mathematical model describing the flow and sediment transport characteristics in 

natural streams has been presented in this report. The governing equations are derived 
from first principles in order to understand the simplifying assumptions better and conse- 
quently the limitations of the model. The numerical method and the solution techniques are 
also elaborated. ‘The methods to predict the sediment transport rates and the friction 
coefficients in alluvial streams which are used in the present model are described. Finally, 
the application of the model for a hypothetical river reach is indicated. 
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APPENDIX 

The data cards are read into the program in the following order. 

Card 1 

N = 21-- number of points of initial data 
INFLOW = 1, indicates presence of tributary 
IN = 11, location of tributary, must be equal to 1, ..., N 

INT = 800, time tributary inflow begins,s 
IS = 12, location of storage basin, can be 1, ..., N 

ISED = 1, indicates presence of sediment 

Card 2 

THETA = .66, weighting coefficient varying .5 < fig; 
DELTAX = 122, distance between sections, m 
XLENGH = 24b0, total length of channel, m 
G = 9.81, gravitational acceleration, m3/s 
QIN = .06, flow rate of tributary inflow, m3/s 
QSED = .0001, flow rate of lateral sediment inflow, m3/s per unit length 

SAR = 930.25, water surface area of storage basin, m2 

Cards 3 - 5 

These cards are the values of depth at time zero at evenly-spaced points beginning at 
the upstream boundary. Twenty-one values of depth are specified in metres. 

Cards 6 - 8 

These cards are the values of velocity at time zero at evenly spaced points beginning 
at the upstream boundary. Twentyione values of velocity are specified in metres per second. 

Cards 5 - 11 

These cards are the values of bottom width at time zero at evenly spaced points begin- 
ning at the upstream boundary. Twenty-one values of bottom width are specified in metres. 

Cards 12 - 14 

These cards are the values of the right slope and left slope of the channel sides at 
time zero at evenly spaced points beginning at the upstream boundary. Twenty-one values of 
right slope and 21 values of left slope are specified in degrees.
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11. 

12. 

13. 

Gafde, R.J. and Ranga Raju, K.G,, 1966, Resistance relationships for alluvial channel 
flow. J. Hydraul. Div., Proc. Am. Soc. Civ. Eng., Vol. 92, No. Hy4. 

Engelund, F., 1966. Hydraulic resistance of alluvial streams. 
Am; Soc. Civ. Eng., Vol. 92, No. Hy2.' 

Hydraul. Div., Proc. 

Alam, M,Z. and Kennedy, J.F., 1969. Friction factors for flow in sand bed channels. 
Hydraul. Div., Proc. Am. Soc. Civ. Eng., Vol. 95, No. Hy6.
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~.,...r.,v_.._.__. 

V

, 

Cards 15 - 17 

These cards are the values of the bed elevation at time zero at evenly spaced points 
beginning at the upstream boundary. .Twenty-one values of bed elevation are specified in 

metres . 

Card 18 

GAM = 1000. specific weight (submerged) of sediment, N/ma 
GAMS = 1650. specific weight of sediment, N/ma 

D35 = .0003 grain size of average sediment, m 
YCR = .0h critical mobility number 
ANU = .1 x 10-5 viscosity, m2/s 

Card 19 

PORS = .8 porosity
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UPSTREAM BOUNDARY CONDITIONS 

K1*1)-T0(K1) 
STORAGE ADJUSTEMENTS 

T 
)+D1(J)*E(J)))/(B2(J)*(C 

> x 
* J 

.n. 

7.: 

n..T. 

1. 

(01.7. 

1.4.: 

.7 

:0 

2 . 

\l\l|l+ 

T.T...JT.) 

CC 

CCC 

\l, 

\I 

T. 

) 

II 

J

E

(

¥ 

Y 

\I 

—

I 

‘I 

1| 

1

1 

.7

D 

J 

.7 

ll 

11 

V! 

II)I 

1| 

|I\Il\ 

¥. 

II1 

\l 

‘(C

J 

t,;....( 

1.. 

.4 

1,

/ 

E 

sl\r\l 

.0. 

T...l.Il 

\! 

1 

\J 

l\l\Tn:/_ 

\l 

IATJ 

11(1 

T... 

A/..AH:\ 

DDFAC 

4|. 

TF 

.0. 

.9? 

V. 

OL‘ 

\I\I\I0

. 

Tn...’ 

IITLT

) 

01 

l.\l\:\

1 

0/+ 

1110

+ 

GRJ 

CCDG

I 

Alx 

H(l.L. 

It 

)Snu 

9.//II) 

VI 

8.
. 

1),T.s 

1| 

I’) 

2 

TLTLl\T.._

. 

aJJ..tT...\(4.. 

ofiununz... 

E.:l:\U 

1..1._..._:...

9 
9 

4U 

NE.QN7.AnDu(N1.P....UN 

9.. 

:T.1.: 

: 
: 
9: 

: 
:T. 

I’)T2),)I)))T 

(T.T.N 

T.T.T.l.T.T.T.N

0 

._.l.:\l..J.lF 

l.(.nUnu(!.-KC. 

((110 

DJE1F()IEFCDLMKILMKC

1 

12 

1..

2 

1 

.4... 

7..

2 

K 

EL 

9

9 

= 

N 

Mr... 

\I

) 

A 

T..¥ 

T.

9 

T... 

_,.. 

B 

Wu 

9 

I. 

1.! 

II 

D. 

nix 

R
9

R 

0 

T 

S7.

9 

PJ

9 

L 

H 

t 
9 

\l 

1 

\I 

S 

G 

91

I

F 

T. 

.2. 

.1. 

VAH 

la 

9 

l\

9 

cm 

279 

P
X 

D. 

X 

90

9 

5

9 

6 

F 

‘I 

)

9 

\l

9 

0 

HH 

T. 

.4 

T. 

Z. 

T. 

I: 

l\ 

0 

l\ 

S 

2.. 

PO.‘ 

A

0

A 

C. 

D. 

-205

9 

1
_

9 

R 

0 

DTU 

I. 

F 

ii 

T. 

L 

4...]. 

T.

9

I 

2.. 

S 

H 
90 

II 

VA 

II 

My. 

.1 

.1 

.1 

\I 

OXA

B 
16

8

9 

N 

.1 

.1 

LZR 

9

9

9 

: 

VA 

9 

\I 

S

S 

F 
9 

In 

H. 

\.. 

7 
1. 

2.

N 

D 

110 

T.

o 

.1.

S 

E

9 

..

) 

S 

0 

N 

9NT. 

1.. 

nu 

.1

N 

C 

1 

I9 

N

I 

O 

XOL 

Z 
1

Z

0 

N 

H

9
n 

O 

T 

C 

ZIU

9 

F

9 

T.

A 

T 

)3 

T. 

T. 

E 

ofnnn 

.9

9 

9: 

T 

T 

D 

IF 

T 

D 

S 

+rAD, 

T. 

VA 

.1. 

T. 

S 

T. 

l.

9 

T. 

N 

c._V.U 

I\ 

7. 

l. 

D 

I 

s! 

MW 

GX 

D 

0 
\l 

.l—.....Vu 

C
9 

AU 

N 

3 

.2. 

N3 

N 
\I 

C 
4» 

An..LH

9 

H.)

9 

0 

4.. 

S 
M... 

A2 

0 
3. 

H 

R51 

st 

91.»,

) 

C

9 

F. 

0 
.L

9 

C 
E 

Y 
..I 

..

9 

T. 

n.. 

o 

T. 

X 

T. 

T 

on. 

.1 

R 
D. 

.l 

WHX

( 

1.0 

.1 

Y. 

:0 

T. 

T. 

.\I

I 

Va 

A 

A 
.5 

002

1 

C};

2 

R

9

R
0 

I3 

0.. 

R) 

D 

D)

5 

LT

9 

T 

9.... 

..I 

A 

4+

E 
B 

(F

A 

7. 

N 

7. 

Mn 

FTLI 

S 
X
9

S 

D

S 

D. 

3 

G
9 

0 

W1. 

U 

W1. 

T. 

.10.R 

0 

1x

Q

N 

mu 

0

9 

NX 

N 

0
9 

O 
0
9 

T 

93.2 

9 

98

9 

U 

N 

R 
X 

A3 

U 

L1

B 

L1 

Xtpol 

\I 

.3.

9 

\.

O 

0

P 

7)R1 

O 

F: 

F:

T 

295

I 

.4

I 

8. 

C 

94>

9
9 

3 

IT.) 

M. 

4:1. 

A 

9XM. 

:\ 

U 
0 

In 

‘I 

.2 

C 

tK)I4 

9 

9.8. 

A 

9
9 

17.31. 

V: 

10 

V:

N

M 

S

I 

ENIo 

M 

X). 

E 

X) 

N 

E9R

9 

F1

9 

)( 

A 

9. 

cA.(fl~

A 

;OT.nu 

R 
..OT. 

0 

C4r.p. 

\I 

9...: 

\: 

4...... 

5.. 

: 

T 

NBH1 

C. 

9l.1 

T. 

9.! 

T. 

NND. 

T. 

X
9 

T. 

K.v 

R 

.l.X 

E 
A 

3.... 

P\ 

tQF 

S 
.I.Y 

T. 

A0 

5!. 

?.X 

:\ 

Ix) 

T 

Anna 

C. 

M. 

T.T

9
9 

T. 

:2...

9 

N 

...:V 

U 

.lT.D4LnU 

914 

Q 

V..N 

5 

TL! 

Mn 

0 

a\:.?\IvA 

S 
M.. 

9vA 

W 

M
9 

.L 

STE

9 

0
9

9 

Tu‘

. 

N 

.L_L0 

T. 

F. 

T:t.....9 

P 

....\::W 

3 

T.) 

O 

T.CT.0.l 

oh. 

.1

_ 

V.\.\..

W 

F,.....T 

.l 

G 

DLI.

9 

U 

TT.

9 

0 

TT. 

3 

n.T...\.lT. 

6 
o 

T. 

\rL.NN 

0 

D3 

.1. 

.3 

i 

90 

1 

4.1.0 

1 

tr. 

.1 

tRE 

:\ 

F0 

l. 

1F.l..l.

D 
0 

. 

.0 

9 

9 

9F( 

o 

9 

9T: 

9

9 

9T. 

9 

9C.Wnunu 

94... 

U 

L.n.VuQ

D 

TXG 

VA 

VA 

X0 

7 

X 

X.(5 

X 

vA.l\ 

X 

X.....z.G( 

VAC» 

l\ 

.1... 

LL

1 

AA 

‘.1 

1. 

4... 

F 

4..

1 

F 

1,1 

\..4.¢\I1. 

9 
9 

\l 

4..

9 

\I 

K)EE

9 

T.Tu\I:.w

9

, 

9) 

9..t\: 

9.) 

9) 

9) 

9) 

sun. 

9.11. 

92 

9XX\isO 

9X 

3 

(N00 

41OJNnL..L1a4..4.. 

1 

23914 

51657 

9318711192211 

2 
4.. 

V..l\.f.f 

._./..9t...r.o9H\r9H9H01H.9H9H9H9H9H99H9H99o9 

H9 

9 

.|..:.l\l 

TL 

u4..Dflu_..1.1.¢14..1.1.L.4..4.4..4..4..1.1.1.4..4,.4L....1.11.4..4..f‘E1 

4...1.9;DAL 

: 

:N.N 

7...... 

4,N6(S5‘rD(Q...OlnnDl.»O:lrO1\rbl.,Ol\rDpOl\aO:\~tAnN£u 

ll 

916 

\.|rl..al 

rC__T._.T:l. 

9(Tar».(T:l\T:4t(Yz1lT!l...ll\_...l:|T..l\.T.:ll\.I.l\TnTt—.p.. 

O.(\nvl0 

ll\lNNV-Q 

1.) 

= 
: 

T.:..AC:._A._.._flA 

9ptAA_._.AM_....“E..An_.r.An._,_AH—_.._.r.AH..n_AART.EuN,A4..oP...Nall. 

2 
__ 

2I3))ITMRTMTMXTMTMTMTMTMTMTTMTMRAIT9MFTT9YQ))

( 

IT.(T.RG.T.DwT..K7T.R....RT.RIRT.nKIRT.T.RIR 

(T.4.nK9 

T.1.LLNN 

0v.0(:\...rRnuF.RConO 

9R.nuRUnK0.R0.D..C.R0RR0.K0THFnK..0XnuR..........:I.l. 

nUTDT:U.1.NFnUN...rN...r4»W..rWc.nW..rNFWE.nnrrNWrr.NFN0.T.uHT.—.rh.rUunT.nUDV.Q 

1 

1

, 

1.2 

1. 

1.

1 

.D3:.»1.?....~.5679.nUoo1../. 

355 

1. 

4. 

1. 

1 

1. 

4.. 

1

1 

3'4



NEW FLON OEDTH AND DISCHARGE CCC 

‘DELY(J*1)+H(J)*DELQ(J+1)-K(J) 
LY(J) *DELY(J)+F(J) 
LQKJ) 
GO TO #53 

slrC\I—P.N 
JUJD 

1)) 

l\ 

L‘:-s§.4w.1T..\I 

I...l..t\:= 

O(I

0 

= 
J: 

.JT.nu2:\ 

nUn....: 

sl:\\r( 

EY.Y1..3U 

JY.J,Q.3 

c: 

._ 

ON

N 

1.1:: 

__

( : 

5T.\r\:IT.0T. 

2. 

V.\r0.\r.H.IT.IYLAvl'|D. 

NLJLJ 

(((..G 

N_0D 

0: 

..:.l..:(nuF.12T.Anu0.lN 

DJDYDQnuT.YYT.T.GCS..: 

I=19H3

3 

3

5

1 

S 

0...

2 

:9

3 

51.» 

IL‘ 

RASI FORTRAN DIAGNOSTIC RESULTS FOR FTN.MAIN 

NO ERRORS 

JG APE COMMON BLOCK NAMES OR NAMES NOT ASSIGNED STORAGE

35



9

o 

I. 

4». 

4..

/ 

Q. 

\l 

I‘ 

\I

1 

\l 

X 

T. 

. 

9. 

1| 

\I 

I2 

4.. 

(VA 

1... 

You 

I‘ 

(N

0 

+A 

0.” 

\IT

) 

.\l—

1 

fl, 

\: 

Ln. 

\l 

l\\l 

1 
l\

0 

NI 

:1 

P 

7. 

Bl: 

)( 

.D.\

I 

.1 

Vuv 

E

) 

\IvA 

V
9 

D

I 

ll. 

AT...

9

) 

6.N 

vv...

) 

.1 

IA 

X
9 

1 

I. 

(.T 

Y) 

.4 

9.. 

N. 

A1 

:1. 

VA’ 

\I 

3) 

11.9 

B 

(s! 

II 

II) 

Q‘

R 

N) 

.\I 

I
1 

1N 

—E 

AT. 

T. 

)5. 

DB

D 

T( 

:\ 

\!T. 

R 
9

9 

+2

2 

1( 

E) 

) 

‘IX 

X 

+2. 

D.1 

4.. 

ul:\ 

It 

TLVA 

9:4 

1.» 

.lC 

N 

(( 

BI‘ 

1‘ 

(E

A 

YN 

RG

B 

13 

T 

)) 

+A 

PEN

! 

VA? 

4 

1!) 

)T 

DA 

) 

(I.

3 

II 

I... 

!.LN4;. 

N) 

In 

l\l\ 

cl) 

B91# 

33A! 

I 

22 

Y’ 

o.\r..I:\ 

99T( 

cl 

VAX 

:11 

R1AR 

22(1 

1 

(( 

(+ 

9h.T. 

9) 

33..,,X

X 

NC 

4. 

T. 

D:t\|L|I1. 

.95,‘ 

(1 

AFC. 

\.'( 

vGE1# 

RQIC

N 

TS 

X1 

ANDI+l\ 

77(C_ 

2 

A 
.7 

+ 

AX 

(AA 

9:\V.. 

11YS 

TI 

\I\l 

TI-I 

.|DwXD.V 

r.u.U+l\ 

0 
:\ 

\r\. 

LN 

—..__ 

VA 

VA 

0 

O)‘ 

T: 

K. 

11.17.; 

FIRM 

M.\:.l)

9 

JCT.’ 

)T..(( 

0.1 

01L1uI 

¥ 
5. 

(T..n:0\.T.7\11 

x.

( 

Ebzthl 

\I\I.H:|TLPUT..I\n5“vAHvA. 

0¥

3 

G(D....:... 

T..—lQuV::l 

l\Vv/Ill. 

22H 

Y 

Anal 

(((+P)V+)N_C 

(Ill

E
/ 
.X 

Nauru; 

)/2... 

)IA_t 

H/¥

X 

N/C._NYGH 

'NN)I" 

I,TL(TS 

9 

O\lVI 

IA/DAN 

1AAI(IEI(A:: 

113A 

T/ 

I9A.Dn:LR(W(G(W._\a\a 

::I: 

UNuNQ..\a|LpET.:

: 

YBA 

oAB\tT..T. 

T.\ol.\rN 

OOONL 

G 

.1): 

:__T.:=T.((1 

T.YN_..< 

RMMEbLE3II)))I))(BP.4(+(U 

36 

BHMM(AT 

((III(IIYRRN 

XIXTD 

UO0I2EN012(((F(tVEE=0Y1VEN SCCOMRIDXXAPRIQBADDHDA+ARE

1 

2

3 

1+ 

SASI FORTRAN DIAGNOSTIC RESULTS FOR GEOHET 

ERRORS NC 

IG ARE COMMON BLOCK NAMES OR NAMES NOT ASSIGNED STORAGE
F.



F.D 
\.I.v 

’

,
C 

\I 

)2 

4.. 

G‘ 

u. 

¥
/ 

l‘ 

C, 

C: 

2) 

S 

Ix) 

9 

/ml 

5. 

)5 

1 

)5. 

In 

1
a 

l\ 

-2 

S 

T.‘ 

9 

(I 

, 

A) 

“S 

1 

/T 

11 

(W 

,4‘

( 

1+ 

00 

.9‘ 

.I 

TT 

Y 

T..( 

9 

TA 

00 

\I 

Q, 

G6 

1 

l\\: 

L». 

I741 

\I\l 

\l 

\l 

I‘ 

\lL. 

\I\I 

0

I 

D 

\I.I. 

23 

3

3 

V: 

4;!‘ 

RR 

/

/ 

9 

.Q 

CC 

0 

\I

I

) 

Ill 

V.Vn 

1.

o 

1. 

4... 

l\¥

I 
O 

l\ 

2

( 

)5 

:4 

An) 

1. 

TT. 

F 

/ 

.9 

S 
I 

l\ 

/ul 

0 

) 

LL 

¥

I 

L. 

VHU 

S 

I11 

0 

S

I 
O 

\: 

3 

\l 

ON 

V 

if 

U

3 

1:) 

I 

T 

.T. 

CA 

1. 

.1 

Nu 

D 

II 

ll 

I

(

9 
9 

.1 

II.

0 

5. 

\: 

(I.

U 

i

0 

RR 

1 

(An

0 

S

0 

?_3Dn.6Y 

.1 

Va 

ICNL., 

Q’

U 

M 

Q. 

1..1YY4L/ 

T.

/ 

AV. 

1!‘ 

l\\: 

: 

)A 

/\r 

lxl. 

xi 

ls 

xi

0 

9.1.7.. 

(1 

‘I 

)5 

0
c 

00 

0 

00 

0 

R 
\r

0 

QRJA

9 

+5 

I 

T.‘ 

558 

vl1ID,DTrO 

V 
0 

5.... 

93T|l 

IITL 

l\ 

l\/

. 

\Il.\./4.. 

N.N 

/

I 

6

1 

ZDL1 

1! 

F 

F! 

)4oo 

00AAOc 

3 

I
/

1 

1.11.». 

.Q 

S 

ST. 

.1! 

29 

G5 

0 

.51 

I. 

0

I 

YSDT 

I‘ 

.4‘ 

U 

:\u!I\1 

)1! 

I. 

3.

1

3 

(M. 

$Y.\I 

(Pl 

) 

‘JR 

N 

RI... 

9 

)\:1:/TI! 

\r 

l. 

I‘ 

TRHTVA 

71 

YL. 

U 

T...‘ 

A 

Yfml 

3)

I 

F

I 

CGA.’...b. 

Lwsl 

U 

l\\. 

/ 

:\D.\sl1 

RRCCR) 

1! 

.9

l 

I 

!vs1.l\ 

\l4.. 

0 

RISE 

Y.,YT.. 

CCYHYCI 

D 
T 

u! 

RMLQR 

1...

U 

._~(33 

R_v 

ll, 

Yv. 

o 

aY( 

Y 

T.

I 

FAE(o 

.I 

o 

GFDD 

QQR3 

aoTToR 

I 

(

( 

G,UC) 

KIT 

7: 

\:ul_N.l\S/.0 

NSQYDA 

TOGGTV 

6 

R 
On 

rt 

1 

v(Y 

L 

K2 

UTE. 

Ia) 

1:. 

8¥C 

LE 

0 

0G... 

.7 

Y

Y 

N//N1.» 

27.... 

0 

((.1DnH_T.T.121.7Y.3 

9 

our) 

0.5 

CL 

.9

4 

T.3F.0( 

zit) 

|¢:=r.nr 

._ 

Qnnlxlx 

: 
....,.n.ZU

. 

.K.EsrcIIT.\o:.w79717973.t 

T//IA 

T1141 

IUSSISPoDwSI 

o 
o 

0../=bU1...T.(l:T. 

31.. 

01. 

0.1 

01. 

0U 

UNNS

V 

= 
4 

(N: 

: 
=
= 
: 
V 

..Lnu4.LnKYNl\l.DD.l?_

8 

1+. 

6 

ZNN 

000N)1fluI.vL 

cr.T.)\14L\..l\. 

:.~I

: 
: 
=c 

: 

T.3nUvuYnu 

: 
0 
=
0 : 
0
: 
0 : 
IR 

RMME1.1I()STN11III)1123Y2TYY(TY)T)T)T)T)TU 

BNHHQN 

:\7.vAl\Nl\l\ 

.I.l\l\T. 

RDmRl\DnN(l;|I\lsT. 

T. 

I 

I 

INTD 

U00T.( 

_. 

0F_.(.A..r0F.F0SDR(OCCCFCGFFFF¢.(U(CTOTOIOEN 

SCCDmKDS4..¢UICSSnuVYYSDYYYIYCIIIIICGCGCGCGCCRF: 

nu 

1 

89 

2314567 

.1 

1. 

11 

1.11111 

STORAGE 

37 

SASI FORTRAN DIAGNOSTIC RESULTS FOR FRICT 

N0 ERRORS 

JG ARE COMMON BLOCK NAHES OR NAMES NOT ASSIGNED



/ \a AUU 4...N Du(¥ .9D 

\r 

.l 

1.

5 

B.

3 

t\

D 

T 

./

S 

I!

Q

I

’ 

I‘

) 

V. 

1.

3

V 

:4 

I. 

5

A 

l\ 

02

0 

I

) 

V 

tau 

.5

0 

T.

A 

3:.» 

. 

o

(

C

/ 

2 

n»

Y 

O. 

30 

I. 

.15

V 

\: 

OT 

3. 

II

A

N 

‘I. 

1. 

1 

\: 

nu 

/

R

T 

L9 

(0 

\l. 

4...‘. 

.N 

8. 

SG

( 

... 

G 

R 

G)

R
4 

Q
I 

C

S
4 

G 

0) 

5 
\I 

. 

‘U 

1 

7| 

III. 

nu 

LN» 

$ 

7.. 

VN 

In 

N 

\:pL 

:1 

Ann 

\I

( 

AA 

1., 

A

M
O 

nu 

1. 

G
I

C 

C 
I. 

:4

T 

A0 

1 

1!’ 

cl

¥ 

.9nKN(

S 

G5 

5 

.05 

C 
\: 

CC 

QY

N 
J
o

0 

0M. 

4 
1.. 

IYTV

0 

U5. 

L 

2A 

pD.JI 

Y 

9AA 

C 

NL 

A 

3GH31..l 

VST

1 

A 
I 

l\ 

l\l\RD.fA 

A:?L) 

v: 

49“

D 

. 

T&. 

v)/. 

0.051

N 

UG 

RI.» 

I: 

D\5.+ 

‘IN, 

AoDk 

E 

ND 

51

R 

Q3)1AI 

9S 

9!‘ 

M
A
n 

D
0 

G 

SDA+Gl\ 

AUHVAAH 

I 

(D 

(5. 

D 

In! 

Duly/nu 

(AA

9

D 

/N 

nU\:I.w.l\ 

¥ 

G/MS‘ 

IGT) 

E 

SA 

1.O..1u.nu 

I.l\\:AnM¥ 

D 
11.1

S 

M
0 

CG 

oil. 

)..!.APuA5 

rr.,.Mu__.EI.». 

A51. 

0015C 

IRR/G3 

SAD-l 

G
0 

|.ol:9nUPu 

(Q 

.S(D

G
U 

#1 

A..IDnLnKNAnSDnMn\¥ 

E 

/,

.

0 

¥P.r.uAl. 

9/A. 

GA/VA 

N:LtN 

(T 

.bQD§¥4+lNcLuX1 

I3/O 

aG 

,595S/6¥:IQ((X:E 

Y.’ 

T; 

5
O 

21 

0/..O8fluT.l\l. 

I-1| 

: 
‘U 

UNNS 

_5R1.u75.U 

.35 

o
0 

Q: 

5. 

¥ 

‘INN 

OOON 

DG 

.1

o 

.0 

.2 

o2.U1.()CX.I.l.IR 

nKMuUHE 

:.D~U 

o1...flTI1. 

oQa..11_.T.nKZ(TvlU 

B.H.Huu 

D.-.l\

= 
_:..:

: 

=
2 
:0 

: 

RI. 

: 
: 

vS.N.TD 

UOCT. 

.bFNIM.Fu0NnMMu.C.nb0G.CvA.XAfiuO..r_N 

SCCD 

0IRRRRGRRRRRDFUZ,xC 

CR.E 

7.. 

nu 

AL 

ab 

1 

4.. 

Ii 

38 

SASI FORTRAN DIAGNOSTIC RESULTS FOR SEDI 

NC ERRORS 

ARE COMMON BLOCK NAMES OS NAMES NOT ASSIGNED STORAGEJG



DEGREES SLOP€ = METRES = SECONDS DISTANCE 
GEOHETRIC PROPERTIES 
DISTGNCE 

TIME 

FT BANK 

QOOCOOOICIOOOCIUUUIIO 

_0.U.UnU00.UnU.U0n!Unu.7555—D55..9 

1-’L 

z%1.V4VI¢..u.1W:.41V 

C.0 C. .D.\0 .LSKNABTH 

Gcooocouonooooaooluono 

Y.5555555555555nuUUnvU.U.Unu 

R:Wh.I4:#I.»..%I44u.:Nh:.w.14k. 

C:0 C. D.0 I.SHT 

D0Un.nu0n.nu0nuUUnununvnunu..unu.Un..U 

T..U:4526.Uh..87..5.U:45nUnunurun.nu.Unu 

N593827150.k.93~I0o.U.U000o 

°257nU2CJ702h.7Qa111aL1A111 

Hocolvlnoooooooiooooco 

m3333I#.B. 

“45555566656666 

BOT 

OOOUOODIOOIOIIDOOUOC 

n/_14rO8nU?..44rD8°7...W...O8°?.b.pOBfl.. 

ZH68135792458035791“ 

12314.67.8Q.a23.H5789013“ 

111111112222

39



UPSTREAM BOUNDARY CONDITIONS 
F. 

1000000000600 5555555555555 
R777777777777 

.H.4.Wpu.I.~.k.I.w.k..u.:#:.H:.~h. 

wunnouvoooocn 

.L4.VhyI.w 

.4.I.w:4.1.».a%:.Wo.wI.w.# 

Zn+.79Z.:w791A.6 

1111222 

OOHNSTREAM BOUNDARY CONDITIONS
H T. 

.D.9Un.nu.UCCUnuaUn..flu 

500000300096 

0999999999999 

222222222222 

."9oIO1ocIOo0o 

0222222222222

LF 

EOIIOOCOOOIOO 

Hn.:4826nuL.826n..:4

I 

h.83726nU59.N8 

Tu 

2“792“791h6 

1111222

#0



U7 

._:oLunou_u. .1.xua-.xa_o.s:-rnune 

. n1_s_r use a_ 
~~~~

~ ~~ ~~~ ~ ~~~ ~~~ ~~ ~~ ~~~ ~~ ~~~~ ~~ ~~~ ~~~ ~~ ~~ ~~~ ~~ 
~~~~~ ~ 

SEDIHENT TRATE BOTTOM SAIION T [0] TM :§;"eEIE'R HYDRA!‘lL_; RADIUS N _________‘,__ 
1-2 . 

' "at. has .' 1 

2!. . I. 35 .3“ 3 

366. 1. 82 a 

2"3' V 3? E‘; 

7321 3 7::
’ 

ask. I. as 7 
—-‘"1976. 3 

390. Q
7 

3%. ‘I. 
t. . — S
7



so: uuou ;1_un= 1- 249 urnunc 

~~~~~~~~~~~~~~~ 

NYURflyL§9;:§DIU$ LI. 10675 1o875 

~~~~~ 

;999£B£ 

~~ 

T RATE BOYTO 

~~ 

TH SEDIHENT Y 

~~~~~ 

1.1.3.714 

~~~ ~~~~~ 

IOOlI,OOLII>,II 

0 

no

5



~ 

RADIUS T ATE BOTT 

k§94.s1.:.~.5»»U5. 

“ 
I 
I 
o
9 
v
0 

0.: 

0
I 

———$0UJ-I ion-AI——!-l14S—1’.:.‘tZR_sEc0NOS 

~~~ 

.._

S



——SOE1.| I’-10H——L¥-—-T-!‘ME—-‘L-—35Ufi SEIZONDS 
‘IUS 

‘:§ 
QHETER HYDRA

Q 

can.

21 
1.. 

,1 

-. 

an 

0.7‘./Y»

. 

aw.

. 

77..bL.u,,h6.b,c...5czhL 

-owocno 

H.145 

OOvloooI.ao 

:N:4.:u.:9

.v 

0000 

on

~ 

570?

E.



SW 

noKo.onoX 
6-JG =V Y= 6.ED 

. .. 

I O 
I 0 

sun =37 §= 5.1.0 

U I 
' I 

lo.‘!J- =;- ‘V: 5.55 
I ' 0 
0 ‘ 0 
I - - I 

'5 an =v - V: A 2‘ 0 
' - - . 

O \- 

§ 
I I 
0 ‘ o 

3.5: =§ - §= 3.5: 
0 ' I 

I " o 

”‘ 3323 " *3; ' " ' 7”“ 
- 

3- 30119 
0 ' u 
. . 
0 ' n 

T__ 2.A3__:«§ ;- J n 
I '0 
I O 
. O 

1.9-3 =17 _ Cr: 1.53 
. C 

I . 

log} =Y Y: luck 
0 Q .—'_~ 

0 Q 
. O 

e.6:s =9 §'= c.et.c 
———— — — ——-———~~ —~:‘ A 

. 
- —. A »‘. . ‘ 

....... _. _ 
. 

_ .._._..,.,-_._.____ 

., 5 0 ! 3 9 .a 4 ‘ . 

u.a.1Eo.cs=§ ; 2?: o.oa.;.zoar. 
~I 000!

O 
,‘;l __I_9__X__l_l_ axon-,o__X¢-a--Xonao-X-n X -11 o ‘Xovuuo'o o X’ ono'x'¢'aau‘(ouno coo: o-.qXooua 0000 can 

a.i5b' -.u.a«.-’r'"'§« s.mr—7:rru‘*3"“§. 1. Tafin :rlz1§aécuv:x“::ru:1rn*z'—'*r‘rra;'§r3r+*.:I— 

°LOT OF 850 ELEVAY-ION(“)_;'O€-°TH(-) AGAINST DISYANCES



XHIN= 3oiCIWGOE9UU XHAX= 0nZB“0COE}Q¥¢ VHIN= ‘0ifl§3CCOEVCU YWAX= 0o50CCUUE9U1o Q2 PCINTS PLOYIECQ X30-0 0oo¢Xcoou\X~onoX~oooXoooo 0000 u..X....X.o..X.... ....X....X-...X....)(....X....X....X....x.... _ ' ‘_‘ our: -1 7- viuv 
I 3 
I C. 

C . gvvg -1 v- :-Ar 
3- 3’ 

c - 

Ina: =? - P: ‘use 
3 I 

and =\? 
- 

- v'r= 5.-2: 
C U 
6. ‘ I 
I ‘ 0 

3.68 =9 - - 9: 3.50 
: " 0 
O . 

3.cJ =? - — \'r= 3~..ua 

I I 
o ‘ 0 

Zvii =Y Y: Zohfi 
0 '0 

5 I I 

1.23 =9 v}: 53: 
-_._..__-_ W.-- ..:..~--_.,.,_.-.

' 

C .. 

1-:1 -: ’%- 1x26 
U I 

I 3 

.._____._..5,5;;,_.-__=:§.._._.....-.___..__ x'z- n mm 
:u : o c s. 5 - » 

._ : 
0 ' ' " ' ' c 
_ 5 .0 I U 4

I n..a:n=ona=y * -?= n.a:coE+ac- X-"J.-"X.u.-X.".X.nnX.u-.Xo,o,n:Xu-“X.”-'Y..nXo,.-.X.-onX-.o.X.;-..sX....oX‘u.....X~.;-o.Xu.uX..nX.‘...X 
Cm fl Zbhnflfli 93Ba03C 732.CQO 975wflG0 IZZDJUEC 1“ 50300 17033000 1952-009 2196mCGO 24“ .05; TINES5r1E031 

9LOT OF 820 ELEVATION(‘JuDEPTH(-D QGAINST DISTANCES



F‘ '7 V7 V ‘——i V? 77 7-‘ 7 ' I '_'?77 

XNIN=' UuC0000GE*UC 'XH5X= 0p25“0UE54G9a VHIN= 0u$3U§0UE00§ YH§X= C-6CGOUCE*51c #2 PCINTS PLOTTECn 
. ....xCI'.x.OOIXCUCCXCICCXIIUUXC..Ix...'x..'.x.C'D‘x..I-Ix.‘UIXCTQUXUCCUXIICCUXIIIIZXCCCCXCC.Ix'."x.C0. M t I. 

DDd‘J “' I‘ 'JCv‘t 

Z I 
Q I 

I; Ln -3? \°r- 5.1.1‘ 

I - I 
C I 
I ' 0 

Hun; :7 ' Y: ‘-3080 

I I 

_> _____4.__.23__ _3\'r ___ _ 
' 

- \'r= u.2«a 

3 - I 
0 ' ' ' ‘ o 

3.60 =9 - 9: ass 
: ' 0 
. 

. 

. 
_ _ ,, . . ._......., ._,...%.. 

V3.1: =9 4?: 3.00 
3 I 
O 

- C 

2.»: =7: 1: 2.1.: 

I I f 0 0 
‘J u o 

1.33 =3! v= 1.86 
C C 

' 

—-
' 

1.5% -1 L :.z.: 

I I 
U C 

____._4;,r,5:,___=i._.__ ___,- _ _~, ____ §= 11 gm. 

: n 9 0 0 0 U 9 : u e : 

: 

j —‘_ 
‘ ‘ 6 I : 

u3‘3?f53=V ‘Y: 0.5355995 
X-.,..X...-.1....X....X.u.Xu..X....X....X...-Xc...X....X.."XL...‘X..,..K,...X.,...X.:.,..~X..-“X....x.;...X _ 

~n3JC ZL~o9Lh B5b¢3Ci 732-000 975-300 L22GoG‘C 1h6k.0-0 1738rCUC 1952.COG 2;96o£U5 2k<0.0c0 TIH:S3o1E*31 

?LOT OF BED ELEVATIOH(')pDEPTH(-) AGAINST DISTRNCES



YHIN= §u00CCDflE*05 !HAX= Eo6CDGQCE*51o {2'PUIN?S PLOVKEU. X--o-.!(u.n.Xu.-ox‘...-.»X--nxuuoX....X'....X_o-uxo...X....X....X x.~uN= o.uaoJ=Ja-:+c-a xnAx= a.2sJane‘-:ooz.. 
X0 rqoxo.o.Xouni-2...X..v.:.X--..X.....X..... Ax. unvv .-

0 ‘v‘ 4000-! 

6.2a .: -7 

vol 

~~ 

176::

~

.___

_HN 

C

5

C 
_

u

5 

3

M 
H

3

o 

i

a 
.

o 

3

3

2 
,

I

___

:

: 

=
m

: 

oV.oa1Y.uuI 

V.v.Occvuo-

.

_
.

__%

r 

oY 

ennui 

can 

V 

cons

. 

=m 

_— 

=

=

_ 3 

3 

3

J 

D 

C 

E

3 

a 

u 

o 

.a 

3 

3 

35

1
5 

. q T-Th 

0-6”’ 

Io!-IIIIYI 

—-—-——r.—2=r- ~- = 

Y‘ 0uCCBE~3C t.0CJ=450=V aXmonmX . 2430.000 IIHESfl.1E*C1 

PLOY OF BED ELEVATI3N(‘lvDEPTHt-D AGAINST DTSTKNCES 

STOF



WW3 IWM/!'l""'ZI?!'"J?l!I 
’E'


