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Abstract

Statistical classification procediires for univariate and
multivariate limnological data are presented. A regression
model in terms of additive temporal and spatial components
is fitted to the data after a search for an appropriate trans-
formation. When the spatial component is found to be
significant, a hierarchical procedure is suggested to divide
the lake into regions. The procedure is illustrated using the
data on phytoplankton biomass from Lake Superior col-
lected in 1973.

Résumé

Le présent rapport renferme des renseignements sur des
méthodes statistiques de classification s'appliquant a des
données limnologiques & une et plusieurs variables. Un
modéle de régression en ce qui concerne les composantes
temporelles et spatiales additives est appliqué aux données
aprés la recherche d’une transformation appropriée. Dans
les cas ol la composante spatiale est significative, une
méthode hiérarchique est proposée afin de diviser le lac en
régions. La méthode est démontrée a I’aide de données sur
la biomasse du phytoplancton du lac Supérieur, recueillies
en 1973.




Statistical Procedures for Classification of a Lake

A.H. El-Shaarawi and K.R. Shah*

INTRODUCTION

In limnological investigations it is important to classify
a given body of water into zones according to the values of
a specific character or a set of characters. A statistical
procedure in the framework of a regression model is pres-
ented here. Since a regression model does not always fit
raw data (Taylor, 1961), it would be desirable to look. for
a transformation so that the assumptions of the standard
regression model approximately hold for the transformed
data. A procedure of Box and Cox (1964) is used to find
a suitable transformation. An additive linear model with
seasonal and spatial components is fitted to the trans-
formed data. A hierarchical classification procedure usihg
estimates of spatial effects is proposed here. A multivariate
generalization is outlined briefly.

The univariate procedure is illustrated using the data
on phytoplankton biomass from Lake Superior collected
by the Canada Centre for Inland Waters (CCIW) in 1973.
The plots of residuals indicate that the model is reasonable.
The classification procedure divides the lake into three
zones. The maximum biomass was found in mid-summer.

THE MODEL

Let Yij denote the observed measurement on the charac-
ter of interest during the ith cruise at the jth sampling
station, where i = 1, 2, ..., 21;j = 1,2, ..., %2. These
measurements are assumed to be a realization of n indepen-
dent random variables whose probability behaviour is
described below. As is usually the case, technical difficulties
prevented the collection of observations from each station
during each cruise and hence n, the total number of
observations, is less than £182. Box and Cox (1964) con-
sidered a family of transformations given by

(yi)} A N#D
Zij = “)
Qnyij' ,7\ =0

where the parameter A defines a particular transforration
and the random variable zjj is defined for Yij >0, Itis

*Department of Statistics, University of Waterloo, Waterloo, Ontario.

assumed that for a set of values of A, say A\q <A < Ay,
the random variable zj; is approximately normally dis-
tributed with the mean

Elzjj) = n+ o5+ B;, (2)
and the variance
var('zij) =g2, (3)

where u, «; and Bj are unknown constants. According to
the above it is assumed that the non-linear transformation
on vjj results in resolving the mean value of zjj into three
additive components: u is the general mean, a; is the
effect due to the ith cruise, and 6]- is the effect due to the
jth sampling station. Hence, apart from A, the transforma-
tion parameter, the problem is reduced to that of estimating
the main effects in a non-orthogonal factorial experiment
with only two factors. The first factor has &1 levels (the
number of cruises) and the second has 22 levels (the number
of stations). These formulations can be expressed in matrix
notations as follows. Let z be the vector of transformed
observations, then

E_(g)_=1n/.t+Mag_ +M'2_[_3, (4)
and

var(z) = 102, (5)

where 1 is a column vector of length n with each element
unity, Mi' 1 =1, 2, is a binary incidence matrix of order
(n x Qi) with rank Qi,g is a column vector of length 21 and
its ith element is ¢;, 8 is a column vector of length £2 and
its jth element is B;, and | is a unit matrix. Setting
A=[1,: Mi: Mand 8 = [u o &1, where o
is the transpose of @, Equation 4 can be written as

E(z) = A (6)

Assuming that z has a multivariate hormal distribution
and y represents the original observational vector, the
probability of obtaining y or the likelihood function for
6, X and 62 in relation to the original vector of observations
is

(2m) = "2 .5-n . ex'p{-(1/202)
[z - A8) " (z - AB)I}JIMAY).

(7)




where
dzi'j ’

JAy) =

dyIj

Equation 7 represents the general model. The application
of this model to a particular case requires the estimation
of the unknown parameters and testing of different hy-
potheses about them. Moreover, it is necessary to check
the suitability of the model to the particular case by ana-
lyzing the residuals.

ESTIMATION OF THE PARAMETERS

The method of maximum likelihood can be used to
estimate the parameters 8, 02 and A. This method may
be applied in two steps. First, for a given X, Equation 7,
except for a constant factor, is the likelihood for a standard
least squares problem. Hence the estimate 6 (\) offisa
solution of the normal equation (Plackett, 1960}

(A'A)O ) = Az, (8)

and the maximum likelihood estimate of 62 is

5200 = 1n{lz- AA ] [z -AB ]} (@

Second, if we substltute for § and 02 in Equation 7 their
estimates Q()\) and ¢ ()\) and take the logarithm, then for
a fixed A, the maxnmlzed log likelihood, except for a
constant, is

L= = (n/2) n (020 + YD), (10)

where, from Equation 1, we have

(A y) = (A - 1)§?Qn(yij). (11
i

The value‘fx which maximizes Equation 10 is the max-
imum likelihood estimate for A. This estimate is not available
analytically, and numerical methods such as Newton-
Raphson method can be used to obtain 3\,- which is the
root of

dLN/ a\ = o. - (12)

max

However, an approximate estimate for A can be obtained
graphically by plotting '71%2( against A for a trial series of
values, and A may be read from the plot. Once A is found,
the maximum likelihood estimates for 8 and 02 can be
calculated from Egquations 8 and 9, respectively. The
solution of the normal equation is rather cumbersome to

obtain because of large dimensionality and the non-ortho-
gonality of the matrix (A’A). An analytical solution that
reduces substantially the size of the matrix that needs to
be inverted is given in El-Shaarawi (1972).

HYPOTHESES TESTING

The regression and the reSIduaI sums of squares are
given respectively by REG = 0 (\) A’z and RES=2'z -
REG. REG gives the total variability explained by the

model, while RES represents the unexplained variability or’

measures the chance variation if the model is correct. Under
the assumptions given about the dlstnbutlon of z and

ignoring the random fluctuations in A RES/o has a x2
distribution withN = n- 24— %5 + 1 degrees of freedom.
To test whether there are spatial differences, i.e. differences

betweenh stations, we test the null hypothesis
Hp:B1 =082 =..= Bgz =0.
Under this hypothesis Equation 4 reduces to
El2)=1pu+ Ma
= Aq84,

where Aq = [1,, : Mj]and 87 = [u:a]. Let 81 (A) be the
least squares estimaﬂte of #1. The regression sum of squares
becomes REG1 = _Q.'I N A;g. The reduction in the regres-
sion sum of squares, which resulted from accepting HO' is
RED1 = REG - REG1. Under H the statistic RED1/02
has a x2 distribution with (22 - 1) degrees of freedom.
Since RES and RED1 are independently distributed, the
statistic

F1 = [RED1/(21 - 1))/(RES/N)

has Fisher’s F distribution with (€4 - 1) and N degrees
of freedom (d.f.), and hence can be used for testing Hp.
Similarly the statistic

Fo = [RED2/(29 - 1)] /(RES/N)

can be used to test the differences between cruises by
comparing its observed value with-that for an appropriate
F distribution, where RED2 is obtained by making obvious
changes in the procedure for computing RED1.

Two methods: can be used for making inferences about
\. The first method makes use of the fact that for large
samples the statistic -2¢nR()) is distributed approx:mately
as x2 with a single degree of freedom, where

R(A) = exp(L(Mx) /exp(Lg:.’)x)
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This leads to a test of significance and the confidence
intervals for A in the usual way. The other method requires
the plotting or tabulating of R()) for different values of A,
and constructing the interval for N\ with a specified degree
of plausibility according to the method suggested by
Kalbfleisch and Sprott (1970). Though the two methods
are operationally similar, the first one is based on large
sample theory and has probability interpretation.

To examine the adequacy of the suggested model we
present the plots of residuals of z;; for A = A. More specnf—
ically, we plot &jj A\ = [z {(A) - o= a - 6] /6(\) against
zjj (\). Random pattern is expected if the model is adequate.
We also present Q-Q plots of residuals to examine if the
transformed variables are approximately normally dis-
tributed (Wilk and Gnandesikan, 1968).

CONSTRUCTION OF ZONES

If the previous analysis showed that there are no signi-
ficant differences between the sampling stations, the data
then suggest that the lake can be regarded as a single
homogeneous zone. On the other hand, if the analysis
suggested the existence of real differences between the
stations then the lake can be divided into more than one
zone. This can be accomplished in the following manner.
The sampling stations may be ranked according to the
values of 5 (arranged in increasing or decreasing order).
One may then combine the pair of stations which are
“closest’”’ in some sense into one group. One way of doing
this is to rewrite the model, assigning a common § value
for a pair of stations, and to compute the decrease in REG
resulting from this change in the model. This may be
computed for all possible pairs of stations and the pair
giving the smallest decrease may be regarded as closest.
However, for S|mpI|C|ty we combine into a group the palr
{i, i) for which Bn [3 is minimum. The difference between
this and the fifst method i$ due to the non-orthogonality
in the data and is expected to be small. This process of
g?ouping can be continued until all the stations are com-
bined into a single group. This procedure determines a
hierarchical classification of stations-and may be graphically
represented in the form of a “Dendrogram® (Hartigan,
1975) or classification tree.

This tree can be used to divide the lake into zones.
This could either be done subjectively or by using an ad
hoc statistical procedure such as the following one. Let
Z;-denote the change in REG at the ith stage. Distribution
of NZi/ni&'2 is not easily obtained. If this is regarded as
an F with (i, N) d.f. the resulting level of significance will
be higher than the nominal level. A Iarge sample approxi-
mation to the distribution of NZ; /mo may be obtained
from its first few moments.

Another reasonable procedure would be to stop when
Z;/RED1 exceeds a predetermined number such as 0.05 or
0.1.

MULTIVARIATE METHODS

In most limnological investigations there are several
measureinents which should be taken into account. One
approach would be to combine these into a single mea-
surement, for example, by taking the linéar combination
of measurements that corresponds to the first principal
component. If this linear combination is nearly the same
for the different cruises, the univariate methods described
earlier can be used:

Another approach is to start with analysis of dispersion
for two-way non-orthogonal classification using the general
methods given in Rao (1965). This analysis should be
preceded by an analysis of transformation cairied out
separately on each character in a manner described earlier.

Assuming that the measufements on each of the p cha-
racters are available whenever a station was visited in a
cruise, the multivariate model may be written as

Z A ® _ E

nxp . nxk kxp ~ fAxp

where the ‘ith column of Z gives the measurements on
the ith character, the ith column of () gives the
k(= Q1 + 22 + 1) parameters for the ith character, and E is
the matrix of errors. Rows of E are assumed to be indepen-
dently and identically distributed, each having a p-variate
normal distribution with zero mean and the covariance
matrix Z. Let (@ denote the estimate of ® which is
obtained by solving (A'A) @ = A’Z. As is well known
(Rao, 1965), this amounts to obtaining the least squares
estimates separately for each character. The estimate of =
is given by

E=@Z-A0)VEZ-A@)/ -2 -+

Let ,6 denote the p x 1 vector of station effects for the p
characters for the ith station. Inmally, one may examine
the null hypothesis 1 = B9 = = BQ This may be
done by rewriting the mode! by mcorporatmg the hypothe-
sis and re-computing the Z matrix for this model. The
ratio of determinants of the 2 matrices under the model
and under the hypothesis or some other appropriate function
of these matrices may be used as a test statistic. When this
null hypothesis is rejected, one groups the stations into
zones. The foIIowmg hierarchical method may be used for
this. Let a,]E denote the covariance matrix for ﬁl Bl
It may be noted that ajj can be obtained from the univariate




Table 1. Dates and Estimates of Cruise Effects

Date of cruise

July 26 — Sept. Oct. Nov. 13 —

May June
12 - 24 15 - 28 Aug. 9 4-18 9-29 Dec. 3
Es,t.i.m#jted
cruise - 0.62694 -~ 0.23075 0.57607 0.13560 0.18096 -~ 0.43871
effect

methods described in the previous section and ajj would
all be equal if the data were orthogonal. The “distance"’
between the ith and the jth s,‘_cations may be computed as
di, j) = ([31 - G ZV B - 3;‘)/ai‘i. We first search
for the pair for which d(i, j) is minimum. For the next stage
we rewrite the model with a common S for these two
stations but we retain the same 3 as for the initial model.
The process can be continued as in the univariate case
until all the stations are grouped into a single zone.

APPLICATIONS

The data discussed here were obtained during six cruises
on Lake Superior in 1973. These cruises form a part of the
surveillance program carried out by the CCIW atBurlington,
Ontario. The data on phytoplankton biomass were obtained
from 37 stations. The first row in Table 1 gives the dates
of these cruises, while the pattern of stations is given in
Figure 1. The analysis of transformation gave A =o0.16.
The analysis of variance using this transformation was
carried out. For the hypothesis of equality of station
effects the observed value of the F statistic based on 36
and 145 d.f.was 5.73, which is significant at 1% level. For
the hypothesis of equality of cruise effects the observed
value.based on 5 and 145 d.f. was 18.73, which is also signi-
ficant at 1% level. It may be noted that the total number of
observations is 187, which is 35 less than the number
obtainable if the data were available from each station for
each cruise. This justifies the analysis that takes into
account the non-orthogonality present in the data.

‘The cruise effects, given in Table 1, increase:steadily
during the first three cruises and then deécrease steadily.
This indicates that for Lake Superior as a whole the maxi-
mum phytoplankton biomass level is reached around mid-
summer. ‘

Since. the differences between the stations are highly
significant, we proceed with a more detailed ‘investigation
consisting of clustering of- the stations into zones. At the
nominal 5% level this gave three zones. Estimates of station
effects are given'in Table 2. Figure 1 gives the map of the
lake divided into three zones formed by this procedure.

The three zones are roughly the near-shore, offshore and
the main lake, with the main lake being the biggest zone
and having the lowest biomass values,

Table 2. Estimates of Station Effects

Estimated Estimated
Station station Station station
riumiber effect : number effect
5 0.51927 121 0.00705
9 -0.13458 . 127 -0.50767
12 —0.20786 139 0.38967
16 —0.11585 140 —-0.15646
17 0.39464 144 0.08511
31 -0.22390 157 —0.41255
36 —0.50676 164 0.39418
43 -0.03807 169 0.03561
50 . 0.20122 178 0.17004
62 -0.01974 183 0.18580
69 - i ~0.55833 189 ~0.28234
72 ’ -0.45911 192 0.51406
80 -0.03184 196 0.24657
86 -0.54256 205 -0.05887
89 -0.16852 211 0.29031
‘95 -0.65649 214 0.50154
105 i -0.69295 220 1.32953
106 -0.05593 221 0.92228
120 —0.46403

Plots of residuals against the estimated values of zii's
are given in Figure 2 separately for each cruise. Figure 3
gives the Q-Q plots again separately for each cruise. Figure 4
gives both these plots for all the data. These plots appear
to indicate that the model is adequate.

Figure 5 gives the relative {maximized) likelihood
function for A. The shape of this function is nearly normal.
The maximum of this function is reached at A = 0,16
(approximately). Likelihood intervals for A can be cons-
tructed from this graph. In Figure 5 we have shown an
interval consisting of vallUes of A for which the relative
likelihood function exceeds 0.1.
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Figure 1. Statistical classification using total phytoplankton biomass as:a parameter, 1973.
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