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ABSTRACT 

 

Dual-frequency identification sonar (DIDSON) technology has been used for a wide range of 

fisheries applications. The DIDSON offers important advantages over other sampling techniques 

since surveys are non-invasive and do not require capturing, handling or disturbing fish or their 

environments. Consequently, DIDSON technology is well-suited for use in an aquaculture 

setting. DIDSON images are constructed from sound compared to light, allowing for DIDSON 

sampling 24 h a day and in all turbidity conditions. Using the DIDSON, we collected data on 

wild fish distribution and abundance before and after the development of a new aquaculture site 

at impact and control sites in Lake Diefenbaker, Saskatchewan. A standardized field protocol 

was established to improve the environmental monitoring design for DIDSON field studies on 

wild fish in pelagic environments. DIDSON recordings were standardised to detection-per-unit-

effort (DPUE in number of fish ·10 m
-3

·2 h
-1

) in four depth strata for the three different study 

sites. DPUE at the Kadla cages were greatest during the early morning feeding period when large 

schools of fish (50 fish) were detected. In addition, gillnets were set to allow ground-truthing of 

the DIDSON footage. Six fish species (Cisco (Coregonus artedi), Walleye (Sander vitreus), 

Lake Whitefish (Coregonus clupeaformis), Yellow Perch (Perca flavescens), Goldeye (Hiodon 

alosoides), and Rainbow Trout (Oncorhynchus mykiss)) were caught during gillnetting with 

higher catch rates in the vicinity of the cages compared to the control site. DIDSON technology 

is valuable to assess the behaviour of wild fish surrounding aquaculture infrastructures.   

 

RÉSUMÉ 

 

La technologie d'identification sonar à double-fréquence (DIDSON) a de nombreuses 

applications en science halieutique. Le DIDSON offre des avantages importants par rapport à 

d’autres techniques d’échantillonnage puisque cette technologie est non-invasive et ne nécessite 

pas de capture, de manipulation ou de perturbation des poissons ou de leur environnement. Par 

conséquent, la technologie DIDSON est bien adaptée pour une utilisation en aquaculture. Les 

images DIDSON sont construites à partir de fréquences acoustiques permettant l’échantillonnage 

des données 24 h par jour et dans toutes les conditions de turbidité. À l’aide du DIDSON, nous 

avons recueilli des données sur la distribution et l’abondance des poissons sauvages avant et 

après l’aménagement d’un nouveau site aquicole et sur deux sites de contrôle au Lac 

Diefenbaker en Saskatchewan. Un protocole d’utilisation de la technologie DIDSON a été établi 

afin d’améliorer la surveillance environnementale des poissons sauvages dans les 

environnements pélagiques. Les enregistrements de DIDSON ont été standardisés au nombre de 

poisson détecté par unité d’effort (DPUE en nombre de poissons · 10 m
-3

 · 2 h
-1

) dans quatre 

strates de profondeur d’eau pour les trois sites d’étude. L’indice de détection DPUE observé près 
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des cages aquicoles de Kadla était le plus élevé lors des périodes d’alimentation matinale des 

poissons d’enlevage présent dans les cages.  Durant ces périodes d’alimentation de grands bancs 

de poissons (50 poissons) ont été détectés près des cages. D’autant plus, des filets maillants ont 

été déployés afin d’identifier les espèces de poisson détectés par le DIDSON. Six espèces de 

poissons ont été capturées : cisco (Coregonus artedi), doré (Sander vitreus), grand corégone 

(Coregonus clupeaformis), perchaude (Perca flavescens), laquaiche aux yeux d’or (Hiodon 

alosoides) et truite arc-en-ciel (Oncorhynchus mykiss). Tel que l’indique le DPUE, le taux de 

capture au filet maillant était lui aussi plus élevé à proximité des cages qu’aux sites de contrôle. 

Nous pouvons conclure que la technologie DIDSON est adéquate afin d’évaluer le 

comportement de poissons sauvages autour des infrastructures aquicoles. 
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1.0 INTRODUCTION 

 

In a time when the abundance of wild fish populations is decreasing and commercial fisheries of 

wild populations are declining, aquaculture helps alleviate stress on wild fish populations (FAO 

2013). Estimates predict that by 2030, over half of the fish consumed by the world’s population 

will be produced by aquaculture (FAO 2013). Canada is well positioned to become a world 

leader in sustainable aquaculture production due to the abundance of “pristine” water resources 

(Standing Senate Committee on Fisheries and Oceans 2015). However, as the demand for farmed 

fish increases, there is a risk that aquaculture may affect wild fish populations and consequently 

the productivity of commercial, recreational, and Aboriginal (CRA) fisheries. Consequently, as 

the Canadian freshwater aquaculture industry continues to expand there is a need for the 

development of regulations and policies to ensure sustainable growth within this sector (Report 

of the Commissioner for Aquaculture Development 2003). The Government of Canada is 

committed to ensuring the responsible and sustainable development of the aquaculture industry 

in Canada while protecting fishes that are important for CRA fisheries. Currently, the growth of 

freshwater cage aquaculture in Canada is limited and future growth is uncertain due to regulatory 

and environmental challenges (DFO 2015). Therefore, the Canadian government is actively 

working towards developing policies, regulations, and positive public perceptions that accept and 

promote the future growth and sustainability of the aquaculture industry. Fisheries and Oceans 

Canada’s Program for Aquaculture Regulatory Research (PARR) supports targeted research on 

understanding the environmental and biological interactions between freshwater cage 

aquaculture and the aquatic environment to gain new knowledge and advice to support policy 

and decision making.  

Cage culture of fishes is an intensive form of aquaculture in which fish are raised in mesh nets 

suspended from floating structures within an existing water resource such as a lake. Cage 

aquaculture has a high potential for environmental impacts as egested and excreted waste and 

uneaten food can freely flow through the mesh of the cages into the surrounding environment 

without treatment. Cage farms also alter the physical structure of the natural environment 

providing both shelter and a source of food that may attract wild fish species (Dempster 2005). 

Wild fish communities may be affected by cage farms via a number of different factors such as 

the physical alteration of habitat, increased noise, release of farm waste, and escaped domestic 

fish (Dempster et al. 2002, Dempster et al. 2009). These factors may influence fish distributions, 

trophic relationships, and abundances of wild fish species. 

Cage farms have been shown to attract wild fish in various ecosystems (Dempster et al. 2002, 

Boyra et al. 2004, Dempster et al. 2009, Johnston et al. 2010). Both the physical structure of the 

cage farms (e.g., cages, anchors, buoys, walkways) and the farming activity itself (released waste 

and enhanced productivity) could attract wild fish (Gabrielsen 1999, Tuya et al. 2006). Fish can 

be attracted to the cages for 1) habitat and shelter; 2) waste food; and 3) predation on smaller 
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fish. In northern Lake Huron, Rainbow Trout (Oncorhynchus mykiss Walbaum) cage culture 

operations were found to attract and alter the normal distribution of wild fish (Johnston et al. 

2010). Rainbow Trout cage farming also occurs in Lake Diefenbaker and is a potential attractant 

for wild fish species. In the fall of 2014, fish farm activities expanded to a new site (Kadla 

Coulee) in Lake Diefenbaker. This occasion was used to monitor the potential impacts of the 

farm on the surrounding wild fish community. 

The objectives of this study were to determine the distribution of wild fish surrounding 

aquaculture cages with innovative Dual-frequency identification sonar (DIDSON) (Sound 

Metrics Corporation, Lake Forest Park, Washington, USA) in Lake Diefenbaker, Saskatchewan. 

The specific research objectives were to determine (i) if there were differences in fish abundance 

pre- and post- aquaculture development, (ii) if the presence of a fish farm alters the habitat use of 

wild fish, and (iii) if wild fish were attracted to the fish farm, particularly during the morning 

feeding period. DIDSON footage was collected before (2011-13) and after (2014-15) the 

installation of net cages at a new aquaculture site in Kadla Coulee and at a reference site in Lake 

Diefenbaker. In addition, gillnetting was conducted in the fall (September and October) of 2015 

to ground-truth the DIDSON footage. We then compared the detections per unit effort (DPUE) 

of wild fishes between cage and reference sites in Lake Diefenbaker, Saskatchewan. 

 

2.0 MATERIALS AND METHODS 

2.1 STUDY AREA  

The study was carried out at an aquaculture cage site in Kadla Coulee (366465 m E; 5652175 m 

N, UTM Zone 13N) in Lake Diefenbaker in south central Saskatchewan. Lake Diefenbaker is a 

dimictic and mesotrophic prairie reservoir used for irrigation, hydroelectricity, drinking water, 

flood control, industry and livestock, and recreation. It is also the site of one of Canada’s largest 

freshwater Rainbow Trout farms. 

Formed in 1967 by the Qu’Appelle River Dam and the Gardiner Dam, Lake Diefenbaker is the 

largest water body within the Saskatchewan River Basin (Figure 1). The commercial aquaculture 

operation for Rainbow Trout in Lake Diefenbaker has existed since 1993. Historically, Kadla 

Coulee was the original aquaculture site operated by AgPro Grain Inc. from 1992-1994. 

Relocation of the cage site from Kadla Coulee to Cactus Bay occurred in 2004 under new 

management by Wild West Steelhead (WWS). In 2010, WWS applied for a new aquaculture site 

in Kadla Coulee, Lake Diefenbaker, Saskatchewan to increase production by 300 metric tons 

(MT) (Environmental Impact Statement
1
). In fall 2014, cages were re-installed in Kadla Coulee 

                                                 
1
 Application for a new aquaculture site at Kadla Coulee for Wild West Steelhead by Wild West Steelhead and 

SIMCorp Marine Environmental Inc. March 16, 2010. http://www.environment.gov.sk.ca/2005-

190EnvironmentalImpactStatement 

http://www.environment.gov.sk.ca/2005-190EnvironmentalImpactStatement


 

 

3 

 

with the intent to use the site for juvenile fish rearing before transfer into the adjacent 

embayment Cactus Bay once the fish grew to a weight of 0.5 kg. The footprint of the cages in 

Kadla Coulee is approximately 600 m x 200 m (12 ha) with a cage depth of 15 m (Sweeney 

International Management Corp. 2010).  

We examined the response of the wild fish community to cage farms at the site of expansion in 

Kadla Coulee (hereafter referred to as Kadla cages) in comparison to two reference sites in Kadla 

Coulee and Friday Bay (Table 1). Kadla Coulee was chosen as a “near reference” site 

approximately 500 m away from the Kadla cages. The second reference is situated in a nearby 

bay, hereafter referred to as Friday Bay, approximately 4.5 km away from the cage site. 

Table 1. Locations and corresponding water depths of impact and reference sites in Lake 

Diefenbaker (UTM Zone 13N). 

Site  UTM E UTM N Depth (m) 

Kadla cages impact 366465 m E 5652175 m N 36 

Kadla Coulee reference 365949 m E 5652128 m N 30 

Friday Bay reference 367136 m E 5647933 m N 23 

 

Three years of baseline data was collected from 2011-2013 prior to the installation of the cages 

in Kadla Coulee in fall 2014. In 2014 and 2015, DIDSON footage was recorded at the impact 

site and reference sites while the farm was under full-scale operation. 

In total, 50 2-h DIDSON footages were recorded amongst the impact site (Kadla cages) and the 

two reference sites (Kadla Coulee and Friday Bay) between 2011 and 2015 (Table 2).  There 

were differences in sonar range and resolution between 2011-2014 (low frequency detection 

mode) and 2015 (high frequency identification mode).  Since there is a trade-off between range 

and resolution, the 2015 data displayed fish at a higher quality for fish total length 

measurements than in previous years but over a shorter detection range. 

 

2.2 FIELD PROCEDURE 

DIDSON sampling design 

DIDSON recordings were captured in 2011-2014 primarily in the morning during the regular 

feeding. In 2015, afternoon and evening (during dusk and full darkness) were also recorded 

(Table 2). 
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Figure 1. Map of the Wild West Steelhead Aquaculture location in Lake Diefenbaker, a 225 km long reservoir located on the South 

Saskatchewan River.   
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Table 2. DIDSON sampling effort summary per year, site, and month (number of recordings in 

each month). 
 

 Month (number of ~2-h DIDSON recordings) per site 

Year Kadla cages Kadla Coulee Friday Bay 

2011 Nov (1) Jul (1) Jul (2) 

2012 Jun (3) Jun (3), Jul (1) Jun (2), May (2) 

2013 Jul (1), Aug (2) Jul (2), Aug (2) Jun (1) 

2014 Oct (3), Nov (1) Oct (2), Nov (2) Oct (4) 

2015 Sep (2), Oct (4) Sep (3), Oct (2) Sep (2), Oct (2) 

TOTAL 17 18 15 

 

In 2015, approximately 28 h of DIDSON footage was recorded (Table 3). Each site was 

monitored twice during September and October for a period of 2-h per site. At the Kadla cages 

location, two 2-h recordings were captured in the evening of October 21, 2015, and a 3-h 

recording was captured before, during, and after the fish were fed in the morning of on October 

22
nd

, 2015. 

Table 3. DIDSON sampling effort in 2015 summarized by site, date, and time. 

Site Sep 2015 Recordings (2 h) Oct 2015 Recordings (2 h) 

Kadla cages no morning recording Oct 22, 8 h (3 h morning) 

 (paired evenings) 

Sep 23, 16 h 

Sep 24, 22 h 

(paired evenings) 

Oct 21, 14 h 

Oct 21, 23 h 

 

Kadla Coulee (paired evenings) 

Sep 23, 16 h 

Sep 24, 22 h 

(paired evenings) 

Oct 21, 14 h 

Oct 21, 23 h 

 

Friday Bay (paired evenings) 

Sep 20, 16 h 

Sep 20, 20 h 

(paired evenings) 

Oct 21, 17 h 

Oct 22, 19 h 

Gillnet surveys 

Confirmatory sampling with gillnetting occurred in September and October of 2015. At each 

study site, three 23 m long single paneled clear monofilament gillnets of graduating mesh sizes 

of 25 mm, 76 mm, and 127 mm were deployed in parallel within the pelagic column and left to 

soak (~24 h) overnight.  

 

The nets were deployed approximately 20 m apart at a depth of 5-7 m below surface and 

anchored with cinder blocks. At the cage site, net sets were placed just outside of the anchor 

zone marked by the buoys (~20-30 m from cages) to avoid entanglement with the cage anchor 
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lines. Captured fish were identified to species and enumerated while mortalities were disposed of 

at the fish processing facility. Length measurements were recorded to later ground-truth the 

results of the fish length obtained from the DIDSON recordings. 

2.3 DIDSON EQUIPMENT SET-UP 

The DIDSON was mounted to a ROS Helios tilt-pan unit (ROS Remote Ocean Systems, San 

Diego, California, USA), which was then attached to a custom-designed aluminum frame and 

secured to a small Jon boat at a depth of approximately 1 m below the water surface (36 cm 

frame + 32 cm tilt-pan unit + 21 cm DIDSON camera; Figure 2). The DIDSON was powered by 

a small portable gasoline generator (Figure 3). 

The transducer beams were directed downward and slightly forward at an angle of 45° relative to 

the water surface. During the deployment, the boat was held in a stationary position with anchors 

or by mooring to the aquaculture cages. 

 

Figure 2. (A) Custom-designed aluminum DIDSON boat mount secured to the starboard side of 

the boat. (B) The DIDSON was securely mounted with four bolts onto the ROS Helios tilt-pan 

unit, which was secured to the aluminum mount with six bolts.  

A sonar cable connected the DIDSON to a Topside Box which was connected to a field laptop 

via an Ethernet crossover cable and powered by a generator (Figure 3). A video patch cable was 

also connected between the Topside Box and field laptop to allow real-time surveys of the 

DIDSON footage. 

2.4 DIDSON SOFTWARE SETTINGS 

DIDSON and ROS Helios software packages were installed on the field laptop. Sonar controls 

including the frame rate, receiver gain, window start, window length and focus were chosen. 

Auto frequency and auto rate settings as well as low or high frequency mode were selected. After 

selection of the DIDSON software settings, the recording of a 2-h DIDSON file was started. 
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Figure 3. The DIDSON was connected to a field laptop via the topside control box and powered 

by a generator. 

Frame rate (auto frame rate versus manual) 

The frame rate (frames·s
-1

, fps) is the number of still images that are created from the audio 

signals per second. At a higher frame rate, movement and swimming behaviour can be detected. 

The frame rate will be slower with increases in maximum range due to a longer time for sound to 

travel to the maximum range and return. At a low frame rate, there is little ability to detect the 

difference from floating debris, bubbles or small fish. Data that was captured at 1 fps was not of 

high enough resolution to isolate individual fish (estimates of school size could be highly 

inaccurate). It is always recommended to operate at a frame rate of 7 fps or greater. Frame rate 

can be as high as 25 fps. Higher frame rates will create larger DIDSON data files (*.ddf). 

  

Topside box and Ethernet cable  
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Window start length, end length, range and window length  

These settings will result in changes in the “esonified window”, which is a 3D volumetric area, 

known as an irregular rectangular frustum. The sonar recording will be standardized to this 

volume and it is therefore important to consider using the same settings for these window length 

and range parameters amongst the different survey sites. 

Additional DIDSON display controls 

a. Check off “Reverse” (this allows you to see the image in the proper orientation within the 

display) 

b. Check off “Smooth”  

c. Check off “Measure” (allows measurements between displayed objects) 

The esonified image is produced from a fan-shaped field-of-view (FOV) pattern across a 29° 

horizontal and 14° vertical sector. The sonar can be operated in both low frequency (LF) and 

high frequency (HF) modes. At a low frequency mode (1.1 MHz), the 29° horizontal axis is 

divided horizontally into 48 separate 0.5° x 14° beams. Larger window lengths (ranges of up to 

40 m) can be obtained at a low frequency mode. At a high frequency mode (1.8 MHz), the 29° 

horizontal axis is divided horizontally into 96 separate 0.3° x 14° beams with a window length 

(range) of either 5 or 10 m. Each beam is longitudinally divided into 512 equal bins providing 

high resolution images composed of 96 x 512 data values (Figure 4). 

 

Figure 4. The field-of-view of the DIDSON showing the high frequency setting with 96 beams 

(Sound Metrics Corporation 2007) . 
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Data from 2011-2014 was recorded in low frequency (LF) mode. In the LF mode, fish were 

detected over a 40 m distance 5-45 m away from the transducer lens. Data from 2015 was 

recorded in high frequency (HF) mode. At the HF mode, fish were detected over a 5 or 10 m 

distance that was situated 2.5-7.5 m or 2.5-12.5 m away from the transducer lens, respectively.  

2.5 DIDSON DATA PROCESSING 

Software download 

The most current version of the DIDSON software and manual were downloaded from the Sound 

Metrics website.  

 

1 - Go to http://www.soundmetrics.com/user/login?destination=home and create account 

2 – Once logged in select the “Download” icon 

3 – Once in the Download webpage select Customers > DIDSON folder  

4 – Download folders named Manuals and Software   

 

DIDSON data analysis 

Although the DIDSON Software (V5.26.06) provides an auxiliary tool for automated fish 

counting and sizing, neither the automated counting nor the sizing function were adequate for 

measuring the pelagic fish in our study. The software was, however, used to visually identify fish 

on the PC monitor from other objects such as bubbles, anchor lines, cages, etc. The echogram 

provides a view of the averaged beams in the centre of the sonar image versus time allowing the 

review of sonar images at 600-frame intervals.  

Measurements of fish length were performed using the manual fish measuring feature included 

in the DIDSON Software (Figure 5). The observer attempted to choose the best frame in which 

the fish swam perpendicular to the sonar beams and the full length of the fish was visible. When 

fish were difficult to measure, several frames were checked before and after the analytical frame 

to confirm the length measurement. Fish processed using the mark-and-measure method received 

a time stamp. Manual measurements conducted frame by frame were more laborious; however, 

there was better accuracy and repeatability with manual measurements of each fish-presence 

event (either school or individual fish). Also abundances were determined manually or, for large 

schools, by making an estimate of the number of fish and the approximate average total length 

(based on averages of several measurements). Fish abundance index for fish occurring in the 

sonar image during each of the 2 h of DIDSON recordings was estimated. 

 

 

http://www.soundmetrics.com/
http://www.soundmetrics.com/
http://www.soundmetrics.com/user/login?destination=home
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Figure 5. Echogram image showing schools of fish. Fish were marked and their total lengths 

were determined. The direction of fish movement (blue verus yellow) changed between the 

different schools of fish, which could have been caused by 1) the same school of fish swimming 

in and out of the field-of-view or 2) different schools of fish. 

 

The depth of the fish position (m) in the water column was calculated using the following 

formula based on the sonar tilt and hypotenuse (target distance, R, m):  

𝐷𝑒𝑝𝑡ℎ 𝐹𝑖𝑠ℎ(𝑚) = 1.0 𝑚 + cos(90° − 𝑠𝑜𝑛𝑎𝑟 𝑡𝑖𝑙𝑡) ∗ 𝑅 

where the aluminum mount for the DIDSON was approximately 1 m below the water surface 

and R is the target distance from the sonar lens (i.e., range of the detected fish obtained from the 

manual measuring tool of the DIDSON Software) (Figure 6). 
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Figure 6. Depth of fish position as calculated from the target distance (R) and the tilt angle (θ) of 

the DIDSON. 

Detection per unit effort (DPUE) calculation 

DIDSON data was standardised by calculating the detections per unit effort (DPUE) with one 

unit of effort in space and time equivalent to the number of fish detected in 10 m
3
 of water 

during a 2 h time period. Water volumes were calculated according to the settings of the 

DIDSON unit (i.e., angle of the transducer and window length) that were used at a given 

recording (Error! Reference source not found.). Abundance estimates were further categorised 

n four depth strata (0-4.9 m, 5-9.9 m, 10-14.9 m, 15-19.9 m) surveyed by the DIDSON using a 

method described in Han and Uye (2009). 

Measured fish were classified into three different size bins according to total fish length: (1) 0-

29.9 cm; (2) 30.0 - 59.9 cm; and (3) > 60.0 cm. DIDSON images were captured with sufficient 

resolution to permit the identification of different classes of objects (bubbles, small fish, and 

debris). 
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2.6 ENVIRONMENTAL CONDITIONS 

Air temperature 

We obtained relevant data for the weather condition during DIDSON recordings from the 

Environment and Climate Change Canada’s Historical Climate Database 

(http://climate.weather.gc.ca/) using data from the Lucky Lake Weather Station (Table 4). We 

extracted the mean maximum and minimum air temperatures (°C) observed at the location for 

the relevant month. Additionally, heating degree-days, which are the number of degrees Celsius 

that the mean temperature is below 18 °C for a given day was calculated. If the temperature is 

equal to or greater than 18 °C, then the number will be zero. For example, a day with a mean 

temperature of 15.5 °C has 2.5 heating degree-days; a day with a mean temperature of 20.5 °C 

has zero heating degree-days.  

Table 4. Temperature data from the Lucky Lake Weather Station (Government of Canada 2016). 

Year 

 
Month 

Max temp 

(°C) 

Min temp 

(°C) 

Mean average 

daily temp 

(°C) 

Sum of total 

precipitation 

(mm) 

Heating 

degree 

days  

2011 

 

July 24.8 11.5 18.1 26.0 35.3 

November 1.0 -9.0 -4.0 na 660.1 

2012 

May 15.9 4.0 10.0 117.2 248.8 

June 21.7 9.8 15.8 105.8 75.0 

July 25.9 13.3 19.6 53.4 7.7 

2013 

June 21.2 9.4 15.3 89.0 84.0 

July 23.6 10.0 16.8 32.4 62.7 

August 26.8 10.1 18.5 21.6 44.6 

2014 
October 7.8 14.1 1.6 13.2 307.2 

November -3.7 -12.8 -8.3 18.9 788.3 

2015 

 

September 19.3 6.0 12.7 43.3 166.6 

October 13.8 1.3 7.6 30.0 323.9 

 

Water quality 

To ensure that study and reference sites were comparable in terms of water quality parameters, 

temperature and dissolved oxygen were measured during the months of DIDSON deployment. 

Data was collected at every meter throughout the water column with a multi-parameter sonde 

(model YSI 600MS, YSI Environmental, Yellow Springs, Ohio, USA) with at least six measures 

taken at each depth. 

Water samples and chemical profiles were collected at the impact and reference sites. At each 

station, water samples were collected 1 m below the surface and at 10 m intervals until near the 

lake bottom. Samples were collected with a stainless steel 1.2 l Kemmerer sampler that had been 

rinsed thoroughly with lake water prior to sampling. Acid-washed 500 ml Nalgene bottles were 

rinsed three times with sample water and were then filled to overflowing. Lids were closed 

http://climate.weather.gc.ca/
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tightly while slowly squeezing the bottle to dispel as much air as possible and bottles were 

immediately placed into a cooler with ice and then refrigerated upon returning to shore. Samples 

were transported to Winnipeg the day after sampling and were processed by the Freshwater 

Institute Analytical Chemistry Laboratory the day after arriving to Winnipeg. Samples were 

analysed for suspended, total dissolved, soluble reactive, and total phosphorus; suspended, total 

dissolved, and total particulate nitrogen; total suspended solids; and conductivity using methods 

outlined in Stainton (1977).  

An ordination analysis was conducted to assess the similarities and differences in water 

chemistry between cage and reference sites. A matrix of Bray-Curtis dissimilarities between 612 

water samples was calculated and subjected to a nonmetric multidimensional scaling (NMDS). 

From 20 random starts in two dimensions, the minimum stress value of 0.05 was achieved. The 

dimensionality was determined using the scree plot of stress versus dimensionality. The 

goodness of fit was determined by the nonmetric r
2
-value based on stress S from the Shepard 

plot. Distinct groupings between the three sites based on water chemistry were not apparent 

(Figure 7. Depiction of the water chemistry (suspended phosphorus [SUSPP, µg·l-1], total 

dissolved phosphorus [TDP, µg·l-1], soluble reactive phosphorus [SRP, µg·l-1], total phosphorus 

[TP, µg·l-1], suspended nitrogen [SUSPN, µg·l-1], total dissolved nitrogen [TDN, µg·l-1], and 

total nitrogen [TN, µg·l-1], total suspended solids [TSS, mg·l-1], and conductivity [µS·cm-1  at  

25 °C] in Kadla cages (n=196), Kadla Coulee (n=210), and Friday Bay (n=215) sampled at 

various depths from 2011 to 2015.   
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All statistical analyses were conducted using R version 3.1.3 (R Core Team 2015). 

Inspection of depth profiles between the three sites (Kadla cages, Kadla Coulee, and Friday Bay) 

showed little variability in the temperature and dissolved oxygen profiles between sites (Figure 

8). Lake Diefenbaker is known to be a well-mixed reservoir (Saskatchewan Water Security 

Agency 2012) 
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Figure 7. Depiction of the water chemistry (suspended phosphorus [SUSPP, µg·l
-1

], total 

dissolved phosphorus [TDP, µg·l
-1

], soluble reactive phosphorus [SRP, µg·l
-1

], total phosphorus 

[TP, µg·l
-1

], suspended nitrogen [SUSPN, µg·l
-1

], total dissolved nitrogen [TDN, µg·l
-1

], and 

total nitrogen [TN, µg·l
-1

], total suspended solids [TSS, mg·l
-1

], and conductivity [µS·cm
-1

  at  25 

°C] in Kadla cages (n=196), Kadla Coulee (n=210), and Friday Bay (n=215) sampled at various 

depths from 2011 to 2015.   
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Figure 8. Examples of (A) dissolved oxygen and (B) temperature profiles at the Kadla cages, 

Kadla Coulee, and Friday Bay locations taken in October 2014 after the installation of the 

aquaculture cages. 

 

Calculation of the resolution of the sonar images 

The clarity of DIDSON images is determined by both the window length and the frequency.  

Down-range resolution = Y Pixel height = window length / 512 

where window length is the R (range from the lens) 

 

Cross-range resolution  = X Pixel height = R · sin(beam spacing) 

where beam spacing is 0.6° for LF and 0.3° for HF 

The cross-range resolution is non-linear across the field of view, because of the behaviour of the 

acoustic lens. The beams in the centre are slightly wider than 0.3° at HF and slightly narrower at 

the edges of the image. 
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The measurement uncertainty is about ± one beam cross range width (assuming the fish is 

primarily at a side aspect to the sonar). Fish with a head/tail aspect are very hard to measure 

accurately. 

In LF, at a range of 5-45 m away from the lens, sample resolution varied between 0.39-7.81 cm 

in the horizontal plane and 2.09-41.89 cm per pixel in the vertical plane (Appendix 1). 

Consequently, images with smaller window lengths are better resolved as the DIDSON display is 

limited to 512 samples (pixels).  

In HF, at a range of 2.5-12.5 m away from the lens, resolution varies between 0.20-2.54 cm per 

pixel in the horizontal plane and 0.52-6.81 cm per pixel in the vertical plane (Appendix 1). At 

this resolution, objects as small as 8 cm are readily identified as a fish in the very near field of 

view. However, at the furthest detectable distance from the lens a fish of 8 cm is represented by 

only a couple of pixels and may be undetectable. 

2.7 FEEDING OF THE AQUACULTURE FISH 

Fish feeding at Kadla Coulee occurred mostly during weekdays while the farm was fully-staffed. 

However, up to 5-day intervals with no feeding took place (no feeding from September 17-21, 

2015). WWS farm workers fed the fish 3 mm and 4 mm pelleted feed by using an automated 

dispenser on a barge. Different lots of fish were placed in each cage and fed different pellet sizes 

and amounts according to the size requirement. WWS used automated food dispensers and staff 

monitored the fish consumption rates to avoid overfeeding. The amount of feed applied to the 

cages was determined by feeding tables (based on water temperature and fish size) to produce 

conservative feed rates at approximately 80% capacity as well as visually whereby fish were 

allowed to feed fully once per week until staff observe a deceleration in feeding activity (Table 

5). The average feed conversion ratio of feed:gain is 1.22-1.25:1 for the Rainbow Trout raised in 

Lake Diefenbaker (Podemski et al. in preperation).  

In both 2014 and 2015, the fish were transferred from the hatchery into the net cages while cages 

were located in Cactus Bay. These juvenile fish were then towed in their net cages to Kadla 

Coulee and fixed in place to the anchoring system and associated gear. The duration of 

installation and cage configuration varied from 2014 to 2015 (Figure 9). In 2014, fish occupied 

Kadla Coulee for approximately two full months (September and October). In 2015, the cages 

were installed for approximately four full months (July, August, September, and October). The 

cage structure was removed from Kadla Coulee in the fall before freeze-up and fish were 

transferred into cages at Cactus Bay for the final stages of growth. 
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Figure 9. (A) The 2014 and (B) 2015 configuration of Kadla cages with an arrangement of four or five cages in a cross pattern. The 5
th

 

cage was only temporarily installed.  
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Table 5. Summary of pellet feed applied to the Kadla cages in 2014 and 2015. 

Year 

 

Month  

(number of days during the month fish were fed) 
Metric tons of feed applied 

2014 

September (19) 11.52 

October (12) 11.60 

Total Feed 23.12  

 

2015 

July (15) 3.72* 

August (16) 5.96* 

September (19) 13.66 

October (16) 17.58 

Total Feed 40.92  

Note: No data during 2011-2013 as fish were first moved to Kadla Coulee on September 5, 2014. *Less 

feed was presented in the summer months when water temperature increased. 

 

3.0 RESULTS 

3.1 FISH DETECTION-PER-UNIT-EFFORT USING THE DIDSON 

The number of fish observed in a given recording varied between 2-160 at Kadla cages, 0-124 at 

Kadla Coulee, and 0-174 at Friday Bay (Table 6, 7, and 8). Low number (DPUE = 0-3) of fish 

were observed in lower depth strata (10-19.9 m) at all three study sites. In the upper depth strata, 

DPUE varied widely. At the Kadla cages, DPUE was 0-19 in the uppermost strata (0-4.9 m) and 

ranged from 0-20 DPUE in the 5-9.9 m depth strata. In comparison, fewer fish were observed at 

Kadla Coulee in the upper water column ranging from 0-4 DPUE at 0-4.9 m and 0-10 DPUE at 

5-9.9 m. At Friday Bay, a very wide range was observed due to repeatedly counting the same 

school of fish. On September 20 (evening: 4:17 pm), numerous schools were counted and 

measured within a short period of time. This is an example where fish counts may be 

overestimated due to fish milling within the esonified area of the DIDSON. The observed 

schools of fish consisted of fish of the same size range. 
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Table 6. Total number of fish observed in recording, length of recording, fish detection-per-unit-effort (DPUE in number of fish ·10 

m
-3

·2 h
-1

) in four depth strata (0-4.9, 5-9.9, 10-14.9, and 15-19.9 m), and maximum observation depth (m) at the Kadla cages. 

Date Fish (n) Time (min) DPUE 0 to 4.9 DPUE 5 to 9.9 DPUE 10 to 14.9 DPUE 15 to 19.9 Max depth 

November 3, 2011 (am) 82 115 0.47 0.38 0.00 na 13.5 

June 28, 2012 (am) 6 18 0.00 3.68 0.00 0.00 31.5 

June 29, 2012 (am) 13 119 1.06 1.17 0.00 0.00 32.2 

June 8, 2012 (am) 24 119 0.00 1.81 0.33 0.00 33.7 

August 1, 2013 (am) 98 120 0.00 2.86 2.23 0.96 37.7 

August 2, 2013 (am) 98 121 0.00 5.49 2.26 0.59 37.7 

July 3, 2013 (am) 20 120 0.00 1.96 0.52 0.03 39.1 

November 1, 2014 (am) 130 118 3.15 4.09 1.39 0.39 30.1 

October 15, 2014 (am) 58 119 0.89 4.34 0.13 0.03 31.0 

October 16, 2014 (am) 33 120 0.00 0.00 0.75 0.13 30.8 

October 30, 2014 (am) 19 120 0.78 0.32 0.17 0.10 30.1 

October 21, 2015 (pm) 3 125 0.86 0.27 na na 9.6 

October 21, 2015 (pm) 5 120 1.04 0.46 na na 8.1 

October 22, 2015 (am) 160 189 19.06 19.53 1.42 na 11.7 

October 22, 2015 (am) 5 17 17.77 0.00 na na 8.0 

September 23, 2015 (pm) 2 123 1.10 na na na 4.8 

September 24, 2015 (pm) 3 121 1.67 na na na 4.6 
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Table 7. Total number of fish observed in recording, length of recording, fish detection-per-unit-effort (DPUE in number of fish ·10 

m
-3

·2 h
-1

) in four depth strata (0-4.9, 5-9.9, 10-14.9, and 15-19.9 m), and maximum observation depth (m) at the reference site in 

Kadla Coulee. 

Date Fish (n) Time (min) DPUE 0 to 4.9 DPUE 5 to 9.9 DPUE 10 to 14.9 DPUE 15 to 19.9 Max depth 

July 26, 2011 (am) 124 117 1.34 10.24 1.09 0.09 33.6 

July 5, 2011 (am) 3 120 1.77 0.09 0.00 0.00 31.0 

June 4, 2012 (am) 2 105 0.00 0.00 0.08 0.00 32.2 

June 1, 2012 (am) 2 122 0.00 0.21 0.00 0.00 32.9 

June 4, 2012 (am) 0 15 0.00 0.00 0.00 0.00 32.4 

August 7, 2013 (am) 124 115 0.00 7.29 2.75 1.04 37.7 

August 9, 2013 (am) 78 120 0.00 5.33 1.56 0.50 37.6 

July 4, 2013 (am) 28 118 0.00 2.13 0.67 0.06 37.0 

July 8, 2013 (am) 57 120 0.00 8.23 0.05 0.00 36.7 

November 2, 2014 (am) 27 120 0.77 1.25 0.23 0.03 30.0 

November 5, 2014 (am) 22 119 0.79 0.56 0.31 0.09 31.0 

October 17, 2014 (am) 37 127 0.00 0.88 0.48 0.20 31.7 

October 18, 2014 (am) 34 119 0.93 0.90 0.49 0.12 31.3 

October 21, 2015 (pm) 10 122 1.03 1.21 na na 8.1 

October 21, 2015 (pm) 4 120 0.82 0.42 na na 9.3 

September 23, 2015 (pm) 6 117 3.68 na na na 5.1 

September 23, 2015 (pm) 5 88 4.13 na na na 5.1 

September 24, 2015 (pm) 0 65 0.00 na na na 4.7 
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Table 8. Total number of fish observed in recording, length of recording, fish detection-per-unit-effort (DPUE in number of fish·10 m
-

3
·2 h

-1
) in four depth strata (0-4.9, 5-9.9, 10-14.9, and 15-19.9 m), and maximum observation depth (m) at the reference site in Friday 

Bay. 

Date Fish (n) Time (min) DPUE 0 to 4.9 DPUE 5 to 9.9 DPUE 10 to 14.9 DPUE 15 to 19.9 Max depth 

July 22, 2011 (am) 61 119 0.78 1.43 0.41 0.36 30.1 

July 22, 2011 (am) 43 120 0.82 0.74 0.76 0.11 30.5 

June 25, 2012 (am) 1 112 0.00 0.00 0.00 0.02 31.8 

June 26, 2012 (am) 3 124 0.00 0.26 0.00 0.00 31.4 

May 29, 2012 (am) 2 121 0.00 0.10 0.04 0.00 32.9 

May 30, 2012 (am) 0 122 0.00 0.00 0.00 0.00 32.2 

June 28, 2013 (am) 167 121 0.00 14.15 1.74 0.95 36.9 

October 14, 2014 (am) 174 119 0.88 14.50 0.10 0.03 30.9 

October 28, 2014 (am) 13 120 0.78 0.32 0.06 0.07 30.1 

October 29, 2014 (am) 42 120 0.78 0.71 0.20 0.37 30.1 

October 3, 2014 (am) 27 112 0.00 2.24 0.07 0.02 31.1 

October 21, 2015 (pm) 35 122 14.24 1.19 na na 8.2 

October 22, 2015 (pm) 5 97 2.14 0.37 na na 8.4 

September 20, 2015 (pm) 155 120 61.52 304.80 na na 5.2 

September 20, 2015 (pm) 15 124 5.48 na na na 5.0 
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3.2 DIFFERENCES IN FISH ABUNDANCE PRE- AND POST-DEVELOPMENT 

There was an increase in wild fish abundance around the net cages when comparing the average 

DPUE of 0.22 ± 0.41 fish·10 m
-3

·2 h
-1

 at the Kadla cages from 2011-2013 in the upper most 

depth strata before installation of the cages with the DPUE of 4.63 ± 7.32 fish·10 m
-3

·2 h
-1

 after 

the installation of the cages.   

The 0-4.9 m depth strata of is the most comparable between all recording conducted at different 

high and low frequency settings (Table 9). DPUE at the Kadla cages was highest during the early 

morning feeding period when large schools of fish (50 fish) were detected. The increase in 

DPUE in Friday Bay in 2014-15 is due to the repeated counting of milling fish. 

Table 9. Summary of the average, standard deviation (S.D.), minimum (Min), and maximum 

(Max) Detection-per-Unit-Effort (DPUE in number·10 m
-3

·2 h
-1

) according to the depth strata at 

the impact site (Kadla cages) and at two reference sites (Kadla Coulee and Friday Bay). 

Depth 

Strata 
Site Years n 

Average 

DPUE 

S.D. 

DPUE 

Min 

DPUE 

Max 

DPUE 

0
 –

 4
.9

 m
 

Kadla cages 2011-2013 7 0.22 0.41 0.00 1.06 

 2014-2015 10 4.63 7.32 0.00 19.06 

Kadla Coulee 2011-2013 9 0.34 0.69 0.00 1.77 

 2014-2015 9 1.35 1.50 0.00 4.13 

Friday Bay 2011-2013 7 0.23 0.39 0.00 0.82 

 2014-2015 8 10.73 21.06 0.00 61.52 

 

3.3 ATTRACTION OF WILD FISH TO THE FISH FARM DURING FEEDING 

PERIODS 

Large differences in the abundance of wild fish (DPUE) close to the aquaculture cages were 

observed during the morning relative to evening feeding periods. For example, September and 

October 2015, average DPUEs of 19.06 and 17.77 fish·10 m
-3

·2 h
-1

, respectively, were observed 

in the morning whereas the DPUEs were only 0.86 and 1.04 fish·10 m
-3

·2 h
-1

, respectively, 

during evenings in the upper water strata (0-4.9 m). These results indicate that wild fish 

preferentially move to the net cages during the morning feeding. 

 

3.4 SPECIES ABUNDANCE IN GILLNET SURVEYS 

Overall, 114 fish comprising six different species were caught during the gillnet surveys. In the 

September survey, 41 fish were caught, whereas 73 fish were caught in the October. Most fish (n 

= 63) were caught near the aquaculture site at Kadla cages (25 in Sep., 38 in Oct.). Only 28 fish 

were caught at Kadla Coulee and 23 fish in Friday Bay. 

Cisco (Coregonus artedi) were the most abundant with 79 individuals caught, followed by 27 

Walleye (Sander vitreus) and four Lake Whitefish (Coregonus clupeaformis). Only two Yellow 
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Perch (Perca flavescens), one Goldeye (Hiodon alosoides), and one non-native Rainbow Trout 

(Oncorhynchus mykiss) were captured in gillnets. 

According to the mean size of each species caught, it is possible to gain insight into which 

species could have been present in the echogram; small fish of 0-29.9 cm total length (Lt) are 

likely Yellow Perch, Cisco, Whitefish or Rainbow Trout; medium fish of 30.0-59.9 cm Lt Cisco, 

Walleye or Whitefish; and fish > 60.0 cm are likely larger Walleye (Table 10). The largest fish 

caught was a Walleye (Lt: 55.8 cm) at Kadla cages. 

Catch-per-unit-effort (CPUE) at Kadla cages was higher than the reference sites in September 

and October 2016. The combined mean CPUE at Kadla cages was greater than (0.45 (±0.63 

S.D.) fish·m
-2

·min
-1

) the reference site at Kadla Coulee (0.13 (±0.26 S.D.) fish·m
-2

·min
-1

) and 

Friday Bay (0.12 (±0.14 S.D.) fish·m
-2

·min
-1

) (Figure 10). These CPUE results corresponded 

with the DPUE of the DIDSON.   

 

Table 10. Gillnet catch data from 2015 summarizing the mean (S.D.) total length (mm) and the 

number of fish among species captured at the three different locations on Lake Diefenbaker, SK. 

Site Date Cisco Goldeye 
Rainbow 

Trout 
Walleye Whitefish 

Yellow 

Perch 

Kadla 

cages 

Sep 293 (28) 

n=18 

355 (na) 

n=1 

0 443 (72) 

n=5 

425 (na) 

n=1 

0 

Kadla 

cages 

Oct 291 (28) 

n=28 

0 0 363 (43) 

n=10 

0 0 

Kadla 

Coulee 

Sep 278 (na) 

n=1 

0 0 364 (na) 

n=1 

0 0 

Kadla 

Coulee 

Oct 298 (11) 

n=21 

0 230 (na) 

n=1 

371 (56) 

n=3 

285 (na) 

n=1 

0 

Friday 

Bay 

Sep 303 (29) 

n=10 

0 0 402 (84) 

n=4 

0 0 

Friday 

Bay 

Oct 291 (na) 

n=1 

0 0 370 (94) 

n=4 

433 (31) 

n=2 

217 (19) 

n=2 
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Figure 10. Average catch-per-unit-effort (CPUE) for fish abundance at the impact site Kadla 

cages and two references sites Kadla Coulee and Friday Bay in Lake Diefenbaker, SK. Error bars 

represent ± 1 standard error (S.E.) and n= the number of gill net sets per location. 

 

4.0 DISCUSSION 

4.1 DIDSON APPLICATION FOR AQUACULTURE IMPACT MONITORING  

The aim of this study was to test the efficacy of the DIDSON technology for imaging and 

enumeration of the wild fish community surrounding a Rainbow Trout aquaculture farm in the 

freshwater environment of Lake Diefenbaker, Saskatchewan, Canada. The fish counting 

capability of the DIDSON technology has been shown to generate accurate accounts in river 

settings when counting upstream migrating adult salmon (Holmes et al. 2006, Maxwell and Gove 

2007), American Shad (Alosa sapidissima), Atlantic Sturgeon (Acipenser oxyrinchus 

oxyrinchus), Striped Bass (Morone saxatilis), White Perch (Morone americana), and Channel 

Catfish (Ictalurus punctatus) (Hightower et al. 2013, Grote et al. 2014). The DIDSON has also 

been used for monitoring smolt behaviour (Moursund et al. 2003), salmon redds (Tiffan et al. 
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2004), and studying fish behaviour surrounding traps and fishway entrances (Baumgartner et al. 

2006). 

This study demonstrated that the DIDSON technology can be used to explore the distribution of 

the pelagic community of wild fishes surrounding aquaculture cages. Estimates of fish lengths 

can be obtained and predictions of species compositions can be made by ground-truthing with 

gillnet surveys. However, due to the patchiness in the occurrence of the wild fish, a high level of 

effort has to be invested in the length and frequency of the DIDSON survey to obtain reliable 

data. Results from this study present a snap-shot of the composition (in terms of size), 

distribution, and abundance of wild fish within the pelagic environment (0-20 m) in the cage-

impacted and reference locations on Lake Diefenbaker. 

Our results provide evidence that the aquaculture cages function as a floating fish aggregating 

devices (FADs) (Dempster 2005) and attract fish towards the net cages particularly during 

feeding times. As observed by Goodbrand et al. (2013), we saw wild fish distribution being 

impacted by the aquaculture cages, which function as a novel and highly predictable resource 

patch. Feeding and physical structure of the cages provides shelter and habitat, impacting the 

distribution of the wild fish community (Dempster et al. 2005). 

Influences of aquaculture cages on fish distribution are likely to depend on the scale and stage of 

the aquaculture operation. Kadla Coulee is operated as a satellite site of Cactus Bay in Lake 

Diefenbaker for rearing juvenile fish. Therefore, impacts on the wild fish community are likely 

smaller than a full operating aquaculture site raising adult fish to market size. In comparison to 

the North Channel of Lake Huron, where cage farms have been in operation for 12 years, there 

are likely lower impacts at the Kadla Coulee location as the operation was only in place for the 

past two years and the feeding of the juvenile stages in aquaculture production was less intensive 

with lower faecal production. In addition, the Kadla cages are not permanently installed all year 

round at this location but are removed during the winter months. This period of fallowing may 

help reduce impacts to the lake by (1) providing time for bacterial breakdown and assimilation of 

organic material on the lake bottom, (2) dispersing of the organic material due to a strong flow-

through in the spring freshet, and (3) inaccessibility of supplementary food and habitat sources 

for wild fish due to removal of the cages (Podemski in preparation). 

4.2 ASSUMPTIONS AND LIMITATIONS OF DIDSON DATA  

This study demonstrated that a fixed DIDSON station is capable of surveying a large volume of 

water within the pelagic environment surrounding an aquaculture site. The images enabled the 

identification of fish, enumeration, and determination of their spatial distributions. Movement, 

size, and outline are key characteristics to identify fish species. Species identification is highly 

unlikely unless there are clear and consistent differences in fish size or behaviour (Holmes et al. 

2006). However, at the low frequency setting the DIDSON (300 m Standard and Long Range) 

was not effective in determining species composition since it was not possible to identify species 

based upon outline and size.  
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There are a few drawbacks to the DIDSON technology in this study (Table 11): 

1. size limit on sonar detection, 

2. depth limitation (depends on window length and transducer tilt), 

3. surface blind zone (closest to the lens (0.0-0.84 m), and  

4. compromise between range and resolution. 

Since we focused only on pelagic fish when surveying fish response to aquaculture, one major 

concern with using DIDSON for abundance estimates is the potential for counting-bias 

(sedentary species = transect designs versus active swimmers = fixed radius or point-count 

surveys). Many of the records could be from the same individuals observed multiple times as it is 

not possible to distinguish if fish have been marked and measured repeatedly. A school of fish 

exhibiting back-and-forth behaviour could inflate the total fish counts as the school could be 

measured numerous times.  

Fish sizing errors are considered to be mainly caused by the following reasons:  

1. the angle of the inclination of the fish in the vertical direction, 

2. the resolution in the ranging direction, and 

3. the circumferential resolution (may result in smaller measurement values).  

It was particularly challenging to detect and measure individual fish that school in tight groups 

within the acoustic beam. Another shortcoming has been DIDSON’s inability to detect small (< 

40 mm) fishes (Boswell et al. 2008) or to effectively separate these from bubbles, acoustic noise, 

and non-fish particulates. However, reasonable measurements from free swimming fish in close 

distances to the DIDSON (<12 m) were obtained with the high frequency 1.8 MHz) mode in our 

study similar to other studies (Burwen et al. 2010). Acoustic instruments, such as high-definition 

imaging sonars, can assess the population of wild fish both vertically and horizontally during all 

hours. In addition, Grote et al. (2014) demonstrated that the DIDSON may be used as an 

effective tool for estimating species proportions based on length frequencies distributions, 

provided that limited number of species are present and size overlap among the species is 

limited. 

In some cases, recordings were captured at slow frame rates (1-4 frames·s
-1

; fps). Fish were more 

challenging to detect and measure with a frame rate that is slower than 8 fps. Due to various 

constraints, the number of data collected between replicates, sites, and years was sparse and 

interpretation based on this information is limited to interpreting anecdotal observations. It is 

possible that normal seasonal and daily variations in fish movement and behaviour confounded 

the result of the study, i.e., fish are more active in the morning during feeding and will, therefore, 

have higher abundance or detections in the morning DIDSON recording. 
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Table 11. Advantages and disadvantages of DIDSON. 

 

 

  

Advantages Disadvantages/Challenges 

- Transect designs versus fixed radius or 

point-count surveys 

- Salmon counting in rivers (unidirectional 

movement of large fish) 

- DIDSON images can be generated during 

day/night and regardless of the turbidity 

- DIDSON does not disturb or attract 

fauna, non-destructive for fish habitat 

and non-intrusive detection of fish 

- Selected behavior (schooling, predator-

prey, swimming behaviour, and other 

social interactions) under natural 

conditions 

- Ability to view large fish 

- Sample rare/endangered fish (no chance 

of mortality and no sampling permits 

required) 

- Advantages over the split-beam sonar 

include deployment over a wider range of 

site conditions, a more straightforward 

visual image is produced, less training 

for technicians is required, easier setup 

and deployment, potential to have 

increased capacity for species 

determination under some conditions 

- Inability to detect small (<40 mm) fish           

- Bubbles, acoustic noise, non-fish 

particulates can be confused with small 

fish 

- Measurement bias (subjective) 

- Typical range of DIDSON (1.5 - 7 m) 

- Difficult to operate from a boat because 

of changing tilt pan angle (particular 

when boat is rocking, angle can change 

by ~5°) 

- Bias from double counting fish that are 

milling or swimming in vicinity of 

cages 

- Expensive 
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4.3 ALTERATION IN HABITAT USE OF WILD FISH DUE TO FISH FARM 

PRESENCE  

In Canada, the production of aquaculture has increased four-fold since the early 1990’s and 

continues to expand with the increasing demand for seafood. Currently, freshwater aquaculture 

comprises a small percentage of the overall aquaculture industry. It has been shown that cage 

culture facilities can function as floating pelagic structures that appear to attract wild fish 

(Phillips et al. 1985, Dempster et al. 2002, Boyra et al. 2004, Dempster et al. 2009, Johnston et 

al. 2010). Increases in presence, abundance, and biomass of wild demersal and pelagic fishes in 

the immediate vicinity of net cages have been observed particularly in marine environments 

(Dempster et al. 2002, Boyra et al. 2004, Dempster et al. 2009). In a freshwater aquaculture 

operation, Johnson et al. (2010) reported approximately 1.5-2.3 times higher fish abundance at 

aquacultures sites compared to reference sites (Johnston et al. 2010). In contrast, at marine 

aquaculture sites, wild fish abundances have been observed to be >50 times higher than at 

reference sites (Dempster et al. 2002, Tuya et al. 2006, Dempster et al. 2009).  

Similarly, our study demonstrated an increase in wild fish abundance around aquaculture cages 

in a freshwater environment of Lake Diefenbaker. These results were corroborated in the gillnet 

catches as catch-per-unit-effort (CPUE) at Kadla cages was higher than at the reference sites 

both in September and October 2016. Consequently, observations indicate the cages function as 

fish aggregating devices (FADs). Fish are likely using the habitat surrounding the fish farm for 

several reasons: larger predatory fish (presumably Walleye based on ground-truthing) appear to 

perform forage movements to feed on pellets that fall through the cages. Schools of smaller fish 

(likely Cisco) seem to use the net cages as food sources. These results support findings by Tuya 

et al. (2006), who found that daily feeding and presence of caged fishes affect wild fish more 

than the added structure due to cages and moorings or the artificial reef effect in aggregating 

wild demersal fishes at the farm. This result implies that aggregations of wild fishes around fish 

farms may substantially decline if levels of feed loss from operating farms to the environment 

are significantly reduced. However, feed loss at Kadla cages is considered very low (personal 

communication Dean Foss, WWS). 

 

4.4 FISH COMMUNITY IN LAKE DIEFENBAKER  

The recreational fishery on Lake Diefenbaker is primarily targets Walleye, Rainbow Trout, 

Sauger, and Northern Pike. The Kadla cages site is not thought to be in a prime fishing area as it 

is located in the mouth of Kadla Coulee where the water is deep and the bottom is relatively flat. 

However, recreational fishermen are regularly observed at the Kadla Cages site, which is typical 

around fish farms. 

During the gillnet survey of this study, the gillnets were set a 20 m away from net cages to avoid 

entanglement with the anchoring buoys and lines, which may led to a slight underestimation of 

the fish abundance around the net cages. Gillnets are also selective and the minimum mesh size 
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(25 mm) used may not have caught small bodied and juvenile fish that are likely to occur around 

the cages. Anecdotal evidence from farm workers and local recreational fisherman suggests that 

anglers have increased fishing success in Cactus Bay and Kadla Coulee in proximity to the 

aquaculture cages, in particular for large Walleye. However, fishing is not permitted to occur 

within 100 m of the cage sites. 

4.5 SUGGESTIONS FOR FUTURE DIDSON INVESTIGATIONS  

Future investigations on the behaviour of wild fish in areas impacted by freshwater aquaculture 

would benefit from more consistent field procedures. Ideally, more replications of the DIDSON 

recording at each study site would be beneficial. Consistent data collection of additional years of 

data over a number of months, twice daily at each site (once during the morning feeding period 

and another time either during the afternoon or evening representing dusk or during darkness) 

would benefit the study design and allow for more powerful statistical analysis of the DIDSON 

results.  

Instead of standardizing fish abundance to a detection-per-unit-effort (based on time and volume 

of strata sampled), less mathematically complicated point counts would be possible if consistent 

DIDSON setup parameters would have been used. The same transducer angle, frame rate, and 

esonified range (window start length, focus length, and total window length) should be used for 

all surveys. The lens direction should be aimed consistently in the same direction from the cage. 

Recordings would ideally be taken during low wind conditions to ensure minimal boat 

movement (drifting from anchor location or rocking in the waves). Fish were observed to 

appear/disappear/reappear in the echograms during recordings where winds rocked the boat 

resulting in a ± error in the transducer angle. The boat should be securely anchored at two points 

or moored to the fish cages. 

 

5.0 CONCLUSION 
 

The viability of aquaculture is directly dependent upon a healthy and productive aquatic 

environment. The aim of this project was to test the DIDSON technology as a monitoring tool 

for the impact of freshwater aquaculture on wild fish populations. We assessed the efficacy of 

the DIDSON to detect changes in wild fish habitat use around fish farms. We established an 

operational protocol and data analysis procedure and provided advice for future DIDSON 

surveys. 

The DIDSON serves as a passive monitoring tool, which does not interfere with fish behaviour. 

It is effective at low light conditions and high turbidity, which is essential for detecting wild fish 

surrounding fish farms. One limiting factor of the DIDSON data for the estimate of fish 

abundance is potential milling behaviour of wild fish surrounding the cages and potentially 
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double counting of fish. Consequently, the use of DIDSON as a monitoring tool may provide 

detection of fish occurrences but not provide reliable fish abundance estimates.  

In the future, we will investigate the use of the DIDSON to promote sustainable aquaculture in 

freshwater and marine ecosystems by (1) analysing the size frequency, abundance, and timing of 

wild fish moving towards the net cages in relation to tide, time of the day, and water temperature, 

and (2) determining if it is possible to detect benthic macro-invertebrates and fishes with the 

DIDSON technology. 
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APPENDICES 

Appendix 1. DIDSON pixel resolution at different target distances from the sonar lens. 

 

Low Frequency (Detection Mode) High Frequency (Identification Mode) 

Range 

(m) 

X Pixel Resolution 

 (cm) 

Y Pixel Resolution 

 (cm) 

X Pixel Resolution 

(cm) 

Y Pixel Resolution 

(cm) 

Blind zone 0-0.84 0-0.84 0-0.42 0-0.42 

1 na na 0.20 0.52 

2 0.39 2.09 0.39 1.05 

3 0.59 3.14 0.59 1.57 

4 0.78 4.19 0.78 2.09 

5 0.98 5.24 0.98 2.62 

6 1.17 6.28 1.17 3.14 

7 1.37 7.33 1.37 3.67 

8 1.56 8.38 1.56 4.19 

9 1.76 9.42 1.76 4.71 

10 1.95 10.47 1.95 5.24 

11 2.15 11.52 2.15 5.76 

12 2.34 12.57 2.34 6.28 

13 2.54 13.61 2.54 6.81 

14 2.73 14.66 

  15 2.93 15.71 

  16 3.13 16.76 

  17 3.32 17.80 

  18 3.52 18.85 

  19 3.71 19.90 

  20 3.91 20.94 

  21 4.10 21.99 

  22 4.30 23.04 

  23 4.49 24.09 

  24 4.69 25.13 

  25 4.88 26.18 

  26 5.08 27.23 

  27 5.27 28.27 

  28 5.47 29.32 

  29 5.66 30.37 

  30 5.86 31.42 

  31 6.05 32.46 

  32 6.25 33.51 

  33 6.45 34.56 

  34 6.64 35.61 

  35 6.84 36.65 

  36 7.03 37.70 

  37 7.23 38.75 

  38 7.42 39.79 

  39 7.62 40.84 

  40 7.81 41.89 
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Appendix 2. Steps to calculate the volume estimate of the esonified frustum (truncated 

rectangular pyramid) projected into open water. 

The DIDSON standard lens has a horizontal field of view of ~30° and a vertical field of view of 

~15°. Consequently, the horizontal coverage at range R is: 

a = R · sin(FOV°) = R · sin(~30°) ~= R/2 

The vertical coverage at range R is: 

b = R · sin(FOV°) = R · sin(~15°) ~= R/4 

The formula for the truncated rectangular pyramid (frustum of a pyramid) is: 

V = 1/6 · h · (a · b + (a + c) · (b + d) + c · d) 

where a and b are defined above using the end range for R, c and d replace a and b using the 

start range for R, and h is equal to the end range – start range. 

To calculate the volume when using an accessory spreader or concentrator lens, substitute the 

lens coverage value (e.g., 28°, 14°, 8°, 3° 1°) for the vertical field of view in the above equations, 

rather than using the shorthand term R/4. 

This calculation may be done automatically (using a, b, c, d, and h) at: 

http://www.aqua-calc.com/calculate/volume-truncated-pyramid 

Note: These calculations assume the sonar is projecting energy into open water (e.g., the beam is 

not intersecting with the lake bottom or another surface). 

Steps to calculate the volume for a frustum that would be reduced by intersecting the lake 

bottom: 

These calculations assume the boundary is a uniform plane (flat) 

parallel to the surface of water. The blue trapezoid is the footprint 

on the bottom and does not account for bottom irregularities.  

 

The rotation is made on an axis parallel to the long axis of the 

rectangular mask of the transducer.  

 

The angle of the red axis from the horizontal is represented by 𝜃.  

In other words, when pointing straight down into the water,  

𝜃 = 𝜋 ÷2= 90° 

 

The distance on the (red) axis of the transducer is d. 

The depth is then d*sin(𝜃).  

 

The complementary angle, 𝜑, is calculated as: 

 

http://www.aqua-calc.com/calculate/volume-truncated-pyramid
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𝜑 = 𝜋 ÷ 2 − 𝜃  
 

So that the depth is also d*cos(𝜑). 

 

For ease of computation, the trapezoid is split into halves of equal 

area. 

 

 
 

 

 

 

 

 

The frustum has x, y, and z axes. The x axis is parallel to 

the long side of the mask. 

 

 

 

 

 

 

 

 

 

 

 

 

 

For computational convenience, the length of the rectangle 

(that is the bottom of the pyramid in the x-y plane) is 

denoted by 2l and its width by 2w.  

 

The four corners of the rectangle now have coordinates of 

the form (±𝑙, ±𝑤, 0).  The apex of the pyramid has 

coordinates (0,0, 𝑑).  
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The next step is to find the coordinates of the red dot in the 

image to the right, that is, the point where the edge of the 

pyramid intersects the blue trapezoid. The angle “Φ” is the 

angle between the rectangle and the trapezoid (Φ, or Phi, is 

the complement of Theta, 𝜃). The apex is labelled as (0, 0, 

d) and one corner of the pyramid is (𝑙, 𝑤, 0). 

 

The points on the line through the apex and that corner are 

all of the form:  

 

𝑡(𝑙, 𝑤, 0) + (1 − 𝑡)(0,0, 𝑑) = (𝑡𝑙, 𝑡𝑤, (1 − 𝑡)𝑑) 

 

where 𝑡 may be any real number. 

 
 

 

 

How can we tell if a point is in the plane 

of the trapezoid? If (𝑥, 𝑦, 𝑧) is on the 

plane, then drop a perpendicular to the 

rectangle to get the point (𝑥, 𝑦, 0) and a 

perpendicular to the x-axis to get 
(𝑥, 0, 0). This gives the following right 

triangle. 

 

Hence the condition to be satisfied for 

(𝑥, 𝑦, 𝑧)to be on the plane is 

 
𝑧

𝑦
= tan(𝜑) 

 

Putting the two conditions together, a 

point is on both the plane and the line 

(that is, it is one corner of the trapezoid) 

if 
(1 − 𝑡)𝑑

𝑡𝑤
= tan(𝜑) 

 

(1 − 𝑡)𝑑 = 𝑡𝑤 ∗ tan(𝜑) 
 

𝑑 − 𝑡𝑑 = 𝑡𝑤 ∗ 𝑡𝑎𝑛 (𝜑) 
 

𝑑 = 𝑡𝑑 + 𝑡𝑤 ∗ tan (𝜑) 
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𝑑 = 𝑡(𝑑 + 𝑤 ∗ tan ( 𝜑) 
 

𝑑

𝑑 + 𝑤 ∗ 𝑡𝑎𝑛(𝜑)
= 𝑡 

 

For convenience, we set 

 𝑘 = 𝑑 + 𝑤 ∗ 𝑡𝑎𝑛(𝜑) 

 

 

We then have 

 

𝑡 =
𝑑

𝑘
 

 

 

And the point on both the trapezoid and 

the line is now 

 

𝑡(𝑙, 𝑤, 0) + (1 − 𝑡)(0,0, 𝑑) 
 

= (
𝑑

𝑘
𝑙,

𝑑

𝑘
𝑤, (1 −

𝑑

𝑘
) 𝑑 ) 

 

=
𝑑

𝑘
(𝑙, 𝑤, 𝑘 − 𝑑) 

 

= 𝑡(𝑙, 𝑤, 𝑘 − 𝑑) 
 

Now carry out the identical argument 

using the line through the apex at 

(0, 0, 𝑑) and the corner at (𝑙, −𝑤, 0). 
 

The line now consists of the points with 

coordinates 

 

𝑡(𝑙, −𝑤, 0) + (1 − 𝑡)(0,0, 𝑑). 
 

To be on both the plane of the trapezoid 

and the line, we have 

 

𝑡` =  
𝑑

𝑘`
 where 𝑘` = 𝑑 − 𝑤 ∗ 𝑡𝑎𝑛(𝜑) 

 

Which makes the corner of the trapezoid  

 
𝑑

𝑘`
(l, −w, k` − d) = t`(l, −w, k` − d) 
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  So here is what the points and the side 

lengths of our (half) trapezoid look like: 

 

 

 

 

Next we compute the height ℎ1 

 

ℎ1
2  =

𝑑2

𝑘2
(𝑤2 + (𝑘 − 𝑑)2) 

=
𝑑2

𝑘2
(𝑤2 + 𝑤2(𝑡𝑎𝑛)2(𝜑)) 

=
𝑑2

𝑘2
(𝑤2(𝑠𝑒𝑐2(𝜑)) 

 

And so  

ℎ1
  =

𝑑

𝑘
(𝑤(𝑠𝑒𝑐(𝜑))=t 𝑤 *sec(𝜑) 

 

We can apply a similar argument to compute ℎ2 

ℎ2
  =

𝑑

𝑘`
(𝑤(𝑠𝑒𝑐(𝜑))=t` 𝑤 *sec(𝜑) 

 

We conclude that the total area in the trapezoid above the rectangle (twice the area of the figure 

above) is 

𝑙(𝑡 + 1)ℎ1 + 𝑙(𝑡` + 1)ℎ2 = 𝑙(𝑡 + 1)
𝑑

𝑘
𝑤 ∗ 𝑠𝑒𝑐(𝜑) + 𝑙(𝑡` + 1)

𝑑

𝑘`
𝑤 ∗ 𝑠𝑒𝑐(𝜑) 

 = 𝑙𝑤 ∗ 𝑠𝑒𝑐(𝜑)(𝑡(𝑡 + 1) + 𝑡`(𝑡` + 1)) 

 

To get the volume, multiply this area by one-third of the height.  

 

𝑉 =
1

3
cos(𝜑) 𝑑 (𝑙𝑤 ∗ 𝑠𝑒𝑐(𝜑)(𝑡(𝑡 + 1) + 𝑡`(𝑡` + 1))) 

𝑉 =  
1

3
dlw(𝑡(𝑡 + 1) + 𝑡`(𝑡` + 1)) 

 

Volume calculated for the coverage of the DIDSON based on values of complementary angle 

𝜑 =  
𝜋

4
 𝑎𝑛𝑑 𝜑 = 0.  

𝜑 𝑙 𝑤 𝑘 = 𝑑 + 𝑤 ∗ 𝑡𝑎𝑛(𝜑) 𝑘 = 𝑑 − 𝑤 ∗ 𝑡𝑎𝑛(𝜑) 𝑡 =
𝑑

𝑘
 𝑡` =

𝑑

𝑘`
 Volume  

𝜋

4
 

𝑑

4
 

𝑑

8
 

9𝑑

8
 

7𝑑

8
 

8

9
 

8

7
 

512

11907
𝑑3 

0 
𝑑

4
 

𝑑

8
 𝑑 𝑑 1 1 

1

24
𝑑3 
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Appendix 3: DIDSON customised user manual for data analysis 

1 – Start the Sound Metrics DIDSON software  

- Program will state “Running in Demo Mode… Show this message again”. Select No. 

 

2 – Open .ddf file 

 - File  Open  … then navigate to *.ddf file for analysis. 

- The sonar images will be saved to the default directory of the field computer as 

DIDSON data files (*.ddf) with time stamps via the control software.  

 

3 – Set parameters for analysis. 

 - Processing  Show Parameters. 

 - Adjust settings to help CSOT (Convolved Sample of Threshold) determine which      

   frames contain data versus noise. 

 - Below are the settings used for post-processing the Lake Diefenbaker data:  

  - Set Min Cluster Area = 100. 

  - Set Min Threshold (dB) = 3.9. 

  - When bottom was visible, adjusted Range (m) limits to exclude it. 

 

4 – Create a CSOT file which eliminates all “empty” frames from *.ddf files. 

- First select Insert Prequel so that frames are added before detections: 

  - Processing  CSOT  Insert Prequel. 

 - Create CSOT file: 

  - Processing  CSOT  Export CSOT Frames. 

 

5 – Open CSOT file for analysis: 

 - File  Open  … then navigate to the CSOT file just created. 

 

6 – Create an echogram: 

 - First select Use Cluster Data. 

  - Processing  Echogram  Use Cluster Data. 

 - Create Echogram. 

  - Processing  Echogram  View Echogram. 

 

7 – The echogram presents the data showing defined ‘streaks’ where sound has been reflected off 

objects within the beam. Check each streak to see if it is a fish (i.e., appears to be swimming) or 

another object that is not a fish (i.e., moves in a fairly straight line at a constant speed with no 

undulation).  

- Note: Ensure Measure is NOT selected in Display Controls on the left side menu. 

 - Hold down the left mouse button and drag over the section you want to view. 

- This will bring you to the video display and a video clip of the object you are 

interested in will play. 

- To zoom in either right click to zoom to the preset max zoom or hold the right mouse       

button and drag across the area you wish to zoom in on. 

 

8 – Once you have positively identified a fish, it is marked and measured: 
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- Left click the brightest part of the streak to place a fish mark.  

- Right click the fish mark circle that you have just placed.  

-This will bring you to the video display and a short video clip of the fish will 

play. 

- To pause the video playback, click the blue square icon in the top toolbar. To resume 

playback, click the blue square button again. 

- While paused you can sift through the video section frame by frame using the blue 

arrows beside the pause button allowing you to select the best frame for fish 

measurement. 

- To zoom into the subject hold the right mouse button and drag the box over the area of 

interest. 

- Now you can either press the left mouse button on the head of the fish and drag to the 

tail of the fish or left click on the head and click along the fish until the tail. If 

unsatisfied with measurement double left click to start over. 

- Once satisfied with the measurement press the ‘f’’ key to enter the measurement into the 

log file. 

 

9 – After all of the detected fish are measured or to save your current progress you must export 

echogram counts: 

- Processing  Echogram  Export Echogram Counts. 

- Site echogram counts and fish measurements were individually exported as separate 

*.csv files and later combined in a MS Excel database with unique site identifiers.  

  

      You can also save a jpg image of the echogram with marked fish: 

- Processing  Echogram  Export Echogram as jpg. 

- Note: Files are saved to same location as current CSOT file. 

 

10 – To continue work from saved progress you can load the echogram file: 

 - File  Open  …   

- Change dropdown menu Files of Type to DIDSON Echogram Files (*.ech). 

- Then navigate to the *.ech file previously saved. 

 

 

Import *.txt files into Excel 

 

1 – Open created fish measurement *.txt file in Excel: 

 - In Excel open *.txt file: 

  - File  Open  … 

- Change dropdown menu Files of Type to Text Files (*.prn; *.txt; *.csv). 

- Then navigate to the *.txt file previously saved (same location as CSOT file). 

 

2 – In the Text Import Wizard: 

 Step 1 of 3:  

- Select Fixed width. 

- For Start import at row choose 24, which leaves out header data not needed. 

- Leave File origin as MS-DOS (PC-8). 
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- Click Next. 

 

Step 2 of 3: 

- Follow instructions to create column breaks in the data. 

- Click Next. 

 

Step 3 of 3: 

- Leave format as General.  

- Click Finish. 

 

3. Save file as *.xls format. 

 - File  Save As  … 

 - Change Save as type to Microsoft Excel Workbook (*.xls). 

 - Click Save. 

 


