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1 Introduction 

Latent Semantic Analysis (LSA; Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998) is 
a computational model that uses a large collection of unstructured documents to construct 
semantic representations for words. The representations are based on a statistical analysis of the 
terms' occurrences within and across documents, and take the form of a vector. The semantic 
similarity between resulting word representations can be compared by calculating their cosine. 
After an LSA space is created, it can be queried to provide a word-to-word, word-to-document, or 
document-to-document comparisons to determine their semantic similarity by taking the cosine of 
the angle formed by their vector representations. When comparing words to documents (and 
sometimes documents to each other), LSA uses what is called a “bag of words” approach to 
representing the semantic contents of a document. In a “bag of words”, the order of terms in a 
document does not matter, and the semantic representation of a document is formed by summing 
the vectors of all its content words. 

LSA requires a relatively large set of short documents to generate a semantic space (i.e., from 
several hundreds to tens of thousands). The large number helps to ensure that many words from a 
variety of contexts (operationally defined as documents) are available for analysis.  

Before a semantic space for the terms in the corpus is constructed by our version of LSA, the 
documents need to be prepared. Punctuation is removed from the documents, words are brought 
to lower case, and words that appear in most or all documents in the corpus, such as articles, 
prepositions, and others that do not help to differentiate the contextual uses of the terms are 
removed from the documents, so called “stop words”. Typically, the same set of stop words is 
removed from every document in a corpus before analysis. However, under certain conditions 
different stop word lists have to be removed from different groups of documents before they can 
be combined into a single corpus and analyzed. Because LSA usually requires several thousands 
of documents, removing custom stop word lists from them is a time-consuming and labour 
intensive task. One of the tools reported in this Technical Note (TN) supports this task. 

One of LSA’s requirements is that for a word to be included in the space, it must occur in at least 
two documents. This poses a potential challenge when a corpus for LSA analysis needs to be 
created from a limited number of relatively short documents. In this situation, a large number of 
words can potentially be excluded from the analysis because they do not meet the minimum 
document occurrence criteria. At least partially, it occurs not because there are many unique 
words, but because the same word is used in different forms in different documents (for example, 
singular and plural forms of nouns). Thus, bringing different forms of the same word to a single 
form across documents in a training corpus can partially diminish their unnecessary exclusion 
from the corpus. The tools described in this TN implemented stemming of words prior to the 
construction of the corpus and the LSA space. 

LSA builds its semantic representation from a consideration of words’ contextual use. That is, 
words that tend to be used in similar contexts will tend to have a semantic association. Not 
surprisingly then, the same two words can have different representations depending on the 
collection of documents used to create a semantic space, For example, the word “mouse” means 
something different in the context of computers than in the context of animals or vermin. Hence, 
depending on the purpose of the analysis, the same set of words or texts can be analyzed with 
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different LSA spaces. The WIKIPEDIA subcorpora tool (Stone and Dennis, 2012) allows the user 
to create custom corpora from a Wikipedia archive.  

Finally, the existing functionality of DRDC’s SEMMOD package allows pair-wise comparisons 
of words or texts, one pair at a time with a single LSA space. Therefore, a large number of such 
comparisons are a time-consuming and a labour intensive task. One of the tools described in this 
TN provides automation of multiple LSA comparisons and supports application of several LSA 
spaces.     

1.1 Utilities to Support Latent Semantic Analysis (LSA) 

This TN documents a set of tools that were developed to support the ongoing work at DRDC 
Toronto that applies. The described set of tools builds on the WIKIPEDIA Subcorpora Tool 
(Stone & Dennis, 2012) and the Semantic Models (SEMMOD) module (v 1.5, Dennis & Stone, 
2011) that were developed by the Ohio State University (OSU) under the contract W7711-
067985/001/TOR for a Technology Investment Fund (TIF) project (15da05) and an Applied 
Research Project (ARP, 15ah) . The tools described in this TN extend the capabilities offered by 
the OSU modules and support 2 main functions: 

1. Preparation of a custom corpus ready for LSA’s semantic space generation. In addition to 
standard procedures that are performed on a collection of documents to prepare them for LSA 
space generation, such as removing punctuation and stop words, the tools developed also 
allow the following operations: 

 The application of a customized stop word list to a single document file prior to its 
inclusion into a corpus; 

 The stemming the words in a file using the Porter stemming algorithm; 

 The exclusion of words that occur in fewer than a specified number of documents. 

2. Automating the process of conducting document-to-document comparisons where documents 
are created from different LSA spaces, with the following options: 

 application of a customized stop word list to the input file; 

 stemming the words in the input file; 

 specifying multiple LSA spaces to be applied to the input file; 

 generating output in the form of a document-by-document table or a single column 
to facilitate subsequent analysis of the results. 
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2 LSA supporting tools  

This section describes the tools that support LSA including their functions, input requirements, 
output formats, and execution requirements. The tools were developed in the Python 2.6.5 
programming language for the Linux environment. In the interest of time no graphical user 
interface (GUI) was developed, and individual files containing scripts are run from the command 
line. The source code is currently stored on DRDC Toronto public server Pluto at the following 
location: \\Pluto\public\VISTIF\LSATools. Print outs of the source code are provided in Annexes 
A-C.  

2.1 Tools to support custom corpus generation 

This sub-section describes the tools that were developed to support custom corpus generation, 
including i) possibility to apply a custom stop words list to a single document prior to its 
inclusion into a corpus, ii) stemming the words in a file using the Porter stemming model; iii) 
excluding from the corpus words that occur in fewer than the specified number of documents.  

2.1.1 Removing custom stop words from a file 

This module was developed to allow the user to remove a custom set of words from a single text 
file before the file is included into a corpus file. This module is useful when different stop word 
lists have to be applied to different documents before they are combined into a single corpus. 
NOTE: prior to removing stop words, punctuation is also removed from the file. 

File: CustomStopW.py (source code is in Appendix A) 

Command line prompt example: 

$ python CustomStopW.py -i /home/MyDocuments/TextFiles/Agreeableness.txt -s 
/home/MyDocuments/StopListFiles/Agreeableness_Stop.txt 

Options and arguments: 

-i  followed by the input file name. Requires either a filename with a complete path, or 
just a name of a file in the default location: “input/” subfolder. If this option is 
omitted, the default input file will be processed, which is “input/default.txt”. 

-s  followed by the stop words list file.  Requires either a filename with a complete path, 
or just a name of the file in the default location: “CleaningFiles/” subfolder. If this 
option is omitted, the default stop words list file will be used: 
“CleaningFiles/stopList_Words.txt”. 

Input requirements: 

 Input file: Plain text, preferably in UTF-8 format with no special requirements. 
Default input file location is “input/” subfolder.  
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 Stop words list file: Plain text, preferably in UTF-8 format. Each stop word must 
appear on a separate line.  

Output: 

Punctuation and the words found in the stop words list file are removed from the input file, and 
the result is stored in a new file, which is saved in the same location as the input file. The line 
breaks in the input file are preserved. The name of the output file complies with the following 
naming convention: 

 <input file>_CSWr.<input file extension>.   

Execution requirements: 

The folder containing the CustomStopW.py must also contain the following files: 

 corpusCleaningTools.py  

 EntityClassify.py 

The folder containing the stop word list file must also contain the punctuation stop list: 
“stopList_Punctuation.txt”. 

 

2.1.2 Custom corpus preparation 

This module prepares a text document for LSA space generation, and outputs a collection of 
documents in a file with the extension .cor. It allows the use to apply a custom stop words list to 
the input file, stem the words, and specify the minimum frequency of word’s occurrence. 

File: CustomCorpusPreparation.py (source code is in Appendix B) 

Command line prompt example: 

$ python CustomCorpusPreparation.py -i /home/MyDocuments/TextFiles/Agreeableness.txt –f 3 
-s /home/MyDocuments/StopListFiles/Agreeableness_Stop.txt –t  

Options and arguments: 

-i  followed by the input file name. Requires either a filename with a complete path, or 
just a name of a file in the default location: “input/” subfolder. If this option is 
omitted, the default input file will be processed, which is “input/default.txt”. 

-f  to indicate the minimum number of documents in which a word must occur to be 
included in the corpus. This argument must be followed by an argument. The default 
value is 2. 

-s  followed by the stop words list file.  Requires either a filename with a complete path, 
or just a name of the file in the default location: “CleaningFiles/” subfolder. If this 
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option is omitted, the default stop word list file will be used: 
“CleaningFiles/stopList_Words.txt”. 

-t  no argument is required. If "-t" is included, the words will be stemmed after the 
documents are cleaned, and they will not be stemmed if "-t" is omitted. The default is 
to omit stemming. 

Input requirements: 

 Input file: Plain text, preferably in UTF-8 format with no special requirements. 
Default input file location is “input/” subfolder. 

 Stop words list file: Plain text, preferably in UTF-8 format. Each stop word must 
appear on a separate line.  

 The folder containing the stop word list file must also contain the punctuation stop 
list: “stopList_Punctuation.txt”. 

Output: 

A corpus ready for LSA space generation: Punctuation and stop words removed, only words that 
appear with sufficient frequency across documents are retained. The documents are separated by 
a blank line. The result is stored in a new file which is placed in the same location as the input file 
with the following naming convention: 

 <input file>.cor 

The words that were removed from the documents are stored in a file with the name 

 <input file>.cor.removed 

Execution requirements: 

 nltk.stem.porter  

 semmod.lsa 

 The folder containing the CustomStopW.py must also contain the following files: 

 corpusCleaningTools.py  

 EntityClassify.py 

 The folder containing the stop word list file must also contain the punctuation stop 
list: “stopList_Punctuation.txt”. 

 

2.1.2.1 Word stemming module 

Words can appear in several forms, like singular and plural versions of the nouns book and books. 
Different forms of a word are treated as different terms by LSA. As a result, one could argue that 
the number of unique words recognised by the system in a collection of documents is somewhat 
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inflated. Such inflation can pose a problem for generating a semantic space from a relatively 
small collection of short documents. In such a collection, a substantial number of words could be 
excluded from the analysis because of their “uniqueness” in the corpus, thus, resulting in a limited 
semantic space.  

Word stemming can be used to mitigate this issue. Word stemming is a process that brings affixed 
forms of a word to its base form, that is, its stem. Reducing words to their stems decreases the 
number of unique words in a corpus, and increasing their frequency in the corpus. Such 
processing could improve the quality of a semantic space constructed from a relatively small 
number of short documents. 

A function was developed that transforms a string into a collection of candidate stems. To reduce 
noise introduced by the stemming process itself, a validation step checks whether a stemmed form 
is a recognized word itself. If the stem is a recognized word, then the original word in the 
document is changed into its stemmed form. If the stemmed form is not recognized, the letters 
that were removed by stemming are added back to the stemmed form one by one. The check is 
repeated after each letter is added until a recognized word is found. 

This function uses the Porter stemmer module from the Natural Language Toolkit (NLTK) 
package and it also uses an existing semantic space built using LSA to check for the words’ 
existence. This function can be called from other modules by importing it and passing the 
required arguments to it.  

 Resides in file: CustomCorpusPreparation.py (code is in Appendix B) 

Usage example: 

from CustomCorpusPreparation import StemmerWithLSAcheck 

… 

StemmedDocuments = StemmerWithLSAcheck (ListOfDocuments, FileNameBase) 

Required arguments:  

 ListOfDocuments – either a list or a dictionary that contains strings to be stemmed 

 FileNameBase – input file name without extension. It is used to create stemming 
output files 

Returns: Stemmed strings in the form they were provided to the function, i.e., either a list or a 
dictionary 

Also creates:  

 a file with the record of stemming steps, file name  <inputfilename>_STemDebug"   
and  

 a file that contains a list of the original words and their form after stemming, file 
name: <inputfilename>_AfterStemmingWords.txt"  
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Execution requirements: 

All modules required by the CustomCorpusPreparation.py file (see 2.1.2), and the LSA semantic 
space contained in the file, LSAspaces/tasaCleaned_fromPluto.lsa  

 

2.2 Tools supporting document-by-document comparisons 
using LSA with multiple semantic spaces 

This module automates document-by-document comparisons, and it allows the user to measure 
the semantic similarity among all document pairs in an input file. Further, the comparisons can be 
conducted on representations derived from multiple semantic spaces from LSA at the same time. 
The module generates a document-by-document similarity matrix and saves it as comma 
separated values (CSV) in a separate ASCII file for each semantic space.  It supports the 
following options:  

 applying a customized stop words list to the input file; 

 stemming the words in the input file; 

 analysing the input file with multiple LSA spaces; 

 generating output in the form of a document-by-document table , as well as a single 
column created by concatenating the columns of the matrix to facilitate subsequent 
analysis. 

 

File: doc_by_doc_Multi_LSA_Custom_STOPlist.py  (source code is in Appendix C) 

Command line prompt example: 

$ python doc_by_doc_Multi_LSA_Custom_STOPlist.py -i 
/home/MyDocuments/TextFiles/Agreeableness.txt -f 3 -s 
/home/MyDocuments/StopListFiles/Agreeableness_Stop.txt -l /home/MyDocuments/LSAspaces -
t  

Options and arguments: 

-i  followed by the input file name. Requires either a filename with a complete path, or 
just a name of a file in the default location: “input/” subfolder. If this option is 
omitted, the default input file will be processed, which is “input/default.txt”. The input 
file has to be properly formatted, see section “Input requirements” below for 
instructions. 

-s  followed by the stop words list file.  Requires either a filename with a complete path, 
or just a name of the file in the default location: “CleaningFiles/” subfolder. If this 
option is omitted, the default stop words list file will be used: 
“CleaningFiles/stopList_Words.txt”. 
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-l followed by the name of the directory that contains all of the LSA spaces to be applied 
to the input file. If not specified, the default folder is "LSAspaces/". 

-t  no argument is required. If "-t" is included, the words will be stemmed after the docs 
are cleaned. They will not be stemmed if "-t" is omitted. The default is to omit 
stemming. 

Input requirements: 

 Input file: All documents to be analyzed must be compiled into a single plain text 
file, in which each document is on a separate line; and each line (document) must 
begin with the document code, which will be used as the document identifier in all 
output files. Preferred format for the input file is UTF-8. Default input file location 
is “input/” subfolder. 

 Stop words list file: Plain text, preferably in UTF-8 format. Each stop word must 
appear on a separate line.  

 The folder containing the stop word list file must also contain the punctuation stop 
list: “stopList_Punctuation.txt”. 

 

Output: 

Two CSV files for each semantic space are created in the "csv/" sub-folder. One of the .csv files 
contains a document-by-document similarity matrix populated with cosine values above the upper 
diagonal from the given semantic space; the second .csv file (with the _COLUMN suffix) formats 
the same information into a single column. Files are named with the following convention: 

     <input-file name>_<StopList file name>_LSA_<name of the LSA space>.csv 

     <input-file name>_<StopList file name>_LSA_<name of the LSA space>_COLUMN.csv 

 

Execution requirements: 

 nltk.stem.porter  

 semmod.lsa 

 numpy 

 The folder containing the doc_by_doc_Multi_LSA_Custom_STOPlist.py must also 
contain the following files: 

 corpusCleaningTools.py 

 EntityClassify.py 

 CustomCorpusPreparation.py (contains the stemming function) 

 The folder containing the stop word list file must also contain the punctuation stop 
list: “stopList_Punctuation.txt”. 
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3 Concluding remarks 

The tools described in this TN automate certain aspects of the otherwise labour-intensive and 
time-consuming process of pre-processing text for LSA and conducting multiple analyses. 
Although these tools were developed to address specific data analysis needs, the functionality that 
they support (e.g., document-by-document comparison) is fairly general. For example, the 
document-by-document comparison could be used in validating the semantic analysis component 
of the Analysis of Semantic and Social Networks (ASSN) tool.  

The tools described in this TN will likely be developed further, given the nature of the ongoing 
work at DRDC Toronto. The purpose of this TN is to document the functionality developed up to 
date, to disseminate the availability of such functionality among DRDC Toronto colleagues who 
might benefit from them, and to reduce duplication of efforts in the future.  

We expect to improve the flexibility and usability of these tools in the future, and to develop 
other functionality to support LSA and semantic analysis in general. DRDC Toronto can take the 
lead in developing a more comprehensive Python-based LSA toolkit, and make it available as an 
open source library to the general community of users interested in application of LSA. Such 
sharing could facilitate further co-development of the toolkit by the community.  
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