I*I Datengs Rasparch and Aschanchs et dévaoppamend

Devalapmant Canada powr la ddlerse Canada

DEFENCE m DEFENSE

‘:_’_,---
Latent Semantic Analysis (LSA) tools

Natalia Derbentseva
Peter J. Kwantes
Philip Terhaar

Defence R&D Canada
Technical Note
DRDC Toronto TN 2012-079
July 2012

|l

Canada

Latent Semantic Analysis (LSA) tools

Natalia Derbentseva
Peter J. Kwantes
Philip Terhaar

Defence R&D Canada — Toronto

Technical Note
DRDC Toronto TN 2012-079
July 2012

Principal Author

Original signed by Natalia Derbentseva

Natalia Derbentseva

Defence Scientist

Approved by

Original signed by Keith Stewart

Keith Stewart

Head of Socio-Cognitive Systems Section

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2012

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2012

Table of contents

TaADIE OF COMEEIILS ...ttt ettt e e b e e et e e bt et e st e st et e bt eseebeeneenee e i
L 6115 (04 LT) o RPN 1
1.1 Utilities to Support Latent Semantic Analysis (LSA)ccovieviieiciiecieecieeeieeeeeeees 2
2 LSA SUPPOTHNG tOOLS ...viiiiniiiiiieiteeitete ettt ettt st et b e st 3
2.1 Tools to support Custom COrpUS ZENETALIONccvverreerrrerreererreereeseesseesseessaessaesnessnenns 3
2.1.1 Removing custom stop words from a file...........cccecvrvierieriieriieniieee e 3
2.1.2 CusStom COTIPUS PIEPATALIONeeuveereerrrerrrerereareereeseesseesseesssessseasseesseesseesseesseennns 4
2.1.2.1 Word stemming MOAUIE.........c.ceovreriierierierieeieere et sene e eaeeaeens 5

2.2 Tools supporting document-by-document comparisons using LSA with multiple
SCIMANLIC SPACES ...veuuveeuteentietieteeatteaieeeteeteebeesseesueesateamteanbeenbeabeesseesseesateenteenseenseenseennes 7
3 CoNCIUAING TEMATKSvvieuiieiieiiieeieeie et et et ste st e e et eteesteestaessaeasseesseesseessaesssesssesnsesnseensens 9
Annex A CustomStopW.py SOUICE COAEcccveieviieiiiieiieeeiee ettt e eree e 11
Annex B CustomCorpusPreparation.py Sourse Code.........c.cecvevirieiieninienenenieneseeeneeeenne 13
Annex C doc by doc Multi LSA Custom STOPlist.py Sourse Code...........cccevveveveeeenannn.. 19
BibIIOZIAPNY ..ot e ettt e b e e tb e e e beeebaeeanbeeenraeennres 24
List of symbols/abbreviations/acronyms/initialiSImScccceevuerrveerieerieniesiesiesee e eieeieeeeens 25

DRDC Toronto TN 2012-079 1

il

This page intentionally left blank.

DRDC Toronto TN 2012-079

1 Introduction

Latent Semantic Analysis (LSA; Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998) is
a computational model that uses a large collection of unstructured documents to construct
semantic representations for words. The representations are based on a statistical analysis of the
terms' occurrences within and across documents, and take the form of a vector. The semantic
similarity between resulting word representations can be compared by calculating their cosine.
After an LSA space is created, it can be queried to provide a word-to-word, word-to-document, or
document-to-document comparisons to determine their semantic similarity by taking the cosine of
the angle formed by their vector representations. When comparing words to documents (and
sometimes documents to each other), LSA uses what is called a “bag of words” approach to
representing the semantic contents of a document. In a “bag of words”, the order of terms in a
document does not matter, and the semantic representation of a document is formed by summing
the vectors of all its content words.

LSA requires a relatively large set of short documents to generate a semantic space (i.e., from
several hundreds to tens of thousands). The large number helps to ensure that many words from a
variety of contexts (operationally defined as documents) are available for analysis.

Before a semantic space for the terms in the corpus is constructed by our version of LSA, the
documents need to be prepared. Punctuation is removed from the documents, words are brought
to lower case, and words that appear in most or all documents in the corpus, such as articles,
prepositions, and others that do not help to differentiate the contextual uses of the terms are
removed from the documents, so called “stop words”. Typically, the same set of stop words is
removed from every document in a corpus before analysis. However, under certain conditions
different stop word lists have to be removed from different groups of documents before they can
be combined into a single corpus and analyzed. Because LSA usually requires several thousands
of documents, removing custom stop word lists from them is a time-consuming and labour
intensive task. One of the tools reported in this Technical Note (TN) supports this task.

One of LSA’s requirements is that for a word to be included in the space, it must occur in at least
two documents. This poses a potential challenge when a corpus for LSA analysis needs to be
created from a limited number of relatively short documents. In this situation, a large number of
words can potentially be excluded from the analysis because they do not meet the minimum
document occurrence criteria. At least partially, it occurs not because there are many unique
words, but because the same word is used in different forms in different documents (for example,
singular and plural forms of nouns). Thus, bringing different forms of the same word to a single
form across documents in a training corpus can partially diminish their unnecessary exclusion
from the corpus. The tools described in this TN implemented stemming of words prior to the
construction of the corpus and the LSA space.

LSA builds its semantic representation from a consideration of words’ contextual use. That is,
words that tend to be used in similar contexts will tend to have a semantic association. Not
surprisingly then, the same two words can have different representations depending on the
collection of documents used to create a semantic space, For example, the word “mouse” means
something different in the context of computers than in the context of animals or vermin. Hence,
depending on the purpose of the analysis, the same set of words or texts can be analyzed with

DRDC Toronto TN 2012-079 1

different LSA spaces. The WIKIPEDIA subcorpora tool (Stone and Dennis, 2012) allows the user
to create custom corpora from a Wikipedia archive.

Finally, the existing functionality of DRDC’s SEMMOD package allows pair-wise comparisons
of words or texts, one pair at a time with a single LSA space. Therefore, a large number of such
comparisons are a time-consuming and a labour intensive task. One of the tools described in this
TN provides automation of multiple LSA comparisons and supports application of several LSA
spaces.

1.1 Utilities to Support Latent Semantic Analysis (LSA)

This TN documents a set of tools that were developed to support the ongoing work at DRDC
Toronto that applies. The described set of tools builds on the WIKIPEDIA Subcorpora Tool
(Stone & Dennis, 2012) and the Semantic Models (SEMMOD) module (v 1.5, Dennis & Stone,
2011) that were developed by the Ohio State University (OSU) under the contract W7711-
067985/001/TOR for a Technology Investment Fund (TIF) project (15da05) and an Applied
Research Project (ARP, 15ah) . The tools described in this TN extend the capabilities offered by
the OSU modules and support 2 main functions:

1. Preparation of a custom corpus ready for LSA’s semantic space generation. In addition to
standard procedures that are performed on a collection of documents to prepare them for LSA
space generation, such as removing punctuation and stop words, the tools developed also
allow the following operations:

¢ The application of a customized stop word list to a single document file prior to its
inclusion into a corpus;

¢ The stemming the words in a file using the Porter stemming algorithm;
¢ The exclusion of words that occur in fewer than a specified number of documents.
2. Automating the process of conducting document-to-document comparisons where documents
are created from different LSA spaces, with the following options:
¢ application of a customized stop word list to the input file;
¢ stemming the words in the input file;
¢ specifying multiple LSA spaces to be applied to the input file;

¢ generating output in the form of a document-by-document table or a single column
to facilitate subsequent analysis of the results.

2 DRDC Toronto TN 2012-079

2 LSA supporting tools

This section describes the tools that support LSA including their functions, input requirements,
output formats, and execution requirements. The tools were developed in the Python 2.6.5
programming language for the Linux environment. In the interest of time no graphical user
interface (GUI) was developed, and individual files containing scripts are run from the command
line. The source code is currently stored on DRDC Toronto public server Pluto at the following
location: \\Pluto\public\VISTIF\LSATools. Print outs of the source code are provided in Annexes
A-C.

21 Tools to support custom corpus generation

This sub-section describes the tools that were developed to support custom corpus generation,
including 1) possibility to apply a custom stop words list to a single document prior to its
inclusion into a corpus, ii) stemming the words in a file using the Porter stemming model; iii)
excluding from the corpus words that occur in fewer than the specified number of documents.

2141 Removing custom stop words from a file

This module was developed to allow the user to remove a custom set of words from a single text
file before the file is included into a corpus file. This module is useful when different stop word
lists have to be applied to different documents before they are combined into a single corpus.
NOTE: prior to removing stop words, punctuation is also removed from the file.

File: CustomStopW.py (source code is in Appendix A)
Command line prompt example:

$ python CustomStopW.py -i /home/MyDocuments/TextFiles/Agreeableness.txt -s
/home/MyDocuments/StopListFiles/Agreeableness Stop.txt

Options and arguments:

-i followed by the input file name. Requires either a filename with a complete path, or
just a name of a file in the default location: “input”’ subfolder. If this option is
omitted, the default input file will be processed, which is “input/default.txt”.

-s followed by the stop words list file. Requires either a filename with a complete path,
or just a name of the file in the default location: “CleaningFiles/” subfolder. If this
option is omitted, the default stop words list file will be used:
“CleaningFiles/stopList Words.txt”.

Input requirements:

¢ Input file: Plain text, preferably in UTF-8 format with no special requirements.
Default input file location is “input/” subfolder.

DRDC Toronto TN 2012-079 3

¢ Stop words list file: Plain text, preferably in UTF-8 format. Each stop word must
appear on a separate line.

Output:

Punctuation and the words found in the stop words list file are removed from the input file, and
the result is stored in a new file, which is saved in the same location as the input file. The line
breaks in the input file are preserved. The name of the output file complies with the following
naming convention:

<input file> CSWr.<input file extension>.
Execution requirements:

The folder containing the CustomStop W.py must also contain the following files:
¢ corpusCleaningTools.py
¢ FEntityClassify.py

The folder containing the stop word list file must also contain the punctuation stop list:
“stopList Punctuation.txt”.

21.2 Custom corpus preparation

This module prepares a text document for LSA space generation, and outputs a collection of
documents in a file with the extension .cor. It allows the use to apply a custom stop words list to
the input file, stem the words, and specify the minimum frequency of word’s occurrence.

File: CustomCorpusPreparation.py (source code is in Appendix B)
Command line prompt example:

$ python CustomCorpusPreparation.py -i /home/MyDocuments/TextFiles/Agreeableness.txt —f 3
-s /home/MyDocuments/StopListFiles/Agreeableness Stop.txt —t

Options and arguments:

-i followed by the input file name. Requires either a filename with a complete path, or
just a name of a file in the default location: “input/’ subfolder. If this option is
omitted, the default input file will be processed, which is “input/default.txt”.

-f to indicate the minimum number of documents in which a word must occur to be
included in the corpus. This argument must be followed by an argument. The default
value is 2.

-s followed by the stop words list file. Requires either a filename with a complete path,
or just a name of the file in the default location: “CleaningFiles/” subfolder. If this

4 DRDC Toronto TN 2012-079

option is omitted, the default stop word list file will be used:
“CleaningFiles/stopList Words.txt”.

-t no argument is required. If "-#" is included, the words will be stemmed after the
documents are cleaned, and they will not be stemmed if "-#" is omitted. The default is
to omit stemming.

Input requirements:

¢ Input file: Plain text, preferably in UTF-8 format with no special requirements.
Default input file location is “input/” subfolder.

¢ Stop words list file: Plain text, preferably in UTF-8 format. Each stop word must
appear on a separate line.

¢ The folder containing the stop word list file must also contain the punctuation stop
list: “stopList Punctuation.txt”.

Output:

A corpus ready for LSA space generation: Punctuation and stop words removed, only words that
appear with sufficient frequency across documents are retained. The documents are separated by
a blank line. The result is stored in a new file which is placed in the same location as the input file
with the following naming convention:

<input file>.cor
The words that were removed from the documents are stored in a file with the name
<input file>.cor.removed

Execution requirements:
¢ nltk.stem.porter
¢ semmod.lsa
¢ The folder containing the CustomStopW.py must also contain the following files:
¢ corpusCleaningTools.py
¢ EntityClassify.py

¢ The folder containing the stop word list file must also contain the punctuation stop
list: “stopList Punctuation.txt”.

21.21 Word stemming module
Words can appear in several forms, like singular and plural versions of the nouns book and books.

Different forms of a word are treated as different terms by LSA. As a result, one could argue that
the number of unique words recognised by the system in a collection of documents is somewhat

DRDC Toronto TN 2012-079 5

inflated. Such inflation can pose a problem for generating a semantic space from a relatively
small collection of short documents. In such a collection, a substantial number of words could be
excluded from the analysis because of their “uniqueness” in the corpus, thus, resulting in a limited
semantic space.

Word stemming can be used to mitigate this issue. Word stemming is a process that brings affixed
forms of a word to its base form, that is, its stem. Reducing words to their stems decreases the
number of unique words in a corpus, and increasing their frequency in the corpus. Such
processing could improve the quality of a semantic space constructed from a relatively small
number of short documents.

A function was developed that transforms a string into a collection of candidate stems. To reduce
noise introduced by the stemming process itself, a validation step checks whether a stemmed form
is a recognized word itself. If the stem is a recognized word, then the original word in the
document is changed into its stemmed form. If the stemmed form is not recognized, the letters
that were removed by stemming are added back to the stemmed form one by one. The check is
repeated after each letter is added until a recognized word is found.

This function uses the Porter stemmer module from the Natural Language Toolkit (NLTK)
package and it also uses an existing semantic space built using LSA to check for the words’
existence. This function can be called from other modules by importing it and passing the
required arguments to it.

Resides in file: CustomCorpusPreparation.py (code is in Appendix B)

Usage example:

from CustomCorpusPreparation import StemmerWithLSAcheck

StemmedDocuments = StemmerWithLSAcheck (ListOfDocuments, FileNameBase)

Required arguments:
¢ ListOfDocuments — either a list or a dictionary that contains strings to be stemmed
¢ FileNameBase — input file name without extension. It is used to create stemming
output files
Returns: Stemmed strings in the form they were provided to the function, i.e., either a list or a
dictionary
Also creates:

¢ a file with the record of stemming steps, file name <inputfilename> STemDebug"
and

¢ a file that contains a list of the original words and their form after stemming, file
name: <inputfilename> AfterStemmingWords.txt"

6 DRDC Toronto TN 2012-079

Execution requirements:

All modules required by the CustomCorpusPreparation.py file (see 2.1.2), and the LSA semantic
space contained in the file, LSAspaces/tasaCleaned fromPluto.lsa

2.2 Tools supporting document-by-document comparisons
using LSA with multiple semantic spaces

This module automates document-by-document comparisons, and it allows the user to measure
the semantic similarity among all document pairs in an input file. Further, the comparisons can be
conducted on representations derived from multiple semantic spaces from LSA at the same time.
The module generates a document-by-document similarity matrix and saves it as comma
separated values (CSV) in a separate ASCII file for each semantic space. It supports the
following options:

¢ applying a customized stop words list to the input file;
¢ stemming the words in the input file;
¢ analysing the input file with multiple LSA spaces;

¢ generating output in the form of a document-by-document table , as well as a single
column created by concatenating the columns of the matrix to facilitate subsequent
analysis.

File: doc_by doc Multi LSA Custom_STOPlist.py (source code is in Appendix C)
Command line prompt example:

$ python doc by doc Multi LSA Custom STOPIist.py -i
/home/MyDocuments/TextFiles/Agreeableness.txt -f 3 -s

/home/MyDocuments/StopListFiles/Agreeableness Stop.txt -1 /home/MyDocuments/LS Aspaces -
t

Options and arguments:

-i followed by the input file name. Requires either a filename with a complete path, or
just a name of a file in the default location: “input/’ subfolder. If this option is
omitted, the default input file will be processed, which is “input/default.txt”’. The input
file has to be properly formatted, see section “Input requirements” below for
instructions.

-s followed by the stop words list file. Requires either a filename with a complete path,
or just a name of the file in the default location: “CleaningFiles/” subfolder. If this
option is omitted, the default stop words list file will be wused:
“CleaningFiles/stopList Words.txt”.

DRDC Toronto TN 2012-079 7

-/ followed by the name of the directory that contains all of the LSA spaces to be applied
to the input file. If not specified, the default folder is "LSAspaces/.

-t no argument is required. If "-#" is included, the words will be stemmed after the docs
are cleaned. They will not be stemmed if "-#" is omitted. The default is to omit
stemming.

Input requirements:

*

Output:

Input file: All documents to be analyzed must be compiled into a single plain text
file, in which each document is on a separate line; and each line (document) must
begin with the document code, which will be used as the document identifier in all
output files. Preferred format for the input file is UTF-8. Default input file location
is “input/” subfolder.

Stop words list file: Plain text, preferably in UTF-8 format. Each stop word must
appear on a separate line.

The folder containing the stop word list file must also contain the punctuation stop
list: “stopList Punctuation.txt”.

Two CSV files for each semantic space are created in the "csv/" sub-folder. One of the .csv files
contains a document-by-document similarity matrix populated with cosine values above the upper
diagonal from the given semantic space; the second .csv file (with the COLUMN suffix) formats
the same information into a single column. Files are named with the following convention:

<input-file name>_ <StopList file name> LSA <name of the LSA space>.csv

<input-file name> <StopList file name> LSA <name of the LSA space> COLUMN.csv

Execution requirements:

*

*

*

nltk.stem.porter
semmod.lsa

numpy

The folder containing the doc_by doc Multi LSA Custom_STOPlist.py must also
contain the following files:

¢ corpusCleaningTools.py
¢ EntityClassify.py
¢ CustomCorpusPreparation.py (contains the stemming function)

The folder containing the stop word list file must also contain the punctuation stop
list: “stopList Punctuation.txt”.

DRDC Toronto TN 2012-079

3 Concluding remarks

The tools described in this TN automate certain aspects of the otherwise labour-intensive and
time-consuming process of pre-processing text for LSA and conducting multiple analyses.
Although these tools were developed to address specific data analysis needs, the functionality that
they support (e.g., document-by-document comparison) is fairly general. For example, the
document-by-document comparison could be used in validating the semantic analysis component
of the Analysis of Semantic and Social Networks (ASSN) tool.

The tools described in this TN will likely be developed further, given the nature of the ongoing
work at DRDC Toronto. The purpose of this TN is to document the functionality developed up to
date, to disseminate the availability of such functionality among DRDC Toronto colleagues who
might benefit from them, and to reduce duplication of efforts in the future.

We expect to improve the flexibility and usability of these tools in the future, and to develop
other functionality to support LSA and semantic analysis in general. DRDC Toronto can take the
lead in developing a more comprehensive Python-based LSA toolkit, and make it available as an
open source library to the general community of users interested in application of LSA. Such
sharing could facilitate further co-development of the toolkit by the community.

DRDC Toronto TN 2012-079 9

10

This page intentionally left blank.

DRDC Toronto TN 2012-079

Annex A CustomStopW.py Source Code

1 #!/usr/bin/env python

2

3

s #

s # Allows to apply a custom stop list to a file. Might be.garticularly useful when different
6 # special sets of words must be removed from different files before they are combined in a
7 # single corpus. Punctuation is also removed from the file.

8 #

9 # ARGUMENTS:

10 # -1 for iUY“t file. Requires an argument. If path is not specified with

1 # the file name, then the program will look for it in the "input/" sub-folder

12 # relative to this script file.

13 #

14 # -s for a stop words list file. If path is not indicated then the program will look for
15 # it _in the "CleaningFiles/" sub-folder. If stop list file is not specified or doesn't
16 # exist, the program will use the "CleaningFiles/stopList_Words.txt".

17 # NOTE: the foder with the stop words list file must also contain the

18 # “stopList_Punctuation.txt" file.

19 #
20 # OUTPUT:))) .)
21 # - File with the input file name and "-CSWr" suffix is saved in the input file's location.
22 #
23
24
25

26 from corpusCleaningTools import removeStopWordsCaseInsensitive as RE_Stop
27 from corpusCleaningTools import replacePunctuationWithSpace as RE_Punct
28 import os, sys, getopt, pdb, glob

29
30 def main(argv):

31 INPUT_PATH = os.path.join(APP_PATH, 'input/’)

32 FILES_PATH = os.path.join(APP_PATH, ‘'CleaningFiles/"')

33 infilename = "default.txt”

34 stoplist = "stopList_Words.txt"

s

36 try:

37 opts, args = getopt.getopt(argv, "i:s:", ["input=", "stoplist="])
38 except getopt.GetoptError:

39 print “\nARGUMENT ERROR"

40 sys.exit(2)

a1

42 for opt,arg in opts:

43 if opt in ("-1", "--input”):

4s #check if the input filename contains a path

as if os.path.dirname(arg):

a6 INPUT_PATH = os.path.dirname(arg)

47 infilename = os.path.basename(arg)

a8 else:

49 infilename = a

50 elif opt in ("-s", "--stoplist"):

51 #check if the stoplist filename contains a path

52 if os.path.dirname(arg):

53 FILE_PATH = os.path.dirname(arg)

54 stoplist = os.path.basename(arg)

55 else:

56 stoplist=arg

57

s8 InputFile = os.path.join(INPUT_PATH, infilename)

59 StopListFile = os.path.join(FILE_PATH, stoplist)

60 puncFile = os.path.join(FILES_PATH, ‘stopList_Punctuation.txt')
61

62 infile=open(InputFile,'r")

63 myText=infile.read()

64

65 print "\n\nApplyin? STOP LIST: %s\nto the INPUT FILE: %s\n" % (StopListFile,InputFile)
66 C_text = RE_Punct (myText, puncFile)

67 C_text = RE_Stop(C_text, StopListFile)

DRDC Toronto TN 2012-079 11

12

68
69
70
71
72

74
75
76
77
78

NameBase, extent = os.path.splitext(InputFile)
outfilename="%s_CSWr%s" % (NameBase,extent)
CleanFile=open(outfilename, ‘w')
CleanFile.write(C_text)

infile.close()
CleanFile.close()

if _name__ = "__main__ ":
main(sys.argv[1:])

DRDC Toronto TN 2012-079

Annex B CustomCorpusPreparation.py Sourse Code

1 #!/usr/bin/env python

2

3

4 #

5 # Takes an input file where each doc is on a single line.

6 # User can specify the min number of docs in which each word has to

7 # occur to be included in the corpus; and whether to stem the words or not.

8 #

9 # ARGUMENTS:

10 # -1 for ineut file. Requires an argument. If path is not specified with
1 # the file name, current location of this .py file is the default location.
12 #

13 # -f to indicate the minimum number of docs in which a word must occur to
14 # be included in the corpus. Must be followed by an argument.

15 # The default value is 2.

16 #

17 # -s for a stop words list file. If path is not indicated then the program will look for
18 # it in the "CleaningFiles/" sub-folder. If stop list file is not specified or doesn't
19 # exist, the program will use the "CleaningFiles/stopList_Words.txt".

20 # NOTE: the foder with the stop words list file must also contain the
21 # “stopList_Punctuation.txt" file.

22 #

23 #

28 # -t no argument is required. If "-t" is included, the words will be|

25 # stemmed after the docs are cleaned, and they will not be stemmed

26 # if"-t" is omitted. The default is to omit stemming.

271 #

28 # PROCESS:

29 # - The input file is garsed and each line is treated as a separate document;
30 # - Each document is cleaned with corpusCleaningTools.py:

3 # - Words are stemmed (if -t is included in the command line);

32 # - Words that occur in less than the specified number of docs are removed.
33 # OUTPUT:

33 # - File with .cor extension is saved in the input file's location.

35 #

36 # Additional files generated:

37 # - <inputfilename>.cor.removed lists the removed words;

38 # - <inputfilename>_STemDebug" file records stemming steps;

39 # - <inputfilename>_AfterStemmingWords.txt" contains the list of

40 # original words and form after stemming.

a1 #

42

43

a4

45 import corpusCleaningTools as cleaner
46 import os, sys, getopt, pdb, glob

ag #from nltk.stem.lancaster import LancasterStemmer
49 from nltk.stem.porter import PorterStemmer
so from semmod.lsa import lsa

51

52

53 def main(argv):

54 INPUT_PATH = os.path.join(sys.path[0], ‘input/')

55 FILES_PATH = os.path.join(sys.path[0], ‘CleaningFiles/")

56 infilename = ‘default.txt’

57 stoplist= 'stopList_Words.txt'

58

59 XX=2

60 excludedDOCs=0

61 S=0

62

63 #Parsing options

64 try:

65) ogts. args = getopt.getopt(argv, "i:f:s:t", ["inputfile=", "frequency=", "stoplist=",
"stemming”])

66 except getopt.GetoptError:

DRDC Toronto TN 2012-079 13

67 print "\nARGUMENT ERROR"

68 sys.exit(2)
69
70 for opt.,arg in opts:
71 if opt in ("-1i", "--input”):
72 #check if the passed on input filename contains a path
72 if os.path.dirname(arg):
74 INPUT_PATH = os.path.dirname(arg)
75 infilename = os.path.basename(arg)
76 else:
77 infilename = arg
78 elif opt in ("-f", "--frequency”):
79 XX=1nt(arg)
80 elif opt in ("-s", "--stoplist”):
81 if os.path.dirname(arg): #check if the specified stoplist filename
contains a path
82 FILES_PATH = os.path.dirname(arg)
83 stoplist = os.path.basename(arg
84 else:
85 stoplist = arg
86 elif opt in ("-t", "--stemming"):
87 S=1
88 #End of option parsing
89
90 InputFile = os.path.join(INPUT_PATH, infilename)
91 stopFile = os.path.join(FILES_PATH, stoplist)
92 puncFile = os.path.join(FILES_PATH, ‘stopList_Punctuation.txt')
93 NameBase, extent = 0s.path.splitext(InputFile)
94
95 #specify cleaning parameters and functions
96 myCleaningParams=[None,None, puncFile,None,None,None, stopFile]
97 MyCleanFunctions =
['lowerText', 'removeFormatting', ' replacePunctuationWithSpace', ' removeMultipleWhiteSpace', ' removeNumbers'
98
99 print "\n\n\nCUSTOM CORPUS PREPARATION RUNNING......... \n"
100 print "\n Input file: %s\n" % InputFile
101 print " Viords that appear in less than %d documents will be removed\n” % XX
102
103 DOCS_C = [] #list for cleaned doc
104
105 infile = open(InputFile,'r")
106
107 for doc in infile: #go through lines in the input file, treat each line as a doc
108 if doc.striﬁ(): #check if line is not empty
109 #clean the doc with the corpusCleaningTools.py
110 C_text=cleaner. runCleaningFunctions(doc, MyCleanFunctions, myCleaningParams)
1 #Add the clreaned doc to the list of cleaned docs
112 DOCS_C.append(C_text)
113
114 infile.close()
115
116 if S =1:
117 print " STEMMING with LSA CHECK "
118 DOCS_C = StemmerWithLSAcheck(DOCS_C, NameBase)
119 else:
120 print "\n STEMMING WILL NOT BE PERFORMED!\n"
121
122 print " Removing words that occur in less than %d documents:\n" % XX
123 WordsDocFrequency = WordsInDocsFrequency(DOCS_C)
124
125 DOCS_C = RemoveLowFWords(WordsDocFrequency, DOCS_C, XX, NameBase)
126 print “\n CREATING OUTPUT FILE: %s.cor\n" % NameBase
127 #create an output .cor file
128 outfile=open(“%s.cor” % NameBase, 'w')
129 for doc in DOCS_C:
130 outfile.write ("%s\n\n" % doc)
131 print "CUSTOM CORPUS PREPARATION COMPLETE!\n\n"

DRDC Toronto TN 2012-079

132
133
134
135
136
137
138
139

141
142
143
144
145
146
147
142

149

150
151
152
153
154

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

185
186
187

189
190
191
192
193

195
196
197

outfile.close()

#****ttttit************ttt*tt***********t‘ttt‘****t*******tt‘*tt************l!tt!************t‘tttt*****
=
WORD FREQUENCY
=
#*******tt*************#t**tt*************tt******t*******t*tttt************tt*tt**************tt*******
counts the number of documents in which each unique word appeared:
returns a dictionary of words with their doc frequency

def WordsInDocsFrequency(DOCS_C):

#create a dictionary that will have the number of documents in which each word from the
corpus occured

words_in_docs_frequency = {}

words_doc_temp = [] #temp list of words to keep track of words in the same doc

for text in DOCS_C:
words_doc_temp[:]=[] #empty the temp list to get ready for a new doc
for word in text split():
if word:
if not word in words_doc_temp:
words_doc_temp.append{word)
if word in words_in_docs_frequency:
words_in_docs_frequency[word]+=1
else:
words_in_docs_frequency[word]=1

return words_in_docs_frequency

KK KK HHOR K K 0 600008 R HOK K K 88000 00308 BR800 808000 R HKKOK 8 K K 830 R HHOKOKOKOK KK KK RO K KoK
=

Remove words that occur in less than the specified
number of documents
#

KK RN KKK KK K 80000 R ORI R R B0 000000 K HROK K 0 R 008808 HROROKOK KO OK K8 00 00KOROOKROK K OIOK OK R R KRRk Rk oK

def RemovelLowFWords(WDFrequency, Docs, XX, NameBase):
#remove words that appear in less than XX number of documents

outfileremoved=open(“%s.cor.removed” % NameBase, 'w')
print " Removed words are saved in: %s.cor.removed” % NameBase

removed_words={}
DOC_C_U=[]
i=0
excludedD0OCs=0
for text in Docs:
string = "*
1+=1
for item in text.split(" "):
if item:
if WDFrequency[item]>=XX:
if string:
string +=" %s" % item
else:
string=item
else:

DRDC Toronto TN 2012-079 15

198 if item in removed words:

199 removed_words[item]+=1

200 else:

201 removed_words[item]=1

202

203 if string:

204 DOC C_U.append(string)

205 else

206 excludedDOCs+-1 #count excluded docs

207 for word, fr in removed words.iteritems():

208 outfileremoved.write"%s %d\n* % (word, fr))

209

210 print "\n ...%d UNIQUE words were found" % 1en(WDFreguenc¥

211 print " ...% words were excluded because they occure ess than %d documents” % (len
(removed_words), XX)

212 print " ...%d WORDS remain in the corpus” % (len(WDFrequency)-len(removed_words))

213 print "\n ...%d DOCUMENTS found in the INPUT file" % len(Docs)

214 print "\n ...% DOCUMENTS are included in the final CORPUS" % len(DOC_C_U)

215 print " ...%d DOCUMENTS were EXCLUDED\n\n" % (excludedDOCs)

216

217 outfileremoved.close()

218

219 return DOC_C_U

220

221

222

223

224

225 KRR HK R HOK KK 800K KK RO K K 808008 HK B KOK 0 6 80 00 08000 KK KO OK K KK R0RHHOKOK HOHOK KO OR300 0K koK K
226 #

227 # STEMMER with LSA
check
228 #

229 #****t!tttt************tttttt***********ttt**t************tttttt************ttttt************t!tttt*****
230

231 def StemerﬂlthLSAcheck(Docs NameBase) :

232 LSAname = th.join(sys.path[0], 'LSAspaces/tasaCleaned_fromPluto.lsa')

233 #LSAname = / ome/nataha/DeveI/lsaplayground/Corpora/tasaCleaned fromPluto.lsa’

234 #LSAname = '/home/natalia/Devel/1lsaplayground/Corpora/WikiSubCorpRandom50000.1sa’

235

236 print "\n The following LSA space will be used to check stemmed words® existance:
\n %s\n" % LSAname

237

238 if type(Docs)=type(dict()):

239 DOCS_C_S={}

240 for key,line in Docs.iteritems():

241 DOCS_C_S[keyl=stemAline(1line, LSAname, NameBase)

242 elif type(Docs)—type(hst())

243 DOCS_C_S=[]

244 for Tine in Docs:

245 DOCS_C_S.append(stemAline(line, LSAname, NameBase))

246 else:

247 print "\nError in StemmerWithLSAcheck function. A list or dictionary is required.\n"

248 sys.exit()

249 print * STEMMING COMPLETE!\n"

250 return DOCS_C_S

251

252

253 #EH* *AAK kK AR AR Ak *

254 #

255 # Stemms a line. Requires as inputs:

256 # - line of text

257 # - LSA space name

258 # - NameBase (path plus the input filename)

259 #

260 #FFRRREX AR kK AR *AAK HAHAK *

261

DRDC Toronto TN 2012-079

262
263
264
265
266

268
269
270
271
272

274
275
276
277
278
279
280
281
282
283

285
286
287

289
290

291
292

293

294
295

296

297
298
299

301
302
303

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

def stemAline(line, LSAname, NameBase):
Pst = PorterStemmer()
stemfile=open(“%s_STemDebug" % NameBase, 'a‘)
stemmedwordsfile=open(“%s_AfterStemmingWords.txt" % NameBase, 'a‘')
stemfile.write("\nLINE: %s\n" % line))
LSAspace=1sa(LSAname) #lsa space to be used to check words' existance
StemmedDoc=""

for Original_Word in line.split():

Stemmed_Word_Porter= Pst.stem(Original_Word)
stemfile.write("\nOriginal WORD: _ %s__ Stemmed WORD: _ %s__ " % (Original_Word,
Stemmed_Word_Porter))

FoundWord=0

try:
IsVector=LSAspace.getTermVector(str(Stemmed_Word_Porter))
gif mir:‘grlexists then LSA knows the stemmed word and add the word to the doc string
oun =
stemfile.write("\nStemmed word found, adding %s\n" % Stemmed_Word_Porter)
stemmedwordsfile.write(“%s -> %s\n" % (Original_Word, Stemmed_Word_Porter))
if StemmedDoc:
. StemmedDoc +=" %s" % Stemmed_Word_Porter
else:

StemmedDoc=Stemmed_Word_Porter
except KeyError:
lenDif = len(Original_Word)-len(Stemmed_Word_Porter)
if lenDif>0:
for NextChar in range(1l,lenDif+1):
if FoundWord ==0:
stemfile.write("\n Trying ... %s \n" % Original_Word[:(len
(Stemmed_Word_Porter)+NextChar)])

try:
ryIsVector‘=LSAspa<:e .getTermVector(str(Original_Word[:(len(Stemmed_Word_Porter)
+NextChar)1))
#1f vector exists then the stemmed+char(s) word exists and will add the
latest word form to the doc
FoundWord=1
stemfile.write("\nStemmed word + %d char found, adding %s\n" % (NextChar,
Original_Word[: (len(Stemmed_Word_Porter)+NextChar)]))
stemmedwordsfile.write("%s -> %s\n" % (Original_Word, Original_Word[:(len
(Stemmed_Word_Porter)+NextChar)]))
if StemmedDoc:
. StemmedDoc+=" %s” % Original_Word[: (len(Stemmed_Word_Porter)+NextChar)]
else:
StemmedDoc= Original_Word[: (len(Stemmed_Word_Porter)+NextChar)]
except KeyError:
#the word not found, allow to add another char from the original
stemfile.write("\n LSA DOESN'T KNOW %s \n" % Original_Word[:(len
(Stemmed_Word_Porter)+NextChar)])

pass

if FoundWord==0:
stemfile.write("\nStemmed word NOT found, adding ORIGINAL %s\n" % Original_Word)
stemmedwordsfile.write(“%s -> %s\n" % (Original_Word, Original_Word))
if StemmedDoc:
StemmedDoc+=" %s" % Original_Word
else:
StemmedDoc=0riginal_Word
stemfile.write("Stemmed line: %s\n\n" % StemmedDoc)

stemfile.close()
stemmedwordsfile.close()

return StemmedDoc

DRDC Toronto TN 2012-079 17

18

322
323
324
325
326
327

if _ name__

-
main(sys

L

== "_main

.argv[1:

n__":
1)

DRDC Toronto TN 2012-079

Annex C doc by doc Multi LSA Custom STOPIist.py

Sourse Code

WO NOAU B WN-

#!/usr/bin/env python

Document by Document LSA comparison:

Takes a text file, treats each line in the input file as a document and runs document by
document LSA comparison using all of the LSA spaces located in a specified folder.
Outputs one .csv file for each LSA space.

ARGUMENTS :
-1 for input file. If path is not indicated then the program will look for it in the
“input/" sub-folder relative to this script file. If input file is not specified or
doesn't exist, the program will use the "input/default.txt".

INPUT FILE: A single text file that contains all the documets. Each document must be on a
single line and must begin with a document id followed by a period ("."). Line breaks are
treated as separators between documents. The program splits the inputfile into individual
documetns/lines using subject id as a key.

-s for a stop words list file. If path is not indicated then the program will look for
it in the “CleaningFiles/" sub-folder.
If stop list file 1s not specified or doesn't exist, the program will use the
“CleaningFiles/stopList_Words.txt".

NOTE: the foder with the stop words list file must also contain the
"stopList_Punctuation.txt" file.

-1 for folder that contains LSA spaces. If not specified, the default folder is "LSAspaces/".
The program will identify all .lsa files in the folder and will run a line by line LSA
analysis using each of these spaces, creating an output file for each 1lsa space.

-t if included, the words will be stemmed after they are cleaned, and will not if
"-t" is omitted. Default is not to stem the words.

OUTPUT: Two CSV files for each LSA space are created in the "csv/" sub-folder. One of the .csv
) files contains a doc by doc matrix populated with cosine values above the upper
iagonal
from the given LSA space, while the second file (with the _COLUMN suffix) formats the

¥

information into a single column. Files are named with the following name
onvention:
<input-file name>_<StopList file name>_<name of the LSA space>.csv
<input-file name>_<StopList file name>_<name of the LSA space>_COLUMN.csv

Debug file: is saved in the "debug/Debug_<input file name>".

HUERRBHBORHO HOAHURH AR AR R BB R R SRS

print "\nRUNNING...\n"

#imports) . .
#from pseudolizer import pseudolize
import corpusCleaningTools as cleaner
from semmod.lsa import 1lsa

from numpy import *

from numpy.linalg import *

from numpy.random import *

import os, sys, getopt, pdb, glob

from CustomCorpusPreparation import StemmerWithLSAcheck as stemm

def main(argv):

DRDC Toronto TN 2012-079 19

85
86

87

119
120
121

20

APP_PATH = sys.path[0]

DEBUG_PATH = os.path.join(APP_PATH, 'debug/")
INPUT_PATH = os.path.join(APP_PATH, 'input/’)
FILES_PATH = os.path.join(APP_PATH, ‘'CleaningFiles/")

OUTPUT_PATH = os.ﬁath.]oin(APP_PATH. ‘csv/"')
LSA_PATH = os.path.join(APP_PATH, ‘LSAspaces/')
infilename = "default.txt”

stoplist = 'stopList_Words.txt'

S=0

try:
opts, args = getopt.getopt(argv, "hi:s:l:t", ["help”, "inputfile=", "stoplist=","lsafolder=",
“stemming”])
except getopt.GetoptError:
print "\nARGUMENT ERROR"
sys.exit(2)

for opt,arg in opts:
if opt in ("-h", "--help”):
print “\nDOC by DOC multi LSA analysis \n\nUse\n -1 to specify the input file,\n the
2e{gu1t location for the input file if path to the file is not specified is /input/ sub-
older \n"
print "Use\n -s to specif¥ a stop words list file, the default location for cleaning files
is:\n /CleaningFiles/ sub-foledr\n"
print "Use\n -1 to specify a directory that contains LSA spaces (.lsa files).\n The
default directory is /LSAspaces/ sub-folder\n®
print "Use\n -t to indicate that the words have to be stemed.\n The words WILL NOT
BE STEMMED if this option is omited\n\n"
sys.exit()
elif opt in ("-i", "--input"):
hif os.path.dirname(argg: #check if the specified input filename contains
a pat
INPUT_PATH
infilename
else:
infilename = arg
elif opt in ("-s”, "--stoplist"):
if os.path.dirname(arg): #check if the specified stoplist filename
contains a path
FILES_PATH = os.path.dirname(arg)
stoplist = os.path.basename(arg
else:
stoplist = arg

os.path.dirname(arg)
os.path.basename(arg)

elif opt in ("-1", "--1lsafolder"):
if os.path.dirname(arg): #check if the specified stoplist filename
contains a path
if os.path.isabs(os.path.dirname(arg)):
LSA_PATH = os.path.dirname(arg)
elif opt in ("-t", "--stemming”):

define

InputFile = os.path.join(INPUT_PATH, infilename)

stopFile = os.path.join(FILES_PATH, stoplist)

puncFile = os.path.join(FILES_PATH, 'stopList_Punctuation.txt")

DebFileName = "%s DEBUG" % infilename

Debugfile = os.path.join(DEBUG_PATH, DebFileName) #initiate debug file

NameBase, extent = os.path.splitext(InputFile)

LSAfiles = [] # list that will contain names of all .lsa
files found in the LSA directory

if not os.path.isfile(InputFile):
print "\n\n???\n EXITING: Could not find INPUT FILE %s\n Specify a valid INPUT FILE with

DRDC Toronto TN 2012-079

option -1 and try again\n???\n\n" % InputFile

122 sys.exit()

123 if not os.path.isfile(stopFile):

124 print "\n\n???\n EXITING: Could not find STOP LIST FILE %s\n Specify a valid STOP LIST FILE
with option -s and try again\n???\n\n" % stopFile

125 sys.exit()

126 if not os.path.isfile(puncFile):

127 print "\n\n???\n EXITING: Could not find STOP LIST FILE %s\n Make sure the file %s is in the

%s directory, and try again\n???\n\n" % (puncFile, os.path.basename(puncFile), os.path.dirname
(FILES_PATH))

128 sys.exit()

129 if not os.path.isdir(LSA_PATH):

130 rint "\n\n???\n EXITING: Could not find LSA directory %s\n Specify a valid LSA directory
with option -1 and try again\n???\n\n" % LSA_PATH

131 sys.exit()

132

133

134 print "\n\nPREPARING FOR DOCUMENT BY DOCUMENT LSA ANALYSIS...... \n"

135 print "\n...USING INPUT FILE: %s" % InputFile
136 print “...USING STOP LIST FILE: %s" % stopFile

137 if S==0:

138 rint "...WORDS WILL NOT BE STEMMED"
139 elif S==1:

140 print "...WORDS WILL BE STEMMED"

141 print "\n...Folder\n %s\n contains the following *.lsa files:\n" % LSA_PATH
142 for LSAfile in glob.glob(os.path.join(LSA_PATH, '*.lsa')):

143 LSAfiles.append(os.path.basename(LSAf1ile))

144 print " %s" % os.path.basename(LSAfile)

145

146

147

148 # Split the input file into individual lines (docs)

149

150 # Open the input file for reading

151 infile = open(InputFile, 'r")

152 DebFile = open(Debugfile, 'w') #open debug file

153

154 myDOCS = {} # empty dictionary for docs

155

156 DebFi]_e_write ("\n***lllllll************ll!lit***********xl!lll************l!iil\n“)
157 DebFile.write ("** INPUT **\n")
158 DebFiIe_write ("*****ltlllx***********llxXll*********l‘:**Xlllx!************tll\n\n“)
159 DebFile.write (“\nTHE INPUT FILE line by line: \n\n")

160

161 print "\n PROCESSING the input file..... \n"
162 # Print the file line by line

163 print = ...Splitting the input file...."

164 for line in infile:

165 DebFile.write (line) #write each line into the debug file

166 SubjectID, Para = line.split(".”, 1) #split each line into Subject# and the doc

167 myDOCS[Subg:ctID]= Para.strip() # create a dictionary of docs, with subject # as a key and
strip front and back spaces...

168

169 # close input file

170 infile.close()

17

172 print * Number of documents extracted: %d\n" % len (myDOCS)

173 DebFile.write ("\n\nTOTAL NUMBER OF FILES IS: %d" % len (myDOCS))
174 DebFile.write ("\n\n\nTHE DICTIONARY OF DOCS CONTAINS THE FOLLOWING: \n")

175
176 #specify cleaning parameters and functions
177 myCleaningParams=[None,None, puncFile,None,None,None, stopFile]

178 MyCleanFunctions =) o))
['lowerText', 'removeFormatting', ' replacePunctuationWithSpace’, ‘ removeMultipleWhiteSpace', ' removeNumbers '

179
180 # Clean each doc/line with corpusCleaningTools.py
181 print * ...Cleaning the documents with corpusCleaningTools.py with the following options:\n

DRDC Toronto TN 2012-079 21

182
183

185

186
187
188
189
190
191
192
193
194
195
196
197
198
199

201
202
203

205
206
207
208

209
210

211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237
238
239

22

* lowerText\n * removeFormatting\n * replacePunctuationWithSpace\n *
removeMultipleWhiteSpace\n * removeNumbers\n * removeSingleCharacters\n *
removeStopWordsCaseInsensitive\n"
for n, t in myDOCS.iteritems():
DebFile.write (“\nSubject # %s:\nORIGINAL TEXT: %s" % (n,t))
if t.strip(): #check 1f line is not empty
myDOCS[n]= cleaner.runCleaningFunctions(t, MyCleanFunctions, myCleaningParams) #clean the
doc with the corpusCleaningTools.py
DebFile.write ("\nCLEANED TEXT: %s\n\n" % myDOCS[n])
if S==1: #stem the words with LSA check
print "\n ...STEMMING THE WORDS...\n"
myDOCS = stemm(myDOCS, NameBase)
for g.k in myDOCS.iteritems():
DebFile.write ("\nSTEMMED TEXT #%d: %s\n\n" % (int(g).k))
lco:

print "\n !!STEMMING WILL NOT BE PERFORMED!\n"

The program generates one output file for each LSA spaces in the LSA folder.

OutFileName = {}

DocByDocFile = {}

DocByDocFile_Col = {} #additional column file output
LSAspaces = {}

cos = {}

rint " ...GENERATING OUTPUT FILES in the directory %s:\n" % os.path.join(APP_PATH, OUTPUT_PATH)

p
DebFile.write (“\n\n\nxlxlx***********!xlxlx****t*******xxxxxl************11111****")

for space in LSAfiles:

DocByDocFile[space]=open(os.path.join(APP_PATH, OUTPUT_PATH, ‘%s_%s_%s.csv' %
(infilename,stoplist,s ce)g.'w')

DocByDocFile_Col[spacel=open(os.path.join(APP_PATH,OUTPUT_PATH, '%s_%S_%S_COLUMN.csv' %
(infilename, stoplist,space)), 'w")

DocByDocFile[space].write (",") #leaving the first cell of the
first row empt

LSAspaces[spacel=lsa(os.path.join(LSA_PATH, space))

print " * FILE: %s_%s_%s.csv" % (infilename,stoplist,space)

print " * FILE: %s_%S_%s_COLUMN.csv" % (infilename,stoplist,space)

DebFile.write ("* OUTPUT FILE: %s\n" % os.path.join(APP_PATH,OQUTPUT_PATH, "%s_%s_%s.csv' %
(infilename, stoplist,space)))

DebFile.write ("\n¥FkEriiimiiiior ool ooOR R R OO XXX)
DebFile.write ("\n* LSA ANALYSIS =)
DebFile.write ("\n* USING SIMILARITY method **)
DebFile'write ("\n***xxxxxx************lxlxl****t*******lxxxxx************xlxlx\n\n")

for counter in range(1l, len(myDOCS)+1): #populating line 1 of the output file with DOC numbers
for F in LSAfiles:
DocByDocFile[F].write ("%d," % counter)

for keyl in range(1,len(myDOCS)+1): #populating row 1 of the output file with DOC numbers
for F in LSAfiles:
DocByDocFile[F].write ("\n%d" % keyl)
DOC1=myDOCS[str(keyl)]
if DOC1:
for key2 in range(1, len(myDOCS)+1):
DOC2=myDOCS[str(key2)]
if keyl<key2: #adding for diagonal
DebFile.write ("\n\nSubject #%d and Subject #%d\n" % (keyl, key2))
DebFile.write ("\nSubject #%d para = %s \n\nSubject #%d para = %s \n" %(keyl, DOC1,
key2, DOC2))
if Dpoc2:
for P in LSAfiles:
COS[P] = LSAspaces[P].Similarity(DOC1, DOC2)
DocByDocFile[P].write (",%f" % COS[P])
DebFile.write (“\nCosine from %s = %f" % (P, COS[P]))

DRDC Toronto TN 2012-079

240 . DocByDocFile_Col[P].write("%d_%d,%f\n" %(int(keyl), int(key2), COS[P]))
241 else:

242 for D in LSAfiles:

243 DocByDocFile[D].write (",")

244 DocByDocFile_Col[D].write("%d _%d,,\n" 95(1nt(key1). int(key2)))
245 DebFile.write (“\nCosine from %s = N/A" %
246 else:

247 for K in LSAfiles:

248 DocByDocFile[K].write (,")

249 else:

250 for key2 in range((keyhl) , len(myDOCS)+1) :

251 for U in LSAfiles:

252 DocByDocFile_Col[U].write("%d_%d,,\n" %(int(keyl), int(key2)))
253 for key2 in range(T,len(myDOCS)+1):

254 for U in LSAfiles:

255 DocByDocFile[U].write (",")

256 DebFile.write ("\nCosine from %s = N/A" % U)
257

258 for C in LSAfiles:

259 DocByDocFile[C].close()

260 DocByDocFile_Col[C].close()

261

262 DebFile.close()

263

264 print “\n\nDONE!\n"

265

266

267

268 if __name__ == "__main__":

269 “main(sys.argvl1l:])"

DRDC Toronto TN 2012-079 23

Bibliography

Dennis, S., & Stone, B. (2011). SEMMOD: Semantic models package (Version 1.5): Ohio State
University.

Landauer, T. K., & Dumais, S. (1997). A Solution to Plato's Problem: The Latent Semantic
Analysis Theory of Acquisition, Induction, and Representation of Knowledge.
Prychological Review, 104(2), 211-240.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to Latent Semantic Analysis.
Discourse Processes, 25(2-3), 259-284.

Stone, B., & Dennis, S. (2012). Wikipedia Subcorpora Tool (Version 1.0): Ohio State University.

24 DRDC Toronto TN 2012-079

List of symbols/abbreviations/acronyms/initialisms

ARP Applied Research Project

ASSN Analysis of Semantic and Social Networks

CSv Comma Separated Values

DND Department of National Defence

DRDC Defence Research & Development Canada

DRDKIM Director Research and Development Knowledge and Information
Management

GUI Graphical User Interface

LSA Latent Semantic Analysis

NLTK Natural Language Toolkit

R&D Research & Development

OSuU Ohio State University

SEMMOD Semantic Models

TIF Technology Investment Fund

TN Technical Note

UTF Unicode Transformation Formats

DRDC Toronto TN 2012-079

25

26

This page intentionally left blank.

DRDC Toronto TN 2012-079

DOCUMENT CONTROL DATA

(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (The name and address of the organization preparing the document. 2. SECURITY CLASSIFICATION
Organizations for whom the document was prepared, e.g. Centre sponsoring a (Overall security classification of the document
contractor's report, or tasking agency, are entered in section 8.) including special warning terms if applicable.)
Defence R&D Canada — Toronto UNCLASSIFIED
1133 Sheppard Avenue West (NON-CONTROLLED GOODS)
P.O. Box 2000 DMC A
Toronto, Ontario REVIEW: GCEC JUNE 2010

M3K 2C9

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after the title.)
Latent Semantic Analysis (LSA) tools:

4. AUTHORS (last name, followed by initials — ranks, titles, etc. not to be used)
Derbentseva, N.; Kwantes, P.; Terhaar, P.

5. DATE OF PUBLICATION 6a. NO. OF PAGES 6b. NO. OF REFS
(Month and year of publication of document.) (Total containing information, (Total cited in document.)

including Annexes, Appendices,
etc.)

July 2012 35 4

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)
Technical Note

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development — include address.)
Defence R&D Canada — Toronto1133 Sheppard Avenue WestP.O. Box 2000Toronto, Ontario
M3K 2C9

9a. PROJECT OR GRANT NO. (If appropriate, the applicable research 9b. CONTRACT NO. (If appropriate, the applicable number under
and development project or grant number under which the document which the document was written.)
was written. Please specify whether project or grant.)
15ah

10a. ORIGINATOR'S DOCUMENT NUMBER (The official document 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
number by which the document is identified by the originating assigned this document either by the originator or by the sponsor.)
activity. This number must be unique to this document.)
DRDC Toronto TN 2012-079

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)
Unlimited

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the

Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement

audience may be selected.))

Unlimited

14.

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

NOT REQUIRED.

KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Latent Semantic Analysis, LSA, semantic models, semantic analysis, python

Defence R&D Canada R & D pour la défense Canada

Canada’s Leader in Defence Chef de file au Canada en matiére
and National Security de science et de technologie pour
Science and Technology la défense et la sécurité nationale

€;ﬁ§7

DEFENCE DEFENSE

www.drde-rdde.ge.ca

