
L LL

Limited D

Latent Semantic Analysis (LSA) tools

Natalia Derbentseva
Peter J. Kwantes
Philip Terhaar

 Defence R&D Canada

Technical Note
 DRDC Toronto TN 2012-079
 July 2012

L

Latent Semantic Analysis (LSA) tools

Natalia Derbentseva
Peter J. Kwantes
Philip Terhaar

Defence R&D Canada – Toronto
Technical Note
DRDC Toronto TN 2012-079
July 2012

XXX

Principal Author

Original signed by Natalia Derbentseva

Natalia Derbentseva

Defence Scientist

Approved by

Original signed by Keith Stewart

Keith Stewart

Head of Socio-Cognitive Systems Section

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2012

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2012

DRDC Toronto TN 2012-079 i

Table of contents

Table of contents .. i
1 Introduction ... 1

1.1 Utilities to Support Latent Semantic Analysis (LSA) ... 2
2 LSA supporting tools .. 3

2.1 Tools to support custom corpus generation ... 3
2.1.1 Removing custom stop words from a file .. 3
2.1.2 Custom corpus preparation .. 4

2.1.2.1 Word stemming module ... 5
2.2 Tools supporting document-by-document comparisons using LSA with multiple

semantic spaces ... 7
3 Concluding remarks .. 9
Annex A CustomStopW.py Source Code .. 11
Annex B CustomCorpusPreparation.py Sourse Code .. 13
Annex C doc_by_doc_Multi_LSA_Custom_STOPlist.py Sourse Code 19
Bibliography .. 24
List of symbols/abbreviations/acronyms/initialisms ... 25

ii DRDC Toronto TN 2012-079

This page intentionally left blank.

DRDC Toronto TN 2012-079 1

1 Introduction

Latent Semantic Analysis (LSA; Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998) is
a computational model that uses a large collection of unstructured documents to construct
semantic representations for words. The representations are based on a statistical analysis of the
terms' occurrences within and across documents, and take the form of a vector. The semantic
similarity between resulting word representations can be compared by calculating their cosine.
After an LSA space is created, it can be queried to provide a word-to-word, word-to-document, or
document-to-document comparisons to determine their semantic similarity by taking the cosine of
the angle formed by their vector representations. When comparing words to documents (and
sometimes documents to each other), LSA uses what is called a “bag of words” approach to
representing the semantic contents of a document. In a “bag of words”, the order of terms in a
document does not matter, and the semantic representation of a document is formed by summing
the vectors of all its content words.

LSA requires a relatively large set of short documents to generate a semantic space (i.e., from
several hundreds to tens of thousands). The large number helps to ensure that many words from a
variety of contexts (operationally defined as documents) are available for analysis.

Before a semantic space for the terms in the corpus is constructed by our version of LSA, the
documents need to be prepared. Punctuation is removed from the documents, words are brought
to lower case, and words that appear in most or all documents in the corpus, such as articles,
prepositions, and others that do not help to differentiate the contextual uses of the terms are
removed from the documents, so called “stop words”. Typically, the same set of stop words is
removed from every document in a corpus before analysis. However, under certain conditions
different stop word lists have to be removed from different groups of documents before they can
be combined into a single corpus and analyzed. Because LSA usually requires several thousands
of documents, removing custom stop word lists from them is a time-consuming and labour
intensive task. One of the tools reported in this Technical Note (TN) supports this task.

One of LSA’s requirements is that for a word to be included in the space, it must occur in at least
two documents. This poses a potential challenge when a corpus for LSA analysis needs to be
created from a limited number of relatively short documents. In this situation, a large number of
words can potentially be excluded from the analysis because they do not meet the minimum
document occurrence criteria. At least partially, it occurs not because there are many unique
words, but because the same word is used in different forms in different documents (for example,
singular and plural forms of nouns). Thus, bringing different forms of the same word to a single
form across documents in a training corpus can partially diminish their unnecessary exclusion
from the corpus. The tools described in this TN implemented stemming of words prior to the
construction of the corpus and the LSA space.

LSA builds its semantic representation from a consideration of words’ contextual use. That is,
words that tend to be used in similar contexts will tend to have a semantic association. Not
surprisingly then, the same two words can have different representations depending on the
collection of documents used to create a semantic space, For example, the word “mouse” means
something different in the context of computers than in the context of animals or vermin. Hence,
depending on the purpose of the analysis, the same set of words or texts can be analyzed with

2 DRDC Toronto TN 2012-079

different LSA spaces. The WIKIPEDIA subcorpora tool (Stone and Dennis, 2012) allows the user
to create custom corpora from a Wikipedia archive.

Finally, the existing functionality of DRDC’s SEMMOD package allows pair-wise comparisons
of words or texts, one pair at a time with a single LSA space. Therefore, a large number of such
comparisons are a time-consuming and a labour intensive task. One of the tools described in this
TN provides automation of multiple LSA comparisons and supports application of several LSA
spaces.

1.1 Utilities to Support Latent Semantic Analysis (LSA)

This TN documents a set of tools that were developed to support the ongoing work at DRDC
Toronto that applies. The described set of tools builds on the WIKIPEDIA Subcorpora Tool
(Stone & Dennis, 2012) and the Semantic Models (SEMMOD) module (v 1.5, Dennis & Stone,
2011) that were developed by the Ohio State University (OSU) under the contract W7711-
067985/001/TOR for a Technology Investment Fund (TIF) project (15da05) and an Applied
Research Project (ARP, 15ah) . The tools described in this TN extend the capabilities offered by
the OSU modules and support 2 main functions:

1. Preparation of a custom corpus ready for LSA’s semantic space generation. In addition to
standard procedures that are performed on a collection of documents to prepare them for LSA
space generation, such as removing punctuation and stop words, the tools developed also
allow the following operations:

 The application of a customized stop word list to a single document file prior to its
inclusion into a corpus;

 The stemming the words in a file using the Porter stemming algorithm;

 The exclusion of words that occur in fewer than a specified number of documents.

2. Automating the process of conducting document-to-document comparisons where documents
are created from different LSA spaces, with the following options:

 application of a customized stop word list to the input file;

 stemming the words in the input file;

 specifying multiple LSA spaces to be applied to the input file;

 generating output in the form of a document-by-document table or a single column
to facilitate subsequent analysis of the results.

DRDC Toronto TN 2012-079 3

2 LSA supporting tools

This section describes the tools that support LSA including their functions, input requirements,
output formats, and execution requirements. The tools were developed in the Python 2.6.5
programming language for the Linux environment. In the interest of time no graphical user
interface (GUI) was developed, and individual files containing scripts are run from the command
line. The source code is currently stored on DRDC Toronto public server Pluto at the following
location: \\Pluto\public\VISTIF\LSATools. Print outs of the source code are provided in Annexes
A-C.

2.1 Tools to support custom corpus generation

This sub-section describes the tools that were developed to support custom corpus generation,
including i) possibility to apply a custom stop words list to a single document prior to its
inclusion into a corpus, ii) stemming the words in a file using the Porter stemming model; iii)
excluding from the corpus words that occur in fewer than the specified number of documents.

2.1.1 Removing custom stop words from a file

This module was developed to allow the user to remove a custom set of words from a single text
file before the file is included into a corpus file. This module is useful when different stop word
lists have to be applied to different documents before they are combined into a single corpus.
NOTE: prior to removing stop words, punctuation is also removed from the file.

File: CustomStopW.py (source code is in Appendix A)

Command line prompt example:

$ python CustomStopW.py -i /home/MyDocuments/TextFiles/Agreeableness.txt -s
/home/MyDocuments/StopListFiles/Agreeableness_Stop.txt

Options and arguments:

-i followed by the input file name. Requires either a filename with a complete path, or
just a name of a file in the default location: “input/” subfolder. If this option is
omitted, the default input file will be processed, which is “input/default.txt”.

-s followed by the stop words list file. Requires either a filename with a complete path,
or just a name of the file in the default location: “CleaningFiles/” subfolder. If this
option is omitted, the default stop words list file will be used:
“CleaningFiles/stopList_Words.txt”.

Input requirements:

 Input file: Plain text, preferably in UTF-8 format with no special requirements.
Default input file location is “input/” subfolder.

4 DRDC Toronto TN 2012-079

 Stop words list file: Plain text, preferably in UTF-8 format. Each stop word must
appear on a separate line.

Output:

Punctuation and the words found in the stop words list file are removed from the input file, and
the result is stored in a new file, which is saved in the same location as the input file. The line
breaks in the input file are preserved. The name of the output file complies with the following
naming convention:

 <input file>_CSWr.<input file extension>.

Execution requirements:

The folder containing the CustomStopW.py must also contain the following files:

 corpusCleaningTools.py

 EntityClassify.py

The folder containing the stop word list file must also contain the punctuation stop list:
“stopList_Punctuation.txt”.

2.1.2 Custom corpus preparation

This module prepares a text document for LSA space generation, and outputs a collection of
documents in a file with the extension .cor. It allows the use to apply a custom stop words list to
the input file, stem the words, and specify the minimum frequency of word’s occurrence.

File: CustomCorpusPreparation.py (source code is in Appendix B)

Command line prompt example:

$ python CustomCorpusPreparation.py -i /home/MyDocuments/TextFiles/Agreeableness.txt –f 3
-s /home/MyDocuments/StopListFiles/Agreeableness_Stop.txt –t

Options and arguments:

-i followed by the input file name. Requires either a filename with a complete path, or
just a name of a file in the default location: “input/” subfolder. If this option is
omitted, the default input file will be processed, which is “input/default.txt”.

-f to indicate the minimum number of documents in which a word must occur to be
included in the corpus. This argument must be followed by an argument. The default
value is 2.

-s followed by the stop words list file. Requires either a filename with a complete path,
or just a name of the file in the default location: “CleaningFiles/” subfolder. If this

DRDC Toronto TN 2012-079 5

option is omitted, the default stop word list file will be used:
“CleaningFiles/stopList_Words.txt”.

-t no argument is required. If "-t" is included, the words will be stemmed after the
documents are cleaned, and they will not be stemmed if "-t" is omitted. The default is
to omit stemming.

Input requirements:

 Input file: Plain text, preferably in UTF-8 format with no special requirements.
Default input file location is “input/” subfolder.

 Stop words list file: Plain text, preferably in UTF-8 format. Each stop word must
appear on a separate line.

 The folder containing the stop word list file must also contain the punctuation stop
list: “stopList_Punctuation.txt”.

Output:

A corpus ready for LSA space generation: Punctuation and stop words removed, only words that
appear with sufficient frequency across documents are retained. The documents are separated by
a blank line. The result is stored in a new file which is placed in the same location as the input file
with the following naming convention:

 <input file>.cor

The words that were removed from the documents are stored in a file with the name

 <input file>.cor.removed

Execution requirements:

 nltk.stem.porter

 semmod.lsa

 The folder containing the CustomStopW.py must also contain the following files:

 corpusCleaningTools.py

 EntityClassify.py

 The folder containing the stop word list file must also contain the punctuation stop
list: “stopList_Punctuation.txt”.

2.1.2.1 Word stemming module

Words can appear in several forms, like singular and plural versions of the nouns book and books.
Different forms of a word are treated as different terms by LSA. As a result, one could argue that
the number of unique words recognised by the system in a collection of documents is somewhat

6 DRDC Toronto TN 2012-079

inflated. Such inflation can pose a problem for generating a semantic space from a relatively
small collection of short documents. In such a collection, a substantial number of words could be
excluded from the analysis because of their “uniqueness” in the corpus, thus, resulting in a limited
semantic space.

Word stemming can be used to mitigate this issue. Word stemming is a process that brings affixed
forms of a word to its base form, that is, its stem. Reducing words to their stems decreases the
number of unique words in a corpus, and increasing their frequency in the corpus. Such
processing could improve the quality of a semantic space constructed from a relatively small
number of short documents.

A function was developed that transforms a string into a collection of candidate stems. To reduce
noise introduced by the stemming process itself, a validation step checks whether a stemmed form
is a recognized word itself. If the stem is a recognized word, then the original word in the
document is changed into its stemmed form. If the stemmed form is not recognized, the letters
that were removed by stemming are added back to the stemmed form one by one. The check is
repeated after each letter is added until a recognized word is found.

This function uses the Porter stemmer module from the Natural Language Toolkit (NLTK)
package and it also uses an existing semantic space built using LSA to check for the words’
existence. This function can be called from other modules by importing it and passing the
required arguments to it.

 Resides in file: CustomCorpusPreparation.py (code is in Appendix B)

Usage example:

from CustomCorpusPreparation import StemmerWithLSAcheck

…

StemmedDocuments = StemmerWithLSAcheck (ListOfDocuments, FileNameBase)

Required arguments:

 ListOfDocuments – either a list or a dictionary that contains strings to be stemmed

 FileNameBase – input file name without extension. It is used to create stemming
output files

Returns: Stemmed strings in the form they were provided to the function, i.e., either a list or a
dictionary

Also creates:

 a file with the record of stemming steps, file name <inputfilename>_STemDebug"
and

 a file that contains a list of the original words and their form after stemming, file
name: <inputfilename>_AfterStemmingWords.txt"

DRDC Toronto TN 2012-079 7

Execution requirements:

All modules required by the CustomCorpusPreparation.py file (see 2.1.2), and the LSA semantic
space contained in the file, LSAspaces/tasaCleaned_fromPluto.lsa

2.2 Tools supporting document-by-document comparisons
using LSA with multiple semantic spaces

This module automates document-by-document comparisons, and it allows the user to measure
the semantic similarity among all document pairs in an input file. Further, the comparisons can be
conducted on representations derived from multiple semantic spaces from LSA at the same time.
The module generates a document-by-document similarity matrix and saves it as comma
separated values (CSV) in a separate ASCII file for each semantic space. It supports the
following options:

 applying a customized stop words list to the input file;

 stemming the words in the input file;

 analysing the input file with multiple LSA spaces;

 generating output in the form of a document-by-document table , as well as a single
column created by concatenating the columns of the matrix to facilitate subsequent
analysis.

File: doc_by_doc_Multi_LSA_Custom_STOPlist.py (source code is in Appendix C)

Command line prompt example:

$ python doc_by_doc_Multi_LSA_Custom_STOPlist.py -i
/home/MyDocuments/TextFiles/Agreeableness.txt -f 3 -s
/home/MyDocuments/StopListFiles/Agreeableness_Stop.txt -l /home/MyDocuments/LSAspaces -
t

Options and arguments:

-i followed by the input file name. Requires either a filename with a complete path, or
just a name of a file in the default location: “input/” subfolder. If this option is
omitted, the default input file will be processed, which is “input/default.txt”. The input
file has to be properly formatted, see section “Input requirements” below for
instructions.

-s followed by the stop words list file. Requires either a filename with a complete path,
or just a name of the file in the default location: “CleaningFiles/” subfolder. If this
option is omitted, the default stop words list file will be used:
“CleaningFiles/stopList_Words.txt”.

8 DRDC Toronto TN 2012-079

-l followed by the name of the directory that contains all of the LSA spaces to be applied
to the input file. If not specified, the default folder is "LSAspaces/".

-t no argument is required. If "-t" is included, the words will be stemmed after the docs
are cleaned. They will not be stemmed if "-t" is omitted. The default is to omit
stemming.

Input requirements:

 Input file: All documents to be analyzed must be compiled into a single plain text
file, in which each document is on a separate line; and each line (document) must
begin with the document code, which will be used as the document identifier in all
output files. Preferred format for the input file is UTF-8. Default input file location
is “input/” subfolder.

 Stop words list file: Plain text, preferably in UTF-8 format. Each stop word must
appear on a separate line.

 The folder containing the stop word list file must also contain the punctuation stop
list: “stopList_Punctuation.txt”.

Output:

Two CSV files for each semantic space are created in the "csv/" sub-folder. One of the .csv files
contains a document-by-document similarity matrix populated with cosine values above the upper
diagonal from the given semantic space; the second .csv file (with the _COLUMN suffix) formats
the same information into a single column. Files are named with the following convention:

 <input-file name>_<StopList file name>_LSA_<name of the LSA space>.csv

 <input-file name>_<StopList file name>_LSA_<name of the LSA space>_COLUMN.csv

Execution requirements:

 nltk.stem.porter

 semmod.lsa

 numpy

 The folder containing the doc_by_doc_Multi_LSA_Custom_STOPlist.py must also
contain the following files:

 corpusCleaningTools.py

 EntityClassify.py

 CustomCorpusPreparation.py (contains the stemming function)

 The folder containing the stop word list file must also contain the punctuation stop
list: “stopList_Punctuation.txt”.

DRDC Toronto TN 2012-079 9

3 Concluding remarks

The tools described in this TN automate certain aspects of the otherwise labour-intensive and
time-consuming process of pre-processing text for LSA and conducting multiple analyses.
Although these tools were developed to address specific data analysis needs, the functionality that
they support (e.g., document-by-document comparison) is fairly general. For example, the
document-by-document comparison could be used in validating the semantic analysis component
of the Analysis of Semantic and Social Networks (ASSN) tool.

The tools described in this TN will likely be developed further, given the nature of the ongoing
work at DRDC Toronto. The purpose of this TN is to document the functionality developed up to
date, to disseminate the availability of such functionality among DRDC Toronto colleagues who
might benefit from them, and to reduce duplication of efforts in the future.

We expect to improve the flexibility and usability of these tools in the future, and to develop
other functionality to support LSA and semantic analysis in general. DRDC Toronto can take the
lead in developing a more comprehensive Python-based LSA toolkit, and make it available as an
open source library to the general community of users interested in application of LSA. Such
sharing could facilitate further co-development of the toolkit by the community.

10 DRDC Toronto TN 2012-079

This page intentionally left blank.

DRDC

Ann

C Toronto TN 2

nex A

2012-079

CustomSStopW.p

py Sourcce Code

111

12

DRDC Toronnto TN 2012-0779

DRDC

Ann

C Toronto TN 2

nex B

2012-079

CustomCCorpusP

Preparatiion.py Soourse C

1

ode

13

14

DRDC Toronnto TN 2012-0779

DRDC

C Toronto TN 22012-079

115

16

DRDC Toronnto TN 2012-0779

DRDC

C Toronto TN 22012-079

117

18

DRDC Toronnto TN 2012-0779

DRDC

Ann

C Toronto TN 2

nex C

2012-079

doc_by_
Sourse

_doc_Mu
Code

ulti_LSA__Customm_STOPl

1

list.py

19

20

DRDC Toronnto TN 2012-0779

DRDC

C Toronto TN 22012-079

221

22

DRDC Toronnto TN 2012-0779

DRDC

C Toronto TN 22012-079

223

24 DRDC Toronto TN 2012-079

Bibliography

Dennis, S., & Stone, B. (2011). SEMMOD: Semantic models package (Version 1.5): Ohio State
University.

Landauer, T. K., & Dumais, S. (1997). A Solution to Plato's Problem: The Latent Semantic
Analysis Theory of Acquisition, Induction, and Representation of Knowledge.
Prychological Review, 104(2), 211-240.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to Latent Semantic Analysis.
Discourse Processes, 25(2-3), 259-284.

Stone, B., & Dennis, S. (2012). Wikipedia Subcorpora Tool (Version 1.0): Ohio State University.

DRDC Toronto TN 2012-079 25

List of symbols/abbreviations/acronyms/initialisms

ARP Applied Research Project

ASSN Analysis of Semantic and Social Networks

CSV Comma Separated Values

DND Department of National Defence

DRDC Defence Research & Development Canada

DRDKIM Director Research and Development Knowledge and Information
Management

GUI Graphical User Interface

LSA Latent Semantic Analysis

NLTK Natural Language Toolkit

R&D Research & Development

OSU Ohio State University

SEMMOD Semantic Models

TIF Technology Investment Fund

TN Technical Note

UTF Unicode Transformation Formats

26 DRDC Toronto TN 2012-079

This page intentionally left blank.

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

 1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

Defence R&D Canada – Toronto
1133 Sheppard Avenue West
P.O. Box 2000
Toronto, Ontario
 M3K 2C9

 2. SECURITY CLASSIFICATION
(Overall security classification of the document
including special warning terms if applicable.)

UNCLASSIFIED
(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC JUNE 2010

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after the title.)

Latent Semantic Analysis (LSA) tools:

 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Derbentseva, N.; Kwantes, P.; Terhaar, P.

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

July 2012

 6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

35

 6b. NO. OF REFS
(Total cited in document.)

4
 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,

e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Note

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence R&D Canada – Toronto1133 Sheppard Avenue WestP.O. Box 2000Toronto, Ontario
M3K 2C9

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

 15ah

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC Toronto TN 2012-079

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited
 12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the

Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

NOT REQUIRED.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Latent Semantic Analysis, LSA, semantic models, semantic analysis, python

