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Abstract. The Canadian Armed Forces (CAF) have contingency plans (CONPLANs) in place
to deal with a variety of scenarios, ranging from disaster relief and humanitarian aid to inter-
national counter-terrorism. These CONPLANs are periodically reviewed and updated to ensure
they remain relevant to ever-changing operating environments. The establishment of a CON-
PLAN review schedule is a challenging process for the CAF given the status and importance
of each CONPLAN and the limited capacity of the staff available to conduct the reviews. This
paper addresses the joint problem of prioritization of the CONPLAN reviews and calculation
of the optimal set of the plans to review within a given time period. The CONPLANs were eval-
uated against a set of criteria by military subject matter experts, with weights of the criteria
provided on an ordinal scale. The volume of the weight-space associated to each of the possible
rankings of the CONPLANs was computed through Monte Carlo simulation, and the expected
rank of each CONPLAN was determined by viewing the results of this multi-criteria decision
analysis in terms of the probability associated to each ranking. The optimal set of CONPLANs
to review within a given time period (with an associated resource capacity) was calculated by
formulating the problem as an instance of the knapsack problem. A recent application of this
methodology is provided in this paper.
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1 INTRODUCTION

1.1 Background

The Canadian Armed Forces (CAF) must be capable of responding to a broad range of po-

tential scenarios; ranging from disaster relief and humanitarian aid to international counter-

terrorism. To that end, the CAF are required to be proactive and have contingency plans (CON-

PLANs) in place to deal with such scenarios. The CAF maintain dozens of CONPLANs that

must be periodically reviewed and updated to ensure they remain relevant to ever-changing op-

erating environments and to address lessons identified during recent operations and exercises.

The establishment of a CONPLAN review schedule is a challenging process for the CAF given

the status and importance of each CONPLAN and the limited capacity of the staff available to

conduct the reviews.

1.2 Overview

In this paper, we present a three-step approach developed to address the joint problem of

prioritization of the CONPLAN reviews and calculation of the optimal set of the plans to review

within a given time period. First, the CONPLANs are evaluated against a set of criteria and an

associated framework by military Subject Matter Experts (SMEs), with weights of the criteria

provided on an ordinal scale. Second, the volume of the weight-space associated to each of

the possible rankings of the CONPLANs is computed through Monte Carlo simulation, and the

expected rank of each CONPLAN is determined by viewing the results of this multi-criteria

decision analysis (MCDA) in terms of the probability associated to each ranking. Finally, the

optimal set of CONPLANs to review within a given time period is calculated by formulating the

problem as an instance of the knapsack problem. A notional example is provided to illustrate

the results of a recent application of this approach for the CAF.

2 SELECTION CRITERIA AND ASSESSMENT

2.1 List of Criteria

Six criteria were identified to prioritize the reviews of the CONPLANs. This list of criteria,

detailed in Table 1, was developed by the authors in concert with CAF military SMEs.

2.2 Assessment Scales

The SMEs evaluated the CONPLANs by selecting the most appropriate values amongst a

set of specified assessment levels on ordinal scales for each of the criteria. These sets of levels

are presented in Figure 1, with each level specified as a dot along each scale. The levels on the

left hand side of the scales are the most desirable, in that they show the lowest levels of concern

necessitating a CONPLAN review; whereas the levels on the right hand side of the scales are

the least desirable, associated with CONPLANs most in need of a review.

The assessed levels of criteria 1, 3, 4, 5 and 6 were selected from amongst a set of specified

options. For instance, for criterion 1 (the time elapsed since the CONPLAN was last issued and

signed), the user was to choose a value amongst the following: “Less than 1 year”, “Between

1 and 2 years”, “Between 2 and 3 years”, “Between 3 and 4 years”, “Between 4 and 5 years”

and “More than 5 years”. Conversely, criterion 2 was evaluated by having the SMEs specify

whether or not there have been changes in up to three specified areas which could affect the plan:

identification of lessons learned, changes in the CAF’s organizational structure, and changes in

the operating environment or threat; the number of which determined the criterion’s assessed
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Criterion Description

1 Time since last review The period of time elapsed since the plan was last issued and signed.

2 Changes in situational

understanding

The number of changes in the situational understanding relating to

the plan due to lessons learned from previous operations; modifica-

tions in the organizational structure (and associated relevant Com-

mand and Control (C2) elements); or changes in the current operat-

ing environment and threat impacting the plan.

3 Frequency The frequency at which the plan is expected to be implemented.

4 Importance The negative consequences of the event covered by the plan.

5 Completeness The quality and the completeness of the plan considering the work-

ability and the ease of implementability of the plan in its current

(pre-reviewed) state.

6 Strategic direction and

guidance

The highest level of strategic direction and guidance received re-

garding this plan.

Table 1: The list of criteria used to evaluate the need for reviews of the contingency plans.

level.

2.3 Raw Assessments Provided by the SMEs

The CONPLANs are assessed by the military SMEs most familiar with the plans. To illus-

trate the approach described in this paper, we use a list of 16 generic CONPLANs, denoted as

CONPLANs “A” through “P”, having notional raw scores as shown in Table 2. Also included

in the table is the number of person-months (PMs) required to review each CONPLAN (in last

column); these values will be used later in Section 4.

The scores in the table are displayed using a “red-yellow-green” ramp to give a simple vi-

sual indication on the strength of requirement for review for each of the CONPLAN. On this

scale, “red” represents the highest strength of requirement for review and “green” represents

the converse. For example, for criterion 3 (the frequency at which the CONPLAN is expected

to be implemented), CONPLANs assessed as occurring on an annual basis (i.e., “Every Year”,

such as CONPLAN C) are coloured in red, whereas CONPLAN assessed as occurring very in-

frequently (i.e., “Less than once every 10 years”, such as CONPLAN O) are coloured in green.

Intuitively, the number of cells coloured red in the rows of Table 2 should be indicative

of being the CONPLANs with the highest requirements for a review. However, the relative

importance of the criteria can also affect the prioritization of a CONPLAN’s review. Hence,

during the assessment process, the SMEs also provided an ordered ranking of the criteria by

specifying the weights of the criteria on the following ordinal scale:

High > Medium > Low.

In this paper, we use the notional relative weights presented in Table 3. “Frequency” and

“Strategic direction and guidance” are identified as the most important criteria; while “Time

since last review” and “Completeness” are deemed as the least important amongst the six crite-

ria.
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3.  Frequency 
 

1.  Time since last 
      review 

2.  Change in situational 
      understanding  

4.  Importance of the 
     plan 

6.  Strategic direction 
     and guidance 

5.  Quality and 
      completeness  

< 1 year Btw 1 and 
2 years 

Btw 2 and 
3 years 

Btw 3 and 
4 years 

Btw 4 and 
5 years 

> 5 years 

Low Medium High 

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 

None CJOC 
priority 

DND or CRS 
priority 

OGD 
priority 

GoC 
priority 

Less than once 
every 10 years 

Once every 
10 years 

Once every 
5 years 

Once every 
3 years 

Every 
year 

No change Changes in one of 
the three categories 

Changes in two of 
the three categories 

Changes in all 
three categories 

Figure 1: The ordinal assessment scales for the criteria.

Criteria Assessment

CONPLAN Time Since Last

Review

Changes in

Situational

Understanding∗
Frequency

Importance of

the Plan

Quality and

Completeness

Strategic

Direction and

Guidance

PMs

Required

A Btw 2 and 4 yrs OS; OE/T Every 5 yrs High 70% High 20

B Btw 1 and 2 yrs OS; OE/T Every 10 yrs High 80% High 15

C Btw 1 and 2 yrs OS Annually High 90% High 4

D Btw 1 and 2 yrs LL; OS Annually Medium 90% Medium-High 8

E More than 5 yrs LL; OS Every 5 yrs Low-Medium 70% Medium-High 10

F Btw 1 and 2 yrs OS Every 3 yrs Medium 90% High 4

G Btw 1 and 2 yrs OS Every 3 yrs High 90% High 12

H Btw 1 and 2 yrs OS Every 3 yrs Medium 90% High 4

I Btw 1 and 2 yrs OS Every 5 yrs Medium 90% High 4

J Btw 3 and 4 yrs LL; OS Every 3 yrs Medium 80% High 25

K Btw 3 and 4 yrs OS Every 5 yrs High 90% High 20

L More than 5 yrs OS Every 5 yrs Medium 60% Medium 15

M Less than 1 yr LL; OS; OE/T Every 3 yrs Medium 100% Low 8

N Btw 2 and 3 yrs None Every 10 yrs Low-Medium 20% Medium-High 8

O Btw 3 and 4 yrs OE/T < Every 10 yrs Low 0% Low 12

P Less than 1 yr LL; OS; OE/T Annually Medium-High 80% Low-Medium 6

∗ LL: changes in lessons learned – OS: changes in organizational structure – OE/T: changes in the operating environment or threat. Total: 175

Table 2: The notional assessments of the CONPLANs.
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Criterion Relative Weight

1 Time since last review Low

2 Change in situational understanding Medium

3 Frequency High

4 Importance Medium

5 Completeness Low

6 Strategic direction and guidance High

Table 3: The relative weights (notional) of the criteria on an ordinal scale (High, Medium, Low).

2.4 Conversion of the Assessed Ordinal Levels to Numerical Values

Given that the CONPLANs are assessed against criteria on ordinal scales, the first step in de-

termining their overall assessments is to assign numerical values to the assessed ordinal levels.

Such an assignment function must be based on the position of the assessed level in the scale.

Moreover, it need not be linear – all that is known with certainty is that the numerical values

associated to the criteria should be related to their assessments on the ordinal scales through a

monotonically increasing function.

In particular, the relationship in the assessment scheme may be convex (meaning that a

change in the underlying criterion value from a middling to a high level results in an increase

in CONPLAN review priority that is greater than a change in value from a low to a middling

level); or the opposite may be true, and the assessment scheme would be termed concave. Ex-

ample conversion functions that would have properties include a logarithmic function for the

convex case, and an exponential function for the concave case. In the language of Keeney and

Raiffa [1], one would say the criteria are assessed by a risk-averse decision-maker in the first

case, and a risk-prone decision-maker in the second case. Maybury and Van Bavel [2] argue

that in defence contexts decision-makers are often risk-averse. However, in the absence of any

information on the risk profiles of the decision-makers conducting the assessments of the crite-

ria, the authors used a naı̈ve approach of assigning a numerical value to a CONPLAN’s assessed

criteria levels: that of using linear functions. Mathematically, the functions used to determine

the numerical values of the criteria are of the following form:

ϕ(x ; n) =
x− 1

n− 1
, (1)

where x is the position of the assessed level in the scale, and n is the number of levels in

the scale. Hence all criteria are given values ranging on a common scale of 0 to 1, where 1

represents the highest requirement for a review of the CONPLAN.

The numerical values associated with the notional assessments provided in Table 2 are given

in Table 4. As an example, CONPLAN A was assessed as occurring once every 5 years. As

the criterion in question (criterion 3: Frequency) has five levels, this CONPLAN was assessed

numerically as ϕ(3 ; 5) = 3−1
5−1

= 0.5 on criterion 3.

3 PRIORITIZATION

3.1 Problem Formulation

The CONPLAN prioritization problem described in this paper is a typical MCDA problem,

as the problem amounts to ranking the alternatives (in this case, the 16 CONPLANs) using the
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Criterion

CONPLAN 1 2 3 4 5 6

A 0.5 0.67 0.5 1 0.3 1

B 0.2 0.67 0.25 1 0.2 1

C 0.2 0.33 1 1 0.1 1

D 0.2 0.67 1 0.5 0.1 0.75

E 1 0.67 0.5 0.25 0.3 0.75

F 0.2 0.33 0.75 0.5 0.1 1

G 0.2 0.33 0.75 1 0.1 1

H 0.2 0.33 0.75 0.5 0.1 1

I 0.2 0.33 0.5 0.5 0.1 1

J 0.6 0.67 0.75 0.5 0.2 1

K 0.6 0.33 0.5 1 0.1 1

L 1 0.33 0.5 0.5 0.4 0.5

M 0 1 0.75 0.5 0 0

N 0.4 0 0.25 0.25 0.8 0.75

O 0.6 0.33 0 0 1 0

P 0 1 1 0.75 0.2 0.25

* For display purposes, values are rounded to the nearest 0.01.

Table 4: The numerical values associated to the criteria.

six decision criteria in the Section 2.1, which may or may not be of equal importance.

In order to simplify the subsequent sections, we present some mathematical notation here:

we will let p represent the index of an individual CONPLAN (p = 1, . . . , 16), c be the index

of an individual criterion (c = 1, . . . , 6), and sp,c be the assessment given by the SMEs to

CONPLAN p with respect to criterion c (as per Table 4). More succinctly, we can represent the

set of assessments for any given CONPLAN p by a vector

sp = (ϕ1(sp,1), ϕ2(sp,2), ϕ3(sp,3), ϕ4(sp,4), ϕ5(sp,5), ϕ6(sp,6)) ,

where the six ϕc functions are calculated using equation 1 that converts the assessed ordinal

values of the criteria to numerical values. For example, we see in Table 4 that CONPLAN A

has numerical assessments of 0.50, 0.67, 0.50, 1.00, 0.30, and 1.00 along the six criteria. Hence

we write s1 = (0.50, 0.67, 0.50, 1.00, 0.30, 1.00).

3.2 Possible Approaches

The traditional approach to MCDA problems is to use an additive weighted scoring rule,

where weights are assigned to the criteria, and the alternatives are rated on each criterion. How-

ever, it can be difficult in practice to objectively quantify the importance of criteria by specifying

their respective weights: Arbel and Vargas [4] and Borcherding et al. [5] showed that weight

values that are determined by subjective judgment suffer from internal consistency and validity

problems. Hence, one can unintentionally promote a portion of the alternatives by inadvertently

overemphasizing given criteria.

There are a number of other, more sophisticated, methods commonly used to solve MCDA

problems [6]. These include multi-objective mathematical programming techniques such as the
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one described by Evans and Steuer [7]; multi-attribute utility theory (MAUT) methods such as

Keeney and Raiffa’s trade-off method and pricing-out method [1]; Saaty’s analytical hierarchy

process (AHP) [8]; outranking methods [9] and the Preference Ranking Organization Method

for Enrichment Evaluation (PROMETHEE) method developed by Brans et al. [10]; and a con-

sensus method for determining the ranking of the alternatives without specifying the relative

strengths of the preferences of the decision-makers, developed by Emond et al. [11, 12, 13].

3.3 Determining of the Weights

Many methods seek to improve on the simplest of the methods outlined above, the additive

weighted scoring rule, by employing an array of sophisticated techniques for determining the

required weights using the rankings of the criteria. One such approach, described by Stillwell et
al. [14], proposes using the rank reciprocal, rank linear, and rank exponent functions to convert

ordinal rankings to cardinal weights.

Conversely, Barron [15] proposed using the Fundamental Weight Simplex (FWS) – a pro-

jection of the n-dimensional polytope connecting the points (1, 0, . . . , 0), (0, 1, . . . , 0), and

(0, 0, . . . , 1) to determine the weights. Ranking the criteria yields a set of constraints on the

weights (e.g., w1 ≤ w2 ≤ . . . ≤ wn), restricting the feasible region to a particular subset of

the FWS determined by the constraints on the weights. Barron argued that the centroid of this

feasible region – the average of the vertices of the feasible region – is the most meaningful

weighting that should be considered.

Furthermore, Alfares and Duffuaa have given empirical evidence for the use of linear weights

when an ordinal ranking is given on the criteria, based on several survey-based experiments [17];

whereas Solymosi and Dombi argued for a centroid weight method [18]; Lootsma and Bots

proposed the use of geometric-based weights [19]; and Hunter and Emond presented a case for

using rank-based linear and power functions to determine the weights [16].

More recently, novel approaches have been employed which do not require the explicit de-

termination of the weights on the criteria. Butler et al. presented an approach for using random

weights generated on the FWS, and employing a Monte Carlo simulation approach to determine

the distribution of the ranks for each option [20].

In a similar vein to Butler’s work, Kaluzny detailed a method to determine a winner amongst

the alternatives when provided with an ordered ranking of the criteria by analytically determin-

ing the proportion of the space occupied by each ranking of the objects using a computational

geometry approach [21]. Kaluzny’s method, dubbed QuBE, does not require a pre-selection

of criteria weights, and can consider a set of constraints on the criteria – giving higher-ranked

criteria more weight than lower-ranked criteria, and thus constraining the problem to one region

of the FWS [22].

Building on Kaluzny’s work, Pall extended QuBE by viewing the volume of the weight-

space associated to each of the possible rankings of the options as a probability measure in the

mathematical sense, where the volumes represent the chance of obtaining a particular ranking

given randomly chosen (feasible) weights [23]. Analogues to various probabilistic concepts

can then be defined and extended to the results obtained using QuBE; in particular, the expected

ranks of the options could be considered.

3.4 Methodology

The approach we propose to determine the ranking on the CONPLAN reviews is a modifi-

cation of the approaches described above due to Butler et al., Kaluzny, and Pall [20, 21, 23].
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A Monte Carlo simulation approach is used to generate a set of weight schemes for the

criteria under the additional condition that the relative importance of the criteria was preserved.

As such, only the feasible region of the FWS are considered. This approach has the added

advantage over the computationally-intensive approach of QuBE in that it does not require the

exact computation of the volumes occupied by each possible ranking on the CONPLANs –

potentially quite a cumbersome feat. For the example in this paper, 16 CONPLANs to be

ranked amounts to a total of 16! (≈ 2.1× 1013) different possible rankings1.

The ranks of the contingency plans (CONPLANs) under each of these weighting systems is

then determined, which allowed for the calculation of the expected rank of each CONPLAN, as

well as their associated 95% Confidence Intervals (CIs).

3.4.1 Generating the Weight Schemes

Recall from Table 3 that there are six criteria; two specified as having “High” importance,

two as having “Medium” importance, and two with “Low” importance. Let wc represent the

weight of criterion c (c = 1, . . . , 6). The constraints specified on the weights, that criteria

with high importance are given more weight than those with low importance, can be written

mathematically as follows:

{
w3

w6

}
>

{
w2

w4

}
>

{
w1

w5

}
≥ 0. (2)

Furthermore, we assume that criteria of equal importance have equal weight, and so we can

write the weights of the criteria more succinctly as follows:

wH := w3 = w6; wM := w2 = w4; wL := w1 = w5 (3)

Finally, the sum of the weights must equal one, i.e.,

6∑
c=1

wc = 1. (4)

From equations 3 and 4, we have the following simple relation on the weights:

wH + wM + wL = 0.5. (5)

A total of 100,000 different weight systems are generated uniformly distributed over the fea-

sible region of the FWS. The specific random weight generation technique used is due to Wang

and Zoints [24], and is built on work by Butler et al. [20] and Rubenstein [25]. This technique

samples weights from the constrained simplex efficiently without generating infeasible weight

schemes for the criteria; using the property expressed in equation 5, and the fact that there are

an equal number of criteria at each level of importance2.

Note that the weights span a triangle in the weight-space; the vertices of the triangle are the

most extreme weight schemes satisfying constraints 2 and 5. They are given by (wH , wM , wL) =
(0.5, 0, 0); (0.25, 0.25, 0); and (0.167, 0.167, 0.167). Moreover, the mean weights on the sim-

plex (i.e., its centroid) are as follows: wH = 11/36 = 0.305, wM = 5/36 = 0.135, and

wL = 1/18 = 0.055.

1Ties in the rankings are not explicitly considered here. If ties between the CONPLANs were considered, the

number of rankings would increase.
2More sophisticated techniques exist for random weight generation in cases where there are an unequal number

of criteria at each level of importance, and are presented in [24] for the interested reader.
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3.4.2 Determining the Ranks of the CONPLANs

Denoting the weight of criterion c in weight scheme i by wi
c, we can denote the individual

weight schemes by

wi = (wi
1, w

i
2, w

i
3, w

i
4, w

i
5, w

i
6) (6)

= (wi
H , w

i
M , wi

L, w
i
M , wi

H , w
i
L)

for i = 1, . . . , 100, 000. The weighted sums for CONPLAN p under weighting scheme i can

be determined as the inner product of the weight scheme and its assessment vector sp (defined

previously in Section 3.1):

xi
p = sp ·wi (7)

=
6∑

c=1

ϕc(sp,c) w
i
c

We can define the rank rip of CONPLAN p under weight scheme i as follows:

rip = rank
(
xi
p ; {xi

1, x
i
2, . . . , x

i
16, }

)
where the rank function assigns a value of 1 to the largest value in the list, and a value on 16 to

the smallest value in the list. The mean ranks of the CONPLANs can then be used to specify

the ranking imparted on the CONPLANs.

3.5 CONPLAN Prioritization Results

All results presented in this paper are based on computations performed in the R program-

ming language and software environment for statistical computing and graphics.

There were 168 different rankings found to have non-zero volume among the 100,000 weight

systems considered. A subset of the unique rankings, presented in decreasing order of volume

occupied in the simplex, can be found in Table 5. The table should be read as follows: the first

(non-header) row represents the ranking with CONPLAN C in first place, G in second place, J

in third place, and so on. From the table, we see that this ranking occupies approximately 7%

of the feasible region of the weight-space.

The mean ranks of the CONPLANs were calculated, as were their associated 95% CIs. These

results are presented in Figure 2, in decreasing order of the expected ranks of the CONPLANs;

and are also included in the last row of Table 5. Note that CONPLAN C has 89% probability of

ranking first; the only other CONPLAN that has a possibility of ranking first is CONPLAN A

(with a probability of 11%). Furthermore, the majority of the time (72% probability) the top

four ranking CONPLANs are C, J, G, and A.

3.6 Convergence of the Volumes Occupied by the Rankings

Given the stochastic nature of the procedure used to determine the volumes occupied by

the various rankings on the CONPLANs, it is necessary to ensure that a sufficient number of

weight systems are used in the computations for stability in the results. The number of unique

rankings found after using a given number of weight systems is presented in Figure 3. Note

that this number quickly converges to its final quantity (168); indeed, no new unique rankings

are found once ≈ 50, 000 (of the total of 100,000) weight systems are considered. This result

imparts credence to the idea that a sufficient number of weight systems were considered to

ensure convergence of the ranking procedure, and hence stability in the results.
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Rank of CONPLAN

Ranking A B C D E F G H I J K L M N O P Volume

1 7 11 1 4 12 5.5 2 5.5 9 3 8 13 15 14 16 10 0.07

2 5 10 1 4 12 6.5 2 6.5 11 3 8 13 14 15 16 9 0.06

3 7 10 1 4 12 5.5 3 5.5 9 2 8 13 15 14 16 11 0.05

4 2 7 1 6 11 9.5 4 9.5 12 3 5 13 14 15 16 8 0.03

5 2 8 1 5 12 9.5 3 9.5 11 4 7 14 13 15 16 6 0.03

6 4 10 1 5 12 7.5 2 7.5 11 3 6 13 14 15 16 9 0.02

7 3 9 1 5 11 7.5 4 7.5 12 2 6 13 15 14 16 10 0.02

8 5 10 1 4 12 6.5 3 6.5 9 2 8 13 15 14 16 11 0.02

9 3 10 1 5 9 7.5 4 7.5 12 2 6 13 15 14 16 11 0.02

10 2 8 1 5 12 9.5 3 9.5 11 4 6 14 13 15 16 7 0.02

11 2 8 1 5 11 9.5 4 9.5 12 3 6 13 14 15 16 7 0.02

12 1 7 2 6 9 10.5 4 10.5 13 3 5 12 14 15 16 8 0.02

13 2 7 1 5 11 9.5 4 9.5 12 3 6 13 14 15 16 8 0.02

14 7 11 1 4 10 5.5 3 5.5 9 2 8 13 15 14 16 12 0.02

15 2 8 1 5 11 9.5 3 9.5 12 4 6 13 14 15 16 7 0.02

16 2 8 1 5 12 9.5 3 9.5 11 4 6 13 14 15 16 7 0.02

17 7 11 1 4 12 5.5 3 5.5 9 2 8 13 15 14 16 10 0.02

18 2 9 1 5 11 7.5 4 7.5 12 3 6 13 14 15 16 10 0.02

19 2 7 1 6 12 9.5 3 9.5 11 4 8 14 13 15 16 5 0.02

20 7 11 1 4 12 5.5 2 5.5 9 3 8 13 14 15 16 10 0.02

148 other rankings, occupying a total volume of 0.46

Expected 3.6 8.9 1.1 5.0 11.0 8.0 3.1 8.0 11.1 2.9 6.6 13.0 14.2 14.6 16.0 8.9 –

Table 5: The unique rankings, in decreasing order of volume occupied in the weight-space.

Figure 2: The expected ranks of the CONPLANs, along with their associated 95% confidence intervals.
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Figure 3: The number of unique rankings found as a function of the number of weight systems considered.

4 OPTIMIZED SCHEDULING OF THE STAFF EFFORT

In the previous section, we provided a method to rank the CONPLANs based on the impor-

tance of their reviews. The main challenge that the CAF face is that it has a limited capacity

of the staff available to conduct the reviews. Here, we describe a method for calculating an

optimized CONPLAN review schedule considering the ranked list and the limited staff within

a given time period. The problem is formulated as an instance of the knapsack problem.

4.1 The Knapsack Problem

The knapsack problem is a common problem in the field of combinatorial optimization that

can be defined as follows: given a set of items, each with a weight and a value, determine the

number of each item to include in a collection so that the total weight is less than or equal to a

given limit and the total value is as large as possible [26, 27]. In our particular case, the problem

being solved is an instance of the binary, or 0-1 knapsack problem, which restricts the number

of copies of each kind of item to zero or one.

Let there be n items, z1 to zn where zi has a value ui and weight ki. Let us denote the weight

constraint, i.e., the maximum weight allowable, by K. Mathematically, we can formulate the

0-1-knapsack problem as:

Maximize
n∑

i=1

uiai such that
n∑

i=1

kiai ≤ K, ai ∈ {0, 1}, (8)

where the ai are binary decision variables indicating whether or not item zi is placed in the

knapsack or not. In other words, we wish to maximize the sum of the values of the items in

the knapsack under the constraint that the sum of the weights must be less than the knapsack’s

capacity.

In our instance, the knapsack represents the set of CONPLANs to review in the calendar

year; the items are the CONPLAN reviews themselves; their “weights ” are the time required to

complete their reviews; and their “values” are functions of their importance (which, intuitively,

should be related to their expected ranks).
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4.2 Time Requirements for the Reviews

The expected time to complete each individual CONPLAN review as well as the total man-

power available to perform the reviews (within a time period of interest) was provided by mili-

tary SMEs. The total resources required to review each individual CONPLAN are shown in the

last column of Table 2, where the values are expressed in terms of PMs. For example, 20 PMs

are required to review CONPLAN A.

We also assume that the total resources available within the CAF to conduct all the reviews is

70 PMs, which is less than the total staff effort required to review all CONPLANs (175 PM, as

per Table 2); justifying the need for an approach to optimize the CONPLAN review schedule.

4.3 Utility of the CONPLAN Reviews

The “importance” of the reviews are inversely associated with the ranks of the reviews. For

example, CONPLAN J, of high importance, has an expected rank of 2.9. As the knapsack

problem requires high values to be associated with objects that are desirable in the knapsack, a

function is required to translate the expected ranks to their values, deemed here as their utility.

We define the utility of the CONPLANs as a linear function of their expected ranks as follows:

Utility(CONPLAN p) =
(16 + 1)− Expected Rank(CONPLAN p)∑16

p=1 p

=
17−meani(r

i
p)

136
(9)

This definition ensures that if all reviews were completed the total utility achieved would equal

(1 + 2 + . . . + 16)/136 = 100%. Hence, the utility of each CONPLAN represents its fraction

of the total utility achievable given no resource constraint. The utility of the reviews of each of

the CONPLANs is provided in Table 6.

CONPLAN Utility CONPLAN Utility CONPLAN Utility CONPLAN Utility

A 9.9% E 4.4% I 4.3% M 2.1%

B 6.0% F 6.6% J 10.4% N 1.8%

C 11.7% G 10.2% K 7.6% O 0.7%

D 8.8% H 6.6% L 2.9% P 6.0%

Table 6: The utility of the reviews of the CONPLANs, obtained using equation 9.

4.4 Solutions Obtained Through Optimization

The optimal solution considering a total of 70 PMs available for review was found to include

nine CONPLANs. In decreasing order of expected rank, they are CONPLANs: C, G, A, D,

F, H, P, I and M. These CONPLANs have a total utility of 66.2%, and require all 70 PMs

available. Of interest is the fact that some highly-ranked CONPLANs are not included in the

optimal solution due to their high resource requirement for review (e.g., CONPLAN J, with an

expected rank of 2.9, and an resource requirement of 25 PMs).

A list of near-optimal solutions is presented in Table 7. Each row in the table is one possible

set of reviews, shown with associated PMs required and utility achieved. The optimal solution is

listed in the first row, and all subsequent rows are shown in decreasing order of utility achieved.
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CONPLAN Review Included in Solution

Solution A B C D E F G H I J K L M N O P

PMs
Required

Total
Utility

1 X X X X X X X X X 70 66.2%

2 X X X X X X X X X 70 65.9%

3 X X X X X X X X 67 64.6%

4 X X X X X X X X X 67 64.6%

5 X X X X X X X X 68 64.2%

6 X X X X X X X X X 70 64.0%

7 X X X X X X X X X 70 63.7%

8 X X X X X X X X 66 62.6%

9 X X X X X X X X X X 68 62.5%

10 X X X X X X X X X 65 62.3%

11 X X X X X X X X 68 62.0%

12 X X X X X X X X X 65 62.0%

13 X X X X X X X X 68 61.9%

14 X X X X X X X X 68 61.9%

15 X X X X X X X X X 67 61.6%

16 X X X X X X X X 70 61.5%

17 X X X X X X X X 69 61.3%

18 X X X X X X X X X 69 61.0%

19 X X X X X X X X 69 60.7%

20 X X X X X X X X X 69 60.7%

3177 other sub-optimal solutions

Table 7: The optimal and near-optimal solutions for the CONPLAN reviews. CONPLANs listed with an “X”

indicate that their reviews are included in the particular solution.

5 CONCLUSIONS

The methodology described and illustrated in this paper is robust, in that it implicitly consid-

ers a multitude of weighting systems on the criteria; and general, in that it can be applied to a

variety of problems in which objects are to be selected based on both a set of criteria as well as

an independent resource constraint. However, a number of modifications can be made to extend

the methodology further. In particular, the optimization problem could then be formulated as

an instance of the multiple knapsack problem such that the objects being ranked can be associ-

ated with additional resource constraints. Such constraints could pertain to the particular types

of expertise required for the review – perhaps logistical, strategic, or political. In addtion, a

more refined scheduling of the objects contained in the optimal solution could be incorporated

into the final results. While requiring information on the schedules of the variety of individuals

required for the CONPLAN reviews, this type of result could provide the decision-maker with

a schedule of exactly what individuals are to complete which reviews at specific points of the

year.

REFERENCES

[1] R.L. Keeney, H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Trade-
Offs. Cambridge University Press, 1993.

[2] D.W. Maybury, G.H. van Bavel, Marine Builder’s Risk Insurance for the Joint Support
Ship Contract: A Utility Theory Approach to Risk Analysis, DRDC – Centre for Opera-

tional and Analysis, Technical Memorandum, DRDC CORA TM 2009-41, 2009.



Raman Pall and Jean-Denis Caron
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