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Abstract—In this paper, we examine scenarios of maritime air
defence where the threats can be of different types i.e., charac-
terized by varying different single shot probabilities of hit. We
develop a methodology that integrates constrained optimization
calculus, dynamic programming and a genetic algorithm to
determine the optimal allocation of interceptors that globally
maximize the probability of raid annihilation. We call this
strategy the Heterogeneous tactic. We show that the improvement
in the probability of raid annihilation could exceed thirty percent
for one scenario examined, relative to a Shoot-Look-Shoot tactic
with fixed size salvos.

I. INTRODUCTION

Maritime air defence usually consists of several layers such

as force weapon soft-hit distraction chaff, force weapon

hard-hit medium range surface-to-air missiles (MR SAMs),

self-defence hard-hit short range surface-to-air missiles (SR

SAMs), self-defence soft-hit seduction chaff and close-in

weapon systems (CIWS).

There are up to five air defence layers, normally operating

in the sequence described above. Escorts and aircraft carriers

generally have SR SAM, self-defence soft-hit weapons, and

CIWS. Anti-Air Warfare (AAW) ships usually have soft-hit

weapons, MR SAM, and CIWS. Protected high value units

sometimes have no air defence capability.

To evaluate maritime air defence systems capability and to

identify potential shortfalls of air defence technologies, we

present an optimal layer maritime air defence engagement

model and compare its performance to existing, well–known

tactics. It is common knowledge that threat missiles come

with different cross sections, different sizes etc. Hence, the

defence’s single shot probability of hit (SSPH) against each

type of threat will surely be different. Therefore, in this paper,

we consider an optimal engagement model against a number

of threats each of which is possibly associated with a different

SSPH. However, we assume that the defence has the same

number of engagement opportunities to engage those threats.

The open literature abounds with engagement tactics against

missile threats e.g. [1], [2]. However, most of them assume

identical threats and hence identical SSPHs. For example,

[2] provides a globally optimal methodology that can be used

to maximize the probability of raid annihilation (PRA). By

deriving the closed form expressions for the optimal allocation

of interceptors at each layer of defence i.e. each engagement

opportunity, and combining with dynamic programming, the

methodology in [2] yields the globally optimal solution in an

efficient way. This efficiency is due to the assumption that all

threats are identical.

Even though, in our case, the threat types are possibly

different, the framework described in [2] can still be used to

develop an optimal engagement tactic. Note that we consider

the defence of a single platform or that of a perfectly coor-

dinated task group. Multiple platforms defence is examined

in [3] and partially coordinated defence in [4]. When the

number of threats is small, five or less, dynamic programming

can provide the optimal allocation in less than a minute on

a standard personal computer (Intel(R) Core (TM)i7–3520M

CPU 2.9GHz). However, when the number of threats is large,

ten or more, we combine a genetic algorithm with dynamic

programming to obtain a near optimal solution.

This paper is organized as follows. In section II, we prove

that the PRA is a concave function in terms of number of

interceptors allocated to the threats. Based on concavity, in

section III we determine the globally optimal and continuous

allocations of interceptors that maximize the PRA. Using

perturbation theory, in section IV we derive approximate

formulas for the optimal allocations of interceptors. With

the genetic algorithm, we find the integer solutions to the

interceptor allocations in Section V. We provide numerical

results in Section VI. In Section VII, we summarize our

findings.

II. CONCAVITY OF PRA

In general, it can be challenging to determine a globally

optimal solution to a multi–variable problem or even a single

variable one. But if the objective function is concave, this task

becomes feasible [5]. It turns out that the PRA is a concave

function of the number of interceptors allocated to incoming

threats. For one defensive layer, the PRA can be written as:

PRA = (1−Mx1
1 ) . . .

(
1−M

xa−1

a−1

)
(1−Mxa

a ) , (1)

where xi, i = 1, . . . , a, is the number of interceptors allocated

to the ith threat; Mi is the single shot probability of miss

(SSPM) against the ith threat; a is the number of threats

and x1 + . . . + xa = n, with n the number of interceptors.

In this section, we will prove the concavity of the PRA. We

will later use this property to find a globally optimal solution.

Theorem 1: The PRA given in Eq. (1) is concave.



Proof: If a real and continuous function f satisfies the

inequality below for a particular domain of interests then f is

concave in that domain [5].

f

(
x+ y

2

)
≥ 1

2
[f(x) + f(y)] . (2)

For one threat, the PRA can be written as:

PRA = 1−Mn, (3)

where M is the single shot miss probability. That is, M =
1−K where K is the SSPH. We establish the case of one

threat below:

1−M
x+y
2 ≥ 1

2
{(1−Mx) + (1−My)} (4)

2
(
1−M

x+y
2

) ?≥ {(1−Mx) + (1−My)} (5)

⇒
(
Mx/2 −My/2

)2

≥ 0.

Assuming that the condition (2) is satisfied for a threats,

we will show that for a+ 1 threats:

PRA =(
1−M

x1+y1
2

1

)(
1−M

x2+y2
2

2

)
. . .

(
1−M

xa+1+ya+1
2

a+1

)

≥ 1

2
(1−Mx1

1 )(1−Mx2
2 ) . . . (1−M

xa+1

a+1 )+

1

2
(1−My1

1 )(1−My2

2 ) . . . (1−M
ya+1

a+1 ) (6)

where

1

2

a+1∑
i=1

(xi + yi) = n

with a the number of threats and n the number of interceptors.

Rearranging right–hand side of Eqn (6) we get:

(
1−M

x1+y1
2

1

)(
1−M

x2+y2
2

2

)
. . .

(
1−M

xa+1+ya+1
2

a+1

)
≥

1

2
{(1−Mx1

1 ) · . . . · (1−Mxa
a ) + (1−My1

1 ) · . . . · (1−Mya
a )} ·

1

2

{
(1−M

xa+1

a+1 ) + (1−M
ya+1

a+1 )
}

(7)

If the right hand side of Eqn (7) is greater than or equal to

the right hand side of Eqn (6) then the induction is complete.

That is,

1

4

{
(1−M

xa+1

a+1 ) + (1−M
ya+1

a+1 )
} ·

{(1−Mx1
1 ) · . . . · (1−Mxa

a ) + (1−My1

1 ) · . . . · (1−Mya
a )}

?≥ 1

2
(1−Mx1

1 ) · . . . · (1−M
xa+1

a+1 )+

1

2
(1−My1

1 ) · . . . · (1−M
ya+1

a+1 ) (8)

or

{(1−Mx1
1 ) · . . . · (1−Mxa

a )+

(1−My1

1 ) · . . . · (1−Mya
a )} ·{(1−M

xa+1

a+1 ) + (1−M
ya+1

a+1 )
}

?≥ 2(1−Mx1
1 ) · . . . · (1−M

xa+1

a+1 )+

2(1−My1

1 ) · . . . · (1−M
ya+1

a+1 ) (9)

or

(1−Mx1
1 ) · . . . · (1−Mxa

a ) · (1−M
ya+1

a+1 )+

(1−My1

1 ) · . . . · (1−Mya
a ) · (1−M

xa+1

a+1 )
?≥ (1−Mx1

1 ) · . . . · (1−M
xa+1

a+1 )+

(1−My1

1 ) · . . . · (1−M
ya+1

a+1 ) (10)

Simple algebra leads to

(1−Mx1
1 ) · . . . · (1−Mxa

a ) · (Mxa+1

a+1 −M
ya+1

a+1 )+

(1−My1

1 ) · . . . · (1−Mya
a ) · (Mya+1

a+1 −M
xa+1

a+1 )
?≥ 0

Note the symmetric nature of Eqn (2). That is, if we inter-

change x and y then Eqn (2) remains unchanged. Therefore,

we can always choose x ≤ y. Since if not then we interchange

x and y. Hence, we can choose xa+1 ≥ ya+1 and xi ≤ yi for

i = 1, . . . , a. This establishes the inequality in Eqn (6):

{(1−Mx1
1 ) · . . . (1−Mxa

a )− (1−My1

1 ) · . . . · (1−Mya
a )} ·(

M
xa+1

a+1 −M
ya+1

a+1

) ≥ 0. (11)

Example 1: Let the number of threats be two (a = 2), the

number of interceptors be six (n = 6) , SSPMs M1 = 0.8 ,

and M2 = 0.6 then

PRA = (1−Mx1
1 )(1−Mn−x1

2 ) (12)

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of interceptors against threat 1

PR
A

Fig. 1: PRA as a function of number of interceptors against threat 1.



Figure 1 displays the concavity of the PRA. Clearly, there

is exactly one maximum. For a continuous solution, this max-

imum occurs at x1 = 3.45 (x2 = n− x1 = 2.55) interceptors

which is between three and four interceptors. For a continuous

concave function, a local maximum corresponds to the global

maximum [5]. To find the global maximum then requires only

to search the number of interceptors against threat 1 that yield

a zero derivative. For an integer solution, we can compare the

PRA evaluated at integers that are in the neighbourhood of the

continuous solution. Although, it is not obvious from Figure 1,

the PRA at three interceptors (0.382592) is numerically

greater than the one at four interceptors (0.377856). Therefore,

assigning three interceptors against threat 1 (i.e., x1 = 3) and

three interceptors against threat 2 (i.e., x2 = n − x1 = 3)

yields the PRA superior to 2 and 4 interceptors, respectively.

III. CONTINUOUS OPTIMAL SOLUTION TO THE PRA

In this section, we aim to maximize the PRA. This is a

constrained optimization problem.

PRA(�x) = (1−Mx1
1 )(1−Mx2

2 ) . . . (1−Mxa
a ) (13)

where �x = [x1, x2, . . . , xa] denotes the row vector, x1+ . . .+
xa = n = T (�x), xi is the number of interceptors assigned to

threat i (i = 1, . . . , a) and n is the number of interceptors to

be deployed. To optimize the PRA, we make use of Lagrange

multipliers [6]:
∂PRA

∂�x
= λ

∂T

∂�x
(14)

Performing the derivatives, we get for i = 1, . . . , a

− ln(Mi)M
xi
i

PRA

1−Mxi
i

= λ. (15)

For example, with three threats, there are three equations (we

have redefined λ as −λ for convenience)

ln(M1)M
x1
1 PRA = λ(1−Mx1

1 )

ln(M2)M
x2
2 PRA = λ(1−Mx2

2 )

ln(M3)M
x3
3 PRA = λ(1−Mx3

3 )

(16)

For the last equation, x3 = n− x1 − x2, or:

ln(M3)M
n−x1−x2
3 PRA = λ(1−Mn−x1−x2

3 )

ln(M3)M
n
3 PRA = λ(Mx1+x2

3 −Mn
3 ) (17)

Dividing the second equality by the first equality of Eqn (16),

we get

ln(M1)M
x1
1

ln(M2)M
x2
2

=
1−Mx1

1

1−Mx2
2

Solving for x2, we get

x2 = g2(x1,M1) =

1

ln(M2)
ln

{
ln(M1)M

x1
1

ln(M1/M2)M
x1
1 + ln(M2)

}

Generally,

xi = gi(x1,Mi) =

1

ln(Mi)
ln

{
ln(M1)M

x1
1

ln(M1/Mi)M
x1
1 + ln(Mi)

}
(18)

for i = 2, . . . , a− 1 and

xa = n− x1 − . . .− xa−1 (19)

This means that if we could solve for x1 then we can obtain

all other xi (i = 2, . . . , a− 1) through the functions gi and

xa through Eqn (19). It is indeed the case. We can divide the

first equality of Eqn (17) by the first equality of Eqn (16) and

simplify to obtain:

F (xi) = ln(M1)M
x1
1

(
1−M

n−x1−g2(x1,M2)
3

)
−

ln(M3)M
n−x1−g2(x1,M2)
3 (1−Mx1

1 ) = 0 (20)

We observe that there is only one unknown x1 in Eqn (20).

Due to the concavity of the objective function PRA, there is

exactly one solution for x1. In general, we have to solve

ln(M1)M
x1
1

(
1−Mn−x1−g2(x1,M2)−...−ga−1(x1,Ma−1)

a

)
−

ln(Ma)M
n−x1−g2(x1,M2)−...−ga−1(x1,Ma−1)
a (1−Mx1

1 ) = 0
(21)

We observe that

gi(0,M1) =
1

ln(Mi)
ln

{
ln(M1)

ln(M1)

}
=

1

ln(Mi)
ln {1} = 0 (22)

Hence,

F (0) = ln(M1)(1−Mn
a ) < 0 (23)

if 0 < Ma < 1 and n > 0.
Similarly,

F (n) = − ln(Ma)(1−Mn
1 ) > 0 (24)

Due to the concavity of the PRA, we know that there is

only one value of x1 that satisfies Eqn (21). In addition, we

know from (23) that F (0) < 0 while F (n) > 0 (see Eqn (24))

This means that x1 lies between zero and n. This is an ideal

situation to use the bisection method to solve for x1, [7]:

“The bisection method is one that cannot fail...The idea

is simple. Over some interval the function is known to pass

through zero because it changes sign. Evaluate the function at

the interval’s midpoint and examine its sign. Use the midpoint

to replace whichever limit has the same sign. After each

iteration the bounds containing the root decrease by a factor

of two. If after n iterations the root is known to be within

an interval of size εn, then after the next iteration it will be

bracketed within an interval of size εn+1 = εn/2 neither

more nor less. Thus, we know in advance the number of

iterations required to achieve a given tolerance in the solution



n = log2(ε0/ε) where ε0 is the size of the initially bracketing

interval, ε is the desired ending tolerance.”

Example 2: We use the same scenario as the one in Exam-

ple 1. That is, there are two threats, a = 2, six interceptors,

n = 6; SSPM against threat 1 is 80 percent, M1 = 0.8,
and SSPM against threat 2 is 60 percent, M2 = 0.6. F is

plotted as a function of (number of interceptors assigned to

threat 1) in Figure 2. It is seen that F is a monotonously

increasing function of x1 and F crosses the x axis exactly

once at x1 = 3.45 (x2 = n − x1 = 2.55.) This corresponds

to the maximum PRA in Example 1. As indicated above, the

bisection methodology cannot fail for a concave function such

as the PRA. Therefore, this is a very robust solution.
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Fig. 2: F as a function of x1 (number of interceptors against threat 1).

IV. PERTURBATION

The bisection methodology described in the previous sec-

tion is totally robust. However, we cannot see the analytical

dependency of x1 on the SSPM. In this section, we make

use of the perturbation theory to approximate x1 as a function

of the SSPM up to the third order. That is, [8]:

x1 = b0 +
∑
i

biαi +
1

2!

∑
i,j

bijαiαj+

1

3!

∑
i,j,k

bijkαiαjαk (25)

where αi = 1 − Mi/M1 and the SSPM are sorted in

decreasing orders i.e. M1 ≥ M2 ≥ . . . ≥ Ma so that

0 ≤ αi ≤ 1 for i = 2, . . . , a.

We summarize the results below, [9], [10].

β1 = ln(M1) (26)

s = − 1

aβ2
1

(
1− eβ1n/a + β1n/a

)
(27)

t = − 1

aβ2
1

× {·}

{·} =
β1

2a2
(n2 + na) + β2

1ns− β1(a− 1)s+

β3
1

2
n2s2 +

1

2
(1− 2sβ1e

β1n/a − eβ1n/a)

(28)

u = − 2s

aβ1

(
1− eβ1n/a

)
(29)

bi = s (30)

bij =
−2s

aβ1

(
1− eβ1n/a

)
, for i �= j. (31)

bii = 2t (32)

bijk =
−3

aβ1

(
u− eβ1n/a(s2β1 + u)

)
(33)

for i, j, k distinct.

biij =
1

a2β2
1

× {·}∗

{·}∗ = 2s(2− a)
(
1− eβ1n/a

)2

− saβ1

(
1− eβ1n/a

)

3ssaβ2
1e

β1n/a − 2taβ1

(
1− eβ1n/a

)
(34)

with i, j distinct.

biii = b
(1)
iii + b

(2)
iii (35)

where

b
(1)
iii = − 1

aβ4
1

× {·}∗∗

{·}∗∗ = 11− 2e3β1n/a + 9β1 + 2β2
1 + 6sβ2

1+

3sβ3
1 + 6tβ3

1 + 3e2β1n/a(3 + β1 + 2sβ2
1)

(36)

b
(2)
iii =

1

aβ4
1

× {·}∗∗∗

{·}∗∗∗ = eβ1n/a[18 + 12β1 + 2(1 + s)β2
1+

3(s+ 2t)β3
1 + 3s2β4

1 ]− 2[3 + 3β1 + β2
1 ]β1n/a

(37)

Example 3: We use the same scenario as the one in Exam-

ple 2. Eqn (25) yields x1 = 3.457 hence x2 = 6−x1 = 2.543.
Note that these results are only approximations up to the third

order of a Taylor series. Hence, they are slightly different from

those in Example 2. The advantage of Eqn (25) is that it

is a formula for x1 unlike the purely numerical result from

bisection in Section III. In addition, this formula can be used

to narrow the bracketing interval for x1 and hence improves

both efficiency and accuracy of the bisection algorithm in the

previous section.

V. OPTIMAL INTEGER SOLUTION TO THE PRA

For each engagement opportunity, we can determine the

optimal interceptor allocation by first computing the con-

tinuous optimal allocation described above and examine the

integer solutions surrounding the continuous solution and



select the best integer solution. For more than one engagement

opportunity, we use dynamic programming. Generally,

PRA(n, a, e) = max
k=0,...,n

∑
i1,...,ia=0,1

{·}∗∗∗∗

{·}∗∗∗∗ =

(1−Ms1
1 )i1(Ms1

1 )1−i1 · . . . · (1−Msa
a )ia(Msa

a )1−ia

PRA(n− k,�i, e− 1)

(38)

with boundary conditions

PRA(n, a = 0, e) = 1

PRA(n, a, e = 0) = δa,0
(39)

and n = s1+. . .+sa where si is the optimal integer allocation

against threat i (i = 1, . . . , a) by selecting the best integer

solution surrounding the continuous solution and n is the

number of interceptors assigned to engagement opportunity

e. The number of possible integer solutions (integer number

of interceptors allocated to each type of targets) that surround

the continuous solution is exponential. When the number of

threats is small i.e. less than five, it is feasible to do an

exhaustive search. However, when the number of threats is

large i.e. more than five, we make use of the genetic algorithm

to search for the best integer solution. Before we apply the

genetic algorithm, we observe that we already have a good

solution. This solution consists of x1 obtained from bisection

and all other xi (i = 2, . . . , a) are obtained from Eqn (18).

We take the greatest integers �xi� (i = 1, . . . , a) that are less

than or equal to xi (i = 1, . . . , a) and add one to each until

the number of interceptors allocated to all the targets is equal

to n. That is, n = s1 + . . . + sa. The additional ones are in

priority from target 1 to target a. Therefore, si = �xi�+ 1 or

�xi�. Note that if the targets are identical then xi =
n
a for all

is. Hence, we recover the results presented in [2].

The genetic algorithm that we use comes from [11]. It is

the simplest version of the genetic algorithm. Below is the

verbatim description of this genetic algorithm.

Given a clearly defined problem to be solved and a bit string

representation for candidate solutions, a simple GA works as

follows:

1) Start with a randomly generated population of n l–bit

chromosomes (candidate solutions to a problem).

2) Calculate the fitness (x) of each chromosome x in the

population.

3) Repeat the following steps until n offspring have been

created:

a Select a pair of parent chromosomes from the current

population, the probability of selection being an in-

creasing function of fitness. Selection is done “with

replacement,” meaning that the same chromosome can

be selected more than once to become a parent.

b With probability pc (the “crossover probability” or

“crossover rate”), cross over the pair at a randomly

chosen point (chosen with uniform probability) to

form two offspring. If no crossover takes place, form

two offspring that are exact copies of their respective

parents. (Note that here the crossover rate is defined

to be the probability that two parents will crossover in

a single point. There are also “multipoint crossover”

versions of the GA in which the crossover rate for

a pair of parents is the number of points at which a

crossover takes place.)

c Mutate the two offspring at each locus with probability

pm (the mutation probability or mutation rate), and

place the resulting chromosomes in the new population.

If n is odd, one new population member can be

discarded at random.

4) Replace the current population with the new population.

5) Go to step 2.

Each iteration of this process is called a generation. A GA

is typically iterated for anywhere from 50 to 500 or more

generations. The entire set of generations is called a run.
At the end of a run there are often one or more highly fit

chromosomes in the population. Since randomness plays a

large role in each run, two runs with different random–number

seeds will generally produce different detailed behaviors. GA

researchers often report statistics (such as the best fitness found

in a run and the generation at which the individual with that

best fitness was discovered) averaged over many different runs

of the GA on the same problem.

The chance that a parent is chosen depends on the fitness

of that parent. We use the stochastic acceptance methodol-

ogy [12]. That is, an individual j is accepted as a parent with

the probability fj/fmax where fj is the fitness of individual

and fmax is the best fitness value. A chromosome would be

a vector �s of size a where si is the number of interceptors

assigned to the ith threat where i = 1, . . . , a. In example 2,

there are two targets, a = 2, The optimal chromosome would

be �s = (3 3) i.e. threat 1 is engaged with three interceptors

and threat 2 is also engaged with three interceptors.

VI. RESULTS

We consider four scenarios with five threats; two of the

treats are type 1 and three are type 2. Threats of the same

type have the same SSPH. There are also twenty interceptors.

Each scenario has a fixed SSPH against threats of each type.

We assume SSPH1 = 0.2, 0.4, 0.6, 0.8. For each scenario,

SSPH2 ranges from 0 to 1. We set pc = 0.7, pm = 0.01,
the number of generations and the number of runs both to be

20 for our scenarios which involve a small number of threats

and a small number of interceptors.

We assume that there are at most two engagement oppor-

tunities. Two types of Shoot-Look-Shoot (SLS) tactics are

examined. The first tactic is called the Heterogeneous tactic

where we optimize the PRA by accounting for the SSPH
against type 1 threats and type 2 threats as well as the number

of engagement opportunities (EOs). The second tactic is the

simplest one. It is independent of the SSPH. If there is one

engagement opportunity, we engage each threat with a salvo of

four interceptors. We call this the Salvo tactic. If there are two

engagement opportunities, we engage each threat with a salvo

of two interceptors. If a threat is missed at the first engagement



opportunity, we re-engage that threat with another salvo of two

interceptors. We call this the SS-L-SS tactic. The PRA for the

Heterogeneous tactic is determined by Eqn (38). The PRA for

the Salvo tactic and the SS-L-SS tactic are determined by [1].

In these scenarios, the Salvo tactic and the SS-L-SS tactic

yield the same PRA as one would expect. Generally, Figure 3

shows that the PRA increases as a function of SSPH2 as

expected in the sense that if the SSPH2 increases then the

defence effectiveness increases and so does the PRA. Also,

when SSPH1 = SSPH2, the Heterogeneous tactic and the

Salvo tactic provides the same PRA. This must be true as

when the SSPH is the same for all threats, the threats are

considered identical and the optimal tactic is to allocate four

interceptors against each threat, [2].

The Heterogeneous tactic always provides a better PRA
than the one of the SS-L-SS tactic. With one engagement op-

portunity the Heterogeneous tactic provides a similar but better

PRA than the one of the SS-L-SS tactic. However, when

SSPH2 exceeds SSPH1, there is a substantial improvement

in the PRA. With two engagement opportunities, the Hetero-

geneous tactic provides a significant improvement to the PRA
when compared to the SS-L-SS tactic. For example, when

SSPH1 = SSPH2 = 0.4, the Heterogeneous tactic with

two engagement opportunities yields a PRA = 0.81 while

the Salvo tactic or the SS-L-SS tactic yields a PRA = 0.5
which is the same PRA as the one of the Heterogeneous tactic

with one engagement opportunity. This is an improvement of

more than 30 percent. This means that in a hundred battles, the

defence will succeed 81 times if it employs the Heterogeneous

tactic (with two engagement opportunities) and only 50 times

if it uses the Salvo tactic or the SS-L-SS tactic.

There are two reasons why the Heterogeneous tactic pro-

vides a superior PRA. First, the number of interceptors

allocated to each threat is chosen such that they maximize

the PRA at each engagement opportunity. Second, the hit

assessment sensors allow the defence to know if a threat is

hit at the previous engagement opportunities in which case

the defence can allocate more interceptors (normally allocated

to the threats that were hit) to the threats that were missed

previously.

As shown above, we can achieve substantial improvement in

the PRA when we employ the Heterogeneous tactic. It would

be natural then to ask ourselves how many interceptors would

be needed in order to carry out the Heterogeneous tactic. Fig-

ure 4 displays the expected number of interceptors expended

(ENIE) as a function of SSPH2. Once the allocations of

interceptors are known e.g. through the optimization of the

PRA, we can use them to determine the ENIE. However,

the length of this paper does not allow us to go through the

details of the derivations for the ENIE. Unlike the PRA,
the Salvo tactic and the SS-L-SS tactic do not yield the same

ENIE. This must be true as in the Salvo tactic, the defence

launches all the interceptors in one engagement opportunity

while the SS-L-SS tactic launches a salvo of two interceptors

against each threat at the first engagement opportunity and re–

launches another salvo of two interceptors against each threat

only if it was missed at the first engagement opportunity. Since

there is a chance that threats are hit at the first engagement

opportunity and hence there is no need to re–engage. This

implies that the ENIE must be lower for the SS-L-SS tactic

than the one for the Salvo tactic.

In general, we see that the Salvo tactic and the Heteroge-

neous tactic with one engagement opportunity requires twenty

interceptors. The Heterogeneous tactic with two engagement

opportunities requires a lower ENIE than the one for the

Salvo tactic and for the Heterogeneous tactic with one en-

gagement opportunity. The SS-L-SS tactic requires the lowest

ENIE.
Also, the ENIE decreases with SSPH. This must hold

since when the SSPH increases, the chances of neutralizing

the threats at the first engagement opportunity increases and

hence the chances to re-engage decreases implying a lower

ENIE.

VII. CONCLUSION

In this paper, we examined maritime air defence scenarios

in which threats may be of different types (different sizes,

different cross sections, different lethalities etc.). However,

we assume that they have the same number of engagement

opportunities. The case of different engagement opportunities

is considered in [13].

When threats are of different types, the corresponding

SSPHs may be different. We show that by balancing the same

inventory of interceptors, we can significantly improve the

probability of raid annihilation compared to the Salvo tactic

and the SS-L-SS tactic. At the same type we can decrease

the expected number of interceptors expended, relative to the

Salvo tactic.

The simulation has shown that the improvement in PRA
can be more than thirty percent which means that in a

hundred battles, the additional number of successful missions

is thirty, a substantial military achievement. The improvement

will increase with the number of engagement opportunities.

Of course, this improvement comes with several costs. The

first cost is the cost for the hit assessment sensor. The hit

assessment sensor allows the defence to determine if a threat

was neutralized or not. The second aspect is the speed of inter-

ceptors combined with command & control parameters such

as time delays that would allow more than one engagement

opportunity.

In essence, given hit assessment and more than one engage-

ment opportunity, the defence can allocate the interceptors

where they are most needed. Generally, a threat with a low

SSPH should be assigned more interceptors than a threat

with a high SSPH. The Heterogeneous tactic determines

exactly how many interceptors should be assigned to each

threat depending on the number of threats, their SSPHs,

the inventory of interceptors, and the number of engagement

opportunities in a way that the is globally maximized.

From a scientific view, to be able to globally maximize the

PRA is a step forward in optimization; in general, it is non-

trivial to achieve the global optimum in multiple variables. In
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Fig. 3: PRA as a function of SSPH2 with SSPH1 = (a) 0.2, (b) 0.4, (c) 0.6, and (d) 0.8.

this case, it was done by observing that the PRA is a concave

function. The analytical expressions for the performances of

the defence system such as the probability of detection are

often similar to the PRA. Therefore, we could use the same

approach to optimize other defence metrics.
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