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Abstract—The Probability Hypothesis Density (PHD) filter is
an efficient algorithm for multitarget tracking in the presence
of nonlinearities and/or non-Gaussian noise. The Sequential
Monte Carlo (SMC) and Gaussian Mixture (GM) techniques
are commonly used to implement the PHD filter. Recently, a
new implementation of the PHD filter using B-splines with the
capability to model any arbitrary density functions using only
a few knots was proposed. The Spline PHD (SPHD) filter was
found to be more robust than the SMC-PHD filter since it does
not suffer from degeneracy and it was better than the GM-PHD
implementation in terms of estimation accuracy, albeit with a
higher computational complexity. In this paper, we propose a
Multiple Model (MM) extension to the SPHD filter to track
multiple maneuvering targets. Simulation results are presented
to demonstrate the effectiveness of the new filter.

Index Terms—Maneuvering target tracking, Nonlinear filter-
ing, Probability Hypothesis Density filter, Spline filter, Spline
Probability Hypothesis Density filter

I. INTRODUCTION

The Spline Probability Hypothesis Density (SPHD) fil-
ter [20] is one of the latest implementations of the Proba-
bility Hypothesis Density (PHD) filter. For non-maneuvering
multitarget tracking problems, the SPHD filter [20] can be an
effective alternative to the Sequential Monte Carlo Probability
Hypothesis Density (SMC-PHD) [18], Gaussian Mixture Prob-
ability Hypothesis Density (GM-PHD) [25], Gaussian Mixture
Particle Probability Hypothesis Density (GMP-PHD) [5,26],
Gaussian Mixture Unscented Sequential Monte Carlo Proba-
bility Hypothesis Density (GM-USMC-PHD) [27], Gaussian
Mixture Sequential Monte Carlo Probability Hypothesis Den-
sity (GM-SMC-PHD) [19], and the Auxiliary Particle Prob-
ability Hypothesis Density (AP-PHD) [3] filters. The SPHD
filter offers continuous estimates of the probability hypothesis
density of the multitarget state for any system model [11,20]
and avoids degeneracy by modeling the PHD in continuous
space. The nonlinearity of the state evolution or measurement
model is naturally handled by the SPHD filter [20]. The
SPHD filter is not limited to Gaussian systems. To extend
the application of the SPHD filter to maneuvering multitarget
tracking problems, a multimodal version, called the Multiple
Model (MM) Spline Probability Hypothesis Density (MM-
SPHD) filter, is derived in this paper.

This paper presents the MM-SPHD filter derivations with
details on the estimation of maneuvering multitarget state and
the extraction of corresponding individual target states. The
multitarget multidimensional system state transition model of
MM-SPHD filter is represented by tensor products of splines.
The corresponding analytical state prediction and posterior
density equations are derived. A nonlinear example is used
to validate the performance of the MM-SPHD filter vs. other
multiple model PHD implementations. Simulation results re-
veal that the MM-SPHD filter works efficiently and increased
measurement noise levels do not destabilize it whereas other
MM implementation suffer at higher noise levels. The MM-
SPHD filter can maintain highly accurate tracks by taking
advantage of dynamic knot movement [20], but at the expense
of higher computational complexity.

The structure of this paper is as follows. Sections II and III
briefly review the introduction to PHD filters and the multiple
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model PHD filters, respectively. The B-spline is reviewed
in Section IV. The proposed MM-SPHD filter formulations
are presented in Section V for the multidimensional case
with tensor products and two new knot selection schemes.
Simulation results and conclusions are given in Sections VI
and VII, respectively.

II. INTRODUCTION TO PHD FILTER

Maneuvering multitarget tracking algorithms face target
motion model uncertainties and to overcome these uncertain-
ties, most multitarget filters adopt multiple model filtering
techniques [12,18]. Thus, multiple model filters run each filter
in their mode set using the same measurement assuming that
the target state evolves according to one of r models in its
mode set at any time and fuses the output of those filters to
find an overall estimate [12].

Let ϑk be the number of targets at time k in multitarget
state space Es. Then the multimodal multitarget state at time
k can be written as

Xk = {xMk

1,k , . . . ,x
Mk

ϑk,k
} ∈ Es (1)

where xMk

l,k denotes the mode-dependent l-th target state vector
at time k and l ∈ {1, . . . , ϑk}. Note that the order in which the
multitarget states are listed has no significance in the Random
Finite Set (RFS) multitarget model formulation. In the above,
Mk ∈ {1, . . . , r} is the mode index parameter, where r is the
number of possible models, and the mode index parameter
is governed by an underlaying Markov process with mode
transition probability

πpq = P (Mk = q|Mk−1 = p) p, q = 1, 2, . . . , r (2)

The mode transition probability πpq can be assumed time-
invariant and independent of the multitarget state. The state of
the l-th target is given by

xl,k = fk,Mk
(xl,k−1, νk,Mk

,Mk) (3)

where xl,k denotes the l-th target state at time k, νk,Mk
is

the mode-dependent iid process noise sequence with known
statistics and fk,Mk

(·) is the mode-dependent nonlinear system
transition function.

Let Z(k) = {Z0, Z1, . . . , Zk} ∈ Eo be the cumulative sets
of measurements from time 0 to time k and assume that ηk
denotes the number of target-originated measurements at time
k. Measurements also consist of observations generated by
the false alarm process and assume �k denotes the number of
false measurements at time k. Then the set of measurements
at time k in observation space Eo is given by

Zk = {z1,k, . . . , zηk,k}
⋃

{c1,k, . . . , c�k,k} ∈ Eo (4)

where the l-th target-originated measurement is given by

zl,k = hk,Mk
(xl,k, ωk,Mk

,Mk) (5)

and ωk,Mk
denotes the mode-dependent iid measurement

noise with known statistics and hk,Mk
is a mode-dependent

nonlinear function. The false measurements ci,k are assumed
to be uniformly distributed and their number �k is Poisson-
distributed. Let Pd,k denote the probability of detection, thus
the probability of Zk(x

Mk

i,k ) = zi,k = ∅ (i.e., the i-th target is
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not detected) is 1−Pd,k. The average number of measurement
is kג = Pd,k × ηk +�

′

k, where �
′

k is the average number of
false alarms.

There are ϑk targets in the state space Es at time k and these
targets can continue to exist, spawn new targets or terminate.
In addition, new targets are born independently of already-
existing targets. The number of targets and their states are
unknown and, with maneuvering targets, the dynamic model
of a target at any time is also unknown. That is, there are two
unknown discrete random variables (i.e., number of targets and
mode index of each target) and a continuous random variable
(i.e., target state of each target) to be estimated at each time.
From the observation space Eo, kג measurements are received
at time k. The origins of the measurements are not known,
and thus the order in which they appear bears no significance.
The measurements can also originate from clutter and false
alarms.

At time k the dynamic models of all targets and the
dimension of the multitarget state Xk are unknown and time-
varying. In the absence of model uncertainty the randomness
in the set can be characterized by modeling the multitarget
states and multitarget measurements as random finite set Ξk
and ℵk respectively. Given the realization Xk−1 of Ξk−1 at
time k-1, the multitarget states at time k can be modeled by
the RFS as

Ξk = Sk(Xk−1) ∪Bk(Xk−1) ∪ Γk (6)

where Sk(Xk−1) denotes the surviving targets and Bk(Xk−1)
denotes the spawned targets. In addition, Γk denotes the new-
born targets and these newborn targets are born independently
from the surviving targets. Similarly, given a realization of
Xk of ℵk, the multitarget measurement can be modeled by
the RFS as

ℵk = Φk(Xk) ∪ Ck (7)

where Φk(Xk) denotes the RFS measurement generated by
Xk and Ck denotes measurement generated by clutter.

Let pk−1|k−1(Xk−1|Z(k−1)) denote the multitarget prior
density of the system dynamic model at time k − 1. Then
prediction and update steps of the optimal multitarget Bayes
filter recursion are given by [1]

pk|k−1(Xk|Z
(k−1)) =

∫
pk|k−1(Xk|Xk−1)

·pk−1|k−1(Xk−1|Z
(k−1))

·μs(dXk−1) (8)

pk|k(Xk|Z
(k)) =

gk(Zk|Xk)pk|k−1(Xk|Z
(k−1))∫

gk(Zk|Xk)pk|k−1(Xk|Z(k−1))μs(dXk)
(9)

respectively, where pk|k−1(Xk|Xk−1) is the multitarget dy-
namic model transition density, gk(Zk|Xk) denotes the multi-
target likelihood and μs takes the place of Lebesque measure.
The posterior density pk|k(Xk|Z(k)) can be determined us-
ing (9).

For the multiple model PHD (MM-PHD) filter, with the
additional model uncertainty in Mk ∈ {1, . . . , r}, we cannot
define the model probability over Xk. The MM-PHD filter
in [14] is not only able to provide maximum a posterior (MAP)
estimate of the total number of targets, but also able to provide
the posterior PHD function and the expected a posterior (EAP)
estimates of the number of targets for each dynamic models. It
should be noted that the single target state space for different
dynamic models may be different, so the dimension of x

depends on the type of dynamic model represented by M.

III. PHD FILTER FOR MANEUVERING TARGETS

A cycle of the recursive MM-PHD filter algorithm can be
described in three stages: mixing, prediction and update [18].

A. MM-PHD mixing

In this stage each mode-matched filter is fed with a different
density that is a combination of the previous mode-dependent
densities. Let the initial density be

D̃k|k−1(xk−1,Mk = q|Z(k−1))

and the initial density fed to the PHD filter that is matched to
motion model q is calculated based on the Markovian model
transition probability matrix πpq and model-dependent prior
density Dk−1|k−1(xk−1,Mk−1 = p|Z(k−1)) as [18]

D̃k|k−1(xk−1,Mk = q|Z(k−1)) =
r∑

p=1

Dk−1|k−1(xk−1,Mk−1 = p|Z(k−1))πpq q = 1, . . . , r (10)

where r denotes number of filters. Target spawning, birth
and disappearance are not considered at the mixing stage but
they are considered in the subsequent prediction stage. The
densities D̃k|k−1(·) and Dk−1|k−1(·) in (10) are similar to
probability densities except that they do not integrate to unity.
The mixing described in (10) is similar to the total probability
theorem.

B. MM-PHD prediction
Assume that each target evolves and generates observations

independently of one another. A target can continue to survive
or disappear from the scene, can be spawned by already
existing targets, and also new targets can be born in the scene
independently from the already-existing targets. Once the
initial density for the PHD filter matched to target model q is
calculated, the mode-dependent predicted density is calculated
as

Dk|k−1(xk,Mk = q|Z(k−1)) = Dc,k|k−1(xk,Mk = q)

+ Ds,k|k−1(xk,Mk = q)

+ Dnb,k(xk,Mk = q) (11)

where the mode-dependent predicted density of existing targets
is expressed as follows:

Dc,k|k−1(xk,Mk = q) =

∫
Ps,k|k−1(xk−1,Mk = q)

·pk|k−1(xk,Mk = q|xk−1,Mk−1 = p)

·D̃k|k−1(xk−1,Mk = q|Z(k−1))

·dxk−1 (12)

where pk|k−1(xk,Mk = q|xk−1,Mk−1 = p) denotes a
mode-dependent single Markov transition density of state of
those existing individual targets and Ps,k|k−1(xk−1,Mk = q)
denotes the mode-dependent survival probability of existing
targets that accounts for the event that a target with state
xk−1 at time step k − 1 will survive at time step k. The
mode-dependent predicted density of spawned targets can be
expressed as

Ds,k|k−1(xk ,Mk = q) =

∫
βs,k|k−1(xk ,Mk = q|xk−1,Mk−1 = p)

·D̃k|k−1(xk−1,Mk = q|Z(k−1))dxk−1

where βs,k|k−1(xk,Mk = q|xk−1,Mk−1 = p) denotes
the mode-dependent PHD of the new targets spawned by
existing targets. The PHD of the mode-dependent likelihood
function βs,k|k−1(Xk|Mk = q), which is the mode-dependent
likelihood that a group of new targets with state set Xk will
be spawned at time step k by a single target that had state
xk−1 at time step k − 1.

Appearance of completely new targets is also described
by mode-dependent βnb,k(Xk,Mk = q), where the equa-
tion is the mode-dependent likelihood that new targets with



state set Xk will enter the scene at time step k and its
PHD is βnb,k(xk,Mk = q). The mode-dependent predicted
newborn target density Dnb,k(.) depends on the system
model. The mode integral of mode-dependent predicted PHD
Dk|k−1(xk,Mk = q|Z(k−1)) over a region gives the ex-
pected/predicted number of targets in that region.

C. MM-PHD update
The predicted density can be corrected with the available

measurements Zk ∈ Z(k) from observation space Eo at
time step k to get the updated density with the assumption
that no target generates more than one measurement. Each
measurement is generated by no more than a single target and
all measurements are conditionally independent of target state.
The number of false alarms is Poisson distributed with average
rate of λk and the probability density of the spatial distribution
of false alarm is Ck(zk) with the assumptions of standard
multimodal multitarget measurement model from Section II.
The detection probability of a target with state xk at time step
k is Pd(xk,Mk = q) and the mode-dependent updated PHD
at scan k can be determined as (for q = 1, . . . , r)

Dk|k(xk,Mk = q|Z(k)) ∼= (1− Pd,k(xk,Mk = q))

·Dk|k−1(xk,Mk = q|Z(k−1))

+
∑

zk∈Zk

φk(zk|Z
(k−1),Mk = q)

λkCk(zk) +
∫
φk(zk|Z(k−1),Mk = q)dxk

where the function φk(.) is given as

φk(zk|Z
(k−1),Mk = q) = Pd,k(xk,Mk = q)

·pk|k(zk|xk,Mk = q)

·Dk|k−1(xk,Mk = q|Z(k−1))

The expected number of targets can be determined by taking
the integral of the mode-dependent updated PHD Dk|k(.) as

N̂Mk=q

k|k =

∫
Dk|k(xk,Mk = q|Z(k))dxk (13)

and the total number of estimated targets as

N̂k|k =

r∑
q=1

N̂Mk=q

k|k (14)

IV. B-SPLINES

A brief background on B-spline is provided in this section
and for further details readers can refer to [4]. A p-th order
B-spline curve C(x) of a certain variable x (e.g., multitarget
state) is defined as

C(x) =

ns∑
i=1

PiBi,p,t(x) 2 ≤ p ≤ ns, (15)

where Pi is the i-th control point of the ns point control
polygon vertices and Bi,p,t(x) are the B-spline blending
functions (basis functions), which are basically polynomials
of degree p− 1. The order p can be chosen from 2 to ns and
the continuity of the curve can be kept by selecting p ≥ 3.
The knot denoted by t is a 1 × τ vector and t is a non-
decreasing sequence of real numbers, where t = {t1, . . . , tτ},
i.e., ti ≤ ti+1, i = 1, . . . , τ . The knot vector relates the
parameter x to the control points. This relationship, together
with the location of the control points, provides control over
the shape of the curve.

The i-th basis function is defined by the recursion formula
from [6] as

Bi,p(x) =
(x− ti)Bi,p−1(x)

ti+p−1 − ti
+

(ti+p − x)Bi−1,p−1(x)

ti+p − ti+1
(16)

where, ti � x < ti+p and

Bi,1(x) =

{
1 if ti � x < ti+1,
0 otherwise. (17)

The tis in (16) are elements of a knot vector. From (16),
it is clear that the basis function Bi,p,t(x) is non-zero in
the interval [ti, ti+p]. The basis function spans the knots
ti, . . . , ti+p. Note that when knots are not repeated, B-spline
is zero at the end-knots ti and ti+p, i.e.,

Bi,p(x = ti) = 0 Bi,p(x = ti+p) = 0

In B-splines, we can have repeated knots (i.e., ti = ti+1 = . . .)
and Bi,p can have the form 0

0 . Hence, we assume 0
0 = 0 to

incorporate repeated knots. For any value of the parameter, x,
the sum of the basis functions is one, i.e.,

ns∑
i=1

Bi,p(x) = 1, (18)

the B-spline curve lies within the convex hull defined by its
control polygon. Therefore, the entire curve lies within the
union of all such convex hulls formed by taking p successive
defining polygon vertices. The curve is affine invariant and
follows the shape of the defining polygon.

Unidimensional splines can be extended to multidimen-
sional ones through the use of tensor product spline construc-
tion [4]. A spline subspace Bij ,pj ,tj (xj) is defined for each
dimension where xj denotes the variable in the j-th dimension.
Thus, the spline representation of a multidimensional function
C(x1, . . . , xm) is given as

C(x1, . . . , xm) =

ns∑
i1

. . .

ns∑
im

Pi1,...,imBi1,p1,t1(x1) . . .

·Bim,pm,tm(xm) (19)

V. MM-SPHD FILTERING

The MM-SPHD filter implementation is based on the SPHD
filter’s extension to multiple model estimation. This section
derives the MM-SPHD filter for the multidimensional mul-
titarget state space models. Assume that a multidimensional
multitarget system state at time k is denoted as Xk =
{x1,k, . . . ,xϑk,k} where each target has multidimensional
state xk = [x1

k, . . . ,x
n
k ]

′

and n denotes the number of
dimensions.

A. MM-SPHD mixing

The MM-SPHD filter derivations follow Section III. Let the
initial MM-SPHD be

B̃k|k−1(xk−1,Mk = q) =

ns∑
i1

. . .

ns∑
in

Pi1,...,in

·Bi1,p,t
1
k−1

(x1
k−1,Mk = q) . . .

·Bin,p,tn
k−1

(xn
k−1,Mk = q) (20)

where B̃k|k−1(xk−1,Mk = q) denotes the q-th mode-
dependent initial multitarget multidimensional MM-SPHD and
Mk ∈ {1, . . . , r} is the model mode index at time k, where r

denotes the total number of models. The number of dimensions
is denoted by n and i = i1, . . . , in. The number of knots for all
dimension is the same at τ . The n dimensional knot tk−1 =
{t1k−1, . . . , t

n
k−1}, is a n× τ array. Each row vector of tk−1

consists of a set of prior knots t
l
k−1 = {tl1,k−1, . . . , t

l
τ,k−1}

where l = 1, . . . , n. The n dimensional control point set
or coefficient matrix is denoted by Pi and ns denotes the
number of control points. The number of control points for



all dimensions is the same. Note that the number of knots
must be greater than the number of control points.

The initial MM-SPHD B̃k|k−1(xk−1,Mk = q) is fed to
the MM-SPHD filter, which is matched to multitarget model
q. The initial MM-SPHD B̃k|k−1(xk−1,Mk = q) can be cal-
culated on the basis of Markovian model transition probability
matrix πpq and model-dependent multitarget multidimensional
prior MM-SPHD Bk−1|k−1(xk−1,Mk−1 = p), i.e.,

B̃k|k−1(xk−1,Mk = q) =
r∑

p=1

Bk−1|k−1(xk−1,Mk−1 = p)

·πpq q ∈ {1, . . . , r} (21)

where the prior MM-SPHD of the p-th dynamic system can
be determined as

Bk−1|k−1(xk−1,Mk−1 = p) =

ns∑
g1

. . .

ns∑
gn

Pg1,...,gn

·Bg1,p,t
1
k−1

(x1
k−1,Mk−1 = p) . . .

·Bgn,p,tn
k−1

(xn
k−1,Mk−1 = p)(22)

where p = {1, . . . , r}. For all r system models, prior MM-
SPHD Bk−1|k−1(·) are summed together with scaling by
the corresponding mode probability πpq to determine the
initial MM-SPHD B̃k|k−1(.) as in (21). The prior number of
expected targets is the integral of B̃k|k−1(xk−1,Mk = q) over
the region of state space Es for the q-th model evaluated as

N̂k−1|k−1 =

∫
Es

B̃k|k−1(xk−1,Mk = q)dxk−1 (23)

where q = {1, . . . , r} and using (23) the prior number of
expected targets can be determined for all the models. Then
the overall prior number of expected targets can be determined
by summing over all N̂k−1|k−1 models. Target spawning, birth
and disappearance are not considered at the mixing stage, but
they are considered in the prediction stage.

B. MM-SPHD prediction
The spline representation of the mode-dependent multitarget

state transition density pk|k−1 is a 2n dimensional function
determined using system model (3) as

pk|k−1(xk,Mk = q|xk−1,Mk−1 = p) =∑
j1

. . .
∑
j2n

Pj1,...,j2nBj1,t
1
k
(x1

k,Mk = q) . . .

·Bjn,tn
k
(xn

k ,Mk = q)

·Bjn+1,p,t
1
k−1

(x1
k−1,Mk−1 = p) . . .

·Bj2n,p,tn
k−1

(xn
k−1,Mk−1 = p) (24)

where q, p ∈ {1, . . . , r}, j = {j1, . . . , j2n} and tk denotes
n×τ knot array at k and it consists of row vectors t1k, . . . , t

n
k .

Each row vector of tk consists of a set of predicted knots
t
l
k = {tl1,k, . . . , t

l
τ,k} where l = 1, . . . , n. The predicted knot

selection of a multidimensional system is much more chal-
lenging. A suboptimal but computationally efficient method
as described in [20] is used here to find the mode-dependent
predicted knots for the multidimensional spline. The mode-
dependent coefficients or control points of spline transition
density Pj1,...,j2n can be determined as described in [20].

Once the initial spline density for the MM-SPHD filter that
is matched to target model q is calculated, the mode-dependent
spline predicted density can be calculated using (11) as

Bk|k−1(xk,Mk = q) = Bc,k|k−1(xk,Mk = q)

+ Bs,k|k−1(Xk,Mk = q)

+ Bnb,k(xk,Mk = q) (25)

The predicted MM-SPHD for the existing targets can be
determined as follows [18]:

Dc,k|k−1(xk,Mk = q) =

∫
Ps,k|k−1(xk−1,Mk = q)

·pk|k−1(xk,Mk = q|xk−1,Mk−1 = p)

·D̃k|k−1(xk−1,Mk = q|Z(k−1))

·dxk−1 (26)

and the spline predicted MM-SPHD

Bc,k|k−1(xk,Mk = q) =∫
Ps,k|k−1(xk−1,Mk = q)

ns∑
j1

. . .

ns∑
j2n

Pj1,...,j2n

·Bj1,p,t
1
k
(x1

k,Mk = q) . . . Bjn,p,tn
k
(xn

k ,Mk = q)

·Bjn+1,p,t
1
k−1

(x1
k−1,Mk−1 = p) . . .

·Bj2n,p,tn
k−1

(xn
k−1,Mk−1 = p)

ns∑
i1

. . .

ns∑
in

Pi1,...,in

·Bi1,p,t
1
k−1

(x1
k−1,Mk = q) . . .

·Bin,p,tn
k−1

(xn
k−1,Mk = q) dx1

k−1 . . . dx
n
k−1

=

ns∑
j1

. . .

ns∑
j2n

Pj1,...,j2nBj1,p,t
1
k
(x1

k,Mk = q) . . .

·Bjn,p,tn
k
(xn

k ,Mk = q)

ns∑
i1

. . .

ns∑
in

Pi1,...,in

·

∫
Ps,k|k−1(xk−1,Mk = q)

·Bjn+1,p,t
1
k−1

(x1
k−1,Mk−1 = p) . . .

·Bj2n,p,tn
k−1

(xn
k−1,Mk−1 = p)

·Bi1,p,t
1
k−1

(x1
k−1,Mk = q) . . .

·Bin,p,tn
k−1

(xn
k−1,Mk = q)

·dx1
k−1 . . . dx

n
k−1 (27)

where the third equality follows from the property that the or-
der of summation and integration of spline is interchangeable
[4].

Define two 2n dimensional matrices W and C, and one n
dimensional matrix ξ as follows:

Wjn+1,...,j2n,i1,...,in =

∫
Ps,k|k−1(xk−1,Mk = q)

·Bjn+1,p,t
1
k−1

(x1
k−1,Mk−1 = p) . . .

·Bj2n,p,tn
k−1

(xn
k−1,Mk−1 = p)

·Bi1,p,t
1
k−1

(x1
k−1,Mk = q) . . .

·Bin,p,tn
k−1

(xn
k−1,Mk = q)

·dx1
k−1 . . . dx

n
k−1 (28)

Let Cj = Pj and ξi = Pi. Using (26), (28) and (30) with
additional manipulations, it can be shown that

Bc,k|k−1(xk,Mk = q) =
∑
j1

. . .
∑
jn

Pj1,...,jn

·Bj1,p,t
1
k
(x1

k,Mk = q) . . .

·Bjn,p,t
n
k
(xn

k ,Mk = q) (29)

where Pj1,...,jn is given by

Pj1,...,jn =
∑
i1

. . .
∑
in

ξi1,...,in
∑
jn+1

. . .
∑
j2n

·Cj1,...,j2nWjn+1,...,j2n,i1,...,in (30)



where Bc,k|k−1(xk,Mk = q) denotes the q-th mode-
dependent existing targets’ predicted SPHD.

A similar approach as described for Bc,k|k−1(xk,Mk =
q) can be applied to determine the mode-dependent spawned
targets’ predicted SPHD Bs,k|k−1(xk,Mk = q). The mode-
dependent SPHD of new targets Bnb,k(xk,Mk = q) can be
determined as described in [20] as follows:

First, the mode-dependent posterior probability for an
observed measurement that originates from a new target
Pk(Yi,Mk = q) is determined as

Pk(Yi,Mk = q) =
BY,k(zi,Mk = q)

Bλ,k(zi) +
∑

r

q=1 BY,k(zi,Mk = q)
,

zi ∈ Zk , i = 1, . . . , kג

and

BY,k(zi,Mk = q) =

∫
Pd,k(xk,Mk = q)

·Bl,k(zi|xk,Mk = q)

·Bk|k−1(xk,Mk = q)

·dxk (31)

where Yi denotes the i-th observed measurement that orig-
inates from a new target at time k and kג denotes the
total number of measurements at time k. In the above,
Bk|k−1(xk,Mk = q) ≈ Bc,k|k−1(xk,Mk = q) +
Bs,k|k−1(xk,Mk = q) and Bl,k(·) denotes the spline likeli-
hood density and could be determined using the measurement
model in (5). The spline uniform clutter density is denoted by
Bλ,k(·) and Pd,k(xk,Mk = q) denotes the mode-dependent
probability of detection.

The mode dependent Pk(Yi,Mk = q) values are determined
for each measurement and it is compared with a tuning
threshold probability ε. That is,

Nnb,i =

{
1 if Pk(Yi,Mk = q) � ε,
0 otherwise. (32)

If the number of newborn targets Nnb,i is 1 for a specific
measurement index i, then a newborn target SPHD can be
added as

Bnb,k(xk,Mk = q) =

Nnb∑
i=1

Bnb,k,i(zi) (33)

where Bnb,k,i is the SPHD of a newborn target with mean zi
and variance of measurement noise. The total number of new-
born targets per scan is denoted by Nnb and Bnb,k(xk,Mk =
q) denotes the cumulative sum of all the SPHD values of
newborn targets at scan k. Overall, if for the i-th measurement,
zi, Pk(Yi,Mk = q) = 1 then each element of zi can
be considered as the mean of a newborn target state in its
respective dimension with the variance of measurement noise.
A newborn target can be added using Gaussian distribution
with corresponding mean and variance from each state el-
ement of that newborn target. The mode-dependent MM-
SPHD of newborn targets, Bnb,k(xk,Mk = q), depends
on system model q. The mode integral of mode-dependent
MM-SPHD Bk|k−1(xk,Mk = q) over a region gives the
expected/predicted number of targets in that region.

C. MM-SPHD update

Note that the MM-SPHD filter provides the PHD estimates
in a continuous space in state. These predicted MM-SPHD
Bk|k−1(·) at any point over the interval [t1,k, tτ,k] can be
determined using (25). Then, the interval where Bk|k−1(·)
is significant could be found. Using the measurement model
equation (5), the value for the likelihood density function
Bl,k(zk|xk,Mk = q) can be evaluated for the same interval.

The updated posterior MM-SPHD can be determined as [13]
(for q = 1, . . . , r)

Dk|k(xk,Mk = q|Z(k)) =

(1− Pd,k(xk,Mk = q))Bk|k−1(xk,Mk = q)

+
∑

zk∈Zk

Bφ(xk,Mk = q)

Bλ(zk) +
∫
Bφ(xk,Mk = q)dxk

=
∑

ι1,...,ιn

Pι1,...,ιnBι1,p,t
1
k
(x1

k,Mk = q) . . .

·Bιn,p,tn
k
(xn

k ,Mk = q) (34)

where Bφ(xk,Mk = q) can be evaluated as follows:

Bφ(xk,Mk = q) = Pd,k(xk,Mk = q)

·Bl,k(xk,Mk = q)

·Bk|k−1(xk,Mk = q) (35)

Then, the updated MM-SPHD can be further simplified as

Bk|k(xk,Mk = q) =
∑

ι1,...,ιn

Pι1,...,ιn

·Bι1,p,t
1
k
(x1

k,Mk = q) . . .

·Bιn,p,tn
k
(xn

k ,Mk = q) (36)

where tk denotes the set of posterior knots and (36) ensures
that the spline posterior density is only evaluated over the
interval where it is significant. Once the significant region
is obtained, a simple way of selecting the knots for the
posterior intensity is to uniformly distribute the knots over this
significant region [11]. The expected number of targets from
model q can be determined by taking the integral of mode
dependent MM-SPHD updated equation Bk|k(xk,Mk = q)
as

N̂k|k =

∫
Es

Bk|k(xk,Mk = q)dxk (37)

The total number of targets can be found by summing up the
integrals of the updated mode-dependent MM-SPHD values.
Mode probability can be updated for a particular model by
integrating the mode dependent updated MM-SPHD, which is
then divided it by the total expected number of targets [18].

VI. SIMULATION RESULTS

In this section a nonlinear maneuvering multitarget tracking
example is presented to validate the performance of the MM-
SPHD filter. The selected example is a multidimensional one
dealing with a bearing-only ground target tracking problem,
which arises in many practical applications such as submarine
tracking or airborne surveillance using a passive radar [20].
Note that a standard radar tracking problem, where range and
azimuth measurements are available for tracking can be con-
verted into a linear problem. Also, the bearing only tracking
problem is inherently ill conditioned [15, 22] and is better
suited for comparing nonlinear target tracking algorithms.

As shown in Figure 1, a sensor is on an aircraft with

xp(k) = x̄p(k) + Δxp(k) k = 0, 1, . . . , 40 (38)
yp(k) = ȳp(k) + Δyp(k) k = 0, 1, . . . , 40 (39)

where x̄p(k) and ȳp(k) are the average platform position coor-
dinates, k is the time index and the perturbations Δxp(k) and
Δyp(k) are assumed to be mutually independent zero-mean
Gaussian white noise sequences with variances σ2

Δxp
= 1 and

σ2
Δyp

= 1, respectively. Note that this problem has been used
to compare nonlinear filtering tracking algorithms before [2,
10, 20]. The average unperturbed platform motion is assumed



to be horizontal with a constant velocity. Its coordinates are
given by

x̄p(k) = 100k ∗ T (m) (40)
ȳp(k) = 10000 (m) (41)

where the sampling time T = 10s. A system with three
models is considered here to demonstrate the MM-SPHD. In
the second and third models, a time-varying control term is
added. The three system models are

x1
i (k) =

[
1 T
0 1

]
x1
i (k − 1) +

[
T 2/2
T

]
ν1,k, (42)

x2
i (k) =

[
1 T
0 1

]
x2
i (k − 1) +

[
−T/2

−T/500

]
(k − 1)

+

[
T 2/2
T

]
ν2,k (43)

and

x3
i (k) =

[
1 T
0 1

]
x3
i (k − 1) +

[
T/2

T/500

]
(k − 1)

+

[
T 2/2
T

]
ν3,k (44)

where the target state is

xi(k) =
[
x1
i (k)

x2
i (k)

]
i = 1, 2, 3, 4, 5, 6 (45)

and x1
i denotes the position in meters while x2

i denotes the
velocity in m/s of the i-th target and ν1,k, ν2,k, and ν3,k are
all zero-mean white Gaussian random variables with standard
deviation σν1,k = 0.05 m/s2, σν2,k = 0.08 m/s2 and σν3,k =
0.07 m/s2, respectively.

y (m)

x (km)
0 2 4 6 8 10 12
∗ ∗ ∗ ∗ ∗ ∗

yp(k)

Platform

∗ Targetsz1(k)· · ·z6(k)

Fig. 1. Motion of the platform and the six targets

In this example, six maneuvering targets are traveling with
initial states

[x1(k) x2(k) x3(k) x4(k) x5(k) x6(k)] =[
1000 −1000 17000 −17000 10000 −10000
40 −40 −50 50 50 −50

]
(46)

and the start and end times of the six targets are (1,40), (1,40),
(16,38), (16,38), (3,33) and (3,33), respectively.

Target 1 moves for the first 140s at a nearly constant velocity
with an initial velocity of 40 m/s, then moves in a positive
direction for the next 190s and, finally moves at a nearly
constant velocity for the last 60s. Target 2 moves for the first
140s at a nearly constant velocity with an initial velocity of
−40 m/s, then moves in the negative direction for 190s and,
finally moves at a nearly constant velocity for the last 60s.

Target 3 moves 90s in the negative direction with an initial
velocity of −50 m/s, then moves at a nearly constant velocity
for 50s and for the last 90s moves in a positive direction. Target
4 moves 40s in the positive direction with an initial velocity
of 50 m/s, then moves at a nearly constant velocity for last
180s. Target 5 moves for the first 70s at a nearly constant
velocity with an initial velocity of 50 m/s, then moves in a
positive direction for the next 140s and, finally moves at a
nearly constant velocity for the last 90s. Target 6 moves for
the first 70s at a nearly constant velocity with an initial velocity
of −50 m/s, then moves in the negative direction for 140s and,
finally moves at a nearly constant velocity for the last 90s.

Targets move along the X-axis and these six targets, which
have a probability of survival Ps,k = 0.98, appear and
disappear at specific times. The Markovian model transition
probability matrices πpq for the six targets are

πpq =

[
1/3 1/3 1/3
2/5 3/5 0.0
2/5 0.0 3/5

]
, (47)

and the initial model probabilities for the models are 0.33.
Each target is detected with probability Pd,k = 0.95 and the

target-originated measurements follow the observation model

zi(k) = h[xp(k), yp(k), x
1
i (k)] + ω(k) i = 1, 2, 3, 4, 5, 6 (48)

where

h[.] = tan−1 yp(k)

x1
i (k)− xp(k)

i = 1, 2, 3, 4, 5, 6 (49)

is the angle between the X-axis and the line of sight from
the sensor to the targets. The sensor noise ω(k) is zero-
mean white Gaussian with σω = 2◦. The sensor noise is
assumed independent of the sensor platform perturbations. The
received measurements include false alarms. The clutter is
modeled as uniformly distributed in the measurement space
with average false alarm rate λk = 10−4 (rad)−1 over the
whole surveillance region [0, π] rad.

For tracking multiple targets, an MM-SPHD filter of order
3 is used with 20 knots for position and 10 knots for velocity.
At scan k = 0, all measurements are used to initialize
newborn targets as described in Section V-B. The probability
of target spawning is assumed to be zero and the probability
of spontaneous target birth is 0.01.

The PHD filter does not provide a mechanism to get the
target state estimates directly. One solution is to identify
the local maxima of the MM-SPHD surface. The K-means
clustering algorithm [23] is used here for state extraction.
An alternative is the Expectation-Maximization (EM) based
peak extraction approach [24]. The targets are associated to
tracks using global nearest-neighbor assignment [17] based
on the mean of each target cluster. As shown in Figure 2, all
six targets appear and disappear at various times during the
surveillance interval. Also shown in Figure 2 are the average
of the estimated trajectories. As shown in Figure 3, the MM-
SPHD filter estimated the velocities of all targets accurately.
The mean velocity of newborn targets is selected randomly
from a uniform distribution in the interval [−100, 100] m/s
and the standard deviation is assumed to be 0.4 m/s.

The normalized estimation error squared (NEES) [2] and
optimal subpattern assignment (OSPA) [21] are used as per-
formance metrics for the example.

The OSPA [21] metric measures the miss-distance between
a set of true targets and a set of estimated tracks as a
combination of localisation error and cardinality error [9]. Let
X = {x1, · · · , xń} and Y = {y1, · · · , yḿ} be two finite sets.
Here, X denotes true finite set of targets and Y denotes the
estimated finite set of tracks. The OSPA metric is defined as

d̄
(ć)
ṕ (X,Y ) =

⎧⎨
⎩
0 if ḿ = ń = 0
Ψ(X,Y ) if ḿ ≤ ń.
d(ć)(X,Y ) if ḿ > ń

(50)
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where

Ψ(X,Y ) �

(
1

ń

(
min
π∈Πń

ḿ∑
i=1

d(ć)(xi, yπ(i)) + ćṕ(ń− ḿ)

)) 1
ṕ

and the base distance between x and y denoted by dć(x, y) =
min (ć, ‖x− y‖), Πń is the set of permutations with length ḿ
on the set of {1, · · · , ń} where ń = ‖X‖ and ḿ = ‖Y ‖. In
the simulations ṕ = 10 and ć = 100.

The MM-SPHD filter performance is evaluated along with
those of multiple model based GM-USMC-PHD, the GM-
SMC-PHD and the AP-PHD filters.

In the MM-GM-USMC-PHD filter implementation, the IS
function approximated in the form of Gaussian mixture that
is a sum of Gaussian components and the maximum number
of Gaussian terms = 100. The number of samples per GM
component or target is set to 2500. The newborn target initial-
ization, resampling and state extraction follow [27]. Note that
the GM-USMC-PHD filter does not need resampling because
the process to manage GM for the multitarget state extraction
and component deletion enables the algorithm to have the
same effect as resampling. The Unscented Information Filter
(UIF) is the information form of the unscented Kalman filter
(UKF) [2]. The UIF is used to compute the mean and the
covariance of Gaussian components.

The GM implementation of the MM-GM-SMC-PHD filter
is with the EKF for filtering, pruning parameters of elimi-
nation threshold Tp = 10−5, merging threshold Tm = 4m
and maximum number of Gaussian terms 100. The SMC
implementation of the MM-GM-SMC-PHD uses the transition
density to sample particles. Particles are initialized around
measurements [7] and 2500 particles are used per existing
targets and 50 particles are used for each newborn target. An
estimate of the number of targets is determined by summing up
all the weights of the particles. The estimation of the number
of targets and their state extraction carried as in [19].

The MM-AP-PHD filter uses 2500 particles per existing
target, while the number particles per newborn target is set
to 100. The initialization of the newborn targets is driven by
the measurements. The current measurements are associated
with the highest bidder if the bid is at least equals 0.4. The
Auxiliary Importance Sampling (AIS) [3] process starts with
the selection of the measurements that are well described by
the targets’ states extracted from the estimated PHD and this
is achieved using auction algorithm [3]. The state extraction
is determined as in [3].

In order to facilitate a fair comparisons, we ran all methods
with the same multiple model strategy [18]. All PHD filters
are initialized with Gaussian distribution with mean [1000 m,
40 m/s] and standard deviation σν1,k = 0.05 m/s2 representing
target 1 and the constant-velocity model is used. At the
beginning of the scenario, all MM-PHD filters assume that
there is only one track corresponding to target 1 within the
surveillance region.

The overall filter accuracy performance metric, the
OSPA [21], is computed for each filter over 1000 Monte Carlo
runs for measurement noise standard deviation levels σω=2◦
and σω=4◦. The OSPA metric measures the combination of
both localization and cardinality errors. The average OSPA
values are plotted in Figures 4 and 5.
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The key observation is that the MM-SPHD filter with a few
knots performed the best of in terms of OSPA for both mea-
surement noise levels. As shown in Figure 4 and 5, high values
of OSPA distance occur when new targets are born around time
indices k = 1, 3, 16. Also targets disappear with small OSPA
peaks at time indices k = 33, 38, 40. As shown in Figure 5, as
the nonlinearity increase with increasing measurement noise
levels the GM-based MM-PHD filter perform poorly.

Figure 6 reveals the consistency of the MM-SPHD, MM-
GM-USMC-PHD, MM-AP-PHD and the MM-GM-SMC-PHD
filters in terms of normalized estimation error squared (NEES)
compared with the 95% confident-region of the X 2 distribu-
tions [2] when the measurement noise standard deviation is



σω = 2◦. To illustrate the degeneracy resistance capability
of the proposed MM-SPHD filter, the standard deviation of
the measurement noise is reduced to σω=0.02◦. The model
parameters for the filters remain unchanged but with the
correct measurement noise level. This scenario causes the
particle-based PHD filters to become degenerative. It can be
observed from Figure 7 that the MM-SPHD filter is able to
provide efficient results with the same 10 velocity knots and
20 position knots. Note that using the Regularized Particle
Filter (RPF) [7, 8] can avoid the degeneracy problem caused
by sampling and resampling. However, the RPF has the
disadvantage is that the samples are no longer guaranteed to
asymptotically approximate the posterior [16].
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VII. CONCLUSIONS

In this paper, a Multiple Model Spline Probability Hy-
pothesis Density filter implementation was presented as an
alternative implementation to the Sequential Monte Carlo and
the Gaussian Mixture MM-PHD filters for maneuvering target
tracking problems. The resulting algorithm can handle linear,
non-linear, Gaussian, and non-Gaussian models. The MM-
SPHD filter can provide continuous estimates of the proba-
bility hypothesis density function and it is relatively immune
to the degeneracy problem. The MM-SPHD filter can main-
tain highly accurate tracks by taking advantage of dynamic
knot movement, but at the expense of higher computational
complexity. The MM-SPHD filter performs well with a few
knots and provides continuous state estimates for any system,
which leads to non-degenerative results. This new filter, which
yields accurate results albeit with a higher computational load,
is useful in tracking high-value maneuvering targets (e.g.,
missiles, ground targets) in the presence of nonlinearity or
non-Gaussianity.
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