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ABSTRACT 

 

In the Alberta Oil Sand Region (AOSR) high spatial resolution (<5 m) remotely sensed multispectral 

time series are needed to capture the varying size and rates of change that occur. However, limited 

spatial-temporal coverage and cost of current high resolution sensors make such an approach 

impractical for retrieval of historical information and long term monitoring. Using moderate spatial 

resolution (~30m) time series such as that available with the Landsat series of sensors provides an 

alternative. In this research the potential to derived sub-pixel information on land cover types was 

evaluated for the AOSR using Landsat time series. Sub-pixel land cover fractions were trained for 

Landsat using high resolution (2 m) Geoeye data classified into basic land cover types. Cover types 

evaluated included conifer forest, broadleaf forest, shrub, low vegetation cover, bare, and water. The 

point spread function of Landsat was modeled to ensure that the reflectance properties measured were 

coincident with the training footprint in the higher spatial resolution Geoeye scenes. Decision tree 

classifiers were used for the fractional modeling. Results showed that land cover fractions could be 

estimated over the region with an average absolute error ranging from 7-17%.  Sampling exerted a 

significant effect where validation using a holdout Geoeye scene preformed inferior to sampling from 

all available scenes as expected. Water and bare covers had limited sampling for fractions between 25-

75% and therefore the results for these covers are uncertain in this range. Better controlling for 

spectral variability, fractional training and Landsat data quality in site specific analysis suggests 

significant improvement in accuracy compared to the regional analysis. The improvement for the site 

specific analysis ranged from 5-10%. Examination of forest fraction sensitivity to change revealed 

good agreement with forest harvesting and fire, but did not capture insect related damage well. These 

findings suggest there is potential for fractional land cover retrieval, but error is likely to remain 

moderate if training and remote sensing data are not carefully controlled for large regional 

applications. 
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1. INTRODUCTION 

 
Sub-pixel or fractional land cover represents the area covered by a given land cover type within a 

defined footprint on the land surface. For multispectral remote sensing systems the footprint 

typically corresponds to a mapping unit appropriate for the selected earth observation sensor.  The 

advantage of fractional land cover is the ability to provide more detailed information on the 

spatial distribution of land cover and change in a region, but this depends on whether accurate 

fractional estimates can be retrieved. Numerous studies have been undertaken to better understand 

the potential to extract land cover fractions from different types of remotely sensed data. Spectral 

unmixing using hyperspectral image data has shown to be effective. However, without extensive 

and repeated coverage approaches based on hyperspectral data cannot currently be considered for 

large area monitoring needs. An alternative is machine learning algorithms and other statistical 

methods which can be trained to predict fractions within a region using multispectral satellite data 

records. These satellite data records provide historical measurements and are expected to be 

continued in the future to support ongoing monitoring. Examples of multispectral based fractional 

land cover in Canada have mostly made use of coarse spatial resolution data (> 250m) such as the 

MODIS continuous fields products (Hansen et al., 2003), boreal fractional assessment using 

SPOT\VEGETATION (Fernandes et al., 2004), and northern Canada fractions derived from 

SPOT\VEGETATION (Olthof et al., 2007). More recently moderate spatial resolution (30 m) 

Landsat data has been used for global forest fractions (Hansen et al., 2013). Much of the research 

on fractional retrieval has focused on snow, impervious or forest cover types. Other fractional 

covers such as water, shrub, and herb have received less attention.   
 

Understanding change dynamics in the AOSR requires consideration of the cumulative effects of 

small and large changes occurring at rapid and moderate rates from a variety of causes including 

mining development, mining exploration, fire, forest harvesting, infrastructure development, 

hydrological alteration, and insect related mortality (Latifovic and Pouliot et al., 2013). The 

ability to derive land cover fractions provides detailed information that can be used to investigate 

the effect of land cover conversions on air quality, water storage, habitat use, carbon 

sequestration, and other environmental processes in the region. Thus the analysis undertaken here 

was designed to determine the accuracy for the estimation of different land cover fractions from 

Landsat data and identify fractions for which unacceptable accuracy was observed to guide future 

research. Landsat was selected as it provides the longest record of moderate spatial resolution 

remotely sensed observations and will be continued in the future with Landsat 8. The Sentinel 

constellation could also be integrated with past Landsat measurements for ongoing monitoring 

and trend analysis. All Landsat bands were used in the fraction model development. Training was 

based on high spatial resolution (2 m) Geoeye remotely sensed images that were classified into 

basic land cover types using an integrated object and pixel classification approach. Fraction 

results were validated using either holdout samples or entire high resolution scenes in a variety of 

combinations to assess sensitivity to sampling. 

 

2. METHODS AND RESULTS 
 

2.1 Fractional Calibration and Validation Data  
Training and validation data for fractional land cover models were derived from high spatial 

resolution (2 m) Geoeye images classified into basic land cover types.  The scenes used are shown 

in Figure 1. Geoeye includes 4 multispecral bands ranging from the green to the near-infrared at 2 

m spatial resolution and a panchromatic band at 0.5 m spatial resolution.  
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Figure 1: Location and dates of Geoeye scenes used to derive reference and land cover fractions in the 

AOS. 

To improve classification accuracy of the reference data (i.e.  land cover maps derived from 

Geoeye scenes) a pixel and object based classification approach was used. The pixel based 

classification was performed using the random forest algorithm implemented in R (Breiman, 

2001). All four multispectral bands were used. Classes defined for the pixel and object 

classifications are given in the column and row header of Table 1 respectively. For the object 

classification, images were segmented using eCognition Developer 8.8 and objects classified 

using the embedded decision tree classifier. Object features included the object mean and standard 

deviation for the 4 multispectral bands and the Normalized Difference Vegetation Index (NDVI).  

 

The object and pixel classification results were combined using a fuzzy expert rule set defined in 

Table 1, where the membership for the pixel based classification was multiplied by the value in 

the table for the associated object class. The class with the resulting maximum membership was 

taken as the adjusted class output.  In this case, the purpose of the object based classification was 

to generalize the pixel based classification to achieve an overall more accurate result. Initially the 

values in Table 1 were given an equal probability across all classes. These values were then 

adjusted in a trial and error process to correct for clearly identifiable errors in the pixel based 

classification. For comparison to Landsat the final high resolution classification result was up-

scaled to 30 m resolution based on the Landsat Point Spread Function defined in section 2.4. 
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Table 1: Classes for the pixel and object classification and membership adjustment rule set. 

O
B

JE
C

T 
C

LA
SS

ES
 

 PIXEL CLASS 

 Water Broadleaf 
Forest 

Insect 
Mortality 

Shrub Conifer 
Forest 

Bare Shadow Low 
Vegetation 

Bare 0.1 0.1 0.001 0.1 0.1 0.399 0.1 0.1 

Broadleaf 
Forest 

0.1 0.4 0.05 0.05 0.1 0.1 0.1 0.1 

Open Conifer 
Forest 

0.1 0.05 0.01 0.1 0.27 0.27 0.1 0.1 

Shrub 0.1 0.15 0.001 0.249 0.1 0.15 0.1 0.15 

Conifer Forest 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 

Water 0.5 0.05 0.05 0.05 0.05 0.05 0.2 0.05 

Low 
Vegetation 

0.1 0.1 0.001 0.1 0.1 0.1 0.1 0.399 

Unclassified 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

 

Training and validation data for the pixel and object land cover classifications were derived from 

field photos and interpretation of Pansharped Geoeye images. For each sample location an object 

containing 3-9 pixels was manually interpreted in the pansharpened imagery and a class label 

assigned. These data were split into a training set using 70% of the data and a validation set using 

the remaining 30%. Overall accuracy was measured for each Geoeye scene for the pixel and 

object-pixel adjusted classification results. 

 

Overall accuracy for the pixel based classification of the Geoeye scenes was reasonable ranging 

from 84 to 89% (Table 2).  The incorporation of the object classification improved accuracy in the 

range of 2 to 5%, with an average improvement of 3.5%. The largest source of confusion was 

between shrub and broadleaf forest and this class generally benefited the most from the object 

adjustment. A visual example is provided in Figure 2. 

 

Table 2: Overall classification accuracies for the Geoeye reference data 

 Per-Pixel Classification 

Accuracy (%) 

Object Adjusted Classification 

Accuracy (%) 

Change 

(%) 

NW 83.76 85.90 +2.14 

NE 88.36 93.33 +4.97 

SE 85.56 90.52 +4.96 

SW 89.36 91.18 +1.82 

 

In the example shown in Figure 2, along the river edge there is a broadleaf patch which in the 

pixel based classification has been confused with shrub. The object based adjustment has reduced 

this problem, but some shrub/broadleaf forest confusion remained. 
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Figure 2: Example results of the Geoeye classification and the object based adjustment. For the 

classified images, green = conifer, red = broadleaf, orange = shrub, blue = water, and purple = 

defoliation. 

 

2.2 Landsat Data 
 

Landsat observations from seven scenes covering the AOS were selected for the analysis (Table 

3). All spectral bands and the brightness temperature measurements were used as well as NDVI, 

the Normalized Difference Moisture Index (NDMI), and a proxy for atmospheric transparency 

calculated as the difference between the red and blue bands, divided by the shortwave band at 

1500 nm. Top of atmosphere reflectance was used and cloud and cloud shadow screening was 

implemented using software developed based on the FMASK algorithm (Zhu and Woodcock, 

2012), but with specific modifications to improve performance over Canada. Scenes were further 

checked and haze or missed clouds were manually removed. 

 

Table 3: List of Landsat scenes used in the analysis. 

Path Row Date Sensor 

41 20 2009-07-21 TM 

42 20 2009-07-28 TM 

42 20 2009-08-29 TM 

43 20 2009-08-28 ETM+ 

42 20 2011-07-02 TM 

42 20 2011-09-04 TM 

42 20 2012-07-28 ETM+ 

 

2.3 Point Spread Function Analysis 
 

To provide a ground measure that is more consistent with the sensor observations the Geoeye scenes 

were up-scaled to a 30 m grid cell using the Landsat point spread function (PSF). The point spread 

function is known to vary by band, season, year, sensor, and atmosphere condition (Kavzoglu, 2010). 

For the purpose of this analysis we sought to define a generic PSF as resampling, imperfect 

atmosphere correction, and geolocation errors would contribute much greater error than the small 

deviations of the PSF from the generic version developed. Here we considered PSF estimates from 

McGillen and Yu (1983), Markham (1985), Solomonson et al. (1988), Kavzoglu (2004), and Kaiser 

and Schneider (2008). Estimates of PSF full width half maximum (FWHM) ranged from 31-50 m 

(Table 4). We applied different line PSFs for the scan and track direction to be consistent with 
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laboratory measurements of the PSF, where in the scan direction 3 m was added to the FWHM in the 

track direction.  
 

Table 4: PSF Estimates for Landsat sensors. 

Sensor Scan Track Directional Invariant Stdev Reference

TM 38.8 16.5 McGillen, 1983

TM 49.9 21.2 Solmanson et al., 1998

ETM+ 35 31 33.0 14.0 Kavzoglu, 2004

TM 25 24.7 10.5 Kaiser & Schneider, 2008

TM 34 31 32.5 13.8 Markham, 1985

FWHW (m)

 
 

To determine the optimal FWHM two analyses were undertaken. The first up-scaled the Geoeye near-

infrared reflectance using different FWHM estimates and compared this to the Landsat near-infrared 

reflectance. Pearson correlation was used as the measure of agreement between the up-scaled Geoeye 

and Landsat data as relative instead of absolute difference was considered the most important due to 

differences in spectral response functions and radiometric calibration between sensors. Two Geoeye 

scenes were upscaled for this purpose the NE and NW scenes as identified in Figure 1. For the second 

analysis, the Geoeye land cover was up-scaled to create fractions used for training and validating 

Landsat based fraction models. Models were computed using different PSFs and the Nash Sutcliffe 

Efficiency calculated with a hold out sample for validation. Nash-Sutcliff Efficiency (NSE) is a 

measure of model deviation from the 1:1 line between observed and predicted model outputs. NSE 

was defined as: 

 

 (1) 

 

Where yi is the observed value or reference value, yp was the result from the model estimate and ȳ 

was the mean of the observed data. NSE can be interpreted similar to that of correlation, but 

negative values are possible when models do not perform well. 

 

Results showed the PSF parameter of 36 m (standard deviation of 15.2  m = FWHM/2.355) to be 

reasonable in both sets of analysis (Figure 3). For the selected PSF, approximately 47 % of the 

received signal from the surface is assumed to come from within the 30 m grid cell and 90% within a 

60 m grid cell. Figure 4 shows the PSF selected for this study with an intersecting plane representing a 

30 m grid cell in the x and y directions. Applying too large a PSF reduces the variation in the data 

essentially acting as a smoothing operator.  This is undesirable as it reduces the predicted fractional 

cover range. For the PSF selected here the reduction in the up-scaled land cover fractions was less than 

1%.  
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Figure 3: A) Effect of PSF on upscaling Geoeye data to Landsat (NE grey and NW black) and B) 

fractional land cover model prediction for conifer, broadleaf and shrub. 

0 

A 
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Conifer 
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Figure 4: PSF selected for this study with a standard deviation of 15 m. The PSF is centered at 45 m. 

The intersecting plane identifies the 30 m grid cell in x and y. 

 

2.4 Regional Fractional Modeling 
 

Two decision tree classifiers were tested to derive fractional cover mapping algorithms, Random 

Forest implemented in R and the RuleQuest SEE5 software. Initial tests showed the two algorithms 

performed similarly, but with a very slight advantage to Random Forest. Thus Random Forest was 

used in subsequent analysis. Fractions tested included conifer forest, broadleaf forest, shrub, low 

vegetation cover, bare, and water. Dead trees due to insect mortality were considered part of the bare 

fraction. Samples with greater than 15% shadow fraction were removed from the analysis. With the 

dataset different approaches to training and validation were possible. The different training\validation 

sampling strategies included using all data or training from 3 scenes and validating on the fourth. 

Using all data was sub-divided into using scenes only for the north verses using only data for the 

south. The objective of the separation was to investigate the effect of Landsat data from the two 

different years North (2012) and South (2009). Metrics used to evaluate performance included the 

mean absolute error, mean error, error standard deviation, and the Nash-Sutcliff Efficiency (NSE). 

 

Results for the different fractions and sampling/validation schemes are shown in Table 5. The lowest 

mean absolute errors were observed for water and bare covers. This was due to sampling limitations 

where fractions between 25% and 75% were insufficient. This caused the model to be optimized for 

predicting low and high water fractions with high accuracy and lower accuracy for mid-range 

fractions. For fractions where sampling was representative of the full range the  mean absolute error 

rates were in the range of 6-11% for the all data validation tests. Shrub was the most variable between 

validation tests with a standard deviation of 5% followed by low vegetation, and broadleaf forest with 

a standard deviation of 4%. Conifer forest was the most stable with a standard deviation between 

validation tests of 2%. Conifer also had the best model performance as determined by Nash-Sutcliff 

efficiency. As expected the sampling and validation using samples from all scenes produced the best 

results compared to the holdout scene tests. No consistent difference was observed between validation 

tests for using all data, only North, or only South. Example scatterplots for the NE holdout validation 

test are shown in Figure 5.  
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Table 5: Fractional error metrics for the different fraction covers tested. 

Class Mean 

Absolute 

Error 

Mean Error Error 

Standard 

Deviation  

Nash Sutcliff 

Efficiency 

Analysis 

Bare  3.00 0.12 0.01 0.87 All Data 

Bare  1.78 0.03 0.03 0.93 North Only (2012) 

Bare  3.89 0.19 0.03 0.70 South Only (2009) 

Bare  3.90 2.05 0.13 0.92 Validation NE 

Bare  2.87 1.60 0.03 0.37 Validation NW 

Bare  3.82 -1.69 0.04 0.50 Validation SE 

Bare  5.80 -0.61 0.14 0.47 Validation SW 

Conifer 11.32 0.02 0.03 0.80 All Data 

Conifer 9.96 0.03 0.03 0.85 North Only (2012) 

Conifer 12.26 -0.08 0.07 0.75 South Only (2009) 

Conifer 12.26 3.04 0.08 0.80 Validation NE 

Conifer 12.63 4.24 0.07 0.72 Validation NW 

Conifer 15.40 -6.68 0.12 0.53 Validation SE 

Conifer 15.24 -3.35 0.31 0.59 Validation SW 

Broadleaf 6.87 0.17 0.02 0.79 All Data 

Broadleaf 8.58 0.12 0.06 0.77 North Only (2012) 

Broadleaf 5.06 0.19 0.01 0.80 South Only (2009) 

Broadleaf 9.07 3.31 0.08 0.57 Validation NE 

Broadleaf 16.90 -14.44 0.10 0.47 Validation NW 

Broadleaf 12.44 11.84 0.08 -1.82 Validation SE 

Broadleaf 11.77 -1.66 0.04 0.71 Validation SW 

Low Vegetation 7.33 0.26 0.03 0.66 All Data 

Low Vegetation 3.49 0.20 0.01 0.60 North Only (2012) 

Low Vegetation 10.39 0.28 0.06 0.62 South Only (2009) 

Low Vegetation 9.05 6.54 0.04 -0.12 Validation NE 

Low Vegetation 7.67 5.09 0.06 -0.07 Validation NW 

Low Vegetation 13.43 -10.94 0.12 0.07 Validation SE 

Low Vegetation 14.80 -8.77 0.40 0.36 Validation SW 

Shrub 6.42 0.17 0.03 0.65 All Data 

Shrub 8.48 0.24 0.03 0.66 North Only (2012) 

Shrub 3.85 0.17 0.01 0.56 South Only (2009) 

Shrub 16.06 -14.47 0.03 -0.07 Validation NE 

Shrub 11.18 5.53 0.08 0.24 Validation NW 

Shrub 10.07 7.42 0.11 -0.33 Validation SE 

Shrub 18.37 17.57 0.24 -3.40 Validation SW 

Water 2.77 2.67 0.01 -2.67 All Data 

Water 3.41 3.27 0.05 -3.02 North Only (2012) 

Water 1.88 1.81 0.02 -1.75 South Only (2009) 

Water 2.78 2.51 0.11 -0.83 Validation NE 

Water 3.74 3.27 0.27 -1.07 Validation NW 

Water 7.04 6.98 0.28 -28.82 Validation SE 

Water 4.53 4.31 0.09 -0.86 Validation SW 
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Figure 5: Scatterplots for the different fractional cover models at the regional scale.  Axes indicate % 

fractional cover. 

  

2.5 Site Specific Fractional Modeling 
 

The potential to improve results was examined in site specific areas where the spectral range, training, 

and Landsat data quality could be better controlled. At the regional scale the model must account for 

greater confusion due to spectral overlap for a greater number of fractional land cover combinations. 

Further at a site specific scale the Geoeye training data can be more rigorously checked to 

remove/reduce error resulting from geolocation or classification. Cloud, haze, and shadow screening 

of Landsat scenes could also be enhanced leading to improved modeling. Figure 6 provides 

scatterplots for comparison with the regional analysis. For the areas tested the mean absolute errors 

were substantially smaller. On average the mean absolute error was reduced by 8%. This analysis 

severs as an indication as to the upper bound accuracy that could be achieved with Landsat TM and 

ETM+ data. 



13 

 

 

  
 
 

 

  
  

 

  
  

Figure 6: Scatterplots for the different fractional cover models at the site specific scale.  Axes indicate 

% fractional cover. 
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2.6 Assessment of Fraction Change Sensitivity and Temporal Stability 
 

To determine the variability of fractions in time, the fractional model using all four input training 

Geoeye classifications was applied to a set of temporally smoothed Landsat Mosaics from 1984 to 

2012. Forest fraction was derived by adding the broadleaf and conifer forest fractions. Temporal 

smoothing of the Landsat time series consisted of first detecting outliers using an iterative Lowess 

filter to reduce noise and then fitting linear piecewise segments using  a modified version of the 

procedure developed by Kennedy et al. (2010). Areas of specific changes and where change was 

known not to have occurred were sampled. Example results are shown in Figure 7. Shrub and low 

vegetation covers were in a constant state of change in this area and thus temporal variability for these 

covers was not assessed. For fire and forest harvesting forest fraction showed good sensitivity to 

change, however for insect damage areas, confusion in the training data reduced sensitivity. For areas 

where change did not occur the average inter-annual difference was typically less than ±10%. Conifer 

tended to be the more temporally variable due to the more open nature of the canopy and the spectral 

variability associated with shrub and other non-forest ground covers. 

 

 
Figure 7: Examples of forest fraction sensitivity to change and temporal variability (Green line). Red 

line is the Normalized Difference Moisture Index (NIR-SWIR)/(NIR+SWIR) linearly scaled to be on 

fractional scale for comparison.  

 

 

3. CONCLUSIONS 

 
The accuracy for fractional land cover mapping in the AOSR was investigated. Results reveal that 

fractional models could be derived, but with error rates between 7and 17%. Significant improvement 

could be made with greater control on stratification, Landsat data processing and training data quality. 

Temporal stability appeared reasonable. Further research is required to improve training data 

development, Landsat data processing, and modeling for greater reliability in fractional model 

development. 
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