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ABSTRACT 
 
Machine learning algorithms are widely used for remote sensing land surface characterization. 
Successful implementation requires a representative training sample for the domain it will applied in 
(i.e. area of interest or validation domain). However, accessibility and cost strongly limit the 
acquisition of suitable training samples for large regional applications. Further, it is often desirable to 
use previously developed datasets where significant resources have been invested, such as data 
developed from extensive field survey or high resolution remotely sensed imagery. These data often 
only partially represent the domain of interest and can lead to various forms of sample bias (land cover 
distribution or class properties). Classifier spatial extension is an extreme case, where a sample is 
trained from one region (i.e. sample domain) and applied in another (i.e. application domain). This 
approach is desirable from a cost perspective, but achieving acceptable accuracy is often difficult. In 
this research we investigate two approaches to account for possible differences between the sample 
and application domain land cover distributions. The first is an iterative resampling approach to 
predict the application distribution and adjust the sample distribution to match. The second is the use 
of prior probabilities to adjust class memberships. Results reinforce the importance of the land cover 
distribution on accuracy for algorithms that are designed to minimize the classification error with 
training data. Of the adjustment methods tested resampling was superior if the application domain 
distribution was well known. However, if it is not then the use of prior probabilities performed 
similarly overall. A generic model was developed to predict if resampling or prior adjustment should 
be applied to enhance accuracy. 
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1. INTRODUCTION

Machine learning algorithms are widely used for remote sensing land surface characterization. Many 
machine learning algorithms are sensitive to the training sample used. Sampling can bias the 
classification towards the most frequent class or cause it to ignore or be insensitive to rarer classes 
(Chen et al., 2004). Successful implementation requires a representative training sample (Abu-Mostafa 
et al., 2012) for the domain it will be applied in (i.e. area of interest). However, accessibility and cost 
strongly limit the acquisition of suitable training samples for large regional applications. Further, it is 
often desirable to use previously developed datasets where significant resources have been invested, 
such as data developed from extensive field survey or high resolution remotely sensed imagery. These 
data often only partially represent the domain of interest and can lead to various forms of sample bias 
regarding the class properties or the sampled land cover distribution. Classifier spatial extension is an 
extreme case, where a sample is trained from one region (i.e. sample domain) and applied in another 
(i.e. application/validation domain). This approach is desirable from a cost perspective, but achieving 
acceptable accuracy is often difficult. Performance of temporal classifier extension for simple 
forest/non-forest classification has been found sufficient in Pax-Lenny et al., (2001), Woodcock et al., 
(2001) and for change detection in Pouliot et al., (2009). Pouliot et al. (2013) et al. show that more 
complex land cover models can be extended in time with additional measures designed to reduce error 
and ensure temporal consistency. For the spatial extension case with several land cover classes 
performance has generally been considered poor (Minter, 1978; Fernandes et al., 2004; Olthof et al., 
2005). 

The spatial extension problem can be divided into two categories of 1) within landscape classifier 
extension and 2) between landscape extension. Within landscape extension is the simpler situation 
where the class properties such as the general soil and vegetation spectral characteristics do not change 
significantly within the area. Thus, the class properties derived from one part of the study area are 
expected to be representative of other parts. If an extension problem can be considered the within 
landscape case then the key factors controlling success involves data error and sample-classifier 
dependence. Data error can cause deviation in the class properties that are not related to actual land 
surface change. Methods for calibration, atmospheric correction, and adjustments for other factors 
such as phenology due to limited sensor revisit seek to address these problems. The interdependence 
of the sample and classifier can lead to error if the classifier is sensitive to the sample distribution and 
the distribution is biased. Parametric classifiers such as maximum likelihood that are based on 
summary statistics of the sample data would be less sensitive to the sample distribution as long as a 
sufficient number of samples of each class are acquired. However, some machine learning algorithms 
can be very sensitive to the sample land cover distribution if they specifically seek to minimize class 
training error (Weiss et al., 2007). To illustrate this point consider a simple two class forest/non-forest 
land cover application where the sample distribution was 70% forest and 30% non-forest. If the 
selected data features have absolutely no discriminatory capacity to separate these classes and the 
algorithm seeks only to minimize class training error, it will essentially force all predictions to be 
forest and achieve 70% accuracy. Now consider the extension case, where this model has been 
extended to another region with a land cover distribution of 20% forest and 80% non-forest. It will 
make substantial error predicting only 30% non-forest of the actual 80%. This is of course unrealistic 
as the selected data features usually have some capacity to discriminate classes. However, for 
algorithms that specifically seek to minimize the class training error, the greater the class confusion 
the more likely the predictions will depend on the input land cover sample distribution. Results of this 
study reaffirm this deduction. 



The sample land cover distribution is not only a concern for the classifier extension case. Another way 
to consider the sample distribution problem regards the deviation of the sample relative to a local 
application domain (e.g. a smaller local subset of the study area). If a sample is generated to be 
representative of the entire domain (i.e. study area), there is likely strong local deviation from that 
sample with a specific smaller sub-area to be classified.  For example, a large study mostly forest 
covered sampled at random will have a sample distribution with a high percentage of forest. However, 
there may be local areas within the study area that are non-forest. Accounting for this deviation can 
enhance the overall classification accuracy of the study area if a sample sensitive classifier is used. 

In this research we first characterize the sample distribution problem for the study based on the 
Random Forest algorithm (Breiman, 2001) and then investigate two approaches to account for possible 
differences between the sample and application domain land cover distributions. The first is an 
iterative resampling approach to predict the application distribution and adjust the sample distribution 
to match. The second is the use of prior probabilities to adjust class memberships. As a final step we 
seek to develop a generic model to predict the potential improvement with either adjustment method as 
means to determine if it should be applied. 

2. METHODS AND RESULTS

2.1 Study Area and Reference Data 

The study area was North Eastern Alberta in the Athabasca Oil Sands Region (AOS, Figure 1A). Four 
Geoeye scenes were collected and classified to 7 land cover types using a combined pixel and object 
based approach. The classified Geoeye scenes were upscaled to 30 m using the dominant land cover 
fraction within a 30 m pixel footprint. An example of the land cover for the northwest Geoeye scene is 
provided in Figure 1B along with the class legend. Clouds and shadows were manually delineated and 
removed. Independent accuracy assessment of the Geoeye scenes showed the accuracy to be greater 
than 85% for all scenes at the 2 m resolution (Pouliot et al., 2015). 



 
 

 
 

 
 
Figure 1: A) Study area and location of Geoeye scenes used to develop reference land cover. B) An 
example of the Geoeye land cover for the northwest scene, left is the Geoeye image at ~2 m spatial 
resolution, middle is the Geoeye land cover classification, and right is the upscaled land cover to 30 m 
spatial resolution. 

 
2.2 Landsat Data 
 
Landsat observations from seven scenes covering the AOS were selected for the analysis (Table 
1). All spectral bands were used as well as the Normalized Difference Vegetation Index (NDVI), 
the Normalized Difference Moisture Index (NDMI), and a proxy for atmospheric transparency 
calculated as the difference between the red and blue bands, divided by the shortwave band at 
1500 nm. Reprojection, scaling to top of atmosphere, and cloud and cloud shadow screening was 
implemented using software developed at the Canada Centre for Remote Sensing (Latifovic et al., 



2015). Processed scenes were further checked and haze or missed clouds were manually removed. 
Scenes were all normalized to the 2009-07-28 scene using robust regression to reduce radiometric 
inconsistencies (Olthof et al, 2005. Coincident Landsat and upscaled Geoeye land cover were 
extracted to a text file for all clear sky observations for the analysis. 

Table 1: List of Landsat scenes used in the analysis. 

Path Row Date Sensor 
41 20 2009-07-21 TM 
42 20 2009-07-28 TM 
42 20 2009-08-29 TM 
43 20 2009-08-28 ETM+ 
42 20 2011-07-02 TM 
42 20 2011-09-04 TM 
42 20 2012-07-28 ETM+ 

2.3 Analysis Overview 

With the four Geoeye scenes different approaches to classifier training and validation could be tested. 
Here a within landscape classifier extension approach was evaluated, where a classifier was trained 
from three of the Geoeye scenes and applied on the fourth scene. It is referred to as within landscape 
extension because the general soil and vegetation spectral characteristics were considered to not 
dramatically change within the study region.  

A set of 65 land cover distributions were randomly sampled from the 2010 Alberta Biodiversity 
Monitoring Institute (ABMI) land cover map based on the approximate footprint of a high resolution 
image of 18 by 35 km. This concept is depicted in Figure 2A where the grid represents possible 
selections of high resolution imagery to be used for training.  The implementation, however, used a 
random selection of scene centres instead of the grid shown. In the figure two grid squares are marked 
as 1 and 2 and highlight the differences in land cover distribution that can be found with the study 
area, where 1 is broadleaf dominated and 2 is needleleaf dominated. The set of 65 land cover 
distributions were used to select a training sample from three of the Geoeye scenes and used to predict 
the land cover of the fourth. All combinations of selecting three scenes and evaluating on the fourth 
were tested to provide 65×4= 260 cases for analysis.  

To account for possible effects of the land cover sample distribution on model prediction two 
approaches were tested. The first is referred to as sample adjustment and it used an initial sample 
to predict the land cover for the application domain then resampled from the training data pool (3 
Geoeye scenes) to match this predicted distribution in a second iteration . The second approach, 
used the initial land cover prediction to generate prior probabilities which were used to adjust the 
class memberships and the maximum membership taken as the final class. Both were tested for 
the classifier extension problem as detailed in Figure 2B. 

To summarize, the sample distribution refers to the land cover distribution of the training sample, 
which is used to create a land cover classification model. This model is applied to the application 
domain or in this case the validation Geoeye scene. To adjust this sample to account for differences 
between the sample and validation land cover distributions two approaches were used: 1) resampling 
to match an estimate of the validation land cover distribution, or 2) applying prior probability land 
cover estimates. 



 
Figure 2: A) Potential land cover distributions possible within the study area based on the ABMI land 
cover 2010 and approximate footprint of a Geoeye scene . B) shows a flowchart of the analysis 
undertaken in this research to examine the effect of sample distribution on classification accuracy. 
 
2.4 Evaluating the Effect of Sample Distribution on Land Cover Accuracy 
 
The overall accuracy results from the sampling runs were plotted by the absolute difference between 
the sample land cover and application domain/validation land cover distributions in Figure 3. It reveals 
that the greater the difference between land cover distributions lower accuracy was achieved. The rate 
was specific to a given land cover classification problem (i.e. validation for NE, NW, SE, or SW). This 
is due to differences in the class confusion resulting from the training data and how that data is 
representative of the application domain. Thus, higher classification accuracy equated to lower 
confusion and a reduced sensitivity to the sample-application domain/validation distribution 
difference. For the NE case the results were not strongly dependent on the sample distribution with 
only a small change in accuracy for a large difference between the sample and application 
domain/validation land cover distributions.  The SW case was more sensitive and was reduced by as 
much as 30%.  
 

 
 
Figure 3: Relation between overall accuracy and absolute difference in sample and application 
(validation)  land cover distributions. 
 
 



2.5 Sample/Prior Probability Adjustment to Account for Sample Distribution 
Effects 

To quantify the effect of the improvement with either sample or prior probability adjustment the 
overall accuracy result of either adjustment was subtracted from the pre-adjustment results. This 
was done for the case where the validation land cover distribution was known (directly from the 
Geoeye classification) or estimated based on the initial sample and classification. Results show 
that if the land cover distribution of the application domain is known then the sample adjustment 
method was found to perform better than the use of prior probabilities (Figure 4A). The x-axis in 
the figure is grouped by the validation dataset (NE, NW, SE, or SW). If the application 
distribution is not known and has to be estimated based on the initial sample, the performance 
between sample and prior probability adjustment are overall similar (Figure 4B). In both cases, 
the potential for a small reduction in accuracy was observed. This finding warrants caution in the 
application of either adjustment approach if the application land cover distribution is not well 
specified.  

Figure 4: A) Improvement in overall accuracy for sample adjustment and prior probabilities with 
a known land cover distribution. B) Improvement in overall accuracy for sample adjustment and 
prior probabilities where the land cover distribution was initially estimated based on the input 
sample. 

2.6 Modeling Improvement 

To determine if either adjustment should be applied a generic model was developed to estimate the 
improvement in land cover calculated as: 



 
Where i = land cover class from 1 to N classes. Fsi is the sample frequency for class i scaled between 0 
and 1. Fpi is the predicted class frequency for the application domain (the region for which the land 
cover is being predicted) scaled between 0 and 1. Si is a measure of class sensitivity to sampling. It 
was estimated by perturbing the input sample by ±20% for each class in 10 iterations. The standard 
deviation of the predicted class frequency was calculated using the results from the 10 iterations. C is a 
scaling coefficient to adjust the result to represent percent improvement (I). This index provides a 
generalized means to estimate if sample/prior adjustment should be applied. Figure 5 shows the 
relation between the estimated improvement I and the actual improvement. From Figure 5 , if an 
improvement of 4% or greater is estimated then it is likely safe to apply sample/prior probability 
adjustment.  
 

 
 
Figure 5: Relation between the estimated improvement I and the actual improvement for sample and 
prior probabilty adjustment approaches.  
 
 
3. CONCLUSIONS 
 
Results of the analysis show that significant improvement can be made regarding within landscape 
classifier extension with sample adjustment or prior probabilities. These findings are also likely 
informative for the local sub-region deviation problem as well, but this approach was not tested in this 
research. The level of improvement can be estimated and used to determine if an adjustment should be 
applied. In some cases adjustment may lead to reduced accuracy when the improvement is small 
relative to the classifier variability and classification accuracy. Further evaluation is required to better 
determine the generality and robustness of the approach. Additional research is will seek to apply 
these concepts to additional study areas and refine the general model developed here. 
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