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Abstract 

 

Canada has over 2 million lakes covering a total area of 0.9 million km
2
. The inland water bodies play 

a critical role in water cycles, water resources, social economic including fisheries and recreation. 

However these inland aquatic ecosystems are under increasing pressure and big changes from 

increasing human activities and changing climate. To better understand the aquatic ecosystem 

dynamics and effectively manage the inland water bodies, it is essential to have up-to-date information 

of their spatial and temporal variability. Synthetic Aperture Radar (SAR), unlike optical sensors, is 

able to penetrate cloud, haze and smoke, and hence observe the earth’s surface in all weather 

conditions day and night. SAR imagery is an effective method for mapping water bodies. This open 

file details the algorithms and their implementations for a novel method for mapping water bodies 

using SAR imageries. This method is completely automatic and less computational intensive, thus 

suitable for large scale applications. A test of this method over the Spritiwood valley in Manitoba 

using Radarsat-2/SAR data shows a high accuracy in delineating water bodies. This study provides a 

tool for mapping national scale inland water bodies and monitoring their dynamic changes in a near-

real time environment. 

 

 

1.  Introduction 

 

Almost 9%, or 0.9 million km
2
, of Canada’s total landmass is covered by fresh water in the form of 

lakes, rivers, and streams etc. The inland water bodies play an important role in the water cycles and 

surface water budget (Wang et al., 2014a; 2014b; 2014c) which strongly affect the atmosphere and 

surface/subsurface processes such as cloud development (Molders and Raabe, 1996), surface albedo 

(Wang et al., 2006), evapotranspiration (Wang et al., 2013), stream flow (Koster and Milly, 1997), and 

groundwater recharge (Sophocleous, 2002). Surface waters are also integral parts of groundwater flow 

systems and hence are indicators of the status of the overall fresh water resource. Increasing human 

activities and changing climate are increasing pressure and bringing big changes to these inland 

aquatic ecosystems. (Riordan et al., 2006; Smith et al., 2005; Yoshikawa and Hinzman, 2003). To 

effectively conserve and manage the fresh surface water resources, it is essential to have up-to-date 

information of their spatial and temporal variability. Satellite remote sensing is the only practical 

approach that can map surface water cost-effectively and in a timely manner (Rundquist et al. 2001). 

 

Various optical satellite sensors such as Advanced Very High Resolution Radiometer (AVHRR), 

Moderate-resolution Imaging Spectroradiometer (MODIS), Landsat’s MSS, TM/ETM+ and SPOT’s 

HRV have been employed for surface water body detection (Campos et al., 2012; Du et al., 2012; 

Giardino et al, 2010; Huang et al, 2012; Jain et al, 2006; Ma et al., 2007; Sheng et al., 2001; Tulbure 

and Broich, 2013). The multispectral nature of optical sensors provides some advantages for water 

detection, however, their applications in detecting surface water are constrained by several 

environmental factors, such as cloudy sky condition, cloud shadows, smoke from wildfires and haze, 

etc (Brisco et al., 2009). SAR sensors have the ability to provide data for surface water body detection 

that can overcome the limitations of optical sensors. SAR imagery is an effective method for mapping 

water bodies (Brisco et al., 2009), and has been used for flood  detection (Giustarini et al., 2013; 

Kuenzer et al., 2013; Lu et al., 2014; Martinis et al., 2009), monitoring open water dynamics (Bartsch 

et al., 2012), and delineating shorelines (Shu et al., 2010). Smooth water surfaces usually provide a 

specular reflection of microwave radiation, and hence very little energy is scattered back. In contrast, 

land surfaces scatter much more energy back to the radar due to, e.g., surface roughness and volume 

scattering. The difference in the energy received back leads to a high contrast between water and land. 
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Among the various supervised/unsupervised classification methods, histogram thresholding is one of 

the most popular approaches to delineate water bodies from land in SAR intensity imagery (Brisco et 

al., 2009; Brivio et al., 2002; Martinis, 2010). Li and Wang (2014) proposed an automatic method for 

mapping water bodies using SAR imagery. The method is based on histogram thresholding of the SAR 

texture image, which is not significantly influenced by the incidence angle. This work report details 

the algorithms and implementations of the method and its application over the Spritiwood valley in 

Manitoba. The report first describes the study area and datasets, followed by the details on the 

automatic method’s algorithms and implementations. The application results are then analyzed and 

discussed. Summary of this study is presented in the last section.  

 

2. Study area and datasets 

 

The study area covers the Spiritwood buried valley (red polygon in figure 1) which extends from 

southwest Manitoba to North Dakota. The dominant land cover class is agriculture crops, intermingled 

with grassland, surface water bodies and forests. Surface water is fairly abundant in this area, in 

numerous small water bodies of the prairie landscape. 

 

Radarsat-2 QuadPol (fully polarimetric mode) wide fine beam mode images (with a swath of 50 km 

and an azimuth resolution of 7.6 m) are used in the analysis. To cover the entire study area, two 

neighbor paths (4 scenes each path) were acquired on July 26, 2013 (FQ1W with incidence angle 

~20°) and August 2, 2013 (FQ3W with incidence angle ~21.5°) and processed into a single-look 

 
Figure 1. The location of study area (the red polygon show the boundary of the Spritiwood 

watershed) and ground truth reference map (highlighted in blue color) with water bodies 

(shown in yellow polygons) derived from 5m SPOT-5 image. 
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Figure 2. The flowchart of the method for water bodies 

detection. 

complex product type. All eight scenes of the image are first processed to generate calibrated multi-

looking backscatter images, and then auto-orthorectified using the GAMMA program. The eight 

orthorectified images are mosaicked (with radiometric normalization) to one image with a resolution 

of 30 m. A 5 x 5 Enhanced Lee filter is applied to the mosaic image for speckle noise reduction. The 

mosaicking and filtering processes were completed in the PCI Geomatics. The background image in 

Figure 1 shows the composite of the HH (red), HV (green), and VV (blue) polarized images. 

 

To assess the performance of the method, a reference map was created for a small portion of the 

Radarsat-2 mosaic image from the 5-m resolution SPOT-5 pan-sharpened multi-spectral image by 

visual interpretation and manual digitizing by using the ArcGIS software. The highlighted blue square 

in figure 1 indicates the location and coverage of the reference map. The reference map has 10% 

surface water shown in yellow and 90% land. 

 

3.  Method 

 

The automated thresholding method presented in this report is based on the Otsu algorithm, which is 

one of the best threshold selection methods for image binarization (Fan and Lei, 2012). This method 

uses texture images to enhance the contrast between water and land in intensity images and use a 

modified Otsu thresholding algorithm to 

determine the optimal threshold value. 

The method is completely unsupervised 

(Li and Wang, 2014). An overview of 

the automated thresholding method for 

surface water detection in a SAR image 

is shown in Figure 2. The algorithms and 

implementations of this method are 

presented below: 

 

Step 1: K-means cluster analysis. An 

initial water body mask, as well as a low 

backscatter image mask, is created by 

applying K-means clustering to the SAR 

intensity image. In general, this 

algorithm first randomly assigns K initial 

cluster centroids. The second step is to 

assign each pixel to its closest cluster 

centroid using Euclidian distance. In the 

third step, the new cluster centroids are 

calculated based on all the pixels in one 

cluster. The second and third steps are 

repeated until the cluster centroids don’t 

change any more. The K-means 

algorithm provides fast execution and 

does not require a training stage to 

produce cluster centers. It can be easily 

implemented, however it has been 

implemented as a standard function in many remote sensing softwares. In this study, the SAR 

intensity image is first imported to the PCI Geomatic program, thus then the K-means 
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algorithm is applied to the SAR intensity image to obtain a map with initial 15 clusters. The 

cluster map encodes each cluster with a unique gray-level value. The cluster number is 

represented by the gray level. For example, cluster 1 is assigned a gray-level value of 1 

corresponding to dark appearance in the SAR intensity image, and cluster 2 is assigned a gray-

level value of 2, which may mix water and land. Using the EASI module in the PCI Geomatic 

program, We can easily generate the initial water body mask by assigning cluster 1 as water 

and other clusters as land, in which the water class may include some land pixels, as well as a 

low backscatter image mask, which is obtained by regrouping clusters 1 to 7 as low 

backscatter, and others as high backscatter. 

 

Step 2: Sub-image selection. This step selects sub-images containing a sufficient proportion of 

land and water classes. To complete the sub-image selection, a SAR image S is divided into M 

non-overlapping sub-images with an analyst-defined size w*w. The selection of w, which 

determines M, depends on the extent of the two classes of water and land within the SAR 

image (Martinis et al, 2009). Due to the fact that Ostu algorithm is optimal for thresholding a 

histogram with a bimodal distribution, only sub-images, which contain a sufficient number of 

pixels from both water and land classes, are selected for the threshold computation. According 

to Bazi et al. (2007), it is sufficient for accurately detecting threshold values if each class has at 

least 10% of the pixels in an image. The criterion for water proportion in the sub-image 

selection is set to 10-90%. If no sub-image meets this criterion, the image partitioning process 

is repeated by decreasing w by 10 until sub-images with adequate water content are 

successfully extracted. A C++ program for this process was implemented with the initial water 

body mask image and the w as inputs. The output will be a mask image, named as sub-image 

mask, in which pixels of the selected sub-images are set to 1 and others are set to 0. The sub-

image mask is the same size as the initial water body mask image. 

 

Step 3: Entropy texture image histogram analysis. Texture is defined as tonal variation within a 

neighbourhood and thus reflects the spatial relations between pixels in an image. The texture 

information derived from a SAR image is a valuable feature for discriminating different land-

cover types, and thus texture analysis has been widely used for image segmentation and land 

cover classification. Some studies have indicated that texture information is more useful than 

the intensity image for SAR image classification and segmentation (Song et al., 2007). Among 

the commonly used texture measures (e.g. variance, entropy, contrast et al.) computed from 

grey-level co-occurrence (GLCM), the entropy texture is often used in SAR image 

segmentation (Kekre et al., 2010; Samantal et al., 2011; Samanta and Sanyal, 2012). In this 

study, the surface water auto-detection strategy uses the entropy texture derived from the 

GLCM of SAR imagery. This step generates the entropy texture of the SAR intensity image in 

the PCI Geomatic program. The sub-image mask is then applied to extract entropy texture 

values of the sub-images and the histogram of the extracted entropy texture values is computed 

in a C++ program. The histogram computed in this program has to be normalized to a certain 

gray-level L (e.g. 255) for the Otsu algorithm. In this case the entropy texture image is also 

transformed to contain values from 0 ~ L (e.g. 255). This program accepts the sub-images 

mask, the entropy texture image and an analyst-defined gray-level L as inputs. The output 

includes the normalized histogram and the normalized entropy texture image. 

 

Step 4: Otsu algorithm for automatically determining the threshold value. The Otsu algorithm 

is an automatic threshold selection method for the reduction of a grey-scale image to a binary 

image, which containing two classes. It selects an optimal threshold value separating those two 

classes so that the between-class variance is maximized. The advantage of this algorithm is that 
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only the grey-level histogram is needed to derive an image threshold without any other a-priori 

knowledge. The Otsu algorithm works well when the image histogram is close to a bimodal 

distribution with equal variances (Fan and Lei, 2012). In this study, although the sub-image 

selection process is employed to choose sub-images with bimodal distribution, the two classes 

may not have equal variances, which may result in an incorrect threshold value when applying 

the Otsu method. To improve the threshold selections in these cases, we use a modified Otsu 

method named valley-emphasis method proposed by Ng (2006). The valley-emphasis method 

makes the threshold closer to the actual valley of the histogram. It selects a threshold value that 

has small probability of occurrence (valley in the gray-level histogram), and also maximizes 

the between-class variance (Ng, 2006). Details for the modified Otsu method have been 

described by Li and Wang (2014). We implemented the modified Otsu algorithm in a C++ 

program. The program accepts the normalized histogram and the normalized entropy texture 

image obtained in Step 3 as inputs. An optimal threshold for the normalized histogram is 

computed and then applied to the normalized entropy texture image. The output is a mask 

image with low entropy.  

 

Step 5: Generation of the final water body image. A low entropy mask image is obtained by 

applying the selected threshold to the normalized entropy texture image. The low backscatter 

image mask created in step 1 is used to refine the low entropy mask image to obtain the final 

water body image. 

 

 

4. Results  

The automatic histogram thresholding 

method (named as ‘texture-method’) was 

applied to the Radarsat-2 mosiac image 

over the Spritiwood valley in Manitoba. 

The HV polarization for the Radarsat-2 

QuadPol mosaic data was chosen as the 

input to the method due to less effect of 

winds on this polarization. For the purpose 

of the performance assessment, we also test 

a ‘traditional’ method (denoted as 

‘intensity-method’), in which the valley 

enhanced Otsu algorithm is directly applied 

to the image intensity rather than the 

entropy texture after step 2 in the texture-

method. The results obtained from both 

methods are then compared against the 

water polygons extracted from the 5 meter 

resolution SPOT-5 pan-sharpened multi-

spectral image. 

 

The initial water body mask and the low 

backscatter mask are generated by applying 

the K-means algorithm to the QuadPol SAR 

HV image. Figures 3(a), 3(b) and 3(c) show 

 
Figure 3. (a)The HV polarization intensity image; (b) 

the initial water bodies mask in blue color; (c) the low 

intensity mask in blue color; and (d) the entropy 

image derived from the HV intensity image. 
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the HV polarization intensity image, initial 

water body mask, and the low backscatter 

mask, respectively. It is found that the areal 

extent of initial water bodies occupy ~85% 

of the total water bodies by assigning the 

cluster 1 to water class. In the second step, 

the window size for image splitting is set to 

100. A total of eight sub-images with size 

of 100 by 100 are selected. The cyan 

squares shown in Figure 3(a) indicate the 

location and coverage of these selected sub-

images. Figures 3(d) shows the entropy 

texture image derived from the QuadPol 

SAR HV intensity image. The water bodies present low entropy and most of land areas show high 

entropy in the entropy texture image. Figures 3(a) and 3(d) indicate that the contrast between water 

and land in the entropy texture image increases substantially compared to that in the intensity image. 

One may notice that a few wetland (marsh) areas (e.g. the area highlighted by red circle), like water 

bodies, also present low entropy. However these areas show bright tone in the intensity image since 

their main scattering mechanism is the double bounce return of the standing water and grass. 

Therefore these wetland areas can be excluded in the histogram computation of sub-images by using 

the low backscatter mask image. Figure 4 shows the histograms of the selected sub-images: (a) the 

QuadPol HV intensity image and (b) the QuadPol HV entropy image. The histograms have been 

normalized to 256 grey levels. The intensity and entropy texture images are then transformed to 

contain values 0 ~ 255. The threshold values, 50 for the HV intensity image and 105 for the entropy 

image, are determined by the valley enhanced Otsu algorithm. The dash arrows in the figure 5 indicate 

the threshold positions (50 for the intensity-method, 105 for the texture-method) in the normalized 

histograms. The water body maps are generated by setting pixels with grey levels less than the 

determined threshold values as water. Some wetlands are, however, misclassified as water due to their 

low entropy values when the texture-method is used. The water body map is further refined by using 

the low backscatter mask which will eliminate those wetlands that present high backscatter and show 

bright tone in the intensity image. 

 
Figure 4. The histograms of the selected sub-images of (a) 

normalized HV intensity image and (b) normalized HV 

entropy image. 
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Figure 5 shows the final water body maps generated by the two methods: (a) the texture-method and 

(b) the intensity-method. One can notice that the intensity-method produces more surface water areas 

than the texture-method. Error matrices are generated to assess the performances of the two methods 

using around 8000 samples selected from the reference water body map derived from the 5m 

resolution SPOT-5 image. 

 

Table 1. Error matrices of classification results from (a) texture-method and (b) intensity-

method 

(a) Texture-method  (b) Intensity-method 

Reference data  Reference data 

Classified 

data 

Land Water Total  Classified 

data 

Land Water Total 

Land 5314 263 5577  Land 5037 329 5366 

Water 146 2423 2569  Water 423 2357 2780 

Total 5460 2686 8146  Total 5460 2686 8146 

Kappa index:          0.89  Kappa index:          0.79 

 

 

Table 1 shows the error matrices for the classification results from (a) the texture-method and (b) the 

intensity-method. From the error matrices, the Kappa indices can be calculated for evaluating the 

accuracy of water-land classifications. The Kappa indices indicate the texture-method (Kappa index = 

0.89) has a higher accuracy than the intensity-method (Kappa index = 0.79) for the water-land 

classifications. For comparison, of 423 land pixels misclassified as water pixels in the intensity-

method, the texture-method reduces the land-water mis-classification error to 146 pixels. This 

misclassification is attributable to the miscalculation of the threshold value in the intensity method. 

From the histogram in Figure 5(a), we notice that the land class in the intensity image presents a flat 

histogram with a long tail on the right side, which may result in a larger threshold value when the 

modified Otsu algorithm is used. Of total 2686 water reference pixels, the texture-method produces 

 
Figure 5. The surface water bodies (in blue color) detected by (a) the texture-method and (b) 

the intensity-method. 
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409 (15.2%) error pixels (water misclassified as land and vice versa), in comparison to the 752 

(28.0%) error pixels of the intensity method.  

 

The texture-method has smaller classification error for the water pixels than the intensity-method. 

However, about 10% of the error for water pixels that are misclassified to land pixels is still measured. 

It might be explained by the different acquisition dates of the SPOT-5 and Radarsat-2 data and 

temporal changes in water level. Another error source may come from the edge pixels of water and 

land. Due to the 3 by 3 window operation in the computation process of the entropy texture, the edge 

pixels of a water body may have higher entropy than the inside pixels, which may result in 

misclassifying water as land. Therefore the classification accuracy could be improved by expanding 

one pixel of the detected water bodies, which needs to be verified with the applications of a 

morphological operator in future studies. Table 1 indicates that about 3% of the land pixels are 

misclassified as water. A probable reason for this is the confusion of water and roads. Roads present 

the same backscattering mechanic as water, and consequently roads also appear as a dark color in a 

SAR image. This error could be further reduced by using the existing road network data. 

 

5. Summary 

This report details the algorithms and implementations of the automatic texture thresholding method 

for mapping water bodies using SAR imagery. Application to a Radasat-2 mosaic scene over the 

Spritiwood valley in Manitoba demonstrated a satisfactory result (Kappa index = 0.89). The method 

combines the K-means clustering algorithm, sub-image selection process, and a modified Otsu 

thresholding algorithm. Using K-means clustering, the sub-images, which contain sufficient 

proportions of water and land classes, are selected. It is critical for the Otsu algorithm to detect an 

optimal threshold for a SAR image. Compared to the intensity image, the entropy texture image can 

enhance the contrast between water and land and reduce the variability in grey level for the land class. 

An improved result is obtained when the Otsu algorithm is applied to the entropy texture image. The 

results show higher classification accuracy and lower classification error than the commonly used 

intensity-method for overall land-water classification. The results also indicate that the water bodies in 

a large SAR image can be delineated from land automatically by the texture-method. The method can 

be applied to a single geocoded SAR image, with no additional data (other than DEM data for geo-

orthrectification) required. This texture-method is completely automatic and less computational 

intensive, thus suitable for large scale applications. All algorithms used in the texture-method provide 

fast execution. These advantages mean that it can be easily implemented and could be a tool for 

mapping national scale water bodies and monitoring their dynamic changes in near-real time. The 

algorithms of this method have been implemented by using C++ programming language. 
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