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ABSTRACT 98°1:>0'W 98;’W 97°1:>0'W 97|°W WW ) | e N e | =i 2l i | W Figure 9. Photos A to N exemplify dense brittle faults in silicified zones of Judge Sissons (JSFZ) and Thelon (TFZ) faults. Photo O illustrates spaced faults in the imbricate complex. Annotations defined in Figure 10. Stations 11ABE059, -113 and -117, and 11JP113 in Figure 3; 11ABEO78 in Figure 5; balance in Figure 7. These support a fractal range of Riedel shear components initiated during DP2, reactivation with silicification during DP5B+C, and further reactivation focusing desilicification, clay alteration and U during DP7.
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Figure 2A: Geology of Kiggavik U camp after Robinson et al. (2016), Johnstone et al. (2015). The “Hematite-altered Thelon Fm & basement” (hatched areas) outlines major negative B | TR Ry M T S e TSE v o o e i oo P Figure 10B. Left: summary terminology adaptad from 10is 1o respect abserved angular felationships and Sl e e A b B eas e X 2 gl ) apgcll%c'g‘”s?l’.ff?m tt.hat Er'%dﬁ:ysowﬁ: rlitégfetgrgini';t?l éoknr:]arj]%rﬂihgf Lizgognaisiktgzgrzezegﬁs g;;hgz'? Eqr'gghet’hzeoansf g:: ?h%a#ge
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aeromagnetic anomalies that transect other magnetic features and include intensely hematized outcrops, here interpreted as hydrothermal demagnetization along and extending deposit | 1.78; |caused sub-horizontal hevton fold trains and. |tight fold rans. | Baker Lake Basin. M3 rtrograde metamorphism, e | Hudson grante + Alernativs in Jefferson et a oo o o ot o camans e D throueh DT ot Kigemvk ranion axoloraton camp. C. Photo IMG_0213 taken near 11ABE117. Brecciated, pink silicified feldspathic sandstone and y AT T, W o g 4 ‘ ‘ i ' S R S — o s forusod alona the The shear structures are best expressed in the Proterozoic quartzite (white, with black lichen). The
laterally from reactivated fault zones, after Riegler (2013) and Riegler et al. (2014). Black rectangles outline areas of detailed figures. Pukiq Lake fm (Fig. 1; Peterson et al. 2014) is Baker | lap Sjﬁi‘j{r‘n‘g{;f;,“‘fffl'e‘j‘j;‘l’;’fj;‘f’fgﬁfgﬁfhd“’p& :e’gglypslznjf dip | chrorite alteration ﬁf,;‘j‘n‘iﬁr‘ft’;ﬁifg blotite. Major Martel syenite partly T B0 s oo The component labels are explained in Figure 10A except for “p” that denotes pressure solution (Xu and Ben- conglomerate of the Amarook Formation trends ENE along the south edge of TFZ, dissected by ¥ i e s T A, A l. 11ABE223, IMG_7626. Same silicified hematitized sheared metasediment and same P, R, X, R’ late straight discrﬁ‘te quartzite structurally overlies highly foliated 2.6 Ga rhyolite of the Pukiq Lake formation (pale
here subdivided into epiclastic rocks (after Johnstone et al., 2015) and rhyolite. Only major faults shown. The orientations and locations of dyke swarms correlate spatially with minor Lake | DP4 |granite + syenite sills and lozenges. Meadowbank R. | System west of SLIC accommodated Kunwak Fm of | bostonite dykes 2 aoe); Scontesal (1019; Zion, 2013). Deep displacement codes are: Dtf = Thelon Fault, Djsw = western Judge Sissons Fault, Djse = dextral P, R and sinistral X/R’ shears. En échelon T faults filled by laminated quartz veinlets cut F. 11ABE226, IMG_7619. Same rock as 11ABE224, ~440 m SSW along JSFZ; cm-scale details of and T structures some 200m NE of 11ABE224, fractally distributed along JSFZ. Descriptions for northerly shears salmon pink). The compositional layering in both units is highly transposed parallel to S1 which
. . . . .. L . . . . . . . . Grou Hypabysssal bostonite & minette dyk u i ins | Baker Lake Group; faults boundi in Baker Lak i and van Sreemen et at. i i i i i i i i ’ ifyi istributi - - i . i . - ! ; ;
faults shown in Figure 2B which covers the same area. Data are insufficient to resolve the moderately dipping to sub-horizontal imbricate rhyolite-epiclastic-quartzite structures in the (];E é)) coyn;izngas:ii Wzsht(g;l;zingrr;llntf:;oés:iscwere i{lh;l;(;nsszllll margins B:Sf;acioiq r;gggteg?hteseﬁ; glrg;nrxr;lfllget:cﬁrrrleit:tthis mraﬁm - eastern Judge Sissons Fault._ Thg observational data !nclude faults, frac_tures and dykes mapped at various many other shears and are |_nterpreted to haye formed by e.xten3|onal hydrofracturing, but are in P, R, X, and R shea_rs plus T fractures as above,lexempllfylng fractal dlstrlbutlons_. Red half arrows 1 _1ABE 2_21, 224A and -226 also apply here. Red notebook is 21 x 12.5 cm; scale applies to far possibly during DP7B. dips gently to the northwest, away from the viewer.
Bong to Granite Grid area, due in part to poor outcrop and evidence of later folding. Research by Dillon Johnstone (pers. com. 2016) aims to resolve them volcanism and siliciclastic infilling of Baker time s one possible explanation for the Pukiq structural | 1 woaniom scales in outcrop (examples in Figure 9), aeromagnetic and LANDSAT lineaments (Anand and Jefferson, 2017), turn offset dextrally by reactivated R shears in places (e.g. just above compass). represent motion on inferred deep ductile shear direction, roughly paralleled by brittle P shears. side of view.
’ : : ' ' Lake Basin. discontinuity (see caption for Fig. 4)’. ] and geochronology (V. McNicoll, unpublished data and Jefferson et al., 2015).
DP2b, | ~1.84- | Transpression: pull-apart basins along major | Bostonite dykes: Minette + bostonite (ultra-K) flows erupted in Baker Kinngaaquk syeno - ainbird et al. .
c&d: | 1.82; dextral shear zonL;s accommodated subaerJial ~070° are sfeeply Lake Basin starting ~l1.833 Ga. }{Velated dykes filled diorite, Hﬁdso}; suite, gcattbetil_t(glo 1@)03;6) Square Jak
depo. over- siliciclastic sediments & ultrapotassic foliated; ~130 & transtension cracks along relaxing F2 fold axes & fault ultra-K Christopher van Breemen et al. (2005). q ake. ]
lower | laps volcanism while DP2A folding propagated 180° conjugate zones. Ultra-K magmatism to ca 1.81 Ga included flows, | Island Formation U references: Kazan: Stanton 1/> ; —— e E\ I n trOd u Ctl O n
BLG DP3 & | t d the NW. S ive minette & dykes ar njugate dykes & mixed Hudson granite - Martell fl & dyk (1979), Lac Cinquante: H FloN s H = " .
DP4 b(:)vsvfgnitezykes out 2 foliated & L1.L2 masive, 120° U :;e:lliltgea.‘gou};heéhanneli& Kazan c%)r?glofnerat:c?f M Bridge et al. (2013) UG{\\\Q\\I%Q\\/\/ R j_//s’“’”z This report documents basement structures relevant to unconformity U deposits in the Kiggavik camp (Figure POSteI' |ayOUt and aSSOC|ated data release DlSCUSSlon and QueStlons for the Futu re
97°50'W 97°40'W 97°30'W 97°20'W 97°10'W lineated quartzite. Overlaps main folding in | veins may follow | sandstone, Lac Cinquante crack-seal U veins follow metasomatic U with S Y \2\)@/\/ 5 wN L ———— . ) . .
her places (below). beds &/or R ductors that may be pri hitic Arch Lcite-chlorite- Rooy = ~ Lake 1). Anand and Jefferson (2017) regionally mapped lineaments that are here interpreted as deep ductile to : : : . . , , : . , . .
' |' — —— ' ' ' other places (below) chearss eailastie & taffaccous waits oo e P . ‘ | SISREE 4 Uranium occurrence o rgactivate d brittle-ductile éu rfac)e fagults (F)ilg 1 pg A, Table 1) developed during DPS (~1.83 Ga) tF\rough DP7 This camp-scale structural analysis considers detailed outcrop maps, structural measurements and field sketches for selected Faults mapped at surface are relevant to the location and development of hydrothermal fluid flow systems and thereby promoted lateral flow. The down steps in magnetic intensity. Scales range down to microscopic in a fractal
- \ XY > DP2b: | ~1.85- | Basemen t-involved thick-skinned folds (e.g. | F2 axial planes+ | NW vergent, inclined folds & reverse faults to thrusts | Incipient mid-crustal | Kiarseaard et al. (1997) S 2 : {o! — A1 GSC field photograph site, Fig. 9 utlier - - b ) ~ 1. i i i i : T i i o i i i ; ; ; ; : ; ; ; ; ; ; ; ; : ; ;
, | > ‘ e S avisivik ako oaSauts B main | 183; | Whitchills Synform),reverse fauls & thrusts | 52 fabrics dip | affect basement & cover. Synforms typically broad & | partial meltng stars Dok vl (1997, Hotar " St sty (~1.67 Ga) by Riedel shear (Riedel, 1929: inset A of figure 2B). Here we document Riedel shear structures in stations along the Thelon and Judge Sissons fault zones. Figures 2A and 2B provide geological and structural frameworks unconformity-associated uranium ore deposits in multiple, yet indirect and imbricated complex of quartzite, rhyolite and epiclastic rock (Fig. 3, 4, 7) is continuum, including block to grain rotation and formation of breccia to cataclasite
avisivik iche 5 Aost fautl, o/ X - SN o N , fud- | over- g.g..l\ili;ggrk, Itrlllalf:V)a}:gLng!s, Wh(itehilsls& secply SE & fla-bottomed; aniforms tghty rounded, many broken pmd};cirngugson) et (2009); McEwar > Thrust outcrop, their effects upon imbricaté q Paléoproterozoic quartzite, 2.6 Ga volcanic rocks and underlying 2.71 respectively, names used throughout, and locations of detailed maps. The Thelon Fault Zone is re-defined as a demagnetized conceptual ways. The study area was subject to repeated anisotropic interpreted as a result of isoclinal folding and thrusting during DP1 (Table 1). along all orientations, contained within much less deformed zones. Faults decrease
= il e et g sonian aps uoich River thrusts), ippes (e.g. Snow ren . reverse faults. Refolde orm e- e- ranite (see above ; Thomas N , , . . . . . . . . . . - . . . . . . . . . . . . .
o : sonian, | aps g gheets&sChu‘ifz L.akeg " | G LA Regionsl I mgj[zmot.‘phisyrrlzqu e pelrsontal. G013, Figure 5. Structural geology of the eastern end of Thelon Fault Zone from Skinny lake to the Long lake horst. Location, legends for rock units and structure Ga metagreywacke, and discuss these relationships with respect to uranium deposits deep ductile zone mainly covered by a 2 km-wide synclinal finger of Thelon Formation, bounded by the shallow Ridge lake deformation from at least 1.83 Ga to the post-Ordovician (Table 1). Reactivated Thin-skinned thrust imbrication within the complex records various states of laterally away from intense zones, grading into relatively unfractured rock. All shear
geny oot berout Chostorisd Pt Zome e e | et ot ot o ool I prep.a ) are shown in Figure 2A. Unconformity lake is near centre, at northeast corner of large Siamese lake. White circles = field stations. Field observation sites ’ ' (formerly named Thelon Fault) and Felsenmeer faults. The Bong to Kiggavik area (Figure 3) exemplifies intersections between faults, key for unconformity U deposits (Jefferson et al., 20073, b, c), have long internal plastic deformation, refolding and structural intercalation along orientations cut all others from place to place.
64°30'N (CFZ) Overlaps trg;sprestsilonalb?sirz v folds at Kiggavik? | with the Foxe & Reindeer orogenies. are detailed in figures 8 (11ABE249) and 9 (11ABEQ78). Fabric elements are as in Figure 2A. Bedding is moderately tilted in Amarook Formation and very ACkﬂOWl edg ments the shallowly dipping imbricate complex and steeply dipping fault arrays. Schematic cross sections (Figure 4) illustrate the pre- been recognized in this region (e.g. Fuchs et al., 1986; Fuchs and Hilger, 1989; lithologic contacts down to the millimetre scale. This imbricate panel dips
evelopmen mia-crustal granites (above). I | 1 | H . 1f1 I I 1 H ” I |' 1 H | H I . . . . . . . . . . . . . . . . . . . .
DPTa | <T977 | Foreland o the scertonary saly e shed ok s shange o provialsubaquees s | Eay phasee o ez I e ggrrth y dfi% gii% I]po &?0?&1'aic;rm]ztlﬁnts:rgi:rtlgnti }ggéna%?flgrogaa(%feg;g is parallel to steep foliation in basement supracrustal rocks in contrast to the gently Considerable data. concentual inouts and logistical Subbort from industry bartners. academic and fellow GSC DP2 conflguratlpn of the |mpr|ca’§e complex. Figures 5 to 9 document selected outcrop Qata on the strlke-'and dip-slip fault Hunter e.t al., 2012, 2014, 2015; Jefferson et al., 2011a, b; Miller and ' gently to the NN.W _and is thought to have been an aquitard that was breached Thg c_Jt_Jctlle-brltt_Ie to brittle Riedel, P and X structures (Figure 10) fit classic
depo- (oumeet| Hudsonian Snowbid Orogeny (docking of | norhwest & ast | conglomeai debrs flows & black shale (Tasuak ) | Kinngaaquk monzo, ctal (2019 Pebrsson etal, , P P g PP ry pariners, networks that dissected the imbricate complex and other parts of the study area (see Discussion for possible relevance to LeCheminant, 1985; Miller and Peterson, 2015). Second, the stress regime by the steeply dipping arrays of Riedel shears, somewhat along the length of definitions by Riedel (1929), Tchalenko (1970), Wilcox et al. (1973), Rutter et al.
ofPst | © 185 | Lake area; distal toward Amer & Montresor | basin(s).in part | pelagic marker beds containing disseminated magnetite | Hydrothermal Fe- Ralabird et ol (2010); Zalesks collaborators and support staff, and local businesses are acknowledged in detail by Anand and Jefferson mineralization). Figure 10 shows how these data fit the Riedel shear model. Elements of each fault array have various dips changed with, and/or between, each deformation event (codes in Table 1). Third some shears and especially where they branch, step and intersect with other 1986), Davis et al. (1999), Nova (2003), Schmocker et al. (2003) and Xu and Ben-
belts. Possibly syn-upper Nonacho Group. | migratin (not eherty BIF) (1tza Lake fin) oxides. etk oy (2017). Our distribution of the epiclastic member of the Pukiq Lake formation from Bong through Kiggavik J : : . : - PS, g g g ’ : - ’ P y Y , S'OP ’ ’ ’
Erosion | 192191 Tect;,mchiatisi‘;hgp& emsionpmOfi'IZOMaiomff;l w0 Do Basal Ps4yumonf0mitymmcatgs DP1 structures, Could Pukiq structural discontinuity be late DPI75 | Jaferson et al. (2015) ) fl u db Lj hnst tp | (2015. 2016) who h u hq torized and i tg q 39 kgg lod therefore rather than following the right hand rule, directions are labelled as in the NE or SE quadrants. Figure 11 places work metallogenic studies cited above and in Table 1 have shown that different types contemporaneous structures. Some compressional clay-filled shears may have Zion (2013); experimental results simulating primary and reactivated deformation
DPla, | ~1.95- | Basementinvolved thin-skinned translation, | DPlabe verge NE | Primary layering transposed & translated (DP1a) sub-// to | Unknown; cut by < Structural svle: Pehrsson et - l’;’\as mf ulenqehtfﬁ o_t_nslone_ eta b( Or KB th) who 3SDC Jarﬁc etrlze S” ng\Eea_ y extenae OE(“;] ?01‘VVIe ge by Fuchs and Hilger (1989) into this context. References and figures are included in the accompanying digital files. Individual of alteration and mineralization are linked to each deformation and magmatic been aquitards that cut off fluid flow while intersecting extensional structures (Cloos 1928; Riedel 1929; Tchalenko 1970); field studies (e.g. Moore 1979; Davis
. i i i 4 - i iati & - ni al. (2013a); McEwan (2012); B — A H : H H H H H H H H H H 1 1
Dbl | e e her, | imbrieatest (G ot Kisni Tooeimal s | ot 2 Bt Catomera o ereot. nS|gh ui critica r?_\]:_lewg_t_y r di © t:cme aS Lo E ns (03%%( . of Regina) were most helpful, as field station data and ArcGIS geology shapefiles will be published in Jefferson et al. (in prep. a, b). event. Such linkages suggest age constraints on the various styles of steeply may have enhanced fluid flow, as suggested by Figure 11. et al. 1999; Ahlgren 2001; Katz et al. 2004); analogue modelling with clay (e.g.
Orogen, and/or.early collisionofHearne vs. SW at Ukalik (DPilb&DPlc)Ver.geNE in Amer Belt & Schultz L. ultrapotassic dykes gs;’ﬁ:‘;”;’g%’53;‘2”_“}’;;20" were Compre ensive scientric eai Ing an Inpu rom . LemKow ( ) dlpplng Structures pervadlng the K|ggaV|k Camp ClOOS 1955, W|ICOX et al 1973, TChalenkO 1968, Sm|th and Dumey 1992, MarqueS
components with Rae Craton. Did late relaxa- |Lake & ~S at outlier but SW to S in Meadowbank R. area. Metamor- (2010); A . . . . . . . .
tion generate Pukiq structural discontinuity? |Meadowbank Mine. | phism (MP1) was sub-greenschist to greenschist facies. Orogen: Card et al. (2014) MUIt|p|e I|neS Of eV|dence ShOW that repeated reaCt|Vat|0n through t|me 2001) and Sand (eg Nay|0r et al 1986), dlreCt Shear eXpeI’ImentS (eg Bartlett et
Mafic | ,q | Mafic to ultramafic magmatism with high | Unknown Sill in Montresor Belt, plugs under SW Thelon Basin | Ultramatfic to mafic Percival et al, (2017); Blecker etal. = Many of the fault zones and adjacent rocks are altered by pervasive hematite generated strain along previously established zones of weakness rather than al. 1981; Moore and Byerlee 1992; Schreus 1994) and numerical modelling (e.g.
event magnetic susceptibility. (JP1 anomalies) & outcrops in SW Rae Craton. sills + plugs. (unpublished); Pehrsson et al. (unpublished) d t t d t b tt t ) d inl t | d ol f h d | Timi . d d b th D 1991 B 1994 McKi d G d d la B 1998)
Depo- | ~2.2to |Subaerial to epicratonic to marginal marine. Facies broadly Ps1 conglomerate, aluminous schist & quartzite. Upper Tholeiitic basalt flows Hadlari et al. (2004); Jefferson an qua Z cement and cu y numerous Cross-cu Ing qua Z velns ana veinlets a Ong idea p anes or an OmOgeneOUS moael. Imlng IS prOVI e y e resen y raun y CAINNON an arriao de ia arra .
sition | 2.0 Tectonic instability & fault-foundering of deepen to west; nelomer: minerals oi _ | geochemically correlate etal. (2015); Patterson et al. K o221 i i i i - i i i
ot P Shelf inferred from lteral factes changee & | o local fales | oo e U R ith 2153 -4 Ma (2012) Percival et l. (2017); Sl (Fig. 9). Both veins and cement comprise drusy and cryptocrystalline quartz above-noted alteration types and by dykes (Fig. 1, 2A) whose magnetic _ _ _ _
P24, basalt; marine ransgressions & regressons | changes are from | diseminated U deposis & magnetit markers. Amer [Sehultz Lake meta- Rainbird et al. (2010) such as documented by Turner et al. (2001) at Mallery Lake. We interpret the lineaments were used by Anand and Jefferson (2017) as evidence for faults Many structural questions remain. Regional DP2 transpression generated dextral
S3. rom n n 1S. ~2. 1ment 1 i 1 i v abbro. Related hydro- TTORT . . . . . . .
accumulation allows ~0.1 Ga to cool, crode ° bacimnatn Tt Dettital siteons found o Moo | ieront Fe oo silicification as part of event DP5C that Peterson et al. (2014, 2015) link with and fractures with respect to the stress model (Fig. 9). The 1.83 Ga minette shear zones, open to tight box folds broken by reverse faults and thrusts. The
Arrowsmith mountains & subside basins. Ps1 quartzite indicate deposition after 2.194 Ga. heating during the Kivalliq Igneous Event. The relatively early nature of most and bostonite dykes fill all fracture orientations of the stress model. Of the 1.75 Schultz Lake outlier (Fig. 2) may be a klippe (Hadlari et al. 2004, Tschirhart et al
Erosion | 2.3 to Regional extension, uplift, peneplanation Deep paleoweathering under low oxygen conditions Young (1979), Patterson . . . . . y . . . . -
22 produced aluminous paleosol, now schist. S| (1986); Knox (1950) ; quartz veins is consistent with observations by AREVA that much of the Ga dykes, the McRae Lake dykes occupy only R’ shears, only west of the 2013a, McEwan 2012) but more work is needed along its margins. Late in DP2 to
D ot ot | oW shio e | alens the e o o R o | ortal melting in-sit o i 2013 S silicification and quartz veins predate de-quartzification and clay alteration SLIC. The Thelon River dykes fill both P and R shears. The 1.27 Ga DP3 trans-extension exhumed the 1.83 Ga Hudson suite. Extension along the
wet rsctivated mlipl imes). No rcord of| Craton, GSL-SZ | the Bathurst Fault was  insiral R shear & the Grea Figure 16 associated with uranium mineralization (Riegler, 2013; Riegler et al., 2014; Mackenzie diabase dykes fill only X faults and, in many places, cross over and Wharton Lake fault system west of Kiggavik and major faults to the southeast
events 1rrom deposition o arjorie mils extra. ° ave Lake ear Zone was a dextra shear,aswere | | XN/t 0 A S e N | PN S AT TR T e T T T . . . . . . e . . . .
assemblage to beginning of orogen. transform. ancestral CF, AMZ, MZ, TFZ, TF, CFZ & DP2 thrusts. (ReaP-shears) i Sharpe et al., 2015). Nonetheless multiple generations of quartz veins (Fig. 9) are beside the most significant X faults, clearly post-dating ore-related faulting. accommodated the Baker Lake Group. Extension also generated F3 folds with
B | e o petapelite & B o e e etmecn Slave & | Unmown Notassessed herein | Serman eral. 201220191 B IR QAP * == i Zae SO N | L AN =S s i and quartz cement in the Thelon Formation allow that some quartz veins may be subhorizontal axes and drove retrograde metamorphism. Questions abound
DA2c |2.63to | Magmatic event affected a | fthe | Pre-DPI fabrics | Bimodal gabbro to granite intrusions & co-magmati Snow Island Sui Unknow LeCheminans & Roddick | [ O I s L K S A TS . 7 oo AT G — B contemporaneous with ore, accepting distal silica from de-quartzification and Brittle surface structures were mapped along the 1-3 km wide, broadl regarding the inferred Pukiq Lake discontinuity - we prefer a DP3 and/or younger
Cas Rt it st oo | vt dcamibie | volanes keed & r v ol e | s Pia | (Iggj)"Jeﬂe;s"" ‘ol (015 e A s silicate Fe)xlteration at the site of urgniugr]n precipitation ; demagnetized deep crustal ductileprs)hear zoges (D) of Tschirhart et aly(2013a ex?ensioaal structure but itccl:ould be a highly s}’:rainedpunconformity surfac):a be’?ween
shallow subduction or mafic underplating. with amalgamated Woodburn Lake group rocks. Fm volcanic strata). 2015); Petersonetal. 2015¢) | [ RSN S TX S st O i T R 7 A e ) S IR < 17, irc v ake N T O S = ) . ,
Hiatus Possible time and/or geographic gap 2unconformity as part of Pukiq structural discontinuity?5 see caption to Figure 4 X B =) = S § e A N\ . n An n n ff r n 2 17 |nk |n F| . ZB . Th Th | N an th n r P k| L k f rm t| Nn an | r P| r m m | . R ver:
DA2b 2.672 Extension to form a craton margin basin Pre-DP1 fabrics Coarse turbidites of the Marjorie Hills assemblage; 1-2 Possibly coeval with | Unknown Jefferson et al. (2015); NN N N SShack LN t' \\ Sy ’ 2| s g . . b) a d a d a d Je erso ( 0 ) (p g ) e elon a d JUdge e you . ge u q ake 1o ation a d o de ped ea asse b age . eve Sed
and |depositionally isolated from the amalgamated | not discernable | zircon sources, epiclastic derivation only from sources | early Snow Island Robinson et al. (2016); TS DA b Most of the fault zones that were silicified during DP5C were selectively de- Sissons faults offset the SLIC by 25 and 10 km, respectively. The Andrew Lake strike slip motion along some P and R shear faults has yet to be explained.
L4000 2.628 Woodburn Lake group contemporaneous with early Snow Island Suite. Suite volcanism McNicoll (unpublished data) = N\ T e . . . . . . . . y . . . s . . . _Ii .
64°20'N e o oty ke, | Rerenat by D B S ot e P Lot “Quice ] quartzified during mineralization which, through regional metallogenic context, fault is a large R’ structure with little apparent sinistral offset. Renewed dextfal Renewed transpression during DP4 reactivated the long-lived, deep and pervasive,
known | during amalgamation of lower Woodburn | DP1 & DP2 cannot be interpreted due to Proterozoic overprints, -l Sissons =t we ascribe to DP7A through DP7B. We have insufficient information to define offset along Thelon Fault offset the 1.75 Ga McRae Lake dykes by a few 10's ductile dextral strike-slip systems from DP2 and developed proximal ENE-trending
Lake group (WLg); deposition of upper WLg. possibly including Arrowsmith. | . . . . . . .. . g a g . . . . .
Depo- | ~2.74 | Lower Woodburn Lake group deposited in a micro-intra-cratonic | Disparatc assemblages distinguished by lithology & sTand Arc Unknown | Ashion (1958); Zaleski (2005); Zaleski & the exact stress regime during mineralization, but uraninite is intergrown on a of m. The recessive, broad, desilicified, demagnetized fault zones are mostly folds and thrusts. How important are DP4 folds measured at Granite Grid and just
iti ift, flanked by b iss. ital zi fr h 1 were jux d duri 2. ism, Pehrsson (2005); Zaleski et al. (2000, H H H H H HIH H . . H H . H H. H H H H
———— sion 1o | it Tnked by basement gciss. et icons angefom | geoonology were jotposed during DA magnatiom, Pefirsion (2005); Zalesk et sub-microscopic scale with felted clay minerals that fill millimetre-scale veinlets; covered: Thelon by a finger of Thelon Formation; Judge Sissons and Andrew north of the Lone Gull camp for constraining ore? Which brittle-ductile to late brittle
el REE. TH ocelitrence DAl >2.74; Early shortening & thickening —inferred but | Reoriented by Contractional basement gneiss predated Woodburn Lake | Sanning tonalite (Agd/| Unknown | Agd unit of Zaleski et al. (2001) & Hadlari| | H AN, @& MH [ % e o =7 and Clay m|nera| f0|latI0nS fOI'm Stra|n ShadOWS around uran|um'bear|ng Lake by t|” The|r margInS were reaCtlvated as narrow, dISCI’ete but St|" DP4 faUItS I’eaCtlvated WeakneSSGS from preV|OUS defOI’matlonS, and Wh|Ch are
Fial d, tati 2866 unexposed in map area except possibly the DP1 & DP2 group. Deformation cryptic because of Paleoproterozoic | AtnSa), south of etal. (2004); may be equivalenttothe | | || O3 N @ W/H K o o~ = A L o = . - . . ' ' . . . .
O Field station 615 Ma| Sanming tonalite gneiss if basement to WLg. reworking. Sanningajukuluk Lake Akutuak R gneiss of Schawetal (1962 | |17~ A <N _=\Djse | [N nokel ek m s fluorapatite crystals that are replaced by uraninite (Robinson et al., 2016). complex fault and breccia zones some 10's to 100's of metres wide. Late new? During DP5, 6 and 7 successive dextral trans-extension events
1. This chart includes far-field events that have no obvious record in the study area, because they either set the stage for later events herein or affected it indirectly, by crustal transmission that caused local fault reactiviation & N _ Spatlal geometri_c analySiS Of SUCh fabriCS in Orien!:ed Cor_e Samples C_;OU|_d SliCkenSideS on the Rldge lake faU|t (SOUtheranSt Strand Of the Thelon FaU|t) accommOdated the Wharton and BarrenSIand grOUpS, punCtuated by erOSion during
oblque i snsal fanttht) hydrothermal altcration, as documented by geochronology of uraninite, detrital zircons, argon, etc. Any rock units that are not explained in Figures 1 or 2 are in the legend for Jefferson ct al. (2015). . e provide information to better understand deformation during mineralization. record north-down motion, consistent with drilled offsets of 100's of metres quiescence and uplift. Do the Figure 11 structures documented by Fuchs and Hilger
e Yo —_ === 2. Dykes have en échelon patterns that mimic those of the fault systems they follow. The Mackenzie dykes only crudely follow & obliquely transect T faults, & have no preferred step direction. Their doubly terminated fissure A Uranium occurrence ® GSC field photograph . . . . . . . °
L dosip (onsiona) shapes must have been fed vertiealy from a deeper, more longitudinaly continuous magma source that ultmaiely originated in the Copperine River plume described by LeCheminant & Heaman (1989). Dykes following other O GSC field data o g S (Davis et al., 2011). The brittle surface structures predictably follow Riedel (R (1989) reflect DP5 to 7? What generation are their ore-constraining 055° faults and
ault orientations téna to step similar 0 the Taults, however the clon River €S St 0 () I1 ‘Whnere Crossin; (5] clon rau. one. - Rt - iel ata . . . . . . . Il e . . .
Z | EAN - Py e LR ¢ & e e . )_© UG -AREVA data - Regardless of the timing of fault reactivation and reorientation of the stress field, and R’), P and X shears. En échelon dextral R shears strike ~17° to 28° do they fit the Riedel shear model?
3. Similar crack-seal quartz veins, as well as silicified Amarook Formation and stromatolitic chert breccias were mapped by this project along the Thelon, Bong & Judge Sissons fault zones. 0 1 2 km 0.5 1 Several empirically mappable StrUCtural features ||ke|y inﬂuenced the pathS Of ClOCk .Se tO D En éChelon de tral P ShearS Str.ke 10 150 ant.CIOCk .Se Of D
. .. . . . . . . . . . - o . o L . . . e —— km WI . X | ~10U- | Wi .
F|gure 2B: Steeply d|pp|ng fau'ts Of K|ggav|k U camp, in the same area as F|gure 2A. |nset |ower nght: stress fleld for genenc deep Seated dextral duct”e Shear zone (D) rela“ve to 4. We explored the possibility that the structurally flat lying imbricated quartzite/rhyolite/epiclastic zone at Bong, Kiggavik & east end of Thelon fault was part of the DP4c Granite Thrust system, but rejected that hypothesis - . R . . ) K i . . ) ) . , .
) L. ) . ! . K i . ) . . because the lineation, foliation & isoclinal folds are cut by 1.83 Ga bostonite dykes whereas the Granite Thrust must post-date the emplacement of the 1.83 Ga SLIC. h drothermal ﬂU|dS that d|SSO|Ved uartz altered maﬂc m|nera|S tO hemat|te and I I ” | . I | I -
discrete subsidiary fau_lts above them using Riedel shear terminology after Tlachenko (1970). Pink areas are the same as shown by hatched areas in Figure 2A. Strlk_e-sllp began during 5. The Pukiq discontinuity is inforred to have formed as a detachment (low-angle extensional fault) based on the juxtaposition of 2.6 Ga Pukiq Lake epiclastc rocks above the 2.7 Ga Pipedream metagreywacke. [fs fiming is Figure 6. Geology of the transition from Judge Sissons Fault Zone (JSFZ) West to JSFZ East. The main motion of and demagnetization along the JFSZ Figure 7. Geology of the central Judge Sissons Fault Zone (JSFZ) displaying major and minor brittle-ductile and brittle fault systems. The Figure 11. Plan view of the Kiggavik Main Zone area, after Figure 5 of Fuchs & Hilger (1989, grey underlay); re-oriented using new data (Jefferson, in prep. a,b) CI}./ays and precipitated uraninite in?‘avou;able sites. One large factor is the ge]f\f,zear: ?h': Eegclﬂte,%c;?gggfg urﬁead?l?ﬂ?srzgfelr}gjﬁ: ;chionZsB;) 2::2 Se ;Cée% some ;[)r;lsEr?ep)ren Z:S I;\(Ziﬁg?;;s(ggﬁ)d u,?ot orfal:lnatura Resources Canada’s Geo-mapping
DP2; dip-slip reactivation along with strike-slip took place at various times thereafter (Table 1). The horsts, grabens and stepped blocks between them developed mainly after DP7 by uncertain, It could be a highly strained unconformity, but the hydrothermal fluid flow, alteration & uranium minéralization localized along it (Johnstone 2015, 2016a, b and unpublished data) favour the fault interpretation. If it is alternate between dominantly P shears and R shears, with the western portion being dominated by R shears and the central portion (east side of this map) main dextral and syn-to-later dip slip movement, and hydrothermal demagnetization were along P and R shears. Location and geological especially the Mackenzie dyke and o e, e anits shests. The 1668 sy Jrey underiay. ,interpreted | using new data (Jeflefson. In prep. &), S, ( : : _ ale | g. P ay prog :
reactivation of T faults, post-dated by Mackenzie dykes. Dykes, and names of lakes and occurrences are shown in Figure 2A. Simarly highly stained. lthough hets conacts e hot noble aquifers e the Pullg dissontimaty, oo oo (e uartzite fayers in the overlying fmbricate zone lso lack any such unconformity sssemblage and are dominated by P shears. The Andrew Lake and End Grid deposits are located not only at the intersection of the Andrew Lake R’ fault with the JSFZ but also at legend in Figure 2A. Faults and movement arrows explained in inset lower right from Figure 10. GSC field photograph sites (abbreviated to than others mapped in this study. The ore-hosting 055° faults, perhaps early P-shears (D. Wright idea), are clearly offset by the 075° P shears. Location in Figure 3 aquitard effect of the imbricate complex that may have formed a cap over 2 km apart and also record strike-, then dip-slip offsets shown by north-
the transition between dominantly R shears to the west and P shears to the east. Lithologic and structural legends and location of this figure are in Figure 2A. 3 digit numbers) detailed in Figures 8 and/or 9 are show in red. ' ’ ' ’ ' '
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