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) f / . - 2M30as. X Rl : | 139 ; . . . .
N A . E—— . ‘ — according to the classic Riedel (1929) shear model as updated by Tchalenko
o O @ 0 10 20km ' s Mirariien >058@ <1.68 | DP7a Gentle overall dextral reactivation of the fault arrays that were established & Davis et al., (2011); this map (deep ductile displacement) 1 V%/ ! ol ( " ) : p : y . Jeﬁ:ersor.] (201 7) USe.SUCh knOWIGdge to Understa.nd Complex_lntgrnal
N AL oY / { &) i o 163 reactivated during DP4 through DP7, gentle drag folds adjacent to Thelon & Bong ( 97Q). e objectively me_lpped the lineaments using _conS|s_,tent criteria geometries and predict favourable trends for uranium mineralization.
— ! - . i faults. U-bearing fluorapatite locally cemented Thelon Fm 1.68-1.67 Ga A U occurrence explained in the Introduction. Many of the more prominent lineaments were
Figure1A. Geological context of the Kiggavik U camp, northeast Thelon Basin region (after Scott et al., 2015; Johnstone et al., 2015; Robinson et al., 2016; 1.73t0 | DP6b | Deposition of Thelon Formation | Regional thermal subsidence & broad gentle dextral trans-extension formed marked | Hiatt et al.,(2003); Davis et al. (2011) . B .. REE/Thoccurrence already documented as individual bedrock faults by the above-listed authors, Figure 10 and accompanying ground photographs illustrate an unusually well
Jefferson et al., in prep. b). Box "K" in the inset map of the northwestern Canadian Shield shows the cratonic context. The Schultz Lake Intrusive Complex 1.63 to subtle extensional sub-basins during overall subsidence. All fault arrays from DP4 64°30'N= = - "+ Outcrop but had not been interpreted in terms of Riedel shear. For the second part of exposed fault locality northwest of the Kiggavik deposits, includes a segment
was petrologically defined by Miller and Peterson (2015) and restricted to west of Granite thrust by Tschirhart et al., (2013b). U occurrences are from Gandhi &1'13'11*5 dalo reafcnlvtated’ rmine ntersecting horsts and grsbens. Lower Thelon s : this study Anand and Jefferson (2017) structurally assess the fault sets in the of the silicified brittle ductile Ridge lake fault that demark,s the southern margin
et al. (2015). Note: References cited in poster are located in accompanying digital file. Teledeong o o B R T - R e~ . M — R O e D L R ————————\ . R o\ S — o | S N—mA N\ = — [quit 7 d bedrock logical text : . o
~1.73 DPo6a Hiatus Broad and local uplift, subaerial erosion, oxidative paleoweathering, peneplanation Gall (1992) modern bedrock geological context. of the Thelon Fault Zon.e- This prOVIdeS de_flnltlve examples of r?mOtely
1.77to | DP5c Kivalliq igneous suite Dextral trans-extensional and normal reactivated surface faults follow DP2 and DP4 | Kivalliq Igneous Suite: Peterson et al. . o . - - - . . mapped |Ine§ments belng |Ocateq aIOng dlSCl'e,te, en echelpn, hlgh-angle
~1.73 weaknesses. Regional counter-clockwise rotation of sequential dykes suggests (2015a); DpSc = late DP5 of Pehrsson i I e e, S S C I — - R RSV S Wl B AR N - A [ L P o, R s | N YU e —m— /L Tl This poster summarizes the lineaments in Figures 1B and 2B and provides faults, breccias and shear zones in the P, R, R’/X, and T orientations. The
clockwise craton rotation under dextral strain. Kivalliq Igneous Suite: bimodal et al., (2013a) representative detailed maps of them in Figures 3 to 10 inclusive. The lineaments and corresponding faults are fractal, with exposures in this locality
98°15'W 98°W 97°45'W 97°30'W 97°15'W o Yo camies. Multiple hot to-warm siliefication, specular hematite, Ag lineament arrays are assigned to P, R, R’, X, and T directions of the Riedel guiding interpretation of the entire Kiggavik uranium camp and beyond
°30 Au at Mallery Lake. , R, NG A, uiding | [ [ Iggavik uraniu yond.
, ! o o oo s — P ——— shear model as adapted to this area by Anand and Jefferspn (201 7): As noted Crosscutting relationships of these lineaments, like the ground-mapped faults
562 1.77 structures as dip-slip & extensional faults, forming sedimentary basins. Fluvial (2013a) in the Introduction many of the lineaments have a magnetic expression: in (Anand and Jefferson, 2017) generally show that P/R’ conjugate sets were
ggg (coarse to fine) and acolian siliciclastic rocks. some cases demagnetized (e.g. Tschirhart et al., 2013c); in others a linear early, followed by P shears (e.g. P/R’in Figure 10).
348 - }.335- DP5a Hiatus Broad uplift, subaerial erosion & oxidative paleoweathering. Gall (1994); Rainbird et al., (2006) h|gh due to dykeS Occupying the faUItS, as discussed below. The major
64°35'N—— gég : - - —— - —~ —— — o oo @ Field station demagnetized zones are broad bands with internal magnetic variations that The positive and negative magnetic lineaments that met the criteria of this
1.81 to | DP4b; Deposition of upper Baker Lake Late Hudsonian reactivation of deep seated strike-slip systems: dextral- =DP4 of Pehrsson et al., (2013a); Amer ey Outero . . . . . . . .
ggg 1.785 over- Group; major dextral fault compressional with oblique reverse components. Deep-seated faults include: Amer Plutonic Complex: Tella (1994); X Ot‘ . are Only.falntly d|Scerna.b|e at the reSOIU.tlon O:f our data. BOth broad and StUdy did so in Iarge part because they CorreSpond nlcely Wlth geOIOglcal .
e lap systems, late Hudson suite Mylonite Zone, Amer Belt Medial Zone, Thelon Fault, Judge Sissons Fault & Jefferson et al., (2015); and Scott et al., 0 01 02km : P i S AN narrow linear demagnetized bands are intensively hematitized and silicified, structures that have obvious surface and subsurface expressions, and provide
DP3 granitoid magmatism. Nutaaq Fault. Hudson granitoid plugs at fault bends (Amer Plutonic Complex, (2015). Paliak granite (1.811 Ga) = D " i ; ; ; ; : ;
:]Igg Granite Grid, Lone Gull, Paliak Islands). Contact metamorphism with late Hudson documented by LeCheminant et al., . . . . . . . . , . . . . . . . . . . dequartzmed and pervaSIVe_Iy al_tered to ClayS _and Chlorlte by hydrOthermal geologlcally re_as_onable mapplng SOIUtI_OnS Where exposure 1S poor' For
\ 168 granite in Kinngaaquk Core Complex. Calcite travertine @ 1785 +/-3 Ma pins upper | (1987). Travertine age from Rainbird et Figure 5. Llneamgnt anaIyS|s_ of magnetic, LANDSAT and air phqtograph images combined with outcr.op data _show en échelon patfterns allong the Figure 8. Riedel Imeamept arrays transecting the easterp end of t_he IZ_)P1 |mbr|cate zone of quartzite, rhyollte and eplcl_astlc rocks soulth of processes as documented in drill core (e_g_ Rlegler, 201 3; Rlegler et a|_’ 2014; examp|e the distinct Shultz Lake Intrusive Complex (SLlC) that flanks the
153 Kunwak deposition al., (2006). deep-seated ductile Judge Sissons Fault Zone, coloured as in Riedel shear reference model (upper right). P lineaments are associated with the Thelon Fault Zone. Lineaments are coloured according to their orientations (DP4 reference stress field, centre left inset). The straight, en Sharpe et al.. 201 5) and sparse outerops. The low-maanetic bands are Ki ik th £ d b d tic high with
139 extensive hematitized and silicified Neoarchean metasedimentary rocks that form a ridge like that along the south side of Thelon Fault. Base échelon lineaments crosscut and are locally parallel to curvilinear lineaments along DP1 imbricate thrust faults. T lineaments that developed _ P " _ P PS. g : _ |gg_aV| camp on e_WeS IS expressed as a broa _aerom_agne IC high wi
123 1.80to | DP4a | Major thrust and/or regional East-directed Granite Thrust (or major north or west-verging regional detachment) | Tschirhart et al. (2013a, b); Jefferson image is the central portion of air photograph # A-15404-79. Location shown in figures 2A and 2B. during DP4 are small, en échelon to isolated. The major Long lake east and west lineaments flank the Long lake horst that was uplifted interpreted as deep ductile parent faults (D) that underlie high-level brittle- relatively abrupt margins on the east and west but highly dissected by
- 1.78 structural discontinuity juxtaposed exotic Marjorie Hills assemblage on 2.6 Ga Pukiq Lake fm. etal. (2015; in prep. b) f b CAAi ; ; f ; ; f . . . . . .
18;' m hundreds of metres, are distinct and through-going, and record later major tensional normal faults that circumstantially followed the T ductile deformed rocks such as the Thelon, Judge Sissons, and Andrew Lake demagnetized linear zones (Tschirhart et al., 2013b) that were recognized
64:30N— 77 [ ~182- | DP3; | Deposition of middle Baker Early-Mid-Hudsonian SE-NW extension & unroofing caused subhorizontal chevion | Pehrsson et al, (2013a). Peterson et al, il i .. i Ty TRy orientation. The Mackenzle dykes followed the same trend even later. Base Image from LANDSAT TM, location in Figures 2A and 2B. faults. There are few outcrops of the deformed rocks because they are so since the 1980s as fault zones (e.g. Urangeselleschaft unpublished maps;
| 1.78 over- Lake Group, main uplifts and fold trains. Pressure drop & partial melting created mid-crustal granite sills filling (2010), Rainbird et al. (2006), Scott v 1 4 . . . .
- lap exposure of Hudson suit.e dilation fraptures possibly loca}ized along earlie_r thrust or detachrn_ent planes: Maip (2012), Scott et al., (2015); C:’ JR— srarw S S S srszn . altered and recessive, and therefore covered by Amarook and Thelon Fuchs et al., 1986, Fuchs and Hllger, 1989, Miller and LeChemlnant, 1985,
DP4 | granitoid exposures beside Hudson suite developed: granite + Martell syenite sheets to laccoliths partly inherit | van Breemen et al., (2005) Lz e B IR G, L [ e = = T A e 5 AT g B DU formations, and/or unconsolidated material. Very detailed ground magnetic Miller and Peterson, 2015). The 0.1 to 2 km-diameter amoeboid granite plugs
basins. $2, filled weaknesses along translational structures. Calcite-chlorite-albite alteration »‘ & : | ! % : data interpreted in terms of Riedel shear by Hunter et al., (2012) show that the east of the SLIC were included undivided with the SLIC by previous workers
associated with minette and bostonite dykes. 'y . iy . v | N ¥ )
~1.84- | DP2b; | Main Hudsonian Orogeny: trans- | Pull-apart basins along major dextral shear zones accommodated siliciclastic Peterson et al., (2010); Rainbird et al., sSame array of minor _StrUCtureS has affected the broad demagnet|zed zone of bUt _Sep.arafted as hlgher IeVQI discrete bOdle.S by.TSChlrhart et al. (2013b) This
1.81 over- extensional component; sedimentation (Baker Lake Group) and ultra-K volcanism (Christopher Island (2006), Scott (2012); Scott et al., (2015); the western JUdge Sissons Fault. distinction is SUppOfted by lineament anaIyS|S (Flgures 1B, ZB)
laps deposition of lower Baker Lake Formation minette to bostonite flows). The ultra-K magmas formed dykes in van Breemen et al., (2005).
DP3 & | Group, main Hudson granitoid Kiggavik camp. Uraninite at Lac Cinquante is associated with Riedel shears, the U references: Kazan: Stanton (1979); ) ) . . . . .
64025 DP4 magmatism basal unconformity of the Baker Lake Group, and calcite-chlorite-albite alteration. Lac Cinquante: Bridge et al., (2013) The southeast edgeS of the brOadIy demagnetlzed Thelon and JUdge Sissons In conclusion, rgorous lineament anaIySIS that uses mUItlple data sets and
1.85. | DP2a | Main Hudsonian Orogeny: Basement.involved thick-skinned folds, reverse faults & thrusts, and klippes: Hadlari et al.. 2004 faults are well exposed as silicified ridges (e.g. the Ridge lake fault), as are ground-truthing produced geometrically consistent arrays with a high degree
1.83 compressional component. Incipient mid-crustal partial melting starts producing Hudson granite Pehrsson et al., (2013a) ] some narrow brittle structures along the P, R, and R’ trends. Silicification took of predictability. These in turn represent faults as products of classic Riedel
~1.91 | DP2a Snowbird Orogeny; deposition of | Ps4 deposited in foreland basins northwest of this accretionary early Hudsonian Jefferson et al. (2015); Pehrsson et al., place mainly during magmatism of the 1.75 Ga Klvalllq IgneOUS Suite shear during overall dextral transpreSSive deformation. The structural models
to 185 Psd event that welded the Hearn craton to the Rae. (2013a); Zaleski et al., (2001) (Peterson et al., 2015a), but later silicification of the altered zones also derived from these faults (Anand and Jefferson 2017) explain changing stress
}3? Hiatus Eectcl)nic quifsceq::e];:xceli‘;l fﬁr loEaL tofregio‘?al utpuft, e;ros]ijofl’lla;uf}gveathering. Jefferson et al., (2015) S affected basal units of the Thelon Formation (<1.75 Ga) and was followed by fields through successive alternating transpressive deformation (four main
. asal unconrormi enea Za 1L.aKe rormation truncates olas. / — . . . . . . . . .
sal unc y 0 - L\ Al % introduction of fluorapatite cement at ca. 1.67 Ga (Davis et al., 2011). Paleoproterozoic events) vs. sedimentation and igneous events associated
~1.95- | DPla, Proterozoic deformation NE-directed, basement-involved thin-skinned translation, isoclinal & sheath folding, | Pehrsson et al., (2013a) and McEwan =" ! . ; _ ; ; i :
192 | DPIb thrusts & décollements. Imbrication of rhyolite/epiclastic/quartzite units at Kiggavik. | (2012); Calhoun et al., (2014) : OF /9 S A e ) \ _ _ _ _ with dext_ral trans ext_enS|on (Table 1).. Structural interpretation of I|_nea_ment
— DPlc Dla/b/c phases (Calhoun et al., 2014) not distinguished around Kiggavik. : ' s AU g € ST YA il L U AN 7. el gy TPy o N EmmEE sy O R IR S i R W () Ground observations (e.g. Figure 10) document the lineaments as brittle- patterns integrated with ground-truthing helps to understand reactivation of
Displacement was partitioned into domains separated by pre-existing dextral faults. ductile to brittle and extensional faults, filled in places by magnetic minette, deep-seated dextral strike-slip fault systems within Neoarchean supracrustal
%gg Lower A;ngr ?r;d3K3tyet Rti\:ier ?yi)a(liglqc?l SUb‘fit(rienci'Wit}:i ltocal extension reactivating pgevfi?}llls }(iex%ﬂ ftaults. gaizbird et azl" (22001130); e | L ‘ : i - W bostonite, and diabase dykes. The minette and bostonite dykes are part of the rocks that host all known significant uranium prospects in the area. This
. . t tal, e a liné . . . . . . . . . g .
gro“pff Sl ) ‘fp°sfe - ‘f‘ '“V“"‘ TPt transitione °epf“‘° feas coffrlng ren o7 The Mae LTaton ethune et al., (2013) U 1.83 Ga Christopher Island Suite (Peterson and LeCheminant, 1996; analysis provides relative spatial suggestions that structures initiated during
<2628 e orie Hills L e e e oo the oy ot e Woodums Lo e L b dovital drcom oy Peterson et al., 2002; Scott et al., 2015) which occupy all of the P, R, R/X’, DP4 and were reactivated many times during subsequent tectonic events.
o Toor o i s ap e T o 10— P o CChoma o Roddiek (1991 and T orientations, showing that the main structural framework had been Aeromagnetic and outcrop data characterizing these subsequent events are
.05- Nnow Islan uite 1q Lake 1modal plutonic and volcaniCc magmatism mtruded and covered much o € Kac e eminant an oadic ) H = H H .
PP formation Craton, Origin enigmatic, hypotheses include convergent plate margin with Pehrsson et al., (2013a); v | : \ established and these originally compressive structures had been reactivated discussed by Anand and Jefferson (2017).
; thino ~ ; ; P, (201 . . . . . . . . . . . . . \ ‘ - i g - ‘ O 1 1 1
subduction, or within-crust post-orogenic (o anorogenic event eterson et al., (2015 Figure 2B. Major lineaments in the context of regional airborne total magnetic field (image from Tschirhart et al., 2011a, b) in the same area as Figure 2A. The deep-seated ductile Thelon s : ' ' T EE—— extensionally in order to accommodate the ultrapotassic dykes.
4°15'N DA2a Collisional deformation, polarity Cryptic pre-DP1 structures are locally preserved but cannot be interpreted due to Janvier et al., (2015) : i i i i i 7 "\ _— ' B3 P . _ {\r ‘ -, Outcrop \\ Uranium oceurrence - N, 3 . dl = : A AN : Sl W
64°15 unknown Proterozoic overprints, possibly including Arrowsmith. and Juic_l:.lgeI Sl_ls_'s;ons pa;ﬁnt faultdzonretﬁ (D) are brc;adB deeg d_emagnetrllzed zg)n?hg ukp tod1|:5 krr;] acrossd(pplp:)_osmg ;th"tr?j arrows)I’Fhat areI mosély covedr_ed ?y ;I;]he.lon.FO{rr;atlon Ii;md{or till - NG AL \ e . e | . uboroP i B= N ) ol NN ng The earliest diabase dykes are part of the 1.75 Ga Kivalliq igneous suite and
m \ | al J | = g a ¥ [} n 54 Outcro | \ I -'-' = = B g e & n . . . . . .
~276 | DA2 | Woodburn Lake group Disparate Neoarchean components were formed and amalgamated in an island arc | Ashton (1988); Davis and Zaleski !‘espec Ively. 1heir soutnern and no ern. magnetic ou.n aries are snown y_ ICK red lines here an _'n igure . a_rrower Ines coloured according to their orlerl a |0.ns ( _ey owerrg T o el WL | IV \ - A o S et | Pl . 7% , ' ' " i O Ee— occupy only the P, R, and R’ orientations. The McRae Lake dyke swarm is This Open File release is a product of Natural Resources Canada's Geo-
f0 2.68 setting. Sedimentary components were eroded from diverse terranes of a micro- (1998); Janvier et al, (2015); inset) represent near-surface to surface lineaments derived from aeromagnetic, LANDSAT and other imagery. These lineament arrays represent secondary but still major brittle surface — ' : ., —' — — _— d i schelon dvkes b h th heast Thel : i
Ei . , : . " . _ . timont. Deformation and pri 1d mineralization focused along fault Peh I (20130): Zaleski et al traced as several linear to en échelon dykes beneath the northeast Thelon mapping for Energy and Minerals (GEM) program.
igure 1B. Regional representation of lineament arrays with respect to the total magnetic field (magnetic range on left; from Tschirhart et al., continent. Deformation and primary gold mineralization focused along fauits ehrsson et al., (2013a); Zaleski et al., faults that fit into the Riedel sh del (i t | iaht). Th b ti that li ts of h ffset t li ts of th th rts th ) A, . -
: o ; > b » D : : bounding different assemblages. (2001); McNicoll (op. cit.) aults that fit into the Riedel shear model (inset, lower right). The observation that one or more lineaments of each array offset one to many lineaments of the other arrays supports the - Basin and ~500 km farther northeast, via distinct linear aeromagnetic highs
2011b) in the central 80% of Figure 1A. The deep ductile displacements (D), also termed “parent faults”, are identified by their deep demagnetized i . . . . . . . Fi 6. Li loured di Riedel sh del left. after Anand and Jeff 2017)in th b Si Fi 9 Li in the B Granite Grid explorati d ined f ic. LANDSAT and air oh hi ’
. _ : _ o d | . : : : : — : concept that these lineaments all developed or or were reactivated durina rouahlv the same DP4 time period. Lakes (trans arent) are labelled in Figure 2A igure 6. Lineament arrays coloured according to Riedel shear model (upper left, after Anand and Jefferson 7) in the area between Siamese igure 9. Lineaments in the Bong to Granite Grid exploration areas, determined from aeromagnetic, and air photograph imagery h d d Buch dE t 2013 P
zones and very large offsets of other magnetic units that they transect. Arrays of thinner lineaments (thin lines coloured as shown in the Riedel >2.74 | DAl Inferred early shortening & Sanning and Akutuak River foliated tonalite either predated or were subvolcanic Schau et al., (1982); Davis and Zaleski P P g ghly P . P 9 . lake and Thelon Fault Zone. The R and P lineaments correspond to synthetic shears whereas the X/R’ lineaments are antithetic. The major T combined with outcrop data, and coloured with respect to the Riedel shear reference stress model (inset top centre). Trend lines that correspond to mapped outcrops ( UC,: a_n an mst, g (_eterson et
shear stress model at lower right) are interpreted as brittle surface structures that accommodated the overall deep ductile movement at surface. thickening intrusions to early Woodburn Lake group. Cryptic locally preserved deformation. (1998); Pehrsson et al., (2013) (Skinny lake and Siamese lake) lineaments are extensional normal faults that were significantly reactivated during DP-10. The Siamese lake fault separating elements of the imbricated epiclastic-rhyolite-quartzite package were interpreted from outcrop and drill data (not evident as al., 2015b; Jefferson, et al., 2012). The R’-oriented McRae Lake lineaments
is followed by a major outcropping Mackenzie diabase dyke. The topographic base is from LANDSAT TM. Location shown in Figs. 2A and 2B. lineaments but shown for reference). Black dots are ground stations, base is air photograph A15404 81, location in Figures 2A and 2B. are offset by R-oriented lineaments of the geochemically similar Thelon River
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