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1 Introduction

Space weather can have adverse effects on modern technology and human activities and
is recognized as a natural hazard of the technological age. The need to understand and
mitigate effects of space weather phenomena has stimulated research activities targeted
toward operational space weather forecasting. A number of forecast centres have been
established to provide information on global and regional space weather conditions [1].
In Canada, Natural Resources Canada has undertaken space weather activities on both,
the research side through the Public Safety Geoscience Program, and the operational side
through the Canadian Hazards Information Service which operates the Canadian Space
Weather Forecast Centre (CSWFC) [2].

Figure 1: SDO satellite AIA-193 image of the Sun on 09 January 2014. The dark regions
on the solar disc represent coronal holes while bright features represent active regions
and coronal loops.

Forecasting space weather is a challenging task. There are still many unanswered ques-
tions concerning space weather. More research is needed to understand space weather
processes including solar activity which is the driver of space weather. Ground and satel-
lite observations of the Sun’s surface and solar atmosphere are a crucial tool that provides
the space weather research and forecasting communities with information about the gen-
eration and dynamics of solar disturbances. An example of solar observations is shown in
Fig. 1. The figure shows an extreme ultraviolet (EUV) image of the solar corona taken
by the Solar Dynamics Observatory (SDO) satellite on 09 January 2014 [3]. The bright
features in the image represent active regions and magnetic field loops where coronal
plasma is strongly confined. In contrast, the dark areas on the solar disc, called coronal
holes (COHO), are associated with plasma which freely escapes the lower corona along
open magnetic field lines. It is widely accepted that high speed (∼ 500 - 800 km/s) solar
wind streams (HSS) emanate from COHO. The origin of slow solar wind (∼ 300 - 400
km/s) is still not well understood [4].

The configuration and evolution of the Sun’s magnetic field is a key component that
triggers and influences solar outputs such as solar wind, solar flares and coronal mass ejec-
tions (CME). Sunspots, which represent “islands” of very strong photospheric magnetic
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field are an indicator of magnetic field evolution. Changes in the number of the sunspots
follow an approximately 11 year cycle, giving rise to quiet and active periods of solar
activity. To illustrate this, in Fig. 2 the solar radio flux at a 10.7cm wavelength (F10.7)
for 1947-2014 (Fig. 2a, monthly averaged), and 2007-2014 (Fig. 2b, daily measured) is
shown. The radio flux is measured by the Dominion Radio Astrophysical Observatory
(DRAO, National Research Council Canada) [5]. The flux plotted in Fig. 2 is expressed
in solar flux units (1 sfu = 10−22Wm−2Hz−1), and represents so called adjusted flux, i.e.
the flux corrected for variations in the Sun-Earth distance. F10.7 depends on the intensity
of the solar magnetic field and is correlated with the sunspot number.

Figure 2: Adjusted 10.7cm solar radio flux. (a) Monthly averaged for 1947-2014 and (b)
daily measured for 2007-2014.

During quiet years, which fall around the minima of the F10.7 curve shown in Fig.
2a, the coronal magnetic field resembles a dipole with open magnetic field lines rooted
mainly in the polar regions of the Sun. The consequence of this field configuration is the
formation of large polar COHO. During a low solar activity period, space weather effects
associated with HSS from high-latitude COHO prevail. As the solar cycle progresses,
more sunspots start to appear on the solar disc and the magnetic structure of the corona
becomes more complex (see Fig. 1). This higher solar activity period of the solar cycle is
characterized by an increased number of solar flares and CMEs which can be followed by
solar energetic particle events. Moreover, during this period low-latitude, usually smaller,
COHO emerge.

Reconstruction and quantification of the coronal magnetic field from solar observations
poses a challenge. The direct measurements of the field, using the Zeeman spectral line
splitting effect, are mainly limited to photospheric - chromospheric heights (< 2500km).
An example of the magnetic field measurement is shown in Fig. 3 for Carrington rota-
tions (CR) 2077 (Fig. 3a) and 2147 (Fig. 3b). These magnetograms are obtained by
the Global Oscillation Network Group (GONG) [6], and represent full-surface maps of
the magnetic field radial component at the photosphere Br(R0). The field in Fig. 3 is
saturated at ±15 G. The red and blue colours represent Br(R0) which is directed away
from and toward the surface of the Sun, respectively. As we can see from Fig. 2b, CR2017
and CR2147 magnetograms capture solar minimum (CR2077) and maximum (CR2147).
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Figure 3: Full-surface GONG magnetograms for (a) CR2077 and (b) CR2147. The
magnetograms represent the photospheric radial component Br(R0) of the magnetic field.
The field scale is saturated at ±15 G. Dash-dot line represents the sub-Earth positions.

To derive a global coronal magnetic field and to infer properties of the corona using
solar magnetograms as an input, numerical models based on different approximations
are used [7]. Since the coupling between charged particles and fields is described self-
consistently, the Magnetohydrodynamics (MHD) models would be one of the best ways
to treat the problem. However, they also require assumptions and boundary conditions,
such as plasma temperature and density, which are difficult to derive from solar obser-
vations. Therefore, the MHD solutions for the global steady-state magnetic structure
of the corona do not always offer significant advantage over solutions obtained by more
restrictive approximations, such as force-free or potential-field models [8]. Although the
potential-field models, proposed in 1969 [9], [10], represent a simple approach where the
plasma dynamics are neglected, they are still a widely used numerical tool to investigate
and reproduce observed coronal features. The potential-field models are computationally
not too demanding and their inputs, i.e. magnetograms, are regularly available.

A numerical code for the global coronal magnetic field, based on potential-field source-
surface (PFSS) and Schatten current sheet (SCS) models [9]-[12], has been developed at
the CSWFC. The reason for the development lies in the fact that these models are used
not only in the research community but in operational applications as well. For example,
these models are used as a base for solar wind speed and magnetic field polarity forecasts
[13]-[17], to provide initial conditions to MHD space weather codes [18]-[20], etc. We plan
to use the developed code as part of CSWFC solar wind forecast framework.

The purpose of this paper is to describe the theoretical approach and numerical meth-
ods used in the CSWFC PFSS - SCS code. In Section 2 the PFSS model equations are
derived, and in Section 3 an extension of the magnetic field beyond the “source-surface”
proposed by Schatten [12] is presented. In Section 4, a brief description of numerical tech-
niques and investigation of the dependence of the code outputs on numerical parameters
are given. The numerical results are obtained using GONG magnetograms, in particular
by those shown in Fig. 3. The summary is given in Section 5.
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2 Potential-field source-surface (PFSS) model

The motion of charged particles in the corona is coupled with the magnetic field generated
by the solar dynamo. In the lower corona, where the magnetic field is strong, the magnetic
field pressure pB dominates over the plasma thermal pressure pth [21], i.e.

β =
pth
pB

=
nkbT

B2/(2µ0)
≪ 1, (1)

where n is the particle density, kb is Boltzmann’s constant, T is the temperature, B is
the magnetic field intensity and µ0 is the magnetic permeability of a vacuum. In other
words, in the region where β ≪ 1, the structure of the Sun’s atmosphere and the plasma
dynamics are defined by the Sun’s magnetic field. Moving outward from the lower corona,
due to coronal heating of the plasma and lower magnetic field intensity, plasma motion
starts to play a key role. The plasma currents distort the magnetic field lines and, in the
β > 1 region where the plasma thermal pressure dominates, the magnetic field lines are
carried along by the highly conductive solar wind outflow.

In the following we will focus our attention on the coronal region where plasma β is
less than unity. Assuming a stationary state, the magnetic field properties are given by
(see e.g. [22]):

∇ ·B = 0, (2)

∇×B = µ0j, (3)

where j is the electric current. Neglecting the Lorenz force

F = j×B = 0, (4)

in combination with Eq. (3) gives

(∇×B)×B = 0, (5)

which is satisfied if
B||(∇×B), or (6)

∇×B = 0. (7)

The condition expressed by Eq. (6) leads to so-called force-free models where currents
are allowed to flow along the magnetic field lines, while Eq. (7) represents the current-free
approximation.

2.1 Current-free approximation of the coronal magnetic field

The current-free approximation Eq. (7) implies that the magnetic field can be expressed
as the gradient of a scalar potential Ψ,

B = −∇Ψ. (8)
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Taking into account the divergenceless property of the magnetic field Eq. (2), this
potential-field equation gives the Laplace equation for the scalar potential

∇2Ψ = 0. (9)

Using the separation of variables Ψ(r, θ, φ) = Λ(r)Θ(θ)Φ(φ) in spherical coordinates
(r, θ, φ), where r is the radius, θ is the colatitude (θ ∈ [0, π]), and φ is the longitude
(φ ∈ [0, 2π]), the Laplace equation (9) can be rewritten as:

r2

Ψ
∇2Ψ =

1

Λ

d

dr

(
r2
dΛ

dr

)
+

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

Φ sin2 θ

d2Φ

dφ2
= 0. (10)

Since expressions for the radial r and angular (θ, φ) part in Eq. (10) are independent,
they must be constant. Writing the separation constant as n(n+ 1), we obtain

1

Λ

d

dr

(
r2
dΛ

dr

)
= n(n+ 1), (11)

for the radial part and

1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

Φ sin2 θ

d2Φ

dφ2
= −n(n+ 1), (12)

for the angular part of the Laplace equation.

2.2 Laplace equation - radial solution

Equation (11) represents an Euler differential equation,

r2

Λ

d2Λ

dr2
+

2r

Λ

dΛ

dr
= n(n+ 1), (13)

which can be solved by looking for solutions of the form Λ(r) ∝ rk. Inserting the proposed
solution into Eq. (13) we obtain

[k(k + 1)− n(n+ 1)] rk = 0, (14)

which is satisfied if k = n or k = −(n + 1). Therefore, the radial solution Λ(r) of the
Laplace equation (11) is anr

n or bnr
−(n+1), or their linear combination

Λn(r) = anr
n + bn

1

rn+1
, (15)

where an and bn are constants.

2.3 Laplace equation - angular solution

The angular part Eq. (12) of the Laplace equation can also be separated into φ and θ
components. Taking the separation constant as m2, from Eq. (12) we get

1

Φ

d2Φ

dφ2
+m2 = 0, (16)
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and

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+ n(n+ 1) sin2 θ −m2 = 0. (17)

The solution of Eq. (16) is Φ ∝ eimφ. Since the function Φ should satisfy longitudinal
periodicity Φ(φ) = Φ(φ+2π) and Φ

′

(φ) = Φ
′

(φ+2π), the constant m must be an integer.
Thus, the general solution of Eq. (16) is

Φm(φ) = cm cosmφ+ dm sinmφ with m = 0, 1, 2, ... (18)

where cm and dm are constants.

To solve part of the Laplace equation which depends on the colatitude θ, we introduce
the substitution µ = cos θ in Eq. (17). Thus, we have

d

dµ

[
(1− µ2)

dΘ

dµ

]
+

[
n(n+ 1)−

m2

1− µ2

]
Θ = 0. (19)

This equation represents the associated Legendre differential equation of order m. It is
clear now why we wrote the separation constant between the radial and angular part in
Eq. (11) and (12) as n(n+ 1).

Since −1 ≤ µ ≤ 1 (θ ∈ [0, π]), the associated Legendre differential equation (19) has
regular singular points for µ = ±1. It can be shown that the solution Θ(µ) is finite at
the poles if n = 0, 1, 2, ... (see e.g. [23] p.246). For m = 0 the solutions Θ(µ) of Eq. (19)
are called Legendre polynomials Pn(µ),

Pn(µ) =
1

2nn!

dn

dµn
(µ2 − 1)n, (20)

and for m 6= 0 the solutions are associated Legendre polynomials Pn,m(µ) (see e.g. [24]
p.609, [25]),

Pn,m(µ) = (1− µ2)
m
2

dmPn(µ)

dµm
, (21)

where n and m denote the degree and order of the polynomial, respectively. Note that
Pn,0(µ) = Pn(µ). Furthermore, from Eq. (20) and (21) it follows

Pn,m(µ) = (1− µ2)
m
2

1

2nn!

dn+m

dµn+m
(µ2 − 1)n, (22)

which gives
Pn,m(µ) = 0 for m > n, (23)

Pm,m(µ) = (1− µ2)
m
2

(2m)!

2mm!
for n = m, (24)

and

Pm+1,m(µ) = (2m+ 1)µPm,m(µ) for n = m+ 1. (25)
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It can be shown that the following recursion relation also holds

Pn,m(µ) =
2n− 1

n−m
µPn−1,m(µ)−

n− 1 +m

n−m
Pn−2,m(µ) for n ≥ m+ 2. (26)

Taking into account Eq. (18) and (21), we see that the solution for the angular part
Eq. (12) of the Laplace equation can be represented as a linear combination of spherical
harmonics Pn,m(cos θ) cosmφ (m = 0, 1, ..., n) and Pn,m(cos θ) sinmφ (m = 1, 2, ..., n).
On the spherical surface, the spherical harmonics are orthogonal. They satisfy

1

4π

∫ π

0

∫ 2π

0
Pn,m(cos θ)

{
cosmφ
sinmφ

}
Pn′,m′(cos θ)

{
cosm′φ
sinm′φ

}
sin θdθdφ

= δn
′

n δm
′

m

1

2(2n+ 1)

(n+m)!

(n−m)!
for 0 < m ≤ n, (27)

and

1

4π

∫ π

0

∫ 2π

0
Pn,m(cos θ) cosmφ Pn′,m′(cos θ) cosm′φ sin θdθdφ

= δn
′

n δm
′

m

1

2n+ 1
for m = 0, (28)

where δn
′

n and δm
′

m are the Kronecker deltas (0 < m′ ≤ n′, n′ = 0, 1, 2, ...). Note also that
for m,m′ ≥ 0 we have

1

4π

∫ π

0

∫ 2π

0
Pn,m(cos θ) sinmφ Pn′,m′(cos θ) cosm′φ sin θdθdφ = 0. (29)

Instead of Pn,m(cos θ), orthogonal functions P̃
m
n (θ) with different normalization factors

kn,m are used in different fields of physics,

1

4π

∫ π

0

∫ 2π

0
P̃m
n (θ)

{
cosmφ
sinmφ

}
P̃m′

n′ (θ)

{
cosm′φ
sinm′φ

}
sin θdθdφ = k2

n,mδ
n′

n δm
′

m . (30)

For k2
n,m = 1, denoting P̃m

n (θ) as Rm
n (θ) here, from Eq. (30), (27) and (28) we obtain

Rm
n (θ) =

(
(2− δ0m)(2n+ 1)(n−m)!

(n+m)!

) 1

2

Pn,m(cos θ). (31)

The functions Rm
n (θ) are completely normalized and are used, for example, in [11] to map

the coronal magnetic field. It is useful to derive here some properties of functions Rm
n (θ)

which will allow their numerical generation [11]. From Eq. (31) and (24) for n = m it
follows

Rm
m(θ) =

((2− δ0m)(2m+ 1)(2m)!)
1

2

2mm!
sinm θ, (32)

10



and from Eq. (31) and (25) for n = m+ 1 we get

Rm
m+1(θ) = (2m+ 3)

1

2 cos θRm
m(θ). (33)

The recursion relation Eq. (26) in the case of functions Rm
n (θ) is

Rm
n (θ) =

(
2n+ 1

n2 −m2

) 1

2 [
(2n− 1)

1

2 cos θRm
n−1(θ)

−

(
(n− 1)2 −m2

2n− 3

) 1

2

Rm
n−2(θ)


 for n ≥ m+ 2. (34)

From Eq. (32)-(34) we obtain the following derivatives:

dRm
m(θ)

dθ
=

((2− δ0m)(2m+ 1)(2m)!)
1

2

2mm!
m sinm−1 θ cos θ, (35)

dRm
m+1(θ)

dθ
= (2m+ 3)

1

2

(
cos θ

dRm
m(θ)

dθ
− sin θRm

m(θ)

)
, (36)

dRm
n (θ)

dθ
=

(
2n+ 1

n2 −m2

) 1

2

[
(2n− 1)

1

2

(
cos θ

dRm
n−1(θ)

dθ
− sin θRm

n−1(θ)

)

−

(
(n− 1)2 −m2

2n− 3

) 1

2 dRm
n−2(θ)

dθ


 for n ≥ m+ 2. (37)

In geophysical research instead of Rm
n (θ), so-called Schmidt functions are widely used.

They are obtained by choosing k2
n,m = 1/(2n+1) in Eq. (30). Thus, denoting the Schmidt

functions as Pm
n (θ), we have

Pm
n (θ) =

1

(2n+ 1)1/2
Rm

n (θ) =

(
(2− δm,0)(n−m)!

(n+m)!

) 1

2

Pn,m(cos θ). (38)

In the following we will use the Schmidt functions to write the full solution of the Laplace
equation (9).

2.4 Coronal magnetic field between the Sun and the source-
surface

In our considerations we restricted our attention to the coronal region where the magnetic
field pressure pB dominates and we assumed that this region is current-free (j = 0). Since
at some distance from the Sun the solar wind starts to drag the magnetic field and forces
the magnetic field lines to open, we will define a surface, termed the “source-surface”,
where currents exist and cancel the transverse magnetic field. Thus, at the source-surface
the magnetic field is purely radial (B = Br). Furthermore, we will assume that this sur-
face is spherical, with radius Rs (see Fig. 4). The location of the source-surface is usually
set to Rs = 2.5R0, where R0 is the radius of the Sun [9].
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To find the potential Ψ(r, θ, φ) and the coronal magnetic field between two spheres
(the Sun and the source-surface), where our current-free assumption holds, we will use
results obtained for solutions of the Laplace equation. From Eq. (15) we write the radial
part of the solution in the region R0 ≤ r ≤ Rs as (see [24] 17.13)

Λn = anRs

(
r

Rs

)n

+ bnR0

(
R0

r

)n+1

, (39)

which with Eq. (18) and (38) gives the general solution

Ψ =
∞∑

n=0

n∑

m=0

Pm
n (θ)

{
gnm cosmφ

[
R0

(
R0

r

)n+1

+ snmRs

(
r

Rs

)n
]

+ hnm sinmφ

[
R0

(
R0

r

)n+1

+ tnmRs

(
r

Rs

)n
]}

, (40)

where gnm, hnm, snm and tnm are constants.

Figure 4: Geometry of the problem. We assume that between the Sun’s surface (R0)
and the source-surface (Rs) the corona is current-free j = 0. At the source-surface the
magnetic field is purely radial B = Br.

At the source-surface r = Rs the magnetic field must be purely radial, i.e. B =
Br(Rs, θ, φ) (Bθ = Bφ = 0 for r = Rs). Equation (8) therefore implies that Ψ(Rs, θ, φ)
is a constant. Without loss of generality we can choose Ψ(Rs, θ, φ) = 0, which from Eq.
(40) gives the constants snm and tnm,

snm = tnm = −
(
R0

Rs

)n+2

.

Taking this into account, we can express the solution for the scalar potential Ψ(r, θ, φ) in
the region R0 ≤ r ≤ Rs as

Ψ =
∞∑

n=1

[
R0

(
R0

r

)n+1

−Rs

(
R0

Rs

)n+2 ( r

Rs

)n
]

×
n∑

m=0

Pm
n (θ)(gnm cosmφ+ hnm sinmφ), (41)
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which using Eq. (8) gives the magnetic field components:

Br = −
∂Ψ

∂r
=

∞∑

n=1

[
(n+ 1)

(
R0

r

)n+2

+ n
(
R0

Rs

)n+2 ( r

Rs

)n−1
]

×
n∑

m=0

Pm
n (θ)(gnm cosmφ+ hnm sinmφ), (42)

Bθ = −
1

r

∂Ψ

∂θ
= −

∞∑

n=1

[(
R0

r

)n+2

−
(
R0

Rs

)n+2 ( r

Rs

)n−1
]

×
n∑

m=0

dPm
n (θ)

dθ
(gnm cosmφ+ hnm sinmφ), (43)

Bφ = −
1

r sin θ

∂Ψ

∂φ
=

∞∑

n=1

[(
R0

r

)n+2

−
(
R0

Rs

)n+2 ( r

Rs

)n−1
]

×
n∑

m=0

Pm
n (θ)

m

sin θ
(gnm sinmφ− hnm cosmφ). (44)

Note that in Eq. (41)-(44) we omitted the term n = 0, since the requirement ∇ ·B = 0
imposes that this term vanish.

To find the coefficients gnm and hnm in Eq. (41)-(44), we multiply Eq. (42) for the case
r = R0 with Pm′

n′ (θ) cosm′φ and Pm′

n′ (θ) sinm′φ to obtain gnm and hnm, respectively. By
integrating over the spherical surface and using orthogonality of the Legendre polynomials
with Schmidt normalization, i.e.

1

4π

∫ π

0

∫ 2π

0
Pm
n (θ)

{
cosmφ
sinmφ

}
Pm′

n′ (θ)

{
cosm′φ
sinm′φ

}
sin θdθdφ =

1

2n+ 1
δn

′

n δm
′

m , (45)

we get

{
gnm
hnm

}
=

2n+ 1

4π
(
n+ 1 + n

(
R0

Rs

)2n+1
)

×
∫ π

0
dθ sin θPm

n (θ)
∫ 2π

0
dφBr(R0, θ, φ)

{
cosmφ
sinmφ

}
. (46)

Since the radial component of the photospheric magnetic field Br(R0, θ, φ) in Eq. (46)
can be derived from solar magnetograms, we can calculate the coefficients gnm and hnm,
and using Eq. (42)-(44) we can obtain the coronal field in the region R0 ≤ r ≤ Rs. To
generate Pm

n (θ) and dPm
n (θ)/dθ for all n and m (m ≤ n) needed in Eq. (46) and Eq.

(42)-(44), we use Eq. (32)-(37) keeping in mind

Pm
n (θ) =

1

(2n+ 1)1/2
Rm

n (θ). (47)

The model of the coronal magnetic field based on equations derived here is referred
to as a potential-field source-surface (PFSS) model [9]-[10].
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3 Schatten current sheet (SCS) model

If we consider the radial solution for the coronal magnetic field which is not bounded by
the source-surface, then the therm r/Rs is absent in Eq. (39). Thus, for the current-free
r ≥ R0 region, the solution for the potential Ψ(r, θ, φ) is

Ψ =
∞∑

n=1

R0

(
R0

r

)n+1 n∑

m=0

Pm
n (θ)(gnm cosmφ+ hnm sinmφ), (48)

which with Eq. (8) gives the magnetic field components

Br = −
∂Ψ

∂r
=

∞∑

n=1

(n+ 1)
(
R0

r

)n+2 n∑

m=0

Pm
n (θ)(gnm cosmφ+ hnm sinmφ), (49)

Bθ = −
1

r

∂Ψ

∂θ
= −

∞∑

n=1

(
R0

r

)n+2 n∑

m=0

dPm
n (θ)

dθ
(gnm cosmφ+ hnm sinmφ), (50)

Bφ = −
1

r sin θ

∂Ψ

∂φ
=

∞∑

n=1

(
R0

r

)n+2 n∑

m=0

Pm
n (θ)

m

sin θ
(gnm sinmφ− hnm cosmφ). (51)

The coefficients gnm and hnm in Eq. (48)-(51), instead of Eq. (46), are now

{
gnm
hnm

}
=

2n+ 1

4π (n+ 1)

∫ π

0
dθ sin θPm

n (θ)
∫ 2π

0
dφBr(R0, θ, φ)

{
cosmφ
sinmφ

}
. (52)

Since the solution for the coronal magnetic field Eq. (49)-(51) does not take into account
the influence of plasma motion and the fact that at some distance from the Sun the
condition β ≪ 1 is violated, it cannot represent the coronal field for all r ≥ R0. To include
the effect of plasma currents on the structure of the solar corona, but not with the zero
potential source-surface, Schatten proposed the introduction of a new spherical source-
surface at r = Rcp, which we call the cusp surface, from where the transverse currents
are allowed [12]. These currents are limited to thin sheets between regions of opposite
magnetic polarity where the Lorenz force j×B is small. While the PFSS zero potential
source-surface forces magnetic field lines to be radial at r = Rs, the Schatten current
sheet (SCS) model allows a non-radial structure of the coronal field for r ≥ Rcp. The
SCS model better agrees with coronal observations. In particular, with the observations
of polar plumes and streamers [12].

3.1 Coronal magnetic field beyond the source-surface

In the SCS model the coronal magnetic field is calculated first in the region R0 ≤ r ≤ Rcp.
The obtained solution is then reoriented at r = Rcp to point outward. This reorientation
of the field means that if Br(Rcp) ≥ 0 no changes are needed, but if Br(Rcp) < 0, the
signs of the Br(Rcp), Bθ(Rcp) and Bφ(Rcp) components are changed. The field beyond
Rcp is obtained by matching the potential-field solution for r ≥ Rcp, i.e.
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Br = −
dΨ

dr
=

∞∑

n=0

(n+ 1)
(
Rcp

r

)n+2 n∑

m=0

Pm
n (θ)(g′nm cosmφ+ h′

nm sinmφ), (53)

Bθ = −
1

r

dΨ

dθ
= −

∞∑

n=0

(
Rcp

r

)n+2 n∑

m=0

dPm
n (θ)

dθ
(g′nm cosmφ+ h′

nm sinmφ), (54)

Bφ = −
1

r sin θ

dΨ

dφ
=

∞∑

n=0

(
Rcp

r

)n+2 n∑

m=0

Pm
n (θ)

m

sin θ
(g′nm sinmφ− h′

nm cosmφ), (55)

with the magnetic field components of the reoriented field at r = Rcp. The effect of this
step is to open magnetic field lines, so that no closed magnetic lines exist beyond Rcp.
Although the reorientation of the magnetic field at Rcp violates ∇ ·B = 0 this does not
affect the magnetic stress. The final step is to assign proper polarity to the magnetic
field lines in the region r ≥ Rcp using the polarity obtained before the field reorientation
at Rcp. This polarity restoration ensures that ∇ ·B = 0 is not violated. Furthermore, it
implies that current sheets are introduced between the magnetic fields of opposite polarity.

It should be pointed out that calculation of the coronal field in the region R0 ≤ r ≤ Rcp

based on Eq. (49)-(51) and with Rcp = 1.6R0 is proposed by Schatten. However, Schat-
ten’s idea to introduce current sheets using the technique described above is used in
different models. For example, the Wang-Sheeley-Arge (WSA) solar wind model uses
the PFSS model to obtain a coronal field solution for R0 ≤ r ≤ Rs Eq. (42)-(44), and
then employs the SCS model to derive the solution beyond r ≥ Rs (i.e. in this case
the assumption is that Rcp = Rs) [14], [26]. The WSA model with an extension of the
coronal magnetic field to ∼ 25R0, based on the SCS model, is used to provide the inner
solar wind boundary conditions for the ENLIL MHD code [20]. In the coupling of the
PFSS and SCS models, Rcp can be set below Rs. One of the benefits of using Rcp < Rs

is to remove kinks in the field lines at the interference of the models [27]. Further, Zhao
and Hoeksema in their coronal field model which includes horizontal volume currents,
for example, used the SCS technique to derive the magnetic field between Rcp and Rs

(Rcp < Rs) [28], [29].

To derive coefficients g′nm and h′

nm in an overdetermined system of equations Eq. (53)-
(55) we use a least-squares procedure to fit the magnetic field components Eq. (53)-(55)
at Rcp to those obtained by the field reorientation. Let us denote the reoriented field
at Rcp as Bcp

k (θi, φj), where k = 1, 2, 3 corresponds to r, θ, φ, respectively (see e.g. [12],
[28], [29]). Here, we express the quantities on a uniform mesh with grid points θi and φj

(i ∈ [1, I], j ∈ [1, J ]), and we limit the degree n of the harmonics by Ns.

In the least-squares approach, we are looking for g′nm and h′

nm so that the sum of
squared residuals

F =
3∑

k=1

I∑

i=1

J∑

j=1

[
Bcp

k (θi, φj)−
Ns∑

n=0

n∑

m=0

(g′nmαknm(θi, φj) + h′

nmβknm(θi, φj))

]2
, (56)
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is minimized,
∂F

∂g′nm
= 0 and

∂F

∂h′

nm

= 0. (57)

In Eq. (56) we use symbols α and β, where

α1nm(θi, φj) = (n+ 1)Pm
n (θi) cosmφj,

α2nm(θi, φj) = −
dPm

n (θ)

dθ

∣∣∣∣∣
θ=θi

cosmφj,

α3nm(θi, φj) =
m

sin θi
Pm
n (θi) sinmφj,

(58)

β1nm(θi, φj) = (n+ 1)Pm
n (θi) sinmφj,

β2nm(θi, φj) = −
dPm

n (θ)

dθ

∣∣∣∣∣
θ=θi

sinmφj,

β3nm(θi, φj) =
m

sin θi
Pm
n (θi) cosmφj,

as follows from Eq. (53)-(55). From Eq. (56) and (57) for each (m,n) we get

3∑

k=1

I∑

i=1

J∑

j=1

αknm(θi, φj)


Bcp

k (θi, φj)−
Ns∑

p=0

p∑

t=0

(
g′ptαkpt(θi, φj) + h′

ptβkpt(θi, φj)
)

 = 0, (59)

and

3∑

k=1

I∑

i=1

J∑

j=1

βknm(θi, φj)


Bcp

k (θi, φj)−
Ns∑

p=0

p∑

t=0

(
g′ptαkpt(θi, φj) + h′

ptβkpt(θi, φj)
)

 = 0. (60)

This can be written in a matrix form as

α̂β · B̂ = α̂β · α̂β
T
· ĜH, (61)

where

B̂ =




Bcp
1 (θ1, φ1)

Bcp
1 (θ1, φ2)

·
·

Bcp
1 (θ1, φJ)

Bcp
1 (θ2, φ1)

·
·

Bcp
1 (θI , φJ)

Bcp
2 (θ1, φ1)

·
·

Bcp
3 (θI , φJ)




, ĜH =




g00
g10
g11
g20
·
·

gNs,Ns

h11

h21

h22

·
·

hNs,Ns




, (62)
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α̂β =




α100(θ1, φ1) α100(θ1, φ2) · · α100(θ1, φJ) α100(θ2, φ1) ·
α110(θ1, φ1) α110(θ1, φ2) · · α110(θ1, φJ) α110(θ2, φ1) ·
α111(θ1, φ1) α111(θ1, φ2) · · α111(θ1, φJ) α111(θ2, φ1) ·
α120(θ1, φ1) α120(θ1, φ2) · · α120(θ1, φJ) α120(θ2, φ1) ·

· · · · · · ·
· · · · · · ·

α1NsNs
(θ1, φ1) α1NsNs

(θ1, φ2) · · α1NsNs
(θ1, φJ) α1NsNs

(θ2, φ1) ·
β111(θ1, φ1) β111(θ1, φ2) · · β111(θ1, φJ) β111(θ2, φ1) ·
β121(θ1, φ1) β121(θ1, φ2) · · β121(θ1, φJ) β121(θ2, φ1) ·
β122(θ1, φ1) β122(θ1, φ2) · · β122(θ1, φJ) β122(θ2, φ1) ·

·
·

β1NsNs
(θ1, φ1) β1NsNs

(θ1, φ2) · · β1NsNs
(θ1, φJ) β1NsNs

(θ2, φ1) ·

· β100(θI , φJ) β200(θ1, φ1) · · β300(θI , φJ)
· β110(θI , φJ) β210(θ1, φ1) · · β310(θI , φJ)
· β111(θI , φJ) β211(θ1, φ1) · · β311(θI , φJ)
· β120(θI , φJ) β220(θ1, φ1) · · β3210(θI , φJ)
· · · · · ·
· · · · · ·
· α1NsNs

(θI , φJ) α2NsNs
(θ1, φ1) · · α3NsNs

(θI , φJ)
· β111(θI , φJ) β211(θ1, φ1) · · β311(θI , φJ)
· β121(θI , φJ) β221(θ1, φ1) · · β321(θI , φJ)
· β122(θI , φJ) β222(θ1, φ1) · · β322(θI , φJ)
· · · · · ·
· · · · · ·
· β1NsNs

(θI , φJ) β2NsNs
(θ1, φ1) · · β3NsNs

(θI , φJ)




. (63)

Here, the dimension of B̂ is (3IJ)× 1, the dimension of ĜH is (Ns + 1)2 × 1, and α̂β is
a (Ns + 1)2 × (3IJ) matrix. In ĜH we omitted all m = 0 elements (sinmφ = 0 in Eq.

(53)-(55), for m = 0). In Eq. (61) α̂β
T
is the transpose matrix of α̂β with the dimension

(3IJ) × (Ns + 1)2. Substituting ÂB = α̂β · α̂β
T
, from Eq. (61) we obtain the solution

for g′nm and h′

nm

ĜH = ÂB
−1

· α̂β · B̂, (64)

where ÂB
−1

is the inverse of (Ns + 1)2 × (Ns + 1)2 ÂB matrix. The coefficients g′nm and
h′

nm obtained from Eq. (64) are used in the discrete form of Eq. (53)-(55) to calculate
the field for r ≥ Rcp. At the end, since this solution has all magnetic field lines pointing
outward, the polarity of magnetic field lines in the r ≥ Rcp region is restored to match
the polarity of the R0 ≤ r ≤ Rcp coronal field solution.
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4 Numerical solutions with GONG magnetograms

A Fortran numerical code has been developed to calculate the coronal magnetic field in
R0 ≤ r ≤ Rs and r ≥ Rs regions using the PFSS and SCS models, respectively. To
obtain the spherical harmonic coefficients gnm and hnm Eq. (46), GONG standard mag-
netograms are used [6]. The magnetograms represent full-surface (synoptic) maps of the
photospheric magnetic field Br(R0, θ, φ) measured in Gauss [G], and are available as full
Carrington rotation maps (see e.g. Fig. 3), or as near-real-time hourly updated magne-
tograms. The magnetograms are given on the sin(θ)− φ grid with 180× 360 grid points,
and are provided in the FITS data format. The CFITSIO library is used to process the
FITS files and extract the data [30].

In the following we will examine numerical results obtained for different choices of
numerical parameters. To capture cases with different solar activity levels, we will use
the CR2077 and CR2147 magnetograms shown in Fig. 3. These magnetograms cover the
activity at solar minimum (CR2077) and maximum (CR2147).

4.1 Number of spherical harmonics

The original GONG magnetograms are uniform on the sin(θ)−φ mesh and do not include
grid points at the poles. We will investigate the consequences of using the magnetograms
in this form to obtain gnm and hnm coefficients Eq. (46), and to derive the coronal
magnetic field Eq. (42)-(44). To calculate the coefficients, we use the discretized form of
Eq. (46),

{
gnm
hnm

}
=

2n+ 1

4π
(
n+ 1 + n

(
R0

Rs

)2n+1
)

No
θ∑

i=1

No
φ∑

j=1

∆AijP
m
n (θi)Br(R0, θi, φj)

{
cosmφj

sinmφj

}
,

(65)
where ∆Aij = ∆cos θ ∆φ = 4π/(N o

θN
o
φ) for the uniform sin(θ)− φ mesh, with N o

θ = 180
and N o

φ = 360 for GONG magnetograms. Furthermore, instead of using an infinite n
sum in Eq. (42)-(44), we will limit the maximum degree of harmonics with N .

Since the radial component of the magnetic field Eq. (42) obtained by the PFSS
model should match the magnetic field of the original magnetogram for r = R0, in Fig.
5 we plot (a) the original CR2077 magnetogram, and the solutions for Br(R0, θ, φ) from
the model for (b) N = 60, (c) N = 90, and (d) N = 120. The source-surface in the
PFSS model is placed at Rs = 2.5R0. The magnetic field scale in the figure is saturated
at ±15G. Fig. 6 represent the same case but with the CR2147 magnetogram. Note
that the original magnetograms do not include the poles, while we included them in the
PFSS solution. As we can see from (a) to (d) comparison, the fine details are blurred
out for solutions with a low number of harmonics and a series of ring-like structures
are present. These structures are induced by a large abrupt difference in the observed
magnetic field (see e.g. [31]). As it can be seen from Fig. 5 and 6, the ringing effect
is more pronounced in the case of magnetograms with strong active regions than in the
case of “quiet” magnetograms. Increasing the number of harmonics, i.e. N , decreases
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this effect. However, with increasing N , an artificial field emerges in the polar regions.
Using unsigned magnetic flux

Φ(r) = r2
∫ π

0

∫ 2π

0
|Br(r, θ, φ)| sin θdθdφ (66)

we can obtain the difference |Φo(R0)−ΦN(R0)|/Φ
o(R0) at R0 between the original mag-

netogram Φo(R0), and the results ΦN(R0) obtained with different N used in the PFSS
model. The difference is ≈18%, ≈10% and ≈7% for CR2077 and N = 60, N = 90 and
N = 120, respectively. For CR2147 we have ≈9%, ≈7% and ≈4% for N = 60, N = 90
and N = 120, respectively. As we can see, with increasing N , the difference in fluxes
decreases for both the CR2077 and CR2147 magnetograms.

While using a high number of harmonics at the photospheric level has obvious po-
sitive and negative effects, at the source-surface there is little difference in the results
obtained using different N . This can be expected since the radial part in Eq. (42)-(44)
decreases with n. Thus, the higher degree harmonics are losing their importance with
increasing distance from the Sun. To illustrate this, in Fig. 7 and 8 we can see solutions
for the magnetic field at the source-surface Br(2.5R0, θ, φ) obtained with (a) N = 60, (b)
N = 90, and (c) N = 120, for the CR2077 (Fig. 7) and CR2147 (Fig. 8) magnetograms.
In both cases, CR2077 and CR2147, the difference between unsigned magnetic fluxes at
the source-surface, e.g. |Φ60(Rs)− Φ120(Rs)|/Φ

60(Rs), is negligible.

Knowing the coronal magnetic field in the region R0 ≤ r ≤ Rs, Eq. (42)-(44), we can
trace the magnetic field lines using the following equations:

dr

ds
=

Br

B
, (67)

rdθ

ds
=

Bθ

B
, (68)

r sin θdφ

ds
=

Bφ

B
, (69)

where ds is a segment along the field line. We use a second-order Runge-Kutta method
to trace open magnetic field lines and we calculate their flux tube expansion factors fs,

fs =
|B(R0)|

|B(Rs)|

R2
0

R2
s

. (70)

In Fig. 9 and 10, we plot the results obtained by tracing open coronal magnetic field
lines (i.e. the lines that reach Rs) for the CR2077 (Fig. 9) and CR2147 (Fig. 10) mag-
netograms with (a) N = 60, (b) N = 90, and (c) N = 120 in the PFSS model. The
red and blue colour, i.e. 1/Fs which is associated with the magnetic polarity and 1/fs
(Fs = sign(B) fs), represents the foot-points of all open magnetic field lines. These foot-
points we will refer to as derived COHO. The black lines represent open field lines which
connect the sub-Earth positions at Rs with the foot-points at the photosphere. The sub-
Earth locations in (r, θ, φ) coordinates are calculated using astronomical formulae for a
given Carrington longitude, i.e. time and date [32].
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As we can see from Fig. 9 and 10, although the derived COHO are dependent on
N , in particular in the polar regions, the magnetic field lines that connect the sub-Earth
positions do not show much difference. This is due to the fact that the foot-points of
open magnetic field lines which connect the sub-Earth positions lie below the polar regions
where the artificial magnetic fields are generated.
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Figure 5: Magnetic field Br(R0, θ, φ) from (a) the CR2077 magnetogram, and from the
PFSS model with (b) N = 60, (c) N = 90, and (d) N = 120. The field is saturated at
±15 G. Dash-dot line represents the sub-Earth positions.

21



Figure 6: Magnetic field Br(R0, θ, φ) from (a) the CR2147 magnetogram, and from the
PFSS model with (b) N = 60, (c) N = 90, and (d) N = 120. The field is saturated at
±15 G. Dash-dot line represents the sub-Earth positions.
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Figure 7: Magnetic field at the source-surface Br(2.5R0, θ, φ) for CR2077 from the PFSS
model with (a) N = 60, (b) N = 90, and (c) N = 120. The field is saturated at ±0.15 G.
White line represents the neutral line and dash-dot line denotes the sub-Earth positions.
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Figure 8: Magnetic field at the source-surface Br(2.5R0, θ, φ) for CR2147 from the PFSS
model with (a) N = 60, (b) N = 90, and (c) N = 120. The field is saturated at ±0.15 G.
White line represents the neutral line and dash-dot line denotes the sub-Earth positions.
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Figure 9: Derived COHO for CR2077 from the PFSS model with (a) N = 60, (b) N = 90,
and (c) N = 120. 1/Fs is saturated at ±0.1. The black lines represent open magnetic
field lines which connect the sub-Earth positions with COHO.
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Figure 10: Derived COHO for CR2147 from the PFSS model with (a) N = 60, (b)
N = 90, and (c) N = 120. 1/Fs is saturated at ±0.1. The black lines represent open
magnetic field lines which connect the sub-Earth positions with COHO.
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4.2 Re-meshed magnetograms

To improve the accuracy of the PFSS model, instead of using the original GONG magne-
tograms with the sin(θ)−φ mesh, we re-mesh the magnetograms to a uniform θ−φ grid
[31], [33], [34]. The new mesh includes the grid at the poles and contains an odd number
of θ grid points. Let us denote with N o

θ , the number of grid points for the original mag-
netogram, and with Nθ, the number of odd grid points for the re-meshed magnetogram.
The number of φ grid points Nφ, is the same. In the following we will use the superscript
o to denote the original magnetogram.

Since the new mesh contains the poles, we extend the original magnetogram to include
them. The magnetic field at the south BS and north BN pole is approximated using the
magnetic field from the θ boundaries of the original magnetogram Bo

1o,j and Bo
No

φ
,j, i.e.

BS =
1

Nφ

Nφ∑

j=1

Bo
1o,j , (71)

BN =
1

Nφ

Nφ∑

j=1

Bo
No

θ
,j . (72)

The colatitudes of the re-meshed magnetogram are defined as

θi = π
Nθ − i

Nθ − 1
, (73)

where i ∈ [1, Nθ]. We use linear interpolation to assign the magnetic field to the re-meshed
magnetogram,

Bi,j = αBo
io+1,j + (1− α)Bo

io,j , (74)

for all j ∈ [1, Nφ]. Here

α =
θoio − θi

δ
, (75)

with θoio ≥ θi ≥ θoio+1 and δ = θi − θi+1.

To calculate Eq. (46) with the re-meshed magnetograms we use the Clenshaw-Curtis
quadrature rule

∫ π

0
dθ sin θF (θ) ≈

Nθ∑

i=1

ǫiwiF (θi) , (76)

where ǫ1 = ǫNθ
= 1/2, and ǫi = 1 for i 6= 1, Nθ [31]. The Clenshaw-Curtis weights wi are

wi = −
2

H

H∑

k=0

ǫ′k
4k2 − 1

cos

(
πk(i− 1)

H

)
, (77)

where H = (Nθ − 1)/2, ǫ′0 = ǫ′H = 1/2, and ǫ′k = 1 for k 6= 1, H. Thus, for the re-meshed
magnetograms we write Eq. (46) in the discrete representation as
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{
gnm
hnm

}
=

2n+ 1

4π
(
n+ 1 + n

(
R0

Rs

)2n+1
)

×
2π

Nφ

Nθ∑

i=1

Nφ∑

j=1

ǫiwiP
m
n (θi)Br(R0, θi, φj)

{
cosmφj

sinmφj

}
. (78)

In Fig. 11-18 we show results obtained by the re-meshed magnetograms for various nu-
merical parameters. In particular, in Fig. 11 and 12, we compare (a) the original 180×360
magnetogram with the re-meshed magnetograms using Nφ = 360 and (b) Nθ = 181, and
(c) Nθ = 283 grid points, for CR2077 (Fig. 11) and CR2147 (Fig. 12). In the case
of CR2077, the difference at R0 between the unsigned magnetic fluxes for the original
magnetogram Φo(R0) and the re-meshed magnetograms, i.e. |Φo(R0)−ΦR(R0)|/Φ

o(R0),
is ≈4% for both cases, with Nθ = 181 and Nθ = 283 grid points. For the CR2147 case,
the difference is ≈1% also for both, Nθ = 181 and Nθ = 283.

To examine how well the radial component of the magnetic field obtained by the PFSS
model matches the re-meshed magnetogram, in Fig. 13 and 14 we plot (a) the re-meshed
magnetogram, and the PFSS solutions for Br(R0, θ, φ) obtained with (b) N = 120, (c)
N = 150, and (d) N = 250. The number of grid points is Nθ = 181 and Nφ = 360.
Figures 13 and 14 represent CR2077 and CR2147 cases respectively. Although we can
notice a small ringing effect, in particular for CR2147, the re-meshed magnetogram is well
represented for all choices of Nθ. We can see that the re-meshed magnetogram allows use
of a larger number of spherical harmonics without causing an artificial field in the polar
regions. We note that the limit imposed on N , i.e. N ≤ 2Nθ/3 and N ≤ Nφ/3, is violated
in (c) and (d) [31], [34]. However, the results do not show noticeable artifacts. The dif-
ference |ΦR(R0) − ΦRN(R0)|/Φ

R(R0) between unsigned fluxes of the re-meshed CR2077
magnetogram ΦR(R0) and the fluxes obtained using Br(R0, θ, φ) from the PFSS model
ΦRN(R0) is ≈3%, ≈1%, and <1% for N = 120, N = 150, and N = 250, respectively.
For the CR2147 case this difference is ≈3%, ≈1%, and <1% for N = 120, N = 150, and
N = 250, respectively.

For Br(2.5R0, θ, φ) obtained by the PFSS model at the source-surface, there is a negli-
gible difference in the results obtained with (a) N = 120, (b) N = 150, and (c) N = 250.
This can be seen in Fig. 15 and 16 where re-meshed CR2077 and CR2147 magnetograms,
respectively, are used in the PFSS model. The small difference is also in the results for
derived COHO and open magnetic field lines which connect the photosphere with the
sub-Earth locations at Rs. In Fig. 17 (CR2077) and 18 (CR2147 ) we can see these
results for (a) N = 120, (b) N = 150, and (c) N = 250.
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Figure 11: Photospheric radial component of the magnetic field Br(R0, θ, φ) from (a) the
original 180 × 360 CR2077 magnetogram and re-meshed magnetograms with Nφ = 360
and (b) Nθ = 181, and (c) Nθ = 283. The field scale is saturated at ±15 G. Dash-dot
line represents the sub-Earth positions.
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Figure 12: Photospheric radial component of the magnetic field Br(R0, θ, φ) from (a) the
original 180 × 360 CR2147 magnetogram and re-meshed magnetograms with Nφ = 360
and (b) Nθ = 181, and (c) Nθ = 283. The field scale is saturated at ±15 G. Dash-dot
line represents the sub-Earth positions.
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Figure 13: Magnetic field Br(R0, θ, φ) from (a) the re-meshed CR2077 magnetogram, and
from the PFSS model with (b) N = 120, (c) N = 150, and (d) N = 250. The number
of grid points is Nθ = 181 and Nφ = 360. The field is saturated at ±15 G. Dash-dot line
represents the sub-Earth positions.
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Figure 14: Magnetic field Br(R0, θ, φ) from (a) the re-meshed CR2147 magnetogram, and
from the PFSS model with (b) N = 120, (c) N = 150, and (d) N = 250. The number
of grid points is Nθ = 181 and Nφ = 360. The field is saturated at ±15 G. Dash-dot line
represents the sub-Earth positions.
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Figure 15: Magnetic field at the source-surface Br(2.5R0, θ, φ) from the PFSS model for
the re-meshed CR2077 magnetogram with Nθ = 181 and Nφ = 360. (a) N = 120, (b)
N = 150, and (c) N = 250. The field is saturated at ±0.15 G. White line represents the
neutral line and dash-dot line denotes the sub-Earth positions.
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Figure 16: Magnetic field at the source-surface Br(2.5R0, θ, φ) from the PFSS model for
the re-meshed CR2147 magnetogram with Nθ = 181 and Nφ = 360. (a) N = 120, (b)
N = 150, and (c) N = 250. The field is saturated at ±0.15 G. White line represents the
neutral line and dash-dot line denotes the sub-Earth positions.
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Figure 17: Derived COHO from the PFSS model for the re-meshed CR2077 magnetogram
with Nθ = 181 and Nφ = 360. (a) N = 120, (b) N = 150, and (c) N = 250. 1/Fs is
saturated at ±0.1. The black lines represent open magnetic field lines which connect the
sub-Earth positions with COHO.
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Figure 18: Derived COHO from the PFSS model for the re-meshed CR2147 magnetogram
with Nθ = 181 and Nφ = 360. (a) N = 120, (b) N = 150, and (c) N = 250. 1/Fs is
saturated at ±0.1. The black lines represent open magnetic field lines which connect the
sub-Earth positions with COHO.
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4.3 Angular resolution

The results in Fig. 13-18 are obtained with the PFSS model 1◦ × 1◦ angular θ − φ
resolution. 1◦ corresponds to less than 2h in the Sun’s 27-day rotation. Although high-
resolution magnetograms and numerical models are in general desirable, from the prac-
tical point of view it is not always necessary to work with a high resolution model. In
particular, when the uncertainty of models is greater than the benefit of using the high
resolution.

In Fig. 19-24 we compare the results obtained using the re-meshed magnetograms with
Nθ = 181 and Nφ = 360, and with the PFSS model angular resolution (a) ∆θ = ∆φ = 1◦

and (b) ∆θ = ∆φ = 2.5◦. In Fig. 19 and 20, we can see the results for Br(R0, θ, φ)
obtained with the CR2077 and CR2147 re-meshed magnetograms, respectively. With the
lower resolution the fine details, including the ringing effect, are smoothed out. The dif-
ference |Φ1◦(R0)−Φ2.5◦(R0)|/Φ

1◦(R0) in the unsigned magnetic fluxes between the cases
with ∆θ = ∆φ = 1◦ and ∆θ = ∆φ = 2.5◦ are less than 1% for both, the CR2077 and
CR2147 magnetogram.

At the source-surface, Fig. 21 and 22, the difference in unsigned magnetic fluxes be-
tween the cases with (a) ∆θ = ∆φ = 1◦ and (b) ∆θ = ∆φ = 2.5◦ is negligible. As we can
see from Fig. 21 (CR2077) and 22 (CR2147) no visible differences are present.

As can be expected, due to the change in the resolution, the derived COHO shown
in Fig. 23 (CR2077) and 24 (CR2147) for (a) ∆θ = ∆φ = 1◦ and (b) ∆θ = ∆φ = 2.5◦,
show small differences. However, the topology of open magnetic field lines that connect
with the sub-Earth positions is well preserved.

37



Figure 19: Magnetic field Br(R0, θ, φ) from the PFSS model for the re-meshed CR2077
magnetogram with Nθ = 181, Nφ = 360, and N = 120. The angular resolution of the
PFSS model is (a) 1◦× 1◦, and (b) 2.5◦× 2.5◦. The field is saturated at ±15 G. Dash-dot
line represents the sub-Earth positions.
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Figure 20: Magnetic field Br(R0, θ, φ) from the PFSS model for the re-meshed CR2147
magnetogram with Nθ = 181, Nφ = 360, and N = 120. The angular resolution of the
PFSS model is (a) 1◦× 1◦, and (b) 2.5◦× 2.5◦. The field is saturated at ±15 G. Dash-dot
line represents the sub-Earth positions.
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Figure 21: Magnetic field at the source-surface Br(2.5R0, θ, φ) from the PFSS model for
the re-meshed CR2077 magnetogram with Nθ = 181, Nφ = 360, and N = 120. The
angular resolution of the PFSS model is (a) 1◦ × 1◦, and (b) 2.5◦ × 2.5◦. The field is
saturated at ±0.15 G. White line represents the neutral line and dash-dot line denotes
the sub-Earth positions.
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Figure 22: Magnetic field at the source-surface Br(2.5R0, θ, φ) from the PFSS model for
the re-meshed CR2147 magnetogram with Nθ = 181, Nφ = 360, and N = 120. The
angular resolution of the PFSS model is (a) 1◦ × 1◦, and (b) 2.5◦ × 2.5◦. The field is
saturated at ±0.15 G. White line represents the neutral line and dash-dot line denotes
the sub-Earth positions.
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Figure 23: Derived COHO from the PFSS model for the re-meshed CR2077 magnetogram
with Nθ = 181, Nφ = 360, and N = 120. The angular resolution of the PFSS model is
(a) 1◦×1◦, and (b) 2.5◦×2.5◦. 1/Fs is saturated at ±0.1. The black lines represent open
magnetic field lines which connect the sub-Earth positions with COHO.
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Figure 24: Derived COHO from the PFSS model for the re-meshed CR2077 magnetogram
with Nθ = 181, Nφ = 360, and N = 120. The angular resolution of the PFSS model is
(a) 1◦×1◦, and (b) 2.5◦×2.5◦. 1/Fs is saturated at ±0.1. The black lines represent open
magnetic field lines which connect the sub-Earth positions with COHO.
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4.4 Schatten model - principal index Ns

The previous results are obtained by the PFSS model which covers the R0 ≤ r ≤ Rs

coronal field region. To extend the field beyond Rs, we will include the SCS model here.
Similar to the WSA model, we place the cusp surface at the same location as the source-
surface, Rcp = Rs = 2.5R0, and investigate how the solutions depend on the principal
index Ns used to match r > Rcp solutions Eq. (53)-(55) with the PFSS solutions Eq.
(42)-(44) at Rs.

In Fig. 25-26 we can see the SCS solutions for the magnetic field Br(5R0, θ, φ) at
r = 5R0. These results are obtained by matching the field to the PFSS solutions at
Rs = 2.5R0 using (a) Ns = 10, (b) Ns = 20, and (c) Ns = 30, for CR2077 (Fig. 25)
and CR2147 (Fig. 26). The angular resolution used in the models is 2.5◦ × 2.5◦, and
the degree of harmonics used in the PFSS model is limited to N = 120. The re-meshed
magnetograms are obtained with Nθ = 181 and Nφ = 360. The difference between un-
signed magnetic fluxes obtained by the SCS model for Ns = 10, Ns = 20, and Ns = 30
at 5R0 is negligible for both the CR2077 and CR2147 case. The difference in unsigned
magnetic fluxes obtained by the PFSS model ΦP (Rs) at Rs = 2.5R0, and the SCS model
ΦSh(Rs) at 5R0 using Ns = 10, i.e. |ΦP (2.5R0)− ΦSh(5R0)|/Φ

P (R0), is ≈12% and ≈2%
for CR2077 and CR2147, respectively.

We conclude that using Ns = 10 in the SCS model is sufficient to obtain a good
solution. This is also confirmed by Fig. 27-28 where we show derived COHO and open
magnetic field lines which connect to the sub-Earth locations for CR2077 (Fig. 27) and
CR2147 (Fig. 28), respectively. The parameters are the same as in the case of Fig. 25-26.
As we can see, there are no noticeable differences between cases (a) Ns = 10, (b) Ns = 20,
and (c) Ns = 30.
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Figure 25: Magnetic field Br(5R0, θ, φ) for the re-meshed (Nθ = 181, Nφ = 360) CR2077
magnetogram from the PFSS-SCS model with (a) Ns = 10, (b) Ns = 20, and (c) Ns = 30.
The field is saturated at ±0.2 mG. White line represents the neutral line and dash-dot
line denotes the sub-Earth positions.
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Figure 26: Magnetic field Br(5R0, θ, φ) for the re-meshed (Nθ = 181, Nφ = 360) CR2147
magnetogram from the PFSS-SCS model with (a) Ns = 10, (b) Ns = 20, and (c) Ns = 30.
The field is saturated at ±0.2 mG. White line represents the neutral line and dash-dot
line denotes the sub-Earth positions.
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Figure 27: Derived COHO from the PFSS-SCS model for the re-meshed (Nθ = 181,
Nφ = 360) CR2077 magnetogram with (a) Ns = 10, (b) Ns = 20, and (c) Ns = 30. 1/Fs

is saturated at ±0.1. The black lines represent open magnetic field lines which connect
the sub-Earth positions with COHO.
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Figure 28: Derived COHO from the PFSS-SCS model for the re-meshed (Nθ = 181,
Nφ = 360) CR2147 magnetogram with (a) Ns = 10, (b) Ns = 20, and (c) Ns = 30. 1/Fs

is saturated at ±0.1. The black lines represent open magnetic field lines which connect
the sub-Earth positions with COHO.

48



4.5 Radial resolution

We examined how the change in the angular resolution of the coronal field model impacts
the results. Here we will briefly consider the radial step ∆r used in the coupled PFSS-
SCS model.

In Fig. 29 and 30, the derived COHO and open magnetic field lines which connect
the sub-Earth positions for two choices of the radial step (a) ∆r = 0.01R0, and (b)
∆r = 0.02R0 for CR2077 (Fig. 29) and CR2147 (Fig. 30) are shown. The angular
resolution is ∆θ = ∆φ = 2.5◦. Nθ = 181 and Nφ = 360 are used to obtain the re-meshed
magnetograms. N in the PFSS model is set to 120, and in the SCS model we use Ns = 20.
The coronal field lines are traced between the photosphere (R0) and 5R0. As we can see,
no differences in the derived COHO and field lines are found which justifies the choice of
the radial step ∆r used in numerical calculations.
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Figure 29: Derived COHO from the PFSS-SCS model for the re-meshed CR2077 magne-
togram (Nθ = 181, Nφ = 360). The angular resolution is set to ∆θ = ∆φ = 2.5◦, and the
radial step is (a) ∆r = 0.01R0, and (b) ∆r = 0.02R0. The PFSS model uses N = 120
and the SCS model uses Ns = 20. 1/Fs is saturated at ±0.1. The black lines represent
open magnetic field lines which connect the sub-Earth positions with COHO.
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Figure 30: Derived COHO from the PFSS model for the re-meshed CR2147 magnetogram
(Nθ = 181, Nφ = 360). The angular resolution is set to ∆θ = ∆φ = 2.5◦, and the radial
step is (a) ∆r = 0.01R0, and (b) ∆r = 0.02R0. The PFSS model uses N = 120 and
the SCS model uses Ns = 20. 1/Fs is saturated at ±0.1. The black lines represent open
magnetic field lines which connect the sub-Earth positions with COHO.
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4.6 Height of the source-surface

The previous numerical results mainly focus on numerical accuracy. However, the only
parameter that is free in the PFSS equations for the coronal field Eq. (42)-(44) is the
radius of the source-surface Rs. Although Rs = 2.5R0 is widely used, this does not repre-
sent the best choice for the location of the source-surface for all periods of solar activity
[35], [36].

To illustrate the changes introduced by different heights of the source-surface we show
here the PFSS-SCS model outputs for the case with Rs = 1.5R0 (Fig. 31-36), and the
case with Rs = 3.5R0 (Fig. 37-42). These figures can be compared with the previously
obtained figures for Rs = 2.5R0.

In Fig. 31-33, we can see the results for the radial component of the magnetic field
at Rs = 1.5R0 from the PFSS model (Fig. 31), the magnetic field Br(5R0, θ, φ) at
5R0 from the SCS model (Fig. 32), and derived COHO and open magnetic field lines
which connect the sub-Earth positions (Fig. 33). These figures are obtained with the
re-meshed CR2077 magnetogram with N = 120, Ns = 10, Nφ = 360, and (a) Nθ = 181,
∆θ = ∆φ = 2.5◦, ∆r = 0.02R0; (b) Nθ = 283, ∆θ = ∆φ = 2.5◦, ∆r = 0.01R0; (c)
Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0.

The same representation of quantities and parameters as in Fig. 31-33, are used in
Fig. 34-36 which are based on the re-meshed CR2147 magnetogram.

Figures 37-42 are obtained with Rs = 3.5R0. The choice of other parameters in Fig.
37-39 (CR2077) and Fig. 40-42 (CR2147) is the same as in Fig. 31-33 (CR2077) and Fig.
34-36 (CR2147).

Comparison of the corresponding figures for Rs = 1.5R0, Rs = 2.5R0 and Rs = 3.5R0

reveals significant differences. The location of the neutral line, magnetic field inten-
sity and the size and location of the derived COHO are significantly altered by chang-
ing location of the source-surface. The difference in unsigned magnetic fluxes at 5R0

for CR2044, for example, for the cases from Fig. 25a (Rs = 2.5R0), and Fig. 32a
(Rs = 1.5R0), and Fig. 38a (Rs = 3.5R0), i.e. |Φ2.5(5R0) − Φ1.5(5R0)|/Φ

2.5(5R0) and
|Φ2.5(5R0)−Φ3.5(5R0)|/Φ

2.5(5R0), is ≈56% and ≈27%, respectively. As is expected, with
decreasing the height of the source-surface, the unsigned magnetic flux associated with
open magnetic field lines increases, Φ1.5(5R0) > Φ2.5(5R0) > Φ3.5(5R0).

The same calculations for the CR2147 magnetogram based on results from Fig. 26a
(Rs = 2.5R0), and Fig. 35a (Rs = 1.5R0), and Fig. 41a (Rs = 3.5R0) show ≈253% and
≈51% difference in the unsigned magnetic fluxes.
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Figure 31: Magnetic field at the source-surface Br(1.5R0, θ, φ) from the PFSS model
for the re-meshed CR2077 magnetogram. The parameters are Rs = 1.5R0, N = 120,
Ns = 10, Nφ = 360, and (a) Nθ = 181, ∆θ = ∆φ = 2.5◦, ∆r = 0.02R0, (b) Nθ = 283,
∆θ = ∆φ = 2.5◦, ∆r = 0.01R0, (c) Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0. The field
is saturated at ±0.15 G. White line represents the neutral line and dash-dot line denotes
the sub-Earth positions.
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Figure 32: Magnetic field Br(5R0, θ, φ) from the SCS model for the re-meshed CR2077
magnetogram. The parameters are Rs = 1.5R0, N = 120, Ns = 10, Nφ = 360, and (a)
Nθ = 181, ∆θ = ∆φ = 2.5◦, ∆r = 0.02R0, (b) Nθ = 283, ∆θ = ∆φ = 2.5◦, ∆r = 0.01R0,
(c) Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0. The field is saturated at ±0.2 mG. White
line represents the neutral line and dash-dot line denotes the sub-Earth positions.
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Figure 33: Derived COHO from the PFSS-SCS model for the re-meshed CR2077 mag-
netogram. The parameters are Rs = 1.5R0, N = 120, Ns = 10, Nφ = 360, and (a)
Nθ = 181, ∆θ = ∆φ = 2.5◦, ∆r = 0.02R0, (b) Nθ = 283, ∆θ = ∆φ = 2.5◦, ∆r = 0.01R0,
(c) Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0. 1/Fs is saturated at ±0.1. The black lines
represent open magnetic field lines which connect the sub-Earth positions with COHO.
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Figure 34: Magnetic field at the source-surface Br(1.5R0, θ, φ) from the PFSS model
for the re-meshed CR2147 magnetogram. The parameters are Rs = 1.5R0, N = 120,
Ns = 10, Nφ = 360, and (a) Nθ = 181, ∆θ = ∆φ = 2.5◦, ∆r = 0.02R0, (b) Nθ = 283,
∆θ = ∆φ = 2.5◦, ∆r = 0.01R0, (c) Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0. The field
is saturated at ±0.15 G. White line represents the neutral line and dash-dot line denotes
the sub-Earth positions.
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Figure 35: Magnetic field Br(5R0, θ, φ) from the SCS model for the re-meshed CR2147
magnetogram. The parameters are Rs = 1.5R0, N = 120, Ns = 10, Nφ = 360, and (a)
Nθ = 181, ∆θ = ∆φ = 2.5◦, ∆r = 0.02R0, (b) Nθ = 283, ∆θ = ∆φ = 2.5◦, ∆r = 0.01R0,
(c) Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0. The field is saturated at ±0.2 mG. White
line represents the neutral line and dash-dot line denotes the sub-Earth positions.
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Figure 36: Derived COHO from the PFSS-SCS model for the re-meshed CR2147 mag-
netogram. The parameters are Rs = 1.5R0, N = 120, Ns = 10, Nφ = 360, and (a)
Nθ = 181, ∆θ = ∆φ = 2.5◦, ∆r = 0.02R0, (b) Nθ = 283, ∆θ = ∆φ = 2.5◦, ∆r = 0.01R0,
(c) Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0. 1/Fs is saturated at ±0.1. The black lines
represent open magnetic field lines which connect the sub-Earth positions with COHO.
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Figure 37: Magnetic field at the source-surface Br(1.5R0, θ, φ) from the PFSS model
for the re-meshed CR2077 magnetogram. The parameters are Rs = 3.5R0, N = 120,
Ns = 10, Nφ = 360, and (a) Nθ = 181, ∆θ = ∆φ = 2.5◦, ∆r = 0.02R0, (b) Nθ = 283,
∆θ = ∆φ = 2.5◦, ∆r = 0.01R0, (c) Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0. The field
is saturated at ±0.15 G. White line represents the neutral line and dash-dot line denotes
the sub-Earth positions.
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Figure 38: Magnetic field Br(5R0, θ, φ) from the SCS model for the re-meshed CR2077
magnetogram. The parameters are Rs = 3.5R0, N = 120, Ns = 10, Nφ = 360, and (a)
Nθ = 181, ∆θ = ∆φ = 2.5◦, ∆r = 0.02R0, (b) Nθ = 283, ∆θ = ∆φ = 2.5◦, ∆r = 0.01R0,
(c) Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0. The field is saturated at ±0.2 mG. White
line represents the neutral line and dash-dot line denotes the sub-Earth positions.
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Figure 39: Derived COHO from the PFSS-SCS model for the re-meshed CR2077 mag-
netogram. The parameters are Rs = 3.5R0, N = 120, Ns = 10, Nφ = 360, and (a)
Nθ = 181, ∆θ = ∆φ = 2.5◦, ∆r = 0.02R0, (b) Nθ = 283, ∆θ = ∆φ = 2.5◦, ∆r = 0.01R0,
(c) Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0. 1/Fs is saturated at ±0.1. The black lines
represent open magnetic field lines which connect the sub-Earth positions with COHO.
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Figure 40: Magnetic field at the source-surface Br(1.5R0, θ, φ) from the PFSS model
for the re-meshed CR2147 magnetogram. The parameters are Rs = 3.5R0, N = 120,
Ns = 10, Nφ = 360, and (a) Nθ = 181, ∆θ = ∆φ = 2.5◦, ∆r = 0.02R0, (b) Nθ = 283,
∆θ = ∆φ = 2.5◦, ∆r = 0.01R0, (c) Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0. The field
is saturated at ±0.15 G. White line represents the neutral line and dash-dot line denotes
the sub-Earth positions.
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Figure 41: Magnetic field Br(5R0, θ, φ) from the SCS model for the re-meshed CR2147
magnetogram. The parameters are Rs = 3.5R0, N = 120, Ns = 10, Nφ = 360, and (a)
Nθ = 181, ∆θ = ∆φ = 2.5◦, ∆r = 0.02R0, (b) Nθ = 283, ∆θ = ∆φ = 2.5◦, ∆r = 0.01R0,
(c) Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0. The field is saturated at ±0.2 mG. White
line represents the neutral line and dash-dot line denotes the sub-Earth positions.
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Figure 42: Derived COHO from the PFSS-SCS model for the re-meshed CR2147 mag-
netogram. The parameters are Rs = 3.5R0, N = 120, Ns = 10, Nφ = 360, and (a)
Nθ = 181, ∆θ = ∆φ = 2.5◦, ∆r = 0.02R0, (b) Nθ = 283, ∆θ = ∆φ = 2.5◦, ∆r = 0.01R0,
(c) Nθ = 283, ∆θ = ∆φ = 1◦, ∆r = 0.01R0. 1/Fs is saturated at ±0.1. The black lines
represent open magnetic field lines which connect the sub-Earth positions with COHO.
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5 Summary

The Sun’s magnetic field is a key component that influences solar phenomena which are
the source of space weather. To derive the global coronal magnetic field, based on ob-
servations of the magnetic field at the photosphere, different approaches are used. In
this paper, the so-called potential-field source-surface (PFSS) and Schatten current sheet
(SCS) approaches were described [9]-[12]. Both models utilize potential-field theory and
solutions in the form of spherical harmonics to obtain the field. While the PFSS derived
field is based on the current-free assumption in the region R0 ≤ r ≤ Rs, the SCS solution
for the field in the region r ≥ Rcp implies the existence of thin current-sheets between
magnetic field structures of opposite polarity.

Although the PFSS and SCS models represent relatively simple approaches to the
problem of mapping the coronal magnetic field, they are widely used. In particular, in
operational applications they can be used to forecast magnetic polarity and solar wind
speed at the Earth (see e.g. [13]-[17]). For example, the WSA model [13], [14], uses the
PFSS-SCS model to derive open magnetic field lines and their flux tube expansion factors
fs Eq. (70). In the WSA model, the angular separation between the open magnetic field
line footpoint and the coronal hole boundary θb at the photosphere is also calculated. fs
and θb are then correlated with the solar wind speed Vsw using

Vsw

[
km

s

]
= a1 +

a2
(1 + fs)a3

[
a4 − a5 exp

{
−

(
θb
a6

)a7}]a8
, (79)

where a1-a8 are empirical numerical coefficients [15].

A numerical code for the global coronal magnetic field based on the coupled PFSS
and SCS models has been developed. The results in this paper show advantages of the
magnetogram re-meshing, and justifies the choices of numerical parameters used in the
model. We plan to use the developed code as part of the CSWFC solar wind forecast
framework.

To illustrate the capability of the developed code to reproduce observed coronal fea-
tures, Fig. 43 compares observed COHO obtained by the SDO satellite on 31 December
2013 (17:15UT) [3], and the derived COHO obtained using the developed CSWFC PFSS-
SCS code. The GONG magnetogram (31 December 2013, 17:04UT) is re-meshed with
Nθ = 181, the source-surface is set to Rs = 2.5R0, the maximum degree of the har-
monics is N = 120, Ns = 20, the angular and radial resolutions are ∆θ = ∆φ = 2.5◦

and ∆r = 0.02R0, respectively. The colour of the derived COHO is associated with the
polarity of the magnetic field lines. The lines are directed away from (red colour) and
toward (blue colour) the surface of the Sun. The black lines represent open magnetic field
lines which connect the sub-Earth positions with COHO. There is a reasonable agree-
ment between the location of the observed and numerically modelled COHO. This gives
confidence that the developed code is providing useful models of COHO that can be used
in operational space weather forecasting.
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Figure 43: SDO satellite AIA-193 image of the Sun on 31 December 2013 (17:15UT),
and derived COHO using the PFSS-SCS model. The parameters used in the model are
Rs = 2.5R0, N = 120, Ns = 20, Nθ = 181, Nφ = 360, ∆θ = ∆φ = 2.5◦, and ∆r = 0.02R0.
An hourly updated GONG magnetogram is used as the input to the model. The red and
blue colours represent the magnetic field line polarity, i.e. the lines are directed away
from and toward the surface of the Sun, respectively. The black lines represent open
magnetic field lines which connect the sub-Earth positions with the photosphere.
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