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Introduction 
This report summarizes the results of detailed mapping carried out to investigate the 

structural evolution and stratigraphic architecture in a ~20 km2 area at Kirkland Lake, Ontario 
(Figure 1). The Kirkland Lake area, located in the south-central portion of the Abitibi 
subprovince, is one of the most prolific mining districts in Ontario. The district is characterized 
by the occurrence of structurally controlled gold deposits, with a past production of >30 Moz. 
The primary structure hosting gold is known as the ‘Main Break’, which represents a second-
order splay of the Larder Lake-Cadillac deformation zone (LLCdz). The LLCdz is a crustal 
scale, structure that extends for 100s of km along strike and is associated with numerous 
gold deposits along its length (Robert, 1989; Ispolatov et al., 2008; Lafrance, 2015). Most 
commonly, gold deposits do not occur within the LLCdz, but are hosted by second- to third-
order, brittle-ductile deformation zones within 2-10 kilometers from the LLCdz (Robert et al., 
1995). Thus, the across-strike distribution of structures were investigated to assess the 
localization of strain, which likely controlled the distribution of gold deposits in the district. 
Results of the new mapping (Figure 1) reveal that the ‘Main Break’ is one of a series of 
heterogeneously distributed shear zones that formed within second-order fault zones in a >6 
kilometer area to the north of the LLCdz. Gold occurrences are spatially associated with each 
of the brittle-ductile deformation zones, suggesting that multiple splays of the LLCdz 
controlled the upflow of gold-bearing hydrothermal fluids in Kirkland Lake. 

Lithologic Setting 
The Precambrian geology of the Kirkland Lake area was compiled in portions of the 

Teck (Thomson, 1945; Ispolatov et al., 2005), Lebel (MacLean, 1944; Ispolatov et al., 2005), 
Bernhardt (Rupert and Lovell, 1970), and Morrisette (Rupert and Lovell, 1970) townships and 
new structural mapping was conducted in selected areas during the 2013-2015 field seasons 
(Figure 1). In the map area, supracrustal exposures are comprised of the Tisdale 
assemblage (2710-2704 Ma) in the south, the Blake River assemblage (2704-2695 Ma) in 
the north, and the Timiskaming assemblage (2679-2669 Ma) in the center. The Tisdale and 
Blake River assemblages consist of composite successions of tholeiitic basalt and andesite, 
emplaced in a submarine environment, and related synvolcanic intrusive rocks (Ayer et al., 
2002). The Timiskaming assemblage consists of conglomerate, sandstone, and mudstone as 
well as alkaline volcanic rocks. These units were largely deposited in a subaerial, alluvial-
fluvial and subaqueous, lacustrine or shallow marine environment in a fault-controlled basin 
associated with the LLCdz (Mueller et al., 1994).  

In the Kirkland Lake area, the Timiskaming assemblage is consistently south facing, 
and defines a moderately to steeply south-dipping monocline that is truncated to the south by 
the LLCdz. The LLCdz is marked by juxtaposition of the Timiskaming assemblage with the 
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Tisdale assemblage and/or by intensely deformed, carbonate-altered, and fuchsite-bearing 
ultramafic rocks of unknown stratigraphic affinity. The northern boundary of the Timiskaming 
assemblage is an angular unconformity (Thomson, 1946; Corcoran and Mueller, 2007). Mafic 
volcanic rocks of the Blake River assemblage display upright folds with kilometer-scale 
spacing and west-northwest-trending axial planes. Along the contact zone, the moderately- to 
steeply-dipping and north-younging mafic volcanic rocks of the Blake River assemblage are 
overlain by shallowly- to moderately-dipping and south-younging sedimentary and volcanic 
rocks of the Timiskaming assemblage. The Blake River-Timiskaming unconformity is best 
preserved where strain is low, although, locally, the contact zone is highly strained.  

Throughout the study area, the Tisdale, Blake River, and Timiskaming assemblages 
are intruded by alkaline intrusive rocks that are subdivided based on relative age, primary 
mineralogy, and textural characteristics. These intrusive rocks include, from oldest to 
youngest: mafic (augite) syenite, syenite, and syenite porphyry. These intrusive rocks 
typically cross-cut the stratified rocks of the Timiskaming assemblage or are intruded along 
bedding planes. Major and trace element geochemistry indicates that they are 
compositionally similar to extrusive rocks that comprise portions of the Timiskaming 
assemblage stratigraphy (Hattori and Hodgson, 1990), suggesting that they are broadly 
cogenetic. The mafic (augite) syenite is dark gray to black or dark green in color, coarse-
grained, and contains distinctive augite phenocrysts and abundant K-feldspar. The syenite is 
gray to pink in color and primarily consists of K-feldspar with lesser biotite, hornblende, 
apatite, and magnetite. The syenite porphyry is pink to white or gray in color and contains 
abundant feldspar ± quartz phenocrysts. The syenite porphyritic rocks typically contains 
large, millimeter- to centimeter-scale feldspar porphyroclasts with lesser biotite, hornblende, 
and chlorite. The syenite porphyritic rocks form sill to dike-like intrusions that cross-cut both 
the mafic (augite) syenite and syenite intrusive rocks, indicating that they are the youngest of 
the intrusive rocks (Ispolatov et al., 2008). 

The Timiskaming assemblage and younger intrusive rocks are host to the mineralized 
zones of the ‘Main Break’. In this structure, gold is hosted by quartz-carbonate vein systems 
with associated sericite and carbonate alteration (Ispolatov et al., 2008). Mineralized veins 
and breccia are penetratively foliated by late post-Timiskaming fabrics and/or affected by late 
chloritic-bearing slip surfaces (Ispolatov et al., 2008). Thus, gold deposited along the ‘Main 
Break’ is interpreted to have accompanied the later phases of deformation in Kirkland Lake 
(i.e., D4; Ispolatov et al., 2008).  

Structural Geology 
In Kirkland Lake, pre-Timiskaming (D1) structure is locally preserved as folds in the 

Blake River assemblage. These folds display different structural trends from those in the 
adjacent Timiskaming assemblage rocks and are truncated at the unconformity with the 
Timiskaming assemblage. No penetrative fabrics associated with D1 are preserved. To the 
northwest, in the Timmins area, two phases of pre-Timiskaming deformation have been 
identified (Bleeker, 1999). However, due to a lack of direct timing constraints, the relationship 
between the two phases of deformation in the Timmins area and D1 structure in the Kirkland 
Lake area is unclear.  

Along the LLCdz in Ontario, deposition of the Timiskaming assemblage was followed 
by the formation of an east-trending foliation, tilting of the sedimentary and volcanic rocks 
into a south-facing monocline, and localized reverse faulting along the LLCdz (D2; Ispolatov 
et al., 2008). A weak D2 fabric is locally present in the Timiskaming assemblage, but, 
generally, it is difficult to identify due to the effects of later deformation. Along the LLCdz to 
the east, in the Larder Lake area, northwest-striking, steeply-dipping structures crenulate D2 
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fabrics and are attributed to a phase of northeast-southwest shortening (D3; Ispolatov et al., 
2008). No evidence for this fabric has been recognized within the map area and immediate 
region.  

A northeast-trending, steeply-dipping foliation (S4) is well-developed along the LLCdz 
and in a series of deformation zones to the north, which has been interpreted as a result of 
regional dextral transpression (D4 of Ispolatov et al., 2008). S4 is best developed in discrete 
high-strain zones (HSZs) where it is commonly defined by sericite or carbonate mineral-rich 
folia with millimeter- to sub-millimeter scale spacing. In the HSZs, S4 commonly overprints 
zones of prior brittle deformation, marked by the occurrence of cataclasite, fault gouge, 
and/or discrete faults (Ispolatov et al., 2008; this study). Detailed mapping indicates that 
several to 100s of meters wide HSZs are regularly spaced at ~500-750 meter intervals 
throughout the map area. Of these, the most significant deformation is associated with four 
named deformation zones: the Larder Lake-Cadillac, the Murdock Creek, the ‘Main Break’, 
and the Kirana deformation zones. The majority of gold deposits and occurrences in Kirkland 
Lake are spatially associated with these zones and each displays domains of pervasive 
sericite and/or carbonate alteration. The boundaries of the HSZs are gradational to sharp 
over the scale of meters. The HSZs are separated by low strain zones (LSZs), in which 
primary sedimentary and igneous textures are well preserved, S4 occurs as a weak spaced 
(centimeter-scale), northeast-trending and steeply-dipping foliation, and alteration is typically 
weak. In the HSZs, dextral shear sense indicators (e.g., S/C fabrics, σ-clasts, and Z-folds) 
are exposed on horizontal erosional surfaces, and moderately to steeply northeast-plunging 
lineations (elongate clasts and/or mineral aggregates) are well developed. The same 
lineations are weakly developed in the LSZs. Because no overprinting relationships exist 
between S4, the lineations, and the shear sense indicators, all are interpreted as having 
formed during D4.  

Discussion and Implications 
The Kirkland Lake district preserves evidence for a series of progressive north-south 

shortening to dextral transpressional deformation events. The amount of shortening that 
resulted from D1 folding is difficult to constrain, due to later structural overprint. D2 folds and 
evidence for localized thrusting along the LLCdz indicate further shortening. It is unclear if the 
second-order faults along which the HSZs localized formed during D2. In general, the brittle-
ductile structure that predominates the map area is interpreted to have formed during D4 
deformation, based on correlative fabric elements, fault kinematics, and textural associations 
within the HSZs and LSZs. Locally, it is difficult to distinguish between S2 and S4 where no 
cross-cutting relationships exist, or where S2 is strongly overprinted by D4 structures. There 
is no evidence for the D3 phase of deformation in Kirkland Lake and immediate areas. 
Therefore, D3 structures (Ispolatov et al., 2008) may have been local, possibly related to 
variations in orientation of the LLCdz. 

New mapping reveals that D4 strain in the Kirkland Lake district is localized in a series 
of brittle-ductile HSZs to the north of the LLCdz (Figure 1). Brittle structures, including faults, 
cataclasite, and shear veins, occur within spaced, second-order fault zones that developed 
as splays of the LLCdz. Brittle structures are widely overprinted by penetrative, S4 fabrics, 
which together define the HSZs in the map area. The cospatial association of brittle-ductile 
structure in the D4 HSZs suggests that early brittle deformation processes created weak 
zones that localized later ductile shear. Furthermore, while the known deposits are primarily 
associated with the ‘Main Break’, each of the major HSZs is host to gold occurrences. 
Therefore, the HSZs in the study area and possibly other undiscovered ones in the district, 
may have localized the upflow of hydrothermal fluids and may host concealed gold deposits. 
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Thus, gold in the Kirkland Lake district may be distributed in a much broader area north of 
the LLCdz than previously known, along a series of second- to third-order, gold-bearing 
structures, similar to the across strike distribution in the Val d’Or district of Quebec (Robert et 
al., 1995). 
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