
Technical Bulletin 	TB 178 Price: 75 cents

1

CAN.O.,,,

DEPARTMENT OF
ENERGY, MINES AND RESOURCES

MINES BRANCH

OTTAWA

A DATA BASE MANAGEMENT AND
INFORMATION RETRIEVAL SYSTEM
EMPLOYING COMPUTER PROGRAMS

MNGFLE AND SRHFLE

F. J. KELLY

EXTRACTION METALLURGY DIVISION

OCTOBER 1973

(

?

7
/3

6
'

Crty,..11 	 j %C C!

Avail.0.4e by mill from Info) 	Canada, ()ttav.a,
and at the folo.ln Inebrro:::ion (:asinda

1 es7 Hari:v.0a Strt 1/4:1

r40:: I P.)
G10 St. Catbeirc:itre,:t West

Gin Av... ■

171 eater :;..r.:et

•iew.oNTo
221 Yo; ■ 1.:‘. Street

393 Poi 	Met -we

ye:cot:NI a.
FIDO GrrniiIc S:reet

Or throueh)our beol,seMer

Price 75 cents 	Catalortic No. M34 - 20/178

Price subj ,..,.:t to ch,wg:. %ithotit notice

Informaticri Car.ada
Ottawa, 1973

Mines Branch Technical Bulletin TB 178

A DATA BASE MANAGEMENT AND INFORMATION
RETRIEVAL SYSTEM EMPLOYING COMPUTER PROGRAMS

MNGFLE AND SRHFLE

by

F. J. Kelly*

ABSTRACT

Two computer programs have been developed to manage
and retrieve information from document reference files or
data bases. The programs have proven to be reliable for these
tasks and economic in operation. This report describes the
development of these computer programs and provides detailed
information and instructions on their use.

*Research Scientist, Ore Treatment Section, Extraction Metallurgy
Division, Mines Branch, Department of Energy, Mines & Resources,
Ottawa, Canada.

- 11 -

Direction des mines

Bulletin technique TB 178

UN SYSTEME DE RECHERCHE DOCUMENTAIRE ET DE GESTION

POUR UN FICHIER CENTRAL UTILISANT LES PROGRAMMES

MACHINES MNGFLE et SRHFLE

par

F. J. Kelly' ,

RÉSUMÉ

L'auteur a développé deux programmes machines dans le but de

gérer et de rechercher de l'information provenant des fichiers de document

de référence ou des fichiers centraux. L'auteur a montré que ces program-

mes pouvaient accomplir ces tâches avec fiabilité et étaient économiques

du point de vue du fonctionnement. Ce rapport décrit le développement de

ces deux programmes machines et fournit des enseignements et des

instructions détaillés sur leur utilisation.

"'Chercheur scientifique, Section du traitement des minerais, Division de

la métallurgie extractive, Direction des mines, ministére de l'Energie,
des Mines et des Ressources, Ottawa, Canada.

i •

■It

-1-

INTRODUCTION

Every research organization is all too familiar with

the problems created by the ever-increasing flood of technical

literature. Not only is it impossible to read every article that

might be pertinent to a given project, but it is a time consuming

task to compile the list of documents from literature reference

files.

Within the Extraction Metallurgy Division, there are

several document reference files or data bases. The information

stored in these systems is cross-indexed in accordance with a

coding scheme. Manually scanning the index cards for selected

groups of codewords or keywords is one method to retrieve desired

information. Another is by passing a needle through selected holes

punched in the perimeter of the index cards. The deck of cards

is lifted and the sought-after references are found on those cards

falling free of the needle. Both of these methods are time con-

suming and cumbersome to execute and become even more so as the

volume of the data base increases.

A speed-up of the retrieval process was accomplished

by placing the active portion of the data base on a time-sharing

computer service. The utility program supplied by this service

searched the data base for requested codeword combinations and

returned the index numbers of those cards having the desired

information. The program was inexpensive to operate and reliable.

The installation of a Control Data Corp. 6400 'computer system in

the Department forced the cancellation of all outside computer

contracts, and access to this program was terminated.

-2-

The information retrieval job was transferred to the

departmental computer system. A system utility program, MARS,

was available for this service. After several months of testing

and use it was found that this program failed to retrieve many

index numbers that bore the requested codeword combinations from

the data base. Also, the operating charges for these jobs had

increased to five times that of the previous service.

Because MARS Was unreliable and costly to operate,

programs MNGFLE and SRHFLE were developed to replace it. The

functions performed by MNGFLE are as follows:

1) creation of the data base from source . cards,

2) deletion or modification of existing records, and

3) insertion or addition of new records to the data base.

Program SRHFLE searches the data base for requested combinations

of codewords and returns the card numbers of the records containing

these combinations. More detailed explanations of these programs,

nomenclature, FORTRAN IV listings, and job coding forms are

given in Appendices 1 and 2.

DISCUSSION AND RECOMMENDATIONS

After development the programs were benchmarked on the

CDC-6400 against the utility program MARS. The test jobs compared

maximum computer memory requirements, central, peripheral and input/ •

output processing times, file storage space on disc in terms of

physical record units (PRUS), and the costs of data base creation,

information retrieval, and disc storage.

-3-

The test data bases were created from the same source

cards. Each of the 1,501 cards contained one complete record,

i.e., index card number and codewords. There were between 2 and

16 words per record. Ten sets of request codeword combinations

were selected from the source data base to be used in the retrieval

test. The tasks, data base creation, and information retrieval

were run through each program twice. The results given in

Tables 1 and 2 are the calculated averages of each double run.

Inspection of the results (Tables 1 and 2) show that

there are significant advantages to be gained from using programs

MNGFLE and SRHFLE in place of MARS. On the data base creation

task, MNGFLE reduces computer memory requirements by 35.7 %,

file storage cost by 79.6 %, and the job operating cost by 63.1 %.

On the information retrieval task, SRHFLE reduces commuter memory

requirement by 46.4 %, file storage cost by 79.6 %, and job

operating cost by 95.2 96. These reductions mean that these

Programs will nrovide a turnaround service more quickly and more

cheaply than does the utility program for the identical set of

tasks.

The complete data base contains 6,671 records or 43,838

words. There are between 2 and 25 words per record. The cost of

creating this data base with MNGFLE from source cards was $20.14.

Running the data sets, used to search the test data bases, through

the complete data base with SRHFLE cost $2.60. The projected costs

of doing both jobs with MARS are $86.50 and $72.65 respectively.

The cost of making a 1500-record update of the complete data base

with MNGFLE was $18.34. As was expected, the cost of creating

4

COMPUTER: DEMR CDC-6400
DATE RUN 03/04/73

PROGRAM PROGRAM REDUCTION
MARS 	MNGFLE BY MNGFLE

(%)

PROGRAM PROGRAM REDUCTION
MARS 	SRHFLE BY SRHFLE

(%)

66500
28000
37.6

742.5
578.1

752
15.07
1.50

35000
15000
4.9
14.5
5.3
153

0.72

0.305

46.4
46.4
87.0
98.0
99.1
79.6
95.2
79.6

TABLE: 1 	COMPARING THE CREATION OF DATA BASE FILES WITH UTILITY
PROGRAM MARS AND PROGRAM MNGFLE FROM 1501 SOURCE CARDS

CORE STORAGE OCTAL WORDS
CORE STORAGE DECIMAL WORDS
CENTRAL PROCESSING TIME
PERIPHERAL PROCESSING TIME
INPUT/OUTPUT PROCESSING TIME
FILE STORAGE SPACE ON DISC
COST OF CREATING FILE
COST OF STORING FILE ON DISC

66500
28000

	

(SEC) 	79.4

	

(SEC) 	250.0

	

(SEC) 	219.3

	

(PRUS) 	752

	

(S) 	17.96

	

(S/DAY) 	1.50

43000
18000
14.4
69.8
56.4
153

6.63
0.305

35.7
35.7

81.8
72.1

74.3

79.6
63.1
79.6

TABLE: 2 COMPARING THE RETRIEVAL OF INFORMATION FROM DATA BASE
FILES WITH UTILITY PROGRAM MARS AND PROGRAM SRHFLE

COMPUTER: DEMR CDC-6400
DATE RUN 03/04/73

CORE STORAGE OCTAL WORDS
CORE STORAGE DECIMAL WORDS
CENTRAL PROCESSING TIME 	 (SEC)
PERIPHERAL PROCESSING TIME 	(SEC)
INPUT/OUTPUT PROCESSING TIME 	(SEC)
FILE STORAGE SPACE ON DISC 	(PRUS)
COST OF RETRIEVING INFORMATION 	($)
cosr OF STORING FILE ON DISC 	(S/DAY)

-5-

and retrieving information from the data base increases as the

number of records increase.

Another factor checked during these tests was the

ability of each program to produce the correct results. The

test data bases created by MARS and MNGFLE were compared with

the source data base for omissions. Both data bases proved to be

void of errors. With each search of its data base MARS failed

to retrieve the index numbers of two records having the requested

codeword combinations. SRHFLE, on the other hand, correctly

retrieved all possible index numbers each time. This test work

has shown that SRHFLE is more relaible at the task of retrieving

information from the data base than is the utility program MARS.

The reference files which these programs manage and

from which information is retrieved, employ a numeric cross-

reference system, However, punched card input to both programs

is done under alphanumeric format specifications. Consequently

the programs can be used to manage the research files that use

the keyword cross-reference system.

The index numbers produced by the search program are used

to manually locate desired documentation within the reference

file. If a copy of the document file were available to the program,

the system would be complete. With minor modification the program

could then produce printed copies of the required information.

This would speed-up the retrieval process and save man-hours.

The entire data base would be placed on two files.

The first file contains the cross-reference records and the

second file the document records. Both of these files are linked

-6-

together by the record numbers and maintained by MNGFLE. A

request for information first initiates a search of file-I by

SRHFLE for the pertinent document record numbers. After all

requests have been processed, SRHFLE locates each document in

file- 2 and prints a copy of the record. Having the cross-

reference file separate from the document file will minimize

central and peripheral processing time and computer memory

requirement.

SUMMARY

Programs MNGFLE and SRHFLE were designed to manage

and retrieve information from cross-indexed file systems. These

FORTRAN IV programs operate on the Department's CDC-6400 comnuter

system. Besides providing good turnaround service they

have proven to be reliable and economic in operation. Unlike

system programs, modification control of these programs remains

in the hands of the user. For identical service, these programs

have reduced the operating charges and computer memory require-

ment attributable to the utility program MARS; MNGFLE by 63 %

and 35 %, and SRHFLE by 95 % and 46 %.

-7-

APPENDIX 1: PROGRAM MNGFLE

The appendix is divided into four parts: explanation,

nomenclature, listing, and coding form. The program, written

in FORTRAN IV, consists of a main driving routine and six subroutines.

The function of these routines are as follows; MNGFLE either

creates or updates a data base or file, XFN inserts, modifies

and deletes records from the file, FOSFN transfers a record

from the old file to the new file, FOBFN transfers one logical

record from the old file to the new file (a logical record is a

consecutive series of individual records), RTAPE reads logical

records from a file located on a peripheral storage device,

WTAPE writes logical records to a file located on a peripheral

storage device and RCARD reads new records from source cards.

In addition, the program uses four system routines:

FLOAT converts fixed-point values to floating-point values; IFIX

converts floating-point values to fixed-point values; EOF and

ENDFIL are end of file test and marker, respectively. The function

of all variables used in the program is given in the nomenclature.

There are only four floating-point variables in the program A, BPI,

BPW, and TLR. All other variables are integer.type,either fixed-

point or alphanumeric. Card input to the program is done under

alphanumeric A-type format. All data written on, or read from

files located on peripheral devices is in unformatted binary form.

Records read from cards can be of variable length. The

minimum number of words per record is 2 and the maximum is 99.

Under the present format (RCARD, 1 FORMAT),1 to 5 character

alphanumeric words are punched in five-column fields. An eight-

-8-

column card will hold sixteen words. The first word of the

record must contain the source file identification number of the

record. The record number can be alphanumeric and is always

punched in columns 1 to 5 of the first card. If the number of

cross-reference words exceeds 15, the remainder are punched

on succeeding cards, but columns 1 to 5 on those cards are left

blank. Examples of records (cards 2.1 to 9.1) coded for punching

are shown on the coding forms.

On the first entry into PCARD, a card is read and the

data is stored in array Y. A check is made to determine if an

end of file mark has been encountered. If it has, control returns

to the main program. If not, each non-blank word in Y is counted

and packed into the array X starting at the second location. A

second card is then read into Y. If an end of file is not

encountered,the first word in Y is tested to determine if it is

a blank word. If it is blank,it indicates a record continuation

and the non-blank words are counted and added to X. If the first

word in Y is not blank, it indicates the start of a new record

and the data is held in Y. The number of non-blank words in the

previous record is stored in the first location of X and control

returns to the main program so that processing of the record

can continue. Note that RCARD adds one word to each record.

On succeeding entries into RCARD, the information stored in Y is

processed first and the above cycle repeats itself until an end

of file mark is encountered.

The processing of records in MNGFLE is done on the

record number. The Program requires that the records read from

It

-9-

cards be sequenced in ascending order. The numbering system

employed is alphanumeric and has five units per number. This

system contains the twenty-six letters of the alphabet and the

digits zero to nine for a total of thirty-six units. The system

can reference 11,881,375 records. In the CDC-6400 system,

unit, A<B< ----Z<0<1< ----9. Leading and/or embedded blank -s are

not permitted in a record number. However, all characters

including blanks can be used anywhere in any other record word

(see coding form for example).

Records processed by MNGFLE are stored consecutively

in the array FN. Every time a record is entered into FN, the

record word count plus one is added to the total number of words

contained in FN. Each time subroutines XFN, FOSFN and FOBFN

are called,they check the FN word count plus that of the next

record,against the value 2045. If the combined total is less

than or equal to 2045 the record is transferred to FN e and if

greater,WTAPE is called. WTAPE writes one logical record, i.e.,

the number of words in FN, the number of words in the last record

entered l and the contents of FN, to a file located on a peripheral

storage device. After incrementing the logical record counter

and initializing the FN word counter, control returns to the

calling routine. RTAPE reads logical records created by MNGFLE

from peripheral storage files in the same manner. This cycle

repeats itself until all records have been processed.

The manipulation of records occurs between statements

15 and 35 in the MNGFLE routine. The manner in which the records

are processed depends on a series of decision tests. If the

- 1 0-

test at statement 31 of the listing is satisfied, control goes

to 16 and new records are added to the end of the file. If the

next test after 31 is satisfied, control goes to 21 and a part

or an entire logical record is transferred from the old to the

new file. If the test at statement 33 is not satisfied r one

record is transferred from the old to the new file. If the test

at statement 34 is not satisfied, a record is either deleted or

updated. If the test at statement 35 is not satisfied, a record

is inserted into the file. Processing continues until the test

at statement 20 is satisfied and control passes to statement 50.

The output section produces the final version of the file. The

number of logical records contained in the file is written on

the new file and the contents of the working file are copied to

this file. A printed record of the files content, along with

relevant file statistics are printed and the program stops. The

new version of the file is copied on to magnetic tape or a

private disc pack for storage purposes.

An example of a data deck coded for punching is given

on the coding form. Card (1.1) is the first card in all data

decks. The value of the variable LRO (card 1.1, col 10) is used

as a control switch at the start of the program. If the value

is 0, a new file is created and all record input will be from

source cards. If the value is 1, records are processed from an

accessible storage file and updated in accordance with the source

cards. This would be the case for the data shown on the coding

form. The record numbers (cards 2.1 to 9.1, columns 1 to 5) as

noted previously appear in ascending order. Also columns 1 to 5

on the continuation cards (4.2, 6.2, 6.3) of records 4 and 6

- 1 1-

are left blank. Cards containing only a record number (e.g. 3.1

and 7.1) will cause those records to be deleted from the file.

The other records will update a record, be inserted between records,

or be added to the end of the file. The last card in the data

deck is the end-of-file card which consists of a 7-8-9 multi-

punched in Column 1,and 1 and 5 punched in columns 2 and 3

respectively.

Before operating the program,make a visual check of

the data deck. If the deck contains more than a hundred cards,

request an off-line listing from the terminal operator. Make

sure that the record numbers are in ascending order and correct

all punching errors. The program produces a complete printed

record of the file each time it is run. The cost of printing

this record is approximately 62 % of the total operating charge.

The printing section can be controlled by the user by making

the following changes in the MNGFLE routine:

1. Change statement READ (CR, 2) LRO
to READ (CR, 2) LRO,NP

2. After statement ENDFIL TC
insert statement IF (NP .LE. ZR) TO TO 70

3. After statement 60 CONTINUE
change statement REWIND TC to 70 	REWIND TC

The value of NP can be punched in column 15 of card 1.1 on the

coding form without a change to format statement 2. If NP = 0,

printing does not occur. If NP = 1, a printed record of the

file is produced. The produced listing gives the record count,

the octal display number of the reference file card index number,

the number of computer words per record, the reference file card

index number, and the codewords or keywords associated with each

record in the file.

-J.2-

NOMENCLATURE

Variable 	 Function

	

A 	Stores the estimate of the number of lines printed per

record. Used in the regulation of the line printer

paging control.

	

.AND. 	Logical operator meaning conjunction.

	

BPI 	Constant = 800, the number of bits stored per inch of

magnetic tape.

	

BPW 	Constant = 60, the number of bits in a CDC-6400

computer word.

	

CR 	Constant = 1, the logical unit number that references

the card reader.

.EQ. 	Relational operator meaning equal to (=).

	

FN 	Array used to store logical records processed on the

new file.

	

FO 	Array used to store logical records read from the old

file.

.GE. 	Relational operator meaning greater than or eaual to (a).

.GT.

	

	Relational operator meaning greater than (>).

Index counter used during a DO loop execution.

	

IC 	Counter used to count the number of lines nrinted.

Every time the value of IC = 59 it is reset to 1 and

printing starts at the ton of the next page.

	

IN 	Index counter for the array FN. Within routine WTAPE,

IN equals the number of words in a logical record.

Before returning from WTAPE, the value of IN is set to

zero.

I,

-13-

Variable 	 Function

	

IO 	Index counter for the array FO. The value of this

counter is set to zero each time routine RTAPE is called.

	

ISW 	A control switch that is used to signal the end of

data input via the card reader. The value of this

variable is set to one in routines XFN and RCARD. If

ISW = 0, input from cards continues and, if ISW = 1,

it is completed.

	

ITS 	A control switch that controls the reading and process-

ing of records in routine RCARD. If ITS = 0, data is

read from a card. If ITS > 0, data stored in array Y

is processed before reading more data from cards.

After each read at statement 5, the value of ITS is

set to 1. If an end of file is encountered, the value

of ITS is set to 2. This delays the setting of ISW

until the record is processed by routine MNGFLE

with a call to routine XFN. The testing of the data

in Y to signal the end of a record has been outlined

in a previous section.

	

IX 	Index counter for the array X in routine XFN. Used as

a counter in routines FOSFN and FOBFN. The value of

IX is set to 1 on entry to each of these routines.

Index counter used during a DO loop execution.

Counts the number of cards read by routine RCARD

during program execution.

	

KK 	Counts the number of records contained in the new file.

-14-

Variable 	 Function

Counts the total number of words contained in the new

file. Included in the word count are the number of

words per record plus those added in routines RCARD

(1 per record), WTAPE (2 per logical record) and

MNGFLE (1 per file).

.LE. 	Relational operator meaning less than or equal to (-).

LP 	Constant = 3, the logical unit number that references

the line printer.

LRN 	Counts the number of logical records written on the

new file. The value of LRN is incremented by one each

time routine WTAPE is called. The final value of LRN

is the first word written on the new file TC.

LRO 	Initial value is equal to the number of logical records

contained on the old file TA. The value of LRO is

decreased by one each time routine RTAPE is called.

.LT. 	Relational operator menaing less than (<).

.NE. 	Relational operator meaning not equal to (0).

NF 	Counter used in routine RCARD to total the number of

non-blank words in a record.

NFC 	Constant = 16, the number of five-column fields in

an eighty-column card. Used to control the read DO

loops in routine RCARD. Also used in routine MNGFLE

to calculate the number of printed lines per record.

NFT

	

	Equals the number of words per logical record in

routine FOBFN and per record in routines FOSFN and XFN.

NLR

NR

NT

NW

NWN

ON

- 15 -

Variable ' 	 Function

The number of words contained in the last record of

a logical record. The value of NLR is set in routines

FOBFN, FOSFN, and XFN. Also the value of the second

word of a logical record transferred to the new file

each time routine WTAPE is called.

Same meaning as NLR. Used in routine RTAPE to calcu-

late the location of the record number of the last

record in array FO.

The value calculated in routine RTAPE to give the

location of the last record number in array FO. Used

in routine MNGFLE to determine if a record being

processed is to be included within the records stored

in FO.

The number of words in a logical record that will be

stored in the array FO. It is used in the calculation

of NT in routine RTAPE. Also used in routines MNGFLE

and FOBFN to determine if all records stored in FO

have been processed.

Constant = 2045, the maximum number of words that

can be stored in the array FN. If it is desired to

alter the length of a logical record, the value of

this constant along with the dimensions of arrays FN

and FO must be changed.

Constant = 1.

- 16 -

Variable 	 Function

	

•TA 	Constant = 4, the logical unit number that references

the peripheral storage file from which logical records

are transfered into the array.F0.

	

TB 	Constant = 5, the logical unit number that references

a scratch peripheral storage file.

	

TC 	Constant = 6, the logical unit number that references

the peripheral storage file on which the new file is

stored.

	

TES 	Alphanumeric constant = 5 blanks, used in routine

RCARD to test for blank words.

	

TLR 	The approximate footage of magnetic tape used to

store the data base.

	

TO 	Constant = 2.

	

X 	Array used to store recrods processed in routine

RCARD.

Y 	Array used to store data read via the card reader

in routine RCARD.

Constant = O. ZR

— 17 —

PROGRAM MNGFLE (INPUTJOUTP(JTeTAPE1=INPUT,TAPE3=OUTPUTeTAPE4,
1 	 TAPE5,TAPE6)

PROGRAM MNGFLE

PROGRAMED BY F.J.KELLY EXT MET DIV MINES BRANCH E M AND R

INTEGER CR,FN,F0,0N,TAsTBsTC,TESsT0sXsYsZR

COMMON/ALL/CRsINsIO,ISWeITS,K,LROoLRN,NFC,NFT,NT,NW,NLR,NWN,
1 	 ONsTAsTB,TESeT0eZR
COMMON FN(2048),F0(2048),X(100),Y(20)

DATA CR,LPsTAsTBsTC,TES/1,3,4s5,6,5H
DATA ZRsONsTO , NFC,NWN,BPIsBPW/0,1,2,16,2045s800.,60./

REWIND TA
REWIND TB
REWIND TC
BPI = BPW / BPI
IC = ZR
= L = LRN = ISW = JC = JT = KH = IN = ITS = NFT = ZR

IO = NW = NWN
WRITE (LP)1)
READ (CRs2) LRO
IF (LRO .GT. ZR) GO TO 19

15 	CALL RCARD
IF (ISW .GT. ZR) GO TO 50

16 	CALL XFN
GO TO 15

19 	READ (TA) LRO
20 	IF (I0 eGE. NW .AND. LRO •LE. ZR 'AND. 'SW *GT. ZR) GO TO 50

IF (ISW *LE. ZR) GO TO 30
IF (I0 .0E. NW •AND. LRO eGT. ZR) CALL RTAPE

21 	IF (I0 .NE. ZR) GO TO 25
CALL FOBFN
GO TO 20

25 	CALL FOSFN
IF CIO .GE. NW) GO TO 20
GO TO 25

30 	IF (I0 .0E. NW .AND. LRO .GT. ZR) CALL RTAPE
IF (JC *GT. ZR) GO TO 31
CALL RCARD
JC = ON
IF (ISW eGT. ZR) GO TO 20

31 	IF (10 .GE. NW .AND. LRO .LE. ZR) GO TO 16
IF (LRO .GT. ZR eAND. X(TO) .GT. FO(NT)) GO TO 21
IF (JT .GT. ZR) GO TO 35

33 	IF (FO(IO+TO) .GE. X(TO)) GO TO 34
CALL FOSFN
JT = ZR
GO TO 30

34 	IF (FO(IO+TO) .NE. X(TO)) GO TO 35
CALL XFN
10 = 10 + FO(IO+ON) + ON

— 18 —

JC = ZR
JT = ON
GO TO 30

35 	IF (X(TO) .GE. FO(I0+TO)) GO TO 33
CALL XFN
JC = ZR
GO TO 30

OUTPUT SECTION

50 	IF (IN .EQ. ZR) GO TO 51
CALL WTAPE

51 REWIND TA
REWIND TB
WRITE (TC) LRN
L = L + ON
DO 52 I = ON,LRN
READ (TB) NW,NLR,(FN(J),J = ON,NW)

52 	WRITE (TC) NW,NLRe(FN(J),J = ON,NW)•
ENDFIL TC
REWIND TC
READ (TC) LRN
DO 60 I = ON,LRN
READ (TC) NW,NLR,(FN(J),J = ON,NW)
IN = TO
JO = FN(ON) + ON

SA 	KK = KK + ON
IC = IC + ON
IF (IC .LT. 59) GO TO 56
IC = ON
WRITE (LP,1)

56 	WRITE (LP,3) KK,FN(IN),FN(IN—ON),.(FN(J),J = IN,ON)
A = FLOAT(FN(IN—ON)) / NFC
IC = IC + IFIX(A + 0.99) — ON
IF (A.EG).1..OR.A.E0.2..OR.A.E0.3..OR.A.E0.4..OR.A.E0.5..OR.

1 	A.EQ.6..OR.A.E0.7.) IC = IC + ON
IF (10 .GE. NW) GO TO 60
IN = IN + FN(IN—ON) + ON
IO = IO + FN(I0+0N) + ON
GO TO 54

60 	CONTINUE
REWIND TC
TLR = (L * BPI + 3.0 * LRN + 0.75) / 12.0 + 2.0
WRITE (LP,A) K,L,LRN,TLR
WRITE (LP,5)
STOP

FORMAT SECTION

1 	FORMAT (1H1 1)
2 	FORMAT (5X,5I5)
3 	FORMAT (5X,15,1X,010,15,16(1X,A5)/26X,16(1X,A5)/26X,16(1X,A5)/

1 	26X,16(1X,A5)/26X,16(1X,A5)/26X,16(1X,A5)/26X,16(1X,A5))
4 	FORMAT (1H1///5X,'NO OF CARDS READ=',20X,I7//5X,

1 	'NO OF WORDS WRITTEN ON TAPE= 'I15//5X,

— 19 —

2 'NO OF LOGICAL RECORDS WRITTEN= '6X,I7//5X,
3 'APPROXIMATE LENGTH OF TAPE RECORD=',F10.1,e(FT)')
FORMAT (1H1/////' PROCESSING COMPLETED')
END

SUBROUTINE XFN

INTEGER CRPFN,F0,0NoTAJTBsTES,TO,X,Y,ZR

COMMON/ALL/CR , IN/IOPISW,ITS,KeL,LRO,LRN,NFC,NFT,NT,NW,NLR,NWN,
1 	 ON,TA,TBeTES,TO,ZR
COMMON FN(2048),F0(2048),X(100),Y(20)

IF (ITS .E0. TO) ISW = ON
IF (X(ON) .EQ. ON) RETURN
NFT = X(ON) + ON
IF ((IN + NFT) .GE. NWN) CALL WTAPE
IX = ON

5 	IN = IN + ON
FN(IN) = X(IX)
L =L + ON
IF (IX .GE. NFT) GO TO 9
IX = IX + ON
GO TO 5

9 	IX = IN — NFT + ON
NLR = FN(IX)
RETURN
END

SUBROUTINE FOSFN

INTEGER CR,FN,FO/ONsTAJTBsTES,TO,X,YeZR

COMMON/ALL/CReIN,I0,ISWeITS$K,L,LRO,LRN,NFC,NFT,NT,NW,NLR,NWNP
1 	 ON,TAPTB,TES,TO,ZR
COMMON FN(2048),F0(2048),X(100),Y(20)

NFT = FO(I0+0N) + ON
IF ((IN + NFT) .GE. NWN) CALL WTAPE
IX = ON

5 	IN = IN + ON
JO = JO + ON
FN(IN) = FO(IO)
L = L + ON
IF (IX .GE. NFT) GO TO 9
IX = IX + ON
GO TO 5

9 	IX = IN — NFT + ON
NLR = FN(IX)
RETURN
END

— 20 —

SUBROUTINE FOBFN

INTEGER CR,FN,F0)0N,TAsTBsTES,TO,X,Y,ZR

COMMON/ALL/CR,IN,10,ISW,ITS,K.L,LRO,LRN,NFC,NFT,NT,NW,NLR,NWN,
1 	 ON,TA,TB,TES,TOPZR
COMMON FN(2048),F0(2048),X(.100),Y(20)

5 	IX = ON
NET = FO(IO+ON) + ON
IF ((IN + NET) .GE. NWN) CALL WTAPE

6 	IN = IN + ON
IO = IO + ON
FN(IN) = FO(I0)
L = L + ON
IF (10 .GE. NW) RETURN
IF (IX .EQ. NET) GO TO 9
IX = IX + ON
GO TO 6

9 	IX= IN—NET + ON
NLR = EN(IX)
GO TO 5
END

SUBROUTINE RTAPE

INTEGER CR,FN,F0,0NaTA,TB,TES,TO,X,Y,ZR

COMMON/ALL/CRsINsIOsISW,ITS,KaLiLROPLRN,NFC/NFT,NTaNW,NLRJNWN,
1 	 ON,TA,TBPTES,TOsZR
COMMON FN(2048),F0(2048),X(100),Y(20)

READ (TA) NW,NRP(FO(I),I = ON,NW)
NT = NW — NR + ON
LRO = LRO — ON
IO = ZR
RETURN
END

SUBROUTINE WTAPE

INTEGER CR,FN,FOJONsTA,TBaTES,TO,X.Y,ZR

COMMON/ALL/CRPINsIO,ISW/ITS,KaLPLROaLRN,NFCaNFT,NT,NW,NLR,NWN,
1 	 ONDTA,TB.TES,TO,ZR
COMMON FN(2048),F0(2048),X(100),Y(20)

WRITE (TB) IN,NLR,(FN(J),J = ON,IN)
L = L + TO
LRN = LRN + ON
IN = ZR
RETURN
END

t

tj

a

— 21 —

SUBROUTINE RCARD
C

INTEGER CReFN,FOJON,TADTB,TES,T0..X,Y,ZR
C

COMMON/ALL/OR,IN.I0..ISW,ITSPK.L.LROaLRN,NFCaNFT.NT,NW,NLR$NWN,
1 	 ON,TAsTBPTES.TO,ZR
COMMON FN(2048).F0(2048),X(100)..Y(20)

C
IF (ISW .GT. ZR) GO TO 20
IF (ITS .GT. ZR) GO TO 6
READ (CR,1) (Y(J),J = ON,NFC)
ITS = ZR
IF (E0F(1) .NE. ZR) ISW = ON
IF (ISW .GT. ZR) GO TO 20
K = K + ON
GO TO 7

5 	READ (CR..1) (Y(J),J = ON,NFC)
ITS = ON
IF (E0F(1) .NE. ZR) GO TO 15
K = K + ON
IF (Y(ON) .NE. TES) GO TO 10
GO TO 8

6 	ITS = ZR
7 	NF = ZR
8 	DO 9 I = ON,NFC

IF (Y(I) *EQ. TES) GO TO 9
NF = NF + ON
X(NF+ON) = Y(I)

9 	CONTINUE
GO TO 5

10 	X(ON) = NF
RETURN

15 	ITS = TO
X(ON) = NF

20 	RETURN
C
C 	FORMAT SECTION
C
1 	FORMAT (16A5)

END

77i711 74140 71172 71175 73174 88 4851 44145 87 41 82 143 47 40 501 45 41 413 51 41 48 43 SE 54 94 43 53 52 57 34 37 31

1. 1

1 112 6 5 7

9 0 91 7 3 2

1 tiD1

O

28 27

7531/12S±q

Ji

glo C13

7.1

1 1 :Singe
hill

1

9

110

10.I

•aoo
00150

r 97 ' .

5
1
15

F r
i 	

2MMMIEE
ll sill 1:

Z = 	ZERO,

MNIGFLE: CODED DATA DECK

Name 	

Date 	

Page 	of

3 3 • 5 5 7 11 1110 0 13 13 i• :5 14 17 se 11 20 21 123123121 25124

1200

 21130131 32133 34 35134

2.1

al

4.1

4,2.

LI

6.1

6.2

6.3

A ammo

08 Y .X111111111

Bail'?

IF

3

12A

0O0/4Z

11 13151 1417150

1 5l5 4 	/0

op

52se Hclj

j,

- 23 -

APPENDIX 2: PROGRAM SREFLE

This appendix is divided into four parts: explanation,

nomenclature, listing, and coding form. The program, written

in FORTRAN IV, is a stand-alone package that uses two system

routines. FLOAT converts fixed-point values to floating-point

values, and IFIX converts floating-point values to fixed-point

values. All variables are integer type either fixed-point or

alphanumeric. Card input into the program is done under alpha-

numeric (A) and integer (I) format. All input from peripheral

storage files is in unformatted binary form.

The function of SRHFLE is to search the data base

produced by MNGFLE for selected combinations of codewords or

keywords and return the card numbers of the records on which

those combinations appear. The program consists of three parts:

the requested codeword combination input section (statements

10-15), file search and information retrieval section (statements

15-30) and a section that provides a printed record of the

search results (statements 30-95).

File search request sets are read in from cards. A

data set consists of a control header card and from 1 to 10 sets

of requested codeword combinations. Cards 1.00 to 1.30 and

2.00 to 2.50 of the coding form are examples of data sets

coded for keypunching. Cards 1.00and 2.00 of each set are

control cards. The functions of the variables on the control

card are given in the nomenclature. For this data base file,

codewords are punched in five-column fields, right justified,

16 words per card. Cards 1.10 to 1.30 of set 1 and 2.10 to

- 24 -

2.50 of set 2 are codeword combination sets. The number of

data sets that can be included in one data deck is limited only

by the time policy of the computer facility and/or the user's

budget. The last data set in the deck is followed by a

processing termination card (Card 3.00 on the coding form) that

has the word END punched in column 1 to 3.

A data set in which the number of codewords per

request is less than or equal to sixteen will be read in at

statement 11. If any request in a data set contains more than

sixteen codewords, then the number of words in each combination

set is punched, right justified, in columns 1 to 5 of the first

card in each set. The first card of each request is then read

in at statement 12,and the continuation cards at statement 11.

Cards 1.00 to 1.30 on the coding form show an example of a data

set in which each request contains fewer than sixteen words.

Cards 2.00 to 2.50 constitute a data set in which a request

(Cards 2.20 - 2.21) contains more than sixteen words. The

maximum number of codewords per request set is forty-five.

The program begins a search by reading a control card

at statement 10 of the listing. If the logical test at state-

ment 10+1 is satisfied, control is transfered to statement 99

and processing is terminated. If not, a search of the data base

is made. Each request combination set is read at statements

11 or 12 and stored one request per row in the multi-dimensioned

array RS. After all the requests in the data set have been

entered, the non-blank words contained in each request are

counted and stored in the array NCF. Control then passes to the

search section at statement 15.

•

- 25 -

The search section first reads the number of logical

records contained in the file TA and stores this value in the

counter LRB. If the logical test at statement 18 is satisfied,

all records in the file have been searched and control is

transferred to the output section at statement 90. If not, a

logical record and the number of words contained in it are read

from the file TA at statement 18+1. The logical record is

stored in the array XX. Each logical record contains a series

of individual records. The logical record counter is decreased

by one each time a record is read from the file.

The program next takes the number of words contained

in the first record stored in XX, subtracts one, and compares

the value with the number of words contained in each request

set at statement 20+2. If the number of words in the record is

greater than or equal to the number of words in any request set,

control transfers to statement 24. If not, the word counter is

incremented and compared with the number of words (NW) contained

in the logical record. If it is greater than or equal to NW,

control transfers to statement 18. If not, control transfers to

statement 20 and the next record in the series is processed in

the same manner.

At statement 24, the record is transferred from the array

XX to the working array X. The same testing procedure outlined

above is done for each request set at statement 25+4. If the

number of words in the record minus one is less than the number

of words in a request, the record is not searched and control

transfers to statement 30. Otherwise each word in the record is

- 26 -

compared with each word in the request set at statement 25+9.

Every time a word in the record is found equal to a word in the

request set, a counter RJ is incremented at statement 25+10

and control transfers to statement 27.

After all the words in the request set have been

compared, the value of RJ is compared to the number of words

in the request set at statement 27+1. If they are not equal,

control transfers to statement 30. If they are equal, the

counter,which totals the numbers of records located containing

the requested codeword combination,is incremented by one and

stored in the array CHJ at statement 27+2. The value of this

counter is tested at statement 27+3. If it is less than or

equal to NER, the catalog number of the record is stored in the

multi-dimensioned array CN at statement 27+5 and control transfers

to statement 30. If it is greater than NER, it indicates that

the row vector in array CN is filled, so control transfers to

statement 28. At statement 28, the records located counter for

that request set is set to one. The contents of arrays RS and

CN for that request set are printed and the record number that

has been located is then stored in CN. At statement 30, the

program transfers control to either statement 18 or 20. The

cycle repeats itself until all records in the file have been

processed at which time control is transferred to statement 90.

Between statements 90 and 95 the contents of arrays

RS and CN are printed. The number of a request set is given

along with a record of the requested codewords at statement

91+1. Next a printed record of all the catalog numbers associated

- 27 -

with this request set is printed at statement 94+1. After all

the information has been printed, control returns to statement

10. If this test indicates that all data sets have been

processed, control is tranbferred to statement 99 and processing

stops.

SRHFLE was designed to compare all of the requests in

a data set with each record before searching the next record.

This minimizes peripheral processing time because the program

reads the data base file from peripheral storage into computer

memory once per data set of 1 to 10 requests. Central processing

time is also minimized because the program searches only those

records whose codeword counts are equal to or greater than the

word count of a request set.

- 28 -

NOMENCLATURE

Variable 	 Function

	

CN 	Array used to store the catalog numbers of records

containing the information for which the file is

being searched.

	

CNJ 	Array used to store the number of located records

associated with each request.

	

CR 	Constant = 1, the logical unit number that references

the card reader.

	

.EQ. 	Relational operator meaning equal to (=).

	

FIN 	Alphanumeric constant = ENDbb (b = Blank).

	

.GE. 	Relational operator meaning greater than or equal

to (.k).

	

.GT. 	Relational operator meaning greater than (>).

Index counter used during DO loop executions.

IC

	

	Counter used to count the number of non-blank words

in each request set.

Row storage location indicator for the array RS in

the data input section.

	

IO 	Index counter for the array XX. The value of this

counter is set to zero each time a logical record is

read from the file TA.

Index counter used during a DO loop execution. Also

used to store other values during the execution of

the program.

0

- 2 9 -

Variable 	 Function

	

JOB 	Aphnumeric control card variable punched in columns

1 - 5. If JOB = FIN processing is terminated (See

card 3.00 on coding form).

Array index location indicator. Also used to store

other values during program execution.

	

KK 	Index counter used during a DO loop execution.

	

KR 	Equals the number of codewords contained in a request

and is used during a record search.

Control card variable punched in column 15. If L = 0

all requests in a data set contain 16 or less code-

	

, 	words. If L > 0 one or more requests contain more

than 16 codewords .

.LE. 	Relational operator meaning less than or equal to (‹).

	

LP 	Constant = 3, the logical unit number that references

the line printer.

	

LRB 	The number of logical records contained in file TA.

.LT. 	Relational operator meaning less than (<).

Counts the number of request sets processed by the

program.

	

MC 	Counts the number of lines printed. Every time the

value of MC = 59 it is reset to 0 and printing starts

at the top of the next page.

Row index counter for the array RS.

	

NC 	The number of words contained in a data file record.

	

NCF 	Array used to store the number of non-blank words

contained in each request.

Variable Function

- 30 -

	

.NE. 	Relational operator meaning not equal to ().

	

NER 	Constant = 150, equals the number of values that can

be stored in each row of the array CN.

	

NFR 	Constant = 16, the number of five-column fields in an

eighty-column card.

	

NJ 	Intermediate storage for the number of requests

contained in one data set.

	

NN 	Index counter used during a DO loop execution.

	

NONE 	Alphanumeric constant = bNONE; the value of this

constant is printed whenever a search of the data

base file does not yield a catalog number containing

the requested codeword combination.

	

NOR 	Control card variable columns 9-10, right justified,

its value is set equal to the number of codeword

combination requests included in a data set. Can

have any value ranging from 1 to 10.

	

NRF 	If L = 0, NRF is set equal to NFC. If L is , greater

than 0, NRF is set equal to the number of codewords

contained in a request. This value is punched in

columns 1-5, right justified, on the first card of

each request included in the data set (See data set

2.00 to 2.50 on coding form)

	

NW 	The number of words in a logical record. Used to

determine if all records in a logical record have

been processed.

	

ON 	Constant = 1.

- 31 -

Variable 	 Function

	

RJ 	The value of this counter increases by one each time

a record word is found equal to a request codeword.

After all record and request words have been compared,

the value of RJ is compared with the word count of

the request for equality. If the values are equal a

record has been located and its identification number

is stored in the array CN. If not equal, RJ Is set

to zero and the next request is processed.

	

RS 	Array used to store request information data. Each

request set is stored in a row vector of RS. The

maximum number of words per request is 45.

	

TA 	Constant = 4, the logical unit number that references

the peripheral storage file from which logical records

are transferred into the array XX.

	

TES 	Alphanumeric constant = 5 blanks, used to test for

non-blank words in each request set.

	

TO 	Constant = 2.

	

X 	Array in which individual records are stored for

processing.

	

XX 	Array used to store logical records transferred from

the file TA.

	

ZR 	Constant = O.

— 32 —

PROGRAM SRHFLE (INPUT$OUTPUTPTAPE1=INPUT$TAPE3=OUTPUTPTAPE4)

PROGRAM SRHFLE

PROGRAMED BY F.J.KELLY EXT MET DIV MINES BRANCH E M AND R

INTEGER CN$CNJeCR,FINJON$RJ,RSTA,TOTESX,XXZR

COMMON XX(2048),CN(10$150),RS(10,45),X(100)$CNJ(10),NCF(10)

DATA CRoLP,TA,FIN$NONE/1$3,4,5HEND $5H NONE/
- DATA ZRON,TONFR$NER,TES/0,1$2,16,150$5H

M = ZR
II = ON

10 	READ (CR,2) JOBJNOR,L
IF (JOB 'EQ. FIN) GO TO 99

• REWIND TA ,
WRITE (LP..4)
MC = ZR
NJ = NOR
NRF = NFR
DO 15 I = ON$NJ
IC = CNJ(I) = ZR
IF (L .GT. ZR) GO TO 12

11 	READ (CR$3) (RS(Ied),J = II$NRF)
GO TO 13

12 	READ (CR$1) NRF,(RS(1$J),J = 11,15)
IF (NRF .LT. NFR) GO TO 13

= NFR
GO TO 11

13 	II = ON
DO 14 H = ON$NRF
IF (RS(I$K) .E0. TES) GO TO 14
IC = IC + ON

14 	CONTINUE
NCF(I) = IC

15 	CONTINUE
READ (TA) LRB

18 	IF (LRB .LE. ZR) GO TO 90
READ (TA) NWeI0,(XX(J),J = ON$NW)
IO = ZR
LRB = LRB — ON

20 	IO = IO + ON
DO 21 I = ON$NJ
IF (XX(I0) 	ON .GE. NCF(I)) GO TO 24

21 	CONTINUE
10 = IO + XX(I0)
IF (10 • GE. NW) GO TO 18
GO TO 20

24 	NC = XX(I0)
DO 25 I = ON,NC
10 = IO + ON

25 	X(I) = XX(I0)

t

— 33 —

DO 30 KK = ON,NJ
K = KK
RJ = ZR
IF (NC — ON .LT. NCF(K)) GO TO 30
KR = NCF(K)
DO 27 NN = ON,KR
N = NN
DO 26 L = TO,NC
IF (RS(K,N) .NE. X(L)) GO TO 26
RJ = RJ + ON
GO TO 27

	

26 	CONTINUE

	

27 	CONTINUE
IF (RJ .NE. NCF(K)) GO TO 30
CNJ(K) = CNJ(K) + ON
IF (CNJ(K) .GT. NER) GO TO 28
J = CNJ(K)
CN(K,J) = X(ON)
GO TO 30

	

28 	CNJ(K) = ON
I = K + M
L = NCF(K)
WRITE (LP,5) Ii(RS(K,J)JJ =
WRITE (LP,6)
WRITE (LP,7) (CN(K,J),J = ON,NER)
WRITE (LP,8) I
CN(K,ON) = X(ON)
J = IFIX((FLOAT(NCF(K)) / 15.) + 0.99) + 15
IF (MC + J .LT. 59) GO TO 29
MC = ZR
WRITE (LP,4)

	

29 	MC = MC + J

	

30 	CONTINUE
IF (10 .GE. NW) GO TO 18
GO TO 20

	

90 	WRITE (LP,4)
MC = ZR
DO 95 I = ON,NJ
M = M + ON
K = NCF(I)
L = CNJ(I)
J = IFIX((FLOAf(K)/15.) + 0.99) +

1 	IFIX((FLOAT(L)/18.) + 0.99) +
IF (MC + J .LT. 59) GO TO 91
WRITE (LP,4)
MC = ZR

	

91 	MC = MC + J
WRITE (LP,5) Ms(RS(I,J),J = ON,K)
K = CNJ(I)
IF (K .GT. ZR) GO TO 94
CN(I,ON) = NONE
K = ON

	

94 	WRITE (LP,6)
WRITE (LP.7) (CN(I,J),J = ON,K)

	

95 	CONTINUE
GO 10 10

- 34 -

99 	REWIND TA
WRITE (LP$9)
STOP

FORMAT SECTION

1 	FORMAT (15,15A5)
2 	FORMAT (A5,5I5)
3 	FORMAT (16A5)
4 	FORMAT (1H1)
5 	FORMAT (//' JOB I $I3,' REQUESTED FIELDS.0,15(2X$A5)/26X,

1 	15(2X,45)/26X,15(2X$A5)/26X$15(2X,A5)/26X$15(2X$A5)/26X1
2 	15(2X,A5)/26X$15(2X$A5))

6 	FORMAT (/' REFERENCE FILE CARD NUMBERS FOLLOW;')
7 	FORMAT (5)($18(2){,A5)/5X$18(2X,A5)/5X,18(2X$A5)/5X$18(2X,A5)/

1 	5)(118(2X,A5)/5X,18(2X$A5)/5X,18(2X$A5)/5X$18(2X,A5)/
2 5X$18(2X,A5))
FORMAT (/' OTHER CARDS HAVING THE ABOVE FIELD(S) FOR JOB', 	,

1 	I3,' ARE LISTED BELOW')
9 	FORMAT (1H1/////5X,'PROCESSING COMPLETED')

END

1.00

wo

1.20

I•30

2.00

2.10

- T, -2F 31 4

a
7 • f 10 11

go0
2.20

2.21

2.30

Z-40

Z-60

3.00W

12

1

3CRW31-Î

SI 1613C1

Ill. L^l^l^l

14117

G

110
2

04

SRHFLE : CODED TOB REQLI EST DECK

11 21 2322

y

2s 23

00

Zf 27 © ® 30 31

E

7

Z

F6

Go

s1

V215 IO 7R

O e

m72

0

3

37 40 41

7

42 43

Fl

Name

4s M

E

4•47 ^ m m 54 M

ZERO=O

57 M M. F •2 © m •t a

Date

Page of

•1 •► 70 71

N

72
31v3 74 75

A

77 7s ©

V

