

Mines Branch Technical Bulletin TB 178

A DATA BASE MANAGEMENT AND INFORMATION
RETRIEVAL SYSTEM EMPLOYING COMPUTER PROGRAMS
MNGFLE AND SRHFLE

by
F. J. Kelly*

ABSTRACT

Two computer programs have been developed to manage
and retrieve information from document reference files or
data bases. The programs have proven to be reliable for these
tasks and economic in operation. This report describes the
development of these computer programs and provides detailed
information and instructions on their use.

*Research Scientist, Ore Treatment Section, Extraction Metallurgy
Division, Mines Branch, Department of Energy, Mines & Resources,
Ottawa, Canada.

- ii -

Direction des mines

Bulletin technique TB 178

UN SYSTEME DE RECHERCHE DOCUMENTAIRE ET DE GESTION '
POUR UN FICHIER CENTRAL UTILISANT LES PROGRAMMES
MACHINES MNGFLE et SRHFLE y
par

F.J. Kelly* |

RESUME

L'auteur a développé deux programmes machines dans le but de
gérer et de rechercher de l'information provenant des fichiers de document
de référence ou des fichiers céntraux. L'auteur a montré que ces program-
mes pouvaient accomplir ces taches avec fiabilité et étaient économiques
du point de vue du fonctionnement. Ce rapport décrit le développement de
ces deux programmes machines et fournit des enseignements et des

instructions détaillés sur leur utilisation,

*Chercheur scientifique, Section du traitement des minerais, Division de
-
la métallurgie extractive, Direction des mines, ministere de 1'Energie,
des Mines et des Ressources, Ottawa, Canada.

iy

INTRODUCTION

Every research organization is all too familiar with
the problems created by the ever-increasing flood of technical
literature. Not only is it impossible to read every article that
might be pertinent to a given project, but it is a time consuming
task to compile the list of documents from literature reference
files.

Within the Extraction Metallurgy Division, there are
several document reference files or data bases. The information
stored in these systems is cross-indexed in accordance with a
coding scheme. Manually scanning the index cards for selected
groups of codewords or keywords is one method to retrieve desired
information. Another is by passing a needle through selected holes
punched in the perimeter of the index cards. The deck of cards
is lifted and the sought-after references are found on those cards
falling free of the needle. Both of these methods are time con-
suming and cumbersome to execute and become even more so as the
volume of the data base increases.

A speed-up of the retrieval process was accomplished
by placing the active portion of the data base on a time-sharing
computer service. The utility program supplied by this service
searched the data base for requested codeword combinations and
returned the index numbers of those cards having the desired
information. The program was inexpensive to operate and reliable.
The installation of a:Control Data Cdfp. 6400‘¢omputer éyStem in
the Department forced the cancellation of all outside computer

contracts, and access to this program was terminated.

The information retrieval job was transferred to the
departmental computer system. A system utility program, MARS,
was‘available for this gervice. After several months of testing
and use it was found that this program failed to retrieve many
index numbers that bore the requested codeword combinations from
the data base. Also, the operatin§ charges for these jobs had
increased to five times that of the previous service.

Because MARS was unreliable and costly to operate,
programs MNGFLE and SRHFLE Were developed to replace it. The
functions performed by MNGFLE are as follows:

1) creation of the data base from source cards,

2) deletion or modification of existing records, and

3) insertion or addition of new records to the data base.
Program SRHFLE searches the déta base for requested‘combinations
of codewords and returns the card numbers of the records containing
these combinations. More detailed explanations of these programs,
nomenclature, FORTRAN IV listings, and job cOding forms are

given in Appendices 1 and 2.

DISCUSSION AND RECOMMENDATIONS
After development the programs were benchmarked on the
CDC-6400 against the utiiity program MARS. The test jobs compared
maximum computer memory requirements , central, peripheral and input/
output processing times, file storage space on disc in terms of
physical record units (PRUS), and tﬁe costs of data base creation,

information retrieval, and disc storage.

The test data bases were created from the same source
cards. Each of the 1,501 cards contained one complete record,
i.e., index card number and codewords. There were between 2 and
16 words per record. Ten sets of request codeword combinations
were selected from the source data base to be used in the retrieval
test. The tasks, data base creation, and information retrieval
were run through each program twice. The results given in
Tables 1 and 2 are the calculated averages of each double run.

Inspection of the results (Tables 1 and 2) show that
there are significant advantages to be gained from using programs
MNGFLE and SRHFLE in place of MARS. On the data base creation
task, MNGFLE reduces computer memory requirements by 35.7 %,
file storage cost by 79.6 %, and the job operating cost by 63.1 %.
On the information retrieval task, SRHFLE reduces computer memory
requirement by 46.4 %, file storage cost by 79.6 %, and job
operating cost by 95.2 %. These reductions mean that these
programs will provide a turnaround service more quickly and more
cheaply than does the utility program for the identical set of
tasks.

The complete data base contains 6,671 records or 43,838
words. There are between 2 and 25 words per record. The cost of
creating this data base with MNGFLE from source cards was $20.14.
Running the data sets, used to search the test data bases, through
the complete data base with SRHFLE cost $2.60. The projected costs
of doing both jobs with MARS are $86.50 and $72.65 respectively.
The cost of making a 1500-record update of the comrlete data base

with MNGFLE was $18.34. As was expected, the cost of creating

TABLE:'I COMPARING THE CREATION OF DATA BASE FILES WITH UTILITY
PROGRAM MARS AND PROGRAM MNGFLE FROM 1501 SOURCE CARDS

COMPUTER: DEMR CDC-6400

DATE RUN 03704773 MARS MNGFLE BY MNGFLE
(%)
CORE STORAGE OCTAL WORDS 66500 43000 35.7
CORE STORAGE DECIMAL WOIRDS 28000 18000 35.7
CENTRAL PROCESSING TIME (SEC) 794 14.4 81.8
PERIPHERAL PROCESSING TIME (SEC) 250.0 69.8 7241
INPUT70UTPUT PROCESSING TIME (SEC) 219.3 56+4 74.3
FILE STORAGE SPACE ON DISC (PRUS) 752 153 79.6
COST OF CREATING FILE %) 1796 6+63 6341
COST OF STORING FILE ON DISC ($/DAY) 150 0.305 7946
TABLE: 2 COMPARING THE RETRIEVAL OF INFORMATION FROM DATA BASE
FILES WITH UTILITY PROGRAM MARS AND PROGRAM SRHFLE
COMPUTER : DEMR CDC-6400 PROGRAM PROGRAM REDUCTION
DATE RUN 03704/173 MARS SRHFLE BY SRHFLE
: (%)
CORE STORAGE OCTAL WORDS 66500 35000 4644
CORE STORAGE DECIMAL WORDS 28000 15000 46 .4
CENTRAL PROCESSING TIME (SEC) 376 4.9 87.0
PERIPHERAL PROCESSING TIME (SEC) 7425 14.5 98.0
INPUT70UTPUT PROCESSING TIME (SEC) 5781 5.3 991
FILE STORAGE SPACE ON DISC (PRUS) 752 153 79.6
COST OF RETRIEVING INFORMATION (%) 1507 0.72 9542
COST OF STORING FILE ON DISC ($/DAY) 1.50 0,335 79.6

PROGRAM PROGRAM REDUCTION

and retrieving information from the data base increases as the
number of records increase.

Another factor checked during these tests was the
ability of each program to produce the correct results. The
test data bases created by MARS and MNGFLE were compared with
the source data base for omissions. Both data bases proved to be
void of errors. With each search of its data base MARS failed
to retrieve the index numbers of two records having the requested
codeword combinations. SRHFLE, on the other hand, correctly
retrieved all possible index numbers each time. This test work
has shown that SRHFLE is more relaible at the task of retrieving
information from the data base than is the utility program MARS.

The reference files which these programs manage and
from which information is retrieved, employ a numeric cross-
reference system, However, punched card input to both programs
is done under alphanumeric format specifications. Consequently
the programs can be used to manage the research files that use
the keyword cross-reference system.

The index numbers produced by the search program are used
to manually locate desired documentation within the reference
file. If a copy of the document file were available to the program,
the system would be complete. With minor modification the program
could then produce printed copies of the required information.
This would speed-up the retrieval process and save man~hours.

The entire data base would be placed on two files.

The first file contains the cross-reference records and the

second file the document records. Both of these files are linked

together by the record numbers and maintained by MNGFLE. A
request for information first initiates a search of file~l by
SRHFLE for the pertinent document record numbers. After all
requests have been processed, SRHFLE locates each document in
file~2 and prints a copy of the record. Having the cross-
reference file separate from the document file will minimize
central and peripheral processing time and computer memory

requirement.

SUMMARY «

Programs MNGFLE and SRHFLE were designed to manage
and retrieve information from cross-indexed file systems. These
FORTRAN IV programs operate on the Department's CDC-6400 comnuter
system. Besides providing good turnaround service they
have proven to be reliable and economic in operation. Unlike
system programs, modification control of these programs remains
in the hands of the uéer. For identical service, these programs
have reduced the operating charges and computer memory require-
ment attributable to the utility program MARS; MNGFLE by 63 %

and 35 %, and SRHFLE by 95 % and 46 %.

APPENDIX 1: PROGRAM MNGFLE

The appendix is divided into four parts: explanation,
nomenclature, listing, and coding form. The program, written
in FORTRAN IV, consists of a main driving routine and six subroutines.
The function of these routines are as follows; MNGFLE either
creates or updates a data base or file, XFN inserts, modifies
and deletes records from the file, FOSFN transfers a record
from the o0ld file to the new file, FOBFN transfers one logical
record from the old file to the new file (a logical record is a
consecutive series of individual records), RTAPE reads logical
records from a file located on a peripheral storage device,
WTAPE writes logical records to a file located on a peripheral
storage device and RCARD reads new records from source cards.

In addition, the program uses four system routines:
FLOAT converts fixed-point values ﬁo floating=-point values; IFIX
converts floating-point values to fixed-point values; EOF agnd
ENDFIL are end of file test and marker, respectively. The function
of all variables used in the program i1s given in the nomenclature.
There are only four floating-point variables in the program A, BPT,
BPW, and TLR. All other variables are integer.type,either fixed-
point or alphanumeric. Card input to the program is done under
alphanumeric A-type format. All data written on, or read from
files located on peripheral devices is in unformatted binary form.

Records read from cards can be of variable length. The
minimum number of words per record is 2 and the maximum is 99.
Under the present format (RCARD, 1 FORMAT),l to 5 character

alphanumeric words are punched in five-column fields. An eight-

column card will hold sixteen words. The first word of the
record must contain the source file identification number of the
recérd. The record number can be alphanumeric and is always
punched in columns 1 to 5 of the first card. If the number of
cross-reference words exceeds 15, the remainder are punched
on succeeding cards} but columns 1 to 5 on those cards are left
blank. Examples of records (cards 2.1 to 9.1l) coded for punching
are shown on the coding forms.

On the first entry into RCARD, a card is read and the
data is stored in array Y. A check is made to determine if an

end of file mark has been encountered. If it has, control returns

to the main program. If not, each non-blank word in Y is counted
and packed into the afray X starting at the second location. A
second card is then read into Y. If an end of file is not
encountered,the'first word in Y is tested to determine if it is
a blank word. If it is blank,it indicates a record continuation
and the non-blank words are counted and added to X. If the first
word in Y is not blank, it indicates ﬁhe start of a new record
and the data is held in Y. The number of non-blank words in the
previous record is stored in the first location of X and control
returns to the main program so that processing of the record
can continue. ©Note that RCARD adds bne word to each record.
On succeeding'entries into RCARD, the information stored in Y is
processed first and the above cycle repeats itself until an end
of file mark is encountered.

The processing of records in MNGFLE is done on the

record number. The program reguires that the records read from

kS

cards be sequenced in ascending order. The numbering system
employed is alphanumeric and has five units per number. This
system contains the twenty-six letters of the alphabet and the
digits zero to nine for a total of thirty-six units. The system
can reference 11,881,375 records. In the CDC-6400 system,

unit, A<B< ----7<0<1l< ----9, ILeading and/or embedded blanks are
not permitted in a record number. However, all characters
including blanks can be used anywhere in any other record word
(see coding form for example).

Records processed by MNGFLE are stored consecutively
in the array FN. Every time a record is entered into FN, the
record word count plus one is added to the total number of words
contained in FN. Each time subroutines XFN, FOSFN and FOBFN
are called,they check the FN word count plus that of the next
record,against the value 2045. If the combined total is less
than or equal to 2045 the record is transferred to FN,and if
greater,WIAPE is called. WTAPE writes one logical record, i.e.,
the number of words in FN, the number of words in the last record
entered, and the contents of FN, to a file located on a peripheral
storage device. After incrementing the logical record counter
and initializing the FN word counter, control returns to the
calling routine. RTAPE reads logical records created by MNGFLE
from peripheral storage files in the same manner. This cycle
repeats.itself until all records have been processed.

The manipulation of records occurs between statements
15 and 35 in the MNGFLE routine. The manner in which the recoxrds

are processed depends on a series of decision tests. If the

-10-

test at statement 31 of the listing is satisfied, control goes
to 16 and new records are added to the end of the file. If the
ne#t test after 31 is satisfied, control goes to 21 and a part
or an entire logical record is transferred from the old té the
new file. If the test at statement 33 is not satisfied, one
record is transferred from the old to the new file. If the test
at statement 34 is not satisfied, a record is either deleted or
updated. TIf the test at statement 35 is not satisfied, a record
is inserted into the file. Processing continues until the test
at statement 20 is satisfied and control prasses to statement 50.
The output section produces the final version of the file. The
number of logical records contained in the file is written on
the new file and the contents of the working file are copied to
this file. A printed record of the files content, along with
relevant file statistics are printed and the program stops. The
new version of the file is copied on to magnetic tape or a
private disc pack for storage purposes.

An example of a data deck coded for punching is given
on the coding form. Card (1.1) is the first card in all data
decks. The value of the variable LRO (card 1.1, col 10) is used
as a control switch at the start of the program. If the value
is 0, a new file is created and all record input will be from
source cards. If the value is 1, records are processed from an
accessible storage file and updated in accordance with the source
cards. This would be the case for the data shown on the coding
form. The record numbers (cards 2.1 to 9.1, columns 1 to 5) as
noted previously appear in ascending order. Also columns 1 to 5

on the continuation cards (4.2, 6.2, 6.3) of records 4 and 6

~1]1~-

are left blank. Cards containing only a record number (e.g. 3.1
and 7.1) will cause those records to be deleted from the file.
The other records will update a record, be inserted between records,
or be added to the end of the file. The last card in the data
deck is the end-of-file card which consists of a 7-8-9 multi-
punched in Column 1l,and 1 and 5 nunched in columns 2 and 3
respectively,

Before operating the program, make a visual check of
the data deck. If the deck contains more than a hundred cards,
request an off-line listing from the terminal operator. Make
sure that the record numbers are in ascending order and correct
all punching errors. The program produces a complete printed
record of the file each time it is run. The cost of printing
this record is approximately 62 % of the total operating charge.
The printing section can be controlled by the user by making
the following changes in the MNGFLE routine:

1. Change statement READ (CR, 2) LRO
to READ (CR, 2) LRO,NP

2. After statement ENDFIL TC
insert statement IF (NP .LE, ZR) TO TO 70

3. After statement 60 CONTINUE
change statement REWIND TC to 70 REWIND TC

The value of NP can be punched in column 15 of card 1.1 on the
coding form without a change to format statement 2. If NP = O,
printing does not occur. If NP = 1, a printed record of the
file is produced. The produced listing gives the record count,
the octal display number of the reference file card index number,
the number of computer words per record, the reference file card
index number, and the codewords or keywords associated with each

record in the file.

Variable

A
.AND.
BPI
BPW

CR

LEQ.

FN
FO

.GE.

.GT.

IC

IN

-12-

. NOMENCLATURE
Function

Stores the estimate of the number of lines printed per
fecord. Used in the regulatioh of the line printer
paging cohtrol.
Logical operator meaning conjunction.
Constant = 800, the number of bits stored per inch of
magnetic tape.
Constant = 60, the number of bits in a CDC-6400
computer word. |
Constant = 1, the logical unit number that references
the card reader. |
Relational operator meaning equal to (=).
Array used to store logical records processed on the
new file.

Array used to store logical records read from the old

file.

Relational operator meaning greater than or ecual to (2).

Relational operator meaning greater than (>).

Index counter used during a DO loop execution.

Counter used to count the number of lines printed.
Every'time the value of IC = 59 it is reset to 1 and
printing starts at the top of the next page.

Index counter for the array FN. Within routine WTAPE,
IN equals the number of words in a logical record.
Before returning from WTAPE, the value of IN is set to

zZexo,

Variable

IO

ISw

ITS

IX

KK

-13-

Function
Index counter for the array FO. The value of this
counter is set to zero each time routine RTAPE is called.
A control switch that is used to signal the end of
data input via the card reader. The value of this
variable is set to one in routines XFN and RCARD. If
ISW = 0, input from cards continues and, if ISW = 1,
it is completed.
A control switch that controls the reading and process-
ing of records in routine RCARD. If ITS = 0, data is
read from a card. If ITS > 0, data stored in array Y
is processed before reading more data from cards.
After each read at statement 5, the value of ITS is
set to 1. If an end of file is encountered, the value
of ITS is set to 2. This delays the setting of ISW
until the record is processed by routine MNGFLE
with a call to routine XFN. The testing of the data
in Y to signal the end of a record has been outlined
in a previous section.
Index counter for the array X in routine XFN. Used as
a counter in routines FOSFN and FOBFN. The value of
IX is set to 1 on entry to each of these routines.
Index counter used during a DO loop execution.
Counts the number of cards read by routine RCARD
during program execution.

Counts the number of records contained in the new file.

-14-~

Variable Function
L Counts the total number of words contained in the new

file. Included in the Qord count aré the number of
words per record plus those added in routines RCARD
(1 per rédord), WTAPE (zwper logical iecord) and
MNGFLE (1 per file). | |
LE. Relatiohal opefator meaningviess than or equal to ().
LP Constan£ = 3, the.iogicai unit number that references
the line printer.

LRN Counts thé nuﬁber of'logical records written on the
new file. The Qalue of LRN is incremented by one each
time routine WIAPE is called. The final value of LRN
is the first word written on the new.file TC.

LRO Initial valué is equal té the number of logical records
contained on thé.old file TA. The value of LRO is

decreased by one eéch time routine RTAPE is called.

LT, Relational operator menaing less than (<).
.NE. Relational operator meaning not equal to (#).
NF Counter used in routine RCARD to total the number of

non-blank words in a recora.

NFC Constant = 16, the numbér bf five;column fields in
an eighty—colﬁmn card; Used to confrol the read DO
loops in'routine‘RCARb. Also used in routine MNGFLE
to calculatevthe.number of printed lines per record.

NFT Equals thé number of words pef lbgical record in

routine FOBFN and per record in routines FOSFN and XFN.

A

- 15 -

Variable Function
NLR The number of words contained in the last record of

a logical record. The value of NLR is set in routines
FOBFN, FOSFN, and XFN. Also the value of the second
word of a logical record transferred to the new file
each time routine WTAPE is called.

NR Same meaning as NLR. Used in routine RTAPE to calcu-
late the location of the record number of the last
record in array FO.

NT The value calculated in routine RTAPE to give the
location of the last record number in array FO. Used
in routine MNGFLE to determine if a record being
processed is to be included within the records stored
in FO.

NW The number of words in a logical record that will be
stored in the array FO. It is used in the calculation
of NT in routine RTAPE., Also used in routines MNGFLE
and FOBFN to determine if all records stored in FO
have been processed.

NWN Constant = 2045, the maximum number of words that
can be stored in the array FN. If it is desired to
alter the length of a logical record, the value of
this constant along with the dimensions of arrays FN
and FO must be changed.

ON Constant = 1.

Variable

TA

TB

TC

TES

TLR

TO

ZR

- 16 -

Function
Constant = 4, the_;ogioa; unit number that references
the perlpheral storage flle from whlch logical records
are transfered 1nto the array. FO.
Constant = 5, the 1oglcal unlt number that references
a scratch peripheral storage file;
Constant = 6, the 1oglcal unit number that references
the perlpheral storage flle on whlch the new flle is
stored.
Alphanumeric constant = 5 blanks, used_in routine
RéARD to test forvblank uords; |
The approx1mate footage of magnetic tape used to
store the data base.l
Constant = 2.
Array used to store recrods processed in routine
RCARD. o | | |
Array used to store data read via the card reader
in routlne RCARD |

Constant = 0.

oRoNoNoNe

Q

15

16

19

20

21

a5

30

31

33

34

- 17 -

PROGRAM MNGFLE (INPUT,OUTPUT, TAPEl1=INPUT» TAPE3=0UTPUTs TAPE4,
TAPES, TAPES6)

PROGRAM MNGFLE
PROGRAMED BY FeJ«KELLY EXT MET DIV MINES BRANCH E M AND R
INTEGER CRsFNsFO,ONs>TA» TBs TCs» TES» TOsXsYsZR

COMMON/ALL/CR> IN, 105 ISWs ITSsKsLROsLRNs NFCoNFT»NT»>NW, NLRs» NWN>»
ON»> TA» TB» TES» TOs ZR
COMMON FN(2048),F0(2048)5sX(100),Y(20)

DATA CRsLPsTASTBsTCoTES/1535,4555655H /
DATA ZRsONs>TO>NFCoNUWNSBPI»BPW/05s152516520455800e260e7/

REWIND TA

REWIND TB

REWIND TC

BPI = BPW / BPI

IC = ZR

K=L = LRN = ISW = JC = JT = KK = IN = ITS
I0 = NW = NUN

WRITE (LP,1)

READ (CR.2) LRO

IF (LRO «GT. ZR) GO TO 19
CALL RCARD

IF (ISW «GTe ZR) GO TO 50
CALL XFN

GO TO 18

READ (TA) LRO

IF (I0 «GE+s NW +ANDe. LRO +LEe ZR +ANDe. ISW «GTe ZR) GO TO 50
IF (ISW .LE. ZR) GO TO 30

IF (IO «GEe NW «ANDe LRO «GT. ZR) CALL RTAPE
IF (I0 «NE. ZR) GO TO 25

CALL FOBFN

GO TO 20

CALL FOSFN

IF (10 «GE. NW) GO TO 20

GO TO 25

IF (I0 «GE« NW «ANDe LRO +GTe« ZR) CALL RTAPE
IF (JC «GTe ZR) GO TO 31

CALL RCARD

JC = ON

IF (ISW «GTe ZR) GO TO 20

IF (IO «GEe NW «ANDes LRO .LE. ZR) GO TO 16
IF (LRO «GTe ZR +ANDe X(TO) +GTe FOCNT)) GO TO 21
IF (JT «GT. ZR) GO TO 35

IF (FOCIO+TO) +GEe XC(TOY) GO TO 34

CALL FOSFN

JT = ZR

GO TO 30

IF (FOCIO+TO) «NE«. XCTO)) GO TO 35

CALL XFN

I0 = 10 + FOCIO+ON) + ON

NFT ZR

35

Q0

52

54

56

60

(A N e Ne N9

o

1

1

- 18-

JC ZR
JT ON
GO TO 30

IF (X(TO) «GE. FOCI0+TO)) GO TO 33

CALL XFN
JC = ZR
GO TO 30

OUTPUT SECTION

IF (IN +EQ. ZR) GO TO 51
CALL WTAPE

REWIND TA

REWIND TB

WRITE (TC) LRN

L =L + ON ,

DO 52 I = ONLLRN

READ (TB) NWLNLR,(FNC(J)»J = ON,NW)

ENDFIL TC

REWIND TC

READ (TC)> LRN

DO 60 I = ON,LRN

WRITE (TC) NWLNLR,(FNC(J)»J = ON,NW)

READ (TC) NWLNLR,(FN(J)s»J = ONLNW)

IN = TO

10 = FN(CON) + ON
KK = KK + ON

IC = IC + ON

IF (IC .LT. 59) GO TO 56
IC = ON
WRITE (LP»1)

WRITE (LPs3) KKLFNCIN)LFNCIN-ON)>(FN(J)sJ

A = FLOAT(FNCIN=-ON)) 7 NFC
IC = IC + IFIX(A + 0.99) = ON

IF (AEQ el e e OReA¢EQe2+¢e0ReAcEQe3++0R A EQ AOOOR AEQeS5+.+0R

A+EQeb6¢sORsA+EQe7+) IC = IC + ON

IF (10 +GE. NW) GO TO 60
IN = IN + FNCIN-ON) + ON
10 = JO + FNCIO+ON) + ON
GO TO 54
CONT INUE
REWIND TC

TLR = (L * BPI + 3.0 % LRN + 0.75) 7/ 12.0 + 2.0

WRITE (LPs4) KsL,LRNLTLR
WRITE (LP»5)
STOP

FORMAT SECTION

FORMAT (1H1/)
FORMAT (5X,515)

FORMAT (5X5155,1X5010515216C1X2A5)/26X216C(1XsA5)/726X516(1XsA5)/
26X,16C1XsA5)/26X516C1XsA5)/26X516(1.X2A5)726X516C(1X5A5))
FORMAT (1H1//7/5X5'NO OF CARDS READ=',20X,177//5X,

*NO OF WORDS WRITTEN ON TAPE=

*115/775X%,

2
3

1

- 19 -

'NO OF LOGICAL RECORDS WRITTEN= *6X,17//5X.»
'APPROXIMATE LENGTH OF TAPE RECORD=',F10.1,'(FT)*)
FORMAT (1H1///7//' PROCESSING COMPLETED')
END

SUBROUTINE XFN
INTEGER CRsFN,FOsONsTASTB>TESsTO0»XsYsZR

COMMON/Z/ALL/CRsINSIOSISWLITS,KsLsLROSLRNsNFCHNFTsNT sNWsNLR>NWN,
ONs»TASTBLTES»TO»ZR
COMMON FNC(2048),F0(2048),XC(100),Y(20)

IF C(ITS «EQe« TO) ISW = ON
IF (X(ON) .EQ+ ON) RETURN
NFT = XC(ON) + ON

IF CCIN + NFT) «GE+ NWN) CALL WTAPE
IX = ON

IN = IN + ON

FNCIN) = X(IX)

L =L + ON

IF (IX «GE. NFT) GO TO 9
IX = IX + ON

GO TO 5

IX = IN - NFT + ON

NLR = FNCIX)

RETURN

END

SUBROUTINE FOSFN

INTEGER CR,FN,F0OsON>TATB>TESsTOsX»Y»ZR

COMMON/ALL/CRSINLIO->ISWLITS»KsL>LROSLRNsNFCsNFTsNT »NWsNLRsNWN,
ON,TALTB-TES,TO,ZR

COMMON FN(2048),F0(2048),X(100),Y(20)

NFT = FOCIQ+ON) + ON
IF (CIN + NFT) .GE. NWN) CALL WTAPE

IX = ON

IN = IN + ON

IO = I0 + ON
FNCIN) = FOCIO)
L =1L + ON

IF C(IX «GE. NFT) GO TO 9
IX = IX + ON

GO TO 5

IX = IN - NFT + ON

NLR = FN(IX)

RETURN

END

- 20 -

SUBROUTINE FOBFN
INTEGER CRsFNsFOsONsTA»TBsTESSTOsXsYs2ZR

COMMON/ALL/CRSINSIOSISWSITSsKsLsLROSLRNsSNFCANFTsNT sNW,NLRSNWN>
1 ON>TALTB,TES,TO,ZR
COMMON FN(2048),F0¢(2048),X(100),Y(20)

IX = ON

NFT = FOCIO+ON) + ON

IF (CIN + NFT) «GE. NWN) CALL WTAPE
IN = IN + ON

10 = 10 + ON

FNCINY = FOCIO)

L =L + ON

IF CI0 +GE+ NW) RETURN
IF (IX +EQ. NFT) GO TO 9
IX = IX + ON

GO TO 6

IX = IN - NFT + ON

NLR = FNCIX)

GO TO S

END

SUBROUTINE RTAPE
INTEGER CRsFNsFO,ONsTASTBSTES,TO»X5Y»ZR

COMMON/ALL/CRsIN,IO,ISWsITSsKsLsLROSLRNSNFCNFT sNT sNW,NLRsNWN,
1 ONsTASTB,TES,T0,ZR
COMMON FN(2048),F0€2048),X(100),Y(20)

READ (TA) NWLNRsS(FOCI>>»I = ON,NW)
NT = NW - NR + ON
LRO = LRO =~ ON

10 = ZR
RETURN

END

SUBROUT INE WTAPE
INTEGER CRsFNsFOs,ONsTASTBsTES,TOsXsY»ZR

COMMON/ALL/CRIINSIOsISWSITS>KsLsLROSLRNSNFCINFT sNT s NWsNLRsNWN,
1 ON+sTASTBSTESSTOsZR
COMMON FN(2048),F0¢(2048),XC100),Y(20)

WRITE (TB) INsNLR,(FNC(J)»J = ON,IN)
L =L + TO

LRN = LRN 4+ ON

IN = ZR

RETURN

END

L3

0~

- OO0

1

- 21 -

SUBROUTINE RCARD
INTEGER CRJFNsFOs,ON»TA>TBLTES»TO0sX,Y»2ZR

COMMON/ALL/0ORSINLIOSISWLITS»KsLsLROLLRNSNFCNFT sNT »NWsNLRNWNS
ON,TA>TBL,TES,T0,ZR
COMMON FN(2048),F0(2048),X(100),Y(20)

IF (ISW «GT. ZR) GO TO 20

IF (ITS «GT. ZR)> GO TO 6
READ (CR,»1) (Y(J)sJ = ONLNFC)
ITS = ZR

IF (EOF(1) +NE«. ZR) ISW = ON
IF (ISW «GT. ZR)> GO TO 20

K = K + ON

GO TO 7

READ (CR»1) (YCJ)»J = ONsNFC)
ITS = ON

IF (EOFC1) «NE. ZR) GO TO 15
K = K + ON

IF CYCON) .NE« TES) GO TO 10
GO TO 8

ITS = ZR

NF = ZR

DO 9 I = ONLNFC

IF (Y(I> «EQ. TES) GO TO 9
NF = NF + ON

X(NF+0ON) = Y(I)

CONT INUE

GO TO 5

XC(ON) = NF

RETURN

ITS = TO

X(ON) = NF

RETURN

FORMAT SECTION

FORMAT (16A5)
END

MNGFLE: CODED DATA DECK

-..ZZ—

1.4 /

2.1 ARARA 71 2l0o || B #7500 | | 715181/ 21519 3| | 6

am%a%af'ygx

4. (BTLAR T 28 | |11 5250 | o] [&¥o | (163 | 170 [

420711 T L /2 | 851 2o T EEa 1T 32

51EQI2A || 63 21250 | HOIL

6-11000AZ [T T11RT1113 5 é

6211 A6 H T J K

6.3 uillv W Z H500

1 0000]

z:a_;{ogs{o lod [@25 [| el | MGl | g8 16543] | | |19

9.1199999 |1l | 2ad sz [111& | [|10

/04"&175" .
O=¢ Z=FZ zERO=0

- 23 -

APPENDIX 2: PROGRAM SRHFLE

This appendix is divided into four parts: explanation,
nomenclature, listing, and coding form. The program, written
in FORTRAN IV, is a stand-alone package that uses two system
routines, FLOAT converts fixed-point values to floating-point
values, and IFIX converts floating~-point values to fixed-point
values. All variables are integer type either fixed-point or
alphanumeric. Card input into the program is done under alpha-
numeric (A) and integer (I) format. All input from peripheral
storage files is in unformatted binary form.

The function of SRHFLE is to search the data base
produced by MNGFLE for selected combinations of codewords or
keywords and return the card numbers of the records on which
those combinations appear. The program consists of three parts:
the requested codeword combination input section (statements
10-15), file search and information retrieval section (statements
15-30) and a section that provides a printed record of the
search results (statements 30-95).

File search request sets are read in from cards. A
data set consists of a control header card and from 1 to 10 sets
of requested codeword combinations. Cards 1.00 to 1.30 and
2.00 to 2.50 of the coding form are esxamples of data sets
coded for keypunching. Cards 1.00and 2.00 of each set are
control cards. The functions of the variables on the control
card are given in the nomenclature. For this data base file,
codewords are punched in five-column fields, right justified,

16 words per card. Cards 1.10 to 1.30 of set 1 and 2.10 to

2.50 of set 2 are éodeword combination sets. The number of
data sets that can be included in one data deck is limited only
by the time policy of the computer facility and/or the ﬁser's
budget. The last data set in the deck is followed by a
processing termination card (Card 3.00 on the coding form) that
has the word END punched in column 1 to 3.

A data set in which the number of codewords per
request is iess than or equal to sixteen will be read in at
statement 11. If any request in a aata éet contains more than
sixteen codewords, then the-humber of words in each combination
set is punched, right justified, in columns 1 to 5 of the first
card in each set. The first card of each request is then read
in at statement 12 and the continuation cards at statement 11.
Cards 1.00 to 1.30 on the coding form show an example of a data
set in which each request contains fewer than sixteen words.
Cards 2.00 to 2.50 constitute a data set in which a request
(Cards 2.20 - 2.21) contains more than sixteen words. The
maximum number of codewords per request set is forty-five.

The program begins a search by reading a control card
at statement 10 of the listing. If the logical test at state-
ment 10+1 is satisfied, control is transfered to statement 99
and processing is terminated. If not, a search of the data base

is made. Each request combination set is read at statements

11 or 12 and stored one request per row in the multi-dimensioned

array RS. After all the requests in the data set have been

entered, the non-blank words contained in each request are

counted and stored in the array NCF. Control then passes to the

search section at statement 15.

- 25 -

The search section first reads the number of logical
records contained in the file TA and stores this value in the
counter LRB. If the logical test at statement 18 is satisfied,
all records in the file have been searched and control is
transferred to the output section at statement 90. TIf not, a
logical record and the number of words contained in it are read
from the file TA at statement 18+1. The logical record is
stored in the array XX. Fach logical record contains a series
of individual records. The logical record counter is decreased
by one each time a record is read from the file.

The program next takes the number of words contained
in the first record stored in XX, subtracts one, and compares
the value with the number of words contained in each request
set at statement 20+2. If the number of words in the record is
greater than or equal to the number of words in any request set,
control transfers to statement 24. If not, the word counter is
incremented and compared with the number of words (NW) contained
in the logical record. If it is greater than or equal to NW,
control transfers to statement 18. If not, control transfers to
statement 20 and the next record in the series is processed in
the same manner.

At statement 24, the record is transferred from the array
XX to the working array X. The same testing procedure outlined
above is done for each request set at statement 25+4. If the
number of words in the record minus one is less than the number
of words in a request, the record is not searched and control

transfers to statement 30. Otherwise each word in the record is

- 26 -

compared with each word in the request set at statement 25+9.
Every time a word in the record is found equal to a word in the
request set, a counter RJ is incremented at statement 25+10
and controi transfers to statement 27.

After all the words in the request set have been
compared, the value of RJ is compared to the number of words
in the request set at statement 27+1. If they are not equal,
control transfers to statement 30. If they ére equal, the
counter,which totals the numbers of records located containing
the fequested codeword combination, is incremented bf one and
stored in the array CHJ at statement 27+2. The value of this
counter is tested at statement 27+3. If it is less than or
equal to NER, the catalog number of the record is stored in the
multi-dimensioned array CN at statement 27+5 and control transfers
to statement 30. If it is greater than NER, it indicates that
the row vector in array CN is filled, so control transfers to
statement 28. At statement 28, the records located counter for
that request set is set to one. The contents of arrays RS and
CN for that request set are printed and the.record number that
has been located is then stored in CN. At statement 30, the
program transfers control to either statement 18 or 20. The
cycle repeats itself until all records in the file have been
processed at which time contreol is transferred to statement 90.

Between statements 90 and 95 the contents of arrays
RS and CN are printed. The number of a‘request set 1s given
along with a record of the requestedléoaeWOrds at statement

91+1. Next a printed record of all the catalog numbers associated

- 27 -

with this request set is printed. at statement 94+1. After all
the information has been printed, control returns to statement
10. If this test indicates that all data sets have been
processed, control is transferred to statement 99 and processing
stops.

SRHFLE was designed to compare all of the requests in
a data set with each record before searching the next record,
This minimizes peripheral processing time because the program
reads the data base file from peripheral storage into computer
memory once per data set of 1 to 10 requests. Central processing
time is also minimized because the program searches only those
records whose codeword counts are equal to or greater than the

word count of a request set,.

Variable

CN

CNJ

CR

+EQ.

FIN

.GE.

.GTI

IC

IT

Io

NOMENCLATURE

Function

Array used to store the catalog numbers of records
containing the information for which the file is
being searched.

Array used to store the number of located records

associated with each request.

Constant = 1, the logical unit number that references

the card reader.

Relational operator meaning equal to (=).
Alphanumeric constant = ENDbb (b = Blank).
Relational operator meaning greater than or equal

to (2).

Relational operator meaning greater than (>).

Index couﬁter used during DO loop executions.
Counter used to count the number of non-blank words
in each request set.

Row storage location indicator for the array RS in
the data input section.

Index counter for the array XX. The value of this
counter is set to zero each time a logical record is
read from the file TA.

Index counter used during a DO loop execution. Also
used to store other values during the execution of

the program.

Variable

JOB

KK

KR

.LE.

LP

LRB

.LTC

MC

NC

NCF

Function

Aphnumeric control card variable punched in columns

1 -5, If JOB = FIN processing is terminated (See
card 3.00 on coding form).

Array index location indicator. Also used to store
other values during program execution.

Index counter used during a DO loop execution.

Eguals the number of codewords contained in a request
and is used during a record search.

Control card variable punched in column 15. If L =0
all requests in a data set contain 16 or less code-
words. If L > 0 one or more requests contain more
than 16 codewords .

Relational operator meaning less than or equal to (2).
Constant = 3, the logical unit number that references
the line printer.

The number of logical records contained in file TA.
Relational operator meaning less than (<).

Counts the number of request sets processed by the
program.

Counts the number of lines printed. Every time the
value of MC = 59 it is reset to 0 and printing starts
at the top of the next page.

Row index counter for the array RS.

The number of words contained in a data file record.
Array used to store the number of non-blank words

contained in each request.

Variable

.NE.

NER

NFR -

NJ

NN

NONE

NOR

NRF

NW

ON

Function

Relational operator meaning not equal to (#).

Constant = 150, equals the number of values that can

be stored in each row of the array CN.

Constant =16, the number of five-column fields in an
eighty-column card. : . .
Intermediate storage for the number of requests ' ‘
contained in one data set. |

Index counter used during a DO loop execution.

Alphanumeric constant = bNONE; the value of this

constant is printed whenever a search of the data

base file does not yield a catalog number containing .
the requested codeword combination.

Control card variable columns 9-10, right justified,

its value is set equal to the number of codeword

combination requests included in a data set. Can

have any value ranging from 1 to 10.

If L. = 0, NRF is set equal to NFC. If L is' greater

than 0, NRF is set equal to the number of codewords

contained in a request. This value is punched in i
columns 1-5, right justified, on the first card of

each request included in the data set (See data set

2.00 to 2.50 on coding form)

The number of words in a logical record. Used to

5

determine if all records in a logical record have
been processed.

Constant = 1.

Variable

RJ

RS

TA

TES

TO

XX

ZR

Function

The value of this counter increases by one each time
a record worl is found equal to a request codeword.
After all record and request words have been compared,
the value of RJ is compared with the word count of
the request for equality. If the values are equal a
record has been located and its i1dentification number
is stored in the arfay CN. If not equal, RJ is set
to zero and the next request is processed.

Array used to store request information data. Each
request set is stored in a row vector of RS. The
maximum number of wofds per request is 45.

Constant = 4, the logical unit number that references
the peripheral storage file from which logical records
are transferred into the array XX.

Alphanumeric constant = 5 blanks, used to test for
non-blank words in each request set.

Constant = 2.

Array in which individual records are stored for
processing.

Array used to store logical records transferred from
the file TA.

Constant = 0.

Qoo

Q

10

11

12

13

14

15

18

20

2l

24

25

- 32

PROGRAM SRHFLE (INPUTsOUTPUT, TAPE1=INPUT, TAPE3=0UTPUT» TAPE4)
PROGRAM SRHFLE |

PROGRAMED BY FeJ.KELLY EXT MET DIV MINES BRANCH E M AND R

INTEGER CNsCNJsCRsFINs ONsRJsRSs TA» TOs TES» X» XX 5 ZR

COMMON XX(€2048),CNC1051505»RS(10,45),X(100),CNJC10)sNCF(10)

DATA CRsLP»TA»FINsNONE/15, 3545 5HEND »5H NONE/

"DATA ZRsON, TO»NFRsoNER»TES/0515251651505 5H /
M = ZR
IT = ON

READ (CRs2) JOBsNOR,L

IF (JOB .EQ. FIN) GO TO 99
REWIND TA

WRITE (LP,4)

MC = ZR

NJ = NOR

NRF = NFR

DO 15 I = ONsNJ

IC = CNJCI) = ZR

IF (L +GT. ZR) GO TO 12
READ (CR»3) (RS(CI»J)»J = I1,NRF)
GO TO 13

"READ (CRs1) NRF»(RS(I,J)sd = I11,15)

IF (NRF LT+ NFR) GO TO 13

II = NFR
GO TO 11
IT = ON

DO 14 K = ONsNRF

IF (RSCIsK) «EQ+ TES) GO TO 14

1C = IC + ON :

CONTINUE

NCF(1) = IC

CONTINUE

READ (TA) LRB

IF (LRB «LEe« ZR> GO TO 90

READ (TA) NW,IO0,(XX(J)sJ = ON,NW)
I0 = ZR '
LRB = LRB - ON

I0 = 10 + ON

DO 21 I = ONsNJ

IF (XX(I0) -~ ON +GE« NCF(1)>) GO TO 24
CONTINUE

I0 = 10 + XXC(IO)

IF (I0 «GEe« NW) GO TO 18

GO TO 20

NC = XX(I10)

DO 25 1 = ONsNC

10 = 10 + ON

X(I) = XX(IO

B

26
27

28

29
30

90

91

94

95

1

DO 30 KK = ON»NJ

K = KK
RJ = ZR
IF (NC - ON
KR = NCF(K)

LT,

DO 27 NN = ONsKR

N = NN

DO 26 L = TO,NC

IF (RS(KsN)
RJ = RJ + ON
GO TO 27
CONT INUE
CONTINUE

IF (RJ «NE.

nNEc

CNJ(K) = CNJC(K) + ON

IF (CNJC(K) +GT.

J = CNJ(K)

CN(K»J) = X(ON)

GO TO 30
CNJC(K) = ON
I = K + M

L = NCF(K)
WRITE (LP,S)
WRITE (LP,6)
WRITE (LP.,7)
WRITE (LP.8)

I1,(RS(Ks»J)sJ

(CN(K»J)>»J
1

CN(K,ON) = X(ON)
J = IFIXC((FLOAT(NCF<(K)) 7/

IF (MC + J «LT.

MC = ZR
WRITE (LP»,4)
MC = MC + J
CONT INUE

IF (10 «GE.
GO TO 20
WRITE (LP»4)
MC = ZR

NW) GO TO 18

DO 95 1 = ON,NJ

M + ON
NCF(CI)
CNJCID

XX

3

59> GO TO

IFIXC(FLOAT(K)/Z15.) +

IFIXCC(FLOAT(L)/Z18.) +

IF (MC + J «LT.

WRITE (LP,4)
MC = ZR
MC = MC + J

59) GJO TO

WRITE (LP»5) My(RS(I-0)>J

K = CNJCI)

IF (K «GT. ZR) GO TO 94
CN(I,ON) = NONE

K = ON

WRITE (LP,6)
WRITE (LP«7)
CONT INUE

GO TO 10

(CNCI»D)HJ

-
=

- 33 -

NCF(K)») GO TO 30

X(L)) GO TO 26

NCF(K)) GO TO 30

NER) GO TO 28

= ON»LD

ONsNER)

15) + 099) + 15

29

0+99) +
0«99) + 4
91

= ON,K)

ON»K)

Nnd>LNN-00Q0

-~ O

REWIND TA
WRITE (LP,»9)
STOP

. FORMAT SECTION

1
2

1
2

1

FORMAT (15,15AS)

FORMAT (AS5,515)

FORMAT (16A5)

FORMAT C1H1)

FORMAT (//' JOB',13,*' REQUESTED FIELDS3'»15(2X,A5)/26X,

15(2X5A5)/726X515(2XsA5)/26X515(2%XsA5)/26Xs15(2X,A5)/26X>»
15(2X,A5)/726%X515(2X5A5))

FORMAT (/' REFERENCE FILE CARD NUMBERS FOLLOW3®)

FORMAT (S5X»18(2XsA5)/5X%X,18(2XsA5)/5X218(2XsA5)/5X518(2X,A5)/
SXs18(2XsA5)/5Xs18(2X5A5)/5X518(2XsA5)/5X%X518(2XsA5)/
SXs18(2X,A5))

FORMAT (/' OTHER CARDS HAVING THE ABOVE FIELD(S) FOR JOB®,

13,* ARE LISTED BELOW®)

FORMAT (1H1///7/5X,'PROCESSING COMPLETED*)
END

Date
1.00 3

.10 0

1-20 A E W500

1.30]'¢ cu

2.00(7 5|

2.10) | || 200

2.20] i 3 W5 E 7 9B H
2.21 I 43@5

2.30 —69 3 1100

2.40 g3511 2l0d 5250 | 7521 | | 163 3 | [FED

2.50 1L HCL

3.00

SRHFLE:

CODED J0B REQUEST DEGK

ZERO =0

SE

