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GLASS INSERT STRESSMETERS 

by K. Barron 

The glass insert stressmeter, or photoelastic 

stressmeter, is an instrument designed to determine 

stress changes occurring in rocks. It has several 

potential advantages over other such devices in that 

it is a biaxial device, it is simple and it is cheap 

to make. 

The object of this study was to assess the be-

haviour of the meter under biaxial loads and to ex-

amine some of the problems associated with meas-

urement and interpretation of the fringe pattern. This 

assessment has been carried out by comparing theo-

retical and laboratory behaviour of the meter. 
It has been shown that: 

a) There are certain optimum measuring points in 

the meter at which measurements should be made for 

best accuracy. The position of the points depends 

on the ratio, n , of the biaxial stresses. 

b) The meter's sensitivity can be assumed to be in-

dependent of the rock modulus E provided that the 

rock modulus is  <2.5  x 10 6  psi and not, as previous 

workers have assumed, if E <5  x 10 6  psi. 

c) There are several methods of separating the 

principal stresses; some of these are unsatisfactory. 

A new method is proposed and discussed. 

d) The meter sensitivity decreases as the ratio  df  

the biaxial stresses approaches unity; the accuracy 

thus also decreases. 

e) The axes of symmetry of the fringe pattern give 

an excellent indication of applied stress direction. 

f) Laboratory calibrations are in good agreement 

with theory.  

the cylinder is viewed through a quarter wave plate 

and an analyser. If, after installation, a stress change 

occurs in the rock, then a distinct colored isochro-
matic fringe pattern is seen in the meter. The fringe 
order at any point in the meter can be determined by 
counting the fringes and measuring the fractional 
fringe orders by the Tardy compensation method. 3  
The relation between the fringe order at any point 

and the applied stress change can be determined 
either by calculation or by calibration. 

The object of this study was to assess the 

behavior of this stressmeter under biaxial loading 
conditions and to examine some of the problems of 

interpretation of the fringe pattern. 

THEORY 

Hiramatsu et al 4  have determined the stress distri-

bution in a hollow cylindrical inclusion in an elastic 
host material when subject to uniaxial stress. Using 

this solution, the biaxial case of stress p in the x 
direction and stress q in the y direction (Fig. 1) can 

be solved by superposition. This has been done in 

Appendix 1. It is shown that the principal stress 

difference (a 1  — a 2 ) at any point (r, 0) in the cylinder 

is given by: 

— 2 )  — {k 1 (p 	— k 2 (p — q) cos 201 2  + 

k 32  (p — q) 2  sin 2  201 v2  
[11 

T he glass insert or photoelastic stressmeter is an 

instrument designed to determine stress changes 

occurring in rocks. It has several potential advan-

tages over other such devices in that it is a biaxial 

device, it is simple and it is cheap to make. 
This stressmeter has been described in detail. l ' 2  

Basically it is a hollow glass cylinder that has at 
one end a light source and filters producing circu-
larly polarized light. The glass cylinder and source 
are grouted into a borehole in rock and the face of 
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where k l , k 2  and Ic 3  are constants that are dependent 
on the dimensions and properties of the rock and the 
inclusion and are defined in Appendix 1. 

The principal stress difference at a point is directly 
proportional to the isochromatic fringe order, n, ob-
served at that point and is given by: 

n =  (a l 	2) — 

where t is the cylinder length and f is the optical 
constant of the glass. 

Thus Eq. 1 and 2 define the fringe order at any 
point in the meter in tenns of the biaxial stresses 
p and q in the rock, i.e., they define the use of the 
cylinder as a stress sensing device. 

An additional important point resulting from the 
theory is that the orientation of the principal stresses 
in the plane of the meter is egiven by the axes of 
symmetry of the fringe pattern in the meter. 

GLASS INSERT STRESSMETERS 
UNDER UNIAXIAL LOADS 

Theory: For uniaxial applied stress Eq. 1 becomes: 

(a –02) = pi[k –  k 2  cos 201 2 + k32  sin 2  201 1/2  [3] 

In this case the fringe order is directly proportional 
to the stress change, p, in the rock. Hence, if the 
constant of proportionality is known, then a measure 
of the fringe order enables p tole determined. 

Consider the possibilities of making measurements 
on each of the three axes defined by 0 = 0° (x axis), 
0 = 90°(y axis) and 0 = 45°. In each case Eq. 3 is 
further simplified. 

a2)0.00 = p (k 1 - k 2) 

(a l —1 °2) 0=900  = P (IC 1 + k2)  

(al -172) 0=450 = P(k1+ k32) 	[61 •  

Each of the proportionality constants can be cal-
culated for a particular stressmeter. This bas  been 
done for the meter considered here using the following 
properties: E' for glass = 10 x 10 6  psi, internal 
radius b = 1/8 in., external radius a = 5/8 in: and 
Poisson's ratio v = v' = 0.25. The calculated con-
stants for a range of rock moduli and for a range of 
points at different radii are tabulated in Appendix II. 
Optimum Measuring Points: Since (cr i  – u2) varies 
rapidly thioughout the meter, the question  arises as 
to which point is the best at which to make a meas-
urement. The optimum measuring  point  was chosen 
with two considerations in mind: 

a) The proportionality constant should be large so 
that a maximum change in fringe order is observed  

0 F. 90' 

010 015 o-zo en 0.30 0-35  0-400.45 050 Oie 040045 Pokier 
bees 

Fig. 2 — Variation of proportionality constants on 0 =0 °, 
900  and 450  axes — uniaxial loads. 

for a minimum stress change, i.e. good sensitivity. 
b) The change of (cr – 0 2) with radial position 

should be small so that errors in defining radius 
during measurement do not cause large changes in 
constants and hence in the fringe order determined, 
i.e. good accuracy. 

Using the calculated constants, Fig. 2 was drawn 
showing the variation of the proportionality con-
stants on each of the three axes with radius for a 
range of rock modulus. Examination of these graphs 
for compatibility of the above two requirements en-
ables the best measuring point on each axis to be 
selected and, by comparison, the optimum measuring 
point in the  meter to be determined. 

On the 0 = 0° axis the best point is in the region 
r > 0.35 in. On the 0 = 90°axis the best point is in 
the region r > 0.30 in. On the 0 = 45° axis the best 
point is at a radius r =  0.20 in. Comparison of each 
of the three axes shows that the optimum measuring 
point irr the meter is at r = 0.20 in., 6 = 45°. This 
does not necessarily apply if the applied stress is 
other than wiiaxial. 

: Dependency on Rock Modulus: The meter sensitiVity 
at any point varies with the elastic modulus, E, of 
the rock. It has been assumed previously 1• 2  that the 
meter behaves similarly to a solid inclusion and, 

[2]  

When 0 = 0° 

when 0 = 90° 

and when 

0 = 45° 

[4] 

[5] 
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therefore, that Coutinho's conclusionss apply, i.e.,
that the meter sensitivity is relatively unaffected by
rock modulus when the inclusion modulus is greater
than twice that of the rock. This assumption is not
strictly true since a central hole has been introduced

in the inclusion.
Consider the optimum measuring point, r = 0.20 in.,

B= 45°. Fig. 3 shows the variation of the proportion-
ality constant at this point with rock modulus. It is
seen that a change of rock modulus from 5 x 106 psi
to 1 x 106 psi produces a change in proportionality
constant from 1.7 to 2.15; i.e., if Coutinho's conclu-
sions are applied to the hollow inclusion an error
greater than 20% results (cf. 10% for a solid inclu-
sion). This is a significant error. On the other hand,
if the criterion is modified so that modulus ratio
E'/E > 4 is considered, then a tolerable error of less
than 10% is introduced. Thus the sensitivity of the
glass stressmeter is relatively unaffected by rock
modulus when the inclusion's modulus is greater than
four times that of the rock, i.e., for the glass stress-
meter if the rock modulus, E:^ 2.5 x 106 psi.

It should be made quite clear that this does not
prohibit the use of the meter in rocks of modulus
greater than 2.5 x 106 psi, but in this case the rock

modulus must be known.
Laboratory Calibration: As the meter has no moving
parts, it was thought that a fair assessment of the
meter behavior could be obtained from comparison of
actual calibrations with those theoretically predicted.
A glass stressmeter, 1-1/2 in. long, was grouted into
an alumipium block (E = 10 x 106 psi) and subjected

to known uniaxial stress changes. Fringe orders
were measured with incremental loads at different
radii on each of the 0= 0°, 45° and 90° axes. Fig. 4
shows some of these calibrations and Table I below
compares the theoretical and calibration sensitivities.
The theoretical sensitivities were calculated using a
value for the optical constant of glass of 1030 psi

per fringe per in.

0 2 S S • J S f q

NOST ROCK MODULUS E.- 10*V-s-

Fig. 3 - Variation of proportionality constant at optimum

point with rock modulus.

Table I. Uniaxial Sensitivities

Oiffer-

Propor- p/n p/n once

tionaiity Theory Calibr From

e r Constant psi/fringe psi/fringe Theory

0° 0.20 0.29 2370 1590 33.2

0° 0.35 0.67 1070 1240 21.0

0° 0.50 0.87 840 1175 40.0

90° 0.20 1.07 642 720 10.8

90° 0.35 0.92 748 870 16.3

90° 0.50 0.95 725 930 28.6

45° 0.20 1.38 498 484 2.8

45° 0.35 1.21 568 570 0.4

45° 0.50 1.115 616 695 12.8

Several points are obvious from the results:
a) The sensitivities on the 45° axis are in excel-

lent agreement with theory and the theoretically pre-
dicted optimum measuring point is obviously correct.

b) The accuracy diminishes with the sensitivity. In
general the meter follows the theoretically predicted

behavior quite well.
c) All the fringe patterns observed were symmetri-

cal and the axes of symmetry agreed well with the

principal stress directions.
In addition, the theoretical sensitivities were

calculated at the 9= 45°, r = 0.20 in. point for a
range of rock moduli and have been compared in
Fig. 5 with calibrations in different rocks obtained
by Roberts et al. Z The correlation is good, although '
in the modulus range 3 to 4 x 106 psi there appears
to be some error. This may be due to errors in modu-
lus determination rather than to meter behavior.
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GLASS INSERT STRESSMETERS 
UNDER BIAXIAL LOADS 

Theory; Eq. 1 and 2 define the fringe order at any 
point when the meter is subjected to biaxial stresses. 
On the O  = 0°, 90° and 45° axes these equations 
simplify to give: 

When 0 =  0°, 

n x 	Rk — k + g (k i  + k 2 )1 

when 0 =  90°, 

n r  = 	l(k + k + (k 1  — k 2 )i f  

and when 0 - 45°, 

pt 
n xy 
	 lk 12 ( 1  + 77) 2 + k 3 2 ( 1 	 „I)  2 11/2 

where n x , n y , n„,„ are the fringe orders on the 0°, 
90° and 45° axes respectively and is the ratio q/p. 
Fig. 6 shows the variation of the propo rt ionality con-
stants in the above equations with radius for a rock 
modulus of 10 x 10 6  psi and a range of g from 0 to 1. 
Separation of the Biaxial Stresses p and q: Several 
methods have been proposed to separate p and q in 
Eq. 7, 8 and 9. These are discussed below. 

MEASUREMENTS AT TWO POINTS — If two meas-
urements are made at the same radius, one on the 

Fig. 6 — Variation of p roportionality constants on 
0= 0°, 90° and 45°  axes — biaxial loads 

0 = 0° axis and one on the 0 = 90° axis then it can 
be shown from Eq. 7 and 8 that: 

P -
4tkik2 	

+ n) + k 2 (n s, - n„)I 	[101 

and 

- 	 ik 2 (n„ + 
4tk 1 k 2 	

n,,) - k 	n,d1 	[11] 

Fig. 6 indicates how n„ and n y  vary with radius for 
different ratios 7/. Since it is difficult to make an 
exact fringe order measurement when the magnitude 
of fringe order changes rapidly with radius, measure-
ments are restricted to the region r > 0.30 in. Now in 
this region the magnitude of the fringe order ob-
served decreases considerably as g increases from 
0 to 1. Thus under biaxial stresses the fringe orders 
will be relatively small and the measurement error 
correspondingly larger. Further, to separate p and q 
it is necessary to take the difference (n y  — n„); 
hence any error will be compounded. Thus, except 
under high stresses, the method does not appear to 
be practical. 

Hiramatsu 6  suggests this method, but recommends 
the use of a Babinet compensator to determine frac-
tional fringe orders rather than by goniometric corn- 
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Fig. 7 - Fringe pat-
tems under biaxial
stresses: (a) 0: 1

(b)1:4 (c) 1: 2

(d)3:4 1 : 1 (after
Roberts et a/). 2

pensation. This will greatly improve accuracy, but

the associated viewing apparatus is considerably

more expensive.

q/p FROM THE SHAPE OF THE FRINGE

PATTERN - METHOD 1 - Fig. 7 shows fringe pat-
terns for ratios of q of 0, 0.25, 0.50, 0.75 and 1.
These are distinctly different patterns and therefore
Roberts et al Z proposed that the overall shape can
be used to estimate the biaxial stress ratio r/. Now

the patterns also vary with the magnitude of p; thus,
rather than rely on an observer to remember and dis-
tinguish between many patterns, it is better to com-
pare the patterns with a standard series of
Photographs.

The accuracy of this method is not ideal since it is
an estimate and not a measurement; this may be par-
ticularly true at low stress levels when the fringe
patterns are not well developed. However, the ac-
curacy is quite adequate for many rock mechanics
problems.

q/p FROM SHAPE OF THE FRINGE PATTERN -
METHOD 2 - Fig. 8a shows certain points A, B, C

etc. in the meter as defined by Hiramatsu.6 At Point
H on the outer circle the fringe order is the same as
that at Point X. At Point Y the fringe order is the
minimum occurring in the meter.

Hiramatsu determines the ratio 1/77 from the radial
position of Point X or of Point Y by the relationship
shown in Fig. 8b. (Note: this relationship is for a
meter of diameter ratio b/a of 1/6 and not exactly for
the meter used by the author and by Roberts et al in
which b/a = 1/5.) Young's modulus and Poisson's
ratio have very little effect on the position of these
points.

When 71 is between 0 and 0.5, Point X is used for
the determination whereas when q is between 0.5 and
1 Point Y is used. The radial position of Point X
does not vary much as q increases so errors could be
significant. This criticism does not apply to Point Y
where the radial position varies rapidly in the range
0.5 to 1.

q/ p BY OBSERVATION OF THE ZERO POINT ON
THE 9= 00 AXIS - It can be seen from Fig. 6 that
on the e= 0' axis in the range 0.2 :^ q:^ 0.9, there is

Society of Mining Engineers DECEMBER 1965 - 291



(b)  ) 
Fig. 8 — ( a) Some reference  poin ts in the meter (after 

Hiramatsu6). (b) Relation betvveen X and Y points and 

biaxial stress ratio (after Hiramatsu6). 

always some radius at which the proportionality con-
stant is zero. Thus, a black spot is seen in the 
meter the radial position of which varies with ri i.e., 
in this range Hiramatsu's Y point is not merely a 
minimum, it is zero. Hence, observation of this point 
gives a measure of n  that is completely independent 
of the magnitude of the applied stresses. Further, it 
may be shown that the position of this point is 
almost completely independent of the Young's 
modulus of the rock. 

From Eq. 7 it can be shown that n x  =  0 when 

k 2  

Fig. 9 shows the calculated positions of the ze:-c 
point for different ratios i.  This figure also shows 
experimental results obtained by R. K. Dhir at 
Sheffield University using this method suggested by 
the author. The agreement is excellent. 

in the range 0.2 	0.35 the accuracy will not be 
good since radial variation of the point is small. The 
method cannot be used when C.2 > > 0.9 since the 
zero point disappears. However, the available :ange 
covers most practical needs. 

Determination of p and q :  Having determined the 
ratio q/p by one of the above methods, then p (or q) 
can be determined from a single fringe order meas-
urement at any point. The optimum measuring point 
must therefore be determined for biaxial loads. The 
criteria for defining the optimum measuring point are 
the same as in the uniaxial case. 

Fig. 6 shows the variation of the appropriate 
proportionality constants on the 0 = 0°, 90° and 45 °  
axes with radius for a range of r! from 0 to 1. A study 
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Fig. 10 - Some biaxial calibrations on 0 --= 45°  axis. 

of the graphs with the above criteria in mind showed 
that: 

when 0 q 0.33, measurements at a radius r 
0.20, 0 = 45° are best. 

when 0.33  ii_<  0.9, there is little to choose be-
tween measurements at r = 0.35, 0 - 45°and r = 0.35, 
o  = 90°. 

when q - 1, all axes are the same. The region 
r = 0.30 to r = 0.35 is to be preferred. 

Hiramatsu 6  suggests that, at low stress levels, the 
Point A (Fig. 8a) be used. The rate of change with 
radius is very large at this point and it is doubtful if 
an accurate measurement can be made. Points FI and 
C that he suggests for higher stress levels are 
similar to those above. 

Roberts et al 2  recommend that 0 = 45°, r = 0.20 be 
used only for uniaxial stresses. It is seen above that 
there is a distinct advantage in using this point up 
to ri = 0.33. For biaxial stresses they suggest a 
point r =  0.175, 0 - 90' be used. Comparing this 
point with the r = 0.35, 0 = 90' recommended from the 
analysis above, it is seen that closer to the hole the 
magnitude is higher, but so is the rate of change with 
radius. Now, to help overcome the problem of seeing 
the fringe pattern accurately at this point, Roberts et 
al insert a collar in the central hole, which masks 
off the fringes to a radius of 0.175 in. Compensation 
is then made to the collar edge. This is a good 

technique. A further point in favor of the 0.175 in. 
radius point is that the change of sensitivity wità 
increase of q from 0 to 1 is much less than at the 
r = 0.35 in. point. 

The optimum measuring points are therefore: • 
when q 0.33, the point is r = 0.20 in., 0 = 45 °. 
when n  ?. 0.33, the point is r = 0.175 in., 0 = 900  

and compensation is made to the edge of the 
inserted collar. 
Dependency on Rock Modulus: The dependency of 
the sensitivity on rock modulus at the optimum 
measuring points can now be examined for the bi-

axial case. As before it can be shown that, if the 
sensitivity is assumed independent of rock modulus, 

provided EYE > 2 then an error greater than 20% is 
introduced. However, as before ,  this error is reduced 

to tolerable proportions ( < 10%) if the criterion is 
modified to E'/E > 4. 

Laboratory Calibrations: A series of biaxial calibra-
tions was made at various points in the meter in the 
aluminium block for a range of q . Some of these 

calibrations are shown in Fig. 10. Table II below 

compares the theoretical sensitivities with those 
obtained from the calibration curves. 

The biaxial loading frame used in these experi-

ments had insufficient capacity to enable sufficient 
points to be obtained to define a fair calibration 
when q - 1. 

The results showed that: 
s) The sensitivities are in reasonable agreement 

Table II - Biaxial Sensitivities 

Defer- 
Propor. 	p/n 	 ence 

ttonality 	theory 	Calibr. 	prom  

r 	=q/p Constant psi/fringe psi/fringe 7heory 

	

45.° 0.20 0.00 	1.38 	498 	487 	2.2 

	

45°  0.20 0.20 	1.15 	598 	614 	2.7 

	

45°  0.20 0.33 	1.02 	674 	726 	7.7 

	

45 °  0.35 0.50 	0.63 	1090 	1260 	16.0 

	

45°  0.35 0.67 	0.46 	1490 	1925 	29.0 

	

45 °  0.35 1.00 	0.26 	2640 	- 	- 

with theory, although the accuracy diminishes as the 
sensitivity diminishes. 

b) The optimum measuring points theoretically de-

termined are correct. 
c) The suggestion that the zero point on the y axis 

be used to determine q in the range 0.2 iq _< 0.9 is 

not entirely satisfactory. The author did not obtain 
as clear a fringe pattern as Roberts et al (Fig. 7) 
and, in consequence, in one case had difficulty in 
seeing the zero point. This is particularly true at 

low stress levels when the black spot is rather 

diffuse. At higher stress levels and particularly in 
the range q > 0.5 the method worked extremely well. 

d) All fringe patterns observed were symmetrical 

and the axis of symmetry agreed well with the applied 

stress directions. 

CONCLUSIONS 

This study of the glass insert stressmeter has 

shown that: 
1) There are certain optimum measuring points in 
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the meter at which measurements should be made for 
best accuracy. The position of this point depends on 
the ratio ri of the applied biaxial stresses. When 

< 0.33 the point 0 = 45°, r = 0.20 in. is best. When 
77> 0.33, the point 0 = 90°, r = 0.175 in. is best pro-
vided that the collar compensation method is used. 

2) Previous workers have assumed that the meter 
behaves similarly to a solid rigid inclusion and 
therefore that the sensitivity is independent of rock 
modulus provided that the rock modulus is less than 
5 x 10 6  psi. These assumptions are not quite correct 
and this condition only holds true without significant 
error if E < 2.5 x 10 6  psi. For rocks of higher 
modulus than this the modulus must be known to 
determine the sensitivity. 

3) There are several methods of separating the 
principal stresses. Theoretically, observation of the 
radial position of the zero point on the y axis is a 
good method in the range 0.2 < < 0.9 since it is 
independent of both the rock modulus and the stress 
magnitude. In practice this method is not always 
satisfactory. Comparison of the fringe pattern with a 
standard series of photographs would also appear to 
be a sound method. 

4) The meter sensitivity decreases as the biaxial 
ratio 77 approaches unity; accuracy thus also de-
creases. Meter sensitivity can of course be increased 
by using a longer meter. 

5) The laboratory calibrations are in relatively good  

agreement with theory, indicating that the meter 
functions correctly. 

6) The axes of symmetry of the fringe pattern gave 
an excellent indication of applied stress directions. 

Thus, it can be said that in the laboratory the 
meter has proved its potential. Final assessment 
must, of course, come from field use, but it is be-
lieved that techniques currently being developed will 
overcome most field problems. 7  
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Appendix 

Theoretical Analysis of Stresses in a Hollow Cylindrical Inclusion 

Consider Figure I ,which shows a cross section of the hollow cylindrical inclusion 
in the host  rock • Let the Young's modulus of the rock be E and that of the inclusion be E s • 

Let the Poisson's ratio of the rock and the inclusion be u and u' respectively- 
Let the outer radius of the inclusion be a and the inner radius be b• Consider any point 
in the test piece , r, 	( or > b )- Hiramotsu , Niwo and Oka ( 7 1 hove shown that, when a 
unioxiol stress, p, is applied in the x direction , the radial , tangential and shear stresses 

at this point ore er r ', cro l  and r re ' respectively' and ore given by : 

..2 
cr

.  
p {  24o  + Bor - ( 682 r 	+  2C2+  4 02r ) Cos 29 

4 

t. 	 2 	 Z_ 	.4 	_ _ 1 
( 2 ) 

( I)  

a p 
.4 

C os 2 0 

T, 0  a p 

where: 

{ 6 Az rz-  6 Bz r
4 

+2 C2 2 D2 r 	Sin  2 0 13) 

(4) 

Boa- 1-1  /{
- I") 	 u') 	_I 	+ 	a -1 - a b -2  ) 

.,----- 0 -  	 (5) 
• 	E 	 E' 	 E' 
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( +u') 
(10) 

(16)  

(17)  

(le) 

3 
{ 2 C2 + b D e  

-2 	} 
(6) 

b 4 
62  e — —3" { C2 f 2 b ..*  02 } (7) 

where: 	C2 = 

Oz a 

P l y— Sy' 

a P I—  a'S 

{ air —Y.a  a' fi — a pi  

(8) `- 

(9)  

where: 	a a 4(1 -o2  b
-2

) f (3 - u) 

E 

-2 	( 3 - U ) ( I 04 1, -4 ) 	(1 +V e ) 0 4  b"4 	(3 - u') 
= 2 a . 	  

E' 	 E 

, 4,E 	 ' 	(12) 

— 2(1+ u ) ( 3 - te ) l a
-4 b 	42 	3 ) -2 

a s 	 +{8(34- uula b 4- 2 11+u)( 3 • u)ci 4  b4- 6(1+ 1)1(1+ 11 ')WEI 

E 

(13)  

-4(1 +v)( 3 -u)(0-4bz- 021,- 4) 	4(3t-uv)0£ 1, - 4+ 4 ( 1 +v)(3-u)o-lbz+ 12(u-v). - 2 1  s. (14)  

and y*  s 61  I + v1/4 	 (15) 

Similorly, if o unioxiol stress q is applied in the y direction then the radial, 

tangential  and  shear stresses at the point (r 	) ore given by a r e , ere" and r r o w  

os follows : 

CT 	a g { 2 Ao+ Bor-2+ ( 6 B2 r -4  + 2 Ca+ 4 Dzr -2 ) Cos  2 8  

wo e 	q { 2 Ao -  Bor -2  - (12 A2r .4  t 6 (321 4 + 2 Cz) Cos 2 e } 

Tre"  s q { 6 Azr2 - 6 Btr-4 + 2C - 2 D2r-2} Sin 2 

Hence if o 	cre  and  r re  are  respectively the radial tongentiol  and  shear stresses 

at the point ( r , e) under bioxiol loading , then they ore given by superimposing 

the two unioxiol solutions os follows : 

I 

(Tr err+ cer 	( p + ) { 2 Ao+ 	- P - q {6132r-4 +2C: 4 Der -2 } Cos 2 9 	 (19) 

o-Eri 	cre  alp+ q) {2 Ao Bor -2} + ( p - q ) { 12 Azr a  + 6132r -4+ 2 C2} COS  2 8 	(20) 

rre  = 

 

T.0 . T 9 5 ( p - q ) {6Azr2--  6 Bzr -4 +  2C2 - 2 2; 2 	Sin 2 6 	 (21) 
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Now if ir, and cz are the principal stresses at the point ( r,9 ), then they are
given by:

ond

crr ` { or } + 1/2 { )= t 4 4 rez} 0/z
2 (22)

7r+"g I z 2 i/z
^: a { 2 } - /2 {cv'r-a® ) + 4 Tr®} (23)

Hence the principal stress . difference at this point is

z z 1/2
^I - ^z a { (or-^® ) * 4 sre }

Now from equations ( 19) and (20)

47r -17®) a 2( P* q) 8or-z - ( p - q) { 12 Azrz + 128zr-4t 4Czt 40zrz} Cos 28

= kr ( p t q)' kz ( p- q ) Cos 2®

where: It, = 2 Bor
-z

and kz = 4{ 3 Azrz + 3 Sir-4 t Cz + Ozr z} ,

From Equation (21)

2Tr® n 4(p-q){3Azr2 -3Bzr"4 t C2 -0zr-2}Sin29

a • ka ( p - q) Sin 20

(24)

(25)

(28)

where ks a 4{ 3 Azrz- 38zr "-+ Ca - Ozr z} (29)

Hence, from Equations (24), (25) and (28):

'cr, - OZ' { [ kj(p+q) -,k=(p -q) Cos 26l t ksz( P-q)2 Slnzàg}
(30)

Consider now the fringes produced in the test piece when it Is viewed by

transmitted circulariy potarised Ilpht • From photoelosf ic lows the principal stress

difference, (ol-cz), of a point is directly proportional to the isochromotic fringe

order, n , observed at that point arid is given by

n = (c, -a•2)1
f

(3i)

where t is the thickmess of the test piece and f is the optical contrast of the
photoelostic moterial r .

I

Thus Equations, (30) and (31) define the fringe order produced at any point

in the test piece when t9e bost matériôl is subject to bioxial stresses p and q'-

These equations therefore define the use of the hollow qlass cylinder as a stress

measuring device ; ameosure di the fringe order of any point Is related to the

applied . réck stresses. p and 9
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APPENDIX II

Table of Calculated Constants for Different Moduli E and Radii r

E1 = ! 0 x 106 psi; a = 5/8 inch; . b = 1/8 ' 1 0 = y` = 0. 25

E r k1 k2 k3 k 1 -k 2 k1 + k2
2 2

(k1 + k3

0. 125 { - 1.5624 - 3. 1370 1 0 1.5746 -4.6994 1.5625
0. 150 ^ - 1. 0850 -1. 6522 - 1. 4752 0. 5672 ^ -2.7372 1.8314

10. 175 -0.7971 -1. 1799 - 1.9365 0. 3828 -1. 9770 2.0943
0.200 -0. 6103 1 -1. 0418 I -2. 0617 0. 4315 - 1.6521 2. 1503
0. 225 - 0. 4822

1

- 1.022Z ^ -2. 0667 0. 5600 - 1. 5044 2. 1224

6
0.250 -0. 3905 -1.0442 ^ -2.0285 0.6537 - 1.4347 2.0659

1.0 x 10 0. 275 -0.322.7 1.0783 - 1. 9764 0.7556 - 1.4010 2. 0027
^ 0.300 - 0.2712 -1. 1132 ^ - 1. 9219 0. 8420 -1.3844 1.9410

0.325 - 0.2310 - 1. 1444 Î - 1.8693 0.9134 - 1.3754 Î 1.8836
0.350 -0. 1992 - 1. 1705 - i. 8200 0.9713 - 1.3697 1.8310
0.375 - 0.1735 - 1.1913 - 1.7744 1.0178 - 1.3648 1.7830
0.500 -0, 0976 -1. 2296 ^ -1. 5863 1.1320 -1.3272 . 1.5894

^ 0.625 -0.0624 -1. 1933 I - 1.4300 1.1309 ( - 1.2557 1.4315

0.125 - 1. 4285 - 2.8343 0 1.4058 -4. 2628 1.4286
0.150 -0.9920 - 1.4950 -1.3337 0.5030 -2.4870 1.6623
0.175 -0.7288 -1.0701 - 1. 7520 0.3413 - 1.7989 1.8977
0. 200 -0. 5579 -0.9473 - 1. 8672 0.3894 i -1.5052 1.9489
0. 225 -0.4408 -0. 9318 I - 1:8741 0.4910 ^ -1.3726 1.9254
0.250 -0.3570 -0.9540 - 1.8422 0.5970 -1. 3110 1.8766

6
2.5 x 10 0.275 - 0.2951 -0.9876 - 1.7980 ^ 0.6925 - 1.2827 1.8221

0.300 { -0.2479 - 1.0221 - 1.7518 0.7742 -1.2700 1.7694
0. 325 -0.2112 - 1.0536 - 1.7077 0.8424 -1.2648 1.7208
0.350 -0.1821 -1.0807 - 1.6669 0.8986 - 1.2628 1.6769
0.375 -0.1586 -1.1034 - 1.6295 0.9448 - 1.2620 1.6373
0. 500 -0.0892 -1.1612 - 1. 4830 1. 0720 - 1.2604 1.4858
0.625 -0.0572 - 1.1583.1 - 1. 3719 1.1013 - 1.2153 1.3732

0.125 -1.2499 -Z. 4731 0 1.2332 -3.7230 1.2500
0.150 - 0.8680 - 1.3063 - 1.1643 0.4383 -2.1743 1.4524
0.175t -0. 6377 0. 9371 - 1. 5307 I 0. 2994 -1. 5748 1. 6583
0.200 -0. 4882

=
, - 0. 831 - 1.6329 0.3434 - 1.3198 1.7045

0. 225 -0. 3857 -0. 8199 - 1. 6409 f 0. 434Z i - 1. 2056 1.6858
0.250 -0.3124 -0.8414 - 1.6153

I
0.5290 I -1. 1538 1.64536

5.0 x 10 0.275 -0.2582 -0. 8730 - 1.5791
^

0.6148 i - 1.1312 i 1.6002
0. 300 - 0. 2169 -0.9056 - 1.5415

1
0. 6887

1
-1. 1225 1.5568

0.325 - 0.1848 - 0.9358 - 1.5059 , 0.7510 -1.1206 1.5173
0. 350 -0. 1593 -0. 9625 - 1. 4733 0. 8032 ^ - 1. 1218 1. 4820
0. 375 -0. 1388 -0. 9855 - 1; 4440 + 0. 8467 ^ -1. 1243 1.4508

1 0.500 -0. 0780 1. 0555 -1. 3360 0.9775 -1. 1335 1. 3384

0.6Z5 - 0.0499 -1. 0782 - 1. 2644 1.0393 -1. 1281 1.2655

0. 125 - 1.0 -2.0 0 1. 0 -3. 0 1.0
0. 150 ^ -0.6943 1 - 1. 0578 - 0. 9420 0. 3635 - 1.7521 1 1.1704

0. 175 - 0. 5101 -0. 7604 -1. 2394 0.2503 - 1.2705 1.3404

0.200 - 0. 3905 -0. 6764 -1. 3234 0. 2859 -1. 0669 i 1. 3799

0.225 - 0.3085 0.6684 -1.3314 0.3599 - 0.9769 1.3668

! 0. 250 - 0. 2499 - 0. 6874 -1. 3124 04375 -0.9373 1.33616
10.0 x 10 0.275 1 -0. 2065 1 -0. 7147 - 1. 2851 0. 5082 I - 0. 9212 1. 3017

+ 0. 300 - 0. 1735 - 0. 7431 , -1. 2567 I 0.5696 -0.9166 1.2687

0. 325 - 0. 1478 1 -0. 7697 1 -1. 2301 0. 6219 -0.9175 1. 2391

0. 350 I - 0. 1275 -0. 7936
I

-1. 2062 ' 0. 6661 - 0. 9211 1.2130

0. 375 ` - 0. 1110 8147- 0. - 1 . 1851 0. 7037 - 0. 9257 1. 1904

0. 500 -0. 0624 .I-0 8866 - 1. 1132 0. 8242 - 0. 9490 , 1. 1150

1 0. 625
I

-0. 0399 ^ - 0. 9247 - 1. 0751 0.8848 -0. 9656 1.0759
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DISCUSSION 

GLASS INSERT STRESSMETER 

by K. Barron 

AIME Transactions, 1965, vol. 235, p. 000. 

I. Hawkes (Postgraduate School in Mining, University 
of Sheffield, Sheffield, England) — The photoelastic 
stressmeter is proving to be a very practical tool for 

\ 'in-situ' measurements in the fields of civil and 
mining engineering and Barron's article has therefore 
come at a very opportune time, supplementing as it 
does, the considerable amojint of laboratory and field 
data which is being accumulated. 2• 3  There are how-
ever several points relating the application of 
Barron's conclusions to the practical use of the 
meter which require further elucidation. 

EASE OF READING 

If the photoelastic stressmeter is to have a wide 
application, the fringe orders must be easily meas-
ured. The system adopted by the writer and his col-
leagues at Sheffield for the uniaxial stress case is to 
read the fringe order at the 45° point, 0.20 in. from 
the center (PA in. diam meter). This procedure has 
been recommended because the, fringes not at this 
point form a very distinct `eye' which is obvious 
'even to .those who have had little expertence with 
photoelastic fringe patterns. Barron points out that 
this point can also be used up to a stress ratio of 
0.33 and in practice this is normally done. 

In biaxial fields above a ratio of 0.33 the 'eye' is 
no longer apparent and the fringe order must be 
ascertained at some other point. The writer and his 
colleagues experimented at'various points and 
finally chose a point at a distance 0.175 in. (PA in. 
diam meter) on the minor stress axis and fixed this  

point on the meter by inserting a collar of this 
diameter. 

This procedure enables the 'eye' technique to be 
used for uniaxial stresses as the 'eye' falls outside 
the collar; any other technique for biaxial patterns 
would require lines to be engraved on the meter 
itself and reading difficulties would be experienced 
by all but the most highly trained. 

It is interesting to point out that in a great many 
field applications ranging from underground pillars to 
building foundation piles the stresses measured have 
been uniaxial. In such cases, reading the fringe 
order has been simple even for unskilled persons. 

SENSITIVITY 

The photoelastic stressmeter acts as an inclusion, 
and as such its theoretical behavior is as described 
by Barron's mathematical analysis. When considering 
its practical application, however, it must be remem-
bered that rocks and concrete are not mathematically 
ideal substances. The theory relates the fringe order 
In the meter to the stresses and the E (Young's 
Modulus) and the g (Poisson's Ratio) values of the 
surrounding material. There is of course no unique 
E or g value for rocks or concrete. These values 
change both with stress level and time load applica-
tion sometimes to the order of 300%. We at Sheffield 
have very accurately calibrated the photoelastic 
stressmeter in a wide range of materials and have 
also measured the average E values for these  ma-
tenais. The results prove that the meter sensitivity 
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Fig. 2 — Variation of Young's modulus with stress for 
Darley Dale sandstone. 

is in fact independent of the E value of the rock 
when the average E value is less than 5 x 10 6  psi. 
The correlation between these results and those ob-
tained theoretically by Barron are illustrated in 
Fig. 1. Materials with an average modulus greater 
than 7 x 10 6  psi behave in a reasonably elastic 
manner and the results from such materials conform 
very well with theory. Materials with an E value 
below 5 x 10 6  psi however usually behave in a com-
plete non-elastic manner and their E values vary to a 
large extent with stress level. Fig. 2 gives a typical 
result for a very homogeneous rock, Darley Dale 
Sandstone, in which the E value changes from 
1.5 x 10 6  to 3.8 x 10 6  psi over a stress range of 
600 to 6000 psi. 

The E value of this rock is quoted at 4 x 10 6  psi 
and when the photoelastic stressmeter is inserted 
into it, the meter behaves as a rigid inclusion. 

Barron points out in his article, and it cannot be 
too strongly emphasized, that the use of the meter is 
not limited to weak rocks. In strong rocks, the 
sensitivity is a function of the E value but in such 
materials the E value can be ascertained with 
sufficient accuracy and the advantage of being a bi-
axial gauge coupled with its basic simplicity and 
cheapness render it a tool of almost universal appli-
cation in the field of stress analysis.  

1
A. Roberts, I. Hawkes and F.T. Williams: Some Field Applica-
tions of the Photoelastic Stressmeter, Int. J. Rock Mech. and 
Min. Sciences, 1965, vol. 1.  No. 4. 

2
e.. Roberts: The Photoelastic Glass Insertion Stress Meter, 
presented to Groupement pour l'Avancement des Methodes 
rrAnalyee dee Constraintes, Paris, December 1964. 

3
I. Hawkes, R. K. Dhir and H.  Rose: An Application of Photo-
elastic Transducers to Load Measurement in Building Founda-
tions, Civil Engineering, December 1964. 

K. Barron (Author's Reply) — I agree entirely with 
Dr. Hawkes when he emphasizes the fact that the 
fringe pattern must be easily interpreted. His tech-
nique for measuring the fringe order in the meter 
satisfies this requirement. However, the greatest 
problem in interpretation of the fringe patterns by 
unskilled workers is, I believe, not that of measuring 
the fringe order but that of determining the biaxial 
stress ratio. I believe that in this content the "zero 
point" method, where applicable, adds considerably 
to the ease of fringe pattern interpretation. 

Whether or not in practice it is safe to consider the 
meter sensitivity as being independent of host rock 
modulus when this modulus is as high as 5 x 10 6  psi 
depends on the accuracy required in the experiment. 
As is shown in the paper, a 20% error can be intro-
duced by this asstunption, however, I concede that in 
many rock mechanics problems this is not neces-
sarily a significant error. I am of the opinion that the 
experimenter should at least be aware that he is 
introducing such an error in the results. 

As Dr. Hawkes illustrates in his Fig. 2, many rocks 
do not have a linear stress-strain relationship and 
therefore there is some doubt as to which modulus 
should be used. For accurate measurement the 
tangent modulus at the particular stress level in the 
rock should be used. If deemed necessary, this could 
be achieved in the following manner. First determine 
the stress-strain relationship of the rock, (as Dr. 
Hawkes Fig. 2). From this curve select or guess 
some modulus for the rock and using this value 
interpret the fringes in the meter to determine the 
stress level. Using this stress level, determine the 
tangent modulus from the stress-strain curve of the 
rock. Use this modified modulus, reinterpret the 
fringe pattern to give a modified stress level. Con-
tinuation of this procedure of successive approxima-
tions should result in a rapid convergence which will 
yield both the correct modulus and the correct stress 
level. 
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