RISK ASSESSMENT IN HOMEOWNERSHIP

 MARKETSPrepared for:
CANADA MORTGAGE AND HOUSING CORPORATION

Prepared by:
E. Wayne Clendenning Consulting (1983) Limited, Ottawa.

In association with:
TEEGA Research Consultants Inc., Ottawa.

DECEMBER, 1983

```
Canada Mortgage and Housing Corporation, the Federal Government's housing agency, is responsible for administering the National Housing Act.
Under the provisions of the National Housing Act, administered by CMHC, there is continuing federal involvement in many aspects of urban development through program administration.
Through Operations Support the Corporation undertakes research aimed at improving the quality of the administration and management of existing procedures and programs. Where possible CMHC publishes and distributes the results of this research.
This publication is one of the many items of information published by CMHC with the assistance of federal funds.
```

Page
I. Introduction 1
II. The Relationship Between Economic and Homeownership Housing Cycles 3

1. Review of Current Literature 3
III. National and Provincial Housing Market Indicators 11
2. The Economic and Housing Market Cycles 1968-82 11
3. The Choice of National Indicators 15
4. Analysis of the National Indicators 16
a) Chart Analysis 17
b) Statistical Analysis 19
5. The Choice of Provincial Indicators 24
6. Statistical Analysis of the Provincial Indicators 25
7. Interpretation of the Results 26
8. Checklist of Indicators 29
IV. Local Housing Market Indicators 31
9. Estimation of Total Homeownership Mortgage Loan Approvals 31
10. Statistical Analysis of the Local Indicators 33
11. Checklist of Local Indicators 34
V. Assessment of the Indicators 35
12. The Financial Variable 35
13. The Price Variable 36
14. The Employment Variable 36
15. The Housing Variable 37
16. Other Variables. 38
VI. Conclusions 41
APPENDIX A: The Cyclical Behaviour of the Housing Sector in Canada - 1949-1970
APPENDIX B: Analysis of Relationships Between Mortgage Approvals and Possible Indicators
APPENDIX C: Predictive Results of Selected Relationships Between Mortgage Approvals and Possible Indicators
ADPENDIX D: Charts of Selected National, Provincial and Local Indicators Related to Mortgage Loan Approvals.

I. INTRODUCTION

One aspect of risk assessment in homeownership markets faced by residential mortgage insurers, such as the Mortgage Insurance Fund (MIF) administered by Canada Mortgage and Housing Corporation (CMHC), is risk associated with the cyclical behaviour of the housing sector, especially in specific local areas in the country. The credit risk facing mortgage insurers is obviously greater during a recessionary period in the economy as homeowners encounter unemployment and a lower level of economic activity within their local region. Conversely, during expansionary periods the credit risks drop substantially as employment and incomes rise in response to the upswing in economic activity within a region. The cyclical elements are only one aspect of credit risk assessment, with a number of elements being associated with specific borrowers, but they do provide the overall background environment for credit risk assessment against which the other more specific borrower risks can be assessed. As a result, it would be useful for CMHC to have at its disposal a relatively simple system of determining the cyclical turning points in both the national economic cycle and the related home-ownership cycle, preferebly at the local level, so that differences in risk assessment among local regions could be determined and taken into account in their local insurance activities.

The purpose of this study then is to study and document any relationship between national economic cycles and the pattern of homeownership loan approvals at the national, provincial and local levels. The need for such a study arises because of:

- a lack of a clearly documented framework for forecasting levels of mortgage loan approvals at the national and local levels.
- persistent high insurance claims in certain lines of business in markets where the economy is in a protracted recession.
- a paucity of any evidence identifying turning points in homeownership housing cycles.
- a lack of knowledge about the existing homeownership business volume and potential market share.

In order to assist CMHC in dealing with these problems and issues this study will attempt to document the relationship of homeownership mortgage loan approvals to the national economic cycle, determine the elements that affect these cycles, examine the elements that could be used as potential indicators of the relationship and develop a method of interpreting these indicators in the local housing markets. This will involve a review of current literature on identifying cycles in homeownership loan approvals and the economy and an examination of readily available data at the national and provincial level to identify the recent Canadian experience with these cycles. From this examination the critical factors which affect the timing, amplitude and duration of the cycles at the national and provincial levels will be identified and a checklist of pertinent indicators for the homeownership housing cycle will be developed. In developing this check-list the reliability of the indicators, along with their lags in availability, lags in impact, strength of impact and direction of impact, will be assessed.

This national and provincial analysis of the homeownership loan approval cycle will be extended, wherever possible, to a number of local city (CMA) markets in various regions of the country. This will involve the extension of the checklist of national indicators to available local indicators and the testing of their usefulness at that local level. An attempt will then be made to interpret and correlate the local checklist with the local homeownership markets for a number of selected CMA areas, with particular emphasis on existing mortgage loan approvals.

II The Relationship Between Economic and Homeownership

Housing Cycles

In the examination of post-war economic cycles in Canada it is apparent that residential construction has been one of the most volatile activities in the economy. This high degree of volatility has also been present in the overall homeownership housing cycle which involves both the production of new homeownership units and the purchase and sale of existing homeownership units in the secondary housing market. From a mortgage insurance point of view both aspects of the homeownership housing cycle must be examined since a high proportion of insurance activities involve mortgages on existing housing units. In this section of the study a review of the current relevant literature will be undertaken with a view to determining the critical factors which affect the timing, amplitude and duration of homeownership housing cycles. This will provide the basis for choosing the indicators to be examined in later sections of the study in our attempt to develop a checklist of indicators for the homeownership housing cycle at the national, provincial and local level. This review, however, will not attempt to outline all of the housing sector characteristics or determinants but instead will concentrate on those elements that affect the cyclical behaviour of housing activities.

1. Review of Current Literature

In Canada there have been two major and comprehensive studies of the post-war housing market and residential construction sector undertaken, one by Lawrence B. Smith ${ }^{1}$ and the other by Joseph H. Chung ${ }^{2}$. Both of these studies developedeconometric models to analyze the relationships between the factors determining the demand for and supply of housing in Canada from 1951 to 1966 in the case of the Smith study and from 1956 to 1975 in the Chung study. These studies were mainly concerned with analyzing the new residential construction

[^0]sector of the housing market and the impact of government policy on that sector. However, it would seem reasonable to assume that most of their findings regarding the cyclical behaviour of new residential construction would also apply to the activity in the existing housing market since in the eyes of consumers new and existing houses are substitutes for each other in the consumer's decision-making process. As a result, the cyclical behaviour of new residential construction activity is probably very similar to the cyclical behaviour of the overall homeownership housing market. This was also concluded by Smith,
"......despite their differences, the institutional arrangements, the behaviour of the participants, and the forces operating upon all forms of housing are sufficiently similar to allow a substantial degree of aggregation" ${ }^{3}$

According to Smith "the basic forces underlying the demand for housing accommodation are........essentially the same as for other goods - demographic, income, price, the cost and availability of credit, and consumer preference" ${ }^{4}$. From a cyclical point of view income, price and credit factors would be expected to exert the major influence in determing the cyclical pattern of housing activity. In fact, Smith concluded that:
"Credit variables.....exert a vital impact upon the demand for the ownership of single-family and rented dwellings. These variables affect the demand for..... home ownership by affecting the affordability of these homes" 5

Smith goes on to state that:
"The mortgage market is also an important determinant of the cyclical behaviour of new residental construction because of the high sensitivity of the cost and availability of mortgage credit to general economic and monetary conditions. The importance of mortgage
3. Smith, op. cit., p. 5
4. Ibid, p. 10
5. Ibid, p. 10
credit in the construction decision together with the interrelationship between the mortgage market and other financial markets has meant not only that the majority of fluctuations in the volume of new residential construction in the post-war period is attributable to fluctuations in the availability and cost of mortgage credit, but also that many government policies designed to influence residential construction activity have operated via the mortgage market" ${ }^{6}$.

In Smith's assessment of the factors that affect the housing market from both long-term and cyclical viewpoints, the major cyclical factors, that are readily available, would be:

1) Income variables - personal disposable income, employment and unemployment.
2) Price variables - housing prices and rents and other consumer good prices.
3) Cost variables - construction costs.
4) Financial variables - mortgage rates and mortgage availability.

In his study Chung found that residential construction in Canada went through four complete cycles between 1949-1972 while the Canadian economy went through five complete cycles. The average duration of the expansion phase was about the same for the economic and residential construction cycles (11.0 and ll.8 quarters respectively) but the contraction phase of the residential cycle (6.7 quarters) was longer than that of the business cycle (5.2 quarters)? He also found that all five regions of Canada experienced the four residential construction cycles but that the Atlantic provinces, Quebec and Ontario also had additional minor cycles between 1951 and 1956. The amplitude of the cyclical fluctuations in residential construction decreased somewhat in the 1960's and was found to be greater in fast-growing than in slow-growing regions of the country. Although some counter-
cyclical tendencies were found - whereby residential construction increased during a general business contraction and decreased in a business expansion - these variations decreased notably between 1950 and 1970.

In assessing the determinants of cyclical fluctuations in residental construction, Chung concluded that,
"....there is a consensus for one determinant: the cyclical instability of the flow of savings into financial intermediaries and the flow of mortgage loans. Because of the nature of mortgage loan business and behaviour of the major lenders, mortgage interest rates and medium-and long-term savings deposit interest rates react more slowly than long-term bond yields to monetary policy shocks and general economic conditions.....The mortgage interest rate rises less during tight-money periods than the long-term bond yield; conversely, during easy-money periods, the mortgage rate falls less than the same bond yield. Hence the differential margin between mortgage rate and long-term bond yield tends to increase during easymoney periods and to fall during tight-money periods. This explains the tendency of private mortgage loans to increase during easy-money periods and to decrease during tight-money periods. Since tight-money policy is usually in effect when business is expanding, while easy-money policy expands in periods of business recession, the mortgage loans and hence dwelling construction tend to be countercyclical to business cycles" 8

Chung, however, goes on to explain why this counter-cyclicality has been reduced since 1966:
"This may be explained by the fact that, compared to previous periods, tight money periods have since 1966 coincided more with periods of business contraction than with periods of expansion." 9

[^1]As a result, in his view, the relationship between the new residential construction cycle and the general economic cycle depends largely on the timing of monetary policy.

Chung also discussed two other categories of determinants for the cyclical fluctuations in residential construction: the nature of the house building industry, particularly the presence of small builders; and demand variables. In analyzing the impact of the house building industry characteristics he concluded that,
".....while the very nature of the house-building industry may have contributed to cyclical instability in residential construction, its net impact is not likely to be of a major magnitude because of the relatively minor share of total output accounted for by small builders". 10

Similarly, in the case of the demand variables he pointed out that,
"The impact of demand variables on cyclical fluctuations in residential construction is felt through resulting changes in expected profit of the builder, subject to the availability of mortgage loans and the per-loan-dollar amount of new dwelling construction. Therefore, even if income increases so that rent and price of existing dwellings rise, unless construction cost rises less rapidly and unless mortgage loans are available, the resulting increase in new dwelling construction would be minor" 11

As a result, Chung ascribes the major cause of cyclical fluctuations in residental construction to the credit variables, particularly the inter-action of mortgage interest rates with other interest rates resulting from monetary policy changes and the resulting impact of this on the flow and availability of mortgage funds.
10. Ibid, p. 31

1] Ibid, p. 33

Similar conclusions were drawn in a U.S. study by William W. Alberts ${ }^{12}$ for the 1948-1959 period as follows:
".....four conditions have linked the post-war fluctuations in aggregate spending with fluctuations in the output of single-family houses....:(a) a high cross elasticy of demand for mortgages with respect to yields on competing investments on the part of lenders; (b) a demand schedule for mortgage funds that has been relatively stable over the course of each recession and recovery; (c) an elastic supply schedule of new houses; and (d) an elastic demand schedule for mortgage funds." ${ }^{13}$

Further conclusions about the cyclical nature of housing in the United States were reached by Jack M. Guttentag regarding the 1946-1959 period:
"The reason for the strategic role of mortgage credit in the short cycle is not far to seek. Demographic factors and the relative price of housing, which must be crucially important determinants of housing demand and construction in the long run, ordinarily do not change very much in the short run. The demand for housing, moreover, apparently is not very sensitive to short-run changes in income, so long as such changes are fairly moderate and do not generate sharp swings in consumers' expectations....."14
"At the same time housing demand is extremely sensitive to changes in the supply of mortgage credit......It is this greater sensitivity of housing demand to changes in the supply of mortgage credit than to changes in the flow of current income, and the considerable short-run volatility in the former, that underlie the counter-cyclical tendency of residential construction." 15
12. Alberts, William W. "Business Cycles, Residential Construction Cycles,
and the Mortgage Market." Journal of Political Economy, LXX(1962) 13. Ibid, p. 281
14.Jack M. Guttentag, "The Short Cycle in Residential Construction, 1946-59" The American Economic Review, LI (1961). p. 286
15.Ibid, p. 287

Guttentag also pointed out the reasons for the countercyclical nature of housing activities and why this occurred with the following example:
"Assume that an expansion in general business occurs, initiated we may suppose by an upsurge in corporate investment..... As expansion develops and spreads, however, the demands upon the capital markets are enlarged, liquidity positions generally are eroded and as capacity ceilings are approached Federal Reserve policy shifts from ease to restraint; interest rates rise and borrowing terms tighten.
"Of course, the expansion in general economic activity leads to an increase in disposable income, but the demand for housing is expanded only slightly as a result. At the same time the demand for housing is extremely sensitive to the terms on which mortgage credit is available. After a certain stage of tightness is reached in the capital market, therefore, the reduction in housing demand consequent upon the tightening of credit more than offsets the expansion in demand resulting from the increasing flow of income. While most sectors continue to expand, residential construction turns down.
"During a contraction the reverse process occurs. After some point, the easing of credit terms consequent upon a decline in the demand for credit from other sectors (and the easing of monetary policy) has an expansionary effect on housing demand sufficient to offset the effect of the decline in income. Hence, residential construction turns up while other sectors continue to decline. In this way, the residential construction sector acts as a sort of counter-cyclical buffer." 16

On the basis of this review of post-war literature concerning both Canadian and U.S. experience, it is apparent that a combination of credit variables, income variables and price variables has been the major factors in determining the short cycle in housing

[^2]markets. Among these variables credit variables were found to be, by far, the most important influences on the cyclical pattern of housing activities. In effect, their impact on the housing sector swamped the income and price effects to the point where a number of studies could not find any evidence of a relationship between income and price variables and housing activities in the short-run. However, part of this was due to the relatively moderate nature of income and price changes through the post-war period, particularly during the early part of this period when most of these studies were undertaken. The more recent 1968-1982 experience involved much sharper changes in income and price variables and evidence should be sought as to whether or not those variables had a greater impact during this period than in previous post-war periods.

In the next section of the study, therefore, the following types of variables found in the literature to be the most significant indicators of housing market cycles will be analyzed as indicators of these cycles during the 1968-1982 period at the national and provincial levels in Canada:

1) financial variables
2) income variables, and
3) price variables.
III. NATIONAL AND PROVINCIAL HOUSING MARKET INDICATORS

This section of the study will attempt to determine and analyze a number of indicators at the national and provincial levels that will identify the Canadian housing market cycle and its relationship to the overall economic cycle over the 1968-1982 period. From this analysis a checklist of indicators will be developed aimed at determining the timing, amplitude and duration of the housing market cycles. These indicators will then be assessed in terms of their reliability, lags in availability, lags in impact, strength of impact and duration of impact. The choice of these indicators will be constrained to readily available data at the national and provincial level through the Cansim data bank at Statistics Canada and the housing statistics available through the resources of canada Mortgage and Housing Corporation.

In addition, the indicators examined will be primarily external to the housing sector as the main task of the analysis is to develop a series of broad economic indicators that reflect the overall economic cycle and impact specifically on the housing market cycle. As a result, indicators internal to the housing sector which provide indicators of how the individual components within the housing sector react during the housing cycle will not be examined in this study. Another constraint on the analysis results from the attempt to start at the national and provincial levels and then extend the indicators determined at these levels down to the local level. This means that the indicators investigated at the federal and provincial levels must have counterparts or proxies at the local level that can also be obtained from readily available sources.

1. The Economic and Housing Market Cycles 1968-1982

During the 1968-82 period the Canadian economy, according to the Statistics Canada cyclical dating, has experienced four
recessionary periods - from the lst quarter of 1969 to 4 th quarter of 1970; from the 3rd quarter of 1974 to the lst quarter of 1975; from the 4 th quarter of 1979 to the 2nd quarter of 1980; and from the 3rd quarter of 1981 to the 4 th quarter of 1982. In determining the housing market cycles during this period this study uses seasonally-adjusted total national mortgage loan approvals (including both NHA and conventional) to represent activity in the housing sector. This variable was chosen instead of housing starts or building permits because it more accurately reflects the level total activity in the housing market, both new construction and existing housing, which is the determinant of mortgage insurance activity levels. The relationships between the housing market cycles, based on total mortgage loan approvals, and the Canadian economiccycles during the 1968-82 period are illustrated in Tables III-l and III-2 and Chart III-l.

TABLE III-I
The Duration of Economic and Mortgage Loan Approval Cycles in Canada, 1968 - 1982.

Economic Cycle Date				
Expansion				
Contraction		\quad	Expansion	
:---:	:---:	:---:	\quad	Duration (quarters)
:---:				
Contraction				

TABLE III - 2
Turning-Point Dates - Economic and Mortgage
Loan Approval Cycles in Canada $1968-1982$
Economic Cycles Approval Cycles

Trough - 1st cycle	$1967(4)$
Peak	$1969(1)$

1967(1)
1968 (3)

1970(1)
1973(4)

Trough - 3rd cycle	$1975(1)$	$1974(4)$
Peak	$1979(3)$	$1979(1)$

Trough - 4th cycle 1980(2) $1980(1)$

Peak
1981(2)
1980(2)
Trough
1982(4)

The cyclical behaviour of the Canadian economy during the 1968-82 period was also somewhat different from that experienced in previous post-war periods and was affected by a number of external factors and policy responses as well as by normal cyclical forces. The l967-70 cycle was a relatively typical post-war cycle that reflected primarily the cyclical forces that were operating in the economy over that period. On the other hand the 1970-74 cycle resulted from a combination of cyclical forces and external shocks namely, the international oil embargo and the resulting sharp increase in the price of oil initiated by the OPEC countries. Canada, however, experienced a relatively mild recession in 1974 relative to other countries due to the strong fiscal and monetary response by the federal government and the policy decision to insulate Canadians from the sharp oil price increases. These policy responses
not only protected the Canadian economy from the international shocks but also quickly counteracted the normal cyclical forces in the economy to produce an early recovery from the mild recession experienced during the last quarter of 1974 and the first quarter of 1975. This mild recession, however, did not result in a significant improvement in the inflation performance and, as a result, Canada entered a recovery period with relatively high inflation rates.

During the 1975-79 expansion phase of the cycle substantial inflationary pressures developed which eventually forced a major move towards restrictive monetary policy in the U.S. and Canada. As a result, the Canadian economy went into a short contraction phase in early 1980 which was again interrupted by a sharp election-oriented reversal of monetary policy in the U.S. in mid-1980 which was duplicated in Canada. As a result, the Canadian economy entered another expansion " phase with an even higher level of inflation which had to be dealt with in early 1981 after the U.S. federal election. This was accomplished by another move towards restrictive monetary policy which forced U.S. and Canadian interest rates to record high levels through 1981 and into early 1982. This resulted in a considerably larger contraction phase than in the previous two cycles as policy-makers attempted to reduce inflation and inflationary expectations through the extended application of restrictive monetary policy. In fact, this contraction phase could be classified as a continuation of the contraction that began in early 1980 but which had been interrupted by an inappropriate easing of monetary policy during 1980. This extended contraction phase, however, came to an end in late 1982 and a new expansion phase was initiated in early 1983 in response to an easing of monetary policy in mid-1982.

From this comparison of the economic and mortgage loan approvals cycles in Canada for the period 1968-1982 it is apparent that these cycles followed very similar paths with the mortgage loan approval cycles leading the economic cycles in each case,

Except for the 1979-80 cycle when the turning points coincided. In effect, mortgage loan approvals displayed a modest countercycle pattern when compared to the economic cycles during this period. However, this counter-cyclical behaviour declined throughout the period with the 3 rd and 4 th cycles being much more coincident than the lst and 2nd cycles. As a result, during this period indicators that accurately reflected the turning points of the economic cycles would also be relatively accurate indicators for the turning points in the mortgage loan approvals cycles. The indicator that is used widely for determining economic cycle turning points in Canada is the composite index of 10 leading indicators prepared by Statistics Canada which, because of the similarities between the economic and mortgage loan approval cycles, should also be an accurate indicator of the turning points for the mortgage loan approvals cycle. The relationship between the composite index of 10 leading indicators and total mortgage loan approvals in Canada for the 1968-1982 period is illustrated in Chart III-I. This indicator, however, because it is a leading indicator of the economic cycle will tend to be a coincident indicator for the mortgage loan approval cycle which tends to lead the economic cycle. As a result, other indicators of the mortgage loan approval cycle should be explored that are more closely related to that cycle.

2. The Choice of National Indicators

On the basis of the literature review ${ }^{17}$ undertaken in the preceding section of the study a number of broad categories of indicators were chosen and examined in order to determine their relationship to the mortgage loan approvals cycles, as follows:
i) Income variables - the industrial composite employment index, the unemployment rate, and the help wanted index all seasonally adjusted.
17. The chosen indicators were also discussed with CMHC analysts in a number of regional and CMA offices, who, in turn, suggested additional indicators that were then included in the analysis.

> ii) Price variables - consumer price index, the shelter component of consumer prices and the average value of units sold through multiple listing services (MLS).
> iii) Cost variables - residential construction cost index.
> iv) Financial variables - the 5 year conventional mortgage rate, the differential between the 5 year conventional mortgage rate and 5-10 year Government of Canada bond yield, and the chartered bank holdings of conventional residential mortgages.
v) Consumer spending variables - new passenger car sales and value of retail trade, both seasonally adjusted.
vi) Housing variables - housing starts and building permits, both seasonally adjusted and MLS sales to listings ratios.
vii) General economic variables - composite index of 10 leading indicators, the value of cheques cashed in clearing centres, and personal savings.
3. Analysis of the National Indicators

The analysis of the national housing market indicators was undertaken in two phases. First, the indicators were collected in tabular form and charted directly from the CANSIM data bank and CMHC sources for the period 1968-1982 inclusive. The cyclical behaviour of each indicator, as displayed in the charts, was compared to the cyclical behaviour shown in the charts of national mortgage loan approvals - total, conventional and NHA. The similarities and differences between these cyclical patterns were visually assessed and preliminary conclusions were drawn about the cyclical relationships between these indicators and mortgage loan approvals. On this basis a number of indicators were abandoned as no significant
relationship could be determined from an examination of the charts. Next the relationships between the remaining indicators and mortgage loan approvals were analyzed through a series of statistical testing techniques in order to estimate the strength and importance of these relationships. These statistical test results were then combined with the initial assessment from the charts to make a final decision on the choice of indicators that acted as the best housing market indicators at the national level.
a) Chart Analysis

From the charts of the national indicators the following assessment of the chosen indicators was made:
i)
ii) Price variables

The consumer price index and the shelter component of this index displayed similar chart patterns but from the charts there did not appear to be a significant relationship between these price indices and mortgage loan approvals. However, because of the concern about price variables it was decided to test the shelter component of the CPI statistically. MLS average house value data was also obtained and tested statistically in an attempt to obtain a price variable related specifically to ownership housing.
v) Consumer spending variables

Two consumer spending variables, new passenger car sales and the value of retail trade were charted. Passenger car sales showed a significant cyclical pattern that was similar to the pattern displayed by mortgage loan approvals but the value of retail trade did not display a significant cyclical pattern. However, it was decided to pursue both indicators in the statistical testing phase of the analysis.

vi) Housing variables

As would be expected, housing starts and building permits displayed a close cyclical relationship with mortgage loan approvals and statistical testing of these relationships was undertaken in order to provide a more precise measure of these relationships. MLS sales to listing ratios were also tested statistically.
vii) General economic variables

The composite index of 10 leading indicators and the value of cheques cashed in clearing centres were charted with the leading indicators displaying a strong cyclical pattern and cheque cashings only a moderate cyclical pattern. The cyclical pattern of the leading indicator index, which reflects the economic cycle closely, also displayed similar cyclical patterns to those of mortgage loan approvals. It was decided to apply statistical testing to both of these indicators. In addition personal savings was introduced as a variable and tested. On the basis of this visual analysis of the national indicator charts it appeared that the income and financial variables employment and unemployment variables and interest rate variables had the strongest cyclical relationships with total mortgage loan approvals at the national level. New passenger car sales and the composite index of 10 leading indicators also displayed similar cyclical patterns to those experienced in the mortgage loan approvals cycles but the strength of the relationships did not seem as great as in the case of the income and financial variables. The other housing sector variables - housing starts and building permits displayed similar cyclical patterns but this is primarily due to the fact that they are closely related to mortgage loan approvals and could be considered as alternate variables for defining the housing market cycles.

b) Statistical Analysis

In order to assess the strength and importance of the relationships between these various indicator variables (independent variables) and total mortgage loan approvals at the national level (dependent variable) a series of tests and estimations were undertaken using a stepwise multiple regression technique. Stepwise multiple regression is a form of multiple regression that adds one variable at a time to the "best fit" regression equation. Under this procedure, variables are added in the order which makes the
greatest improvement in the goodness of fit. In an early stage, a variable may enter the regression equation but as other variables are added the initial variable may be removed from the equation if its contribution is indicated to be insignificant. As a result, the final regression equation will only include statistically significant variables. ${ }^{18}$

A number of analytical runs were made, using the stepwise multiple regression technique, on the national indicators chosen for the analysis. First, all dependent variables, except the shelter component of CPI, cheques cashed, retail trade, and the residential construction cost index (none of which showed strong cyclical patterns in the chart analysis), were tested for significance against total national mortgage loan approvals for the entire 19681982 period. On an unlagged basis the regression analysis indicated that the conventional 5 year mortgage rate, the unemployment rate, the help wanted index, and passenger car sales were the strongest indicators. When lags (2 quarters) were introduced for the employment variables the statistical results improved moderately and the employment index substituted for the help wanted index. Next these same variables were run on a lagged basis with the addition of the shelter component of CPI and cheques cashed. This did not improve the statistical results materially but building permits replaced car sales on a significant variable. In an attempt to determine whether or not the composite leading index would be a satisfactory substitute for all the other indicators except the mortgage rate it was run along with the 5 year conventional rate. The statistical results obtained were much weaker in this case thereby indicating that the specific variables were more useful and significant than the leading index.
18. For details of this statistical technique and the results obtained from the statistical analysis of the national indicator variables using this technique see Appendix B.

Because of the length of the 1968-1982 period the statistical analysis was next applied to four segments of this overall time period: 1968(2) to 1975(1); 1975(2) to 1979(3); 1979(4) to 1982(4) and 1968(2) to 1979(3). For the 1968-1975 period good statistical results were obtained for the conventional 5 year mortgage rate, unemployment rate and the help wanted index; while for the 1975-1979 period only the mortgage rate and the employment index were significant with a poorer statistical result. For the 1979-82 period only the mortgage rate proved to be significant and only with a very poor statistical result. Over the 1968-79 period, however, the statistical result was good for the mortgage rate, employment index, unemployment rate, and housing starts. These results indicated that the financial and employment variables had a relatively strong relationship with mortgage loan approvals during the more stable segments of the time period (1968-75 and 1968-79) but were much less useful in the highly volatile 1979-82 period when only the mortgage was significant in the statistical testing. The inclusion of the CPI shelter component, cheques cashed, retail trade and the residential cost index did not materially improve the statistical results for any of these time period segments.

Although the indicators resulting from these regression analyses had a relatively high degree of significance in the regression results, the predictive capacity of a number of regression equations was not very satisfactory during certain time periods. This was especially so during the very volatile 1979-1982 period when the predicted results were substantially different from the actual mortgage loan approvals for that period. In the other more stable periods the predictive ability of the regression equations was considerably greater. As a result, it appeared that the good statistical fit over the entire period was largely due to the relatively long and stable period up to 1979 after which the fit was much worse as indicated by the tests run on the data during the segmented time
19. These time segments were selected to reflect the major economic cycles experienced during the 1968-82 period.
periods. This led to the conclusion that other variables than those used in the testing to this point must be important, particularly during the latter part of the period when there was much greater volatility in all the variables. 20

In response to this concern the MLS average house values and the MLS sales to listing ratios (which only became available after the initial regression runs) were added to the variables being tested statistically. In addition, personal savings was also introduced as a further variable to be tested. In the next set of runs four different types of regression equations were used - linear, semi-logarithmic, double logarithmic and inverse semi-logarithmic equations - to determine if the fit could be improved by the use of different equation forms. In these runs a number of variables used in the previous runs which did not appear to be very significant or useful were dropped from the analysis - including passenger car sales, the composite index of leading indicators, housing starts, building permits, retail trade and the residential construction cost index. Although passenger car sales had appeared as a significant variable in a number of previous runs it was dropped from the analysis because it is a parallel variable to mortgage loan approvals rather than a predictive variable for approvals. Housing starts and building permits were eliminated from the analysis because they are substitutes for mortgage loan approvals in the housing sector and are not independent predictive variables for approvals. The other two variables were not pursued further as they showed very little significance in the previous regression analyses. The mortgage rate-bond rate differential was also eliminated as the mortgage rate was more significant.

Regression analyses were run, using the four types of equations, for the entire 1968-1982 period and the four segmented periods used in the previous regression runs. Although the variables showing the greatest significance in these runs varied somewhat depending upon the time period and form of regression equation used, the overall results indicated that the following variables had the most significant relationships to mortgage loan approvals:
20. For details of the predictive results for the final series of regression analyses at the national, provincial and local levels see Appendix C.

1) the conventional five-year mortgage rate;
2) a price variable - either the CPI shelter component or the MLS average house value;
3) an employment variable - either the unemployment rate or the employment index; and
4) the MLS sales to listing.

Personal savings and cheque cashings also appeared as significant variables in particular runs but their relationship to approvals appeared to be considerably weaker and less consistent than the relationships of the main variables.

The use of the various log regression equations, in virtually all cases, did not improve the regression results over those obtained by using the linear equations. As a result the use of the linear equations provided the best fit for these variables and the results of these runs were used as the conclusive results. In terms of the time periods used the best regression results were found for the entire 1968-1982 period and for the 1968-1979 segment of the total time period. Relatively good results were also obtained for the 1968 - 1975 segment but poorer results occurred in the 1975 - 1979 period. The results for the very volatile 1979 - 1982 period were very poor both in terms of the variables found to be significant (only the conventional 5 year mortgage rate and cheque cashings) and the very low degree of significance for these variables. This was consistent with the previous runs for the time period segment and confirms that the regression analysis using the chosen variables does not provide an adequate explanation for this volatile period and could not have predicted the mortgage loan approvals for this period. This is not surprising given the fact that all forecasting models proved to be inadequate during this turbulent period. In general, however, the fit obtained for the entire period was better using this limited group of variables than that obtained from the initial group of variables used in the previous runs.

4. The Choice of Provincial Indicators

At the provincial level the choice of indicators was made on the same basis as that at the national level with comparable provincial data being obtained in the major categories of indicators. For two provinces - Ontario and British Columbia, other indicators were obtained that were specific to particular industrial sectors that were dominant in these provinces. For example, seasonally-adjusted employment indexes were examined for forestry, mining and manufacturing in an effort to determine the impact of employment changes in these large industrial sectors on the housing market cycles in these particular provinces - forestry and mining in B.C. and manufacturing in Ontario. This was attempted in order to determine whether or not there were differential income effects on the housing cycle in particular provinces arising from the differential cycles in these specific industrial sectors and whether or not there was a different degree of reaction in the provincial housing markets to these specific factors from that experienced in the national housing market. Upon examination of the charts of these specific employment indexes and a comparison with the industrial composite employment indexes for these provinces, however, it was decided that the specific index cyclical patterns were not different enough from the industrial composite patterns to warrant separate statistical analyses of these specific indexes. In addition, these specific indexes were national in scope and did apply only to the two provinces concerned.

In addition, the choice of provincial indicators for statistical testing was narrowed even further by the statistical testing results obtained for the national indicators. The provincial indicators comparable to the national indicators that did not prove to be significant in the statistical analysis at the national
level were eliminated before applying the statistical testing techniques at the provincial level. As a result, only the provincial indicators comparable to the indicators that were found to be significant at the national level were tested statistically at the provincial level. In other words, the main purpose of the statistical testing at the provincial level was to confirm that the results of the national testing held at the provincial level and to determine the relative significance of the indicators at the provincial level compared to their significance at the national level.

5. Statistical Analysis of the Provincial Indicators

Regression analyses, using the same types of equations and variables as used in the analyses of the national indicators, were undertaken for Ontario and British Columbia. ${ }^{2 l}$ Again, these runs were made for the entire time period and the four segments of this period. The same variables found to be most significant at the provincial level corresponded closely with those found to be significant at the national level, namely the mortgage interest rate, a price variable, employment variable, and the MLS sales to listing ratio. Other variables were significant from time to time in the runs but were not consistently significant. The best results were again obtained for the entire time period and the $1968-79$ segment of the period. Generally, the linear equations provided the best regression results but occasionally one of the log equations improved the results modestly. The overall levels of significance for the variables, however, was somewhat lower than those obtained for the same variables at the national level. Overall, though, the statistical results from these provincial runs were very similar to those obtained for the national variables and confirmed that the same indicators apply to both the national and provincial levels.
21. For details of these analyses and their results see Appendix E.

6. Interpretation of the Results

The indicators of the mortgage loan approvals cycles generated by the statistical analyses of the national and provincial indicator variables undertaken in this section of the study support the view that the consumer makes his house-purchasing decision on the basis of a number of affordability criteria. These criteria include the mortgage interest rate; the price of housing units; family disposable income; the terms attached to mortgage loans, such as term, down-payment and amortization; and expectational factors regarding prices, interest rates and income. As these criteria fluctuate during a cyclical period the consumer adjusts his house-purchasing plans in accordance with the movement of the elements determining his affordability equation. If these elements move cyclically in a way that reduces his affordability of housing the consumer will postpone his house-purchasing plans; while if they move in a manner that increases his affordability, the consumer will move ahead with his purchasing plans. The most volatile elements over a cyclical period are the mortgage interest rate, house prices and family disposable income. As a result, it would be these elements that would primarily determine the house market cycle. Mortgage terms and expectational factors can also be important at certain times during a cyclical period but their impacts are much more difficult to quantify.

Housing affordability is usually calculated by relating the annual carrying costs associated with a particular level of interest rates and house prices to family disposal income in the form of a ratio or percentage, as follows:

1) Annual carrying costs $=$ House price
less down-payment x mortgage
interest rate $\quad+$ principal repayment (amortised over the term of the mortgage).
2) Affordability $=$ Annual carrying costs x 100

Annual Family disposable income
As a result, any change in the factors making up the annual carrying costs will affect affordability either negatively or positively as will a change in family disposable income. An increase in house prices and mortgage rates and a shortening of the mortgage amortization period would reduce affordability while movements in the opposite direction would increase affordability. On the other hand, an increase in family disposable income would increase affordability and a decrease would reduce affordability. In the expansion phase of the economic cycle house prices, mortgage rates and family disposable income all tend to rise and the impact on the consumer depends on the relative movements of these factors. As long as family disposable income is growing rapidly enough to off-set the increased carrying costs arising from the higher house prices and interest rates, affordability will be maintained. However, near the top of the cycle inflationary pressures increase significantly and tend to increase house prices and, especially, interest rates more rapidly than family disposable income. At that point, affordability is reduced and house purchasing plans are postponed. Similarly, at the bottom of the economic cycle deflationary pressures on house prices and interest rates exceed those on family disposable income and affordability increases leading to an increase in housepurchasing plans.

At times, however, the consumer's perception of affordability can be distorted by his expectations regarding prices, interest rates and income growth. If the consumer is operating under the influence of strong inflationary expectations his decisionmaking process can be influenced by the belief that house prices and interest rates will move still higher and, hence, reduce affordability in the future. At the same time, the consumer may also believe that inflationary trends will increase his future family
disposable income at a high rate and, therefore, increase affordability in the future. Under these conditions, the consumer is tempted to purchase a house on the basis that price and interest rate trends will reduce his affordability in the future while his expected rising income will increase his affordability of housing at current prices and interest rates in the future. Conversely, if the consumer expects house prices and interest rates to drop in the future he will tend to delay his house-purchasing decision until affordability improves. This reaction would be further enhanced if he also expected a lower income growth rate in the future. These expectational factors probably explain much of the increased volatility in the housing market during the 1979-82 period when interest rates had to rise to extreme levels before the consumer's perception of affordability was affected negatively by the combination of rapidly rising house prices and interest rates. The rapid reversal of the expectations also probably extended and intensified the contraction phase of the housing cycle during this period.

The statistical analysis undertaken in this section provides further proof that this decision-making process was operational during the housing market cycles experienced in Canada during the 1968-82 period. The indicators with the strongest relationship to national and provincial mortgage loan approvals determined by this analysis were: the 5 year conventional mortgage rate, the MLS average value for housing units and the employment-unemployment variables used in the analysis as income proxies. Although a satisfactory overall income indicator could not be obtained the employmentunemployment variables are the major cyclical determinants of personal income and, therefore, were used to bring an income element into the analysis. As a result, the statistical analysis has confirmed the significance of two major components of affordability - the mortgage interest rate and house prices - in determining the housing
market cycle. It has also suggested that the income variable is important in this cyclical process but only partial indicators employment and unemployment variables - could be obtained to represent this influence on the housing market cycles.

The employment and unemployment variables, however, could also be of considerable importance as indicators of housing market activity in particular provinces because of their relationship to population migration between provinces and regions of the country. As employment prospects improve in a province a net inward migration is likely to occur that would increase the demand for housing within the receiving province. Similarly, if employment falls in a province an outward migration is likely to occur with a resulting decline in housing demand. As a result, the importance of the employment variables is not simply restricted to their impact on incomes within a province but also involves their impact on population migration into and out of particular provinces. This impact is not significant at the national level because these interprovincial population movements are averaged out in their impact on housing on the national scale. This means that changes in provincial (and local) employment variables could be significant indicators of forthcoming migration trends between provinces and local regions. Because of the more transient nature of their populations, this impact of employment changes is likely to be more important in the Western provinces (Alberta and B.C.) and Ontario than in the Maritimes and Quebec where migration traditionally has not been very significant.

7. Checklist of Indicators

On the basis of both statistical analysis and theoretical interpretation, the following variables would appear to be useful indicators of the national and provincial home-ownership mortgage loan approvals cycles:

-30-

1) A financial variable - the 5-year conventional mortgage rate.
2) A price variable - the MLS average sales value.
3) An income or employment variable - the industrial composite employment index, and
4) A housing sector variable - the MLS sales to listing ratio.

IV. LOCAL HOUSING MARKET INDICATORS

In this section the analysis undertaken at the national and provincial levels to determine a number of variables that would act as indicators of the homeownership mortgage loan approvals cycle will be extended to three local metropolitan areas (CMA's) Vancouver, Toronto, and London - in the two provinces that were studied in the previous section. This analysis will attempt to determine whether or not the checklist of indicators developed at the national and provincial levels will also perform as indicators of the local housing markets in these selected CMA's. Fortunately, the indicators included in the national and provincial checklist are also available at the local level and, therefore, will be tested statistically at the local level in the same manner as the testing undertaken at the national and provincial levels. The major problem facing this analysis at the local level is the unavailability of data for conventional homeownership mortgage loan approvals at the CMA level and, hence, the absence of a data series for total homeownership mortgage loan approvals comparable to the series used in the national and provincial statistical analysis. As a result, estimates for these series had to be developed before undertaking the statistical testing analyses.

1. Estimation of Total Homeownership Mortgage Loan Approvals

The only data available at the local CMA level for homeownership mortgage loan approvals are those covering the NHA portion of the market. This means that some estimation method must be developed to determine total homeownership mortgage loan approvals at the local level based on the available provincial data for total approvals. In order to attempt this two estimating approaches were developed using the following equations:
a) NHA Approvals (local) \quad NHA Approvals (provincial) \times Total Approvals (Provincial)
and b) $\frac{\text { MLS sales (local) }}{\text { MLS sales (Provincial }} \times$ Total Approvals (Provincial)

The first approach is based on the assumption that the ratio of NHA local approvals to total local approvals is equal to the ratio of NHA provincial approvals to total provincial approvals; while the second approach makes a similar assumption about the local and provincial ratios of MLS sales to total approvals. It is likely that neither of these assumptions accurately reflects the relationships between the local and provincial data because of the different levels of NHA activity and degree of MLS penetration in various local CMA markets. Under these circumstances the local NHA approvals and MLS sales are likely to result in different ratios to total local approvals than the average ratios of provincial data to total provincial approvals. In addition, quarterly MLS sales data were not available at the local level and these had to be estimated from the annual data available with the effect that all seasonal patterns in these data were removed.

Finally, after calculating total approvals at the local level under these two approaches there was no independent source of data on total approvals against which these estimates could be checked and compared. This meant that there was no clear way of making a choice between these two estimates and, consequently, it was decided to use both estimates in the statistical testing analyses. By doing this, the statistical results obtained when compared to the national and provincial results may make it possible to determine which of these two estimates most accurately reflects total homeownership mortgage loan approvals at the local level for the CMA's chosen for the analysis.

2. Statistical Analysis of the Local Indicators

The statistical analysis of the local indicators was undertaken using the same four types of regression equations as those used in the national and provincial analyses. However, in the case of the local analysis a more limited number of variables were tested in accordance with their availability at the local level namely the 5 year conventional mortgage rate, the MLS average sale value, the MLS sales to listing ratio and the industrial composite employment index. In fact, these variables constituted the checklist of housing market indicators determined from the national and provincial statistical analyses. Because of the absence of data for total homeownership mortgage loan approvals at the local level the local regression analyses used both of the estimates for total approvals developed in this study using local and provincial NHA approvals and MLS sales data.

The regression equations were run for both approvals estimates for the entire 1968-82 period and it was found that the fit was not very satisfactory for either of the approvals estimates during that period. However, the estimate using MLS sales data did give a considerably better fit than the estimates using NHA approvals data for each of the CMA's analyzed. Even this fit, though, was considerably poorer than the fits achieved at the national and provincial levels. There would appear to be two major reasons for this: (l) the number of independent variables included in the regression analyses was smaller at the local level than at the national and provincial levels; and (2) the probability that even the best estimate of total local approvals (using MLS data) was not an accurate measure of total approvals in the CMA's studied.

The final regression runs for the three local areas were then undertaken, using the MLS estimate of local approvals, for the entire 1968-82 period and for the 1968-79 period, which eliminated the very volatile 1979-82 period. The best fits for all three CMA areas were obtained for the shorter and more stable 1968-79 period with very little difference arising between the various equation forms used. Among the cities the best regression fits were obtained for London, followed by Toronto and then Vancouver, for which the results were much weaker. In addition, the results obtained for all the local areas were much poorer than those obtained for the same variables at the provincial and national levels in both time periods analyzed. However, the results were sufficiently similar to those obtained at the provincial and national levels to indicate that the variables included in the local analysis were also operative and could act as indicators at the local level as well as at the provincial and national level. This conclusion could be even stronger if satisfactory data had been available for total mortgage loan approvals at the local level.

3. Checklist of Local Indicators

Despite the weaker statistical results obtained in the local analyses of indicator variables, it would appear that the following indicators, found to be useful at the national and provincial levels, would also be applicable as indicators of the local homeownership mortgage loan approvals cycles:

1) A financial variable - the five year conventional mortgage rate.
2) A price variable - the MLS average sales value.
3) An income variable or employment variable - the industrial composite employment index, and
4) A housing variable - the MLS sales to listing ratio.

V. ASSESSMENT OF THE INDICATORS

In this section the indicators that provided the best results in the statistical analyses, especially those that make up the checklist of indicators at the national, provincial and local levels, will be assessed as to their usefulness in determining housing market cycles in terms of their reliability, lags in availability, lags in impact, strength of impact and duration of impact. This assessment will be based on both the statistical analysis results and a series of charts plotting each indicator against total mortgage loan approvals at the national, provincial and local levels. 22.

1. The Financial Variable

The five year conventional mortgage rate proved to be the most consistent and reliable variable in the statistical analyses at all three levels - national, provincial and local. It appeared as a significant variable in virtually every regression run at all levels and for all time segments analyzed. These results confirm the importance of the financial variable as outlined in the literature review in Chapter II of this study. From the charts in Appendix D it is apparent that the 5 year conventional mortgage rate is a coincident indicator of mortgage loan approvals with approvals being immediately responsive (downward) to increases or (upward) to declines in the mortgage rate throughout the 1968-82 period. It is also clear from the charts that relatively small changes in the interest rate can have a substantial impact on mortgage loan approvals, thereby displaying a strong and immediate impact during all the cyclical periods. The impact on approvals continues until the next change in the interest rate trend. Finally, the 5 year conventional mortgage rate is useful as an indicator since it is readily available on a daily basis and is the same for all three levels.
22. These charts for the national, provincial and local indicators are presented in Appendix D.
2. The Price Variable

Two price variables were employed in the statistical analysis - the shelter component of CPI and the MLS average selling price for housing units, both of which are charted against approvals at the national level in Appendix D. However, only the MLS average selling price was charted against approvals at the provincial and local levels. In the statistical analysis at the national level these two variables appeared to be interchangeable in their impact on approvals but from the charting of these variables against approvals the MLS average selling price appeared to have a stronger and more reliable pattern. This was the main reason why this particular variable was pursued in the provincial and local statistical analyses. The MLS average selling price appeared from the charts to be a lagging indicator of approvals during contractionary periods as it reached a peak after approvals had been declining for a number of quarters (especially in the 1979-82 period when the peak selling price coincided with the trough in mortgage loan approvals).
However, in the expansionary phase the average selling price declined prior to the recovery in approvals and, therefore, acted as a leading indicator of approvals in 1981-82. The strength of this impact on approvals, from the charts, would appear to be much less than that of the mortgage rate impact with a shorter duration. As far as availability is concerned the MLS average selling price is available monthly at all three levels.

3. The Employment Variable

At the national and provincial levels two variables - the unemployment rate and the industrial composite employment index - were used as employment indicators. Since these indicators are essentially mirror images of the same trends in employment they were interchangeable in the statistical
analyses with both appearing throughout the regression analyses. However, it was decided that the employment index was a better indicator from a conceptual point of view and it was used at the local level as the only employment indicator. In the statistical analyses at all levels both indicators displayed a positive relationship with approvals, i.e. a rise in the unemployment rate or a decline in the employment index coincided with a rise in approvals and vice versa. This was also confirmed in the charts of these indicators against approvals. This phenomenon primarily reflects the fact that approvals increase or decrease very early in the economic cycle while the employment variables do not change until relatively late in the cycle. As a result, when approvals are declining employment is still increasing (unemployment declining) and does not start declining (unemployment increasing) until approvals are again starting to rise in the initial recovery phase of the next cycle. This means that the employment variable is not a very useful indicator for the contractionary phase of the approvals cycle but could be more useful as an indicator of the expansionary phase i.e. when employment starts to decline (unemployment to rise) approvals begin to recover. The strength of the impact on approvals would appear to be weaker than the impact of interest rates given the perverse behaviour of approvals to movements in the employment indicators. This again confirms the findings in the literature review section of the study. The employment index is readily available monthly at all three levels.
4. The Housing Variable

The housing variable that gave good statistical results at all three levels was the MLS sales to listings ratio. This variable appeared in many of the regression solutions and had a relatively high degree of significance in the equations. The charts of this indicator against approvals show a strong coincident pattern with approvals at all levels
with the sales to listings ratio moving closely with approvals during all periods except the $1975-79$ period when the indicator declined in 1975 and followed a flat pattern until 1979 compared to a rise in approvals in 1975 followed by a flat pattern until 1979. In general, the sales to listings ratio appeared to lag approvals modestly through the cyclical periods during both the contractionary and expansionary phases. As a result, it could be useful as a confirmation of other indicators such as the mortgage rate with sales to listings ratios declining and rising with approvals during the cycle. For example, if a rise in interest rates coincides with a decline in approvals and this is followed by a decline in the sales to listings ratio it would be strong confirmation of a cyclical downturn in approvals. Sales to listings ratios are also available on a monthly basis through MLS at all three levels.

5. Other Variables

Two other variables - personal savings and cheques cashed in clearing centres - were also used in the statistical analyses at the national level with only cheques cashed used at the provincial level. Neither of these variables were used at the local level. At the national level the chart of personal savings against approvals shows that savings rose during the contractionary phase of the approvals cycle in all cyclical periods and then levelled off as approvals began to recover. However, since personal savings is a residual type of statistic it is not clear how significant this pattern is in terms of acting as an indicator of approvals. In addition, it is not available at either the provincial or local level and, therefore, would not be a very useful indicator. Cheques cashed displayed a relatively flat and stable pattern until 1978 when it began to rise very strongly just prior to the volatile pattern of approvals through the 1979-82 period. However, it is difficult to draw any significance
from this pattern in terms of causation and, as a result, cheques cashed would not appear to be a useful indicator of mortgage loan approvals.
TABLE V - 1
Comparison of Checklist Indicators

Financial ${ }^{(1)}$	Employment ${ }^{(2)}$	Price ${ }^{(3)}$	Housing (4)
Strongest	Weaker	Weaker	Strong
Daily	Monthly	Monthly	Monthly

Impact				
Timing				
Peak	Coincident	Lagging	Lagging	Lagging
Trough	Coincident	Lagging	Coincident	Lagging
Strength	Strongest	Weaker	Weaker	Strong

(1) Five year conventional mortgage rate
(2) Industrial composite employment index
(3) MLS average selling price
(4) MLS sales to listings ratio

VI . CONCLUSIONS

This study has been a first attempt at developing a checklist of indicators that would be useful in determining the mortgage loan approval cycles at the national, provincial and local levels in Canada. The results of the statistical and charting analyses indicate that a short list of indicators available at all levels - namely, the 5 year conventional mortgage rate, the MLS average selling price, the industrial composite employment index and the MLS sales to listings ratio - could be useful indicators of approvals at all three levels. However, these analyses were not exhaustive and other variables could be useful if different or more extensive analyses were undertaken. On the other hand, the indicators suggested by the study largely coincide with those that have been outlined in theoretical analyses of the housing markets in both Canada and the United States and, therefore, have relatively strong theoretical credibility. The analyses in this study were also limited by the limitations imposed by the terms of reference in that the indicators to be considered had to be readily available at all three levels and that the analysis must start at the national level and move down to the local level. An alternative approach to developing local indicators would be to start at the local level using indicators that may not be available or applicable at the provincial or national levels. In any case, this type of local analysis would be a useful supplement to the broader approach used in this study and could result in further indicators that would be useful at the local level, along with the indicators provided by this study.

APPENDIX A

The Cyclical Behaviour of the Housing Sector in Canada - 1949-1970

APPENDIX A.

The following chart (1.1) and Tables (1.1 and 1.2)
illustrate the cyclical behaviour of the overall economy and housing sector in Canada and the United States for the period 1949-1970 as developed by Chung 17

Chime 1-1

Deseasonalized New Residential Expendilures (\$'M),
Housing Starts ('OOO) and the Rate of Unemployment (\%)

17. Chung, op. cit., p.9-11.

Table 1-1
Turning-Point Dates: Business and HousingStarts Cycles, United States and Canada, 1949-1970

		Turning Point Dates	
		Canada ${ }^{1}$	U.S.A. ${ }^{2}$
Business Cycles			
$\begin{aligned} & \text { Trough) } \\ & \text { Peak } \end{aligned}$	Ist cycle	$\begin{aligned} & 1949(3) \\ & 1953(2) \end{aligned}$	$\begin{aligned} & 1949(4) \\ & 1953(3) \end{aligned}$
$\begin{array}{ll} \text { Trough } \\ \text { Peak } \end{array}$	2nd cycle	$\begin{aligned} & 1954(2) \\ & 1957(2) \end{aligned}$	$\begin{aligned} & 1954(3) \\ & 1957(3) \end{aligned}$
$\begin{aligned} & \text { Trough } \\ & \text { Peak } \end{aligned}$	3 rd cycle	$\begin{aligned} & 1958(2) \\ & 1960(1) \end{aligned}$	$\begin{aligned} & 1958(2) \\ & 1960(2) \end{aligned}$
$\begin{aligned} & \text { Trough) } \\ & \text { Peak } \end{aligned}$	4th cycle	$\begin{aligned} & 1961(1) \\ & 1966(1) \end{aligned}$	$\begin{aligned} & 1961(1) \\ & 1966(3) \end{aligned}$
$\begin{aligned} & \text { Trough } \\ & \text { Peak } \end{aligned}$	5 th cycle	$\begin{aligned} & 1967(4) \\ & 1969(1) \end{aligned}$	$\begin{aligned} & 1967(2) \\ & 1969(4) \end{aligned}$
Trough		1970(4)	1970(4)
		Canada	U.S.A. ${ }^{3}$
Housing-Starts Cycles			
$\begin{aligned} & \text { Trough) } \\ & \text { Peak } \end{aligned}$	1 st cycle	$\begin{aligned} & 1951(4) \\ & 1955(3) \end{aligned}$	$\begin{aligned} & 1951(3) \\ & 1955(2) \end{aligned}$
$\begin{aligned} & \text { Trough } \\ & \text { Peak } \end{aligned} \text {) }$	2nd cycle	$\begin{aligned} & 1957(1) \\ & 1958(2) \end{aligned}$	$\begin{aligned} & 1957(1) \\ & 1959(1) \end{aligned}$
$\begin{aligned} & \text { Trough } \\ & \text { Peak } \end{aligned}$	3rd cycle	$\begin{aligned} & 1960(1) \\ & 1964(4) \end{aligned}$	$\begin{aligned} & 1960(4) \\ & 1965(4) \end{aligned}$
$\begin{aligned} & \text { Trough) } \\ & \text { Peak } \end{aligned}$	4th cycle	$\begin{aligned} & 1967(1) \\ & 1969(1) \end{aligned}$	$\begin{aligned} & 1966(4) \\ & 1969(1) \end{aligned}$
Trough		1970(2)	1970(1)

Table 1-2
Duration: Busines; and Housing-Starts Cycles, Canada, 1949-1970

Expansion	$\frac{\text { Contraction }}{}$	Duration (Quarters)	
		Expansion	Contraction
1949(4)-1953(2)	1953(2) - 1954(2)	11	4
1954(2) - 1957(2)	1957(2) - 1958(2)	12	4
$1958(2)-1960(1)$	1960(1) - 1961(1)	7	4
1961(1) -- 1966(1)	1966(1)-1967(4)	20	7
1967(4) - 1969(1)	1969(1) ---1970(4)	5	7
Average		11.0	5.2
Housing-Starts Cycle Date		Duration (Quarters)	
Expansion	Contraction	Expansion	Contraction
1951(4)-1955(3)	1955(3) - 1957(1)	15	6
1957(1) - 1958(2)	1958(2) - 1960(1)	5	7
1960(1) - 1964(4)	1964(4)-1967(1)	19	9
1967(1) - 1969(1)	1969(1) - 1970(2)	8	5
Average		11.8	6.7

AFFENDIX B

ANALYSIS OF RELATIONSHIFS BETWEEN MOFTGAGE AFPFOVALS AND FOSSIELE INDICATORS

Frepared by:
TEEGA Fesearch Consultants 85 Sparks St. S Suite 214 Ottawag Ontario Kif 5A7

Tel. (618) 202-05s1

1. DISCUSSIGN_OF THE ANALYSIS

A. InTRODUCTION

This technical appendix presents an analysis of relationships between mortgage approvals and a number of possible explanatory variables (indicators). The analysis focusses on data at the national, provincial, and local levels. Frovincial data analysed are for Ontario and British Columbia. Local data are for Toronto, London, and Vancouver. It should be emphasized that the analysis is explorative and very preliminary. Much work remains to be done to arrive at solid conclusions about reliable indicators for mortgage approvals, particularly at the local level. (1) The reader is referred to the cautionary notes in Section F below.

E. METHOD

The statistical method used to relate mortgage approvals to a set of possible indicators is multiple regression. Specifically stepwise multiple regression is used. Stepwise regression is a form of multiple regression that enables the analyst to add one variable at a time to the "best fit" regression equation. If there are "n" potential independent variables and we know that all "n" variables will be in the best fit equationg then we would not want to use a stepwise regression procedure. However, often the problem is to determine which of the independent variables is statistically significant and should be included in the equation. This can be complicated by the fact that some of the independent variables may be highly correlated (that is, not independent): (2) One possible approach is to investi-
(1) TEEGA Fesearch Consultants was asked to prepare this technical appendix over 10 working days. The terms of TEEGA"s contract, therefore, precluded a more rigorous treatment of the issues.
(2) The computer program used, for relating mortgage approvals to a number of explanatory variables. automatically checks for independence.
gate all possible combinetions of a set of independent variables. This approach rapidly becomes computationally umattractive because of the many combinations of variables involved. The stepwise regression procedure is an answer to this problem.

Using a stepwise regression procedures variables are added in the order which makes the greatest improvement in the goodness of fit (reduction of the variance). In an early stage, a variable may enter the regression equation! however: as other variables are addeds the initial variable may be removed from the equation if its contribution is indicated to be insignificent. Consequently, the final regression equation will only include statistically Gignificant variablesu

C. EQUATION EOFWS TESTEO

The problem of determining which indicators best explain the pattern of homeownership mortgage approvals is partly a problem of identifying the appropriate mathematical form of the equation which relates indicstors to approvels. However, in the present state of the art, it is not possible to accurately specify the equation form ariori. It is therefore advisable to try out different forms. especially those obtainable by logarithmic transformations of one or more of the variables. The following foum forms of the regression equation were used in the analysis:

made to base e (i.e. maturel logarithms) : It should be noted that for the various applitations at the mational. provincials and local levels, no one mathemetical form consistently gives the best fit to the respective data observations. More empirical and conceptual work is needed to identify the correct underlying theoretical framework which best captures the relationships between homeownership mortgage approvals and the variety of possible indicators. Other equation forms which could be tested are of the polynomial variety. Also, simultaneous equation models could be explored to the extent that data permit.

D. SEGMENTATION OF THE DATA

Data included in the analysis were compiled for the period from the first quarter of 1968 to the fourth quarter of 1982. (1) This involves oo observetions and spans ecomomically stable as well as volatile times. To begin with regression estimations were made for this 1768-1982 period, Taking into account recessionary periods; varjous peaks and troughs in the leading economic indicators of the country: and the trends in mortgage approvals over the years it was decided that it would also be useful to explore the influence of specific sub-periods of 1968-1982 on the performance of the regression equations.

Three sub-periods were identified for separete regression estimations. These are as followsü

(a)	1968	quarter	1	to 1975	quarter	1
(b)	1975	quarter 2	to	1979	quarter	3
(c)	1979	quarter	4 to	1982	quarter	4

A fourth period combining (a) and (b) (i.e., 1968 quarter 1 to 1979 quarter 3) was also used in the estimation of the regression equations. (2)

[^3]
E. INTTIAL EXELOGATIUE FEGEESSIDNS

Initially a number of variables were identified as potentially appropriate indicators of patterns in mortgage epprovels.(1) These variables included the following:

CFSHELTR	$=$	shelter component of consumer price index
CHOCSHNG	$=$	cheques ceshed (value) in clearing centres
CONVSYF	$=$	conventional 5 year mortgage rate
DIFEYFCB	=	differential between 5 year conventional mortgage rate and 5 year government of Canada bond yield
EHFLINDX	$=$	employment index - industrial composite
UNEMFFT	$=$	unemployment rate
HLPWINDX	=-	help wanted index
FCAFEALS	:	passenger car seles
LONEINDX	$=$	leading indicator index - filtered
HSTAFTS	$=$	housing starts
ELDNGFFM	$=$	building permits
FITFADE	$=$	retail trade
FCOSTNDX	$=$	residential cost indes
AVSALFF	$=$	average sale price of properties as reported by ML. s anmual reports
SALTOLIS SAVINGS		sale to listing ratios of MLs properties personal savings

A series of stepwise regressions were trieds using various combinations of 1 ags and inclusions/exclusions of variables. In additions various time period segmentations of the data and mathematicel forms (as indicated in Sections C and D) were tested. These initial explorative regressions were done for the national and provincial (Ontario and Eritish Columbia) data. (2)

The conclusion of these initial regressions is that the variables of the above listeds which yield the most meaningful and stetistically significent results are as follows:

CONVEYR	$=$	conventional 5 year mortgage rate
AVSALFF:	$=$	average sale price of properties as reported by MLS annual reports
SALTOLIS	$=$	sele to listing ratios of MLs properties
SAVINGS	$=$	personal savings
CFSHELTF	$=$	shel ter component of consumer price index
CHOCSHNG	$=$	cheques mashed (value) in clearing centress
EMFLINDX	$=$	employment index -- imdustrial composite
UNEMFFT	$=$	unemployment pete

(1) See text in main report for a review of the literature on this subject.
(2) See text in main report for a discussion on the results of the initial regressions.

Fesults of the final stepwise regressions, which include these variables. are presented in Fart III of this Appendix.

F. CAUTIONAEY NOTES

The regressions for the national and provincial data are encouraging, particularly for the 1968-1979 category of estimations. However, different sets of variables appear in the best fit final results of the stepwise procedure utilized in the various categories presented in fart III. This makes it difficult to rank the indicators in terms of relative importance.

The influence of the different quarterly periods on the performance of the regression equations is significant, particularly the more volatile time of $1980-1982$ for which separate regression runs show consistently low coefficients of determination. This suggests that other explanatory variables, equation forms, and/or model structures are needed to more fully explain the patterns of homeownership mortgage approvals.

The results of regressions using local data (Toronton London, and Vancouver) are less reliable than the results of the national and provincial regressions: The dependent variable in the local data regressions is a derived variable. Total mortgage approvals (i.e. NHA plus conventional) is not available at the local level. Therefore, this variable was estimated using the ratio of local MLs sales to provincial MLS sales. Thie ratio was multiplied by provincial total mortgage approvals to derive local approvalsa(1) While this resulted in approval estimates which appear intuitively corrects there was no readily available empirical way of checking the accuracy of the estimates. This is a serious deficiency which confounds the interpretation of the regression results at the local level.
(1) The ratio of local NHA approvals to provincial NHA approvals was also used, but this resulted in clearly unrealistic estimates of totel local approvals.
A. INDEPENDENT VARTABLES

FOR CANADA

CONVEYR	$=$	conventional 5 year mortgage rate
AVSALEFFI	$=$	average sale price of properties as
		reported by MLs anmual reports
SALTOLIS	$=$	sale to listing ratios of MLs properties
GAVINGS	$=$	personal savings
CFSHELTF	$=$	shelter component of consumer price index
CHOCSHNG	$=$	cheques meshed (value) in clearing centres
EMFLINDX	=	employment index - industrial composite
UNEMFFTT	$=$	unemployment rate

FOF ONTAFIG AND ERITISH COLUMEIA

CONVSYF:	$=$	conventional 5 year mortgage rate
AVSALEFF	$=$	average sale price of properties as
		reported by Plls annual. reports
GALTOLTS	$=$	sele to listing retios of MLs properties
CHOCSHNG	$=$	cheques cashed (value) in clearing centres
EMFIL INDX	$=$	mmployment incex - industriad composite
UNEMPFT	$=$	unemployment rate

EOR TORONTO, LONDON AND VGNCOUVEE

CONVSYF	$=$	Eonventional 5 year mortgage rete
AVSALEFF		average sale price of properties as
		reportect by Mls annuel reports
SALTOLIS	$=$	sale to listing ratios of MLs propertie
EMFLINDX	=	employment index - industrial composite

E. DEEENDENT VAEIASLE

```
APPROVLS = mortgage approvals (NHA plus conventional)
```

II. STEEWISE REGEESSION EESULTS
A. CANADA

Independent variables included in stepwise regressions:

AVSALEFR CHECSHNG
SALTOLIS CONVSYF
SAVINGS EMFLINDX
CPSHELTR UNEMFRT

1. CANADA: 1968 quarter 2 to 1982 quarter 4
a. Best fit linear model:

$$
\begin{aligned}
\text { APFROVLS }= & -107836+476.208 B \text { SALTOLIS }+.88,7705 \text { SAVINGS-1 } \\
& -7221.981 \text { CONVSYR }+1269.355 \text { EMFLINDX } \\
& +4210.812 \text { UNEMFRT } \\
\mathrm{R}-\mathrm{SQ}=.88 \quad & \overline{\mathrm{R}}-\mathrm{SO}=.87 \quad \mathrm{DW}=1.60
\end{aligned}
$$

b. Best fit semi-1ogarithmic model:

$$
\begin{aligned}
& \text { APPROVLS }=-60090.4+15066.05 \text { SAVINGS }-18221.92 \text { CHOCSHNG } \\
& \\
& \mathrm{R}-\mathrm{SQ}=.12469 .7 \mathrm{CONVSYR} \\
& .87 \quad \overline{\mathrm{R}}-50=.86 \quad \mathrm{DW}=1.66
\end{aligned}
$$

C. Eest fit double-logarithmic model:

APPROVLS $=2.732062+.7553913$ AVSALEFR +.5315879 SALTOLIS $\therefore+.285020 \mathrm{~S}$ SAVINGS -2.200121 CONVEYR +.3445498 UNEMFRT
$\mathrm{R}-\mathrm{SQ}=.87 \quad \overline{\mathrm{~F}}-\mathrm{SQ}=.86 \quad \mathrm{DW}=1.7 \mathrm{~B}$
cl. Best fit inverse semi-logarithmic model:

APPROVLS $=5.102762+1.838604 E-02$ SALTOLIS - 13371 CONVSYR $+3.755845 E-02$ EMFLINDX +.1594749 UNEIMFRT
$\mathrm{F}-\mathrm{SO}=.87 \quad \overline{\mathrm{~F}}-\mathrm{SO}=.86 \quad \mathrm{DW}=1.79$
2. CANADA: 1968 quarter 2 to 1975 quarter 1
a. Eest fit linear model:

```
AFFFOULS = - 87962.51 +979.3124 CFSHELTF +10S6.702 EMFLINDX
                        +436.66日7 SALTOLIS -- 802E.925 CONVEYF
F-5Q=.9E FO-SQ= .92 DW=2.04
```

b. Eest fit semi-logarithmic model:

```
    APFFOULS = -72B62O.2 +4S642.78 CFSHELTFR + 140085.5 EMFLINDX
        + 21040.41 GALTOLIS - 73107.41 CONV5YF
```

 \(\mathrm{F}-50={ }_{.93} \quad \overline{\mathrm{~F}}-\mathrm{SQ}=.92 \quad \mathrm{DW}=2.01\)
 E. Best fit coublewlogarithmic model:

```
    APFFOVLS = - - - 1.2S86 + 2.51484 CFSHELTF + . %42331日 SALTOLIS
```

 \(\mathrm{F}-5 \mathrm{C}=.89 \quad \overline{\mathrm{~F}}-50=.8 \mathrm{D} \quad \mathrm{DW}=2.13\)
 d. Best fit inverse semi-logarithmic model:
 AFFROVLS \(=8.60835 B+5.509306 E-02\) CFSHELTR
 \(+1.669696 E-02\) SALTOLIS - . 1611812 CONVSYR
 \(\mathrm{F}-50=.89\)
 \(\overline{\mathrm{F}}-50=.87\)
 DW \(=2.14\)
 3. CANADA: 1975 quarter 2 to 1979 quarter 3
a. Eest fit linear model: AFPROVLS $=107332.7+2.919324 E-02$ CHOCSHNG - 6214.276 CONVSYR $\mathrm{F}-\mathrm{SO}=.80 \quad \overline{\mathrm{~F}}-\mathrm{SQ}=.77 \quad \mathrm{DW}=1.91$
b. Best fit semi-logarithmic model: APPROVLS $=-79219.53+21705.28$ CHOCSHNG -63908.31 CONUSYR $\mathrm{F}-\mathrm{SO}=.78 \quad \overline{\mathrm{R}}-5 \mathrm{CQ}=.75 \quad \mathrm{DW}=1.79$
C. Best fit double-logarithmic model: AFPROVLS $=8.820151+.369502$ CHQCSHNG - 1.169192 CONVEYF $\mathrm{R}-50=.78 \quad \overline{\mathrm{~F}}-\mathrm{SQ}=.75 \quad \mathrm{DW}=1.74$
d. Best fit inverse semi-logarithmic model: AFFROVLS $=11.88235+4.979731 E-07$ CHOCSHNG - 1131909 CONVSYR $\mathrm{F}-\mathrm{GQ}=.80 \quad \overline{\mathrm{~F}}-\mathrm{SO}=.78 \quad \mathrm{DW}=1.86$
4. CANADA: 1977 quarter 4 to 1982 quarter 4
a. Eest fit linear model:

AFFFOULS $=100806.6+4.1949 \leq 9 E-02$ CHOCSHNG -7744.395 CONVEYF

```
F-SQ = .75 F}-50=.71 DW = 2.40
```

D. Best fit Eemi-1ogarithmic model:

AFFROVLS $=-554080.5+68047.28$ CHOCSHNG - -13492 CONVEYF $\mathrm{F}-\mathrm{SQ}=.76 \quad \overline{\mathrm{~F}}-\mathrm{SQ}=.72 \quad \mathrm{DW}=2.3 \mathrm{~B}$
c. Best fit double-logarithmic model:

```
APFFOULS = -.856510! + 1.446759 - S. $7701 CONVSYR
    F-50=.77 F
```

d. Eest fit inverse semi-logarithmic model:
AFFROVLS $=12.2685+8.836222 E-07$ CHOCSHNG-. 1914976 CONVSYF
$F-S O=.76 \quad \bar{F}-S Q=.72 \quad D W=2.48$
5. CANADA: 1968 quarter 2 to 1979 quarter 3
a. Best fit linear model:

$$
\begin{aligned}
\text { AFFROVLS }= & -86020.28+1978.359 \text { CFSHELTR }-4.667221 E-02 \text { CHQCSHNG } \\
& +890.0288 \text { SALTOLIS }
\end{aligned}
$$

$$
\mathrm{F}-50=.93 \quad \bar{R}-50=.92 \quad D W=1.8 \mathrm{~J}
$$

b. Best fit semi-logarithmic model:

$$
\begin{aligned}
\text { AFFROVLS }= & -375568.6+17134.52 \text { CHQCSHNG }+28155.58 \text { AVSALEFFR } \\
& +20506.67 \text { SALTOLIS }-73256.28 \text { CONVSYR }
\end{aligned}
$$

$$
\mathrm{F}-50=.95 \quad \overline{\mathrm{R}}-50=.94 \quad \mathrm{DW}=1.60
$$

ᄃ. Best fit double-logarithmic model:

$$
\begin{aligned}
\text { AFPROULS }= & -20.93198+6.416321 \text { EMPLTNDX }+.657263 \text { UNEMFRT } \\
& +.6908775 \text { SALTOLIS }-1.604602 \text { CONVSYR } \\
\mathrm{F}-\mathrm{SQ}=.73 \quad & \overline{\mathrm{~F}}-50=.92 \quad \mathrm{DW}=1.79
\end{aligned}
$$

d. Best fit inverse semi-logarithmic model:

$$
\begin{aligned}
\text { AFFROVLS }= & 4.491533+4.395143 E-02 \text { EMFLINDX }+.1158674 \text { UNEMFRT } \\
& +1.794885 E-02 \text { SALTOLIS }-1304777 \text { CONVSYR }
\end{aligned}
$$

$$
\mathrm{F}-\mathrm{SQ}=.92 \quad \overline{\mathrm{~F}}-\mathrm{SQ}=.71 \quad \mathrm{DW}=1.71
$$

E. DNTAEIO

Independent variables included in the stepwise regressions:

AUSALEFFR
SALTOLIS
CHDCEHNG

CONVEYF: EMFLTNDX UNEEMFRT

1. ONTARIO: 1968 quarter 1 to 1982 quarter 4
a. Best fit linear model:
```
AFFROVLS = -764.9324 - 2269.866 CONVSYR + 2618.744 UNEMFRT
                        +.6109674 AVSALEPR + 282.2294 SALTOLIS
                        - 1.576967E-O2 CHOCSHNG
```

$\mathrm{F}-\mathrm{SQ}=.88 \quad \mathrm{~F}-\mathrm{EQ}=.80 \quad \mathrm{DW}=1.51$
b. Best fit semi-logarithmic model:

```
APFFOVLS = -188660.2 - 366ES.66 CONVSYF + 13SO1.37 UNEMFRT
                        + 28882.38 AVSALFR + 8444.3S5 SALTOLIS
                        - 5OSO.819 CHQCEHNG
```

```
F-5Q =.88 产-50 =.87 DW = 1.34
```

c. Eest fit double-logarithmic model:

```
AFFFOVLS = -1.11299 - 1.859121 CONVEYF + .7035258 UNEMFRT
    + 1.42034 AVSALEPR + .54858 SALTOLTS
    - .22773OS CHOCSHNG
    F-SQ = . 89 F-S0 = . 87 DW = 1.55
```

d. Best fit inverse semi-logarithmic model:

$$
\begin{aligned}
\text { APFROVLS }= & 8.591893-1107673 \text { CONVEYR }+.136323 \text { UNEMPRT } \\
& +3.153866 E-05 \text { AVSALEFR }+1.701752 E-02 \text { SALTOLIS } \\
& -8.4822 S E-07 \text { CHOCSHNG } \\
\mathrm{F}-5 Q=.87 \quad & \mathrm{R}-50=.86 \quad \mathrm{DW}=1.66
\end{aligned}
$$

2. ONTAFIO: 1968 quarter 1 to 1975 quarter 1
an Best fit linear model:
D. Best fit semi-logarithmic model:

$$
\begin{aligned}
& \text { AFFROVLS }=-356749.6-57250.5 B \text { CONVFYF }+83867.97 \text { EMFLINDX } \\
& +7442.731 \text { CHOCSHNG } \\
& F-5 Q=.91 \quad \bar{F}-50=.90 \quad D W=1.65
\end{aligned}
$$

v. Best fit double-l ogarithmic model.:

$$
\begin{aligned}
\text { AFPFOULS }= & -19.66352-3.35795 \text { CONVSYR }+.5012216 \text { UNEMFRT } \\
& +7.391169 \text { EMFLINDX }
\end{aligned}
$$

$$
\mathrm{F}-5 \mathrm{CQ}=.93 \quad \overline{\mathrm{~F}}-50=.92 \quad \mathrm{DW}=2 n 02
$$

d. Best fit inverse semi-logarithmic model:

$$
\begin{aligned}
& \text { AFFFOULS }=\begin{array}{c}
5.064504-.8 \mathrm{E}-547 \text { CONVSYF }+.1181159 \text { UNEMFFT } \\
\\
+5.496291 E-02 \text { EMPLINDX } \\
\mathrm{F}-\mathrm{SQ}=.93 \quad \bar{F}-50=.92 \quad \mathrm{DW}=1.99
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { APFFOVLS }=-64507.43-489 E .925 \text { CONVSYF }+1744.29 \text { UNEMFFT } \\
& \text { + 815.8916 EMFLINDX + 14".845 SALTOLIS } \\
& \mathrm{F}-\mathrm{SQ}=.94 \quad \mathrm{~F}-5 \mathrm{~F}=.73 \quad \mathrm{DW}=1.72
\end{aligned}
$$

3n ONTAFIO: 1975 quarter 2 to 1979 quarter 3
a. Best fit linear model:

```
AFFFOVLS = 72841.2 - 3902.714 CONVEYF
```

$$
F-90=.57 \quad F-50=.54 \quad D W=1.42
$$

b. Best fit semi-l ogarithmic model: AFFFONLS $=155294.3-4314854$ CONVEYF

$$
F-5 Q=.57 \quad \mathrm{~F}-5 Q=.54 \quad \mathrm{DW}=1.42
$$

c. Best fit double-1ogarithmic model: $A F P R O V L S=12.87 S 19-1.491189$ CONVSYFi $F-5 Q=56 \quad \bar{F}-5 Q=.53 \quad$ DW $=1.46$
d. Best fit inverse semi-logarithmic model: AFPFDVLS $=11.78496-.1350027$ CONV5YF

```
F-SO=.57 F
```

4. ONTAFTO: 1979 quarter 4 to 1982 quarter 4
an Eest fit I inear model:
```
    AFPFOVLS = 55O92.04 - 275S.064 CONVEYF + 2.65919SE-G2 CHOCSHNG
    R-SQ=.72 F
```

b. Eest fit semi-logarithmic model:

AFFFOULS $=-222860.7-4811 \mathrm{Z} .28$ CONVSYF +27070.37 CHOCSHNG $\mathrm{F}-50=.70 \quad \mathrm{~F}-\mathrm{SO}=.64 \quad \mathrm{DW}=2.42$
c: Eest fit double-logamithmic model: AFFFOVLS $=-2.2870068-2.593662$ CONV5YF +1.244704 CHOCSHNE $\mathrm{F}-50=.67 \quad \overline{\mathrm{R}}-50=.60 \quad \mathrm{DW}=2.53$
du Eest fit inverse semi-logarithmic mocielu AFFFOVLS $=10.89575-.1492629$ CONVSYF $+1.209496 E-06$ EHOCSHNG $\mathrm{F}-50=.68 \quad \mathrm{~F}-50=.61 \quad \mathrm{DW}=2.58$
5. ONTAFIO: 1968 quarter 1. to 1979 quarter 3
a. Eest fit linear model:

```
AFFROVLS = 2295.464 - 2667.1O1 CONVSYF + 249S.766 UNEMFRT
    + .62532S1 AVSALEFF + 270.549 5ALTOLIS
    -- 1.2SE186E-O2 CHOCSHNG
F-SQ=.93 F
```

b. Eest fit semi-logarithmic model:

```
AFFFOULS = - 179774.2 - 52755.19 CONV5YF + 987% 956 LNEMFFT
    + 21920.11 AVSALEPF + 8485.289 SALTOLIS
F-50=.92 仅-50 =.91 DW = = 1.03
```

E. Eest fit doublewlogarithmic model:

```
AFPROVLS = - .6506206 - 1.40970S CONV5YF + .6072976 UNEMFFT
    + 1.024SS AVSALEFF + .56SSB1S SALTDLTS
```

$\mathrm{F}-50=.92 \quad \overline{\mathrm{~F}}-50=.91 \quad \mathrm{DW}=1.2 \mathrm{~S}$
d. Best fit inverse semi-1ogarithmic model:
APFROVLS $=3.851114-.102735$ CONVSYF +.1965006 UNEMFFT
+ "O408448 EMFLINDX + 1. $421866 E-02$ SALTOLIS
- 9.047411E-G7 CHQCSHNG

```
    F-SQ=.5%
    F-SO = . 72
    DW=1.38
```


C. EFITISH COLUMEIA

Independent variables included in the stepwise regressions:

AVSALEFR	CONVSYF
SALTOLIS	EMFLINDX
CHOCSHNG	UNEMFRT

1. E.C.: 1968. quarter 1 to 1982 quarter 4
a. Best fit linear model.:
```
AFFROULS = -105O2.44-920.5171 CONV5YF + 810.1124 UNEMFFT
    + 80.80Z25 ENFLINOX + .151272Z AVSALEFF
    + 12Q.842? SALTOLIS - 5.5O4224E-O2 CHOCSHNG
    F-S0=.86 F
```

b. Best fit semi-logarithmic model:

```
AFFROVLS = - 6S485.64 - 11044.01 CONVSYF + S803.712 UNEMFFT
                        +671B.262 AVSALEFF + 52%1.E21 SALTOLTS
```

$\mathrm{F}-5 \mathrm{E}=.82 \quad \overline{\mathrm{~F}}-5 \mathrm{~S}=. \mathrm{BI} \quad \mathrm{DW}=1.65$
e. Eest fit double-1ogarithmic model:

```
AFFROVLS = - 6.977854 - 1.662066 CONVSYF + .7646068 UNEIFFFT
    + 1.924364 EMFLINDX + .579176 AVSALEFR
    + .6636848 SALTOLIS
F-SQ =. . F5 F
```

d. Best fit inverse semi-1 ogarithmic model:

$$
\begin{aligned}
& \text { AFFRDVLS }=5.217436-1168721 \text { CONVEYF }+.1326758 \text { UNEMFFT } \\
& +1.756135 E-02 \text { EMFLINDX + 2.180756E-O5 AVGALEFF } \\
& +1.7 \Xi 8625 E-02 \text { SALTOLIS - } 1.21494 .5 \mathrm{E}-05 \mathrm{CHOCSH} G \\
& F-S Q=.8 B \quad \quad F-S 0=.80 \quad D W=1.95
\end{aligned}
$$

2. E.C.: 1968 quarter 1 to 1975 quarter 1
a. Best fit limear model:
```
AFFROULS \(=8287.865-1114.856\) CONU5YF +371.4768 UNEMFRT
    \(+11 \Xi 2192\) EVFLINDX + 24.57079 SALTOLTS
    +.1409909 CHOCHSNG
\(\mathrm{F}-5 \mathrm{Q}=.94 \quad \overline{\mathrm{~F}}-50=.92 \quad \mathrm{DW}=1.99\)
```

D. Best fit semi-logarithmic: model*

```
AFFROVLS = - 9048S.4B - 9617.464 CONV5YF + 2047.441 UNEIVFRT
    + 13OOG.S EMFLINDX + 3619.17 SALTOLIS
    + 3712.968 CHOCSHNG
Fi-50=.93 F
```

c. Best fit double-logarithmic model:

```
AFFFOVLS = - 7.954118 - 3.04178S CONVSYF + .38S1O4B UNEVFFT
    + 3.215461 EMFLINDX + .690Z426 CHDCSHNG
    F-5Q =. .92 F
```

d. Eest fit inverse semi-logarithmic model:

```
AFFFDVLS = 6.46407% - . 372575 CONV5YF + 7.3世852SE-G% UNEMFFT
    + 2.99409SE-O2 EMFLINDX + 2.OS482E-OF CHOCSHNG
    F-90=.92 F-50=.90
    DW =2.17
```

3. B.C.: 1979 quarter 4 to 1982 quarter 4
a. Best fit linear model:

AFFFOVLS $=30793.13-2052.708$ CONVSYF +.1027277 CHOCSHNG

$$
\mathrm{F}-\mathrm{SQ}=.75 \quad \overline{\mathrm{~F}}-\mathrm{SQ}=.70 \quad \mathrm{DW}=1.72
$$

b. Eest fit semi-logarithmic model:

AFPROVLS $=-38924.27-36216.26$ CONVEYF +12795.01 CHOCSHNG $\mathrm{F}-\mathrm{SO}=.77 \quad \overline{\mathrm{~F}}-\mathrm{SQ}=.73 \quad \mathrm{DW}=1.70$
c. Best fit double-logarithmic model:

$$
\begin{aligned}
\text { AFFFOVLS }= & -.8512677-5.38457 B \text { CONVSYR }+.5494155 \text { UNEMPRT } \\
& +2.076077 \text { AVSALEFR }
\end{aligned}
$$

$\mathrm{F}-\mathrm{SO}=.8 \mathrm{~EB} \quad \overline{\mathrm{~F}}-\mathrm{Se}=.83 \quad \mathrm{DW}=2.35$
d. Eest fit inverse semi-logarithmic model:

```
    APFFOVLS = 15.20638-.2942512 CONVEYR - 1.840047E-02 EMFLTNDX
``` \(+2.15565 S E-O 5\) AVSALEFF
\(\mathrm{F}-\mathrm{SO}=.87 \quad \overline{\mathrm{R}}-\mathrm{SO}=.83 \quad \mathrm{DW}=2.29\)
4. B.E:" 1.968 quarter 1 to 1979 quarter \(\%\)
a. Best fit linear model:
```

AFFRONLS = - 24287.12 + 569.5056 UNEMFFT + 1.46.9686 EMFLJNDX
+ 121.8644 5ALTOLIS
F-SQ:=.88 F

```
D. Eest fit semi-1ogarithmic model:
```

AFFROVLS = - 134501.8 + 3562.206 UNEIFRT + 2\Xi256.9S EMFLINDX
+4811.968 SALTOLIS

```
 \(\mathrm{F}-\mathrm{SO}=.88 \quad \overline{\mathrm{~F}}-\mathrm{SO}=.87 \quad \mathrm{DW}=1.57\)
E. Best fit double-1ogarithmic model:
```

AFFROULS = - 1S.204 - . 67995SI CONVSYFi + .744781 UNEIFFT
+ %.900858 EMFLINDX + .6807E7 GALTOLIS

```
 \(F-5 Q=.90 \quad \bar{F}-5 Q=.89 \quad D W=1.74\)
d. Eest fit inverse semi-logarithmic model:
```

AFFROVLS = 2.77952 + .1165474 UNEMFFT + 2.213168E-O2 EMFLINDX
+ 1.92445EE-O2 SALTOLIS
F-SQ=.89 隹-SQ = . 88 DW = 1.68

```

\section*{D. TOEONTQ}

Independent variables included in stepwise regressions:
AVSALEPR
GALTOLIS EMFLINDX CONVEYR
1. TOFONTO: 1968 quarter 1 to 1979 quarter 3
a. Best fit linear model:
```

    APFROVLS = 17117.34 - 1783.384 CONVSYF + .2310375 AVSALEPR
    R-SQ =.75 何-50 =.74 }\quad\textrm{DW}=.6
    ```
b. Best fit semi-logarithmic model:

APFROVLS \(=-63156.48-19743.36\) CONVEYF +11098.72 AVSALEFR
\(\mathrm{F}-\mathrm{SO}=.81 \quad \overline{\mathrm{R}}-\mathrm{SQ}=.80 \quad \mathrm{DW}=.87\)
c. Best fit double-logarithmic model:
```

    APPROVLS = - 4.181641 - 2.063166 CONVSYR + 1.558482 AVSALEFF
        +.3695285 SALTOLIS
    F-SQ =.82 F
    ```
dn Best fit inverse semj- -logarithmic model:
APPROVLS \(=9.997686-.1961161\) CONVSYR \(+2.610834 E-05\) AVSALEFR
\(\mathrm{F}-\mathrm{SQ}=.73 \quad \mathrm{~F}-\mathrm{SQ}=.72 \quad \mathrm{DW}=.60\)
2. TORONTO: 1968 quarter 1 to 1982 quarter 4
a. Best fit linear model:
```

APPROULS = - 3812.822 - 1445.106 CONV5YR + 8.26450EE-O2 AVGALEFR
+ 166.0852 EMFLINDX
R-50 =.6B 隹-50 = .67 DW = = .73

```
b. Best fit semi-logarithmic model:
```

APFROVLS = - 95891.99 - 18842.43 CONVSYFi + 7257.16 AVSALEPR
+ 14382.55 EMFLINDX
R-SQ =.75 信-SQ =.74 DW = .89

```
c. Best fit double-logarithmic model:
```

    APFROVLS = - 4.109993 - 2.226666 CONVSYR + . 7739391 AVSALEFR
    + 2.029995 EMFLINDX
    ```
 \(\mathrm{F}-\mathrm{SQ}=.75 \quad \overline{\mathrm{~F}}-\mathrm{SQ}=.74 \quad \mathrm{DW}=.75\)
d. Best fit inverse semi-logarithmic model:
```

    AFPROULS = 7.385266 - .1699499 CONVSVR + 8.783693E-O6 AVSALEFF
    + 2.082808E-O2 EMPLINDX
    F-S0=.70 F
    ```

\section*{E. LONDON}

Independent variables included in stepwise regressionsa
AVSALEPF
SALTOLIS EMFLINDX CONVEYF:
1. LONDON: 1968 quarter 1 to 1979 quarter 3
a. Best fit 1 inear model:
```

    AFFFOVLS = 2192n58S - 2OE. S9S4 CONVGYF + צ.429541E-O2 AVSALEFF
    F-SQ=.76 F
    ```
b. Eest fit semi-1ogarithmic model:
```

    AFFROVLS = - 2021.388 - 2399.049 CONV5YFF + 1004.478 AVSALEFF
                        -401.529 SALTOLIS
    ```

 c. Eest fit doublewlogarithmic model:
 AFFFOULS \(=1.31142-2.029517\) CONVSYF \(+1.0100 E T\) AVSALEFR
 \(\mathrm{F}-50=.75 \quad \overline{\mathrm{~F}}-50=.72 \quad \mathrm{DW}=.74\)
d. Eest fit inverse semi-logarithmic model:
 \(A F F R O V L S=7.846 B 65-.1804222 C Q N V E Y F+2.104862 E-O E\) AVGALEFR
 \(\mathrm{F}-50=.69\)
 \(\overline{\mathrm{F}}-50=.68\)
 \(D W=.60\)
2. LONDON: 1968 quarter 1 to 1982 quarter 4
a. Best fit 1 inear model:

AFFFOVLS \(=325.589-150.3595\) CONVEYF \(+3.63441 E-G 2\) AVSALEFF -1.2 .42054 EMFLTNDX
\(\mathrm{F}-50=.71 \quad \mathrm{~F}-50={ }_{.} 69 \quad \mathrm{OW}={ }^{2} 80\)
D. Eest fit \(\equiv e m i-1\) ogarithmic model:

AFFFOULS \(=2251.775-1977.879\) EONVSYR +1276.009 AVSALEFF - 1975.673 EMFL.INDX
\(\mathrm{F}-50=.77 \quad \mathrm{~F}-5 \mathrm{O}=.75 \quad \mathrm{DW}=1.01\)

Cn Eest fit double-logarithmic model:
```

    AFFROVLS = 7.278786 - 2.041471 CONVSYF + 1.1.97799 AVGALEFF
    - 1.613651 EMFLINDX
        F-SO=.74 F
    ```
d. Best fit inverse semi-logarithmic model:
```

    AFFROVLS = 7.701217 - .1574652 CONVEYR + 2.787529E-OS AVSALEFR
    ```
 \(\mathrm{F}-\mathrm{SQ}=.68 \quad \overline{\mathrm{~F}}-\mathrm{SQ}=.66 \quad \cdot \mathrm{DW}=.79\)

\section*{F. VANCOUVEE}

Independent variables included in stepwise regressions:
AVSALEFF
SALTOLIS EMFLINDX CONVSYF
1. VANCOUVEF: 1968 quarter 1 to 1979 quarter 3
a. Best fit linear model:
```

    AFFROULS = - 2444.5S - S5O.O261 CONVSYF + 31.806OB SALTOLIS
    + 48.46789 EMFLINDX
    R--SO= .60 FF-SQ=.57 DW=1.15
    ```
bn Eest fit semi-1ogarithmic model:

AFFFOVLS \(=-31550.82-3889.392\) CONVSYF +1204.127 SALTOLIS
\(+768 \underset{3}{ }+422\) EMFLINDX
\(F-S Q=.61 \quad \overline{F i}-S Q=.5 B \quad D W=1.18\)
c. Eest fit double-1ogarithmic model:
```

    AFFFOVLS = - 5. BSO422 - 1.522668 CONV5YF + .4053157 SALTOLIS
    + 3.126677 EMFLINDX
    ```
 \(F-50=.60 \quad \bar{F}-50=.58 \quad D W=1.17\)
d. Eest fit inverse semi-logarithmic model:
```

    AFFFOVLS = 5.781579 - , 1.622S8 CONVSYF + 1.0BB476E-O2 SALTOLIS
                                    + 1.97107SE-O2 EMFLINDX
    ```
 \(\mathrm{F}-5 \mathrm{Q}=.59 \quad \overline{\mathrm{~F}}-5 \mathrm{~F}=.56 \quad \mathrm{DW}=1.12\)
2. VANCOUVER: 1968 quarter 1 to 1982 quarter 4
a. Best fit linear model:
```

APFROVLS = 1587.367 + 29.29187 SALTOLIS

```
 \(\mathrm{F}-5 \mathrm{O}=.11 \quad \overline{\mathrm{~F}}-\mathrm{SQ}=.09 \quad \mathrm{DW}=.92\)
b. Best fit semi-logarithmic model:
```

AFFROVLS = - 8152.281 - 3\Sigma17.972 CONV5YR + 1345.904 AVSALEFFR
+1185.794 SALTOLIS
R-50=.38 隹-SQ =.34 DW = 1.08

```
C. Best fit double-logarithmic model:
```

    APFROVLS = 6.353479 - .1031079 CONVSYR + 8.314293E-03 SALTOLIS
    + 1.458354E-02 EMFLINDX
    F-SQ =.39 F
    ```
d. Best fit inverse semi-logarithmic model:
 AFPROULS \(=6.353479-.1031079\) COMV5YF \(+8.314293 E-03\) SALTOLIS
 \(+1.458354 E-02\) EMPLINDX
```

F-5Q =.39
F}-50=.3
DW = .99

```

\section*{APPENDIX C}

Predictive Results of Selected Relationships Between Mortgage Approvals and Possible Indicators

FINAL BGlution
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{FEGFESSTON HUMEF 6} \\
\hline \multicolumn{4}{|c|}{AFFFCNE＝－ A ¢区玉} \\
\hline & \multicolumn{3}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{＋－722l． 9 El Cowvirk} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|c|}{4240.812 UnEMFM} \\
\hline \multicolumn{4}{|l|}{COEFFTCIENT OH DETEFWMATLOM \(\#\) aGEdEE4} \\
\hline STD DE & OF ESTMM & 5550.598 & \\
\hline mTLIML & FFEOLCTED & WIFFEFErCE & \％DTFFFFWCE \\
\hline 1． E J， 0 & 21134.59 & \(-292+688\) & － 12 － 5628 \\
\hline 196 Em & 2522＋1 & \(-449241\) & －\％． 7658 \\
\hline 5 FWO & 29673.9 & 662． 607 & 10.8929 \\
\hline 2－960 & 24858 & －49\％ 6086 & \(-1.97424\) \\
\hline 25640 & 26014 36 & －874． 594 & \\
\hline 21010 & \％¢00． 3 & \(40 \%\)－64\％ 4 & 1． 44989 \\
\hline 21870 & 21098．71 & \(771.29 \%\) & \\
\hline 18010 & 1．4889．1．3 & & 17.29656 \\
\hline 18180 & 18572．9 & －442a9094 & \(-2.442915\) \\
\hline 5 Sc & 2946． 2 & 23． 2848 & ． 9580008 \\
\hline 25210 & 26046.87 & － E ¢ 691 & －3．307672 \\
\hline 1． 460 & 2В22a\％ & －1174267 & \\
\hline 34750 & 371848 & －2565．797 & －6． 8656 \\
\hline 36190 & 591\％．6\％ & 27－1094 & ． 715911 \\
\hline 39690 & 7762． 3 & 1727．676 & 4.852925 \\
\hline 42200 & 8906196 & 凹णE．区欠 & \(7.5919 \%\) \\
\hline 40 EO & \(419 t e n 85\) & \(-1.640 .344\) & \(\cdots 4.984484\) \\
\hline 4040 & 4.4665 & －3725．301 & －7．5679\％6 \\
\hline 4.6900 & 4.6949 .84 & －2947．630 & －4．370652 \\
\hline 5160 & 50408 & 1246， 100 & 24.295 \\
\hline 92960 & E1786． 5 & 119\％．191 & 2.254282 \\
\hline ＂0650 & 4 4 14.9 & 2186， 9 E & 4.295 \\
\hline 51800 & 58181.64 & \(-5961.641\) & －6．506264 \\
\hline 62450 & ¢8б\％－ 4 & 959．76 & 15． 54.6 \\
\hline 47560 & F9154\％ & 7741.3 L & \(1.6 .276 \%\) \\
\hline 5980 & 玉玉ce．\({ }^{5}\) & 1401．272 & 4．129e\％ \\
\hline \(\cdots 120\) & 7754 & \(-68\) & －20 29790 \\
\hline \(44 \% 80\) & \(4 \operatorname{Hax}_{4} 5\) & －－906 ．5¢4 & －2． \(2 \times 79 \% 4\) \\
\hline 56680 & 玉2\％0． 1 & 44474908 & \(7.859 \% 28\) \\
\hline 54990 & 4442.69 & －564， 309 & 10＋11577 \\
\hline 48096 & 47767 y & 162．E®Es & － 212978 \\
\hline \％1E60 & 446 Em 4 & 6761．59 & \(1 \mathrm{Su} \% \times 4\) \\
\hline 4568 & 4463.44 & 1.48 Cb & 2.29659 \\
\hline \(45 \times 80\) & 4 F 4 4 4 & 6414．612 & 7.74204 \\
\hline 56450 & \(4685 \%\) & 7617.242 & 15.8408 \\
\hline 54690 & & 7489， 4 ¢ & \\
\hline 656 & ECSEax & 41789 & 6， 6 6 9 y \\
\hline 9340 & \(6 \times 24\) & ¢\％，\％ E & \\
\hline 6570 & \(6 \mathrm{BE} \times 4\) & 49\％ 96 & 9．73444 \\
\hline －1710 & ¢544，\％ & －1544 92 & \(\cdots \mathrm{EOSE}\) \\
\hline \(59 \% 6\) & \(6 \mathrm{6F} \mathrm{\%}\) ¢6 & －9\％\％096 & －16． A －9\％ \\
\hline ¢4\％00 & \(69 \% 6 \%\) & \(\cdots 49 \%\) ¢4 & \\
\hline 69.30 & 6536.59 & 39\％\％ 613 & 8.76098 \\
\hline 60540 & ¢उЗ2天 6 & －2\％2．6玉2 & － 4 ， 46 ¢ \\
\hline 6 EWO & 666\％4． 5 & \(-1654.82\) & \\
\hline 67490 & 65944 & 1．50，149 & \(\because 2,4 \infty 5\) \\
\hline 4.459 & 50146.12 & \(-5476.117\) & －12，¢ ¢－\％ \\
\hline 43410 & 52eta 0 & & \\
\hline 27260 & 4 mez & －－7\％ 71.5 & \(-6 \mathrm{E} 92 \mathrm{yc}\) \\
\hline 6929 & 59\％9．5\％ & 469.48 & ， \(7 \mathrm{7EE} \mathrm{C}\) \\
\hline 5850 & F14\％\％＂7\％ & 2世27． x & 4.9878 \\
\hline उब1\％ & 47347.3 & －647．307 & \(-4.27115\) \\
\hline पउ¢0 & 170t． 46 & 159\％ 58 & 5． 68422 \\
\hline 2970 & 11447 & E\％a 01 & 4 ycy 7 \\
\hline 2965 & 267e9， & －x9\％． 197 & \(-11.22446\) \\
\hline 446 & 2586.4 & 9590.66 & －7＂647 \\
\hline 21650 & 2768 п 27 & －masease & －2en 8 ESE \\
\hline \(27 \%\) & 区o8e & －756． 27 & \(-6 \mathrm{c}+\mathrm{ta}\) \\
\hline 71.990 & 678\％7．97 & 1392．01 & 18.6184 \\
\hline
\end{tabular}

F－SO ADJUSTED \(=\quad\) ． \(57161626551 \%\)

\section*{CANADA: 1968 Quarter 2 to 1975 Quarter 1}

FTWM, ตolutrom

\section*{FINAL SOLUTMOM}

\section*{CANADA: 1979 Quarter 4 to 1982 Quarter 4}
```

FTNAL.EOLUTTMN
WG%EESTON NUMEEF

```


```

    +--7744, %95 Comverym
    ```

```

ST0 OEvATraN GF ESTMAT = E4E%,=14

```

```

    44500 4047%.2%
    ```


```

    60290 F054%.6e 9740.44 : 16.155%1
    5950 459%1.6% %7%.1巴4 14.47104
    ```



```

    71090
    665E.85
    4%11.071
    0.65504s
    OUFBTM-WTEON = *.%%%:

```


ETD DEV[ATHON DF EETMATE = 289.797
\begin{tabular}{|c|c|c|c|}
\hline rictual & FHETLETES & ט⿵冂䒑HELUE & \\
\hline 1.1494 & 14198．54 & －－26\％．54 & \(-23.4865\) \\
\hline 9921 & 18249.7 & \(\cdots+4 \mathrm{ar}\)－7c\％ & －50．2005 \\
\hline 1.0350 & 13786．72 & \(-848.719\) & －3x 265 \\
\hline 16.979 & 1－196．18 & & 2．011075 \\
\hline 1.71 .0 & 1191．6．49 & \(-2064812\) & －1．763575 \\
\hline 12356 & 13574：42 & \(-1258417\) & －10．62es \\
\hline 1065 & 99.00 .75 & 92\％ 2 c & E． 589791 \\
\hline \(105{ }^{1084}\) & 10009 & 544.979 & 5.5 EE \\
\hline 9991 & 7463.119 & 252． 8 El & \％ \(\mathrm{EOL5E}\) \\
\hline 10813 & 7095．554 & 1217．44e & 11．80497 \\
\hline 1.3691 & 12153.52 & 153． 483 & 11．2298e \\
\hline 1.4693 & 1उक\％，\({ }^{\text {a }}\) & 1290.69 & 8.66424 \\
\hline 14870 & 16125.67 & －1255．-69 & －3．44431． \\
\hline \(1 \mathrm{El00}\) & 167¢4．2e & －604．3145 & －－9670246 \\
\hline 18263 & 17483.65 & \(7 \% 9.3476\) & 4.267858 \\
\hline 18729 & 19807． 13 & －10\％E．125 & －5．7544E \\
\hline 21815 & 1902\％．74 & 2707．253 & 12．776e \\
\hline 20268 & 19631.91 & 889.0879 & \(\cdots 2956\) \\
\hline 19899 & 20417．42\％ & －51E．42 & －200595e \\
\hline 22e0s & \(2 \mathrm{S141}\) & \(-55 \% 941\) & \\
\hline 24772 & 2186e．9s & 29\％\％．97e & i．1． 73088 \\
\hline 26550 & 2e76．68 & 871．119 & 13.62717 \\
\hline 24413 & 22584.5 & 156．484 & 7.489798 \\
\hline 2631e & 265\％\％ 6 & －2\％．6is & －－768965 \\
\hline 31157 & 31060．00 & 106．918 & ，343156e \\
\hline 21863 & \％¢4．96 & 128．62 & \(4.8555 \%\) \\
\hline 17224 & 177\％2．16 & －476．1641 & －2．7e15 \\
\hline 1．4404 & 19619．27 & －541527 & －9． 99.9 \\
\hline 21727 & 25336．1\％ & －3011．183 & －10．62074 \\
\hline 2795 & 2859．74 & \(\cdots 4.94 .744\) & \(-1.7651=\) \\
\hline 2858 & 5हб28．9\％ & 910．\％\％\％ & 1． 9 c C e \\
\hline 28977 & cst4．4e & 20．545 & \(\therefore \operatorname{coses}^{3}\) \\
\hline 25529 & 246\％ 6 & 146\％． 2 a & 570111． \\
\hline 2 c 12 & \(24 \% 4.4\) & －－9\％．4\％ & －12－6etor \\
\hline 25000 & 24440． 3 & 155．198 & 4.96164 \\
\hline \％s5e & E111．7e & \％＋¢．0¢8 & \\
\hline 3611 & \％896，84 & cev．le & 17.3424 \\
\hline अप21 & 3070．5 & 19\％0．504 & \％．7393 \\
\hline उece & 105E 16 & 242.85 & 2． 5 me 4 \\
\hline 22077 & 21800．13 & 176.692 & － \(51 \times \mathrm{c}\) \\
\hline 3092］． & 3065．51 & \(16 \% .492\) & －5499244 \\
\hline \(2745 \%\) & 2759． & －－330．949 & －11．Abec \\
\hline 30371． & 81004．73 & －635．720 & －2．06ste \\
\hline 1554 & \％¢0\％． 7 & 1650.764 & 4.914 .941 \\
\hline ．27415 & 26104．96 & & －2．4784 4 \\
\hline 30593 & 30\％\％．62 & 5 Gm 7 F 9 & 1.76005 \\
\hline 27E1． & 2530．42 & 2504．5e & 9．023．676 \\
\hline 17940 & 21.678 .79 & －－373e．98 & －9．84，64 \\
\hline 16255 & 20091．73 & －3746．729 & －－25．0497 \\
\hline 1125 & 17051.97 & －95\％．76e & －7e．109\％ \\
\hline 21792 & 2\％20．6 & －94， 905 & －4． 4 esate \\
\hline 19875 & 15460．7 & 40 Cag at & 2．65st2 \\
\hline 15185 & 1.7128 .7 & －3930．763 & －2． 956 \\
\hline 1679 & 1.6043 .68 & \％1．425 & 4.474083 \\
\hline 989 & 1640.15 & 7746.85 & 日2．5115 \\
\hline 10843 & 1516.89 & －25．\(-27 \%\) & 2）． Cl \\
\hline 1.4906 & 11451.6 & 3454．378 & 23．174\％ \\
\hline 12410 & \(12 \% 46\) & 1.8 mece & \\
\hline 12006 & 1036\％ 30 & －－4才 ge & \(-30 .+46\) \\
\hline צ2\％ & \％9\％1． 4 & 448374 & 18．\({ }^{\text {a }}\) \\
\hline
\end{tabular}
DURETM WATSON＝．．．1．514F64

FNAM，EOLUTMOM
```

FE日F5कTOM NUMEE%

```

```

    + -4玉क@, क% CMNVGYE
    +1%44n2% UNENFW
    + क15, %916 EMFINHOX
    ```



```

    1.1.494
    G%c1
    10%%
    16%%
    1.1.7.0
    1%世6
    10e%s
    1%%4
    9%%1
    10%\
    1.691
    1.489%
    1.4%%6
    1.610%
    1,0%%
    167%9
    #15y=
    %6E
    195%%
    %%6%
    247%
    2%%
    24%
    2s, 
    311%7
    %"7.%
    17294 176%9.%
    14444 1.e%e.es
    214%%
    -m% 1. 1%%
    GOTVEMEvEE
    *-* - %%4!1
    \cdots-1) - %47%1
    ```


```

    *-1117.1.1 --7.699999
    **".%10%5
    ```


```

        15%%.06% 15,59%%%
    ```

```

        2कघ, %%% 19,0194%
    ```



```

        174% क9% छ.0%19
    ```



```

    *
        4624%%
        1. बकच%1
    44:4.6E
    %% ब, %
    %%,|!
    ```

```

    196%76 &, %%9|8
    11%4.4% % w%70%1
    -74%,919% --7.4.47%
    -कब区.बएक
    **.9.क46
    *क. बक् 1. जबएक%
    1. 168%, % %
    1.06%.1%
    -1.4., 1%
    1%"ぁむ%%
    -7%G, - \
    1% wem, % 4
    1क%% %
    -1117.1%1
    ```

```

        *-%%, %4%
    ```


FIMAL EGIUTMMN
```

FEFESSTON N|MEEF
"EEEESSTON NUMEEE %

```



```

    %%%9 э%%69.%
        289%%
    w"%
    w19
%%0
65%
621
34%
mक9
%%%
ण叩毋
244%
%%%
\5%
2415
%%%
%%1:
%4% . %9%
"ककを, \&

```

```

        #, %%&%
    ```

```

        -10%%4.0-4.17|ब%
        6594,04 -106%%4
                            --%%4%%
    ..1%,9%19%

```

```

        %%11.1%
        *....".
        "Bक世ब,%
        ##%%%5 % % % %%%
        %1%4,%%
        4ே%%% 1. .146
        |тE%% 1.1.14E
        1494.ब्4 4.59कएक%
    ```

```

        #4क,40% \because%5%%%
        444.. 11
        צ4世% 44
    ```

```

        %%%, 10
    -7%44.19% - -5.65%1%%
        *
    -7%44.19% - -5.65%1%%
        "e%%,01
    -94% 094 - % %59%के
    ```

```

        9ल%4.%
        4%\mp@code{%%}
    -m.e1111%
        &,1%4%
    "07! %%
    16%2,%9
    ```

```

    %%%%
    ```



```

*itwemymw
*"t!!uTE
w,
<
*)11, \.%

```

 1

```

        #
    ```



```

        1.74%
    162世
    14%%
    217%%
    19%%
    1%1E%
    1.%%
    9889
    1084%
    14%%
    12410
    1.एक 169क%.79
    ேேक5
        151, ##6%
        1%"%"%
                                1717%%4
                                197%9%1
                                19%e.4%
                                199%%%
                                1 59+e, %%
                                9%4, %44
                                9世世 कण%
                                1%%6.46
    ```

```

                                2%4% %%
    ```

```

                                    #Wx%W%W%
        15.7599%
    ```

```

    *e% 7-44 -6, -4, - 
    ```



```

        Aषш, %-4, %-% 
    ```


```

    -7.4-4%4
                                1%%%%%1
        %%,0%%%
    ```

```

        \%149% \% क्%\9
    ```

```

        *
    ```


FEGEsctun Muvewn

M世TUN
 1149
1924
 \(10 \oiint 0\)
 1669
 1. 1.710
 1. 2 wie
 \(106 \%\)
 1.04
 \(99 \% 1\)
 \(10 \pm 3\)
 1541
 \(1.469 \%\)
 14070
 \(1610 \%\)
 1926
 1979
 \(\because 1814\)
 ゆक区
 1. \(999 \%\)
 ॠめぁ\%
 \(247 \%\)
 玉6世"
 244
 9696
 411\%
 ※1
 17294
 14444
 \(217 \%\)
 \%\% \%
 98\%9
 于e\%77
 ए世\%
 खौ 2"
 ゆक९め
 क世
 世62 1
4\%\%
छक्
于9\%
ふめ\%
世4世
6\% 1
3.wn
27419
ज6\%
 凹\% 1
 FFEDTEF

\#THEFEWCE
 1454.1

 1. कण世

 \(162 \omega 4\)
 1.玉ॠ \(\because\)

 1.601. \(\%\)
 \(\cdots+4.6\)

 ツ\% \% \%

 \(15 \%\)

 … 1.97. \(949 \quad-\quad .9 .6 .49\)
 16067.95
 \(167 \pi \square 17\)
 \(\cdots 7 \omega 176\)
\(\cdots, \quad\) -

 17446.15
 \(\cdots 1115.194\)
 \(19644: 10\)

 2-11.184 11. 1127
 19世\%, \(\%\)
 जण. 5 .
 \(97-964\)
\(\cdots-9 \%\)
 ज \(\%\) कब4
 197\%.16
 … ". \(\quad 1071 \%\)
 世4母』
 209, 7

 区ぃ, 9世1

 22еб " 7
 \(10,129 世\)
124047
 "以
 于ே. 49
 2еே区6. 64

 A. 5047
 ©. 4 ". \(\%\)
 26415
\(411 \%\)
9
 -9世, 154
 … 1.
 41\% 91
 \(\cdots 16.962\)
 \(\cdots, \ldots, 419 \%\)

 176め. 7
 ज \(\%\) \% \(\%\)

 \(244 \mathrm{a} . \mathrm{s}\)
 \(\cdots 6 \pi 48 \mathrm{a}\)

 9541.8

...世4. 1.6
\(2.94 \% 9\)

 \(711.9 . 区\)
\(94.0 \% 6\)
 \(244 \% 94\)
\(\cdots, 4624\)
 लாक"

स4क 4

2413\%, \(1 \%\)
\(-12.540\)

 आดन - य4
 बx \(x\) a

उ世न \(\%\)

अभाष \(\because\)

 … 4 4.".
צ17玉ッ5
 154 64

 \(1 \ldots \%-6\)
\(49,1 \% \%\)

 \(31460=\)
\(961.1 \%\)
\(9 \%\)

\(\cdots .67448\)
3.97\% 46
 \(\cdots 16\) -

अण4, \(\%\)
-

 1. 2 \% \(\%\)

DuFETNWMEON \(\div \quad 1 . \operatorname{cogen}^{-}\)

\section*{B.C.: 1968 Quart́er 1 to 1975 Quarter I}

\section*{FTHAK EOLITTON}

ज-we UnAM.

FTHAL EOLUTTON
```

FEFESETOM NUMEEE %

```


```

    * " \.%%%% 世m@एकमN世
    ```



```

    90%4 1104%u% - -11%.94%
    ```


```

    4.4.%%
    1%%%7
    41%
    74%
    24%
    444
    70%4
    6%1
    %41.26
    ```

```

                                4%1.64%
    %OTHF%WEW"E
-6%% 9%%
"611,446
10世क, 4%
\cdots"%ब, %%
*-1 %%% 1%%

```

```

-1.20%0%
*-6%%
40% 47%
-1 *-%
<,0%4
4%%"%%
44%"%
\#. कबぃ-"
4, %%%
4%1
9世%,9%
14%%%"w
1%67%16
* %
|\&,%|1%6
%614,44
1.4%%,
<<u"%
-my%%
E%1% 1a%
ण", ब
409 \&
1"19%
1.1%414%
*%",%%%
% आ%%%

```


FEGFESETON MINEE： 4

Whtwemex \(39,76=6\)

\(-14.59 \% 6\)
शै कौक्
※ 9969
\(\cdots \cdots, 7 \% \% \%\)
1．बककण
…＂＂99\％\％
－\(-6.5 \% 10\)
\(\cdots 7.11149\)

\(\because, ~=715\)
\％

.6466195
…… 2446
ㅍ \(+\infty=41\)
4.90264
… \(-5 \% 6\)
\(\cdots,-75 \%\)
14.6194 e
\(\cdots, 756 \%\)
Q．70世世4

4 58 x

\(\cdots \cdots\)－ 159

1
1 « 区母世
\(-13.94 \pi 4\)

－m． 9 世
－． 1 कबल

A ．\(\%\)－
i． 2 ． 946
W， 2440

…

－ 9.9644
－ \(4 \% \%\) \％
10ヶサ191
…7，－णमए

FEGRESSTOH NUMEEFA

+-1.445 .160 comverne
+ E.2め45OSE-G2 AREESPE
+160.0 ES 2 EH L IADK

STD DEVIATION OF ESTMATE - 1SEO.3A
\begin{tabular}{|c|c|c|c|}
\hline ACTumb & F-EDICTEO & OIFFEFEMCE & \%LIFFEFENCE \\
\hline 5475 & 6397.943 & -92.-9429 & - 16. 85741 \\
\hline \(424 \%\) & 653.414 & 2e4t 414 & --58.7685 \\
\hline 4930 & 7010.096 & -2660.096 & -42.19262 \\
\hline 7955 & 6753.797 & 1001.202 & 12.58582 \\
\hline 5628 & 6768.77 & -1140.77 & --20.26954 \\
\hline 59.85 & 7467.901 & \(-1549.901\) & \(-26.1014\) \\
\hline 9216 & 7918.14 & -1802. 14 & -34.55025 \\
\hline 45077 & -120.2 & -1061.2 & -6.70514 \\
\hline 4.45 & 5564.052 & \(-1109.052\) & --24.89484 \\
\hline 4599 & 6161.959 & -1565.95 & --3.96475 \\
\hline 6105 & 6297.05s & -1E2.052? & -2.969027 \\
\hline 604t & 6211.328 & \(429 . \cos\) & 6.407848 \\
\hline 6084 & 7922.597 & \(-368.397\) & -5. \(\mathrm{EFHF}_{4}\) \\
\hline 8075 & B632.3e & -557.3262 & -6.7618\% \\
\hline 81.46 & 7889.062 & 256.9476 & 3.17805 \\
\hline 6350 & 7810.529 & 5,45.4707 & 6.527e9 \\
\hline 9809 & 8522.789 & 12 6 .211 & 13.11256 \\
\hline 9122 & 9346.696 & -2e5.6963 & -248515 \\
\hline 8947 & BEC\%. 314 & 1.17.6E56 & 1.31536 \\
\hline 10163 & ense. 408 & 1307.693 & \(12 . \operatorname{tecos} 1\) \\
\hline 11657 & 10439.28 & 1217.717 & 10.4462s \\
\hline 12494 & 11875.65 & 1118.372 & 9.55127\% \\
\hline 11468 & 10442.13 & 1045.869 & 9.104014 \\
\hline 1285 & 1086\% 39 & 2024.61 & 16.34720 \\
\hline 15057 & 11588. 47 & 3468.52\% & 23.0859 \\
\hline 10524 & 11043.04 & \(-719.0851\) & -6.964696 \\
\hline Ex24 & 7736.822 & -1412.822 & -1.6.972ee \\
\hline
\end{tabular}
6961
9916

27
9919.174
10457.89
9785.897
\(-217 \% .02\)
\(-1.1788 \mathrm{c}\)
\(-31.2753\)
\(-1.18535 \mathrm{E}-\mathrm{E}\) 14.14777
24.85564 \(31 .-46 \pi \mathrm{x}\) 13.71283
\(-5.55 \% \%=\) 7 "4576" \(\%\) \%4. 2 m .9 s e. 44 4.e E. 12854
0.76756
\(-\boldsymbol{3}+4 \mathrm{Ac}\)
\(-15,0 \pi 4\)
\(-10.9452\) \(\therefore\) "4.5100
-th.92es?
\(-11.9531\)
\(-13.0165\)
\(-31.9467\)
-44 . 8529
-96.EयE
\(-17,36566\)
\(-4.4+7648\)
\(-1449789\) 2 E 514 B 60.74561
5. 9世046
\(-4.46 \mathrm{c} 744\)
\(-\infty \times 449\)
\(-2 e .42018\)
2.7631

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline AFFVVE－－ & \[
17117.3
\] & & \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline Sto owvtntam & QF EडTMMT & 1－29．1is & \\
\hline furunt & FFEDIETE & DHFFEFEnt & MDTFEMEN： \\
\hline 947 & 76e． 147 & －18\％1\％ & －9． 4.49 \\
\hline \(424 \%\) & 7081.462 & －204\％．4es & －6．847\％ \\
\hline 4950 & 729.694 & －－5a，m\％ & －47． 4.054 \\
\hline 795 & 7 y \％． 506 & 631．69\％ & 7 \％40\％4 \\
\hline ש¢e & 717\％34 & －1．47．-145 & －2\％．483 \\
\hline F9\％ & 69\％．007 & & －17．8344 \\
\hline 5916 & ¢12． & －\％9， \(17 \%\) & －19．10119 \\
\hline W077 & 564．967 & －－5¢．9\％\％ & －10．4109 \\
\hline 445 & 凹44， 50 & －76\％30\％ & －17．732 \\
\hline 4998 & 5x44．30\％ & －645．0es & －14．68146 \\
\hline 610 & 5ex 15 & －1． 250 & ． \(479 \times 1\) \\
\hline \(664 \%\) & \(979 \%\) ¢ & E43．644\％ & 12．70¢5 \\
\hline 6684 & 7201.646 & －657．646 & －9．912e5 \\
\hline ¢075 & 799\％．tie & e7． \(589 \%\) & 1．9\％．7\％ \\
\hline 81.48 & 744． \(\mathrm{F}_{\text {\％}}\) & 60，कеण2 & \(7.445 \% 6\) \\
\hline 936 & 79.5 & 440.185 & צ．267\％ \\
\hline 9B\％\％ & 964.624 & 73.976 & 7.7 cama \\
\hline \(912 \times\) & 967，113 & & 4.9484 \\
\hline 6947 & ए2¢क． 0 \％ & 65，9\％75 & 7.26944 e \\
\hline \(1016 \%\) & e49\％．770 & 167\％．2\％ & 16.43437 \\
\hline 11657 & 112e\％ 20 & 59．784\％ & \％ 17182 \\
\hline 12494 & 108．\({ }^{\text {ase }}\) & \(1676.41 \%\) & 13．6977 \\
\hline 11.48 e & 9\％\％5\％1 & 1744448 & 15．09\％2 \\
\hline 1958 & 946e． 209 & 2418.74 & \％3．55 \\
\hline 15057 & 12\％ツ\％ & E01．7es & 1 E .60764 \\
\hline 10¢\％ 4 & 10211．30 & 12.6415 & ，12e4497 \\
\hline e¢4 & mone \(\%\) & －76．\({ }^{\text {axa }}\) & －-8.495 \\
\hline 6961 & 9\％6． 614 & －179\％，\({ }^{-18}\) & \(\cdots 5413\) \\
\hline 9716 & 10¢12．0 & －684．348 & －－9．01ブサ2 \\
\hline 12760 & 11135.8 & 1092044 & 12．769 \\
\hline 130 e & －9\％1．7\％ & Exe 01 & 23．307\％ \\
\hline 1 Weg & 927．697 & 947．9め3 & \(29.95 \times{ }^{2}\) \\
\hline 1113 & 105\％．5 & 585．4781 & 8． 6.9 \\
\hline 9630 & 10¢E4．\({ }^{\text {a }}\) & －654nce & －8． 4615 \\
\hline \(109 \%\) & \(10 \% 70\) & 34\％．9971 & 3．64cee \\
\hline 1315 & 11178．36 & Q区e 445 & 14.42576 \\
\hline \(150 \%\) & 1851．57 & 1709．4\％ & 1． H ¢\％ण \\
\hline 1.4120 & ixtrar & \％ 14.6 & \(4.68+11\) \\
\hline 1\％e？ & 12\％e．11 & \(40 \%\) \％ & \\
\hline \(13 \% \mathrm{O}\) & 19374．4 & －7．24． 7 & \\
\hline 126 & 146e5， 1 & －1， & \\
\hline 12045 & 14460.2 & －415．2e1 & －－\％， \\
\hline 1 12\％ & 144es， 5 & －1\％6．4\％ & － \(5.54 \%\) \\
\hline 1296 & \(15 \% 44.38\) & －\％e．\({ }^{\text {as\％}}\) & －1．2．44194 \\
\hline 11600 & 140606\％ & \(\cdots+60.58\) & －9．5ese4 \\
\hline 13010 & 1424．46 & －1254．6e4 & －9．70070e \\
\hline 1．182\％ & 1．907． 68 & －19\％0．61 & －10．7434 \\
\hline \(769 \%\) & ¢\％＂，\％ & －192w－94 & －－22．991\％4 \\
\hline
\end{tabular}

42
498
570
93
610
644
5
以！
649
\(6 \pi\)
غ9\％
96
\％
1． 1.
112
116
1． 1.6
1064
1064
बळ
142
4.16

1． 1.18
1 世क
1.49

102 a
区玉
590
\(10 \% 7\)
1． E E
1.69

1410
\(1 . \mathrm{E}\)
\(114 \%\)
1501
156
\(19 女 \mathrm{E}\)

1.7 E
1.77
\(1.6 \%\)
1.494
\(1 \% 40\)
160
199
156
1.41 .7

914
960.964

世4．
क्ष＂．\(\%\)
6\％ \(1.34 \%\)
\(9 \% 4\)

\(761,70 \% 6\)
6क G 4 e
6＂0،44 4

60， \(49 \%\)
क्ब ब玉玉

Q6и \(5 \%\)
फल，ज9छ
于，
1． 104.410

\(101 \% 49\)
1世क， \(1 \%\)
1 上1．
1． \(1.67 \% 4\)
1 1世2． 79
कल ब5\％
184 a
111 ．\(\%\)

जwe 7 \％q

\(1 \Psi 10 . \Xi \Phi\)
1．7\％， 11
109世＂以
1949.6
129.24
\(12 \% \mathrm{~F}\)
\(1 \times 2.424\)
\(161 \%, 6 \%\)
1.6 B 4
\(1 E \% 42\)
戶世，区\％
1． 6
1）
172941
1以＂，
1．1． 44 ．
164． 26
\(150451 \infty\)
1．लि． E
…2． 9.64

4in \(5 \boldsymbol{y}\)
\(\cdots 64.2\)
－20＂9世5
\(-196 \quad 762\)
\(\cdots 1.4 .646\)玉世： \(45 \%\) \(49.445 \%\)
世ब天 44 a \(42: 645\) 1䒑夫，ஈே 24.49

 ே a ब 47 i 19

世w ．9．1．4 25.641 \(14.67 \%\)

\(-14 \%\) बе＂
\(\cdots 46,769\)
\(\cdots 14.696\) ए．लन \(\because 11.9994\) 14． \(46 \%\) 68． 6.64
\(\cdots{ }^{-9}+4 \mathrm{E}\) 4 4．4 121 443 ש区 ？1母 42 \(16 . \infty\) 14\％ \(7 \%\)世，क्षाध … i． E 世
．．．．
－1．
\(4 \approx 40 \mathrm{E}\)
\(\cdots\) ज4

－\％： 1.99
\(\cdots\)－

WTJTEFENE
\(-4 \%\) ， \(0 \% 7\)

\(\cdots 5{ }^{-9} 12974\)
\(4.464 \% \%\)

\(\cdots 4.81461\)
－

 м，戶世， 9． 9967 4．※क्世1 4445 \(19: 04\) 1区． \(4 \operatorname{sim}_{7}\) i，
 4.42769 1．
 4，ज9\％1E
 A． 7 ． m m

－\(-7,29444\)
\(-17, \quad \pi \mathrm{me} 4\)

\(\cdots \mathrm{O}, \mathrm{ar} \mathrm{O}\) 3－79144世．区，4 ＂． \(29 \% \%\)
…

 5．4．49\％

ज \(\mathrm{ma⿻} \mathrm{a}\)

\(\cdots-1\) i． 24 a

\(-1.2424\)
－ד世木1
－－\％－－ 14
ज．\(\because み 4 \%\)
\(\cdots \dot{\square}\)

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{FEGEESSTOM WUMEEF 2} \\
\hline AFFRULS2 \(=\) & 1567.367 & & \\
\hline \multicolumn{4}{|l|}{+ 29.29107 EALTOLTS} \\
\hline \multicolumn{4}{|l|}{CQEFFICIENT OF DETEMMTMATIOR = .1089489} \\
\hline StD deviation & OF ESTMMATE = & 908.0907 & \\
\hline ACTUAL. & FREDTCTEO & DTFFEREMEE & MOIFFEREMEE \\
\hline 1956 & 2792.475 & -626.4749 & - 42.2535 \\
\hline 1218 & 27e2.475 & \(-156475\) & -128.258e \\
\hline 1464 & 278e.475 & \(-1818.475\) & --96.05976 \\
\hline 2401 & 2782.475 & --3e1. 4747 & -15.8Ee17 \\
\hline 1664 & 2814.486 & \(-1150.656\) & --69.15241 \\
\hline 185 & 2014.896 & -964.65el & \(-51.59941\) \\
\hline 1800 & 2814.696 & \(-1014.696\) & -50.372 \\
\hline 1558 & 2614.696 & -1256.696 & -80.60085 \\
\hline 15 es & 2571.574. & --903.5785 & -61.9376e \\
\hline 1646 & 2571.574 & -925. 778 & --56.2316e \\
\hline 2129 & 2571.574 & \(-442.578\) & \(-20.78786\) \\
\hline 28.38 & 2571.574 & 268.4255 & 7.9676c \\
\hline 2458 & 2832.271 & --74.271. & -15.22665 \\
\hline 2762 & 2832.271 & \(-70.271\) & -2.544207 \\
\hline 3510 & 2ES2.271 & 477.729 & 14.4229 \\
\hline 31.71 & 2बs2.271. & 38, 729 & 10.60209 \\
\hline 5309 & 3067.585 & 255.4649 & 7.236774 \\
\hline 3289 & 3069.535 & 169.4649 & 5.250012 \\
\hline 3250 & 3069.535 & 180.4649 & 5.56275 \\
\hline 4079 & 3069.535 & 1.099.465 & 24.74785 \\
\hline 3629 & 210.136 & 416.8638 & 11.54213 \\
\hline 563 & 220.136 & 352.3636 & 9.903558 \\
\hline 7 742 & 2210.136 & 51. 5 S5 & 14.21336 \\
\hline 5874 & 210.1\% & 6s.865e & 1.7.13939 \\
\hline 3625 & 263.087 & 991.9136 & 27.36313 \\
\hline 2497 & 2853.087 & -136.0664 & -5.449997 \\
\hline 2151 & 263.087 & --502.0864 & -23.56107 \\
\hline 185 & 2¢5\%.087 & -776. oges & -41.74566 \\
\hline 3450 & 2959.042 & 99.9.85 & 20.2126 \\
\hline 38el & 2759.042 & 1101.759 & 26.54076 \\
\hline 3121 & 2769.042 & 361.7585 & 1.1.5975\% \\
\hline SOEO & 2759.042 & ¢9, 9 ¢es & 10.42073 \\
\hline 3078 & 2571.574 & 506.4205 & 16.4531 \\
\hline 3079 & 2571.574 & 507. 4265 & 16.480.4 \\
\hline \$101 & 2571.574 & 529.4265 & 17.07277 \\
\hline 5E89 & 2571.574 & 1017.427 & 28.34847 \\
\hline 3695 & 2501.273 & 1193.927 & 2. 2065 \\
\hline 2976 & 2501 27\% & 478.7271 & 16.0083 \\
\hline 3001 & 2501.27\% & 489.7271 & , 16.65202 \\
\hline 2985 & 2501.278 & \(4 \mathrm{Et.7271}\) & 16. 14008 \\
\hline 2614 & 2589. 14.9 & 24.5615 & . 7607101 \\
\hline 2718 & 2589.149 & 126.851\% & \(4.74067 e\) \\
\hline 2667 & 258\%.149 & 77.85156 & 2.919064 \\
\hline 2964 & 2589.147 & 84.8516 & 12.6461 \\
\hline 2413 & sooe. 164 & -8\% 10582 & --3.060egs \\
\hline 3950 & \$0\%. 124 & 78.este & 29.7251 \\
\hline 3589 & 3002.164 & 586.9862 & 16.350\%7 \\
\hline 2508 & 3002. 1e4 & --494.1688 & \(-19.7035\) \\
\hline 2550 & 3555.270 & -477. 2757 & --38.20467 \\
\hline 22w & 55 - 276 & -1280.2\% & -98.74490 \\
\hline 368 & उ58.276 & 147.724 & 4.010973 \\
\hline उ4\% & उएक, 276 & 6.724121 & . 1.898997 \\
\hline 2172 & \(22 \mathrm{E1.785}\) & -57. 78784 & \(-2.76263\) \\
\hline 1777 & 2251.786 & -454.7879 & -45.59\%2 \\
\hline EET & 2231.788 & -1680.788 & -284.1287 \\
\hline 990 & 22s1.78e & -1241.78e & \(-125.431\) \\
\hline उ027 & 2565.715 & 461.2849 & 15.25901 \\
\hline \(2 \mathrm{EB4}\) & 2565.715 & -784.7151. & \(-12.542 \%\) \\
\hline 1738 & 2565.715 & -8צe, 71E & -48.050. \\
\hline 654 & 2585715 & \%¢e.2s5 & 69.758 \\
\hline DUFETM-WATEON & \multicolumn{2}{|l|}{\(=.920434\)} & \\
\hline F-Ee LMADTUETE & \(E \mathrm{E}=.1985480\) & 63-2\%0142 & \\
\hline F-Sa ADJUETED & - \(\quad=.85 c 8\) & 560091560-0 & \\
\hline
\end{tabular}

FEMFGETON MUNEE 4
A＂FVLE＝\(=-244 a 5\)

4

\(19 \% 6\)
1219
1464
玉401
164
\(1.5 \%\)
1.00

156
1． 58
1.646

949
इबE
246
976
世世
5171
कか？
世5
世20
4079

\％世\％
\(\therefore 74\)
5 EF
36
\(249 \%\)
世1世
18 m
340
384
3151
ए＠母
आ\％
世7
3101
区e9
क9\％
9976
अO1
＂9世
264
\(\cdots 1.6\)
玉ぁぁ
2964
291 x
3\％
区eq
wक
\(181 \% .9 \%\) 1．6世 24

2124，
स17
घ世雷， 0
－ \(47.67 \%\)
29．4．017
\(17 \boldsymbol{9} 94\)
\(16 \Phi\) м
1916.94

18 E 4 E
玉\％1．
कबぁ \(4 \%\)
区Es－

世64． \(9 \%\)
区4\％あ林

צ15 ， 91
 \％6＂ 52 z \(\mathscr{6 4} 15\) \％e4． 68 E
 \(2901,41\). ＂95\％\％
区क9ぃ 14
ツणே： \(17 \%\)
2E4． \(4 \%\)

玉6＂
Wन 4 a
67， a
世6世 6于区母，世ए
区12．\(\quad 1\)
世कx 6 e

अ41．4．
अ7母－ 2
ए4世 उ
थ4× 7 B
अ94． 5 क
अ7\％：戶\％

\(294 \%, 676\)

1，क， 474
\(-74 \pi\) 9． 4
‥69， 54
सक \(x+6\)
－＂9\％a \(\%\)
\(\cdots 454.76\)
\(\cdots 47\) ．\(-6 \% 6\)
\(\cdots 6.016\)
－

4．4． 9.97
\(1 . \operatorname{E4Qt}\)
\(\cdots \mathrm{E} 4 \mathrm{4} 96\)
4 4e： 4
4 बह． 74
－-5 ，जलए
49 ：\(\%\)
…
71世．णغक
E1． Ax
－\％
 169,416世क， 16 s
\(-464.1414\)

\(\cdots-9.4 .044\)
464．．2．77
5\％玉 ． 14
－9．\(\%\) \％
9\％． \(9 \% 4\)
W\％\％
40 E 6 F

14 ：
－ब．

\(\cdots\)－
\(117 \quad \because, \quad \because 6 \mathrm{~F} \quad \mathrm{a} 4\)
\(\cdots-91.648 \quad-19.965\)

－1．w．

\begin{tabular}{|c|c|}
\hline & GOTEFEWHEE \\
\hline & 7046 ¢ \\
\hline & －61．6921 \\
\hline & \\
\hline & 11． \(1.9 \% 7\) \\
\hline & \(\cdots-30,116\) \\
\hline & …5， \(98 \%\) \\
\hline & \(\cdots \mathrm{O}\)－ 4 \％ 7 \\
\hline & －4\％\(\quad\) \％ery \\
\hline & \(\cdots \%\) ， \\
\hline & ＂区玉\％1\％ \\
\hline & \(9, \% \mathrm{y}\) \\
\hline & ¢，\％¢\％ \\
\hline & \(\overline{\%}\) ：9\％］ \\
\hline & \(\cdots 1.6946\) \\
\hline & 1379124 \\
\hline & 13．6\％104 \\
\hline & \\
\hline & 1）．01158 \\
\hline & …\％\％16 \\
\hline & 2． 4 m 4 4 \\
\hline & \％，．5．\％e9 \\
\hline & \\
\hline & \\
\hline & 4.686 Ea \\
\hline & 7 ，\％\％区4 \\
\hline & －16，1650¢ \\
\hline & …77 97\％ \\
\hline & \(\cdots 44,4 \cdots 12\) \\
\hline & 18：1594 \\
\hline & \(1 \times 4.6\) \\
\hline & 1\％． 1 ¢ \％ \\
\hline & 1.2 \％r9\％ \\
\hline & 1． 1.46 m \\
\hline & 1世，\％10\％ \\
\hline & 1． 4 ， 4 4 4 \\
\hline & 21． 12412 \\
\hline & ¢ п¢＠， \\
\hline & …刀． \(540 \times 1\) \\
\hline & －w． \(74 区\) \\
\hline & 凹， \(\mathrm{m}_{\text {\％}}\) \\
\hline & －－24 ¢\％\％4 \\
\hline & \\
\hline & －\％． \\
\hline & －，\％e4 \\
\hline & －－19．45\％ \\
\hline & \\
\hline & \(\cdots\)－- ¢ \\
\hline & －17n \％e \\
\hline
\end{tabular}

\section*{APPENDIX D}

Charts of Selected National, Provincial and Local Indicators Related to Mortgage

Loan Approvals.


```


[^0]:    1. Smith, Lawrence B., The Post-war Canadian Housing and Residential Mortgage Markets and the Role of Government, Toronto:

    University of Toronto Press, 1974
    2 Chung, Joseph H. Cyclical Instability in Residential Construction in Canada, Ottawa: Economic Council of Canada, 1976

[^1]:    8. Chung, op. cit. p. XlV
    9. Ibid, p. 48
[^2]:    16. Ibid, p. 291.
[^3]:    (1) The variables included in all regressions were Eeasonally adjusted.
    (2) See text in the main report for the rationale behind the choice of interval points.

