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Summary 

An application of the pseudo maximwn likelihood method is demonstrated on estimation for a mixed linear model 
fitted to the dependent observations coming from a hierarchical population. This approach provides a closed form 
solution for estimating the parameters of the mixed linear models which seems to be simpler than the iterative 
procedures such as iterative probability weighted least squares method of Pfeffermann et al. (1998) . We also 
discuss some issues relating to model and sample design hierarchies and their impact on estimation. A small 
simulation study showed that the proposed procedure is efficient even for small sample sizes at higher levels. 
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Résumé 

On montre une application de Ia pscudo-mdthode par le maximum de vraisemblance pour I'estimation d'un modèle 
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procedures itdratives telles que Ia mdthode iterative des moindres carrés pondérds (dans laquelle les poids sont une 
fonction de probabilites) dePfeffermann etcoll. (1998) puisqu'elle fournit une solution qui n'exige pas d'itdration. 
Nous discutons également de quelques problèmes lids aux hidrarchies du modèle et du plan d'dchantiHonage ainsi 
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1. INTRODUCTION 

Populations studied in social research, public health, environmental or educational research are 

usually hierarchical with easily recognizable levels and nested structures. Different types of 

variables are available at different levels. At the individual level there are usual types of variables 

that describe an individual: measurements on continuous scale, indicators of different 

subpopulations that the individual belongs to, ranks and categories. At the group level usually 

there are group identifiers, aggregates of lower level unit variables (means, totals, counts, 

percentages, etc.), and the global variables for the groups. Some variables that are available as 

aggregates at the group level may not be available at the unit level. Some data may come from 

a survey, some, especially for higher level units, may come from a census or administrative files. 

By disaggregation of all higher order variables to the individual level one can ignore the 

hierarchical structure and analyze data assuming independence of the observations. On the other 

hand, if all the individual level variables are aggregated to the higher level, one can analyze data 

at the higher level. In the first scenario, if the data structure is hierarchical, the observations within 

the groups are correlated; and therefore, the assumption of independence of observations is 

untenable. In the second scenario, important information is lost, and an interpretation of the results 

of aggregate analysis at the individual level is usually fallacious. Thus, aggregating and 

disaggregating may not be completely satisfactory for the analysis of hierarchically structured data. 

The appropriate modeling combines the different levels of the hierarchical data in the form of 

hierarchical models. The main interest is to model the relationships at the unit level taking into 
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account the impact of higher level units on these relationships. For an excellent presentation of 

hierarchical models, also known as multilevel models, the reader is referred to Bryk and 

Raudenbush (1992) and Goldstien (1995). 

A motivating example considers the data from Cycle 1 (1994-1995) of the Canadian National 

Longitudinal Survey of Children and Youth (NLSCY) - an initiative to develop a national database 

on the characteristics and life experiences of children and youth in Canada. The target population 

is children aged 0-1 1 years living in households across Canada. Children were identified using a 

stratified, multistage probability sample design based on area frames in which dwellings 

(residences) are the ultimate sampling units. As a consequence, the data set is inherently 

hierarchical: children are nested within families and families are nested within geographical areas 

or places. In a multilevel study of the neighbourhood influences on children behavior, Boyle and 

Lipman (1998) considered at the individual level (level-i) the following dependent variables: score 

measures of conduct problems, hyperactivity and emotional problems, then the independent 

variables: age, sex, and school attendance. At the family level (level-2) the independent variables 

are family type and a variety of socio-economic measures for families. At the geographic level 

(level-3) the independent variables are taken from the 1996 Census such as the percentage of 

families led by one parent, the percentage of families below the poverty line, urban/rural type of 

the area, etc. 

When data come from surveys the estimation of the model parameters has to take into account 

the sampling design used for selecting the respondents. Recently, Pfeffermann, Skinner, Holmes, 

Goldstein and Rasbash (1998) addressed the problem of weighting in the multilevel models using 

the probability weighted iterative generalised least squares method. 



The goal of this paper is to show how to incorporate the design information into the inference 

about the model parameters when modelling a frnite hierarchical population. A method that we 

are proposing relies on ideas of pseudo maximum likelihood estimation (Gourieroux, Monfort, 

Trognon, 1984) to provide the finite population estimating equations often called the census 

equations (Krieger and Pffefermann, 1992) which are then estimated using an available hierarchical 

(multi-stage) sample. These estimated equations lead to the consistent estimates of the model 

parameters under very general conditions as in Binder (1983). The proposed method seems to be 

simpler than the probability weighted iterative generalised least squares method considered by 

Pfeffermann el al. (1998). Some other sampling considerations are also discussed in the paper: 

how to approximate the weights for units at different levels in hierarchy when only a limited 

information on design is available, and how to provide the weights for the higher level units when 

they were not the design units. 

The second section contains the basic theory of hierarchical linear modelling. Section 3 shows 

how the model parameters can be defined as finite population parameters. A proposed method for 

estimation of the variance is given in this section. In section 4 the finite population parameters 

defined in section 3 are estimated using data from a complex survey. A small simulation study was 

used to empirically confirm the consistency of the resulting estimates under several realistic 

scenarios. The penultimate section deals with issues of necessity and availability of the weights 

for different model levels. Section 6 contains some concluding remarks. 
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2. A TYPICAL MULTI-LEVEL MODEL 

We begin this section with a description of a simple linear two-level model which can be specified 

with two equations. The first one is a level-i (within-group) equation and is designed to describe 

the relationship between level-I dependent variables and the level-i covariates, within each group. 

Some or all of the parameters of the level-I equation are viewed as varying randomly across the 

level-2 unit (group) population. Then in the second equation, level-2 (between-group) equation, 

these parameters are modelled as dependent variables with the group-level variables as covariates. 

Let yg, be the value of a dependent variable for individual i (1 = l,...,Ng ) in group g 

(g= I,...,G), and let there be P+Q independent variables, X,, z, p= 1,...,P and q= 

representing the characteristics of the ith individual. Then, the level-i (within group) regression 

equation is 

y 	+ 	f3p pgi + x 	V'  b z 	e 	 (I) 
gi 
 =b Og 	 L..i 	qg qgi -'- gi' 

p 	 q 

for i = l•••Ng  and g= 1,...,G, where Op are  fixed regression coefficients, bqg  are within-group 

regression coefficients that vary across the groups, and eg, are the random disturbances 

independent from b qg . A more convenient matrix expression of(I) is 

Ygg 2'g 1 g 	g' 
	 (2) 

for g = 1,.. .,G. Here, y g  is Ng  x  1 vector of dependent variable, the parameter vectors are 

column vectors, and the covariates are given as matrices, Ng  x  P and Ng  x (Q+ I), respectively. 

8 



The random intercept b0g  is a part of the random vector b assuming that the first column of the 

Z is a vector of l's, 1. 

The level-2 (between group) regression equation relates the random within-group coefficients, bqg  

to group-level characteristics, Urge r= 1,...,R and g= l,...,G: 

R 

bqg = ?qO + u + d 	 (3) 

	

qr rg 	qg' 
r=1 

for q = 0,..., Q. Group level disturbances dqg  are independent from egj  and represent the 

contributions of the groups to variability that remains unexplained by model (3). Written in a 

matrix form, equation (3) is 

	

b g = Fg  'Y + dg 	 (4) 

where b isa Q+1 by I vector, Fg  is a Q+l by (R+1)(Q+1) matrix obtained as a direct product 

U 0 1Q.I' U g  is a row vector of length R+1 whose first element is the constant 1, y is a 

(R+l)(Q+I) vector of the unknown but fixed parameters, and dg  is a vector of length (Q+1) of 

group random effects. 

The standard assumptions about the disturbances apply at both levels: E(e) = 0, E(d) = 0, 

i.e., the (listllrbances ate centered at 0, the within group variability is expressed by (-Y()  and is 
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constant across the population of groups, and the variance of dg  is captured by (2)'  the (Q+1) 

by (Q+1) covanance matrix at the group level, and the level disturbances are not correlated with 

each other. 

If there is no covariate available other than a group identifier, the model ((1), (3)) reduces to 

one-way ANOVA model with random effects: 

	

Ygi = b0g  + egj 	 (6) 

	

b0 = 100 +d 	 (7) 

or written together 

	

Yg, = i00 +d +e 	 (8) 
g 	gi 

Here .y is an unknown fixed grand mean, dg  is a g-th group effect - (0, at ) ) , and egj  is an 

individual effect (0, c1)).  The generalization of a two-level model to a model that fits a multi- 

level hierarchy is straight-forward. 

In the motivating example the family level is critical for estimation of the residual parameters 

due to a small number of children per family, frequently only one. Because of that it is reasonable 

to express the family level variables as the individual characteristics with an extra variable 

introduced to indicate if there are other individuals in population that share the same family 

characteristics. Ignoring completely the family level, the family clustering effect may cause some 

of the coefficients to appear more significant than they actually are. 
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3. CENSUS ESTIMATDG EQUATIONS FOR MODEL PARAMETERS 

in this section we define the model parameters as functions of the finite population data. 

Equations (2) and (4) are written jointly so that a two-level model is expressed by one equation 

Y g  =X  P + Z F y +Zg dg  + eg  

=(Xg  Zg  Fg 
)(P) 

+ gd g  +e g 	 (9) 

=H g tl +Zg dg +ég  

=H g tl +a g  

where H g  = (Xg I Zg  F g  ) is a known Ng  by P+(R+ 1)(Q+1) matrix of observed covariates and 

their products at both levels, ii is a P+(R+ I)(Q+ 1) vector of the unknown fixed effects, and 

is an Ng  by I vector of random effects with ag , = Z g, d + e g1 . Here Zgj  represents a row vector 

of values of z variables for the ith individual in the gth group. Evidently, E (a g) = 0. and 

V=Var(v )=Var(a )=Z E Z+C3 I)  g  J• 	 (10) 
g 	 g 	g (2) 	.  

We assume that there is a single parametera that describes the variability between level-I 

ruts, and that there are (0+1)(Q+2)/2 tinknown parameters in the covariance matrix E ,. 
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Stacking of the G vectors Yg  into a block vector y' = [y, ... j], then creating a block 

matrix H = [H' I '1G], and stacking of the G vectors ag  into a block vector 

a' = [a, ... ,a], equation (9) can be written for all levels jointly as 

	

y=Hq+a 	 (11) 

where a is an N by 1 vector of random errors, assumed to be centered at 0 and with a covariance 

matrix V = Var(a). While matrix H represents total information available on covariates in the 

population, matrix V represents the complete correlation structure of the hierarchical population 

under study. For the population of groups it is reasonable to assume that V is a block diagonal 

matrix with the blocks defined by (10), and Coy (a g,ag ) = 0, for g*g' 

The unknown finite population parameters q, (2) and G 1)  can be expressed as functions of 

the finite population data by solving the corresponding census estimating equations. Assuming that 

V is known, using the method of generalized least squares (GLS), the finite population parameter 11 

is expressed as: 

IGLc = LH'V' H]' H' V 1y 	 IL 

( 	JfJç'H ) ' 	H'gV'Yg 	
(12) 
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Here we use - to denote a finite population parameter obtained as a solution of the census 

estimating equations. Allowing for randomness in the generation of the finite population, I GLS is 

random with the covariance matrix given by 

Var(G) = 

(13) 

Estimator (12) coincides with the maximum likelihood (ML) estimators under the assumption 

of normality of the vector y, y - MYN(H i, V), and assuming that V is a known block-

diagonal matrix. Here MJ'W stands for the multivariate normal distribution. 

Since V is not known and has to be estimated, a procedure like the iterative generalised least 

squares where one iterates between estimating 11 and V until a convergence criterion is met, is 

usually used. The problem with such a method is in computational intensity due to the number of 

parameters that need to be estimated in an iterative procedure. A good review of the method and 

its application is given in Goldstein (1995). 

We suggest a pseudo maximum likelihood (PML) method to express the finite population 

parameter ii by replacing parameter V in the likelihood equation with its estimate V and then 

solving the equation. Estimate V is obtained using some other appropriate method. A method for 

obtaining c appropriate for the hierarchical populations is suggested in section 3.1. The PML 

expression of the finite population parameter ii is then 
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ij 	=[H'Y'H]' HV'y 

=( 	IJ;'Hg)> Hwg 	
(14) 

g 

The finite population paraneter 1IPML  can be considered as random variable by seeing the finite 

population as a realization of a random model. In such a case PML  has a corresponding 

covariance 

Var(jPML)= [HT'H]'H'V' Vi'H[HVhH]l 

( E I],  - -, --, ) ( E kg P;',  H, 

H' ~;' Hg 
) 

(15) 

3.1 Proposed Method for Obtaining V 

Equation (9) can be rewritten in a way that combines fixed and random parameters in the same 

vector 

Y g  = Hg  ii +Zg dg  +  eg  

= (Hg I Z) 	j  + eg 	 (16) 

=Kgg  +eg  
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The unknown vector 4. =  ( ti' I d'g )' is random since one of its parts, dg , varies across the 

groups. Note that the size of the vector remains fixed P+R(Q+1)±(Q+1) over all groups. 

Assuming that g  is fixed, its GLS estimate based on only Yg  is given by 

g =(K'gKg)' "g Y g  (17) 

for g= 1.....G, since Var (eg ) = a 'g• Furthermore, dg  is the part of tg  that corresponds to d. 

Estimator (17) coincides with the maximum likelihood (ML) estimators under the assumption of 

normality of the vector y. Note that (17) ignores the fact that 'i  is constant over all the groups. 

The variance Vg , given by (10), can be reexpressed as 

Vj. = Var(y) 

EVar(y I )+VarE(ygIg) g g 
(18) 

1g + Kg  Var( g) K 

2 
= cT(1) 'g +ZgVar(dg)Z'g 

We approximate conservatively Var(dg) by Var(Jg) and then Vg  can be estimated as 

=a(I)'g +Zg Var(1g )2"'g 	 (19) 

where 

Is 



-2 1\ = 	._, (Yg - KggY'(Y - K ) /(Ng 	 (20) g 	gg 

and 

Var(dg)= 	g - -- E dg)(dg - Ti dg)' 	 (21) 
G-1 G g  

In equation (21) v is the number of restrictions imposed by the 1st level model. Obviously, even 

when the group sizes Ng  are small, (20) may provide the consistent estimate of a 1) . Note that 

(19) is a conservative estimate of (18). We consider a different estimator of (18) elsewhere. 
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4. ESTIMATION BASED ON A SAMPLE WITH THE COMPLEX DESIGN 

If the complete populations of individuals and groups are observed the estimates (14) and (19) are 

the finite population values of the model parameters. The variance (15) can be treated as a finite 

population parameter as well. Having only observed a sample taken from the finite population we 

need to estimate these parameters. Here we present the estimation based on a complex sample. 

Without loss of generality, we assume a simple scenario where the sampling design hierarchy 

is the same as the model hierarchy, meaning that the groups (level-2 units) are the primary 

sampling units and that the individuals (level-i units) are the second stage units. 

Let a sample of m out of G groups be selected, and let from gth selected group a sample of flg  

out of Ng  individuals be selected. Also, we assume that the final individual weight Wgj  is a product 

of the known components: the group weight w and the conditional individual weight w11 . thus 

W, W W, 1g • The weights satisfy the usual unbiasedness conditions: 

	

Dl8 	 Ifl 

E E Wgj  = N, E EW = G, and E E wi.Ig =  Ng 	 (22) 

	

[ g = W = 1 	I 	g1 	 iI 

Let W.,g be  a diagonal matrix of order flgXflg  with the conditional weights W g  on the 

diagonal. Then the sample based estimate of the vector 4g , given by (17), is 

tg = (K'  W jg  Kg )' K W jig 	 (23) 

where Kg  is a known matrix of size ngx[P+R(Q+l)+(Q+l)]andy g  isavector of size ng . To 

estimate the variance component &,), given by (20), which has the form of the population mean 
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of the values (Yg - Kgg)'(yg  - Kgg ) /(Ng  - 	over g, we use the sample mean 

1 	m 
G(1)= 

gWg 	
g 

( 	(Yg  Kgg)  )'g  _Kgg) 	 (24) 
.w'lg -ug) 

Finite population variance (21) is estimated by the appropriate weighting as 

1  Vcz 	 g  -d)' 	 (25) 
g  

r(Ig) 
= YW_l 	

w g(2 g  -d)(a  
g  

where d = Eg Wg dg /Eg Wg • 

The matrix of the random components is estimated conservatively by 

= a 1 	+ Zg  V;r(dg) Z 	 (26) 

The finite population parameter (14) is estimated by 

\ -1 
1IPML = 	Wg H'g Vg' Hg ! 	Wg H'Vg 1 Yg 	 (27) 

) 	S 

with the corresponding variance V(i) estimated as 

w 1/ 1H5 	w 2 H' ' 
k 	

w H' H 
) 	

(28) 
g g 	 g gg g gg 

This estimate is similar to one obtained by Binder (1983) in the following way: The first and 
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the last term in (28) are the unbiased estimates of the first derivative of the score function (which 

is also a design unbiased estimate of information). The middle part is the estimate of the variance 

of the design based estimate of the score function under an assumption of iid for the sample of 

groups. Sometimes the difference between these two types of variances is ignored and (28) is 

reduced to 
( 	

Wg  H'g  ' Hg ) . To explain further, consider 	an estimating function 

i,(ui) = 	Wg  HV' (Yggt) 

E(a4,(UIa) 	Wg Hv;'Hg  

Var(4i 	w 2  H V Hg  

with 

and 

Equation (28) is a sandwich type estimator based on this estimating function. 
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6. SOME SAMPLING CONSIDERATIONS 

6.1 Design and model hierarchies are the same 

Analysts have usually access to the final weights Wgj  g= I,2,-,m; IESg  where m is the number 

of groups (PSUs) selected from a population of G groups, and sg  is the collection of flg  level- I 

units selected from the gth group. The total number of groups (PSUs), G, the number of selected 

groups, m, the number of selected individuals from a selected group, flg  and the total sample size, 

flg  are assumed known. Usually, the group weights, Wg  and the conditional weights, 

34i1g are not readily available to analysts, although they are needed for analyses. One needs to 

approximate the weights W 1g  and Wg  by 1 jjg  and g  respectively, so that 

m 

E 
3

G, E Wj1g  Ng  and 1 g 'iIg 	w, 	 (29) 
g=1 	 1=1 

This can be done iteratively using some of the known raking algorithms. 	In Table 2 some 

approximations of the group and the conditional weights for different combinations of available 

design information are suggested. 

It may happen that a complete population of groups is available and the subsamples of 

individuals are taken from each group. In such a case wg  is equal to 1, and consequently 

w. 1  = wg,. In such a case one may question if the effects of groups are random or fixed. From the 

model point of view, especially if there are many such groups, we consider their effects still to be 

random. 
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Table 2: Approximations of the weights for the two-level models 

Sample design for Approximated weights 
Ng 

groups, parameters g jig ii' gi 

SRSNg unknown G m w— w 
m gIG g 

SRSNg  known G Nrn N  
m N 

PPS. Ng  unkfloWfl ..__ Wg1WgH_ W W 	W H g mWiv G gi 

PPSNg kflOWfl G 	I 	I 
Wg1NgH_ w g' WNgH 

mNg H G G 

whereWg=wgj,H-L> 	=1 	1 
m g  Ng 	m g  Wg 

6.2 Design and model hierarchies are different 

So far we assumed that the sampling design hierarchy is the same as the model hierarchy 

meaning that the level-2 units are the primary sampling units and the level-i are the second stage 

units (see Figure la). 

Suppose that the two hierarchies are not the same (see Figure ib). A typical example is when 

children are selected by an area/household sample but analyzed using schools instead of area units. 

In this case the areas are called the design groups and the schools are the model groups. When the 

multilevel structure of the model is different from the hierarchy used in sampling we suggest a 

conditional "retrospective sampling" approach. Conditioning is done according to the realized 

sample sizes. 
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Again we assume that the individual final weights, Wgj  are available, as well as the number of 

sampled design groups, m, and the number of individuals sampled from the selected design groups, 

flg • In addition, we assume that a number of the model groups realized in the sample, say k, is 

known as well as the number of individuals that fall into a model group. The retrospective 

sampling that we are proposing, using the ideas of Neuhaus and Jewell (1990), makes the selection 

of a model group dependent on the realization of the sample obtained by the applied sampling 

design. Consequently, the retrospective probability of selecting the model group becomes the 

function of the inclusion probabilities of the design groups. 

We say that a model group is "retrospectively" selected using the Bernoulli sampling with the 

probability 1 if there is at least one level-i design unit with the known positive weight (or the 

inclusion probability) found in that model group, i.e.: 

Prob 	I Dgj 
 ) = { : 

if unit (gi) Ef, 
otherwise. 

forj=1,..., k, 	andg= 1,...,m. Here M, denotes the event '/th model group is selected" 

and Dgj  stands for the event "gi-th level-i design unit is selected". Then the "retrospective" 

probability of selecting ajth model group, Prob { A,. }, is obtained from the Bayes formula in the 

following way: 

Prob i M,. } Prob {Dgj  I A} 
I 	Prob {Af,. I Dgj} 	

Prob{Dgj} 

for (gi) Ef and j=1,.. .,k, implying that 

Prob {Dgj ) = Prob { M. } Prob {Dgj  I 

for (gi)Ej and j=i,...,k. Taking reciprocals on both sides and summing up over all (gi)Ej, we 

amve at 

1 1 	_______ 
Prob {Dg,} = Prob {A.} 	Prob Dgj  I 	

(30) 
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which is equivalent to 

I (31) 
* 

(gOi 	g, 	7t1 (g;)EJ  ltgjJ 

forpl,...,k, where ag, denotes the inclusion probability of the (gi)-th design level-I unit into the 

sample s, 7t is the "retrospective" inclusion probabilities of the jth model unit, and 	is the 

conditional inclusion probability for the (gi)-th design level-I unit given that thejth model unit 

occured in the sample. In terms of the sampling weights, equation (31) is equivalent to 

Wgj = 	 (32) 
(gi)j 	 (gi)Ej 

The sum on the right hand side, 	11 w 11 , is equal to the estimated size of thejth model 

unit, say A'. Therefore, 

E Wg , / 	and 
(SOEJ 

* w 11 =Nw / 	w 
J 	j gi El 

(gi)Ej 

for(gi)Ej and j=1,...,k. 

The value of A can be replaced by the value of the parameter A.  if it is known (which is often 

the case.) For example, the school principle knows the total number of students in school, or the 

total number of families in an enumeration area (considered as a neighbourhood) is known from 

the Census. 
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7. DISCUSSION 

In this paper we showed how to model a hierarchical data set coming from a finite population. 

When population is hierarchical it can hardly be seen as an iid sample from the universe due 

to the intraclass correlations found within the groups and because of between groups 

heterogeneity. Consequently when finite population parameters are defined as Mt estimates, the 

covariance structure of the finite population has to be accounted for, and, since it is unknown, it 

has to be estimated using the same data. 

Here we used the method of the pseudo ML to define the finite population parameters of the 

hierarchical model. It is pseudo because we used an estimate of the variance obtained outside of 

the ML estimation process. The resulting estimates have ML estimates properties since the 

variance is estimated unbiasedly, meaning that the finite population parameters are well defined. 

For a given sample from the finite population we showed how to obtain the consistent estimates 

and calculate their standard errors. A small simulation study showed that even small subsamples 

from the groups give the stable variance estimates. As one of the referee points out, we are 

investigating the effects of changing the ratio between the first level and second level variance 

factors. Since the first level variance was fixed, changes in this ratio may be confounded with 

changes in the overall variance of the observations. To evaluate our procedure further, one may 

consider additional simulation study keeping the total variance fixed and varying both the first 

level and second level variances. Also a problem of obtaining appropriate weights for the different 

levels of the hierarchy is pointed out. Two different approaches were suggested depending on if 

the design and the model hierarchies are the same or different, 

Acknowledgment: The authors thank Professor J.N.K. Rae and Dr. Harold Mantel for their useful 

comments. 
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APPENDIX: 

Table 1. Results of the simulation study averaged over 1000 simulations and multiplied by 100. 

Standard and relative errors are the Monte-Carlo errors. 

m5 rn-SO m=200 

2 	2a/o b(f) se(fl) rb(&) re(ô2) b(f) se(f1) rb(&) re(&) b(A) se(f) rb(&) re(ô2) 

0.1 3.0 4.5 0.9 2.0 0.3 1.4 0.7 0.6 -0.6 0.7 Di 0.3 

0.2 1.7 3.2 0.4 1.9 0.8 1.0 -0.1 0.5 0.2 0.3 0.3 0.3 

0.5 -1.8 2.0 0.6 1.5 0.2 0.6 0.5 0.4 0.3 0.3 0.5 0.2 

1 2.8 1.5 1.9 1.1 -0.1 0.4 1.2 0.7 -0.2 0.2 1.1 0.1 

2 2.2 1.0 0.2 0.8 0.3 0.3 0.8 0.2 0.3 0.2 0.9 0.1 

0.1 8.0 3.0 -1.2 2.0 0.3 1.6 0.5 0.6 -0.7 0.8 0.3 0.3 

0.2 1.0 4.0 -0.2 2.0 1.1 1.1 1.4 0.5 -0.6 0.6 0.5 0.3 

0.5 2.0 2.0 -0.7 1.7 0.1 0.7 1.1 0.4 0.7 0.4 1.5 0.2 

1 0.0 2.0 1.0 1.0 0.0 0.5 1.1 0.3 0.2 0.3 1.2 0.1 

2 0.0 1.0 2.7 0.7 0.1 0.4 1.5 0.2 0.1 0.2 1.9 0.1 

0.1 2.9 4.6 3.4 2.1 2.4 1.5 1.6 0.6 -1.6 0.7 1.3 0.3 

0.2 3.1 3.2 3.3 2.0 0.1 1.0 3.1 0.3 0.0 0.3 2.0 0.3 

0.5 -3.5 2.0 2.4 1.5 0.3 0.7 3.6 0.5 -0.5 0.3 4.6 0.2 

I 0.1 1.5 5.2 1.3 0.2 0.5 6.6 0.4 -0.1 0.2 6.4 0.2 

2 0 R 11 75 1.1 -0.1 0.4 8.0 03 00 02 90 01 

Figure 1. A two-level model of a two-stage sample 
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