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S 	 ABSTRACT 

Classical seasonal ARIMA models and their state-space 
representation are reviewed. The modified Kalman filter and 
modified fixed point smoothing algorithms using partially improper 
prior distributions are shown. The adaptation of these techniques 
to data which are subject to correlated survey error is given. We 
discuss likelihood maximization, smoothing methods and confidence 
interval estimation. Some of the algorithms needed to perform the 
computations are described. 

Keywords: ARIMA models; Confidence intervals; Correlated 
survey errors; State-space models. 
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. 	 RESUME 

Les modèles ARMMI saisonruers et leur representation en vecteurs 
d'etat sont révisés. Le filtre de Kalman modifié et les algorithmes 
modifies de lissage pour un point fixe utilisant des distributions a 
priori partiellement diffuses sont indiqués. L'adaptation de ces 
techniques aux données qui sont exposées a l'erreur d'enquête 
corrélée est démontrée. Nous examinons Ia maximisation de Ia 
vraisemblar,ce, des méthodes de lissage et de l'estimation par 
intervalle de confiance. On décrit quelques-uns des algorithmes 
nécessaires pour effectuer les calculs. 

Mats-clefs: modèles ARMMI; intervalles de confiance; erreur 
d'e nquête correlée; modèle d'état-espace 
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1. Introduction 

Survey organizations, both governmental and non-governmental, conduct 
surveys with similar data Items on repeated occasions. As a result, estimates for 
a characteristic of Interest are available over a number of time periods. This 
can lead to methods and analyses which are generally not available for single 
cross-sectional surveys. 

We denote the true underlying value of a population characteristic by e 
at time t. Generally, this would be a mean, proportion, total or ratio. In the 
case of a sample survey, the true underlying value cannot be directly observed. 
Instead, we have a survey estimate, y.  Sometimes, we can have a vector of 
survey estimates, each with the same mean. For example, In the case of a 
rotating panel survey with no rotation group bias we have estimates it' 2t' 

' gt each with mean e, where g is the number of rotation groups. In 
general, we denote by yt  the vector of survey estimates. 

Usually the survey estimates are related over time. This relationship can be 
separated into two main components. The component usually considered by the 
data producers (the survey organization) is the relationship of the sampling error, 
denoted by e,  over time. If the et's  are correlated, then the past data can be 
used in the estimate for the current occasion. This can reduce the sampling 
error of the estimate, compared with the sampling error of the estimate which 
ignores the previous data. 

The data users (including some users in the survey organization) are more 
Interested, though, in the relationship of the underlying process {o} over time. 
The common practice for these users is to ignore the sampling error and to fit 
models to the data as If these data are observed without error. In this paper we 
discuss a method for incorporating these survey errors into certain models. In 
particular, we concentrate on the case where the underlying model is a seasonal 
ARIMA model and the survey errors can be represented by an ARMA process up to 
a multiplicative factor. This is an extension of the models discussed in Binder 
and Dick (1988) and Binder and Hidlroglou (1988). 

0 
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An additional benefit Is also available to the data producers by assuming such 

S  models for the underlying process. We have pointed out that estimates can be 
improved by taking account of the structure of the sampling error over time. 
Further improvements can also be achieved by incorporating the assumptions of 
the underlying model for the er's.  We refer to this as data smoothing. 
However, the improvements tend to be small when the survey error Is small 
relative to the errors of the assumed model. Therefore, such a procedure is not 
generally recommended, unless the survey errors are moderate, such as would be 
the case for small area estimation. 

A general framework for this process was given by Jones (1980) as follows. 
Let 0 = (e1, 2' ..., 	be the vector of underlying population values 
which we want to estimate. We assume that e 	 Is multivariate normal with 
mean Ut  and covariance V,. This Is the assumed model for the underlying 
population process. This formulation would not be appropriate In the case of 
non-stationary ARIMA models. 

The survey observations are given by the vector Vt'  where 

S Yt = X e + et 	 (1.1) 

and et  is a multivariate normal vector of survey errors with mean zero and 
covariance U. The matrix, X, is usually a matrix of 0's and l's linking the 
expected values of the survey estimates to the underlying population values. 
Here we assume that the survey samples are sufficiently large that the normal 
approximation to the survey sampling error can be used. The normality 
assumptions are not necessary though, as the resulting estimators will be 
minimum mean squared error if we assume the same structure for the means and 
covariances, without any additional distributional assumptions. 

Now, using conditional arguments, the conditional expectation of et 	given 

Is 

E(etivt) Ut + (Xt ç' x + c
1 1 

- xt ci  yt - 	)' 	( 1.2) 

with conditional variance matrix given by 
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We note that if V 1  Is relatively small, so that the variance of the model for 
is large, then (1.2) and (1.3) reduce to the minimum variance linear unbiased 
estimators given by Gurney and Daly (1965). 

However, expressions (1.2) and (1.3) are often Impractical to apply directly, 
since the matrices to Invert have the same dimensionailty as the vector 

Also, the matrix Vt  will often depend on unknown parameters which must be 

estimated. In this article we will assume that e. 	follows an ARIMA process 

with some unknown parameters. We will also assume that the survey errors can 
be described by an ARMA process up to a multiplicative factor. It will be 
assumed that the parameters of this survey error process can be estimated from 
the data using design-based methods. The details of this estimation will not be 

given here. 

In Section 2 we describe how ARIMA models can be formulated using a state-
space approach. This is particularly useful for formulating the likelihood 
function and its derivatives. In general, we use the marginal likelihood approach 
given by Kohn and Ansley (1986). 

In Section 3 we describe our model within the state-space structure and 
discuss the estimation of the parameters. This is an extension of the models in 
Binder and Dick (1988) which consider only ARMA models. In Section 4 we detail 
an algorithm for performing the computations. Section 5 discusses future 

research. 

2. Autoregressive Integrated Moving Average Models 
and Its State-Space Representation 

Before describing the complete model for our problem in Section 3, we 
review ARIMA models and a state-space representation for this model. We also 
review the modified Kalman filter given by Kohn and Ansley (1986) and the fixed 
point smoothing algorithm. In Section 3 we formulate our complete model within 
the state-space framework. We closely follow the formulation and the marginal 
likelihood approach in Ansley and Kohn (1985) and Kohn and Ansley (1986). 
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2.1 ARIMA Models 

An ARMA (p,q) model for the random variables 0 1 ,  02 	is defined 

by  

	

- aiet_i - ... - cze_ = Ct - i ct-i - 	- 8qCt_q 	(2.1) 

- 	 where {et} are independent N(O,o). Defining B as the backshift operator, 

so that BmO t 
= 
8tm and similarly BmC = t-m' expressIon (2.1) can be written 

- 	 more compactly as 

= 8(B)ct, 	(2.2) 

where u(B) 	1 - 	- ... - 	and a(B) = i-8 1B - ... - 	For 
stationarity It is assumed that the roots of the polynomial, a(B), are all 
outside the unit circle. The ARIMA (p,d,q) model is an ARMA (p,q) model 
defined on v d8,  where V = i-B, the differencing operator. Thus, the ARIMA 
(p,d,q) model is 

cl(B)VdOt = 8(B)ct. 	(2.3) 

For example, for an ARIMA (1,1,1) 	model, 	expression 	(2.3) 	is 

(1 - cB)(i-B) a t  = ( 1-8B) Ct. 

By formally multiplying out the polynomial a(B)Vd,  we see that (2.3) has the 
same structure as (2.2) except that some roots of the resulting polynomial are on 
the unit circle. The seasonal ARIMA (p,d,q)(P,D,Q) 5  model is given by 

x(BS) (B) v vd 
e

= (BS) s(B) ct. 	 (2.4) 

where x(B) = 1-x 1 B - ... - x 1'  B 1', 

v(B) = 1-v 1B - ... - V 

VS  = 1_BS. 

• 	The value of the seasonal factor, S, corresponds to the periodicity of the series; 
for example s12 with monthly data, s=4 with quarterly data. For example, for 
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an ARIMA (1, 1, 1)(1, 1, 0) 4 	model, 	expression 	(2.4) 	Is 

(1-04 )(1-aB)(1-.B4)(1-B) o, = (1-0) tt 

Again, we see that (2.4) has the same structural form as (2.2). The 
complication introduced by the non-stationarity of (2.3) or (2.4) 18 that we must 
use a modified Kalrnan Filter which carries a component corresponding to an 
improper distribution. 

2.2 State-Space Models 	 - 

We now describe a general state-space model. In Section 2.6 we show how 
the ARIMA model can be structured into a state-space form. In Section 3, the 
models we use can also be structured into the same general state-space form. 

We start by defining random vectors, called state vectors, Z0 , z19  
z2 , ..., each of dimension r. These state vectors are not directly observable 
in most cases. Instead the observations are given by 

Yt = 	t=1, 2, ..., 	 (2.5) 

where ht  is a known r-dimensional vector. The Initial conditions are that z 0  is 

multivariate normal with mean 

m(OiO) = .o(OIO)i 	 (2.6) 

and variance matrix 

V(OiO;k) = kV 1 (010) + V0 (010) 1 	(2.7) 	- 

Without loss of generality, we will assume that m0 (OiO) = 0. It will be assumed 
that k is large, so that (2.7) is the covariance matrix for a partially diffuse 

distribution. 

The transition equation is given by 

zt+i = Fz + 	 (2.8) 

where F is an r by r known matrix, C is an r by n known matrix and e 	 is 

a multivarlate normal n-dimensional vector with zero 	mean 	and diagonal 
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covariance matrix U. Note that the models could be extended so that F and G 
• 	 depend on t, but we do not use this in this article. 

2.3 ModIfied Ka.lman Filter 

Because the initial conditions represent a partially diffuse distribution, the 
usual Kalman filter is not appropriate. See Anderson and Moore (1979) for the 
usual Kalman filter. We give here the modified filter as described by Ansley and 
Kohn (1985). We have adapted these to handle the case of a vector-values 
rather than the one-dimensional case. Readers who wish to skip the detailed 
formulae may continue with Section 2.4. 

We denote the conditional mean of zt  given y19 y29 ... y by m(tIc;k) and 
its conditional variance by V(tIr;k). We allow for missing y-values. 

The recursions are given as follows. We define 

	

•(t+lit;k) = .0(t+lit) + 0 (k), 	(2.9) 

where 

	

ui0 (t+11t) = Fm0 (tlt); 	 (2.10) 

ifyt+l is not missing, we define 

	

a+i = y4 - ht+ i 0 (t+11t) 	 (2.11) 

and 

V(t+lit;k) = kV 1 (t+lit) + V0 (t-i-11t) + 0 (k'), 	2.12) 

- 	 where 

V 1 (t+lit) = FV 1 (tit) F . 	 (2.13) 

and 

V0 (t-s-lit) = FV0 (tit) F + GUG; 	 (2.14) 

0 	
ifyt+l is not missing, we define 



-7- 

v1(t+1) = ht+i V1(t+11t)  ht+i 	(2.15) 

and 
	

. 

v0 (t+1) = h 	V (t+1it) ht+i. 	(2.16) 

We note that when y t+i  Is not missing, at+l Is a normal random 

variable which, conditional on yl,..., y, has mean zero and variance given 

by 

kv 1 (t+1) + v0 (t+1) + 0 (k'). 	(2.17) 

Finally, the updating formulas given observation 
t41 

 are as follows: 

.(t+lit+1;k) = m(t+11t+1) + 0 (k') 	(2.18) 

and 

V(t+lit+1;k) = kV 1 (t+lit+1) + V0 (t+lit+1) + 0 (k 1 ), (2.19) 

S 
(2.20) 

(2.21) 

(2.22) 

where, (i) for t+i  missing, 

.0 (t+11t+1) = 

V 1 (t+1it+1) = V 1 (t+11t), 

V0 (t+l1t+1) = V0 (t+110; 

(ii) for yt+l not missing and v 1 (t+1) = 0, 

m0 (t+11t+1) = .0 (t+lit) + V0 (t+11t) ht+i at+,/v0(t+ 1 ) ,  

V 1 (t4-1It+1) = V 1 (t+11t), 

(2.23) 

V0 (t+1it+1) = V0 (t+lit) - V0 (t+1It) ht+, ht+, V0 (t+11t)/v0 (t+1); (2.24) 

S 
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(iii) foryt+l not missing and v 1 (t+1) > 0. 

40 	m0 (t+lit+1) = i0 (t+lit) + V1(t+lit) ht+i at+i/vi(t+ 1 ) 	(2.25) 

V1 (t+lIt+1) = V1 (t+1It) - V 1 (t+1it) 

V0 (t+11t+1) = V0(t+lit) + V 1 (t+lit) 

- V1(t+lit) ht+i ht+ i 

- V0 (t+lit) ht+i ht+ i 

ht+ i ht+ i V1 (t+lit)/v 1 (t+1) 	(2.26) 

I 	 2 

ht+i ht+ i V1 (t+ltt) v0 (t+1)/v 1 (t+1) 

V0 (t+1 I t)/v 1 (t+1) 

V1 (t+1/t)/v 1 (t-f-1). 	(2.27) 

For details of the proofs of these recursions, see Kohn and Ansley (1986). We 
note that when yt+l Is not missing and v 1 (t+1) > 0, the rank of V 1 (t+1 I t+1) 
Is less than the rank of V 1 (t+1It), since V1(t+lit+1) ht+i = 0, but 
ti. 1

11
1 (t+11t) ht+i  0 0. Therefore, If the rank of V1 (0I0) is R, then the 

rank of V 1 (tlt) will be zero after R non-missing values. At this point, we are 
certain that v (T) = 0 for all T>t. 

The recursions given by (2.9) to (2.27) yield m0 (rlt), V 1 (rit) and V0 (TIt) 
for r=t or T=t+l, and t=1, 2, ..., T. These will prove useful for obtaining 
the marginal likelihood function in Section 2.5. 

2.4 ModIfied Fixed Point Smoothing Algorithm 

In Section (2.3) we obtained the conditional mean and variance of the state 
vector at time t given the data up to time t. For some purposes, though, we 
would like to have the conditional mean and variance given all the data, 
Including observations which occur after time t. We denote this mean and 
variance by •(rIT;k) and V(TIT;k) for T>r. To obtain these, we apply (2.9) 
to (2.27) to an augmented state-space model. 

* 	I 	I In particular, we let 	= (zt, z) 

	

* 	IFIOI 	* 	'6 

le F = I— — i— — , 6 = I- 
0IIr 
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and 	= ( hi, 0')'. Here 1r  is the r by r identity matrix. The state- 

space model is given by (2.5) and (2.8) where z, F, G and ht  are replaced by 

4 , F, G* and h, respectively. We denote Cov(zt ,  zIy1, ..., y) by 

C(t,is;k) 	kC1  (t,tIs) + C0 (t,rIS) + 0 (k). 	(2.28) 

. 

The detailed recursions are given by (2.29) to (2.52). Some readers may wish to 

skip to Section 2.5. 

•(rIt;k) = 0 (Tk) + 0 (k 1 ) 	 (2.29) 

V(tir;k) = kV 1 (TIT) + V0 (rIr) + 0 (k'), 	(2.30) 

C1 (t,TIT) = V1 (TIT) 	 (2.31) 

and 	C0(t,rIr) = V0 (T1r), 	 (2.32) 

where 	I r) and V0 (t I ) are obtained from the modified Kalman filter of 

Section 2.3. 

Now, 	 0 
C(t+1,tlt;k) = kC1 (t+1,clt) + C0 (t+1,tlt) + 0 (k), 	(2.33) 

where 

C1 (t+1,t1t) = FC1 (t,tt) 

and 	C0 (t+1,TIt) = FC0 (t,rlt). 	 (2.34) 

The updating equations become 

a(tit+1;k) = 	(rIt+1) + 0 (k 1 ) 	(2.35) 	- 

C(t+1,Tit+1;k) = kC 1 (t+1,tlt+1) + C0 (t+l,TIt+l) + 0 (ku ) (2.36) 

V(rit+1;k) = kV 1 (iit+1) + V0 (tIt+1) + 0 (k) 	(2.37) 

0 
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where, (1) for t+i 
 missing 	

(2.38) 

10 (Tit+1) = 

C 1 (t+1,tIt+1) = C1 (t+l,rtt) 	 (2.39) 

C0 (t+1,TIt+1) = C0 (t+1,11t) 	 (2.40) 

V 1 (rit+1) = V1 (tit) 	 (2.41) 

V0 (rtt+l) = V0 (rlt); 	 (2.42) 

foryt+l not missing and v 1 (t+1) = 0 

R0 (Tlt+1) = S0 (TIt) + C0 (t+1,tlt) ht+i at+i/v0(t+1) 	(2.43) 

C1 (t+1,rlt+1) = C 1 (t+1,rlt) 	 (2.44) 

C0 (t+1,1it+1) = C0(t+1,it) - vo(t+lIt)ht +jht+1C0(t+ 1, dt)/vo(t+ 1 )(2 . 45 ) 

V (rIt+1) = V (tlt) 	 (2.46) 

V0 (rlt+1) = V0(tit) - Co(t+1,TIt)ht+iht+1C0(t+1,rlt)/vo(t+1); (2.47) 

for yt+l not missing and v 1 (t+1) > 0 

0 (TIt+1) = *(rIt) + C 1 (t+1,TIt) ht+i a+i/vi(t+1) 	(2.48) 

• 	C1 (t+1,tt+1) = C1(t+1,tit) - Vi(t+lIt)ht +iht+1C1(t+ 1, tIt)/vi(t+ 1 )(2 . 49) 

C0 (t+l,rtt+l) = C0 (t+1,rlt) + Vi(t+lIt)ht+iht+1C1(t+ 1, rlt)Vo(t+ 1 )/Vi(t+1 ) 

- V1 (t+lit) ht+i ht+i C0(t+1,rit)/v1(t+1) 

- V0(t-*-lIt)ht+lh t+l C 1 (t+1,rit)/v 1 (t+1) 	(2.50) 
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V1 (tlt+1) = V1(T1t) - Ci(t+1,rIt)ht+1h+1Ci(t+l,.1It)/vi(t+1) (2.51) 

V0 (tlt+l) = V0(tlt) + Ci(t+ 1, TIt)ht+1ht+1C1(t+ 1, t 1 t)vo(t+ 1 )fvi(t+ 1 ) 

I 	 I 

- C1 (t+1,11t) ht+i ht+ i C0 (t+l,rit)/v 1 (t+1) 

I 	 I 

- C0(t+l,tit) ht+i ht+i C1 (t+l,tlt)/v 1 (t+l). 	(2.52) 

We note that In the fixed point smoothing algorithm, if we are only interested in 
a linear combination of z, say gz for some fixed vector g, the 
computations are reduced, since we only need to carry C1 (s,r I t)g 

C0 (s,r10g, g' V 1 (r I t)g and g'V0 (T It)g through the recursions, where s=t 
or szt+1. These results generalize slightly the modified fixed point smoothing 
algorithm In Kohn and Ansley (1986), where only y h' z for missing 
y-values were of interest. 

2.5 Marginal Likelihood Function 

In Section 2.2 we obtained recursions for the mean and variance of y t  given 
the non-missing values of yi, 	-i 	We 	found 	that 

= Yt - h m0 (tit-1) given the non-missing values of y1, ..., 	Is 

normally distributed with mean 0 (k 1 ) 	and 	variance 
kv 1 (t) + v0 (t) + 0 (k 1 ). Therefore, for any given k, the density function 
for lyt  is f(y;k) where 

log f(y;k) = [- 1  log(2t) - 	log {kv 1 (t) + v0 (t)} 

t 
- 	a

t 
 / {kv 1 (t) + v0 (t)11 + 0(k), 	(2.53) 

and the summation is taken over the non-missing y-values. 

However, as k+a' this becomes an Improper density function. To remedy this, 
we consider a marginal density function which does not depend on k. 

S 

. 

0 
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The starting conditions for the state-space model were that Zo  was normal 
• 	 with mean zero and variance kV1 (0i0) + V0 (OiO), where the rank of V 1  (010) 

is R. 

This is equivalent to assuming 

z0  = A q + w, 	 (2.54) 

where A Is an r by R fixed matrix, n  is an R-dlmensional N(O,kIR)  random 
variable, where I R is the R by R Identity matrix, and w Is an r-dimensional 
N(O,W) random variable, independent of i. 

The density function for z is 

f(z0 ;k) = (21) -r /2 IkAA + Wi 	exp{- I z0 (kM + W 1z0 }. (2.55) 

Consider now 

urn 	f(z ;k). 	(2.56) 
k+w 

0 	We have 

urn k '2  kAA + Wi 	= IWIF iAW 1 A1 4  

and 

I 	I 	 1 	1 urn z0 (kAA + W)z0  = 	- W 1A(AW' 1A) 1AWI z0 . 	(2.58) 

Now the quadratic form given by the right hand side of (2.58) is the same as for 
the density of 

- A(AW4A) 1AW 1 1 z09 	(2.59) 

which is independent of ii and independent of A'W4z0. Therefore the limit of 
the density function In (2.56) is proportional to the singular normal density 
function for the random variable given by (2.59). We use this marginal density 
function which does not depend on the value of k. The interpretation is that our 
inferences are conditional on A'W4z , so that the initial condition is that z 
has a singular multivarlate normal distribution. 
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To obtain the marginal likelihood for all the data, we take 

urn kR/'2  f(y;k), 	 (2.60) 	• 
k-. 

where f(,y;k) Is given in (2.53), and we normalize expression (2.60) to a density 
function. The logarithm of the resulting density function is 

t(y) 	- 1 1 log{2itv0 (t)} - 	) at/v0(t), 	(2.61) 
t 	t 

where the summation is over the non-missing y-values. Suppose now that t(y) 

depends on a vector of parameter y. Taking derivatives with respect to y, we 
have 

2 

= [v0(t)]' [i{_at - 	
av0 (t) 	aa 

t 	
(2.62) 

2v0(t) 	
-a 

t 

where, from (2.11) we have 

aa - 	a*(tit-1)I 

ay - - I 	 I ht. 	 (2.63) 

. 

We also have 

a 	I 	I  
E 	

2 	I—i I r 3VO (t {O(t) i s -1 at 	____ 

(aai 	
2 	

v0(t) 	
By 	ay 

+ (v0 (t) 
	9a
I1 	 tuaaF'• 	 (2.64) 

J By 
t 

The maximum likelihood estimates for ' are obtained when expression (2.62) is 
zero. The asymptotic variance of this estimate is given by inverting the matrix 
given by (2.64). 

0 
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2.6 State-Space Representation for ARIMA Models 

In Sections 2.2 to 2.5, we presented results for general state-space models. 

In order to implement these for our application, we show how ARIMA models 
presented in SectIon 2.1 can be represented in this form. We will also develop 
the Initial conditions, as given by Ansley and Kohn (1985). 

Consider the ARIMA (p*,d,q*)(P,D,Q) given by 

x (BS) *(B) V D  V  d  8 = v(B) B*(B) ct 	(2.65) 

where El ,  £2, 	' 	are Independent N(O,a). We define 

a(B) = 	 which isof degree p = 
p' + sP. 

We also define 8(B) 	\,(BS)B*(B) which is of degree q = qt  + sQ. We let 

A(B) = v 0d which is of degree R d + sO. Finally we let a*(B) 

which is of degree S = p+R. Therefore the model (2.65) may be written as 

	

c&(B)A(B)Ot = 	 (2.66) 

or 	a*(B)et = 	(2.67) 

where 	 a(B) = 1 - 	- ... - aB 	(2.68) 

(B) = 1 - A1B 	- RB 	(2.69) 

8(B) = 1 - 8 1B - ... 	8q 
 Bq

(2.70) 

and 	 a*(B) = 1 - 4B - ... - aB5 . 	(2.71) 

For example, for an ARIMA (1,1,1)(11O) 4  model given by 

(1 - xB4)(1 - *B)(1 - B4 )(1 - B) e t  = (1 - B*B) Ct, 

0 	we have 



1 	0 0 ...0 0 

* * * * o 	a2  a3 ... ar_i ar  

o 	a3 a4  ... ar  0 

o 	a,. 0 ...0 0 

A1  = (2.73) 
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xB4 	* cl(B)=i_a*B_ 	xB 

a(B) = 1 - B - B4  + B 5  

and 	a*(B) = 1 - ( i+cz*)B + a *s2 - (1+x)B4 + (1+a*)(i+A )B5  - 

+ xB8 - A (i+a*)B9  + cz*AB ] O. 

Note that p=5, q=i, R=5 and S=iO. 

We now define z = (zit ,  '' rt 	the state vector. Letr max(Sq+i). 

If S<q+1, we define a 1  = ... = a = 0. If S>q+l, we define 

8 +1 	= 	0. We let 

S t 
	

C t 

= A1 	+ A2  Ct i 	I 
	 (2.72) 

° t-r+i 
	

t -r+2 

where 

an r by [max(p,i)+RI matrix, and 

0 



a 1  1 0...O 

a2  0 1...0 

0 0 1 ... 
ar-1 

0 0...0 a
r  

(2.75) 
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S 
A2  = 

0 	0 	0 ... 	0 	0 

_8 1 	2 	3 •" 	6r-2 	r-1 

-62 -83 	84 	r-1 0 

0 ... 	0 	0 

(2.74) 

an r by (r-1) matrix. 

Now for ht = (1,0 9  ... 0) 1 
9 

0 and G = (1, -8 1 9  8 2 ,  ..., 	we have et  = h z 	satisfies model 
(2.67) when the state vectors given by (2.72) satisfy the transition equation (2.8). 
This representation for model (2.67) was given by Harvey and Phillips (1979). 

To complete the specification of the state-space formulation, we need initial 
conditions. Taking model (2.66), we let A (B)et = u, so that 

a(B)ut = 8(B)Et. 	(2.76) 

We assume that this ARMA (pq) model for {u}  Is stationary. The following, 
given by Ansley and Kohn (1985), specifies the initial conditions for 20. Note 
that .o(0i0) = 0, so we need tospecify V 1 (0I0) and V0 (0i0) of(2.7). 

Consider the vector 0- = (Os, °- i' ..., °-+i . Let 
= (_p °_pi' 	0..+i) . Wedenote U... = ( u s . u_1, ..., u_,1 

We assume r Is N(O, kIR)  and u_ is N(0, a2 Va), Independent of i. 

L 
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Expressing ii and U.. as a function of e_, we obtain 

U - 	
= H 0 	 (2.77) 

11 

where M is a [max(p,1) + R] - square matrix. This matrix is the Identity 
matrix If R=0; otherwise It Is 

1 	2 	R 	0 	... 0 

0 	1 	R-1 	 0 

° H = 	- - 	::R:pt1 	Rp+2AR . 
	(2.78) 

0 

Forexample, when (B) = (1-B 4 )(1-B), and p=5 asinthe 
ARIMA (1,11)(1,1 1 0) 4  example, wehave 

1-100-1 10000 40 
0 1 -1 0 0 -1 1 0 0 0 
00 1-1 0 0-1 1 0 0 
0 0 0 1-1 0 0-1 1 0 
0 0 0 0 1 -1 0 0 -1 1 

M - - - - - - - - - - - - - - - - - 
00000 10000 
0 0 0 0 0 0 1 0 0 0 
00000 00100 
00000 00010 
00000 00001 

Therefore, 

' U 
= 	- . 	 (2.79) 

Ti 

Since 	 z = A 1  o_ + A2  €, 	 (2.80) is 
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where c_ = (e0 , t_p ... £r+2) if r 	2 and c_ is the null vector If 
r=1, we have 

z0 =A1 W
lu 	

(2.81) 
Ti 

This may be written as 

z0  = K1  u_ + K2 Ti + A2  c, 	(2.82) 

where K Is the first max(p,1) columns of A 1 M -1 and K Is the last R 
columns of A1M . Therefore, the variance of z Is kV1 (010) + V0 (OiO), 

where 

V 1 (010) = K2  K2 	 (2.83) 

. 

and 
V0(010) = a(KjVKi + K1 CUE A2  + A2 CUE  K 1  + A2  A2), (2.84) 

where the matrix CUE Is the covariance between U and c and aV is the 
covariance matrix for U. 

In Section 4 we describe a method for obtaining V and CUE. 

A simple example is given now to show how these computations are carried 
out. Consider the ARIMA (1,1,1) model given by 

(1 - *B)(1B) 8t = ( 1_8*B)Et  

Therefore, 	a(B) = 1 - a *B 

(B) = 1-B 

8(B) = 1_ 8*B 

a*(B) = 1 - (1 + *)B + a*B2  

so that p=l, q=1, R=1, S=2 and r=2. We have 

C 



and 

S 1 -1 

01 
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10 
A1 

 = 0 -a * 

	 S 
A2  = 

-B 

1+a* 1 

* -a 0 

1 

_ B* 

Therefore, 

Ill 	I 
1 0-a I 

so that 

and K2=1* 

Using the methods described In Section 4, we find 

CUE = ( 1 1 
and 

vu  = r v ], S 
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where V = ( 1 - 20* B*)/{1_( a*)}. 

S Therefore, 

1 _u* 

	

V 1 (010) = 	 2 

_a* (a*) 

- 	 2 	-B 
• 	 V0 (010) = a I 	21. 

This completes the specification of the ARIMA models In state-space form. 
In the next section we show how this can be extended to the case where the 

observations are subject to survey error. 

• 	 3. ARIMA Models with Observations Subject to Survey Error 

3.1 ARMA Models for Survey Error 

When a time series Je t J which follows an ARIMA process is observed 
exactly, the likelihood function for the unknown parametors can be derived using 
the state-space formulation given in Section 2. Recursive relations for the 
derivatives of the likelihood function can also be obtained using methods given in 

Section 4. 

However, when the observed time series is the result of a series of sample 
surveys, the survey sampling error should be taken into account when deriving 
the likelihood function. The actual structure of the survey error will depend on 
the sample design and the population characteristics. We let yt = + e 1  for 
t=1, ..., I be the observed series where e t is the survey sampling error. The 
simplest case is where the surveys are non-overlapping with small sampling 

fractions so that the er's  are approximately independent. 
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In a rotating panel survey, the et's  will be correlated. Suppose there 
are q panels and one is dropped and replaced by a new Independent panel on each 
occasion. The panels rotate so that an entering panel leaves the sUrvey after q 
time periods. Assuming small sampling fractions, this implies that the 
correlation between e t and e S is zero for S > t + q. If the correlations are 
constant, this implies that kt et is a pure moving average process, ARMA 
(0,q). Here, kt  can vary to reflect different variances for each point In time, 
although the autocorrelations are assumed constant. 

If on each occasion a random set of units is dropped, it may be reasonable to 
assume that e, or at least a multiple of e,  given by kt e, is first order 
autogressive, ARMA (1,0). This implies that the correlation between kt et 
and k t+S e+ 

S is a for some a. 

We see, therefore, that It can often be assumed that kt e t 	is an 
ARMA process. It may be possible to assume other structures which admit a 
state-space form and what follows could be modified to satisfy that structure. 
We also assume that the parameters of the state-space model can be estimated 
using design-based methods. This is not necessarily straight-forward in general, 
and more research into estimating these parameters is needed. However, here 
we assume that these parameters are known. 

3.2 The Data Model 

The complete model we wish to consider, therefore, is the case where {et} 
is an ARIMA process and the survey errors, {et},  follow an ARMA process. 
Using the modified Kaiman filters, we will develop the marginal likelihood 
function. Maximizing this function with respect to the unknown parameters 
yields parameter estimates. In this way, we can estimate the parameters of an 
ARIMA model In the presence of survey errors. 

In traditional ARIMA modelling with no survey error, the series is differenced 
using t(B) so that the derived series is a stationary ARMA process. However, 
in our application, differencing the survey estimates would complicate the 
covariance structure of the survey errors. The approach given here Is easier to 
implement and missing y-values can be handled within the same framework. In 
Section 4 we introduce regression terms into the model as well. 
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As In Section 2, we let 0 can be described by the ARIMA model: 

40 	 cz(B)(B)et = 
	 (3.1) 

where 	 a(B) = 1 - iB - ... - 
	 (3.2) 

8(B) 	1 - 8 1B - ... - 813 
	

(3.3) 

A(B) = 1 - 	 (3.4) 

- 	 and the c's are Independent N(O,o 2 ). 

We now assume kt e t follows an ARMA (m,n) model 

•( B )( k tet) = Y(B)Tlt 
where 	 •(B) = 1 - i 8  - ... - 

	 (3.5) 

(B) = 1 - y 1B - ... - 	 (3.6) 

and the Ti t' are N(0,r 2 ). The observations are given by 

Yt = 	+ e, for t=1, ..., T. 	 (3.7) 

This model can now be put into state-space form. 
We let 

a*(B) = a(B)a(B) 

= 1 - a 1  B - ... - aBS, 	(3.8) 

where S = p+R. We let r 1  = max(S, q+1), r2  = max(m, n+1) andr = r 1+r2 . 

We let h 1  = (1, 0, ..., 0)' be an r 1-dimensional vector, 

h2t = (k', 0, ..., 0)' bean r 2  -dimensional vector and ht =(hj.hit)'. 

We let F 1  be the r 1  by r1  matrix given by 

0 



a1  1 0...0 

a2  0 1 ... 0 

* 
a 0 0 ... 1 

* 
arl  0 0...0 

F 1  = (3.9) S 

01 1 U ... U 

4*2 0 1...0 

• 	1 0  r2 - 0...0 

• 0 O ... O r2 

F2  = (3.10) 

S 
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where, if 	then aS+l = ... = a = 0. We let F2  be the r2  by r2  

matrix given by 

	

where, if m<r2, then 	= ... = r2 = 0. The rxr matrix F is given by 

F 1  0 
F = 	 (3.11) 

0 F2  

We let G 1  by the r 1 -dlmensional vector given by 

= (1, -8l  9  ..., -8g. 1 i'' where, if q < r 1-1, then 

8q +1 = ... = Br1- 1 = 0. We let G be the r2 -dimensional vector given by 

= 1, - 	"' 	r i" where, Ifn cr2-1, then 
2 

1 = 	= r 1 = 0. The matrix G is an r by 2 matrix given by 2  

S 
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61 0 

	

6= 	0 	62 	
(3.12) 

Finally, letting 

2  0 

	

U = 	. 	 (3.13) 

	

0 	¶2 

completes the specification of the transition equation (2.8). 

For the initial state vector, we let uo(OIO) = 0. We let 

V1,1 (010) 0 

	

V 1 (010) = 	
0 	0 	

3.14) 

where V11 (0I0) is an r 1  by r 1  matrix derived analogously to (2.83). We let 

V1 	0 

S 	V0 (010) = 	 , 	 3.15) 

	

0 	V20 (OiO) 

where V10 (OiO) is an r 1  by r 1 	matrix derived analogously to (2.84), and 
V20 (OiO) is also derived analogously to (2.84), using the parameters 

m' 	11)11 ...,'on and t  

This completes the specification of the data model in state-space form. From 
this, using the modified Kalman Filter, the marginal likelihood function given by 

(2.61) can be derived. 

3.3 Data Smoothing 

Our observations consist of y. =t + e, where  e t is the survey sampling 
error, for t=1, ..., T. 	The population characteristics of interest are 

Once all the parameters of the state-space model have been 
estimated, we can use the modified fixed point smoothing algorithm to obtain 

S E(eIy1, ...' T' for 
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In particular, for the state space model of Section 3.2, with state vectors 

..., z., we have e = g z, where g = (h 1 , 0, ..., 0). Using the 
modified fixed point smoothing algorithm of Section 2.4, we can obtain 

	

E(eIy1, ..., 
y--;k) 	= g 0 (rIT) + 0 (k 1 ) 	(3.16) 

and 

V(eIy1, ..., y..;k) 	kgV1 (tiT)g + g V0(rIT)g + 0 (k). (3.17) 

We now extend this to the estimation of change, 8 I  - 0 W  for r>w. 	From 

Section 2.4 9  starting at t=w and continuing to t=r, we obtain 

	

E(e-eIy1, 
..., 

y;k) = 	- g 0(wlr) + 0 (k'), (3.18) 

Var(e-eiy 1 , ..., y;k) = k(g V 1 (r1t)9 + g V1 (wIr)g - 2gC 1 (-t,wit)gJ 

+ g V0 (TIT)g + g ' V0(wit)g - 2g C0(t,wlt)g + 0 (k) 	(3.19) 

and Cov(z, o - ely1, ..., y;k) 

= k[V1 (rtt)g - C 1 (r,wk)gI 

+ 	- C0 (r,wip)g + 0 (k'). 	(3.20) 

The quantities given by expressions (3.18) to (3.20) can then be used in the 
modified fixed point smoothing algorithm, using 8-0 as the fixed point, so 
that the state-space model is 

I 	F 0 	z 	 I 	I C 	tt+1 I 
= 	 I + I 	

I 	

I 	(3.21) 
e I  -o w  l 	oiee w I 	lo I ,  

I 	II 	I 	I 
with observations 

zt+1 I 

	

t+i = (ht+i, 0) 	
e 	e 

 I. 	(3.22) 
- 	I 

I 

for t = i, -r-+-1, ..., T-1. 
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This procedure could be generalized to obtain the conditional mean and 

S 	variance of any linear combination £1 8 1 + It 02 + ... + £1.01 for fixed values of 

••• 	In this case the state-vector used In place of (3.21) is 

(z1, £1 11 + ••• + ttet)' and the last row and column of the conditional 
variance matrix must be updated analogously to expressions (3.19) and (3.20). 

3.4 ConfIdence Intervals 

In the model of Section 3.2, the unknown parameters are ci, 
..., 

a, 81. 

•• and 02. In fact, for the more general seasonal model given by 

A(BS) a(B) A(B) e  t = v(B 5 ) 	8(8) 	ct. (3.23) 

where 	x(B) = 1 - x 1  B - 	... 	- xB (3.24) 

a(B) = 1 - a 1B - ... - a BP 	 (3.25) 

(B) = 1 - 	B - ... - \) QB 	 (3.26) 

S 8(B) = 1 - 8 1B - ... - 8qB 
q 	 (3.27) 

and 	a (B) = v V d 	 (3.28) 

the unknown parameters are 	= (x 1 , ..., X ',, a 19  .... ap t v 1 , ..., 
61, 	 •' 8q' 	

2). 

To obtain the maximum likelihood estimates, r,  for the parameters, y, 
it is necessary to solve the likelihood equations given by (2.62). Asymptotically, 

- y will be approximately multivariate normal with covariance matrix, V i,, 
given by inverting the matrix given by (2.64). By substituting parameters 
estimates into (2.64), we can obtain confidence intervals for components of y. 
Hypothesis testing can also be performed. 

In order to obtain the derivative of the likelihood function and the Fisher 
information matrix, given by expressions (2.62) and (2.64), It Is necessary to 
compute aa/ay and v 0 (t)/y. Since at  and v0 (t) are obtained recursively 
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from the modified Kalman filter, these same recursions can be used to obtain the 
required derivatives. For example, expressIon (2.14) is 

V0 (t+11t) 	FV0 (tlt)F' + GUG. 

Differentiating with respect to a.1  gives 

aV0(t+lIt) - I 	 aV0 (tlt) I 
aa 1 	- 	au1 	v0(tit)F + F 	

aci 	
F 

+ FV0 (tlt) I LL 	 (3.29) 

since aG/aa j  = 0 and aU/au 1  = 0. 

In addition to the confidence Intervals for the unknown parameters, we also 
would like to have a confidence interval for our estimate of 8 given y 1 , ..., 
y1. If all of the parameters are known, we have the variance given by 

g'V0 (tIT)g, where 8 = g ' z. This assumes that v 1 (T) = 0. However, this 
does not include the sampling variance due to estimating the parameters, y. 

Denoting by i0 (t IT) the estimate of m(t IT) at y = , we take a Taylor 
series expansion of i0 (r IT) to obtain 

3140 (iiT) I 	 -. 
0 (tIT) A  .0(tIT) 

+ I 	a 	(y-y) + o II i- i II 	(3.30) 

Since 	Is a consistent estimator for y, we have 

- g0(tIT) & 

am(rIT) I 
g [z-m0(tiT)] - g 	

ay 	I 	+ 	II. 	(331) 

0 
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Therefore 

E[{e-g.0 (tiT)} 2 ] 

am(riT) 	a.o(TIT) 
& g V0 (tIT)g + g 	v. 	g. (3.32) 

a  

To estimate g' Iau0 (riT/ayl, we use the recursions given in the modified fixed 

point smoothing algorithm to obtain the required derivatives. 

3.5 LikelIhood Maximization 

In Section 4 we provide some details for the computation of the marginal 
likelihood function and Its derivatives with respect to the unknown parameters, 
y. From this we can compute t(y;y), the logarithm of the marginal likelihood 
function, given by (2.61), as well as at(y;y)/ay and 

J = - E 	
(ay(ay) 

A number of routines for maximizing a function are possible. We suggest the 
Davidon-Fletcher-Power method, described in, for example, Dennis and Schnabel 
(1983). Assume that y is a c-dimensional vector. For example, for model 
(3.23), c = P+Q+p+q+1. The algorithm is now described. 

STEP 1: 	Start with an initial value, (°)• See Note 1 below. 

Let go  = aL(y; y 0 )/ay. 

STEP 2: 	Let H 0  = - J, where J as given by (3.34) is computed at 

STEP 3: 	Perform steps 4 to 6 for I = 1, 2, ..., c+1. 

(i) STEP 4: 	Compute 6. = - H'1 9. 
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STEP 5: Compute m 1  to maximize L(y;y 	+ mj 60, where m j  is a 
scalar. See Note 2 below. Set 

'l' ( i-i' = 	/ + m6 1  
and 

c (y.(i)) 
g1- 

- 	
ay 

STEP 6: Test for convergence. See Note 3 below. If convergence has been 
achieved, end the algorithm. 

4 

STEP 7: 	Perform Steps 8 and 9 for 1=1, ..., C. If I = c+1 9 	let 
= (c+1) 90 = 

	and go to Step 2. 

STEP 8: 	Let 	= g i  - g 1 _ 1 . 

STEP 9: Compute 
H(i- ' )  

= 	+ m j  
g 1 _ 1 	911  - 	E; H ( ' - ' )  E i  

Go to Step 3. 

Note 1 

Starting points can often be difficult. For a problem where C is large, It may 
help to reduce the dimerisionality of the problem by setting some of the higher-
order autogressive or moving average parameters to zero. This Is known as 
masking. Then after convergence (with a weaker convergence criterion), restart 
with more dimensions, where the starting values are zero for the previously 
masked parameters, and using the converged values from the previous iterations. 

Note 2 

Step 5 is a one dimensional maximization problem. Ideally, If H 11 	Is the 

true Hessian matrix and the function is quadratic, then the function is 
maximized at m 1 =l. We suggest the following procedure. Compute the function 

at 	= 1, 	= km 0  and at 	= M ( 2 ) Ik where k is 2/3, say. Let 0 
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the function values be f0 , f 1  and f2  respectively. Also let f 	be 	the 

function value at m j  = 0. 

Case (1): 

When f0  Is the largest of f0 , f 1 , f2 	and f 	fit a quadratic equation 

through 	and m 2 ; maximize that quadratic at m 3 	and 

compute the function value, f3  at 	Use M 	 to be that value for 

which the maximum of f0  and f3  is achieved. 

Case (ii): 

When f 1  is the largest of f0 , f 1 , f2  and f, perform the following 
In order: 

Set M 	 to m °  and f2  to f0 . 

Set m (0)  to 	and f0  to f 1 . 

Compute m 1  = km 0 , compute Its function value which is defined 

as the new f 1  and check which case now occurs. 

Case (iii): 

When f2  is the largest of f, f 1 , f2  and 
f*, 

 perform the following in 

order: 

Set (1 ' to (O ' and f 1  to f0 . 

Set M 	 to m 2  and f0  to f2 . 

Compute m 2  = m 0 /k, compute its function value which is defined 

as the new f 2  and check which case now occurs. 
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Case (iv): 

When f Is the largest of f0 , f 1 , f and f, perform the following 

in order: 	 0 
Set m 2  to m 1  and f2  to f 1 . 

Compute 	= kn4 2)  and set f0  to Its function value. 

Compute m 1  = km 0 , compute Its function value which Is defined 

as the new f 1  and check which case now occurs. 

When setting the m 1 -values, checks should be made to ensure that the 
m 1 -values are not too large so as to overstep the parameter space. Useful 
checksare 1x 1 <1 9  1a 1 I<1 9  Iv 1 kl, 1011<1  and a' > 0. 

Repeat the procedure until Case (I) occurs. 

The maximum of the quadratic function through m°', MM and m 2 	is 

given by 

+ (f0-f 1 )(m 2 -m 0 ) - (f0-f2)(m ° -m 1 ) 

2[(f0-f1)(m 2 -m 0 ) + (f0-f2)(m°-n4')1 	
(3.34) 

Note 3 

A number of tests for convergence are available. We suggest the following. We 
denote gi = (g1, ....and 61 = (6i1, 0.09 6ic). 

The procedure is deemed to have converged if one of the following occurs: 

1g 1 	yI 	 7 
max{ 	} Is small, say 10 

j 

or max 	
i1 	

Is small, say 10. 

i 	IYj  

0 
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The program should also abort If there have been a large number of iterations, 
say more than lOOc. 

4. Computations 

4.1 The Model 

	

• . 	 In this section we give the detailed algorithms to compute the marginal 

	

- 	 likelihood function and Its derivatives with respect to the parameters. The 

	

- 	 assumed model for the observations, y1, ..., y19 is as follows: 

x(BS) 	*(B) v D Vd 6 	= v(BS) 	8* ( B) t c (4.1) 

•(B)(ket) = 	i1(B) ii (4.2) 

Yt = et + e, 	 (4.3) 

where 	x(B) = 1 - 	B - ... 	- 	AB (4.4) 

*(B) = 1 - 4 B - 	... 	- 	czB (4.5) 

v(B) 	= 1 - v 1  B - ... 	- VQBQ  (4.6) 

8*(B) = 1 - 	B - 	- (4.7) 

•(B) 	= 1 - 	B - ... 	- 	s 1B (4.8) 

(B) = 1 - 	B - ... - 	 (4.9) 

fEt l are independent N(O,a 2 ), In t l are independent P4(O -r 2 ) and 	and 

Int l are independent of each other. For further generality, we will also add a 
regression component to the observations, so that 

Yt = x. b + et + 	 (4.10) 

where b is an L by 1 vector. 

0 
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The following are assumed known: {j} {4} {kt} ,  {x}, and r 2 . Missing 
y-values are permitted. 	 0 

The regression component in (4.10) can be handled two ways. One way would 

be to let lyt  - x b} be our observations In the likelihood function. When 
maximizing the likelihood, we would need to add a term for aa/b In (2.62). 
An alternative would be to add b to the state vector. We would have 

bt+i = bt. 	 (4.11) 

The advantage of this approach is that the state-space formulation can be 
modified to also include stochastic regression coefficients, so that the transition 
equation becomes 

bt+ i = bt + H 	 (4.12) 

where 	is multivariate normal with mean zero and a diagonal covariance 
matrix. We do not pursue this here. 

For model (4.11), where the first L 	components of the state vector 
correspond to b, we have ht  in Section 3.2 replaced by 	 0 

(xt, h1, h2t). 	 (4.13) 

The initial conditions are the Var(b) = kI, so that the modified Kalman filter Is 
still appropriate. Initially, we have b is independent of z0. The model 
therefore is: 

at t=O 

Varz0 = k0L v 1 (00) + 0 Vo(OIO) + 0 (k
4 ) 	 (4.14) 

bt+ iI -  I1L°'t 	I0 
zt+il - 1 0  Fl Zt + ci tt+i 	 (4.15) 

• I 	bt 
and 	yt = ( Xt ,  ht) 	Z  • 	 (4.16) 

where z0 , V 1 (010), V0 (010), F, G and ht  are all given in Section 3.2. 



- 34 - 

1] 

. 

4.2 Polynomial Algorithms 

The following algorithms are used for multiplication of polynomials. These 
algorithms are needed In Section 4.3. 

Algorithm POLYMTJLT (a, b) 

Consider two polynomials 

P 1 (x) = 1 - a 1  x - ... 	- 
a xP (4.17) 

and 	P2 (x) = 1 - b 1  x - .... 	
- bqX  q (4.18) 

The arguments of the algorithm are a = (a 1 , ..., ar,)' and 

b = ( b 1 , ... 9 bq )'• The function POLYMULT (a,b) returns the value 

c = (c 1 , O..f Cp.j.q) where 

[P 1 (x)]EP2 (x)1 = 1 - 	x - ... - Cp+q P+ 	 (4.19) 

Algorithm DPI4YMLTA (a, b) 

Given the input parameters as in POLYMULT, this function return a (p+q) by 
p matrix of derivatives of the result of POLYMULT (ab) with respect to a. 
If C is given by expansion (4.19), we have 

1 	if 	i=,j 
a a j  

= _bk if i=j+k for k=1, ..., q. 

Algorithm POLYPOWR (a, n) 

By repeated application of POLYMULT, the algorithm POLYPOWR (an) 
computes the coefficients of [P1(x) I, where P 1 (x) Is given by (4.17). 

I 

is 



- 35 - 

4.3 Initlafizat Ion Algorithms 

The following algorithms are used to set up the Initial conditions for the 
state-space model. 

Algorithm CUE (a, b, c) 

This algorithm Is used to compute the components of CUE  in (2.84). 
Suppose we have an ARIMA process 

a(B) c(B)et = b(B)ct 	 (4.20) 

where 	 a(B) = 1 - a 1  B - ... - aBP 	 (4.21) 

c(B) = 1 - c 1  B - ... - cRBR 	(4.22) 

b(B) = 1 - b 1  B - ... - bqB, 	 (4.23) 

where c(B) is the differencing term, so that all the roots of c(B) are on the 
unit circle. The {} are independent N(O,a 2 ). 

The function CUE(a,b,c) returns values d1, •• 	d y. where 
r = max(p+R-1, q+1) and 

2 

d1 = Cov(u ,  ctj+l), 	 (4.24) 

where U = c(B)e. 

The d 1  'S are derived by multiplying 

a(B) u = b(B) t 	 (4.25) 

by 	-ii and taking expectations. The computations are 

d 1  = 1 	 (4.26) 

d 1  = a 1  d 1  + a2  d 12  + ... + a 1 d 1  - b 1 _ 1  for 1=2, ..., r, 	(4.27) 

whereb 	... q+1 	 r-1 	==b 	=Oifr>q+1. 
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Algorithms DCUEA (a,b.c) and DCUEB (a,bc) 

The functions DCUEA (a,b,c) and OCUEB (a,bc) compute the derivatives 

of CUE (a,bc) with respect to a and b, respectively. The results have r 

rows, and p columns and q 	columns, 	respectively, 	where 

r = max(p+R-1, q+1). From (4.26) and (4.27) we have 

ad 1 	ad. 	 ad 
j = a 1 	+ ... + a 1 	+ ci 	, for 1>1 and j<1; 	(4.28) 

aa  aaj  

ad 1 	ad 11 	 ad ________ 	 1 
= a1 ab 	+ ••• + a11  --- 	 , for 1>1 and j<i-1; (4.29) 

_____ 	

ad1 ad1 	_  

ab1 	= a1 ab 	+ ... + a11 ab11 - 1, for i>1; 1   
(4.30) 

ad 

ab 
	 otherwise. 	 (4.31) 

Algorithm VU (a,b) 

Using the model (4.25), the function VU(a,b) 
	computes the 	vector 

v 1 , v2, ..., 	where 

a 2  V1 = Cov(ut ,  Utj+i). 

Multiplying expression (4.25) by u._ 11 	and taking expectations yields the 

following system of equations. 

1 	 V 1  - av 2  - a2v 3  - ... - a v 1  = d 1  - b 1 d2  - ... - br idr  

v2  - a 1  v  1 - a2v 2  - ... - av = - b 1  d  1 - ... - br idr i 

- a 1 v 2  - av 1  - ... - av 1  = - b2d 1  - ... - br ldr 2 

0 
	- av - a2v 1  - ... - av = - bd 1  - ... - br_idr_p (4.33)  
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where bq+ i = ••. = br_i = 0 If r>q+1, and d1, ••• dr is the result of 
CUE. 	

0 
Algorithms DVUA (a,b) and DVUB (a,b) 

	

The functions DVUA (a,b) and DVUB (a,b) 	compute the derivatives of 
VU(a,b) with respect to a and b respectively. The results have p+1 rows, 
and p columns and q columns, respectively. The system of equations (4.33) may 
be written as 

Dv = e 	 (4.34) 

where 0 Is the (p+1) by (p+1) matrix on the left hand side of (4.33) and e Is 
the (p+1)-dimensional column vector on the right hand side. We therefore have 

av  - -lIae - (Q_) 	 (435) aa10 	aaj 	aa1 

and 

-1e 
= 0 (-). 	 (4.36) 0 

To compute ae/aa 1  and e/ab 1  we need the results of DCUEA and DCUEB. 
Note that aD/aa 1  does not depend on the value of a, 	only 	on 	its 
di mensionality. 

We have, for 1>1, 

	

ae i  - ad1 	 adrj+i 
(4.37) aa j  - b11  

	

aa 	- br_i 	aaj 

ae 1  - 	ad 1 	 adr i + i 
- b 1 	- - •.. - bri 	ab 	d 12 . 	(4.38) 

The expressions for ae 1 /aaj  and ae 1 /ab can be derived analogously. 

S 
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Algorithm INITV (ab.c) 

For model (4.20), the function INITV (a,bc) returns a 2r by r 	matrix 
where r = max(p+R, q+1). The first r 	rows of the result correspond to 
V1 (O I 0) in (2.83), and the last r rows correspond to V0 (0 ID) 	in (2.84) for 
a 2l 

The algorithm proceeds by constructing the matrix H from (2.78) and A 1  and 
A2  from (2.73) and (2.74). Note that A 1  contains a, ..., a+R 	which 	is 
obtained from POLYMULT (a,c). The matrix V in (2.84) is given by 

V 1 	V2 	... Vmax (pi) 
VU = V2 	V 1 	vp_ i 	 (4.39) 

. 	 . 

Vmax(p,1) "p-i 	V1 

where {v 1 } is the solution to (4.34). 

The matrix CUE  in (2.84) is given by 

d 1  d2 ... dr i 

CUE = 0 	d1 ... d r 2 

0 	0 ... drmax (p1) 

where {d 1 } is the result of CUE(a,b,c). Matrices V 1 (010) and V0 (010) 	are 
then computed from (2.83) and (2.84) for 0 2 =1. 

Algorithms DINITVA (abc) and DINITVB (abc) 

Theresuitsof DINITVA (abc) and DINITVB (a,b,c) area 2rbyrbyp 
array and a 2r by r by q array, respectively, corresponding to the derivatives of 
the result of INITV (a,b,c) with respect to a and b. Letting K = A1Pf', we 

S 	have 

It 
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I
H', 	 (4.41) Ta- =  iaa go 

where aa/aa Is the result of DPLYMLTA (a,c). From (4.41) we obtain 
and aK2/aa 1 , being the first max(p,l) columns and the last R 	columns 	of 
aK/aa 1 , respectively. The expressions for the derivatives of V and CUE can be 
obtainedfrom DVUA(a,b), DVUB(a,b), DCUEA(a,b,c) andDCLJEB(a,b,c) 
applied to (4.39) and (4.40). 

Thus, we have 

aV 1 (OIO) 	aK 	A 
(4.42) = 	K + K aa 1 	2 	2 (iç)  

aV1 (OiO) 
= 0, 

aV0 (010) 	A l 	, 	3V
,( I)' V K + K -a K = 	u 1 	1 aa j  1 + Kiv aa 

	

aCUE 
A' 	

. 

+ '-1 CUE A2 + Ki(aa 	2 'aa 

3 CUE ' 	' 	' 	
3K

1  
+ A2( aa  ) K1  + A2 CUE (ç) ' 	(444) 

U 

0 
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3V0 (O10) 	aV 

ab1 	= K 1() K1 + Kl(b) A2 + 

I 	S 

+ () CUE K1 
+ A2(E) K1 

aA 
+ (_

b
i a) A2  + 2(ab (4.45) 

Algorithm SETUP (x, u, u, B, •, 02 Q2  T 2 , s, d, D, L) 

Consider now the model given by (4.1) to (4.10), including the regression 
coefficients, b. SETUP returns a (2r+1) by r matrix, where 

r = max(sP + p + sD + d, sQ + q+1) 

+ max(m, n+1) + L 	(4.46) 

The first row of the result is m0 (OiO) = 0. 

The next r rows correspond to V 1 (00) for the r-dimensional state vector 

and the last r-rows correspond to V0 (OiO). 

The state vector is made up of three parts. The first L components 
correspond to the regression coefficients, b. The next max(sP + p + sO + d, 

sQ + q+1) components correspond to the ARIMA model for {e} given by (4.1) 
and the last max(m, n+1) components correspond to the ARMA model for the 

{et} given by (4.2). 

ED 
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The algorithm SETUP proceeds as follows. 

* 1. Let x* 	(x 1 , 

* 
As 

PS 

* 

* 

* 
A l  

x) be defined as 

A '  

A 2  

A P 

0 	otherwise. 

. 

Similarly, let 	= (v, ..., V Q ) bedeflnedas 

* 
vs = v i  

* 
"Qs = 

V.
*   = otherwise. 

Let 	= (0, 0, ..., 0, 1) an s-dimensional vector. 

Let a be the result of POLYMULT (A*,  a); let b 	be the result of 

POLYMULT (v*, B); let C be the result of 

POLYMULT (POLYPOWR(v 5 , D), POLYPOWR (1,d). 

Compute INITV (a, b, c). Let the result be 
r 

Vii  

Vol  

Compute INITV (e, , null vector). Let the result be 

0 



o o 0 

1L 0 0 

o V11  
L1J. 

0 

o o 0 
o o 0 
o o 2 V 0,1 0 

o o 

(4.47) 
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0 

S 
	 V02  

4. The (2r + 1) by r matrix result of SETUP is: 

S 

Algorithm DSETUP (x, ci, v, B, •, •, a', i', S d, D. L) 

Algorithm OSETUP computes the derivatives of the result of SETUP 	with 
respect to the unknown parameters, X. a . v, a, and 0 2 . 	The result is a 

(2r+1) by r by (P + p + Q + q + 1) array. To compute this, we need: 

aa/aa given by DPLYMLTA (ci, ).*), aa/ax given by every s-th column of 

OPLYMLIA (x*,  ci), ab/aa given by DPLYMLTA (a, v*) and ab/av given by 

every s-th column of DPLYMLTA (v* , a). 

Computing the results of DINITVA (a,b,c) and DINITVB (ab,c) we obtain 

= (aVil 	aa 
ax aa 	ax 

aV11 = ll 
aa 	aci 

a(o '  v01) = av ( 01 	aa 
ax aa 	ax 

a(a' v01) = 	ala 
aa 	as 

a(a' V01 ) av
U 1 

av ab'av 

0 



I L  0 0 

o F 1  0 

o 0 F2  

F = a 	 (4.47) 
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a(a2 V0 

80 

9(az V0 

AU other derivatives of (4 
zero. 

= a 	ab 	a 

V 0,1 

47) will respect to the unknown parameters are 

4.4 Likelihood Function Algorithms 	 I 

The algorithm to compute .(OiO) and V(0i0) and their derivatives is given 
by SETUP and DSETUP in Section 4.3. The model is completed as follows. 
We let F be the r by r matrix 

where r is given (4.46), F 1  and F2  are given by (3.9) and (3.10). We let C 
be the r by 2 matrix 

00 
G= 	G 1  0 	, 	 (4.48) 

0 C2  

where C 1  = (1, -b 1 , .... - bq+SQ)' for b 	being the result of 
POLYMULT( u*, B ), and C2  = ( 10 - g, ..., q)'. Finally, we let 

ht = (xt, 1, ..., 0, k', 0, ..., 0). 	(4.49) 

The modified Kalman filter recursions were given in section (2.3) so we will 
not give details here. 

The derivatives will also be required. In terms of storage requirements, it is 
only necessary to keep the most recent version of • and V. The {at}  and 
{v0 (t)} and its derivatives will be needed forafl t such that v 1 (t) = 0. 

fl,  

S 

0 
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To facilitate the process, It Is worthwhile to have algorithms FMULT(x) and 
• 	 DFMULTA(x) whichcornputetheresultsof Fx, (aFx)/ax and (aFx)/aa, 

where x Is an r-dlmensional vector. 

Finally, algorithms should be set up to compute the marginal log-likelihood 
functioning (2.61), Its derivatives (2.62) and the Information matrix (2.64). 

- 	 4.5 Other Algorithms 
' I  

The details of the Davidon-Fletcher-PoweLl algorithm are given in 
Section 3.5. Computations for fixed point smoothing are given in Section 3.3 
and confidence Intervals are computed as In Section 3.4. It should be noted 
that the addition of the regression coefficients to the model does not change 
the general discussion of those sections. 

5. FURTHER RESEARCH 

• 	 In this paper we have given a detailed discussion of methods to incorporate 
survey errors In ARIMA modelling. Other models which can be formulated 
within the state-space framework could use a similar approach. 

A suggestion was given in Section 3.5 for maximizing the likelihood function 
but research into alternatives would be useful. Also the confidence intervals in 
Section 3.4 used asymptotic approximations whose validity could be checked by 
simulations for finite samples. 

• 	 It was suggested in this paper that the survey errors can often be 
approximated by an ARMA process, at least up to a multiplicative constant. 
Methods for estimating these parameters from various survey designs have not 
been well developed. Also the confidence intervals have ignored the variation 
due to the estimation of the survey error variances. This topic deserves further 
study. 

0 
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