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ABSTRACT 

A method of imputation based on log-linear methodology is proposed. For this purpose, an 

initial categorical transformation of all variables is made. Like hot deck imputation (HDI) 

method, the proposed log-linear imputation (LLI) method is applicable to both discrete and 

continuous variables. The LLI method generalizes HDI in several ways: (i) chi-square 

type measure of association is used to choose suitable predictors X for forming "optimal" 

imputation classes, (ii) the categorical distribution of the variable of interest, Z within an 

imputation class is model-based; and (iii) Z values are imputed under the constraint of 

proportional allocation to categories according to imputed proportions. As compared to 

the linear regression imputation (LRI) method, LLI requires a less restrictive framework. 

Thus LLI can be placed somewhere between HDI and LRL. Furthermore, since LLI uses 
model-based procedures for imputing counts corresponding to missing data, imputation 

variance can be assessed in estimating parameters within a certain class. This class of 

parameters describes characteristics of the population frequency distribution under the 

categorical framework. A modification of LLI is also proposed for the problem of 

statistical matching. This approach offers some control when the commonly used 

assumption of conditional independence is not valid. Use of supplementary information 

about conditional dependence, if available, can also be incorporated. Finally, some 

possible generalizations to the cases of general missing patterns and nonignorable 

nonresponse are indicated. 

1< EYWO RDS: Categorical transformation; Missing at random; Imputed proportions; 

Imputation variance; Statistical matching; Conditional independence 



RÉSUMÉ 

Cet article présente une méthode d'imputation faisant recours a la théorie des rnodèles 

log linéaires. Cette méthode nécessite que toutes les variables soient préalablement 

catégorisées. Tout comme la méthode d'imputation "hot deck" (IHD), Ia méthode 

d'imputation log linéaire (ILL) proposée ici peut être appliquée aussi bien aux variables 

discrètes qu'aux variables continues. La méthode IHD généralise Ia rnéthode ILL de 

plusieurs facons: (1) elle utilise une mesure d'association du type chi-carré pour choisir les 

variables auxiliaires X qui détermineront les classes d'imputation "optimales"; (ii) 

l'estimation de la distribution de fréquences de Ia variables d'intérèt, Z a I'intérieur d'une 

classe d'imputation repose sur approche de modélisation. ; et (iii) les valeurs de la variable 

Z sont assignees a chacune des categories selon les proportions imputées par Ia rnéthode 
ILL. II est a noter que la méthode ILL est applicable a des conditions beaucoup plus 

générales que Ia rnéthode d'iniputation par Ia regression linéaire (IRL). Ainsi, Ia méthode 

ILL se situe quelque part entre les rnéthodes IHD et IRL. De plus, corn me la rnéthode ILL 

se sert d'une approche de modélisation afin d'imputer les fréquences des données 

manquantes dans chacune des categories, Ia composante de variance due a l'imputation 

assoeiée a l'estimation d'une certaine classe de paramètres peut étre évaluée. Cette 

classe de paramétres décrit les caractéristiques de la distribution de frequences dans Ia 

population selon le regroupernent en categories qu'on aura choisi. On montre également 

qu'une modification de la méthode ILL peut s'appliquer au problème de I'appariement 

statistique. De fait, cette approche nous offre une protection advenant le cas oi 

['hypothèse classique d'indépendance conditionnelle n'est pas vérifiée. 11 est également 

possible d'incorporer l'information additionnelle de Ia structure de dépendance 

conditionnelle Si celle-ci est disponible. On indique finalement comment Ia méthode peut 

s'étendre aux cas oO la structure de non-réponse est générale ainsi qu'aux cas oii le 

mécanisme de non-réponse n'est pas aléatoire a l'intérieur d'une catégorie. 

MOTS CLES: Catégorisations de variables; non-réponse aléatoire; proportions imputées; 

variance due a l'imputation; appariement statistique; indépendance 

conditionnelle. 



1. INTRODUCTION 

Imputation is a popular class of methods for handling nonresponse especially with large 

data sets subject to multi-purpose use. In the proposed Log-Linear Imputation (LLI) 

method, we first perform a suitable categorical transformation of variables. This may 

entail regrouping for those variables which are already discrete or qualitative, whereas 

for continuous (or quantitative) variables, groups or class-intervals based on practical 

considerations are chosen. We then use a log-linear model-based procedure for imputing 

counts at the aggregate level and not at the unit level. That is, the missing data is 

distributed according to imputed proportions for completing the cross-classified 

categorical data. Imputation at the unit level, if desired, can also be done as a second 

step. The categorical transformation allows LLI to be applicable to both discrete and 

continuous variables. Although categorization of variables in general involves loss of 

information, variables are often interpreted in practice in terms of a few categories. 

Moreover, loss of information due to an initial categorization could be considered to be 

offset by an increase in the capability for adequate modelling and analysis. The LLI 

methodology is based on a combination of theoretical developments in three areas: (i) 

Log-linear model selection for simple random samples; (ii) Complex survey categorical 

data analysis; and (iii) Models for partially classified contingency tables. 

The framework for LLI is similar to that of hot deck imputation (HDI); see Ford (1983). It 

is simple but commonly used in practice. We consider two types of records corresponding 

to two patterns of response by units in the survey. One type of record contains complete 

information about the variable of interest Z and auxiliary variable X. The other type of 

record contains responses for X but Z is missing. Both X and Z are in general vector-

valued. We shall assume that missing values of Z are missing at random (MAR) when the 

values of X are taken into account; alternatively, the nonresponse mechanism is ignorable 

as defined in Rubin (1976, 1983) and Little (1982). This implies that item nonrespondents 

behave the same way as respondents within imputation classes formed by subsets of X 

values. This would be a reasonable assumption whenever the auxiliary variables X 	can 

explain nonresporise. We also assume for the asymptotic inference based on probability 

samples that the number of complete records is large in expectation. For nonprobability 

samples such as an administrative data source, an appropriate working model would be 

required for decision purposes as indicated in section 2. 
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The main purpose of LLI is to generalize HDI in order to overcome certain limitations. 

For instance, in the HDI method, imputation classes are not usually formed using any 

optirnality criterion and the underlying implicit model for imputation has a rather general 

structure. The model simply assumes that after matching for imputation classes, the 

distributions of complete and missing values are the same. Clearly, it would be desirable 

to use a model that draws strength from other classes whenever an imputation class has a 

small number of donors. The imputation classes in LLI are formed by considerations of 

selection of suitable predictors and an optimality criterion as defined in section 4. 

Moreover, in the interests of reducing distortion in the distribution of the completed data, 

Z values are imputed under the condition of proportional allocation to categories 

according to imputed proportions. This task involves two parts. Firstly a model-based 

procedure is used to impute missing counts for Z-categories. Secondly, Z-categories are 

assigned to missing records within each imputation class and then 7 	values 	(if 

quantitative) within imputed categories. LLI assigns 7-categories by HDI 	under the 

constraint of proportional allocation; i.e. 	according to the conditional categorical 

distribution f(Z1X) obtained in the process of filling in the table. It is possible, however, 

to have fractional counts in some categories and in those cases, more than one Z-category 

can be assigned with partial weights summing to unity. Once Z-categories are imputed 

and if 7 is quantitative, a value within a category can be obtained in a variety of ways; 

e.g., by cold deck such as the midpoint of the class-interval or by a hot deck method. 

Thus, LLI differs from HDI in many respects. However, HDI can be obtained as a special 

case if imputation classes are not required to be optimal, if a saturated log-linear model 

is employed (i.e. no smoothing to the empirical distribution function for each class is 

done) and if the condition of proportional allocation is not enforced. 

The LLI method can be regarded as a compromise between HD[ and linear regression 

imputation (LRI) because LLI uses stronger structural assumptions than HDI does but they 

are not as strong as those of LRI; see Ralton and Kasprzyk (1986) for a review of 

imputation-based methods. We make the following general observation. The general 

imputation problem involves characteristics of the conditional distribution f(ZIX). 	This 

can be studied by using a multivariate histogram estimator for the density f(Z IX). 	Such 

an approach naturally leads to multi-dimensional contingency tables whose dimensions 

correspond to categorized X and Z variables. Log-linear (including logit) models can then 

be used to parametrize f(ZIX) which would provide a unified framework for all kinds of 

underlying distributions. On the other hand, the LRI method assumes that 7 is continuous 

and involves strong assumptions about the functional form of the regression model and 
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covarianee structure. This model is especially difficult to specify when the missing 

variable is multivariate. Thus, an approach placed somewhere between HDI and LRI with 

regard to imputation model assumptions would be desirable, see also Rubin (1987, p.  157). 

The LLI approach seems to fall in this area. In this ease, since a saturated model is easy 

to specify and a covariance matrix can be generally estimated under complex designs, the 

modelling task is simpler than in the LRI case. Moreover, the theory of log-linear 

modelling for multivariate categorical data is already well developed and used widely. 

If it is sufficient to fill the missing counts in the categorical framework, then with LLI an 

assessment of variability due to imputation can be made. If the standard methods are 

used for analysing completed data, the resulting inferences are invalid; in fact, they are 

too sharp because they do not allow for differing status of the real and imputed values 

(Rubin, 1978). Modification to standard analysis via Multiple Imputation as proposed by 

Rubin (1978, 1987) can be applied to overcome this problem. It may be noted that the 

problem of assessing variability of estimates in the presence of missing data is generally 

easy to handle with model-based procedures where inference is based on the likelihood 

under a given model for partially missing data. Now, in a categorical framework, it may 

be fair to assume that most parameters of interest can be reasonably approximated by 

corresponding parameters of the joint categorical distribution when class intervals for 

quantitative variables are approximated by scalars such as midpoints. Thus, completed 

cross-classified data at an aggregate level would generally meet the demands for 

multipurpose analyses. It can then be observed that the original imputation problem at 

the unit level is transformed to the problem of imputing cell proportions at an aggregate 

level and hence imputation variance can be assessed via model-based procedures. 

The LLI method with a suitable modification can be applied to the problem of statistical 

matching of two or more data files which can be viewed as an imputation problem (Rubin, 

1986). In the case of two microdata files, file A contains information on vectors X and Y, 

and file B contains information on vectors X and Z. For the purposes of analysis at the 

microlevel, we are interested in constructing file C that contains for each micro-unit on 

the original file A, the completed information about Z. In statistical matching procedures 

for constructing file C, the assumption of conditional independence of Y and Z given X is 

often made although it is known to be unreasonable (Rubin 1986, 1987). It would be useful 

to parametrize departure from the assumption of conditional independence for arbitrary 

underlying unknown joint distribution of (X,Y,Z). The log-linear parametrization does 

indicate in general which parameters are necessarily omitted under the categorical 
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conditional independence assumption. We present a modification of LLI in section 5 in 

which a grid of (X,Y,Z) space for categorical transformation is chosen such that some 

protection against violation of the conditional independence assumption is provided in the 

categorical sense. 

Literature on the use of log-linear methodology for modelling partially missing 

categorical data is relatively recent, see e.g. Fuchs (1982), Nordheim (1984), Little (1985), 

Fay (1986), and Baker and Laird (1988) among others. It may be of interest to note that 

Rubin, Schafer, and Schenker (1988) also propose imputation strategies based on log-linear 

models in the context of census undercount estimation; see also Schenker (1988). The 

development of LLI, on the other hand, was motivated from considerations of evaluating a 

micro-economic database termed SPSD (Social Policy Simulation Database by Wolfson et 

al. 1987) which was constructed at Statistics Canada for use in economic policy analysis. 

SPSD was built in part by statistical matching of information from Revenue Canada with 

the Survey of Consumer Finance. Some preliminary results are reported in Singh, 

Armstrong, and Lemaitre (1988). While Rubin, Schafer, and Schenker (1988) propose an 

imputation strategy based on log-linear models with emphasis on the Bayesian method for 

the nonignorable nonresponse situation, the LLI method is mainly developed for the 

ignorable nonresponse case in which several related issues are also addressed. 

This article is organized as follows: Section 2 contains the underlying theory of LLI and in 

section 3, assessment of imputation variance is presented. The steps of LLI are described 

in section 4. In section 5, modification of LLI for application to the problem of statistical 

matching is described. Use of auxiliary information about conditional dependence from a 

small supplementary survey is explained in section 6. Finally, in section 7 extensions of 

LLI to the cases of nonignorable missing data and general missing patterns are indicated 

as possible directions for further work. 

2. UNDERLYING THEORY 

For completing missing records by LLI, we first need an initial partition P 0  that provides a 
fairly fine (from subject matter point of view) grid of (X,Z) space. Let X 09  Z0  denote the 

corresponding categorized X,Z variables and represent respectively the rows and columns 

of an r0 .c0  table for convenience. Let denote the vector of observed cell 

proportions arranged in the lexicographic order and based on the complete data. Let 

TT  R(0) be the corresponding true or population vector for complete respondents. The 
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vector 	would generally be calculated from adjusted counts based on sampling design 
weights. We shall use n to denote the total sample size, n R  for the number of complete 
respondents and n for the number of nonrespondents. Similarly, let N, NR  and  NM  denote 
respectively the sum of design weights for total, respondent and nonrespondent samples. 

For the row marginal proportions, we will use p(0) and u(0) to denote respectively the 

observed and population proportion vectors for complete respondents while p(0) and 

will be used for nonrespondents. For the corresponding vectors for the total 

sample, the superscripts will be dropped. Finally, for complete data within each row 1, 
the vectors q 1  (0) and s i  ( 0) will denote respectively the observed and population 

proportion vectors conditional on the row marginal corresponding to the given partition 
P 0 . 

Consider the following asymptotic framework when n is large in expectation. 	In the 
following, the symbol ":" stands for "asymptotically distributed as" and the symbol 

"" is used to indicate that the difference between the two sides is negligible in 
probability as n increases. We assume 

( R (0)  - 	 N 0 (O V), 	 (2.1) 

where the right hand side denotes a rc0 -dimensional multivariate normal distribution 
with mean 0 and covariance matrix V0  . For the row marginals, 

	

(p(0) - + (0)) I N r0  (0,V0 ), 	 (2.2) 

and for the conditional row proportions, we have for 1=1,2,... 

(q.1 (0) - 	
1 
.(0)) I N C0 (O,W 1 (0)). 	 (2.3) 

Also, let S0  denote the asymptotic covariance of (p(0)-(0)) and (q(0)-(0)). 	This 
would be zero for multinomial case because the likelihood could be factored (Little and 
Rubin, 1987, p. 98). Further we will assume that under a suitable replication method, 
consistent estimates of the covariance matrices defined above are available for the 
sampling design under consideration, and for convenience, the same notation will be used 

for estimated covariances as well. Also, we will drop the partition indicator 0 when we 
use the optimal partition P *  defined later in section 4. 
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For testing hypotheses about TT (0), 	(0) and t(0), we can use X 	tests adjusted by 
methods proposed by Rao and Scott (1984). If the sampling design were simple which 

implies multinomial or product multinomial in the categorical framework, then no 

adjustments to the usual X would be required. Thus, for testing a hypothesis H 1 	about 
(0), let p  (1) denote the estimated expected proportions under H 1 . The p  (1) 	is 

generally obtained as a pseudo MLE (maximum likelihood estimate) using multinomial 

likelihood. We can use the following rule to decide about H 1 : 

Reject H 1  if I (R(Q)R(1)) > 60 	 (2.4) 

where 6 0 is some small positive number and I denotes the I-divergence distance between 
R(0) and (Csiszär 1975), defined by Z  p(0) 1og(p(0)/p(1)) when summation 

is over all cells. In the case of simple random sampling, 2R1  would be asymptotically 
chi-square with degrees of freedom given by the number of parameters specified under H 1  

and so 6 0 can be easily calculated for a given level a. For complex designs, one can use, 
for instance, Rao-Seott corrections to find an adjusted 60  from the generalized design 
effects using V R 0 . 

The donor or complete data may not correspond to a probability sample e.g. in the context 

of statistical matching (section 5), administrative data are commonly used as donors for 

imputation purposes. We may still use a distance measure such as I-divergence and the 

rule (2.4) as a working guideline for modelling i(0). The choice of I-divergence 	as 	a 
metric is convenient because it easily lends itself to partitioning for nested hypotheses. 
The specification of 6 	 would, however, require some considerations other than 
distributional. In practice, the following observation would be helpful in choosing S,. 

Suppose, we decide to say that p R(0)  and p R(1)  are close if for all t, 	the 	distance 
between 	and 	relative to their average is small. That is, 

(p(0)+p(1))p(0)-p(1) I < CO for all oft, 	 (2.5) 

where c o  is chosen arbitrarily e.g. .01 as a working value. This implies that 

00 1( R (0) 	R(1)) 	
c 0  (approximately for large 	 (2.6) 

Thus, 6 0 can be set equal to 4c 0 . To see (2.6), first note that 1/4 is asymptotically (for 
large ri g) equivalent to the Hellinger distance (Bishop, Fienberg, and Holland, 1975, p.  513) 
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and consequently it is approximately bounded above by unity. Furthermore, defining 

Hellinger distance, H(p(0), p(1)) by (fl t (vP t (0)_1P t (1)) 2  and the sup-norm distance 
D(p(0) ,p(l)) by , we have from Le Cam's lemma (1970, P.  803), 

H(p(0), p(1)) < D(p(0),p(1)). 	(2.7) 

It then follows from (2.5) that H(p(0) ,p(1))<c 0, which establishes (2.6). The result (2.6) 
can be used in providing some practical guideline in choosing 6 in the absence of any 

probability consideration. 

We now consider the problem of selecting a subset of X as suitable predictors for Z. 	This 
is required in the first step of LLI to be described in section 4. This problem is similar to 

the predictor selection problem in multiple linear regression. In log-linear analysis, 

Goodman's partitioning of the likelihood ratio statistic G 2  (see Fienberg, 1977, p.  51) is 

often used in model selection. This needs to be modified for our purpose because we 

distinguish between the target (Z) and predictor or auxiliary (X) variables and are 

interested in choosing a subset of X. First we define a chi-square type measure of 

association between Z and X 0  by means of I-divergence. We then develop a partitioning 

of this measure for a sequence of nested hypotheses by adapting Goodman's partitioning of 

G 2 . This partitioning can be used to rank X variables in an increasing order of importance 

and provides a step-wise method for eliminating X variables from a model. 

Suppose that X includes three variables, X 01 , X02  and X 03 . Let H 3  be the hypothesis of 
independence of X0  and ZO  denoted by Z 0  11X 0. Then 1-divergence distance for testing H 3  
gives a measure of association between Z 0  and X 0. We shall use 1(H 3 ) to denote this 
measure. Similarly, for the collapsed table over X 03 , let H 2  denote the hypothesis of 
independence of Z 0  and the reduced vector (X01 ,X02 ). Let 1(H 2 ) be the corresponding 
measure of association. All I-measures are computed, of course, under the pseudo-
multinomial assumption. 

The above I-measures for testing associations are easy to compute for various subsets of 

variables. It then follows from proposition 2.1 given below that they can be 

conveniently used in practice to compute conditional test statistics for selecting 

predictors. For example, suppose 1(H 3 )2.  6 0 , so that Z 0  and (X01 ,X 02 ,X03 ) jointly have 
strong association. In order to decide whether an X 0  variable, say X 03 , can be dropped, I -
divergence for conditional independence hypothesis, K 3 :Z 0 1IX 03  given (X 01 ,X 02) is 
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required. 1(K 3 ) can, of course, be computed directly. However, it would be easier to 

compute from the following proposition. 

Proposition 2.1 Let hypotheses H 1 ,H 2  and K 3  be defined as above. We have 

1(K 3 ) = 1(H 1 )-I(H 2 ). 	 (2.8) 

The proof of this proposition follows easily from Goodman's partitioning calculus (see 

Fienberg 1977, p.  52). First note that H 1  is nested in K 3  and so 1(K 3 ) can be obtained as 
1(H 1 )-I(H 1 1K 3 ). Now use the fact that the conditional test statistic I(H 1 1K 3 ) indeed 
coincides with 1(H 2 ). As a point of interest, it may be noted that here Goodman's 

partitioning is used in a reverse order because an unconditional test statistic is being 
computed as a difference of unconditional and conditional test statistics. Based on the 

above proposition, one can compute suitable difference of I(H 1 )'s where I varies over the 
number of predictors, to decide whether or not to retain an X variable or a subset of X 0 . 
Analogous to multiple regression, a step-wise procedure could be employed for choosing X 
variables. 

Now suppose a partition P. is chosen and corresponding categorical variables are X 	and 
Z. which form an rxc table with rows and columns representing X and Z 	categories 
respectively. In LLI, the conditional categorical distributions f(ZIX) 	are 	smoothed 
jointly over all X, categories using log-linear modelling based on the complete data. To 
do this, we first model the joint distribution f(X,L) by I-divergence or some other 
type measure under the condition that all X -effects are retained . This approach would 
lead to an appropriate model for r conditional probability distributions 	I  S 	defined 
earlier in (2.3) such that X., marginals from complete data remain conditionally fixed. Let 

H denote the chosen model for . After H 	is determined and the corresponding 
estimates of parameters, the supplementary column of missing data is distributed over 

Z categories according to estimated s or f(ZiX) for each X category. Thus, the new 
marginals of the smoothed counts in the completed rxc table match with the observed X. 

configuration based on all n units. In other words, the X data which is not subject to 
nonresponse is not smoothed. As well the counts in (X,Z)  table for the complete data 
are not smoothed. These are not restrictions but may be desirable from practical 

considerations. We can therefore express the imputed proportion vector IT 	 and 	the 
completed proportion vector 3 for the rc table corresponding to partition P. as 
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41 	M - 
"ij = r 1 	i=1, . . . , r; j=1, .. ., C, 

13 = (N a /N) p ii+ ( NM/N) ÎT i j 	 (2.9) 

where p 	 is the observed proportion (generally based on design weighted counts) in the 

i - th X, category for the missing data, and s i j  is the smoothed proportion under H. 

Alternatively, we can express (2.9) in vector notation in two ways, namely 

- 	MR 	 N 
= - (DR) 	q + - (0 M® 	t4 	 (2.lOa) 

	

+ 	 p+  

N 	 N 
= - Dq (Pi ® l) + - D (P! ® 	 ( 2.10b) 

where Ic  is the CXC identity matrix, ic  is a C-vector of ones, 0 	denotes 	the 	usual 

Kronecker product and D denotes a diagonal matrix. Clearly if n = 0, then 7 	coincides 

with the observed vector p. The estimate M can be justified as a pseudo MLE (maximum 
likelihood estimate) of it assuming multinomial sampling (see Little and Rubin 1987, 

41 i Ch. 9). The estimate iT s computed under the saturated model for X 	table 	obtained 
from partially classified data and H  model for (X, Z) table corresponding to complete 
data with X.1, counts fixed. The above observation follows from the fact that the missing 

pattern is monotone and that the method of factored likelihood can be applied for finding 

MLE. The following proposition 2.2 shows that the estimate has reasonable large sample 

properties. 

Proposition 2.2 Under model H  for t and saturated model for n, we have as R 	gets 
large in expectation, 

(;-1T) 	N(O,V), 

where V = 	+ V 2  + V 3 , V 1  = UW U', 

= D(V @ 1 1'' 0 	V 	= U(S' ® 1) D + 0(S ® c c' 	' *3 

W = block diag (W 1 , W2, ..., W r  ) and U is defined below by (2.16). 
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Proof. Let H  define the parameters logip as a linear function of a reduced set of e 

parameters and let B denote the matrix of derivative (ai/ao). Then the pseudo MLE 8 is 
obtained as a solution of 

B'D 1 (q-)=O. 	 (2.11) 

It now follows from (2.3), that 

(B'D 1 B)IB!Dl  (q) 

N (0,(B0
1
8) 1  8D1W D 	B(BD 1 B) -1 ) 	(2.12) 

S 	 1) 	1) 

where S is the number of e parameters. 

11 	M Next note that expanding it about 	), we get from (2.10), 

M 	M 	
() + D((p-it) (D 1) 

(OM® 	A(q-) + D,((pM 
	M 	
-1)  1 	 (2.13) 

+ 

in view of the fact that 	= ( o) and 	A(q-i) where A is obtained from (2.12) as 
B (B'D 1  B 1  B'DT. 	Similarly, 

R RR R 
 IT 71

- 	= 	0R 	
1) (q-) + D((p-it) ® 1). 	 (2.14) 

Now using the relation (NR/N) rR + (NM/N) 7T M 2 iT, we have from (2.13) and (2.14), 

Tr - 	= U(q-) + 0 1 ((p+ - + ) c 	(2.15) 

where 

u = - 	° R 	
+ - (D M 
	) A. 	 (2.16)

TT 	 it 	 C 
+ 	 + 

The proposition 2.2 follows from (2.2), (2.3) and (2.15). 
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3. ASSESSMENT OP IMPUTATION VARIANCE 

It can be seen from proposition 2.2 that the covariance expression V. 	of the estimated 
proportion vector for the completed table takes into account of the variability due to 

imputation via model-based computations. This implies that for any population parameter 

defined as a smooth function of i, asymptotic variance incorporating imputation effect 

and its estimate can be obtained. For instance, if Z is categorical whose categories 
coincide with those of Z.k., then asymptotic covariance matrix of the estimate for the c-
vector o of Z. -category proportions can be calculated from the linear transformation 

® I a ). Moreover, if Z is univariate continuous and the C -vector m 	represents 
midpoints of Z. -categories, then variance of the estimate rn 	of the mean for the 
grouped frequency distribution of Z can easily be calculated from the covariance matrix 
of . The asymptotic variances of 0̂  and are summarized in the following proposition, 
and are denoted by subscript 

Proposition 3.1 

Let V. 1 , V 2 , and V 	 be the same as defined before in proposition 2.2. Then, 

cov() = 	0 l)(V*i + V 2  + 	® 

and 

var(m) = m cov()m. 

Remark 3.1 

If one ignores the effect of imputation and treats the estimate 7 as if it were based on n 
complete records, then it would imply using another estimate of cov(iT), namely, the one 

obtained by a suitable replication method when the completed data are used. In other 

words, no distinction is made between real and imputed values. The effect of this, in 

general, would be to decrease var(2') for arbitrary linear transformation vector Z. In 
particular, the estimate m' would appear to be more efficient than it actually is. It 
follows that by ignoring the imputation effect, X 2  type tests based on even after 
adjustments for complex designs would not have asymptotically correct chi-square 
distributions but that of linear combinations of chi-square variables. This is in the same 
spirit as the results of Gimotty (1987). 
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If one were to ignore missing data completely, and consider a pseudo MLE TT 	based 	on 

complete records only, then the estimate would not be consistent in general. It would be 

so under the assumption of missing completely at random (MCAR), see Little and Rubin 

(1987, p175). Even if data were MCAR, the effect of ignoring missing data would 

essentially amount to ignoring p,  resulting in less efficient estimation of ii. 

. 

If estimates of interest are not functions of , but require imputation at the unit level, 

then the general procedure of Multiple Imputation (Rubin, 1978, 1987) can be used to 

assess imputation variance. 

4. THE PROPOSED METHOD: LOG-LINEAR IMPUTATION 

Consider the initial grid P 0  and the corresponding categorical variables (X0 , Z) 	as 

defined in section 2. The LLI method can be described in the following four steps. 

Step I Choice of X variables 

Reduce the dimension of X 0 , if possible, by choosing a parsimonious subset that can be 

effectively used to predict Z 0 . It is assumed that X and Z 0 	would 	have 	strong 

association, i.e. the measure of association I(Z 0 iIX 0
)11 0

.If this were not so, then 

choice of X as auxiliary information for imputing Z would be questionable. Next one could 

determine in cases where X is multivariate whether all components are needed. To do 

this, compute I-divergence measures for conditional independence hypotheses as shown in 

proposition 2.1. This way one can choose a set of X 	variables 	which 	are 	deemed 

important. Let X 1  denote the chosen subset of X 0 . If there was no reduction, then X 1  

would coincide with X 0 . Let P 1  denote the revised partition. Also, set Z 1  equal to Z0  for 

notational convenience only because it is not affected in changing P 0  to P 1 . 

Step II Choice of Optimal Partition P 

Let G denote a class of partitions P 1 , P 2 , ... such that for each P 1 , 	the 	association 

between the corresponding categorical variables X and Z is high, i.e. I-measure 	of 
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association is 	The P 1 's represent modified versions of P 1  which may be coarser or 
have different cell boundaries. We then define an instability measure R(E) related to the 

coarseness of a partition that will allow us to choose the optimal partition P *  from the 

class G. We set r(c) = n(€)/T, where n(€) is the number of cells with proportions less 

than or equal to c, a small predetermined positive constant and T denotes the total 

number of cells. Note that cells with zero counts do contribute to r(). 	Now, 	the 
optimal partition P is the partition in G for which r() is smallest. The use of r(e) has 

an heuristic justification. For a particular choice of X 1  and Z 1 , modification of a partition 

to make it finer will generally increase association between the corresponding categorical 

variables. Use of r(c) guards against selection of fine partitions containing many cells 
with small proportions. For the chosen optimal partition P, let (X,Z) denote the 

corresponding categorical variables. 

Step III Smoothing of f(ZX 

It is easier to work with the joint distribution f(X,Z)  where X 	marginal counts are 
fixed conditionally. Use I-divergence or some other chi-square type measure to choose a 

log-linear model H  containing all X effects using complete records. In this case, the RX 2  
method for model selection described in Singh (1988) may be conveniently used. While a 

parsimonious model is desirable, the saturated model can be retained if it is not feasible 

to reduce it. Finally, a smoothed version of conditional categorical distributions f(ZIX) 
can be obtained simply by rescaling expected counts under H in order that row 
proportions sum to unity. 

Step IV Imputation task 

(a) Imputing counts 

The X marginal counts in the missing data are distributed over 7  categories according to 

the smoothed version of f(ZiX) obtained in the previous step. This process amounts to 

imputing at an aggregate level for the units in the X category corresponding to row 1. 

The resulting completed proportion vector was given earlier by (2.10). 
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(b) Imputation of missing Z values under proportional allocation 

This is the second part of the final step and was already explained in the introduction. 

Thus, under LLI each incomplete record would be assigned an imputed category as well as 

a value (if quantitative) within the category. More than one imputed categories (and 

values) with partial weights is also allowed whenever necessary. 

5. MODIFICATION OF LLI FOR THE PROBLEM OF STATISTICAL MATCHING 

The problem of statistical matching was briefly described in the introduction. Some 
useful references are Kadane (1978), Sims (1978), U.S. Department of Commerce (1980), 

Rodgers (1984), and Rubin (1986) among others. The process of statistical matching for 

merging of two files A and B can be viewed as a process of imputing Z values for the 

candidate records (X,Y) in file A using (XZ) records from file B as donors in a single 

merged file obtained by combining files A and B. As before, we assume that the Z values 

are missing at random in the combined file within certain imputation classes formed by 
(X,Y) values. However, it differs from the usual imputation problem because there are no 
donor records containing the complete set of values (X,Y,Z). 

If one can assume that Y and Z are conditionally independent given X i.e. f(ZIX,Y) equals 

f(ZIX), then the information in Y can be ignored. The problem of completing records with 

missing Z values in file A reduces to the usual imputation problem in a single file. Thus, 

the LU method described earlier can be applied. We shall denote this method of 

statistical matching by LLI-S where "S" stands for single file approach. However, as 
shown in Rubin (1986), the relationship between Y and imputed Z values in file A may 

differ substantially from the true relationship when there is departure from the 

assumption of conditional independence. This is a major problem since matching was 
conducted in first place to analyse Y,Z relationship. This leads to the following 
modification of LLI denoted here by LLI-M where 'M' stands for multiple file case. 

For the log-linear imputation approach to statistical matching, Singh, Armstrong, and 
Lemaitre (1988) give an illustrative example along with some preliminary simulation 

results. In LLI-M, the Y information is not ignored in the process of statistical matching. 

It is known (see e.g. Mosteller 1968) that categorical association differs according to 
breaking points or boundaries chosen for various fixed values of the correlation 
coefficient in bivariate normals. This forms the basic idea of LLI-M. We transform the 



- 15 - 

statistical matching problem to one involving categorical variables 	 so that the 
unavoidable assumption of conditional independence holds approximately in the 

transformed framework. This of course cannot be checked directly because there is no 

information on the joint distribution of X, Y. and Z.. However, an important advantage 

of the categorical approach is that a suitable criterion can be constructed to control 

possible violation of the conditional independence assumption. This criterion is used to 

choose categories and thus Y information ends up being used in the process. The LLI-M 

method can be described in four steps. As before, consider an initial partition P 0  with 
corresponding categorical variables X 09  Y0 , and Z 0 . 

Step I Choice of X variables 

These variables should be chosen separately for File A and File B using the methdology 

described in section 2. Variables that are used to predict both Y and Z should be 

categorized in the same way but not all variables used to predict V need also be used to 
predict L, and vice versa. Let X denote the vector formed as the union of the variables 
used to predict V and the variables used to predict Z. Let P 1  denote the corresponding 
part it ion. 

Step II Choice of optimal partition P 

We need to check departures from the conditional independence assumption of V and Z 
given X in the categorical framework. There is of course no information on the joint 
categorical distribution. 	However, under pseudo-multinomial assumptions, we can 
estimate the expected proportion vector r corresponding to the conditional indepdence 
hypothesis. This allows us to construct an upper bound n on the X distance corresponding 
to the hypothesis of conditional independence. We have 

n = tr (D), T 
	 (5.1) 

where t4 is the vector of conditional proportions correspondings to f(Z1X), and Ir 	is the 
vector of cell proportions for joint distribution f(X,Y). 

The measure n can be termed as the sensitivity measure. A good choice of grid or 

partition is one that tends to make q small. However, use of n exclusively leads to a very 
coarse grid and a trivialization of the problem. For this reason, we introduce a balancing 
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factor that requires high categorical association between X and Y, as well as between X 

and Z. Note that the requirement of high association favours use of fine grids. Thus there 

is a tradeoff between low sensitivity and high association. We first generate a class of 

grids by defining categories in various ways. Next we restrict attention to the class C of 

grids for which association measures are above a threshold value, 	Finally, the optimal 

partition P is that grid in the class C for which n is minimized. It should be noted that 

in practice, some elements of T may be zero, leading to computational difficulties. In 

such cases, zero elements of r can be replaced by some small positive constant, say y, and 

all entries resealed such that their total is unity. 

Step III Estimation of f(ZjX,Y1 

Since we assume that categorically, Y. and Z 	are 	approximately 	conditionally 

independent given X, the smoothed estimate of f(Z; X) can be used as an estimate of 

f(ZiX,Y) for all Y.. categories. Now, the smoothing of f(ZiX) using the donor data 

from file B is analogous to the step III of section 4. 

Step IV Statistical Matching Task 

Imputing Counts 

For file A of candidate records, the counts within each (X,Y) category are distributed 

over Z categories according to the smoothed version of f(ZIX,Y) obtained in the 

previous step. Thus, we impute counts (or proportions) for L categories at an aggregate 

level within each subset of file A records corresponding to (X,Y) category. 

Imputation of missing Z values under proportional allocation 

This part of step IV is similar to that in section 4. The only difference is that Xcategory 

or the imputation class is replaced by (X,Y)  category and the complete data is defined 

by file B. The donor records for an imputation class are obtained by matching the X 

characteristic only, i.e. by ignoring Y. 

Besides the problem of having to assume conditional independence necessarily because 

observations containing the complete set of variables (X,Y,Z) are not available, there are 

several other issues that need to be addressed in practice. The main ones are: 
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Universe Differences - the two files may represent different populations with varying 

degrees of overlap, including no overlap. 

Unit differences - the records on the two files may correspond to different 

conceptual units. 

Differences in Linking Information - The distributions of X values for files A and B 

could differ due to differences in definitions and response error components as well as 

universe differences. Also records that refer to the same entity may have different X 

values in the two files. 

Constrained Matching - Statistical matching procedures are sometimes constrained so 

that certain characteristics of the distribution of imputed 7 values coincide with those 
of the original distribution of Z in file B. 

The above mentioned issues do not arise in the usual imputation problem. The point (iv) 
may not really be an issue because it would be better to preserve the conditional 

distribution f(Z IX) rather than the marginal distribution of Z. Although we do not address 
points (i), (ii) and (iii) in this article, it is assumed that suitable adjustments to the values 

of variables in one or both files have been made before LLI is applied. With regard to 
variance calculations in the case of LLI-M, results similar to those given in section 4 can 

be developed. 

6. USE OF SUPPLEMENTARY SAMPLE FOR AVOIDING THE CONDITIONAL 
IN DEPENDENCE ASSUMPTION 

In LLI-M described in the previous section, we assumed that P can be chosen such that at 

least in the categorical sense, Y. and Z. are approximately conditionally independent 

given X. So, we do not need to look for an extra source of information for estimating 
f(ZIX,Y) in addition to (X, Z)  data from file B. However, an improvement over 
LLI-M could be made if a small supplementary survey or some other source was available 
with data on all three variables (X,Y,Z). In fact, the variables in the supplementary 

sample could be different. All that is needed is that in the log-linear modelling, the 

parameters denoting (Y,Z) and (X,Y,Z) factor effects can be estimated from the 

supplementary sample. Thus, we would not necessarily drop these factor effects in the 

step III for estimating f(ZI It may be noted that Rubin (1986) also used extra 
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information in the regression imputation approach to statistical matching for illustrating 

sensitivity of matching results to departures from conditional independence assumption. 

Let file D denote the supplementary information containing all three variables (x,Y,Z). 

With this extra information, we need only to modify step III of LLI-M. This can be done 

as follows. In the absence of any extra information about (X,Y,Z), we had to ignore Y in 
step III for smoothing f(ZiX,Y) based on only (X, 	data. The extra information in 
fileD can be used to put certain constraints on the estimate of f(ZX, 	We have 
three configurations, namely, (X,Y) from file A, (X, Z) from file B and (X i , ç, 
Z) from file D. It may be noted that these three tables would not in general be 
consistent with regard to marginal totals. We wish to construct a new table for 

Z) for finding f(ZX, Y) such that (i) it matches with the observed counts in (X,Y) 
table for file A, (ii) it preserves the f(Z X) distribution ie (X,Z) interaction from the 
table in file B, and (iii) it preserves (Y,Z) and (X, Y,  Z) interaction effects from 
the table in file D. The distribution f(ZIX) may very well be a smoothed version via log 
linear modelling. The above table can be constructed by using the raking-ratio method of 
survey data analysis in two steps. First, rake the smoothed version of (X, Z) table so 

that it matches with the X marginal of table in file A. Next, rake the (X,  Y.,  Z) table 
of file 0 so that it matches the (X, 	table in file A and the already raked (X, Z) 
table of file B. The resulting (Xi,  Y,  Z)  table will ensure that the (X, 	counts 
are the same as the observed counts for candidate records in file A. 	We then compute 
f(ZiX, '*) for the imputation task of step IV. 

For the assessment of imputation variance in the case of LU method with supplementary 
information, it should be possible to use the existing results on variance calculations for 
raking-ratio estimators, see Binder and Théberge (1988) and other references contained 
therein. 

7. CONCLUDING REMARKS 

Suppose one is willing to compromise in the sense that characteristics of continuous 

variables of interest will be approximated by suitable analogs for discrete (or grouped) 
distributions obtained by a categorical transformation. Then the method of log-linear 

imputation (LLI) may have potential benefits for filling in the partially classified data at 
an aggregate level. The effect of imputation on variance of estimators based on 
completed data via imputed proportions for cells under the categorical transformation can 
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also be determined. 	This would, of course, be valid for the chosed categorical 

transformation only. Furthermore, the LLI method can be used to impute a category or a 

value within a category at the unit level. With respect to underlying model assumptions, 

it provides a compromise between the hot deck methods and linear regression methods for 

imputation. For future investigation, it would be of interest to perform a simulation 

study for evaluating performance of LLI in comparison to other methods. Evaluation 

measures for both levels, namely, imputing proportions at the aggregate level and 

imputing values at the unit level should be calculated. 

An important direction in which LLI can be generalized is when there is a more general 

pattern of missing data. If the missing data had a more general monotone pattern than 

the simple case considered in this article, it would be relatively easy to extend the results 

by following the treatment in Little and Rubin (1987, Ch. 9). However, for non-monotone 

missing patterns, one would require an iterative method such as EM algorithm of 

Dempster, baird, and Rubiri (1977) to compute the estimated proportions for the missing 

cells. Extension of LLI to this case and development of the corresponding variance 

formulas incorporating imputation effects need to be investigated. Another important 

direction for further development of LLI is to assume nonignorable nonresponse. Analyses 

for nonignorable nonresponse models for categorical data have been considered by 

Nordheim (1984), Little (1985), Fay (1986), Baker and Laird (1988) and Rubin, Schafer, and 

Schenker (1988) among others. In view of these recent results, generalizations of LU 

could be considered. 

Some other interesting directions for further work arise from the area of statistical 

matching. Work on developing a Bayesian ULI is currently being investigated by Stroud 

(1988). 
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