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ABSTRACT 

In this paper the method of log- linear imputation or LLI (Singh 
1988) for the problem of statistical matching is briefly described 
by means of a simple example taken from Rodgers (1984). A 
simulation experiment for evaluating LLI in comparison to some 
other methods of statistical matching is also described. It involves 
use of synthetic data generated from multivariate normal 
distributions. Some preliminary empirical results indicate the 
potential advantage of LLI over hot deck imputation methods used 
for Statistical matching. 

KEY WORDS: Conditional 	independence; 	Categorical 
transformation; Missing at random. 

RÉSUMÉ 

Dans cet article, on presénte Ia méthode d'imputation par modèle 
log-linéaire ou méthode ILL (Singh 1988) appliquée au probléme de 
l'appariement statistique en se servant d'un exernple de Rodgers 
(1984). On décrit egalement une étude de Monte Carlo, 
présentement en cours, qui a pour but de comparer Ia méthode ILL a d'autres méthodes d'appariernent statistique. Dans cette étude, 
on utilise des données artificelles qui proviennent d'une loi 
multinormale. Quelques résultats empiriques préliminaires 
indiquent les avantages potentiels de la méthode ILL par rapport a 
Ia méthode "hot deck" dans le contexte de l'appariement 
statistique. 

MOTS CLES : Indépendance conditionnelle; catégorisation; non-
réponse aléatoire 



1. THE PROBLEM OF STATISTICAL MATCHING 

The problem of statistical matching arises when one is interested in merging two (or 

more) data files in the absence of unique identifying information at the micro level. This 

contrasts with the problem of exact matching for file merging via techniques such as 

record linkage because the set of units in the two files for statistical matching may be 

completely disjoint or have only a small unknown overlap. Some useful references for 

statistical matching are Kadane (1978), Sims (1978), U.S. Department of Commerce 

(1980), Rodgers (1984) and Rubin (1986), among others. The two files may have been 

collected in two separate surveys using different samples or one file could correspond to 

an administrative data source. For example, at Statistics Canada, a microeconomie 

database termed SPSD or Social Policy Simulation Database (Wolfson et al. 1987) was 

constructed for use in economic policy analysis. It was built in part by statistical 

matching of information from Revenue Canada with the Survey of Consumer Finance. 

The present investigation was motivated in part by considerations of evaluating SPSD. 

In statistical matching, the problem can be formulated as follows. Consider two 
rnicrodata files denoted by A and B. The file A contains information on the vectors of 

variables X and Y, the file B contains information on vectors X and Z and for the purposes 

of analysis at the microlevel we are interested in constructing file C that contains for 
each micro-unit on the original file A, information about X,Y and Z. 

The process of statistical matching for file merging can be viewed (see Rubin 1986) 

as a process of imputing Z values for the candidate records (X,Y) in file A using (X,Z) 

records from file B as donors in a single super file obtained by combining files A and B. As 

usual, we assume that the Z values are missing at random in the combined file. However, 

it differs from the usual imputation procedures because there are no donor records 

containing the complete set of values (X,Y,Z). Therefore some additional 

assumptions/techniques are required to estimate the conditional distribution f(ZIX,Y) 

from donor records which in turn could be used for drawing imputed values. Two 
situations arise. 

Case I Y Ignorable This corresponds to the assumption of conditional independence 

of Y and Z given X i.e. f(ZIX,Y) = f(Z1X). Thus the information in Y can be ignored and 

the problem of completing records with missing Z values in file A reduces to the usual 

imputation problem in a single file. Commonly used methods of imputation include class 
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mean, hot deck (random, distance and sequential) and regression, see e.g. Little and Rubin 

(1987). A general approach to statistical matching that has often been used in practice is 

equivalent to distance hot deck imputation (HDI - distance) in the combined file when V 

information is ignored. More specifically, cohorts (or imputation classes) are first formed 

using X variables i.e. divide files A and B into subfiles such that within each subf lie all 

records have the same value for all cohort variables. Next to complete a file A record, 

one looks in the subfile from file B corresponding to the same cohort and minimizes the 

value of a distance function defined using X in order to choose a Z value. 

The above HDI approach to statistical matching could cause distortion in the 
marginal distribution of Z in the matched file. This is a minor problem and can be 

resolved using constrained matching techniques. There is, however, a more serious 

problem resulting from the assumption of conditional independence. The relationship 
between V and imputed Z values in file A may differ substantially from the true 

relationship between V and Z; see Rubin (1986) for illustrations of the sensitivity of 

statistical matching results to departures from the conditional independence assumption. 

This is a major problem since matching was conducted in first place to analyse the Y,Z 
relationship. This leads to the following more realistic situation 

Case II V Non-ignorable In this case, the V information is not ignored in the process 
of statistical matching. The method of log - linear imputation for multiple files (LLI - M as 
defined in Singh 1988) can be used for this purpose. The use of the term log - linear 
reflects the use of log- linear modelling for estimating the conditional distribution for 
imputation in the categorical framework. The basic idea of LLI-M approach is to 

transform the statistical matching problem to one involving categorical variables 

so that the unavoidable assumption of conditional independence holds 
approximately in the transformed framework. This of course cannot be checked directly 

because there is no information on the joint distribution of and Z.k . However, an 
important advantage of the categorical approach is that a suitable criterion can be 

constructed to control possible violation of the conditional independence assumption. This 

criterion is used to choose categories for (X,V,Z) and thus V information is indeed used 

in the process. After a suitable partition of (X,Y,Z) space into categories for (X,Y,Z) 

is selected, the LLI method is used to first impute Z up to a Z. category using the 

conditional categorical distribution f(ZIX) within the imputation class (X,Y) and 
then a value of Z within the Z. category is chosen appropriately. 
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Section 3 contains a brief description of log- linear imputation for the usual 
imputation problem in a single file (i.e. Case I) by means of a simple example of Rodgers 

(1984) given in Section 2. This is then used to motivate LLI for statistical matching (i.e. 
Case II) in Section 4 for the same example. The log- linear imputation methods for the 
two cases (corresponding to single and multiple files) are denoted respectively by LLI -S 
and LLI-M. We omit theoretical details which can be found in Singh (1988). In Section 5, 

a simulation method for evaluating LLI is described and some results from a preliminary 

phase are reported. Some remarks and directions of further research are outlined in 
Section 6. 

2. RODGERS' EXAMPLE 

The following miniature example of Rodgers (1984) on statistical matching will be 
convenient to describe LLI -S and LLI- M in later sections. The example involves eight 
records from file A and six records from file B. There are two X variables -- sex (Xl) and 
age (X2). V contains one variable, log(personal earnings), and Z contains one variable, 

log(property income). For both files, the data (see Table 1) are simple random samples 
drawn from populations of 24 units. The weight assigned to each record is the reciprocal 
of the probability of selection. 

Table 1: Data on Files A and B 

Case 	Xl 	X2 	V 	Wt Case 	Xl 	X2 	Z 	Wt 
(A) 	(A) 	 (B) 	(B) 

Al M 42 9.156 	3 
A2 M 35 9.149 	3 
A3 F 63 9.287 	3 
A4 M 55 9.512 	3 
A5 F 28 8.494 	3 
A6 F 53 8.891 	3 
A7 F 22 8.425 	3 
A8 M 25 8.867 	3 

Mean 	 8.97 
SD 	 0.38 

81 F 33 6.932 	4 
B2 M 52 5.524 	4 
B3 M 28 4.223 	4 
B4 F 59 6.147 	4 
85 M 41 7.243 	4 
B6 F 45 3.230 	4 

5.55 
1.57 

Assuming that V information is ignorable (i.e. case I of Section 1), Rodgers (1984) 

obtained the matched file C (see Table 2) both under unconstrained and constrained 

matching using HDI - distance method for statistical matching. The sex variable Xl, was 
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used as cohort (or imputation class) and the age variable X2 was used for the distance 

function 1X2(A)-X2(B)i. The constrained matching restricted the first and second 
moments of the distribution of imputed Z -values to be the same as the moments of the 
distribution of donor values. 

Table 2: Statistical Matching by HDI-Distance 

Sex 	Age 	 Imputed Values of Z 
Unconstrained HDI 	Constrained 	HDI' 

M 42 7.243 5.524  
7.243  

M 35 7.243 4.223  
7.243  

F 63 6.147 6.147 
M 55 5.524 5.524 
F 28 6.932 6.932 
F 53 6.147 6.147  

3.230  
F 22 6.932 6.932  

3.230  
F 25 4.223 4.223 

Mean 6.3 5.55 
SD 1.06 1.57 2  

Numbers in parentheses denote sample weights 
2  Based on 5 degrees of freedom 

3. LU-S FOR STATISTICAL MATCHING 
(V IGNORABLE) 

This is the usual imputation problem in a single super file as mentioned earlier in 

Section 1. We are interested in completing the data set (i.e. the single combined file 

containing 14 records for the Rodgers' example). There are two types of records 

corresponding to two patterns of response by units in the survey. One type of record 

contains complete information i.e. response for all variables in vector X and Z. There are 

six such donor records. The other type of records contains responses for X but Z is 

missing. There are eight such candidate records. The Y values are totally ignored. 

The main ideas of the LLI -S method are: 
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(1) 	transform both X and Z to categorical variables X and 4 to obtain a subset of X 
as suitable predictors and to get optimal imputation classes as defined by an 

instability measure related to coarseness of the categorical partition, 

smooth the conditional categorical distribution f(ZlX) using log - linear 
model! ing, 

use f(ZIX) to impute Z up to a Z * 	category 	according 	to 
proportional allocation within X categories, and 

determine Z values within Z categories in order to complete missing records. 

By contrast, in HDI methods, only X is categorized in forming imputation classes and 

the conditional distribution f(Zi X) is used for imputation. Choice of imputation classes 

is not based on some optimality criterion but on subject matter considerations. It is easily 
seen that LLI -S would be equivalent to HDI when the imputation classes are not required 
to be optimal, a saturated log-linear model is employed (i.e. no smoothing to the 

empirical distribution) and the condition of proportional allocation is not applied. 

For Rodgers' example, the LU -S method can be described in the following five 
steps. First define an initial partition P 0  that provides a fairly fine grid of the three 
dimentional space of (X,Z) values from donor records. Let X 0 ,Z 0  denote the 
corresponding categorized X,Z variable. The three dimensional table of weighted counts 
based on an initial partition, P 0 , is given in Table 3. 

Table 3: Weighted Counts for Partition P 0  (or P 1) 
(donor records) 

Z<4.5 	4.5<Z<6.5 	Z>6.5 	Row Total 

• Age<45 4 0 4 8 • 	Age>45 0 4 0 4 
F 	Age<45 0 0 4 4 
F 	Age>45 4 4 0 8 

Column Total 8 8 8 24 

Step I Choice of X Variables - We need to investigate the strength of the 
relationship between X 0  and Z 0  and determine whether or not both X variables should be 
retained. We use I-divergence under pseudo- multinomial assumptions to define a X 2  type 
measure of association (IA)  between X 0  and Z 0 . Let H: Z 0  i X 0  denote the hypothesis 
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of independence of X 0  and Z 0 . Then IA(4 1 X,) = 
( 1) Et Pt( 0 ) log (pt(0)/t(1)) 

where p(0), p(1) denote respectively the observed and expected proportion vectors. The 

'A metric is asymptotically equivalent to Hellinger distance and is therefore 

approximately bounded above by 1. It provides a convenient distance metric that could be 

used for survey data as well as administrative data. We use cS, = .05 as a working 
threshold value in order to decide when 'A  is large enough i.e. when 'A 

Using the definition (0)log(0)=0, one can calculate IA(Z 0  i X,) = 0.1591, which 
is greater than the working threshold value of 0.05. Similarly, using a table combined 

over sex categories and a table combined over age categories, we can calculate, 
respectively, IA(Zo i X, 2 ) = 0.1155 (association due to age) and IA(Z, 	X 01 ) = 0.0 
(association due to sex). By taking the difference (.1591 - .1155), one can determine 
that IA(Z 0  i X,, I X, 2 ) (association due to sexlage) is 0.0436. 	Although the 
conditional association due to sex is less than our working value of 0.05, it is close to the 

threshold, so we decide to keep both age and sex as predictor variables. Consequently, we 
have P=P 0  whereP denotes the partition that would have been obtained corresponding to 
the chosen subset X 1  of X 0 . In this case X 0  is not reduced. So X 1 =X,. Also set Z=L, for 
notational convenience. 

Step II Choice of Optimal Partition P - Let 0 denote a class of partitions 
P 1  ,P 2 ,... such that for each P1 the association between the corresponding categorical 
variables Xj and Z1 is high. The Pj 'S represent modified versions of P 1  which may be 
coarser or have different cell boundaries. We then define an instability measure R(c) 

related to the coarseness of a partition that will allow us to choose the optimal partition 
P from the class G. We have R(c) = n(c)/T, where n(c) is the number of cells with 
proportions less than or equal to c, a small predetermined positive constant. Note that 
cells with zero counts will contribute to R(6). Now, the optimal partition P, is the 
partition in 0 for which R(c) is smallest. The use of R() has an heuristic justification. 
For a particular choice of X 1  and Z 1 , modification of a partition to make it finer will 
generally increase association between the corresponding categorical variables. Use of 
R(c) militates against selection of fine partitions containing many cells with small 
proportions. 

Suppose the class 0 consists of two partitions -- P 1 , given by Table 3, and P2 , 	given 
by Table 4. Note that TA(Z2 i X 2 )0.0577, which is greater than our working threshold. 
Therefore, the partition P 2  does qualify to belong to class G. To determine the optimal 
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partition, P, within G we compute the instability measure R() for P 1  and P. with E=O.Ol. 
We have R()=0.5 for P 1  andR()=0.25forP2 . Consequently, the optimal partition is 

2 for this particular illustration. 

Table 4: Weighted Counts for Partition P 2  
(donor records) 

Z<6 	Z>6 	Row Total 

	

M Age<45 	 4 	4 	8 

	

M Age>45 	 4 	0 	4 

	

F Age<45 	 0 	4 	4 

	

F Age>45 	 4 	4 	8 

	

Column Total 	 12 	12 	24 

Step III 	Log- linear 	Model Selection - For the joint categorical distribution 
f(X,Z) corresponding to P, select a log- linear model using the donor data set. While a 
parsimonious model is desirable, the saturated model can be retained if it is not feasible 

to reduce it. Using Table 4, one can test the independence of age and sex, conditional on 

Z. The 'A - measure corresponding to this hypothesis is 0.0435, which although smaller 

than our working threshold value, is close to it. Consequently, we decide to retain 

age-sex interaction terms in the model. One could also, of course, compare the saturated 
model to a model with no three - factor interaction. For illustrative purposes, we decide 
to retain the saturated model. 

Step IV Estimation of the Conditional Categorical Distribution f(ZjXl -Expected 

counts corresponding to the saturated model are, of course, equal to observed counts. The 

distribution of Z for each X category, given in Table 5, can be easily obtained from the 
weighted counts in Table 4. 

Table 5: Estimate of f(LIX) 
(from donor records) 

Z<6 	Z6 	Row Total 

• Age <45 1/2 1/2 	1 • Age45 1 0 	1 
F 	Age<45 0 1 	1 
F 	Age >45 1/2 1/2 	1 
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Step V Imputation of Missing Z Values - We allocate the set of candidate records 
within each imputation class proportionally according to f(ZIX) as shown in Table 6. 

Hot deck distance over age can be used within each imputation class to assign records 

with missing values to the two Z.. categories (Z<6 and Z>6) as well as to determine Z 

values to impute within each Z category. The only fractional counts occur for the 
imputation class defined by sex=M, age<45. In this case the imputed value can be 
determined as an average of "closest" values from each Z category, weighted according 
to the non - integral portions of the counts. Since there is only one donor record in each Z., 
category, our imputed value is the average of 4.223 (only value of Z for sex=M, age<45, 
1<6) and 7.243 (only value of Z for sex=M, aqe<45, Z>6). 

Table 6: Proportional Allocation in LLI-S 

1<6 1>6 Number Observed Ages for 
Missing Candidate Records 

M Age <45 1.5 1.5 3 25,35,42 
M Age>45 1 0 1 55 
F 	Age < 45 0 2 2 22,28 
F 	Age >45 1 1 2 53,63 

The imputed values using LLE-S are given in Table 9 along with those for LLI - M (to 
be described in the next section). 

4. LLA-M FOR STATISTICAL MATCHING 

(Y NON-EGNORABLE) 

In this section we consider the same example, except that we do not ignore Y in the 

formation of imputation classes and the computation of imputed values. The main ideas 
of the LLI-M method can be summarized as follows. 

We transform X,Y,Z to categorical variables X * ,Y * ,Z*  in order to find a suitable 
subset of X to predict Y and Z, and to obtain optimal imputation classes as 

defined by a sensitivity measure related to departures from the conditional 
independence assumption in the categorical framework. 
As in LLI-S, smooth the conditional categorical distribution f(ZIX,Y) using 
log- linear modelling for the donor data set. Here it is assumed that f(ZiX,Y) 
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is the same as f(ZiX) i.e. 	categorically, the conditional independence 
assumption is valid. 	In terms of log- linear modelling, it implies that the 
parameters involving (Y,Z) factor effects and (X,Y,Z) factor effects are 

set equal to zero. In the final Section 6, we suggest ways in which this condition 
can be relaxed. 

Use f(ZiX,Y) to impute Z up toa . category according to proportional 
allocation within (X,Y) categories, and 

specify a suitable imputation scheme for determining Z values within Z,, 
categories. 

For Rodgers' example, we can describe LLI-M in five steps. Suppose the initial 
partition P 0  for the multiple file method corresponds to the (X 0 ,Y)  counts given in Table 
7 and the (X 0 ,Z 0 ) counts given in Table 3. Note that Y, involves two categories, defined 
by '(<9 and '(>9. 

Table 7: Weighted Counts for Partition P 0  
(candidate records from file A) 

'(<9 	'(>9 	Row Total 

	

• Age<45 	 3 	6 	9 

	

• Age>45 	 0 	3 	3 

	

F Age<45 	 6 	0 	6 

	

F Age>45 	 3 	3 	9 

	

Column Total 	 12 	12 	24 

Step I Choice of X Variables - The measure of association between X. and Y 
corresponding to P.  is 1 A= 0 • 0703  a value greater than the working threshold of 0.05. 
Thus, the chosen Y partition does provide high association with X 0 . In Section 3, we 
already considered the effects of dropping variables on the association between X 0  and Z. 
and concluded that it was not possible to drop X 0  variables in the prediction of Z . 
Consequently, we set P 1 P 0 . 

Step II Choice of Optimal Partition P - We need to check departures from the 
conditional independence assumption of Y. and Z,,. given X,. 	There is of course no 
information on the joint distribution of 	 However, under pseudo-multinomial 
assumptions, we can estimate the expected proportion vector q corresponding to the 

conditional independence hypothesis. This allows us to construct an upper bound on the X2 
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distance corresponding to the hypothesis of conditional independence which is defined by 
n = tr(diag (q) 1 ). 

The measure n is termed as the sensitivity measure and a good choice of grid or 
partition is one that tends to make Ti small. However, use of n exclusively leads to a very 
coarse grid and a trivialization of the problem. For this reason, we introduce a balancing 
factor that requires high association between X. and Y,, as well as between X.. and Z,.. 
Note that the requirement of high association favours use of fine grids. Thus there is a 
tradeoff between low sensitivity and high association. We first generate a class of grids 
by defining categories in various ways. Next we restrict attention to the class G of grids 
for which association measures are above a threshold value. Finally, the optimal partition 

is the grid in the class G for which n is minimized. It should be noted that in practice, 
some elements of q may be zero, leading to computational difficulties. In such cases, 
zero elements of q can be replaced by some small positive constant, say y, and all entries 
rescaled such that their total is unity. 

In the present example, consider the simple case of two partitions -- P 1 , defined 
above, and P 2 , which involves X 2 =X 1  Y 2 =Y 1 , and two Z 2  categories (Z<6 and Z>6) as in 
Table 4. The significance of associations of X with Y and X with Z have already been 
established for these two partitions. Using y=0.005 for zero cell proportions the values of 
the sensitivity measure n are 24,452.5 for P 1  and 14,828.5 for P2 . Hence, we choose P 2  as 
the optimal partition P, in the class G. 

Step III 	Log- linear Model Selection - This step involves modelling the joint 
distribution f(X,Z) using data from file B and was already considered in Section 3. As 
before, the saturated model is used. 

Step IV Estimation of the Conditional Distribution fZkXYd - Since we assume 
independence of Y and Z given X, the estimate of f(Zi X) can be used as an estimate 
of f(ZI X,Y) for all categories of Y.. Estimation of f(ZlX) in this case is identical 
to the corresponding situation in Section 3. 

Step V Imputation of Missing Z Values - Initially, we allocate the set of candidate 
records within each (X,Y) category according to the conditional distribution 
f(Z!X,Y) determined in the previous step. The counts are shown in Table 8 and 
imputed values, obtained using the distance metric over age to assign incomplete records 
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to Z. categories and to impute values corresponding to both integral and fractional 

counts, are given in Table 9. Table 9 also gives the values imputed using the LLI-S 
method of the previous section. 

Table 8: Proportional Allocation in LLI-M 

Y<9 Y>9 
Z<6 Z>6 Number Z<6 Z>6 Number 

Missing Missing 
M Age<45 .5 .5 1 1 1 2 
MAge>45 0 0 0 1 0 1 
FAge<45 0 2 2 0 0 0 
F Age > 45 .5 .5 1 .5 .5 1 

Table 9: Statistical Matching by LLI-S and LLI-M 

Imputed Values of 1 Sex 	Age 	V 	
LLI-S 	 LLI-M 

M 42 9.156 7.243 7.243 
M 35 9.149 5.733 4.223 
F 63 9.287 6.147 4.688 
M 55 9.512 5.524 5.524 
F 28 8.494 6.932 6.932 
F 53 8.891 3.23 4.688 
F 22 8.425 6.932 6.932 
M 25 8.867 4.223 5.743 

Mean 5.745 5.746 
SD 1.41 1.18 

It is seen from Table 9 that the imputed values of Z by LLI methods are somewhere 
between constrained and unconstrained imputed values obtained by HDI, as measured by 

mean and SO (standard deviation) of the distribution of imputed values. The propose of 

this example was only to illustrate computational aspects of LLI. For comparing 
performance of LLI with HDI, we consider a simulation experiment to be described in the 
next section. 
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5. A SIMULATION EXPERIMENT FOR 
LLI EVALUATION 

In this section we present some empirical results from a preliminary phase of the 

LLI evaluation study based on synthetic data. The data files were created by drawing a 
random sample of size 1000 from the distribution 

(X1,X2,Y,Z) 	- N(0,) 

where the elements ajjS of Z were prescribed as a 11 =a 22 =0 33 =a,=1, 	2.40, 
a 1  3 =.50, a=.60, 023=.25, a 2 -.40, and a 34 =-.3, -.2, -.1, 0, .3. Only o 	or 
Cov(Y,Z) was allowed to take five different values. The Cholesky decomposition (E=FF') 

was employed to transform a vector U of four independent N(0,1) variables to obtain 
(X1,X2,Y,Z)' via EU. Therefore, only Z values are affected when Cov(Y,Z) varies. 

For each choice of Cov(Y,L), we create two data files A and B by dividing 1000 sample 

observations into two equal parts. For data file A, Z values are suppressed and for B, Y 

values are suppressed. Thus we have five sets of files A and B obtained from the same set 
of N(0,1) random numbers. 

For statistical matching purpose, file B is used to impute Z values (denoted by Z 1 ) 
for file A. Since true Z (denoted by ZT) values are known for our experiment, we can 
easily compute RMSE(Z 1 ) as the square root of the sum of squared (ZLZT). Some other 

evaluation measures can be obtained by comparing the conditional variance (Z) and 
Cov(Y,Z) given X for Z 1  and ZT  values in file A. For instance one can use the relationship 
Cov(Y,ZIX)=Cov(Y,Z) -Cov(Y,X) V(X)l Cov(X,Z) where each term is computed using 
the data in file A. 

In the preliminary evaluation study, the LLI-M method was compared with the HDI 

method for statistical matching. The Euclidean distance over X was used in HDI as well as 

in the step Vof LLI-M. For LLI-M, a proper full scale search for an optimal partition P 
using 'A  and n measures was not done due to time-constraints. A 4x3x3x4 partition of 
(X1,X2,Y,Z) space was chosen with cut-off points (—. 78, -.24, .24) for Xl, 
(-.33, .23) for X2, (-.18, .24) for Y, and (-.80, -.26, .28) for Z when C0V(Y,Z)=-
.30. The cut -off points define cells for the partition e.g. (— .33,. 23) defines three cells 
namely, (_cx, —.331, (-.33, .231 and (.23, ). These cut-off points were chosen as 
functions of sample mean and variance such that they correspond to ranges of 
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approximately equal probability under normality. Only the boundary points for 7 are 
affected when Cov(Y,Z) varies. Furthermore, the saturated log - linear model was used in 
LLI - M and finally, the imputation classes for HD[ were chosen to coincide with the X 
categories in LLI - M partition. Thus, the differences between HDI and LLI - M are 
expected to be due to the impact of proportional allocation only. 

Table 10 shows the results of the above evaluation study. Both LLI and HDI are 

marked by (x) to indicate that they were performed under certain limitations, namely, 

the partitioning was not optimal, 

no smoothing was done, and 

the hot deck imputation classes were formed from the partition chosen for LLI-M. 

Results from this study given in Table 10 although limited, indicate that the effect 
of LLI-M is in the right direction in comparison to HDI. Methods for detailed 
investigation for LLI evaluation are currently being considered. 

Table 10: Evaluation Measures for E.LIX and HDIX 

RMSE 	 Coy (Y,ZX1,X2) 
Data Set  
(file A) 	LLIX 	HDIX 	TRUE 	LLIX 	HDIX 

V(ZIX1,X2) 

TRUE LLIX 	HDIX 
1 1.11 	1.17 	-.61 	-.015 .036 .60 	.66 	.73 2 1.13 	1.16 	-.50 	-.007 .054 .58 	.68 	.72 
3 1.13 	1.16 	-.39 	.025 .065 .58 	.67 	.71 
4 1.15 	1.15 	-.28 	.025 .072 .59 	.67 	.70 5 1.10 	1.13 	.04 	.043 .081 .62 	.61 	.65 

Notes: 	1. Data set numbers for file A correspond respectively to five values chosen for 
Cov(Y,Z). 

2. For 	the 	particular 	4x3x3x4 	partition used 	in LLIX, 	the 	measures 
IA(X,Y), 	IA(X7) and n 	turned 	out 	to 	be around .021, 	.045, 	and 	43,000 
respectively for all the five data sets. 

6. CONCLUDING REMARKS 

In this paper we have described two types of log- linear imputation for the problem 
of statistical matching: one for the Y ignorable case (or equivalently, a single combined 
file situation) denoted by LLI -S; and the other for the V non-ignorable case (or 
equivalently a multiple file situation) denoted by LLI-M. In practice, the choice between 



- 14 - 

LLI -S and LLI -M would depend on the validity of the untestable assumption of conditional 

independence of Y and Z given X. Generally this assumption would be unrealistic and 
hence LLI-M would be preferable as it uses Y information. Among the five steps of LLI, 
namely, 

choice of X predictors, 

choice of optimal partition and hence optimal imputation classes, 
smoothing via log- linear modelling, 

estimating the conditional distribution for proportional allocation, and 

completing the missing Z values; 

the method LLI -M uses V information in all the steps except in (iii). 

The above observation suggests an important direction for further research in which 
LLI- M could be generalized, see Singh (1988). Specifically, in the smoothing step via 
log- linear modelling, the two - factor (Y,Z) and the three - factor effects are 
necessarily dropped because there are no data containing (Y,Z) and (X,Y,Z) values. It is 
interesting to note that under the categorical conditional independence assumption, these 

are precisely the parameters that are omitted. Now, it is conceivable that reasonable 
estimates of some or all of these parameters could be obtained from some other source of 

information. This can then be incorporated to obtain modified estimates of expected 
proportions and in turn a new version of LLI. As regards evaluation of LU, the 

preliminary results reported in this paper are promising. More extensive work on 

evaluation of LLI is planned using synthetic data as well as a data file created by exact 
matching of information from Revenue Canada and the Survey of Consumer Finance. 
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