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ABSTRACT

In the creation of micro-simulation databases which are frequently used by
policy analysts and planners, several datafiles are combined by statistical matching
techniques for enriching the host datafile. This process requires the conditional
independence assumption (CIA) which could seriously bias the resulting joint
relationships between variables. The use of appropriate auxiliary information could
alleviate this problem to a great extent. In this report, methods of statistical matching
corresponding to three methods of imputation, namely, hot deck, linear regression and
log linear, with and without auxiliary information are considered. The log linear
methods consist of adding categorical constraints to either the hot deck or linear
regression methods. Based on an extensive simulation study with synthetic data,
sensitivity analyses for departures from CIA are performed and gains from using
auxiliary information are discussed. Different scenarios for the underlying distribution
and relationships are created using synthetic data such as normal versus nonnormal
data and proxy versus nonproxy auxiliary data. Some recommendations on the use of
statistical matching methods are also made. Specifically, it was confirmed that CIA
could be a serious limitation which could be overcome by the use of auxiliary
information. Hot deck methods were found to be generally preferable to regression
methods. Also, when auxiliary information is available, log linear categorical constraints
can improve performance of hot deck methods.

This study was motivated by concerns about CIA used in the construction of

the Social Policy Simulation Database at Statistics Canada.

Key Words:  Macro/Micro and Proxy/Nonproxy Auxiliary Information, Categorical
Constraints, CIA, Conditional Correlation, Log-normal Contaminations, Regression to

the Mean, Unit vs Aggregate Evaluation Measures



RESUME

Lors de la création des bases de données de micro-simulation, lesquelles sont
fréquemment utilisées par les concepteurs et analystes de politiques, certains fichiers
de données sont combinés par des techniques statistiques d’appariement afin
d’enricher le fichier de données principal. Ce procédé requiert I'hypotheése
d'indépendance conditionnelle (HIC) qui pourrait sérieusement biaiser les relations entre
les variables résultant de |'appariement. L'utilisation de I'information auxiliaire
appropriée pourrait simplifier grandement ce probléme. Dans ce rapport, des méthodes
statistiques d’appariement correspondant a trois méthodes d’'imputation sont
considérées, "hot deck”, régression linéaire et log linéaire, avec ou sans information
auxiliaire. La méthode log linéaire consiste en |'addition de contraintes de catégories
a la méthode "hot deck” ou a la méthode de régression linéaire. Basées sur une vaste
étude de simulation avec des données artificielles, des analyses de sensibilité aux
écarts 3 la HIC sont effectuées, et les gains obtenus par I'utilisation de I'information
au_xiliaire sont discutés. Différents scénarios sont créés pour les relations et la
distribution sous-jacente en utilisant les données artificielles telles que les données
normales versus non-normales et les données auxiliaires "proxy” versus "non-proxy”.
Quelques recommandations sur |'utilisation des méthodes statistiques d'appariement
sont aussi faites. Plus spécifiquement, il a été confirmé que la HIC pourrait étre une
sérieuse limitation qui peut &tre contrée par |'utilisation d’informations auxiliaires
appropriées. Les méthodes "hot deck” se sont montrées généralement préférables aux
méthodes de régression. Aussi, lorsque I'information auxiliaire est disponible, les
contraintes de catégories de la méthode log linéaire peuvent améliorer les performances
des méthodes "hot deck”.

Cette étude a été motivée par l'intérét porté a la HIC utilisée lors de la
construction de Ia base de données de simulation de politique sociale a Statistique

Canada.
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1. INTRODUCTION

The literature on statistical matching is spread over the last two decades, starting probably with
the work of Okner (1972). Sims (1372), in his comments on Okner’s paper, was the first to point out
the potential risk of statistical matching because of the implicit strong conditional independence
assumption (CIA). Concerns were also expressed by Fellegi (1977) about the validity of joint
distributions in the matched file and he suggested that thorough empirical testing of matching methods
should be done. U.S. Department of Commerce (1980) provides a good review of statistical matching

as well as exact matching methods.

The present paper considers several methods based on auxiliary information to avoid the CIA
which are developed from the original ideas of Rubin (1986) and Paass (1986). Rubin proposed
versions of parametric regression while Paass proposed versions of nonparametric regression which
are related to the familiar hot deck method of imputation. A simplified version of Paass’s method is
considered in this paper due to the considerable computational effort required for the original method.
Another class of methods using auxiliary information based on log linear imputation (Singh, 1988)
along with some maodifications of the above methods is also considered. An extensive simulation study
with synthetic data, which also included matching - methods that assume CIA, was conducted in order

to analyze sensitivity to failure of the CIA and gains from using auxiliary information.

There have been several empirical investigations in the past on evaluating statistical matching
methods. Among those that do not consider the use of auxiliary information, some main references
are Ruggles, Ruggles and Wolff (1977), Paass and Wauschkuhn (1980}, Barr, Stewart and Turner
(1981) and Rodgers and DeVol (1982). Paass (1986) provides an excellent review of these empirical
tests on the quality of matching methods. A recent reference is Barr and Turner (1990), which
describes a detailed empirical investigation of quality issues for file merging, and also contains a good

list of references.

All the studies cited above confirmed the seriousness of the CIA. This stresses the need for
additional information to be incorporated in the matching process. There have been few empirical
studies considering the use of auxiliary information and it’s impact on the CIA; Paass (1986)
considered an evaluation with synthetic data only, whereas Armstrong (1989) considered simulations
with both synthetic and real data. The present study could be considered as complementary to these

studies in the sense that some new methods are included and the choice of underlying population
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distributions is quite broad.

This research was motivated from considerations of improving the content of the Social Policy
Simulation Database (SPSD), a microsimulation database created at Statistics Canada by merging
various files for use in economic policy analysis; see Wolfson, Gribble, Bordt, Murphy and Rowe
(1987). Some preliminary results from this study were presented to the Statistical Society of Canada,

cf. Singh, Mantel, Kinack and Rowe {1990).

The organization of this paper is shown in the table of contents. More specifically, section 2
introduces the problem of statistical matching as it arises in the context of the SPSD. Included is a
brief overview of the problem of statistical matching in general. A description of some methods of
statistical matching is presented, all of which are limited by the CIA. The section concludes with a
short discussion on the method of statistical matching used in SPSD construction. Section 3 contains
some proposals for modifications to the methods of statistical matching described in section 2. These
modified methods are aimed at avoiding the CIA and require the existence of auxiliary information on
the joint relationships of variables in the different source datafiles. Section 4 provides the details of
an extensive simulation study with synthetic data designed to evaluate and compare various strategies
of statistical matching. Included is a description of the different versions of the methods examined
and the evaluation measures used. Section 5 contains the results from the Monte Carlo trials.
Limitations of the Monte Carlo study are also mentioned. Section 6 presents a summary of the report,
highlighting the major findings. Some practical recommendations and directions for future work are

included.



2. THE SPSD AND STATISTICAL MATCHING

2.1 SPSD Background

In the words of Wolfson, Gribble, Bordt, Murphy and Rowe (1987, p202 top) , "The Social
Policy Simulation Database with its related Social Policy Simulation Model software (SPSD/M) has as
its general goal to provide a comprehensive, publicly available, microsimulation-based, integrated
individual tax/transfer policy analysis capability.” The typical uses to which SPSD are put include

calculations of taxes and transfers for families on the database, tabulations and cross tabulations.

The multi-stage construction process of the SPSD uses the technique of statistical matching
at a number of points in order to enrich the host datafile, the Survey of Consumer Finances (SCF), with
additional information from other data sources. Specifically, information from unemployment
insurance claim histories {Ul), personal income tax returns (T1) and the Family Expenditure Survey
(FAMEX) is added to the SCF records.

Since the Ul and T1 data come from specially drawn samples from the complete administrative
files, and the FAMEX data come from a survey, it is not necessarily the case that an individual will
appear in more than one of the data sources. Hence, the process of adding this extra information to
the SCF records is unlike exact matching in which one would search through these other data sources
for specific individuals. In fact, even if the three additional data sources were complete, confidentiality
concerns would prevent an exact matching of the files. Thus, the alternative of statistical matching

of records from the various files is used.

2.2 Description of Statistical Matching

Statistical matching can be viewed as a special case of imputation in which we have two or
more distinct data sources containing different information on different units. One data source serves
as a host or recipient file to which new information is imputed for each record using similar records
from the other donor file(s). A typical use for the matched file is as input to micro-simulation models
for which a complete file with all variables is required. In the case of the SPSD, the SCF serves as the
host file with the Ul, T1 and FAMEX data corresponding to donor files. Since the statistical matching

of these three files to the SCF is carried out sequentially, for our purpose here it is sufficient to restrict
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the discussion that follows to the general case of matching two files, a host file A and a donor file B.

Both files A and B will normally contain information on vectors of variables. We assume the
existence of some set of common variables X in the two files that can be used to identify similar units.
In the case of the SPSD these are usually demographic or income variables. The remaining variables
unique to file A are designated as Y, while those unique to file B are designated as Z. The problem is
to complete the records in file A by imputing values for Z, using the information on the (X'.Z')

relationships in file B.

A more detailed discussion on statistical matching can be found in U.S. Department of
Commerce (1980); see also Kadane (1978), Rodgers (1984), Rubin (1986) and Paass (1986).

Note: Although this setting describes the most general framework for the problem of statistical
matching, we will restrict our attention here to the case of univariate values for X, Y and Z; that
is, one X, one Y and one Z variable. This is partly for reasons of simplicity, but also because of
computational limitations involved with the simulation study undertaken. A restriction to
continuous variables only is also imposed at the present time. It is important to note that in
addition to computational concerns, some concepts (such as ranking of records) do not have

natural analogues in the multivariate and/or discrete setting.

2.3 Common Methods of Statistical Matching

Two commonly used classes of methods of statistical matching are analogous to linear
regression imputation and hot deck imputation (see Kalton and Kasprzyk, 1986). The basic idea of all
of these methods is to use information on the common variable X to find a similar record in file B for

each record in file A.

2.3.1 Linear Regression Method

The linear regression method is a two-stage procedure. File B is used to fit a linear regression
of Z on X, with the estimated regression coefficients used to obtain an intermediate value for Z based
on X for each record in file A. A live value for Z is then obtained from file B by selecting the closest

record according to a distance measure, such as the distance in Z or the Euclidean distance in (X,Z).
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This last step is analogous to the addition of stochastic residuals to the predicted values in regression
imputation. The version using the distance in Z is also known as “regression with predictive mean

matching”, as proposed by Rubin; see Little and Rubin (1987).

2.3.2 Hot Deck Methods

The term hot deck comes from a class of methods of imputation for item non-response in
which "the value assigned for a missing response is taken from a respondent to the current survey”
(Kalton and Kasprzyk, 1986), though it should be noted that Ford (1983) says "there is no general

agreement on the exact definition of a hot-deck procedure”.

The term hot deck is used here to describe methods of matching which obtain live values based
on comparison of files at the unit level. In this sense, the second stage of the regression procedures
described above, in which a live value is obtained from file B based on some distance measure is also
hot deck. However, by hot deck matching methods we mean methods that do not make use of any
synthetic intermediate values. Hot deck methods may be considered as non-parametric analogues of

regression methods.

Three types of hot deck methods are considered: random, distance and rank. As well, each
of these methods can be applied globally to all records at one time, or for computational or other

reasons, independently to records within categories of the X variable, denoted by X'.

Hot deck random corresponds to matching each record in file A with a randomly selected

record from file B.

Hot deck distance requires the calculation of a distance measure between records in files A and

B. Each record in file A is matched to the closest recard in file B.

in hot deck rank records from files A and B are ranked separately according to the value of X,
and then are matched based on these ranks. This was proposed by G. Rowe for the SPSD (see
Wolfson, Gribble, Bordt, Murphy and Rowe, 1987). A complication arises with hot deck rank when
the number of records in the two files differs. One way to circumvent this problem is by matching

percentage points of the empirical cumulative distribution functions of X for host and donor records.



2.4 Log Linear Method

A modification of the linear regression and hot deck methods is to impose categorical
constraints on the records selected from file B in the process of completing file A, as suggested by
Singh (1988). This new type of constrained statistical matching is a special case of log linear
imputation. The constraints imposed are in the form of a categorical distribution of (X°,Y",Z°) that the
completed file A must satisfy. Here, X', Y" and Z° denote respectively the categorical transformations
of X, Y and Z. Note that this represents a difference from other types of constrained statistical
matching in which constraints are in the form of a few characteristic measures (such as mean and
variance) that variables in the completed file must satisfy. The categorical constraints for log linear
imputation can be obtained in a number of ways through log linear modelling; see Singh, Armstrong
and Lemaitre (1988).

The basic idea here is, within (X',Y") categories in file A, to distribute counts to 2° categories
according to the categorical (X°,Z°) distribution in file B. There are two approaches here which do not
require fitting log linear models. Both require that the (X°,Z’) categorical distribution from file B is first
raked to the X" margin from file A. A simple example demonstrating the difference between the two

approaches can be found in appendix 3.

The first procedure, which we call rakeyz, is to rake a 2-dimensional table of 1's to the
categorical Y' and Z° margins from files A and B to obtain a categorical (Y',Z") marginal distribution.
This amounts to assuming Y* and Z* are unconditionally independent. A 3-dimensional table of 1's is
then raked to the categorical (X,Y"), (X",Z°) and (Y*,Z°) distributions. This amounts to setting the
(Y",Z') interaction terms in a log linear model for the categorical (Y",Z°) distribution to zero and the
(X*,Y°,Z") interaction terms in a log linear model for the categorical (X',Y",Z°) distribution to zero (see
Purcell and Kish, 1380).

The second procedure, which we call rakexyz, is to rake a 3-dimensional table of 1's to the
categorical (X,Y") and (X',Z°) distributions from files A and B. This amounts to assuming that,
conditional on the X" category, Y’ and Z° are categorically independent, which does not imply Y and
Z’ are unconditionally independent. In terms of log linear models, it is equivalent to setting the (Y*,Z")

and (X',Y",Z’) interaction terms in a log linear maodel for the categorical (X°,Y",Z°) distribution to zero.

Which procedure is most appropriate would depend on which assumptions are nearest to being

correct.



Under the categorical constraints either the linear regression method or 3 hot deck method can
be used to impute live Z-values from file B onto records in file A. For example, the hot deck distance
method would be modified in the following manner. Within an (X',Y") category in file A one would
compute the distances to all records in the same X' category in file B. The first records to be matched
would correspond to the pair with minimum distance in X. The (X',Y",Z") category of the completed
record would be noted and a running count of the number of matched records in that (X",Y",Z°)
category incremented. If the resulting count does not exceed the count imposed by the categorical
constraints that match is allowed. Otherwise, that match is rejected and the match with the second
smallest distance is examined. The process continues until file A is completed so that the categorical

distribution of (X',Y",2°) satisfies the categorical constraints.

2.5 An Important Limitation with these Methods

The methods of statistical matching described above all suffer from a similar limitation in that
information on the variable Y is completely ignored in the matching process. This limitation amounts
to the assumption of conditional independence of Y and Z given X (Y LZ| X}, denoted CIA (conditional
independence assumption). Note that when the categorical constraints of log linear imputation are
imposed this assumption is made for the categorical distribution (Y' LZ"]|X"), and within (X",Y",Z")
categories Y and Z are assumed to be independent given X. The importance of the CIA is obvious,
since the purpose of the match is to analyze the joint relationships of X, Y and Z. If the true
relationships of the variables are such that conditional independence does not hold, then the CIA would
mask an important component of these relationships, and would bias some analyses involving the full
set of variables. The seriousness of the CIA is well-documented in Sims (1978), Rubin (1986), Paass
{1986) and Armstrong (1989). In section 3 we will see how the existence of additional auxiliary

information can be used to help avoid this serious assumption.

2.6 The Method of Statistical Matching in SPSD Construction

One important restriction placed on the statistical matching of records in the SPSD is the
requirement that all records from file B be used, since a primary purpose of the match is to exploit as
much information as possible that exists in file B. This differs somewhat from the general objective
of statistical matching which is focused primarily on completing the records in file A for the missing

variables, and does not necessarily mean that all records from file B have to be used.

7



With this requirement in mind, the method of statistical matching applied in SPSD construction
is a slightly modified version of hot deck rank. Records from both files A and B are first classified into
specified "bins" (X" categories) and then ranked separately on gne of the common continuous X
variables (usually total income). Records are selectively duplicated to overcome the problem of
different numbers within bins so that corresponding bins will have the same number of records from

each of the two files. Within each bin, records are matched one-to-one across the two files.

Currently, categorical constraints are not imposed in the version of hot deck rank used in SPSD

construction.

Note: One other important consideration with the SPSD is not addressed at the present time. All
records on the SPSD have record weights associated with them, since individuals on the
contributing datafiles come from surveys or samples of administrative files with different
probabilities of selection. The existence of these weights can complicate the matching process.
The methods considered in this simulation study would need suitable modifications in order to

handle the case of record weights.



3. STATISTICAL MATCHING WITH AUXILIARY INFORMATION

3.1 Existence of Auxiliary Information

The serious CIA described in section 2.5 can severely affect the meaningfulness of analyses
conducted with regards to joint relationships of variables that come from different source files. When
additional auxiliary information is available on these joint relationships it can be incorporated into the
matching process to avoid the CIA and improve the quality of the completed file by reducing distortions

in these joint relationships.

Such auxiliary information may emanate from various possible sources and may reside in
several different forms. Since the purpose of the auxiliary information is only to aid in avoiding the
CIA, it's use is limited to the extent that information that exists in the source files is never overridden
by the auxiliary information. In other words, the objective is to borrow additional information from the
auxiliary source not available in the source files. This is accomplished in such a way that
confidentiality concerns associated with the auxiliary source would not be violated and implies that the
auxiliary source could be a specially conducted smali-scale survey or exact match of confidential

datafiles.

Another implication is that the auxiliary information need not be perfect. That is, it may be
deficient in some sense. For instance, it may come from an outdated data source (perhaps a previous
census or survey), but from which the required auxiliary information may still be valid, or at least
represent an improvement over the otherwise default CIA. On the other hand, the auxiliary information

may refer to a set of proxy variables expected to behave similarly to the variables of interest.

3.2 Types of Auxiliary Information

Since the information missing from the source files pertains to the joint relationships of (Y,Z)
and (X,Y,Z), it is natural to consider two general classes of auxiliary information: one with information
solely on the (Y,Z} joint relationships, and one with information on the full set of (X,Y,Z) joint

relationships.

Within each of these two classes of auxiliary information, one can group the forms the auxiliary

9



information can take into two ievels: macro-level auxiliary information in the form of summary statistics

or measuras, and micro-level auxiliary information in the form of individual unit records.

3.2.1 Macro-level Auxiliary Information

Auxiliary information at the macro-level could be in the form of either correlations or categorical
cell proportions. Given that the auxiliary information could be either on the complete set (X,Y,Z) or

simply on (Y,2), four kinds of macro-level auxiliary information are possibie. These are:

{X.Y.Z) Auxiliary information

i) Pyazix conditional correlation of Y,Z given X

i) my 3-dimensional categorical cell proportions

Y,Z) Auxiliary Information
il) pyz unconditional correlation of Y,Z

iv) m 2-dimensional categorical cell proportions

1

One might also have macro-level auxiliary information of more than one kind, for example both

i) and ii), or both iii) and iv).

3.2.2 Micro-level Auxiliary Information

Aunxiliary information at the micro-level would be in the form of a third datafile C with individual
unit records containing information on either the complete set of variables (X,Y,Z) or on the reduced
set (Y,2). However, this file could be outdated, proxy or confidential so that it could not be used

directly.

3.3 Using Auxiliary Information

Clearly, the method of incorporating auxiliary information with statistical matching will depend

on the level it is at, and the specific form it has.
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3.3.1 Macro-fevel Auxiliary information

The existence of information on correlations means that the linear regression method can be
modified so that a regression of Z on X and Y can be used, instead of simply a regression of Z on X,

in obtaining the intermediate imputed value for Z.

Information on the cell proportions can be incorporated into the procedure of constructing the
categorical constraints of log linear imputation. In the case of (X,Y,Z) auxiliary information, the set
of categorical proportions can be used as the starting table in place of the table of 1's in the

procedures described in section 2.4. Thus there are two possibilities.

The first possibility, which corresponds to rakeyz in section 2.4, is to collapse the (X',Y",Z")
categorical distribution to a (Y®,Z") categorical distribution and rake it to categorical Y™ and Z° margins
as in the previous case, and then the (X", Y',Z") categorical distribution would be raked to the
categorical (X",Y"), (X",Z°), and (Y",Z") margins. This amounts to borrowing the {Y",Z") interaction
terms of a saturated log linear model for the categorical (Y',Z°) distribution from the auxiliary
categorical (Y",2°) distribution and the (X',Y",Z°) interaction terms of a saturated log linear model for

the categorical (X°,Y",Z°) distribution from the auxiliary categorical (X',Y",Z") distribution.

The second possibility, which corresponds to rakexyz in section 2.4,. is to rake the (X',Y",Z")
categorical distribution to the (X',Y") and (X',2°) categorical margins. This amounts to borrowing both
the (Y",Z7) and (X',Y",Z") interaction terms of a saturated log linear model for the categorical (X',Y",27)
distribution from the auxiliary categorical (X',Y",Z°) distribution. Intuitively, the second procedure
would be preferred if the information about the (X',Y",Z°) categorical distribution was very good; the
first procedure would be expected to perform better if the auxiliary information was less precise

because in that case the information about the (Y',Z") categorical distribution would be more precise.

Information on the 2-dimensional cell proportions for the (Y',Z°} margin can be used in place
of the 2-dimensional table of 1's in the first raking procedure described in section 2.4. In terms of a
saturated log linear model for the categorical (Y*,Z°) distribution, this amounts to taking the (Y',Z°)
interaction terms from the auxiliary data while leaving the marginal terms obtained from files A and B
intact. Next, a 3-dimensional table of 1's is raked to the categorical (X',Y"}, (X',Z"), and (Y",Z")
margins which, in a saturated log linear model, amounts to setting the second order interaction terms

to zero.
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In the case of macro-level auxiliary information on both correlations and categorical ceil
proportions, it would be possible to use a modified linear regression method and also apply modified

categorical constraints.

3.3.2 Micro-level Auxiliary Information

Similarly to the linear regression method, the approach with micro-level auxiliary information
is to use the data in file C to impute an intermediate value for Z, and then use this intermediate value

to help find a live record from file B.

For example, based on methods developed by Paass (1986), a modification of hot deck
distance is obtained as a two-step procedure. In the first step, hot deck distance matching is applied
to files A and C to add intermediate imputed values for Z onto file A. In the second step, hot deck
distance matching is applied to the new file created in the first step and file B to obtain final values for
Z, and hence the completed file A. The difference between this approach and usual hot deck distance

is that the variable Z can be used in the distance function when searching for live values from file B.

In most cases when micro-level auxiliary information is available, it is possible to roll it up to.
the macro-level and obtain reliable information on correlations and categorical cell proportions. The
validity and reasonableness of this would depend in part on the size of the micro-level datafile. In such
cases, the options of using the modified linear regression method and of applying modified categorical
constraints would also both be present. The term modified refers to the versions of the methods that

use macro-level auxiliary information.

3.4 Comparing Methods of Statistical Matching

Given the large number of considerations that may be involved in selecting a method of
statistical matching, several questions arise as to how the various possible methods compare and how
one should select a method appropriate for a particular application. Listed below are some questions

which come to mind in considering the different factors involved:

e for methods that use no auxiliary information

a) how serious is the CIA ?
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b) does imposing categorical constraints improve the situation ?

c) is there a best method ?

® to what extent does macro-level auxiliary information on correlations improve the linear regression

method ?

® to what extent does micro-level auxiliary information improve the hot deck methods ?

¢ when macro-level auxiliary information on categorical cell proportions is available
a) does imposing categorical constraints improve the performance of the methods ?
b} how does the choice of partitioning points and associated degree of fineness affect the
performance ?
® how do the methods using auxiliary information perform when the auxiliary information is from an

outdated or proxy source, or from an insufficiently large auxiliary source ?

® how robust are the linear regression methods to non-normality ?

® how do computational requirements balance against performance for the various methods ?

® for given auxiliary information, is there a best method ?

An empirical evaluation through an extensive simulation study with synthetic data generated
from multivariate normal distributions was undertaken to examine these questions. Non-normality was
introduced via contaminations from multivariate log-normal distributions. The reason for using
synthetic data is to have control over all of the relevant parameters, including those specifying the joint
relationships of the different variables. This permits evaluation of the various approaches to matching
as the joint relationships are allowed to vary in a systematic departure from conditional independence.
It also permits comparisons of the methods as the underlying distribution generating the data moves
away from normality. The design of this study and subsequent results constitute the content of the

following two sections.
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4. A MONTE CARLO STUDY OF STATISTICAL MATCHING METHODS

This section presents the details of the Monte Carlo study undertaken. Programming was done
on micro-computers using the software GAUSS. Execution time for one simulation varied from 20
minutes to one hour, depending on the machine used. Documentation of the programs written can be

found in Mantel and Kinack (1991).

4.1 Design of the Monte Carlo Study

4.1.1 Strategy

In order to simulate statistical matching three datafiles are needed: a host file A, a donor file
B, and an auxiliary file C. These are generated synthetically from specified distributions, with each file
containing the three variables X, Y and Z. In file A the variable Z is suppressed and in file B the
variable Y is suppressed. The suppressed Z-values in file A are used to evaluate the performance of
various methods of statistical matching that use the information in files B and C to impute live Z-values

from file B onto the records in file A.

Each method of statistical matching investigated is applied to the same data. That is, for a
given file A and a given file B each method of statistical matching is performed. When a particular
method requires auxiliary information it is always taken from the same file C. This could be the micro-
level file itself, or summary measures or statistics calculated from the data in file C, such as

correlations or categorical cell proportions.

Runs of 100 simulations apiece were performed for each combination of design parameters
considered. Four evaluation measures were calculated for each simulation and then were combined

over all 100 simulations.

4.1.2 The Data

For this study both files A and B are always generated from the same underlying distribution,

14



with each containing 500 independent and identically distributed observations. File C contains 250
independent and identically distributed observations from an underlying distribution that may or may
not be the same as that for files A and B. A different underlying distribution for file C would be used

to represent proxy auxiliary information.

The basic distribution of observations (X,Y,Z) is multivariate normal with the marginal
distributions of X, Y and Z being standard normal. The covariances of (X,Y) and (X,Z) in the basic
distribution are always .5, while the covariance of (Y,Z) varies from one run to another.
Correspondingly, the conditional correlation of Y and Z given X, with the formula given by p,;, =
(Ov.2 - PxvPx ) 1 (1 - pxy?)* (1-px77)*, also varies. In some runs the basic distribution is contaminated
by taking the exponentials of X, Y and Z instead of X, Y and Z for some of the observations. The
probability of any particular observation coming from this log-normal contamination distribution is fixed
for any particular run of 100 simulations and individual observations are chosen independently to be

contaminations.

4.1.3 Proxy Auxiliary Information

For most runs the distribution of observations in the auxiliary file C was the same as that in
files A and B. However, if in an application the source of auxiliary information is historical or via proxy
variables this assumption may be unreasonable. Two series of runs were carried out with proxy
auxiliary information; that is, auxiliary information that comes from a distribution different from the
distribution generating observations in files A and B. In the first series the auxiliary data has a different

Pyzix- In the second series the auxiliary data has some log-normal contamination.

4.1.4 Categorical Partition

For the methods applying categorical constraints (to be fully described in section 4.2), it is
necessary to choose a categorical partition. For this study two partitions were used. The first, called
standard interval, divided the ranges of the X, Y and Z variables into the categories <-1, [-1,0),
[0,1), =1; thatis, the partition was centered on the mean of the basic marginal distribution with break
points at the center and at plus or minus one standard deviation. The second partition, called equal
probability, was similar but had break points at the quartiles of the basic marginal distributions; that

is, the partition had the categories <-.6745, [-.6745,0), [0,.6745), =.6745. Note that these
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partitions are defined in terms of the basic distributions, for simplicity the same partitions are used
when there are log-normal contaminations. It would have been most realistic to let the partitions be
data dependent, but we used fixed partitions for simplicity.

Only one of these partitions may be used in any particular run of 100 simulations for matching,

but either or both may be used for the categorical evaluation measures to be described in section 4.3,

namely, chi-square statistics and conditional likelihood ratio tests.

4.1.5 Summary of Control Parameters
In summary, the parameters that will be varied for different runs are:
1) the conditional correlation of Y and Z given X (oy zx); recall that p,, and py; are fixed at .5
2) the proportion of log-normal contaminations for generating the underlying non-normal populations
3) the auxiliary data may come from a distribution different from that of the data in files A and B
through:
a) a different conditional correlation of Y and Z given X (oy zx)
b) log-normal contaminations
4) the categorical partitions for matching methods with categorical constraints and for categorical
evaluation measures may vary

4.2 The Matching Methods

We first describe in detail the specific matching methods included in the study and a naming

convention that will be used to refer to them.

There are four main types of methods included in the study. These are regression methods and

hot deck methods, both with and without categorical constraints.
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4.2.1 Regression Methods

Regression methods, denoted by REG, use an estimated regression relationship to impute an
intermediate Z-value to records in file A, and perhaps also an intermediate Y-value to records in file B.
A live value from file B is then obtained on the basis of z-distance, xz-distance, or xyz-distance. File
B may be used to estimate a linear regression of Z on X. If there is an auxiliary file C with all three
variables available then it may be used to estimate the conditional correlation of Y and Z given X and
this, together with (X,Y) and (X,Z) correlations from files A and B, may be used to estimate a linear
regression of Zon X and Y. If file C contains only variables Y and Z we would take the unconditional
{Y,Z) correlation from it. Note that we are only taking certain correlations from file C; the full micro

data is not needed by these methods.

4.2.2 Hot Deck Methods

In the absence of any auxiliary datafile hot deck methods, denoted by HOD, are based on
comparisons of the X-values in files A and B. Within X' categories the matching may be done
randomly or be based on the ranked X-values or be based on x-distance. Matching based on x-distance

is also done without X' categories.

When there is an auxiliary micro-datafile C available we would use hot deck distance to obtain
intermediate Z-values for file A and Y-values for file B from file C and then use hot deck z, xz, or xyz-
distance to obtain live Z-values from file B for records in file A. If the auxiliary micro-datafile C
contains variables X, Y and Z then xy-distance would be used to abtain the intermediate Z-values; if
it contained only variables Y and Z then y-distance would be used. This method may be considered
as a simplified version of the method proposed by Paass (1986). The original method of Paass (1986)

was not included in this study because it was thought to be too computationally intensive.

4.2.3 Log Linear Categorical Canstraints

The categorical constraints mentioned above are obtained by raking a categorical distribution
to the categorical {(X*,Y") and (X",Z") margins from files A and B respectively. There are four different
ways in which this is done in the present study. The two raking procedures that do not use auxiliary

information are described in section 2.4. We also use the raking procedure described in section 3.3.1
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for (Y*,Z") auxiliary information and the first of the two raking procedures described there for (X", Y",Z")
auxiliary information. We use the first of the procedures for (X',Y',Z°) auxiliary information because
in this simulation study the auxiliary categorical (X',Y",Z’) distribution may not be sufficiently accurate

to be acceptable.

The categorical counts obtained by these procedures need not be integer values. We force
them to be integer values by redistributing fractional counts by sampling cells randomly without
replacement with probabilities proportional to the fractions for each cell. This is done independently

for each (X°,Y") category.

Because of the close connections to log linear models we use the word LOGLIN to refer to
these procedures of finding categorical constraints. After the constraints are obtained it is still
necessary to do the matching respecting the constraints. We then obtain REG.LOGLIN and
HOD.LOGLIN as the last two major types of methods included in the study.

4.2.4 Regression with Categorical Constraints

For REG.LOGLIN intermediate Z-values for file A and Y-values for file B are obtained in the same
way as for the REG procedures. However, wﬁen live values from file B are obtained on the basis of
z, xz, or xyz-distance, the categorical constraints are respected. This is done by finding for each
remaining record of file A the closest record from file B with a Z-value in one of the Z° categories that
is not yet filled, then choosing the match that is the closest, and then repeating the procedure until

all of the records from file A have a live Z-value from file B.

4.2.5 Hot Deck with Categorical Constraints

For HOD.LOGLIN with an auxiliary micro-datafile C the intermediate Z-values for file A and Y-
values for file B are obtained subject to categorical constraints. The constraints for intermediate Y-
values for file B need not be the same as those obtained for the Z-values for file A; they are obtained
in the same way, but with files A and B playing reversed roles. The procedure for finding the
intermediate Z-values from file C subject to the constraints is the same as the procedure described
above for finding live Z-values from file B in the REG.LOGLIN procedures, but using xy or y-distance

depending on whether file C contains variables (X,Y,Z) or (Y,Z). Once the intermediate values are
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obtained, live values are found from file B on the basis of z, xz, or xyz-distance within Z’ categories.

HOD.LOGLIN with no auxiliary micro-datafile and x-distance is very similar to the final stage
of the REG.LOGLIN procedures with an auxiliary micro-datafile C. If random matching is used it is done
within (X°,2°) categories from file B to satisfy the constraints. Matching based on ranking satisfying
categorical constraints is not as straightforward. For each (X',Y") category, records from file B are
randomly selected respecting the X" category to satisfy the constraints and then the records in file A
from that {X",Y") category are matched to these randomly selected records from file B based on X

ranking.

4.2.6 A Naming Convention

A complete list of naming conventions is given in appendix 1. The major indicators of matching
type are REG, HOD, REG.LOGLIN, and HOD.LOGLIN. More detailed descriptions of the various
methods within these major types would be indicated by modifiers within parentheses. Thus, for
example, REGlauxcorrxyz, xz-dist) indicates a regression procedure with auxiliary information about
the conditional correlation of Y and Z given X to obtain the regression relationship used to impute

intermediate Z-values to file A, and with xz-distance being used to obtain live Z-values from file B.

4.3 The Evaluation Measures

A variety of evaluation measures were used to measure how well the different matching
methods performed. All of the evaluations are based on comparisons of the matched file to the file
with the suppressed true Z-values. Two of the measures are based on categorical comparisons, but
the categories used for evaluations need not be the same as those used for categorical constraints by
the LOGLIN procedures. Categorical evaluation measures, which look at the overall distribution, are
relevant to the typical uses of the SPSD. The first of the four evaluation measures is based on unit
by unit comparison of the matched and suppressed Z-values. However, the objective of a statistical
matching procedure cannot be to reproduce the suppressed Z-values exactly, but to produce Z-values
that come from the same distribution given what is known, in this case given X and Y. The last three

evaluation measures are based more on comparisons of the distributional properties of Z.

The various evaluation measures were calculated for each of the 100 simulations run for each
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set of parameter values considered. What is reported are a variety of summary statistics for the

evaluation measures.

4.3.1 Mean Absolute Differences of Z (MAD-Z)

The simplest measure of performance is the mean absolute difference between the matched
and suppressed Z-values for records in file A. Monte Carlo means of these means as well as standard

errors were obtained.

4.3.2 Difference of Covariances (MAD-Cov)

The second evaluation measure is the absolute difference of the conditional covariances of Y
and Z given X in the matched and suppressed files. These conditional covariances are calculated from
the observed covariance matrices as if the data were multivariate normally distributed. Monte Carlo

means of these absolute differences as well as standard errors were obtained.

4.3.3 Chi-square Statistics (x°)

The third measure of performance, based on categorical comparisons, is simply a Pearson chi-
square statistic to test that the suppressed categorical Z-values come from a multinomial distribution
with probabilities equal to the categorical proportions from the matched file. What is reported are the
mean chi-square statistics over the 100 simulations, transformed to lie in the interval (0,1) (see

appendix 2).

4.3.4 Conditional Likelihood Ratio Test (CLRT)

The final measure of performance is also based on categorical comparisons. Within each (X", Y")
category that has a minimum number of observations, in this case 20, a likelihood ratio test that the
categorical Z-values from the matched and suppressed files come from the same multinomial
distribution is performed. The tests for different (X',Y") categories are then combined to obtain an

overall p-value (see appendix 2). What is reported is the proportion of times, out of 100 simulations
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at each set of parameter values, that the overall p-value was less than .05. The larger this proportion,
the greater the difference between the true and matched categorical distributions of Z° given the

(X*,Y") categories.
Note that the minimum sample size of 20 for (X",Y") categories in file A is required so that the

chi-square approximation to the distribution of the test statistic might be reasonable. If the number

of Z' categories was increased, this minimum sample size might also need to be increased.
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5. RESULTS OF THE MONTE CARLO STUDY

In this section we describe the results of the simulation study. The plots referred to throughout

the section can be found at the end of the paper.

We first consider in section 5.1 methods that depend on CIA, that is methods that do not use
auxiliary information. The effects of violation of CIA as measured by the conditional correlation of Y
and Z given X (py ;x) are investigated. We also investigate the effect of non-normality of the data via

log-normal contamination.

We next look in section 5.2 at REG methods that attempt to avoid CIA by using auxiliary
information on correlations. Their performance under non-zero conditional correlations (o, z/x), under
non-normality of the data and under proxy auxiliary information will be investigated. In section 5.3 we
consider LOGLIN methods using categorical auxiliary information to impose categorical constraints on
HOD and REG methods that use no auxiliary information. In section 5.4 we look at combining
categorical auxiliary information with auxiliary information about the correlations. Finally, in section 5.5
we consider the use of an auxiliary micro-datafile which allows for HOD methods with auxiliary

information, possibly with categorical constraints derived from that auxiliary information.

We have not paid much attention to Monte Carlo standard errors in the presentation. This is:
because they were generally quite small, for example, less than two percent for the mean absolute
differences of covariances (MAD-Cov). Furthermore, the evaluations of different methods for each run
would be expected to be positively correlated so that the relative differences between matching
methods would be even more precisely estimated than suggested by the standard errors. A further
indication of the quality of the Monte Carlo evaluations of the various methods is the general
smoothness of observed trends in the plots. In short, any discernible difference in the plots is likely to

indicate a real difference.

In studying the evaluation measures via plots we have tended to look at rank versions for hot
deck methods (HOD) with no auxiliary micro-data. This is because ranking is an approach that is
currently very much used in SPSD and, as demonstrated by the series C plots, it generally doesn’t
make much difference in this study whether rank, random or x-distance is used. Similarly, we have
generally used xz-distance for HOD methods with auxiliary micro-data and for regression (REG)
methods. There is generally no difference, though for REG methods xz-distance sometimes showed

superior performance with respect to the MAD-Cov evaluation measure, see plot D.2.
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5.1 Methods that do not use Auxiliary Information

To investigate the performances of various matching methods that do not use auxiliary
information we looked at a series of runs in which the true conditional correlation of Y and Z given X
varied from O to .8. In a second series p, ; x was held fixed at .4 while the proportion of log-normal
contaminations was varied to investigate the effect of non-normality. The partition used in the LOGLIN
procedures was the equal probability partition, but both equal probability and standard interval

partitions were used for categorical evaluation measures.

We consider each performance measure individually. The results of this exercise will be

summarized at the end.

5.1.1 MAD-Z under no Auxiliary Information

The MAD of Z-values for methods using no auxiliary information are shown in plots A.1 and
B.1k

It can be seen immediately that the methods fall into two groups, REG and HOD methods. REG
methods do somewhat better with respect to this measure. There is little or no dependence on the true
conditional correlation of Y and Z given X (py ;;x), showing that with respect to this measure CIA is not
serious. All methods show slight degradation of performance as the distribution becomes non-normal,

but the basic relationships among methods remain the same.

5.1.2 MAD-Cov under no Auxiliary Information

The MAD of conditional covariances for methods using no auxiliary information are displayed
in plots A.2 and B.2.

With respect to this measure the failure of CIA seems to have serious consequences. The effect

of non-normality seems to be somewhat stronger too.

The performances of REG, REG.LOGLIN(rakexyz), HOD(xcat), and HOD.LOGLIN(rakexyz) are

very close to each other. An interesting finding was that the two LOGLIN methods using the other type
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of raking, namely rakeyz, do more poorly than the rest. This relatively poor performance of methods
using rakeyz could perhaps be explained by the particular parameter values chosen. For rakeyz it may
be argued that it is departures of the unconditional correlation of Y and Z from zero which are

important. In the present case, for example, when p, 7 x=.4, py;=.55.

5.1.3 Transformed x* under no Auxiliary Information

See plots A.3, A.4, B.3, and B.4.

With respect to this measure the REG method does not perform well. The transformed x* mean
is constant around a high of 0.95 even for low values of gy ;,x. Its poor performance can be explained
by shrinkage towards the mean, which means that the matched Z-values are more tightly distributed
about their mean than are the suppressed Z-values. This is displayed in plot |.1 which shows the
difference between the marginal histograms of suppressed and matched Z-values for REG(xz-dist) and
REG.LOGLIN(xz-dist,rakexyz). The positive differences near the centre of the plot indicate that there
are more Z-values in that region on the matched file than in the suppressed file. The very large negative
observations at the extreme points of this plot are associated with open ended intervals, and it seems
quite likely that had these intervals been broken down into several smaller intervals the plot would have
shown several smaller negative numbers in the extreme tails, so that the interpretation of the plot
should be that the REG method is putting too many Z-values at the centre of the distribution at the
expense of the extreme tails. We are not aware of any previously published findings noting this

regression to the mean effect in the context of statistical matching.

HOD methods do rather better. They display some dependence on p ;x, but seem to be robust
against non-normality. Although we did not show it in plot I.1, the HOD method also displays some
shrinkage towards the mean, but it is much less serious than it is for the REG method, as suggested

by the relatively good performance of HOD with respect to the categorical evaluation measures.

REG.LOGLIN does much better than REG and even slightly better than HOD when the same
partition is used for constraints and for testing, but the improvement practically disappears when the
testing partition is different. This can again be explained by shrinkage towards the mean as displayed
in plot I.1. However, in this case the shrinkage towards the mean is limited by the categorical
constraints so that, while we still see that the tails of the Z-distribution of the matched file are too

short, the displaced values are now not going to the centre of the distribution, but only to the partition
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boundary points which act like walls. The large positive values to either side of the central boundary
point can be explained similarly if one bears in mind that what this plot is showing is actually an
average of differences of histograms over 100 independent simulations. It seems reasonable that if we
were to examine each of the 100 differences of histograms individually we would sometimes see a

large positive value just to the left of the central boundary point, and sometimes just to the right, but
never both at the same time.

HOD.LOGLIN(rakexyz) is slightly better than HOD when the same partitions are used for
matching and testing but no better when the testing partition is different. As with MAD-Cov,
HOD.LOGLIN{rakeyz) does not perform as well as HOD or HOD.LOGLIN(rakexyz).

b.1.4 Conditional Likelihood Ratio Test under no Auxiliary Information

See plots A.5, A.6, B.5 and B.6.
Again, the REG method does not do very well with respect to this measure.

- REG.LOGLIN(rakexyz) does well when the same partition is used for matching and testing but
otherwise does no better.

HOD methods do rather better, though they display a strong dependence on p, ;x. They seem
to do well until p, ;x reaches about .3 at which point they deteriorate very quickly. However, they
seem to show some robustness against non-normality, see plots B.5 and B.6. Although it is not shown
in the plots, this is the only measure that shows a distinction among hot deck random, rank and x-
distance, with rank doing slightly better than random and x-distance. The series C plots display how

hot deck random, rank and x-distance generally perform similarly.

HOD.LOGLIN(rakexyz) shows no consistent improvement or degradation over HOD.
HOD.LOGLIN(rakeyz) shows some degradation as compared to HOD. The slight advantage of rank over
random and x-distance for HOD methods seems to disappear for HOD.LOGLIN.
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5.1.5 Summary of Results for Methods with no Auxiliary information

The best methods overall seem to be the HOD methods. Though REG methods do best with
respect to the mean absolute differences of Z-values, their relatively poor performance with respect
to the categorical evaluation measures, x* and conditional likelihood ratio tests, should be kept in mind.
Within the class of HOD methods there is little to choose between random, rank and x-distance,
leaving other concerns such as computational requirements as important factors in deciding between

methods for a particular application.

Based on this limited study, we may speculate that for HOD.LOGLIN procedures the choice of
raking procedure is important and the best one to use depends on the underlying distributions of the
data. in any case, HOD.LOGLIN procedures in the case of no auxiliary information never gave dramatic
improvement over simple HOD procedures.

5.2 Methods that use Auxiliary Information on Correlations
5.2.1 REG Methods with Auxiliary Infarmation on p, z
5.2.1.1 MAD-Z for REG with Auxiliary Information on py, z

See plots £.1, F.1, G.1 and H.1.

REG methods generally do best with respect to this measure, and REG(auxcorrxyz) does better
than REG with no auxiliary information. As the true conditional correlation of Y and Z given X increases

this measure decreases which can be attributed to the greater explanatory power of (X,Y) for Z.

This measure displays slight deterioration as the data move away from normal, but seems to

be robust against the use of proxy auxiliary information.

5.2.1.2 MAD-Cov for REG with Auxiliary Information on p,, ; x

See plots £E.2, F.2, G.2 and H.2.

REG methods also tend to do well with respect to this measure, and the use of auxcorrxyz
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offers good protection against the breakdown of CIA (compare plots A.2 and E.2). However, this is
the one measure that showed a distinction among z-dist, xz-dist and xyz-dist with xz-dist doing well
but the other two doing only slightly worse, see plot D.2.

There is some degradation of performance as the distributions move away from normal. The
method displays sensitivity to the use of proxy auxiliary information with a different p, ;x, which is
naturally to be expected as it is precisely this quantity which is borrowed from the auxiliary data.
5.2.1.3 Transformed x* for REG with Auxiliary Information on p,

See plots E.3, E.4, F.3, F.4, G.3, G.4, H.3 and H.4.

The performance of REG methods with respect to the x? statistics is not very good. The reason

for this seems to be regression towards the mean, see plot 1.2.
5.2.1.4 Conditional Likelihood Ratio Test for REG with Auxiliary Information on p, z
See plots E.5, E.6, F.5, F.6, G.5, G.6, H.5 and H.6.
With respect to this measure also, REG methods do not perform well, seé plot 1.2 to see the
regression towards the mean which explains this.
5.2.2 REG Methods with Auxiliary Information on p, ,

With respect to all measures the performance of REG methods with auxiliary information on

Py 2 is practically identical to the REG methods with auxiliary information on py 7/x.
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5.3 Methods that use Auxiliary Information on Categorical Distributions

5.3.1 LOGLIN Methods with Auxiliary Information on (X",Y",Z°) Distribution

5.3.1.1 MAD-Z for LOGLIN with Auxiliary Information on (X',Y',2°) Distribution

See plots E.1, F.1, G.1 and H.1.

REG.LOGLIN(auxcatxyz,xz-dist) does slightly worse with respect to this measure than
REG (auxcorrxyz, xz-dist), but otherwise there are no important differences. HOD.LOGLIN(auxcatxyz, x-
dist) on the other hand is slightly worse than REG.LOGLIN. However, both methods show some

improvement over corresponding methods with no auxiliary information.

5.3.1.2 MAD-Cov for LOGLIN with Auxiliary Information on (X',Y",Z°) Distribution

See plots E.2, F.2, G.2 and H.2.

With respect to this measure HOD.LOGLIN performs generally much better than REG.LOGLIN.
For normal and non-normal data, HOD.LOGLIN does somewhat worse than the REG method, but
generally does very similarly or sometimes better when the auxiliary information is proxy. There seems

to be substantial improvement over methods that do not use any auxiliary information.

5.3.1.3 Transformed )y for LOGLIN with Auxiliary Information on (X',Y",Z°) Distribution

See plots E.3, E.4, F.3, F.4, G.3, G.4, H.3 and H.4.

With respect to this measure HOD.LOGLIN(auxcatxyz, x-dist) is better than any of the other
methods with (X,Y,Z) auxiliary information; this includes the methods to be introduced in sections
5.4.1 and 5.5.1. It shows little or no dependence on py ;,x and does not seem to be affected by non-
normality of the data. It is slightly sensitive to the use of proxy auxiliary information, but perhaps less
so than other methods. However, this measure also demonstrates that there may be some cost
associated with the use of auxiliary information when p, ;x is fairly small. In comparing plots A.3 and
E.3, for example, we see that HOD.LOGLIN(rankrakexyz) actually outperforms
HOD.LOGLIN(auxcatxyz,x-dist) with respect to this measure for p,;x<.6. This is likely due to

ineffective estimation of the second order interaction terms of the saturated log linear model for the
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categorical proportions and more precise auxiliary information would be expected to improve

performance.

REG.LOGLIN(auxcatxyz, xz-dist) does poorly when different partitions are used for matching and

testing. The reason for this is regression towards the mean, see plot |.2.

5.3.1.4 Conditional Likelihood Ratio Test for LOGLIN with Auxiliary Information on (X',Y",2Z°)

Distribution

See plots E.B, E.6, F.5, F.6, G.5, G.6, H.5 and H.6.

Also with respect to this measure HOD.LOGLIN{auxcatxyz, x-dist} performs very well. Looking
through the plots one notices that HOD.LOGLIN(auxcatxyz, x-dist) is sensitive to the use of log-normal
contaminated proxy auxiliary information. When the same partition is used for constraints and testing,
it is slightly sensitive to departures in py ; x in the proxy auxiliary data, but plot G.6 suggests that it is
more robust against this than other methods are. It remains the best according to this measure among
all methods using (X,Y,2) auxiliary information, as with the x¥’* measure. There is also some apparent -
improvement as py ; x increases. This may be explained by the greater explanatory power of (X,Y) for
Z, which is likely to translate to the categorical variables. As for the previous measure,
HOD.LOGLIN(auxcatxyz, x-dist) is outperformed by HOD.LOGLIN(rank,rakexyz) for p, ; x<.4, though

this is probably related to the precision of the auxiliary information.

REG.LOGLIN{auxcatxyz,xz-dist) again does not do well due to regression towards the mean,

see plot 1.2.

5.3.2 LOGLIN Methods with Auxiliary Information on (Y',2°) Distribution

The evaluations for the two methods REG.LOGLIN and HOD.LOGLIN with (Y",Z°) auxiliary
information are generally very similar to the evaluations for the two methods with (X°,Y",Z") auxiliary
information. However, there is one surprising difference and that is that for the categorical measures,
x? statistics and conditional likelihood ratio test measures, methods using (Y*,Z°) auxiliary information
do better. Moreover, HOD.LOGLIN(auxcatyz,x-dist} is never outperformed by
HOD.LOGLIN(rank,rakeyz), though HOD.LOGLIN(rank,rakexyz) is superior with respect to x> when

Py2x<.2. Perhaps this relatively poor performance of (X°,Y",2°) auxiliary information could be
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explained by poor estimation from the auxiliary data cf the second order interaction terms of the
saturated log linear modei for the categorical proportions. If the auxiliary information about these terms
were more reliable we would expect some improvement in the methods that use (X',Y",2°) auxiliary

information. However, the issue of sample size for the auxiliary data was not investigated empirically.

5.4 Methods that use Auxiliary Information on Correlations and Categorical Distributions

5.4.1 REG.LOGLIN Methods with Auxiliary Information on (X',Y",Z°) Distribution and p, zx

5.4.1.1 MAD-Z for REG.LOGLIN with Auxiliary Information on (X',Y",Z’}) Distribution and p, 7

See plots E.1, F.1, G.1 and H.1.

With respect to this measure REG.LOGLIN{auxcorrxyz,auxcatxyz) lies between REG(auxcorrxyz)

and REG(auxcatxyz).

5.4.1.2 MAD-Cov for REG.LOGLIN with Auxiliary Information on (X", Y , 2’} Distribution and p,,

See plots E.2, F.2, G.2, and H.2.

With respect to this measure REG.LOGLIN(auxcorrxyz,auxcatxyz) is practically indistinguishable

from REG(auxcorrxyz).

5.4.1.3 Transformed x° for REG.LOGLIN with Auxiliary Information on (X',Y",Z’} Distribution and p,,
See plots E.3, E.4, F.3, F.4, G.3, G.4, H.3, and H.4.
With respect to this measure REG.LOGLIN({auxcorrxyz,auxcatxyz) is very close to

REG.LOGLIN{auxcatxyz), that is, it does not do well when the partitions for constraints and for testing

are not the same, due to regression towards the mean.
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5.4.1.4 Conditional Likelihood Ratio Test for REG.LOGLIN with Auxiliary Information on (X',Y",Z°)

Distribution and p., 3,

See plots E.5, E.B, F.5, F.6, G.5, G.6, H.5, and H.6.

With respect to this measure also REG.LOGLIN(auxcorrxyz,auxcatxyz) is very close to
REG.LOGLIN(auxcatxyz), that is, it does not perform well, due to regression towards the mean, when
the partitions for constraints and for testing are not the same.

5.4.2 REG.LOGLIN Methods with Auxiliary Information on (Y',Z") Distribution and p,,

There does not seem to be much difference between the two types of auxiliary information for
this method; thatis, REG.LOGLIN(auxcorrxyz,auxcatxyz) and REG.LOGLIN(auxcorryz,auxcatyz) perform
similarly.

5.5 Methods using an Auxiliary Micro-datafile

5.5.1 (X, Y, Z) Auxiliary Micro-data

With this type of auxiliary information we add two methods, namely HOD(auxmicxyz) and

HOD.LOGLIN({auxmicxyz,auxcatxyz), to the four methods considered previously.
5.5.1.1 MAD-Z with (X,Y,Z) Auxiliary Micro-data

See plots E.1, F.1, G.1, and H.1.

With respect to this measure HOD(auxmicxyz) and HOD.LOGLIN(auxmicxyz,auxcatxyz) both
perform very similarly and are slightly better than HOD.LOGLIN(auxcatxyz). The REG method does the
best and the HOD methods seem to be moderately worse than REG.

5.5.1.2 MAD-Cov with (X,Y,Z} Auxiliary Micro-data

See plots E.2, F.2, G.2, and H.2.
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Both of these methods perform very similarly with respect to this measure and seem to do

about as well as any other methods using (X,Y,2Z) auxiliary information.
5.5.1.3 Transformed X with (X,Y,2Z) Auxiliary Micro-data
See plots E.3, E.4, F.3, F.4, G.3, G.4, H.3, and H.4.

For this measure also the two methods perform very similarly, but
HOD.LOGLIN({auxmicxyz,auxcatxyz) is slightly superior, especially when the same partition is used for
constraints and for testing. In fact, for this measure HOD.LOGLIN(auxmicxyz,auxcatxyz) is almost the
best of the methods using (X,Y,2) auxiliary information, doing only slightly worse than
HOD.LOGLIN(auxcatxyz). It is of interest to note the superiority of HOD methods using no auxiliary

information when p, ; x is small. This, as before, is probably due to insufficient auxiliary information.
5.5.1.4 Conditional Likelihood Ratio Test with (X,Y,Z) Auxiliary Micro-data
See plots E.5, E.6, F.5, F.6, G.5, G.6, H.5, and H.6.

This measure demonstrates ‘the superiority of HOD.LOGLIN(auxmicxyz,auxcatxyz) over
HOD(auxmicxyz). The gain due to the categorical constraints would likely be dirﬁinished if the auxiliary
micro-datafile were larger. HOD.LOGLIN(auxcatxyz) seems to show considerable further gains with
respect to this measure. Again, note the superior performance at small values of p, ;x of HOD methods

that do not use auxiliary information.

5.5.2 (Y,2) Auxiliary Micro-data

The evaluations of these methods with (Y,Z) auxiliary micro-data are generally similar to those
with {X,Y.2) auxiliary micro-data except that the performance of HOD.LOGLIN{auxmicyz,auxcatyz)
improves and is generally much closer to HOD.LOGLIN(auxcatyz) for the categorical evaluation
measures. Also, for small gy, the superior performance of methods using no auxiliary information

almost disappears when compared to HOD methods using (Y,Z) auxiliary micro-data.

in comparing (Y,2) to (X,Y,Z) auxiliary information it is striking that HOD.LOGLIN based on
(Y,2) auxiliary micro-data does much better than HOD.LOGLIN based on (X,Y,Z) auxiliary micro-data
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for the categoricai measures while performing similarly for the other measures, MAD of Z-values and
MAD of conditional covariances. Again, a reasonable explanation for this would be poor estimation
from the auxiliary data of the second crder interaction terms of the saturated log linear model for the

categorical proportions.

5.6 Summary of Results for the use of Auxiliary Information

One important and consistent finding was that REG and REG.LOGLIN methods do not perform
well with respect to categorical measures because of regression towards the mean. This unfavourable
performance tends to outweigh their favourable performances with respect to the other two evaluation

measures.

A second important finding is that the use of auxiliary information does protect against the
failure of CIA, and even the use of proxy auxiliary information is very helpful. It is also interesting to
note that when the true value of py,y is small, the performance of methods that use auxiliary
information can be worse with respect to some categorical evaluation measures than the performance
of those that do not make use of auxiliary information. The point at which the use of auxiliary
information would become advantageous would depend on the precision of the auxiliary information.
However, for other measures there is considerable gain from the use of auxiliary information even at
small values of py,x. Methods that use auxiliary information are still sensitive, with respect to the
MAD-Cov measure, to non-normality of the underlying distribution produced via log-normal
contamination. This could reasonably be explained by non-linearity of the relationship between X, Y,

and Z in the log-normal contaminated distribution.

Especially in the case of (Y,Z) auxiliary micro-data, but also with (X,Y,Z) auxiliary micro-data,
we have seen that the use of categorical constraints improves performance with respect to the
categorical measures with only a marginal deterioration in performance with respect to the other
measures. The difference between the effects of (Y,Z) and (X,Y,Z) auxiliary micro-data is likely to

disappear for larger auxiliary micro-datafiles.

An interesting finding is that for HOD.LOGLIN methods the use of (Y,Z) auxiliary information
leads to better performance than (X,Y,Z) auxiliary information with respect to the categorical measures,
while not affecting the other measures. Since HOD methods with (Y,Z) auxiliary information perform

no better than HOD methods with (X,Y,Z) auxiliary information, it seems that a reasonable explanation
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of this phenomenon is that for the set-up of our study the estimation of the second order interaction
terms of the saturated log linear model for the categorical proportions is of too poor a quality to be
useful, so that simply assuming these terms to be zero leads to better results. This implies that the true
values are in some sense not very far from zero to begin with. In any case, we may suppose that if
the auxiliary information about the categorical proportions were of better quality, (X,Y,Z) auxiliary
information would perform better; however, itis difficult to judge where the break point would be. This
finding also suggests that we should consider using (X,Y,Z) auxiliary micro-data together with derived

(Y",Z°) categorical auxiliary information, something that we did not include in our study.

As we had noted in section 5.3, hot deck methods -that use only categorical auxiliary
information may be more robust against the use of proxy auxiliary information than other methods that

use auxiliary information. See, for example, plots G.8, G.10, and G.12.

A complete summary of the results of the Monte Carlo study along with some

recommendations is given in section 6.

5.7 Limitations of the Monte Carlo Study

A ‘simulation study of this sort is always limited in the sense that there are situations or
parameter settings which might have been studied but were not. Along with the general limitations
affecting all simulation studies it is worthwhile to list some more specific limitations affecting this

particular study.

Perhaps the most important limitation of this study was that it was done entirely with synthetic
data. Despite this, it is believed that our results are relevant to real applications. In a simulation study
with real data, it would be of particular interest to investigate whether hot deck methods continue to

be preferable to regression methods.

A second limitation is that we did not investigate in this study the effect of the size of the files
A, B, and C. We have, at various points in sections 5.1 through 5.6, speculated on how the picture
would change if one or more of these files had been larger, but limitations of time and especially of

computing resources have prevented empirical studies with different file sizes.

Another limitation is that we did not fully investigate the effect of choice of partition for the
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LOGLIN procedures. Again, this was largely a matter of time and computing resources. Nevertheiess,
we would generally expect that the finer the partition the better the performance of methods using
categorical constraints, at least to the point that the categorical proportions could be well estimated.
If the partition were too fine then the noise in the estimation of the categorical proportions would

probably nullify the advantage of using categorical constraints.

There are other matching methods which might have been included in the study but were not,
partly because the number of methods that could reasonably be included was limited, and partly
because we could not have prospectively imagined all of the possibilities (nor could we retrospectively

imagine all of them, but some additional methods were suggested).

We have investigated only a limited number of scenarios as far as data sources were
concerned. The effects of non-normality were investigated via log-normal contamination of the
distributions but it would be very easy to suggest many other ways to generate non-normal data. In
considering proxy auxiliary information we considered only two ways in which the distribution of the

auxiliary data could be different.
Other possible scenarios, such as having a proxy file B, with possibly a small nonproxy auxiliary
datafile C, were not considered. Such a scenario might conceivably arise if files A and B represented

data from different time points and the auxiliary file C was obtained by a small scale special survey.

Despite these limitations a lot was learned about the various approaches to statistical matching

and some general conclusions and guidelines are given in the next section.

35



6. SUMMARY WITH DISCUSSION

In this report the problem of statistical matching of two files, A (the host file) and B (the donor
file) was considered as it arises in the creation of micro-simulation databases, e.g. SPSD (Wolfson,
Gribble, Bordt, Murphy and Rowe, 1987). This problem can be viewed as one of imputation by
regarding files A and B respectively as the item nonrespondent and complete respondent data sets.
Statistical matching, however, differs from the usual problem of imputation whenever file A contains

information about certain variables which are not included in file B.

A Monte Carlo evaluation of four methods of statistical matching was performed for synthetic
datafiles A and B. The first two methods correspond to the commonly used imputation methods,
namely, hot deck (HOD) and linear regression (REG). The last two methods correspond to log linear
imputation (LOGLIN) in which either HOD or REG is used under categorical constraints. The purpose
of categorical constraints is to preserve log linear associations in the categorical distribution of the
completed data set under a suitable partition. These associations would be obtained from files A and

B and possibly from auxiliary data.

With synthetic data from multivariate normal and those under log-normal contaminations, a
number of scenarios for Monte Carlo simulation were studied. First, the impact of the commonly made
assumption of condit-ional independence (CIA) is considered which, in fact, distinguishes statistical
matching from the usual imputation problem. Denoting file A variables by (X,Y) and file B variables by
(X,2), under CIA one can ignore Y in matching Z variable information to file A. The CIA is generally
expected to introduce serious bias (or distortion) in the Y-Z relationship. A sensitivity analysis is
performed as the underlying distribution moves away from the CIA. Itis possible to avoid CIA if
additional information (file C) about (Y,2) or (X,Y,2) is available. The question of the extent of gain
by using auxiliary information was considered next. Ways of using auxiliary information for statistical
matching by HOD, REG and LOGLIN methods were based on procedures proposed by Paass (1386),
Rubin (1986) and Singh (1988) respectively. The impact of having proxy auxiliary data (i.e. from a
different or outdated universe) was also examined. The particular choice of partition for LOGLIN
methods was somewhat coarse, and for partition points either boundaries of equal intervals on the
standardized scale or equal probability intervals were used. Various choices of the underlying
distribution were made in order to get a range of conditional correlations (o, ;x) and a range of
proportions of log-normal contaminations for a given p, zx. Four evaluation measures, two at the unit
level (denoted by MAD-Z and MAD-Cov, see section 4.3), and two at the aggregate level (denoted by

transformed x? and CLRT, see section 4.3) were considered.
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(i)

(ii)

{iii)

The main findings of the empirical study are listed below.

The CIA based methods may cause serious bias in the joint relationship of (X,Y,Z). In other
words, none of the methods considered is robust in general. However, the HOD methods
generally perform best. Moreover, there seems to be no gain in imposing categorical constraints
on HOD methods (i.e. with HOD.LOGLIN methods). This is because there is no natural way to
define categorical constraints in the absence of auxiliary information. However, an interesting
finding was that, with respect to the categorical evaluation measures, auxiliary information
does not improve performance of HOD methods at smaller values of p, ;. This seems quite

reasonable when the auxiliary data set is not large.

If a nonproxy micro-level auxiliary datafile C is available, then both HOD and HOD.LOGLIN
methods work well; that is, they tend to produce a substantial reduction in distributional
distortion as compared to CIA based methods. For a small datafile C, HOD.LOGLIN with (Y,Z)
categorical constraints is expected to do well. However, for a sufficiently large datafile C, the
two methods HOD and HOD.LOGLIN should perform very similarly. [t may be noted that the
HOD.LOGLIN method based on only categorical auxiliary information performs moderately well
as compared to the HOD.LOGLIN method based on micro-level auxiliary information. Moreover,
even a fairly coarse categorical partition for LOGLIN methods can lead to very favourable

performances.

If the auxiliary data were outdated or proxy, there may still be gain in using it. The
HOD.LOGLIN method with {Y,Z) categorical auxiliary information seems to perform quite
favourably with proxy auxiliary data. |[f file C were large, then the difference between
HOD.LOGLIN methods based on {Y,Z) and (X,Y,Z) categorical auxiliary information would be
expected to disappear. Since LOGLIN methods only require log linear associations from
categorical auxiliary information, it would seem reasonable for these to be affected only

marginally by a limited amount of outdatedness or proxy values in the auxiliary data.

Some other interesting findings are as follows. Methods based on different distance measures

(z, xz and xyz) perform very similarly, although methods based on xz-distance have a slight superiority

for the MAD-Cov evaluation measure. There is also hardly any difference between random, distance,

and rank versions of hot deck with no auxiliary micro-data. Regression methods do well with respect

to the two unit level evaluation measures (MAD-Z and MAD-Cov). However, this seems to be

outweighed by their very unfavourable performance with respect to the categorical measures. This
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striking phenomenon can be explained by the regression to the mean effect.

Based on the above discussion, it would be reasonable to recommend HOD or HOD.LOGLIN
methods for the purpose of statistical matching. However, an important factor in practical application
is the computational burden associated with each method. For example, the similar performances of
hot deck random, rank and distance with no auxiliary micro-data might suggest the use of hot deck
random since this is the least demanding computationally. In addition, for all types of matching,
methods based on xyz-distance are significantly more computationally intensive than those based on
2 or xz-distance which require similar levels of resources. HOD.LOGLIN using auxiliary micro-data
together with derived categorical constraints is the most computer intensive procedure that we have
considered. As files B and C become larger this could become a serious problem and the advantage
over HOD using only auxiliary micro-data would also be expected to disappear. If file C is smaller then
categorical constraints can lead to substantial improvement in the performance of HOD methods with
auxiliary micro-data, and the computational burden is not excessive. If file C is thought to be proxy it

is recommended to use only the derived categorical constraints.
Although this study with synthetic data has demonstrated the possible gains from the use of

auxiliary data, a further study using real data is desirable and is currently being planned to measure the

potential gains and to confirm what was learned here.
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A.1 APPENDIX 1 - NAMING CONVENTION FOR STATISTICAL MATCHING METHODS

Maior Types:
REG - regression methods
HOD - hot deck methods
REG.LOGLIN - regression methods with categorical constraints
HOD.LOGLIN - hot deck methods with categorical constraints
Auxiliary
information
Types:
auxcatxyz - {X*,Y',Z°) categorical auxiliary information for LOGLIN procedures
auxcatyz - {Y*,Z) categorical auxiliary information for LOGLIN procedures
auxcorrxyz - conditional correlation of Y and Z given X for regression procedures
auxcorryz - unconditional correlation of Y and Z for regression procedures
auxmicxyz - (X,Y.2) auxiliary micro-datafile for hot deck procedures
auxmicyz - (Y.2) auxiliary micro-datafile for hot deck procedures
Miscellaneous:
rakeyz - - raking procedure for LOGLIN that assumes (Y',Z°} are .unconditionally
categorically independent
rakexyz - raking procedure for LOGLIN that assumes (Y*,Z") are categorically independent
conditional on X' category
xcat - for HOD procedures without LOGLIN, indicates that matching is done within
X" categories
rand - for HOD procedures with no auxiliary micro-datafile, indicates that final
matching step is random within categories
rank - for HOD procedures with no auxiliary micro-datafile, indicates that final
matching step is based on ranks within categories
x-dist - for HOD procedures with no auxiliary micro-datafile, indicates that final
matching step is based on x-distance, perhaps within X' categories
z-dist - indicates that final matching step is based on z-distance
xz-dist - indicates that final matching step is based on xz-distance
xyz-dist - indicates that final matching step is based on xyz-distance
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A.2 APPENDIX 2 - DETAILS OF EVALUATION MEASURES

A.2.1 Mean Absolute Differences of Z
The formula for the MAD-Z statistic for one simulation, described in section 4.3.1, is
i 12w 2| /BOG

where z,; is the suppressed Z-value for the i record in file A, z,,, is the matched Z-value, and the sum

is over all 500 records of file A.

A.2.2 Differences of Covariances
For a file with variables X, Y and Z the conditional covariance of Y and Z given X is defined as
cov(Y,Z) - covi{X,Y)cov(X,Z)/var(X)
where cov and var are the sample covariance and variance operators respectively. In the multivariate
normal case this corresponds to the covariance of Y and Z in the distribution conditional on X; in
general it may be thought of as a measure of the strength of the relationship between Y and Z given

X. The MAD-Cov statistic for one simulation, described in section 4.3.2, would be the absolute

difference between these quantities for the matched and suppressed files.
A.2.3 Chi-square Statistics
The precise formula for the chi-square statistics, described in section 4.3.3,is
Tiik (mijk'niik)z / (my +.5)
where m,, is the number of records in X' category i, Y* category j, and Z* category k in the matched

file, n, is the same for the suppressed file, and the sum is over all (X°,Y",Z°) categories. Because the

(X°,¥Y") margins are fixed, the degrees of freedom of this statistic are IJ(K-1), where | is the number
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of X' categories, J is the number of Y* categories and K is the number of Z° categories. A constant

.5 is added to all of the denominators in this sum to avoid the problem of zeros.

Once the mean of the chi-square statistics from 100 simulations, say X, is obtained, it is

transformed to lie in the interval (0,1) using the transformation

{X /(X +500)}*

The number 500 here is not arbitrary. It is the size of file A; that is, the number of observations that

the chi-square statistic is based on.

A.2.4 Conditional Likelihood Ratio Test

Using the same notation as in section A.2.3 the precise formula for the conditional likelihood

ratio test statistic from one {X',Y") category, described in section 4.3.4, is
2 3, {{ny+.5) Inliny + .5} / (ny + my, + 1)} + {my +.5) Inlimy +.5) / (ny + my + 1)} + (4n;+2K)in2
where

n, = TNy = Tomy
The asymptotic distribution of this statistic, when the m,,'s and n,,’s come from the same multinomial
distribution, is chi-square with (K-1) degrees of freedom. An overall p- value is obtained by adding
these statistics and their degrees of freedom for each (X*,Y") category meeting the minimum sample

size criterion, and finding the probability of a chi-square variable with the appropriate degrees of

freedom being larger than the observed value.
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A.3 APPENDIX 3 - EXAMPLE OF TWO RAKING PROCEDURES

In order to illustrate the difference between the two raking procedures described in section 2.4
consider the following example in which a 2x2x2 table of 1's is raked to two 2x2 tables corresponding
to X*-Y* and X°-Z' marginal tables, using first rakexyz and then rakeyz. Note that the X'-Z° marginal

table has been raked so that the X" margin corresponds to the X' margin from the X°-Y" marginal table:

X°-Y® marginal table X'-Z° marginal table
Y’ z
X' 50 40 X 41 49
27 35 55 7

When the starting table is a table of 1's the rakexyz procedure will always converge in one

iteration. In this example the 2x2x2 table of 1's can first be raked to the X'-Z" marginal table giving

7
= X

X' 20,5 208 24.5 245

2%.5 127:5 35 3.5

and then raked to the X'-Y* marginal table giving a table which satisfies both marginal tables:

7
i "

X' 22.8 18.2 27.2 1.8

24.0 31.0 3.0 4.0

The alternative raking procedure rakeyz differs from rakexyz in that a third marginal table on
Y'-Z" is also used. This additional marginal table is constructed from the X'-Y" and X"-Z" marginal
tables by raking a 2x2 table of 1's to the Y* margin from the X'-Y' marginal table and the Z* margin
from the X'-Z° marginal table. This process will converge in one iteration, in this case yielding the Y-

Z’ marginal table:
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Z’
Y 48.6 28.4
47.4 27.6

The rakeyz procedure now calls for a 2x2x2 table of 1's to be raked to the three marginal tables for
X'-Y®, X*-Z" and Y°-Z'. This process will not necessarily converge in one iteration. In the present

example the 2x2x2 table of 1's can first be raked to the X'-Z" marginal table giving

7
Y* Y*

X 205 245 24.5 245

271.9 2.5 &b 136

and then raked to the X'-Y" marginal table giving

.
o Y*
X" 22.8 18.2 27.2 21.8

240 31.0 3.0 40

and then raked to the Y -Z° marginal table giving

7
i Y*

X' 287 125 25.5 23.4

24.9 29.8 2.9 4.2

After several iterations the rakeyz process converges to the table below, which satisfies all three

marginal tables and is clearly different from the final table obtained from the rakexyz procedure.

7
X L

X' 24.3 16.7 25.7 23.3

24.4 30.6 26 4.4
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B: Methods with no auxiliary infermation

b4 HOD(xcat,rank) + REG{xz~dist)
o HCD.LOGLIN(rank,rakexyz) o} REG.LOGLIN(xz-dist,rakexyz)
a HQOC.LOGLIN(rank,rakeyz) v REG.LOGLIN(xz -dist,rakeyz;

data with log—normal contaminations, rho(y,zix)=.4

Ptot B.1: MAD of z=values
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C: Hot—Deck Methods with Log—Linear Constrainis

X HOD.LOGLIN(rand,rakeyz)
0O HOD.LOGLIN(rank,rakeyz)
A  HOD.LOGLIN(x=dist,rokeyz)

Rlot C.1:
Partition 3 equal probability
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Piot C.3: Transftormed macn cni—square statistics
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C: Different Distance Mecsures

X REG.LOGLiN{auxcorrxyz.auxcatxyz,z—dist)
O REG.LOGLIN(ouxcerrxyz,quxcatxyz,xz —dist)
A REG.LOGUN(auxcorrxyz,auxcatxyz,xyz~dist)

Plot 0.1: MAD of z-values
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Siot S.2: MAD of covariances of y,3'x

x

L &
s 8 8 3 ]

0001020304050607 080910

2.0 0! 92 93 04 05 08 07 03
true conaitional correigtion of y Zix

0.2

1.0

Plot 0.4, Trznsformed mean cni—square stazisics
Testing parttion is stangaryg intervei
< -
- 3
a3 a P
©f 3
=)
) b
° 8 ] 3 -
fi ®
G -
(-]
a2
-]
-] ! . . E
S ™36 0w 102 0.3 047705 comTs @8570.9 120
true conditional correiation of y.zix
Ptot D.6: Proportion of CLRT p-vaiues ¢ 0.0S
Tg’tmq partition is $tanaary interval
°L = a a s - -8 -
< =
o
|
w0 9
of +
L ? 3
b b
)
o i -
o 3
) A i
Cl ol Orl RBaE 03" 083 OM0.6 057 "eEgg 019" JM20

true conditional correlation of y, zix



E: Metrods using xyz auxiliary information

X RCD(auxmicxyz.xz—aist)
O HOD.LOGLiIN(auxcatxyz, x—dist)

A  HOD.LOGLIN(auxmicxyz,auxcatxyz,xz—dist)

Plot £.1: WAD of 2=vaiues
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Plot E.3: Teansiarmed mean chi~square statistics
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E: Methods

X HOD(guxmicyz,xz—dist)
0O HOD.LOGL:N{auxcatyz,x—dist)

A HOD.LOGLIN(ouxmicyz,auxcatyz,xz—dist)

Plot E.7: WAD of z-values
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F: Methods using xyz auxiiicry information

X HOD{auxmicxyz,xz—dist)

O HOD.LOGLIN(auxcatxyz,x~dist)
A  HOD.LOGLIN(auxmicxyz,auxcatxyz,xz—dist)

dato with log—normal contaminations,

Plot F.i:
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F: Methods using yz auxiliary information

X HOC(auxmicyz,xz—dist) +  REG(auxcerryz,xz-dist)
O HCOD.LCGLIN(auxcatyz x—~dist) O  REG.LOGLIN(auxcatyz.xz—dist)
A HOD.LOGL!N(auxmicyz,auxcatyz,xz—dist) v  REG.LOGLIN(auxcarryz,cuxcotyz,xz—dist)

data with log—normal contaminations, rho(y,zlx)=.4
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G: Methods using xyz auxii

X HOD(guxmicxyz,xz—dist)
O HOD.LOGLIN(cuxcatxyz,x—dist)

A  HOD.LOGLIN(ouxmicxyz,auxcatxyz,xz—dist)

lary information

REG(cuxcerrxyz, xz—dist)
REG.LOGLIN(aQuxcatxyz,xz~dist)
REG.LOGUIN(auxcorrxyz,ouxcatxyz, xz=dist)

Proxy cuxiliary information, true conditional correlation is .4

Plot G.1: MAD af z=-vaiues
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G: Methods using yz auxihiary information

I~

X HOC{ouxmicyz,xz—dist) +  REG(auxcorryz.xz—dist)
Qd  HOD.LOGLIN(auxc¢styz,x—dist) O  REG.LOGLIN(cuxcatyz,xz~gist)
A HOD.LOGLIN(guxmicyz,auxcotyz,xz—dist) vV  REG.LOGLIN(quxcarryz,quxcctyz,xz—dist)

Proxy auxiliary information, true conditional correlation is .4
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H: Methods using xyz auxiliary information

X  HOD(guxmicxyz.xz—dist)
O HOD.LOGLIN(auxcatxyz,x—dist)
A HOD.LOGLIN(auxmicxyz,ouxcatxyz,xz—dist)

+
o]
\Y

REG(auxcorrxyz,xz—dist)
REG.LOGLIN(auxcatxyz,xz—dist)
REG.LOGLIN(guxcarmxyz,auxcatxyz,xz—dist)

Proxy auxiliary information, true distribution is normal, rho(y,zix)=.4

Plot H.1: MAD of z=-values
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Plot H.3: Tronsfarmed mean chi-square statistics
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prop af log=narmai contaminctions for quxiligry dota

Plot H.5: Prapartion af CLRT p=values ¢ Q.05
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Plot H.4: Transformea mecn chi-squcre statistics

Imputation partiticn is equal oroBadility
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prop af lag—-normal contamingtions for guxiligry date

Plot H.6: Proportian of CLRT p—values ¢ 0.05
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H: Methods using vz auxiliary information

X HOD(auxmicyz.xz—dist) +  REG(auxcorryz,xz—dist)
0O HOD.LOGLIN(auxcatyz,x—dist) O  REG.LOGLIN(guxcatyz,xz—dist)
a  HOD.LCGLIN(auxmicyz,cuxcatyz,xz—dist) v  REG.LOGUIN(aquxcorryz,cuxcatyz,xz—dist)

Proxy auxiliary information, true distribution is normal, rho(y.zix)=.4
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Differences of Matched and Suppressed Z-—histograms

O 00§ Partition is equal probability, Data are normal, rho(y,zlx)=.4
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