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CLASSIFICATION ERROR ADJUSTMENTS FOR GROSS FLOW ESTIMATES 

ABSTRACT 

The problem of estimating gross flows from repeated 
surveys is considered when an individual's response at 
successive points in time is subject to classification 
error. A popular method for correcting classification 
errors is based on the assumption of independent 
classification errors and it uses interview-reinterview 
data for estimating error rates. In this paper a 
generalized model based on 6-response contamination is 
proposed which includes the model of independent 
classification errors as a special case. Using interview-
reinterview data, this model can provide a range for bias 
adjustments for each flow as € moves away from 1 (the 
value corresponding to independent classification errors 
model) to a lower bound E bounded away from zero so 
that a sensitivity analysis to the assumption of 
indepdendent classification errors can be made. Some 
numerical examples based on the Canadian Labour Force 
Survey are presented. It is seen that biases for some 
cells are fairly stable as € varies hut, for others, they 
show monotonic upward trends in magnitude as€ 
increases. However, for a wide range of E values 
(between .5 and 1), the assumption of independent 
classification errors seems fairly robust. Moreover, the 
biases for flow differences corresponding to symmetric 
cells seem to be quite insensitive as € varies. Chi-
square tests of symmetry and quasi-symmetry for an 
adjusted flow table are also presented. 

Key Words: Independent classification errors. Epsilon-
contamination, Bias stability, Monotonic trend, Bias 
range. 

RESUMÉ 

On examine Ic prohleme de l'estimation des flux bruts 
d'enquetes répëtes lorsque Ia rëponse d'un individu a 
des instants successifs dans Ic temps fait l'ohjet d'erreurs 
de classification. Une méthode populaire de correction 
des erreurs de classification repose sur l'hypothèse 
d'erreurs de classification indpendantes et elle utilise 
des donnés d'interview-rëinterview pour estimer les faux 
d'erreur. On propose ici un modle gnéralisë base sur 
Ia contamination de rponse 6 qui reprend Ic modèle des 
erreurs de classification indépendantes comme cas 
spcial. Utilisant des données d'interview-rinterview, 
cc modèle peut fournir une ëtendue des corrections de 
hiais pour chaque flux a mesure que € passe de 1 (Ia 
valeur correspondant au modèle des erreurs de 
classification indépendantes) a un minorant € ( ... ), de 
sorte qu'il est possible de procder a une analyse de 
sensihilit de l'hypothèse des erreurs de classification 
indépendantes. La communication contient des exemples 
nurnriques tires de l'Enquête sur la population active du 
Canada. On peut voir que les biais de certaines cellules 
sont assez stables mesure que € vane, mais que pour 
d'autres, leur grandeur suit une tendance a Ia hausse 
monotone a mesure que € augmente. Toutefois, pour 
un vaste Cventail de valeurs de € (entre 0.5 et I), 
I 'hypothèse d 'erreurs de classification indCpendantes 
semble assez robuste. Dc plus, les biasis des diff&ences 
do flux correspondant a des cellules symëtriques peuvent 
être assez insensihies a mesure que € vane. On 
prCsente tgalement des tests du khi carrë do Ia symCtnie 
et de Ia quasi-symCtrie d'une table de flux cornigCe. 

Mots des: 	erreurs de classification indCpendantes; 
contamination do reponse E; stabilité de biais; tendance 
monotone; Ctendue du biais. 

1. INTRODUCTION 

Gross flows represent transition counts between a finite number of states for individuals in a 
population from one point in time to the next. For example, in the monthly Canadian 
Labour Force Survey (LFS) with a rotating panel design, gross flows provide month to month 
movements in labour force status. These flows are important for researchers and policy 
analysts for understanding labour market dynamics. For example, one can answer 

interesting questions (of. Veevers and Macredie, 1983) such as 

(i) 	How much of the increase in unemployment is due to persons losing or leaving job and 
how much is due to persons formerly not in the labour force starting to look for jobs? 

(II) How many unemployed persons become discouraged and leave the labour force? 
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For question (I), the flow differences EU-UE and NU-UN are required while for (ii), the flow UN 

is required, where E, U, N denote respectively the three labour force statuses, namely, 

employed, unemployed, and not In labour force, and the flow EU, for example, denotes the 

number of individuals making transitions from E at time t-1 to U at time t. 

In this paper we consider the impact of response error due to misclassification in reporting 
on gross flow estimates. A somewhat surprising phenomenon occurs in the context of gross 
flow data. If the response error gives rise to only response variability but not response bias, 

then the margins (or stocks) of the two dimensional gross flow table corresponding to two 

successive points in time remain unbiased. However, the interior cell counts (or gross 
flows) could be seriously biased. The problem of adjusting gross flows with regard to this 
type of bias is addressed here. There are several approaches to this problem as described by 

Fuller (1987, p.  272), namely, regression models for discrete variables with measurement 

error, latent class models, and right-wrong models. Here we will consider right-wrong 

approach because the underlying model is very general, requires very few assumptions and is 
easily applicable to flow data arising from complex surveys. Under this model, it is assumed 

that at time t every element (or responding unit) truly belongs to one of the states (or 

categories) and that there exists a mxm response probability (or transition) matrix B(t) which 

governs an individual's movement between states at time t in the sense that 

n° (t) = B(t) n(t) 	 (1.1) 

where u(t) and n° ( t) are ni-vectors defining respectively the true proportions and the 

expectation of observed proportions. If stock estimates are unbiased, we must have a° (t) = 

ii(t), i.e., 

n(t) = B(t) n(t). 	 (1.2) 

For flow data corresponding to two points t-1 and t, we have 

vec n0 (t-1,t) = A(t-1,t) vec n(t-1,t) 	(1.3) 

where n(t-1,t) and ri0 (t-1,t) denote mxm matrices corresponding to true flow proportions 
and expectation of observed flow proportions respectively, and vec notation means that the 

columns are stacked one below the other. The size of the response probability matrix 

A(t1,t) in (1.3) is ni2 xni2. Note that the margins ri0 (t-1), ii 0 (t) are related to rr° (t-1,t) as 
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= 	rI?j 	ri (t) = 1n?(t-1.t) 	(1.4) 

Thus the classification error adjustment problem reduces to estimating A(t-1,t) under a 

suitable model based on some auxiliary information and then obtaining adjusted n0 (t-1,t), 

i.e. estimate n(t-1,t) as 

vec n(t-1,0 = A(t-1,0 1  vec P(t-1,t), 	(1.5) 

where P(t-1,t) denotes the matrix of observed flow proportions and n(t-1,t) 	Is 	the 

matrix of adjusted flow proportions. The matrix A(t-1,t) is assumed to be nonsingular. It 

may be noted that some of the entries 1I (t-1,t) could occasionally be negative. 

However, this is unlikely for large samples because for a given A(t-1,t) the consistency 

of II follows from that of P and (1.3). Further, it can be shown that II jj 'S will always sum to 

unity. 
Tables 1, 2, and 3 about here 

The problem of potentially serious biases in gross flow data can be explained by means of an 

example from LFS. This example will be used throughout this paper to introduce various 

ideas and methods. Consider the 33 flow data for the months of October and November 
1989 as shown in Table 1 where E, U, N denote the three labour force statuses. The entries 
in the table are gross flow counts weighted suitably according to the sampling design. The 
numbers in the parentheses are simply the flow proportions. The total count of 20,226,000 

represents the civilian noninstitutionalized population aged 15 or over in the month of 
October 89. The stocks (or the margins of Table 1) are customarily assumed to be 
approximately unbiased. This implies that misciassifications from one status to another are 

compensated by opposite movements. Notice that the stock proportions for E and N are 

much higher than that for U. However, as seen from the interview-reinterview data (see 

Tables 2 and 3), hIgher rates of misclassification for individuals with true status U could 
produce the desired level of compensation in order for stocks to be unbiased. On the other 
hand, the interior cell counts of a gross flow table are believed to behave quite differently, 
i.e. they could be seriously biased. To see this, note that individuals truly belonging to 
diagonal cells mostly consist of people who tend to retain their statuses over long periods, 

and therefore, are unlikely to respond in error on both occasions. This implies that, in the 
event of an error, individuals on the diagonal are likely to go off the diagonal. However, 
individuals belonging to off-diagonal cells generally consist of people who tend to change 
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their statuses frequently and therefore response errors on both occasions could very well 

happen in addition to those on single occasions. This implies that in the event of an error, 
some individuals from off-diagonal are not unlikely to move to the diagonal. Now since 

diagonal counts overwhelm off-diagonals (about 95% versus 5% in the example of Table 1), 

there will be more movements towards off-diagonal than on-diagonal on account of response 

error. Based on this heuristic reasoning, it follows that upward biases in the off-diagonal 
cells could be serious because these cell proportions are relatively very small. There is 
empirical evidence which strongly supports this observation, see e.g. discussions in Poterba 

and Summers (1986) based on interview-reinterview data, and Lemaitre (1988) based on 

unemployment insurance beneficiaries data. 

In view of the bias problem described above, Statistics Canada does not publish gross flow 
data whereas the monthly LFS stock data are published regularly. In United States, the 

Current Population Survey was used to publish flows from 1949-52 but was suspended in 1953 
until 1982 when the publication was resumed for unadjusted flow data in order to meet user 

demands. Clearly, it is important to find a suitable adjustment procedure for the bias 

problem which has now been around for over four decades. A conference on Gross Flows in 

labour force Statistics was held in 1984 at Washington, D.C. and several important research 

papers ensued, see e.g., Fuller and Chua (1984), Chua and Fuller (1987), Abowd and Zeilner 

(1985), and Poterba and Summers (1986). They all used interview-reinterview data as an 

auxiliary source of information. In Statistics Canada, the problem was identified by Fellegi 
(1979) and some developmental work was carried out by Wong (1983), Veevers and Macredie 

(1983), and Gentleman (1988). 

The adjustment methods based on interview-reinterview data as proposed in the literature 

employ the assumption of Independent Classification Errors (ICE); see Section 3. An 

important question that naturally arises is how stable the bias adjustments would be due to 

uncertainty in ICE assumption. Questions relating to stability of bias adjustments and its 

possible differential patterns for different cells in the flow table were also raised by F'ellegl 

(1982). The main purpose of this paper is to study robustness of ICE based adjustment 

methods. 

We use an s-response contamination model to propose a parametrization of error 
mechanisms alternative to ICE which can be used to study the impact of uncertainty of ICE 

assumption on the stablity of biases. 	The proposed method requires only 

interview-reinterview data and provides a range for bias adjustments for each flow as the 
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model parameter £ varies from E O  (a lower bound) to 1. The ICE model is obtained as a 

special case when €=1. Biases at £ = co  and £ = 1 for each flow provide bounds for bias 

adjustment because the bias can be shown to be a monotonic function of € under very mild 

regularity conditions. Empirically it was observed that there is a differential pattern in the 
stability of flow bias adjustments. However, the flow differences of symmetric cells, rather 
surprisingly, do not show any such differential pattern. In particular, the application of this 
method to the LFS example in conjunction with the 1989 interview-reinterview data leads to 

the following important observations. 

(I) 	The bias ranges for EU and UE are obtained respectively as (5%, 10.4%) and (8.2%, 

15.5%) of the observed flows as c varies from c o  to 1. (For the given reinterview data, 

C O  is obtained as .098.) Thus, the biases are not very large but there is some 
instability. The bias range for the difference EU-ME (the increase in the number of 
unemployed due to individuals losing or leaving job) is (-4.5%, -4.9%) of the observed 
difference indicating small and stable bias adjustments. 

The bias ranges for EN and NE are respectively (48.2%, 48.9%) and (65.7%, 66.6%) of 

the observed flows. Thus the biases are very substantial but the narrow intervals 

Indicate stability of bias adjustments. The bias range for the difference EN-NE 	(the 

increase in the number of not in labour force due to individuals who lost or left job) is 

(3.5% 9  3.8%) of the observed difference indicating again small and stable bias 

adjustments. 

The bias ranges for UN and MU are respectively (25.4%, 61.5%) and (24.8%, 48.1%) of 
the observed flows. Thus the biases in these flows are quite high as well as quite 
unstable because of wide intervals. However, the bias range for the difference MU-UN 
(the increase in the number of unemployed due to individuals who started looking for 

work) is (18.5%, 20.3%) indicating large but stable bias. 

The differential stability patterns in flow biases as £ varies indicates that no single 
value of the model parameter c could be recommended for analysis with flow data. 

However, if c is believed to lie in the interval [.5,11 which is quite wide, then the 
adjustments based on ICE (i.e. c=1) seem fairly robust. In practice multiple analyses 
of flow tables such as tests of symmetry and quasi-symmetry, could be performed with 

several values of e (say, C O , .5 and 1) and each analysis scenario could be further 

investigated for practical relevance using external considerations. 
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It should be mentioned that there are a number of data defects other than the classification 

errors that arise before the 3x3 gross flow data of Table 1 can be formed from the raw data. 
First, there are problems in matching individuals from the two time points because of 
missing information at one or both time points. The matching is required for determining 

which cell in the flow-table the individual belongs. The nonmatching may occur either due 
to nonresponse, processing error, the individual being outside the population of Interest or 
due to the rotation in or out of the sample. Second, there is difference in flow margins and 
published monthly stocks (based on the full sample) because flow data is based on only part 

(at most 5/6th in LFS) of the sample due to rotating panel survey design. Third, there is 

difference in sampling weights at two time points due to changes in the underlying 
population. Finally, there is the problem of rotation group bias which might contribute bias 

in the adjustments for partial nonresponse of rotate ins and outs. This bias problem is not 

considered in this paper. However, for other data defects, a fairly reasonable and 

practically convenient procedure for data cleaning is outlined below. 

First the problem of differing sampling weights at the two time points can be resolved by 
using the convention that the weights at the previous time point will be used. The changes 

in population at the two time points are not likely to have much impact on the general 

pattern of flow data. Moreover, the stock estimates obtained under this approach would be 

easier to interpret in relation to the published stocks than the one in which the common 

population for the two time points is ascertained and then the corresponding flow table is 

generated. Next turning to the problem of missing data due to nonmatching, one can divide 

all nonmatches into two groups - those with partial information at one of the two points 
and those with no partial information. For the former group, a suitable imputation 
procedure such as hot deck can be used to fill in the missing values under the missing at 
random assumption. For those with no partial information, a suitable weight adjustment 

procedure such as raking can be employed after post-stratification by age, sex, and region. 

The missing at random assumption used for individuals with partial information may not be 

reasonable. However, excluding nonmatehes due to rotate ins/outs, only a very small 

proportion of cases require imputation and so the impact of this assumption is not expected 

to be serious. The proportion of nonmatches caused by rotation, on the other hand, would 
not be small and the missing at random assumption not suitable due to rotation group bias. 
This problem can be alleviated to some extent by performing a margin adjustment via raking 

in order that flow margins match the published (or full sample) stock estimates at both time 
points. This will have the added benefit that the unpleasant situation that would have 
resulted from discrepancies between flow margins and published stocks would no longer 
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exist. Alternative processing methods such as the one described in Veevers and Macredie 
(1983) can also be used. Since we are mainly interested in the classification error problem, 

we assume here that the flow data Is suitably processed and reported in the form of a 3-3 

table before adjustments for classification errors are considered. 

Section 2 describes the nature of auxiliary information that might be used for the problem 

under consideration. Methods previously proposed are reviewed in Section 3 and the 
proposed method is described in Section 4 along with its application to LFS. Section 5 
presents an example on data analysis with flow data in which impact of classification error 
bias on chi-square tests of symmetry and quasi-symmetry is investigated. An interesting 

finding was that conclusions could be reversed if bias-adjusted flow data were analysed as 

observed data under the given sampling design. Finally, Section 6 contains summary and 

concluding remarks. 

2. USE OF AUXILIARY INFORMATION 

To make any adjustment for classification error bias, we need extra information. For this 
purpose, a special survey such as reinterview is often conducted to assess the nature of 

response error. With reinterview data, there are two types that can be used: unreconciled 

and reconciled portions. Fuller and Chua (1984) use only unreconciled data to estimate 

response probability matrices B(t-1) and B(t) via modelling while Poterba and Summers 

(1986) describe a procedure to estimate these matrices from both unreconciled and 

reconciled portions. Abowd and Zeliner (1985) consider another alternative in which only 
reconciled portion of reinterview data is used. The basic idea underlying the use of 
reinterview data is to estimate the two transition matrices B(t-1) and B(t). The method 
proposed in Section 4 does not restrict the use to either the unreconciled or reconciled data. 
We illustrate, however, a method for producing B matrices from reconciled reinterview data 

for LFS. Generally, interview-reinterview data is cumulated over several months of past 

data to obtain reliable estimates of response probabilities. For example, Table 2 shows 

unweighted counts for the period January- Nove m ber of 1989. 

Each column of interview-reinterview data (Table 2) can be scaled to sum to unity in order 

to produce a proper response probability matrix. However, under the assumption of 

unbiased stocks, the matrices B(t-1) and 8(t) must satisfy 
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B(t-1) n(t-1) = ri(t-1), 8(t) n(t) = 	(2.1) 

where n(t-1) is replaced by its estimate P(t-1), n(t) by P(t), the vectors P(t-1), P(t) 

are respectively the row and column margins (or observed stocks) of P(t-1 ,t), the matrix of 

observed flow proportions. The matrices B(t-l) and 8(t) can be estimated from interview-

reinterview data by raking Table 2 two times in succession so that both margins match 
P(t-1) first and then both margins match P(t). The first raked table after scale adjustment 
(for the constraint that each column sums to unity) gives an estimate of B(t-1). Similarly, 

the second raked table yields an estimate of B(t). These are shown in Table 3. 

Tables 4 and 5 about here 

It may be noted that smoothing of interview-reinterview data via raking to produce 

B matrices is a convenient and reasonable option which preserves the two-way associations. 

The B matrices would be treated as known for analysis of adjusted gross flows. This is a 
convenient assumption which may be reasonable because past reinterview data is cumulated 

in estimating B matrices. To check this assumption, an alternative interview-reinterview 

data based on three years (January 1987-November 1989) will also be considered. Table 4 

shows the counts for this interview-reinterview data and Table 5 the corresponding B 

matrices. It is seen that fluctuations in the entries of B matrices due to the alternative 

reinterview data are fairly small. 

3. METHODS BASED ON ICE 

There are three main methods of bias adjustment proposed respectively by Fuller and Chua 
(1984), Abowd and Zellner (1985), and Poterba and Summers (1986). As mentioned earlier in 
Section 2, these methods differ with respect to how B matrices are estimated from the 
interview-reinterview data. However, they all use the key assumption of ICE. This can be 

defined as 

lJlkthit) = Bjtk(t_l) 6 1 (t); i,j,k,L = E,U,N, 	(3.1) 

where $ijIkL(t_l$t) is in the (i,j)th row and (k,)th columnofA(t-1,t), i.e., fora 

randomly chosen individual it is the conditional probability of being observed in (1 ,j) when 

the true t-1 to t labour force status is (k,L),and BjIk(t_l)  Is the (1,k)th element of 

B(t-1), i.e. it is the conditional probability of observing I at time t-1 when the true state 
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is k. The 8 1 (t) Is similarly defined. 	Note that ICE does not imply the 

independence of responses at two consecutive time points i.e. (3.1) does not imply 

n? = n?(t-1) rI(t) where 0 was defined earlier in (1.3) and (1.4). In fact, the 

condition (3.1) is equivalent to two simpler conditions, namely, first the usual condition of 

independence of observed states at times t and t-1 given the true states, and second, given 

the true state at time t-1 (or t), the probability of observing a state does not depend on the 

true state at other time t (or t-l). Thus, ICE can also be defined by 

	

•ijkt( t_lt ) = BiIk t (t_l) BjIkt(t) 	 (3.2a) 

Bj I k t (t_l) = Bj I k(t - l) 	BJIk L (t) = 	(3.2b) 

where B's as before denote conditional probabilities for a single point in time. It now follows 

that under ICE, the response probability matrix A(t-1,t) can be obtained from B 	matrices 

as 

	

A(t-1,t) = B(t)®B(t-1) 
	

(3.3) 

where 	denotes the Kronecker product. 

The ICE assumption defined above by (3.1) or (3.3) can also be explained in terms of 

correlations between response (or classification) errors. As suggested by Fuller (1991), we 
define the 3-vector of response errors for the discrete variable of labour force status as 

= B(t) -1- 	 (3.4)  Yt o  

where y, y denote respectively the observed and true response vectors at time t. The 

vector y., for example, has three indicator variables denoting respectively the occurrence 

or nonoccurrence of E, U, and N. Notice that the response error is not defined in the usual 

way - 
 instead, is first transformed to B 1 (t) y. The main reason for the 

transformation is that e has mean 0 and is uncorrelated with the true value y t . This 

property simplifies the treatment of response errors for multivariate discrete data, see 

Fuller (1987, p.  278). The covariance matrix between error vectors t-i and et  can be 

obtained as 

Cov(eti ,  et) = B(t-1 1  (110(t-1,t) - B(t-l) ri(t-1,t)B'(t))B'(t) -4  (3.5) 

It is easily seen from (1.3) and (3.3) that COV(t_i,t) is a null matrix under ICE as 

expected. 
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Once the A matrix has been specified, the adjusted flows (n) are obtained from the general 

result (1.5) for right-wrong models. In particular, under ICE we get 

n0 (t-1,t) = B(t-1) n(t-1,t) B(t), n(t-1,t) = B 1 (t-1) P(t-1,t) B(tY'(3.6) 

Tables 6 and 7 about here 

We will illustrate this for the LFS example considered earlier. The B matrices obtained in 

Section 2 will be used here although the methods originally proposed use somewhat different 

B matrices. Tables 6 and 7 (columns labelled ICE) show adjusted flows (n) respectively for 

the two types of interview-reinterview data based on two different periods of cumulation. 
Notice that the flows for cells EN, NE, MU and UN show very high magnitudes for positive 
biases as their relative adjustments are over 50%. The relative adjustment (RA) is simply 

defined as 

Relative Adjustment = (Adjusted-Observed)/Observed. 	 (3.7) 

Therefore, bias for a cell will be estimated by negative of the relative adjustment 

multiplied by the observed proportion. For flows EU and UE, biases are positive but not very 

high (RA is 10% to 15%). Among diagonals, only the cell UU seems to have moderately high 

negative bias (RA is 20% or so) whereas the cells EE and NN show very low negative biases 

(around 1 to 3% for RA). Tables 6 and 7 also indicate that the impact of error in estimating 

B matrices on adjusted flows is not likely to be serious because the two tables show very 
similar bias adjustments. It, therefore, follows that treating B matrices (or the A matrix) as 
known from past data may not be unreasonable. This would then allow, among other 
conveniences, computation of covariance matrix of adjusted flows, vec n(t-1,t), quite 

simply from that of vec P(t-1,t) using the relation (1.5). 

It is seen that the above approach based on ICE does provide bias corrections in the 

directions as expected on heuristic grounds outlined in the Introduction. The differential 

effects of bias for different cells are also observed. The stability (or reliability) of biases 

with regard to sampling variability can, of course, be ascertained for a given A(t-1,t) from 

the covariance matrix of observed flows P(t-1,t) under a given sampling design. However, 

their stability with respect to uncertainty in the assumption of ICE is unknown. We propose 
to investigate this aspect under a particular class of alternatives to ICE which induces 

correlations between response errors as defined by (3.4). The proposed model provides a bias 
range for each cell of the flow table so that a sensitivity analysis to the assumption of ICE 

can be made, as illustrated in the next section for the LFS data. 
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4. GENERALIZED ICE MODEL 

We now consider a generalized ICE model which enables us to study the sensitivity of bias 

corrections to the global [CE assumption. We assume that a randomly chosen individual is 

either error-free at time points t-1 and t with probability i-c or error-prone with 

probability c, 0 < c c 1. We also assume that ICE hold for an error-prone individual. The 

response probability matrix for time points t-i and t is, therefore, given by 

A(t-1,t) = ( 1-c) I + 	B C  (t)i'?B C (ti), 	(4.1) 

where B(t) is the response probability matrix for time point t for an error-pone individual, 

and I denotes a mxm identity matrix. Note that ICE holds trivially for an error-free 

individual since 1 9  = 1 3  X 1 3. We thus have a generalized independent classification errors 

(GICE) model for gross flows which includes ICE as a special case when c=l. Similar 

c-contamination models have been used In other contexts, for example, in robustness studies 

(Huber, 1981) and in Bayesian inference (see Perrichi and Walley, 1991 for a review). 

The marginal response probability matrices B(t-1) and 8(t) are obtained from (4.1) as 

8(t-1) = ( i-c) 1 3  + c B (t-1) 	(4.2a) 

B(t) = (1-c) 1 3  + c B C  (t) 	(4.2b) 

To see this, note that the elements of B(t-1) and B(t) are defined by A(t-1,t) and 

ri(t-i,t) as 

Bjlk(t_i) = ijIk L (t_ 1 t) 11 k t (t_ 1, t) 	/ 11k(t.'I.) 	(4.3a) 

8jIL(t) = 	ki ij I k L (tI.t) nk L (t_l , t) 	/ n(t). 	(4.3b) 

It follows from (1.1) and (4.2b) that under the assumption of unbiased stocks as defined by 

(1.2), we have 

n° (t) = ( i-c) 11(t) + c B(t) n(t) 

= n(t) 
	

(4.4a) 

which implies that 
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n(t) = 8(t) n(t) 	 (4.4b) 

We can write n° (t) alternatively as 

n0(t) = (1_C)?_(t) + 	= 	 (4.5) 

where 11
0

1  (t) and n ° (t) are the expected proportions for error-free and error-prone 
individuals respectively. Note that (4.4) and (4.5) do not necessarily imply that ii?  (t) = 

n° (t)  

The B-matrices are estimated, for a given E from (4.2a) and (4.2b) using the estimates 

B(t-1) and B (t) obtained from interview-reinterview data: 

-1 B (t-1) = c 	[B(t-1) - (1_€)1 3 1 
C 	

(4.6a) 

and 

-1 B C  (t) = C 	[8(t) - (1€)I31 (4.6b) 

It can be seen that in order for the estimated entries of B to be nonnegative, we must have 

max 11-min (8 11 (t_0, B 1 (t)) 	max 	(BlIk(t - l) 	BJI L (t))} 
1,j 	 i/k j/2, 

= C o  (say). 	 (4.7) 

The adjusted proportions rI(t-1, t), for a given C, are obtained from (4.1) and (1.5) by 

substituting the estimated matrices B(t_l) and B(t) in (4.1). Thus the sensitivity of bias 

corrections to ICE assumption can be studied by varying c in the range [c 0 , 11. 

The assumption of ICE is clearly not satisfied by GICE for e below 1 	because 	(3.2a) is 

violated. The condition (3.2b) is, however, satisfied by GICE. The GICE model gives rise to 

dependent classification errors analogous to intra-class correlations induced by mixture 
models. The response error covariances can be computed from (3.5) by substituting 

n(t-1,t) obtained under GICE for ech To get correlations, standard deviations of 

elements of and e t  are of course needed which can be calculated from diagonal 

elements of Cov(et 	and Cov(et) where 
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Cov(e) = B(t) Diag {n0
(t)} B(t)-1 - Diag {n(t)}, 	(4.8) 

and Cov(et i is similarly defined. 

Figures 1(a) and (b) about here 

The 3x3 matrix of response error correlations defined by (3.5) and (4.8) was estimated from 
the LFS In conjunction with the 1989 reinterview data. The diagonal elements of the 
resulting correlation matrix were found to be positive and off-diagonal ones to be negative. 

(Their magnitudes are shown in Figures 1(a) and (b)). Note that it is reasonable to expect 
different signs for correlations because response errors correspond to same categories for 

the diagonal and different categories for the off-diagonal. An interesting finding is that 

these correlations are monotorlic decreasing to zero in magnitude as c increases to 1. This 

is an important phenomenon which can be used to explain the behaviour of flow biases 

obtained under GICE as c increases. It is seen that flow biases (see the discussion below) 

also have monotonic patterns, but in the opposue airection, as e increases. Ilie 

monotonicity of correlations can be proved under mild regularity conditions about B and it 

matrices. It may be noted that sensitity analyses of biases as c varies would also shed light 

on their behaviour as response error correlations change because these correlations are 

monotonic functions of c. 

To interpret the impact of dependent classification errors induced by GICE, it might be 

useful to consider the following inequalities in addition to the response error correlations 

presented above. Let Indices I ,j,k,t be defined as before in (3.1). It can be shown that 

under GICE, for e > eo 

P{no error at t 	I no error at t-1,k,L} > P{no error at ttk,t}, 

error 	at 	t 	i error 	at 	t-1, k,t} 	> P1 error 	at tlk,t}, 

P1 error 	at 	t 	i no error at t-1,k,L} 	< P{ error 	at tlk,t}, 

P{no error at t i 	error at t-1, 	k,t 	} 	< P{no error at tik,.}, 	(4.9) 

with equality holding if and only if cl. To see this, note that the LHS is 4jjIkL(t_lt) 

the RHS is B L(t) and then the results follow after some algebra. The above 

inequalities imply that biases should be less in magnitude under GICE than those under ICE 
because there is more chance for correct response under GICE and also more chance for 
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exchange between cells i.e. for compensatory moves. Moreover, the absolute differences 

between the two sides in (4.9) can be easily shown to be monotonic nonincreasing in c by 

noting that the derivative with respect to e is nonpositive for all c > c. This provides 

another explanation of why the biases under GICE attain a maximum in magnitudes at t=l 

and decrease to a minimum as E decreases to the lower bound 

Figures 2(a) and (b) and Figure 3 about here 

Under very mild regularity conditions (which are expected to be met in practice) about B 

matrices and the nature of the ri matrix, it can be shown that the flow biases are monotonic 

functions of E. Thus, bias ranges can be obtained by computing biases at E = and € = I. 

The true value of e is in general unknown and difficult to estimate. However, the bias 

range can be easily computed using only interview-reinterview data. For the LFS example, 

Figures 2(a) and (b) show the variation of biases for different flows as e increases from 

to 1. In the figures, absolute relative adjustments (ARA) are plotted against €. 

Note that the three cells UU,UN and NU are especially sensitive to c whereas the other cells 
are quite insensitive. This behaviour may also be explained in terms of response error 
correlations (given in Figures 1(a) and 1(b)) in the sense that the absolute correlation 

remains small (less than 0.10) for all € for the insensitive cells (except for the cell NH). 

The behaviour of flow differences for symmetric cells (i.e. EN-NE, EU-UE, NU-UN) 	as 

observed from Figure 3 shows a rather striking and interesting result. Their biases are 

almost constant as € varies. Thus, under GICE, different flows or their differences have 

different types of stability patterns. These patterns should be investigated in practice for 

each flow table before drawing any conclusions regarding bias magnitudes. 

Table 8 about here 

The bias ranges for flow proportions and their differences for the LFS example using 1989 

interview-reinterview data can also be seen from Table 6 by comparing columns of adjusted 

proportions labelled GICE(c=.098) and GICE(€ = 1). The corresponding ranges for flow 

counts and flow differences are shown in Table 8. 

The bias ranges when the three year interview-reinterview data is used, are shown in Table 

7. Comparing Tables 6 and 7, it is seen that the impact on biases due to variability in 
interview-reinterview data is small. Thus, B matrices (and hence A) can be treated as fixed 

in finding covariance matrix of n for a given E. Note that the covariance of II depends on €. 
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5. CHJ-SQUARED TESTS OF SYMMETRY AND QUASI-SYMMETRY 

We now turn to analysis of adjusted gross flow tables, in particular chi-squared or likelihood 

ratio tests of symmetry and the weaker hypothesis of quasi-symmetry. Such tests are well-

known for multinomial cell counts (e.g. Bishop, Flenberg and Holland, 1975, Chapter 8), but 

adjusted gross flow tables do not satisfy the multinomial assumption. 

The chi-squared tests will be developed in the context of gross flows for labour force status. 

The hypothesis of symmetry on the true gross flows is given by H:  1I 1 (t_1 1 t) = 
n 1 (t_1t) for all I / j. It can also be expressed as H: U 1(j)  = U2(1 ) and U 12 ( jj ) = 

for all I # j in the saturated loglinear representation of 

1nn 1 (t1t) = U + u 	 + U2()  + U 12(j)$ 	 (5.1) 

where the parameters U 1(1 ) U2 ( j ) and 	are subject to the constraints 	= 0 

= 0 for all 1 	jU 12 ( 1 ) = 0 for all I, and U is a normalizing factor to ensure 

that 1 1 u 1 (t-1t) = 1 (see e.g. Bishop, Fienberg and Holland. 1975, p.  24). Under H 5 , 

the reduced model may be written in matrix notation as 

1nvecn(t-1,t) = uI+ XS  e s s 	 (5.2) 

where in vec n(t-1,t) is the vector of logarithms of elements of v,ec n(t-1,t), 1 
is a 9.1 vector of l's, 8 = ( u1(1). u ,(2) . U 12(11) i  u,2(12)1U12(22)) and 

20100 
11010 
0 -1 -1 -1 0 
11010 

X= 0 2 0 0 1 (5.3) 
-1 0 0 -1 -1 

0 -1 -1 -1 0 
-1 0 0 -1 -1 
-2 -2 1 2 1 

A weaker hypothesis than symmetry is the hypothesis of quasi-symmetry given by 

= U 12(jj)  (see e.g., Bishop, Fienberg and Holland, 1975, p. 286). Under H Q5 . 

the reduced model may be written as 

invecn(t-1,t) = ul + XQ5 G Q5 	 (5.4) 
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where °QS (U 1(1) U 1(2), U2(1) U2(2 )U 12 ( 11 )U 12 ( 12 ) I U 12 ( 22 ))' and 

1010100 
0110010 

-1 -1 1 0 -1 -1 0 
1001010 

X= 	0 1 0 1 0 0 1 (5.5) 
-i. -i 0 1 0 -i -1 

1 0 -1 -1 -1 -1 0 
0 1 -1 -1 0 -1 -1 

-1 -1 -1 -1 1 2 1 

In order to develop valid chi-squared tests of H and H , we need to express models (5.2) 

and (5.4) in terms of ii (t-1,t) using (1.3). The models do not retain the standard log-linear 

form since 1nvecn(t-1,t) = 1n[A(t-1,t 1vecn0 (t-1,t)] = g(vecn 	say, and hence the 

standard methods for loglinear models are not applicable. Scott, Rao and Thomas (1990) 

considered models of the form g(vecn0) = 61 + X 1 e 1  for general g(vecn0 ), and proposed an 

iterative scheme involving weighted least squares to calculate the maximum likelihood 

estimates (m.l.e.) of ü, e and hence of fl u , assuming that the observed proportions, P, 

are obtained from a simple random sample drawn with replacement (i.e. multinornial 

sampling with probabilities ii). Rao and Thomas (1990) give details of the iterative scheme 

for the special case of g(vecn 0 ) = ln(A vecn° ). 

Since no single c can be selected for the flow data under GICE model, we will do multiple 

analyses using several values of c, in particular, c = c, 0.5 and 1. The matrix A(t) for 

the three values of c under GICE, is obtained from (4.1) using interview -reinterview data. 

We treat the resulting A(t) as fixed, and obtain the m.l.e. of 11 0 (t-1,t) under Hs and  HQS 

using the iterative scheme, assuming that the observed gross flows, P(t_1t) are 

obtained from a multinomial sample. Denote the m.l.e. of rIt_1t) by n(St) and 

rI(QSt) under H and HQS respectively. Then, an asymptotically correct test of H S is 

obtained by treating either the chi-squared statistic 

= n 11 [P 1 (t_1t) - n(St)J2 / r1(St) 	(5.6)
ii  

or the log-likelihood ratio statistic 

= 2nP 1 (t-1 1 t) 	 (5.7) 
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as a x 2  variable with 3 degrees of freedom (d.f.). Similarly, an asymptotically correct test 

of HQS Is obtained by treating either 	
(5.8) 

X 	= n(P1(t-1t) -QS 
or 	

G5 = 	 (5.9) 

as a x 2  variable with 1 V. 

We can also test the hypothesis of marginal homogeneity, HMH: n 1  (t-1) = ri 1 (t) for all 1, 

given that HQS is true. An asymptotically correct test of HMHI HQS is obtained by treating 

- Gs as a x 2  variable with 2 d.f., noting that 	= HQS fl 	(see e.g., Bishop, Fienberg
MH  

and Holland, 1975, p.  287). 

It is possible to account for the effect of the survey design if the estimated covariance 

matrix of the P(t-lt) is also known. Corrections to X and X that take account of the 

survey design could then be obtained along the lines of Rao and Thomas (1990). 

We will apply the above X tests to the LFS example given in the introduction. We will 
treat, for convenience, the data of the weighted flow proportions of Table 1 as a 

multinomial sample with sample size n = 78,007, the matched common respondents in the 
months of October and November 1989. Later, we will consider implications of adjusting 

the X2  tests by the average design effect. The matrix A(t-1,t) is specified from Jan-Nov 

'89 interview-reinterview data. The m.l.e. under the hypothesis of quasi-symmetry, HQSV is 

obtained for different values of e as 

Forc = .098, 

vec a s(t_1,t) = (.59905, .00845, .01008, .0 1203, .02759, .00790, .01256, .00798, .31436)
1 
, 

For c = .5, 

' vec 	s(t_1,t) = (.59906, .00854, .00988, .0 1194, .02762, .00782, .01274, .00803, .31437) 1  , 
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and for€ = I. 

vec m 5 (t_1,t) = (.59906, .00856, .00984, .01192, .02763, .00781, .01277, .00803, .31438)'. 

(5.10) 

The resulting values of X 2 (c,QS) are given by 

X 2 
 (E = 01 QS) = 10.24, 	G 2 (e = c0 ,QS) = 10.28, 

= .5,QS) = 7.72 9 	 G2 (c = .5,QS) = 7.73, 

= 1, QS) = 7.23, 
	G2 (e = 1,QS) = 7.23, 	(5.11) 

where c o  = . 098. The sample design is ignored here, but a crude adjustment can be made 
by the average design effect for the LFS which is expected to be around 1.75. By treating 

X2(,QS)/1.75 or G2 (s,QS)/1.75 as a x2  variable with 1 d.f., we see that even with the 

most liberal test when E is at its lower bound, the observed X or G2  value adjusted for 

design effect lies between x(.05) or 3.84 and x(.Ol) or 6.64. Given the large sample size 

(n = 78,007), we may conclude that quasi-symmetry model provides a reasonably good fit to 

the observed proportions. 

If we ignore the fact that adjusted proportions, n(t-1,t), do not satisfy the multi-nomial 

assumption, and fit the loglinear model (5.4) to n(t-1,t), we get 

= 0 ,QS) = 21.28 9 	 G2 (cc0 ,QS) = 21.44, 

= .5,QS) = 20.61 9 	 = .5,QS) = 20.71, 

= 1,QS) = 20.57, G2 (c = 1,QS) = 20.66, (5.12) 

where co  = .098. 	The n(t-1,t) values for e = .098 and 1 are 	given in 	Table 6(a). 

For £ = . 5, they are obtained as 

vec n(t-1,t) = (.60665, .00752, .00314, .01056, .03323, .00381, .00670, .00325, .32515) 
(5.13) 

Treating X2 (E,QS)/1.75 or G2 (c,QS)/1.75 asa x2  variable with 1 M. will lead to the 

erroneous conclusion that HQS  is not tenable. 
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We also calculated the values of X 2 and G 2 under the hypothesis of symmetry, H 5  as 

X2(e = €, S) = 77.03, 	G2(c 
= 

C O , S) = 77.32 9  

= .5, S) = 77.00, G2 (c = .5, S) = 77.29, 

= 1, S) = 77.00, = 1, S) = 77.29, 	(5.14) 

where co  = .098. Treating X2 (c,S)/1.75 or G2 (€,S)/1.75 as ax2  variable with 3 d.f., we 

may conclude that H 5  is not tenable because x2(.01) = 11.34. 

Treating the adjusted proportions n(t-1,t) as multinomial, we get for co  = . 098 9  

= c0 ,S) = 138.76 9 	 G2 (c = c 0 ,S) = 141.13, 

= .5,S) = 143.82, 	G2 (c = .5, 5) = 146.33, 

= 1, S) = 144.54, 	G2 (e = 1,S) = 147.06. 	(5.15) 

As was the case with HQS both X and G 
2  values get inflated as compared to correct X2  and 

values. 

We also considered X and G 2  tests for HQ5  and Hs  when the alternative value of A matrix 

based on the Jan 187-Nov 1 89 reinterview data was used. Although the values of test 

statistics changed somewhat because of some fluctuations in A, the overall conclusions 

remained the same except for the case of X (c 0 ,QS) or G (€ 0 ,QS) when e is the revised 

value of the lower bound as .093. The actual values of X and G in the case of HQS , for 

example, were obtained for € = .093 as 

X 2 (=c0 , QS) = 12.31, 

X 2 (c=.5, QS) = 10.55, 

x2 (€=1, QS) = 10.17, 

QS) = 12.39, 

QS) = 10.59, 

G2 (c=1, QS) = 10.20. (5.16) 

Note that the values of X or G2  adjusted for design effect are somewhat larger than those 

given by (5.11). The value of c for (5.16) is also different from that in (5.11). For H , with 

CO = .093, the X and G values were obtained as 
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x2 (€=c 01 s) = 76.96, 	G2 (€=c 0 ,S) = 77.24, 

x 2 (t=.5,$) = 76.92, 	G2 (E=.5,S) = 77.21, 

x2 (=1,$) = 76.92, 	G2 (€=1,S) = 77.21. 	(5.17) 

It is seen that the general trends observed earlier in (5.11) and (5.14) continue to persist with 
the alternative reinterview data. 

6. CONCLUDING REMARKS 

In this paper, the problem of adjusting classification error bias in gross flows using 

interview-reinterview data was considered. 	Under the assumption of independent 

classification errors (ICE), it is known that biases for different cells could be computed 
which indicate right directions (i.e. + or -) as expected under heuristic considerations and 
that some cells show substantial amounts of bias compared to other cells. To check the 

stability of bias adjustments with respect to uncertainty in the assumption of ICE, a class of 

models termed generalized independent classification errors (GICE) was proposed which 

parametrizes different scenarios of error mechanism by means of a mixing parameter E. 

The ICE model is obtained as a special case of GICE when c takes the maximum value of 1. 

The case c = 0 corresponds to no error and then the response probability matrix based on 

the interview-reinterview data must be identity. If not, then c must be bounded away from 

0 i.e. c 	where the lower bound E0 is specified by the interview-reinterview data. 

Under the proposed GICE model, one can construct a bias range for each flow as e 	varies 

from c to 1 because biases can be shown to be rnonotonie functions of c under fairly mild 

regularity conditions. If bias ranges are narrow for some flows and wide for others, it 

indicates differential patterns of stability for different cells. For the particular LFS 

example considered, it was seen that the three cells UU, UN and NU were especially sensitive 

to ICE as the corresponding bias ranges were quite wide. This observation can be attributed 

to the nature of the response probability matrices as given by the interview-reinterview 

data. The cells EU and UE were found to be only marginally sensitive to ICE while the other 
flows were quite insensitive to ICE i.e. their bias ranges were quite narrow. However a 
rather striking phenomenon was observed for the three flow differences of symmetric cells, 

namely EU-UE, EN-NE, and NU-UN. Their biases were seen to be very stable with respect to 
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uncertainty in ICE. Since these flow differences are very useful in understanding 

movements in labour market, this finding should have important practical implications. 

Another important finding was that if e is restricted to a fairly wide range, namely, [.5,1] 

then the adjustments under ICE seem quite robust to departures from ICE. 

In view of the differential stability patterns of biases for different cells, it is not feasible, in 

general, to choose a single value of c for data analysis purposes such as testing of 

hypothesis. Consequently, it is suggested that multiples analyses be performed by choosing 

several values of c e.g. the two boundaries E O  and 1 and a third one near the middle such as 

0.5. If the resulting analyses agree with each other reasonably well, then one would have 
confidence in the conclusions. However, if they are discrepant, then the results must be 

reported with caution after further investigations based on external considerations. 

It may be remarked that the GICE modelling approach proposed in this paper can be easily 

extended to flow data for domains defined by age, sex, and region, for example. Separate 

interview-reinterview data and hence different c,.'s would be required. In this paper, we did 
not examine the effect of rotation group bias on gross flows. This is an important problem 

and should be investigated in future. 
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Table I: Weighted Gross Flow Counts and Proportions (In Brackets) 
for October-November 1989, LFS 

October 	 November 1989 	 Stocks 
1989 	 E 	 U 	 N 	(Oct'89) 

E 	 12,117,397 236,644 264,961 12,619,001 
(.5991) (.0117) (.0131) (.6239) 

U 	 177,989 558,238 153,717 889,944 
(.0088) (.0276) (.0076) (.0440) 

N 	 190,124 167,876 6,359,054 6,717,055 
(.0094) (.0083) (.3144) (.3321) 

Stocks 	 12,485,510 	962,758 	6,777,732 	20,226,000 
(Nov'89) 	 (.6173) 	(.0476) 	(.3351) 	(1) 

Table 2: Reconciled Interview-Reinterview Data (Jan'89-Nov'89) 

Reinterview 	Row 

	

Interview 	E 	U 	N 	Margin 

E 	4,304 	10 	26 	4,340 
U 	10 370 	28 	408 
N 	24 	32 3,354 	3,410 

Column 

	

4,338 412 3,408 	8,158 
Margin 

Table 3: Response Probability Matrices B(t-1) and B(t) 
from Interview-Reinterview Data of Table 2 

	

October '89 	 November '89 
E 	U 	N 	E 	U 	N 

	

E .9933 .0267 .0091 	.9931 .0256 .0090 

	

U .0021 .9022 .0090 	.0022 .9056 .0093 

	

N .0046 .0711 .9819 	.0047 .0688 .9817 

Column 1 Total 



Table 4: Reconciled Interview-Reinterview Data (Jan'87-Nov'89) 

Reinterview 	Row 
Interview 	E 	U 	N 	Margin 

E 8,221 16 	41 8,278 
U 25 746 	44 815 
N 63 60 	5,830 5,953 

Column 8,309 822 	5,915 15,046 Margin 

Table 5: Response Probability Matrices B(t-1) and B(t) 
from Interview - Reinterview data of Table 4 

October '89 November '89 
E U N E U N 

E .9927 .0263 .0103 .9925 .0252 .0102 
U .0022 .9072 .0081 .0023 .9105 .0084 
N .0051 .0665 .9816 .0052 .0643 .9814 

Column 1 1 1 1 1 1 
Total  

Table 6: % Relative Adjustments in the LFS Observed Flow Proportions and their 
Differences using Jan'89-Nov'89 Reinterview Data 

Observed 
G10E(=.098) 

Adjusted 	% RA 
ICE or GICE(c) 
Adjusted 	% RA 

EE .5991 .60600 +1.2 .60673 +1.3 
UE .0088 .00808 -8.2 .00744 -15.5 
NE .0094 .00322 -65.7 .00314 -66.6 
EU .0117 .01111 -5.0 .01048 - 10.4 
UU .0276 .03025 +9.6 .03364 +21.9 
NU .0083 .00624 -24.8 .00348 -58.1 
EN .0131 .00679 -48.2 .00669 -48.9 
UN .0076 .00567 -25.4 .00292 -61.6 
NN .3144 .32264 +2.6 .32548 +3.5 

EU-UE .0029 .00303 +4.5 .00304 +4.9 
EN-NE .0037 .00357 -3.5 .00356 -3.8 
NU-UN .0007 .00057 - 18.5 .00056 -20.3 



Table?: % Relative Adjustment in the LFSObserved Flows and their 
Differences using Jan'87-Nov'89 Reinterview Data 

Observed 
GICE(=.093) 

Adjusted 	% RA 
ICE or GICE(c1) 
Adjusted 	% RA 

EE .5991 .60658 +1.2 .60747 +1.4 
UE .0088 .00797 -9.5 .00735 -16.5 
NE .0094 .00275 -70.7 .00248 -73.7 
EU .0117 .01098 -6.1 .01038 - 11.3 
UU .0276 .03012 +9.1 .03327 +20.6 
MU .0083 .00650 -21.7 .00395 -52.5 
EN .0131 .00633 -51.6 .00605 -53.8 
UN .0076 .00591 -22.2 .00338 -55.6 
NN .3144 .32285 +2.7 .32568 +3.6 

EU-UK .0029 .00302 +3.4 .00303 +4.5 
EN-NE .0037 .00358 -3.1 .00357 -3.5 
NU-UN .0007 .00058 -16.5 .00057 -18.6 

Table 8: Ranges for Bias Adjusted Flow counts and their 
Differences using Jan'89- Nov'89 Reinterview Data 

Observed 	
Adjusted 	Adjusted 
c.098 

EE 	12,117,397 	12,256,868 	12,271,614 

UK 	177,989 	 163,493 	 150,484 

NE 	190,124 	 65,149 	 63,412 

Subtotal 12,485,510 12,485,510 12,485,510 

EU 236,644 224,719 212,015 

UU 558,238 611,831 680,362 

NU 167,876 126,208 70,381 

Subtotal 962,758 962,758 962,758 

EN 264,961 137,367 135,372 

UN 153,717 114,668 59,099 

MN 6,359,054 6,525,697 6,583,261 

Subtotal 6,777,732 6,777,732 6,777,732 
Total 20,226,000 20,226,000 20,226,00 

Population 

EU-UK 58,655 61,226 61,531 

EN-NE 74,837 72,218 71,960 

MU-UN 14,159 11,540 11,282 
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Figures 1 (a) and (b): Absolute Response Error Correlations as c varies 
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Figures 2 (a) and (b): % Absolute Relative Adjustments in Flows as € varies 
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APPENDIX 

PropositIon 1 

1 	(t-1 1 t) = 1 

Proof We need the following lemma. 

Lemma Let C be a nonsingular matrix ((C jj )) whose inverse C is denoted by ((c 31 )). 

We have, for all I ,j, 

j C 1j  = 1 	1ff j j  Cj
i = 1. 

To see this, first suppose I  C 1  = 1. Now denoting the cofactor of C jj  by C 1 , we have 

jjdi  = id 

= iCi 	( j .Cjj ) C 1  

= iCi -11: c ij Cii  + 
1= 1' Y.j C jij  C jj  I 

= 	lid + 01 = 1 

This proves the necessary part. The sufficiency part follows immediately. 

Now to prove proposition I, note that 

vec ii (t-1,t) = A(t-1,t 1  vec P(t-1,t). 

and each column of A(t-1,t) sums to unity in view of the lemma because each column of 

A(t-1,t) adds to one. We thus have 



WME 

n(t-1,t) = 1' A(t-1,0Y' 
	

vec P(t-1,t), 

= P 11 (t-1,t) 
	

(sum of column 1 of A(t-1,t)) 

+ P21 (t-1,t) (sum of column 2 of A(t-1,t) - ) + 

= P 11 (t-1,t) + P 21 (t-1,t) + ... (by Lemma 1) 

= 	1j 	ij  (t-1,t) = 1. 	 Q.E.D. 

The next proposition considers behaviour of biases in ri° (t-1,t) as c varies under certain 

mild regularity conditions about magnitudes of elements in 8(t-1), B(t) and n(t-1,t) 

matrices. These conditions are expected to be met in practice. Let Yj j' 
S and 'r ' s denote

ij  
small positive quantities such that (1 - 1jj)'S (1 - y 1 )'s are diagonal elements of 

B(t-1) and B(t) respectively and y ij  and y, j  are the corresponding off-diagonals. The 

diagonal elements of u(t-1,t) are also assumed to be much larger than off-diagonals. The 

regularity conditions required for the next proposition can be stated in terms of nine 

inequalities, some examples of which are: 

(I) 	yi, (1111y11 - 21l2 - 3113 + j2 - 1211 +' 22Y 12 + 3213 

+ 1j3 	1311 + 1123112 + 3313 	
09 

(ii) 	1121 - "21'22 + 11 31123) + 112 - 1221 + 2222 - 3223 

+ Yj3 ( - 11 13121 + 11 23122 - 1133123) 	0 

and so on. 

Notice that in the LHS of above inequalities, number of positive terms are nearly half and 

that they contain at least two out of the three diagonal elements of n(t-1,t). Therefore, 

these inequalities are expected to hold in practice because the rI's for 1j, y's and y"s are 

likely to be small. 

The bias vector vec 110 (t-1,t) - vec 11(t-.1,t) under GICE can be expressed in two ways: 

A(t-1,t) vec n(t-1,t) - vec n(t-1,t) or vec n0 (t-.1,t) - A(t-1,t) -  vec n0 (t-1,t) 

where A varies with E. The former expression is more convenient mathematically as it does 
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not require matrix inversion and is, therefore, considered in the next proposition. The 

estimated bias vector, veC n - A(t-1,t) 1 vec ri
0 (t-1,t) is expected to behave in a 

similar manner by consistency arguments. 

Proposition 2 

Assume that the GICE model holds. Then, under the regularity conditions mentioned above 

the magnitudes of biases in ri° (t-1,t) are monotonic nondecreasing functions of c. 

Moreover, the signs of biases are nonnegative for off-diagonal flows and nonpositive for 

diagonal flows. 

Proof Under GICE, rr(t-1,t) is fixed but unknown, while ri° (t-1,t) varies with e. It is 

given by 

	

vec ri0 (t-1,t) = vec n(t-1,t) - c(19 - B(t) 	B(t-1)) vec a(t-1,t). 

The biases are therefore given by 

	

vec a0(t-.1,t) - vec a(t-1,t) = - e(I - B(t) 	B(t-1)) vec n(t-1,t). 

Now, the bias in the first diagonal element of u° (t-1,t) 

= 1st element of (-€) 0 9  - B 
C 	 C 
(t)) x B (t-1) vec n(t-1,t) 

= -ii Y 	+ E Y11Yjj) a11 + ( Y 12 - 	121i) 21  + 	- 	Y) 131 

-1 
+ (y12 - C I11Y12) a 12  + C 	12Y12 22  + C 	 a 32  

+- £1 i1113) a 13  + 	1213 23  + 	a33 . 

Differentiating with respect to c, we get 

- (bias in a?i(t_l,t)) 	2 L'rj1 "Iiii 	2112 - rI31 13 

+ y12 	12I1 + fl 22 y 12  + 	+ 13 	a13y 11  + fl 23 y 12  + n33y13fl 
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Since the above expression inside the square brackets is nonnegative under our regularity 

conditions, the derivative will be nonpositive for all c and hence the bias in the first 

diagonal flow will be a nonincreasing function of c as c increases. Moreover, at c = 0, bias 

is zero, therefore, bias will remain nonpositive for all £ > 0. The behaviour of biases for 

other diagonal flows can be similarly established. 

Now consider the off-diagonal flow of 11
0 (t-1,t) in the second row and first column. Its 

bias is given by 

Bias in n 	
-1 1(t-1,t) = 	21 - C 	2111) "ii - 	i1 + 22 - 

C 1 2 1 11) "21 

-1 	 -1 	 1 
+ 	23 - C 	ll23 "31k 	l22l "12 + (y1 2  - €- 1222 1122 

-1 ' 	 -1 	 -1 ' 	 -1 
+ 	l223 "32 + 	l32l 11 13 + (y13 - 	l322 "23 + 	i13'r23 11 33  

Differentiating with respect to c, we get 

(bias in n 1 (t-1,t)) = e 
-2 	

11"1121 - "2122 + "3123 

+ 12 - "1221 + "2222 - "3223 

+ 	1113121 + "2322 - 11 33123)1 

Again, the expression inside the square brackets is nonnegative under the regularity 

conditions. Therefore, bias in the off-diagonal n 1 (t-1,t) will be a nondecreasing function 

of €. Further, bias is zero at €0, so for c>O, it must be nonnegative. For other off -

diagonals, bias behaviour can be similarly established. 

Corollary Biases in the flow differences rI(t_1t) - 	(t-1,t) for ij, are monotonic 

functions of €. For a given i,j, bias is nondecreasing if the difference in derivatives of 

biases in fl(t_lt) and ri ji  (t-1,t) is nonnegative and nonincreasing if nonpositive. 
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