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ABSTRACT 

In estimation for small areas it is common to borrow strength from 

other small areas since the direct survey estimates often have large 

sampling variability. A class of methods called composite 

estimation addresses the problem by using a linear combination of 

direct and synthetic estimators. The synthetic component is based 

on a model which connects small area means cross-sectionally (over 

areas) and/or over time. The Fay-Herriot estimator is a composite 

estimator which provides empirical best linear unbiased predictors 

for cross-sectional data under a linear regression model with 

uricorrelated small area effects. In this paper we consider three 

models to generalize Fay-Herriot estimation to more than one time 

point. In the first model, regression parameters are random and 

serially dependent but the small area effects are assumed to be 

independent over time. In the second model, regression parameters 

are nonrandom and may take common values over time but the small 

area effects are serially dependent. The third model is more 

general in that regression parameters and small area effects are 

assumed to be serially dependent. 

The resulting estimators, as well as some cross-sectional 

estimators, are evaluated using bi-annual data from Statistics 

Canada's National Farm Survey and January Farm Survey. 

KEY WORDS: Composite estimation; State space models; Kalman Filter; 

Best linear unbiased prediction. 
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RÉSUMÉ 

Lors de l'estiination des données regionales, on utilise couramment 

les donnêes d'autres petites rdgions, puisque les estimations 

directes d'enquéte ont souvent une grande variabilité 

d'echantillonnage. Une categorie de méthodes, que l'on appelle 

estimation composite, dlimine ce problème en utilisant pour cela une 

combinaison linéaire d'estimateurs directs et synthétiques. La 

composante syrtthetique repose sur un modèle qui relie 

transversalement (selon les regions) et/ou dans le temps les 

moyennes des petites regions. L'estimateur de Fay-Herriot est un 

estimateur composite qui donne les meilleurs prédicteurs sans biais 

linéaires empiriques pour les données transversales dans un modéle 

de regression linéaire avec effets regionaux non corrdlds. tTous 

examinons ici trois niodéles afin de généraliser l'estimateur de Fay-

Herriot 4 plus d'une période. Dans le premier modéle, les paramétres 

de r6gressi6n sont aléatoires et ont une dépendance sdriale, mais on 

suppose que les effets régionaux sont indépendants dans le temps. 

Dans le deuxièrne, les paramètres de regression sont non aleatoires 

et peuvent prendre des valeurs communes dans le temps, mais les 

effets régionaux ont 'ane dépendance sériale. Le troisième modéle est 

plus general, en ce sens que les parametres de regression et les 

effets régtonaux onc par definition une dépendance sériale. 
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1. INTRODUCTION 

There exists a considerable body of research on small area estimation using 

cross-sectional survey data in conjunction with supplementary data obtained from 

census and administrative sources. A good collection of papers on this topic can 

be found in Platek, Rao, Sarndal and Singh (1987). The basic idea underlying all 

small area methods is to borrow strength from other areas by assuming that 

different areas are linked via a model containing auxiliary variables from the 

supplementary data. It would also be important to borrow strength across time 

because most surveys are repeated over time. Recently time series methods are 

being employed to develop improved estimators for small areas; see Choudhry and 

Rao (1989) and Pfeffermann and Burck (1990). It is interesting to note that 

after the initiative of Scott and Smith (1974) on the application of time series 

methods to survey data, there has been only lately a resurgence of interest in 

developing suitable estimates of aggregates from complex surveys repeated at 

regular time intervals; see e.g. Bell and Hilmer (1987), Binder and Dick (1989), 

Tiller (1989), and Pfeffermann (1991). 

In this paper we consider some natural generalizations of the Fay Herriot (FH) 

estimator for small areas when a time series of direct small area estimates is 

available. The important work of Fay and Herriot (1979) shows how direct 

estimators can be smoothed by cross-sectional modelling of small area totals. 

The resulting estimators are composite estimators (i.e. convex combinations of 

direct and model-based synthetic estimators) and are also empirical best linear 

unbiased predictors (EBLUPs). With the use of structural models, we derive time 

series EBLUPs which combine both cross-sectional and time series data. The main 

purpose of this paper is to compare time series EBLUPs with cross-sectional 

estimators such as post-stratified domain, synthetic, FR and sample size 

dependent estimators. 

An empirical study based on Monte Carlo simulations from real time series data 

obtained from Statistics Canada's biannual farm surveys was conducted to 

investigate potential gains in efficiency with time series EBLUPs. The main 

findings of the study are 

(i) There can be substantial gains in efficiency with time series EBLUPs over 

cross-sectional estimators. 
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Within the class of time series methods considered in this paper, 

introduction of serial dependence in the random small area effects is 

found to be considerably more beneficial than dependence of the parameters 

of the synthetic component. 

Although any smoothed version of the direct small area estimatpr is 

expected to be biased, the time series EBLUPs exhibit less bias than other 

methods including FH estimator. 

Within the class of cross-sectional methods, the performance of the FH 

estimator is best overall followed by that of the sample size dependent 

estimator. Nevertheless, in the context of the empirical study presented 

here, the gains over direct estimation in mean squared error due to cross-

sectional smoothing are marginal at best and there is considerable cost in 

terms of bias. 	How can we determine when the benefits of smoothing 

outweigh the costs? 

Section 2 contains a description of various cross-sectional methods for small 

area estimation. Time series EBLUPs are described in Section 3 and the details 

and results of the Monte Carlo comparative study are given in Section 4. 

Finally, some directions for future work are mentioned in the Section 5. 

2. METHODS BASED ON CROSS-SECTIONAL DATA 

In this section, we assume that information is available only for a particular 

point in time t. Let 8
, 
 denote the vector of small area population totals 

K, at time t. Here we define briefly some well known small area 

estimators under the assumption that the underlying sampling design is stratified 

simple random; for more details, see Rao (1986). SArndal and Hidiroglou (1987) 

and Pfeffermann and Burck (1991) also contain a good survey of various small area 

estimators. 

2.1 Method 1 (Expansion or Horvitz-Thompson estimator for domains) 

This method of estimation is defined by 
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gLkt= i (Nht/ 	11IIS Yhic $ 	 (2.1) 

where at time t yhjc  is the jth observation in the h stratum, 3hkc  denotes the 

set of nc  sample units falling in the kth small area in the hth stratum and 

n, N, denote respectively the sample and population sizes for the hth stratum. 

The above estimator is often unreliable because the random sample size nhk l  may 

be small in expectation and could have high variability. Conditional on the 

realized sample size nhk , glke is biased. However, unconditionally, it is 

unbiased for 0kt 

2.2 Method 2 (Post-stratified domain estimator) 

We will refer to this estimator also as the direct small area estimator. 

Suppose the population size N is known for each (h.k t) . The efficiency of 

the estimator gike  could be improved by post-stratification. Suppose small areas 

themselves constitute post-strata within stratum h. We have 

92k = E (Nhkl 	EjS 5'hit Eh 	 (2.2) 

However, this estimator also may not be sufficiently reliable because of the 

possibility of n,.'s being small in expectation. If n = 0 the above 

estimator is not defined. In practice, some ad hoc value such as 0 is often 

chosen for ;7hk,  when nhkl - 0. In the empirical study presented in this paper, 

we have set FAke  as Fhe  whenever nhke  = 0, where X is a suitable 

covariable. 

The estimator 92hC is both conditionally and unconditionally unbiased. Its 

conditional variance Vkc (whenever n hkl  0 for all h at time t) is given by 

VkC =  Eh 	(n 	- 	 ( 2.3) 

where ais the population variance for the intersection of the hth stratum hk 

with the kth small area at time t. The variance a 	can be estimated by the 

usual estimator 	for n 	2. Note that the estimate of the conditional 

variance Vkc also provides an estimate of the unconditional variance of 92. 
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If n 	1, then we can use a synthetic value as an estimate of a 2hkl which can 

be defined as E (n,. - l) hktIE (n,.-l) , the summation being over all k for 

which nhkrk2  within each (h,t) . If n=O, vh, of (2.3) is of course not 

defined. With the synthetic value of ;7jkt  used in this case, we need a synthetic 

value of its mean squared error. For each (h, t) , it can be defined as 

	

(X/X) 2  (n,-N) ij: 	(bjS)2 	 (2.4) 

where (bjS)2  will be taken as 

37h1d 2/mh. 	 (2.5) 

where m is the number of small areas with sample in stratum h at time C. 

2.3 Method 3 (Synthetic estimator) 

It is possible to define a more efficient estimator by assuming a model which 

allows for "borrowing strength" from other small areas. This gives rise to 

synthetic estimators. For instance, suppose different small area totals are 

connected via the auxiliary variable Xk  by a linear model as 

= 	Xjcc 	. . . K, 	 (2.6a) 

)r 	rn-i r: r.c'i 

c - = 	 ( _-: 

(F 	. . . , F)', Fk r 	(1, Xk) . The above model may not be realistic 

because no random fluctuation or random small area effect (akC,  say) is allowed. 

In other words, the error term a, is assumed to have both mean and variance 

zero. Now consider a model for the direct small area estimators g 2 's as 

	

Q'2 r F I3  + f c 	 (2.7) 

r 

where g 	(g2 . . . . , g2,) ' , 	- (E, . . . €)', Ekc '  s are uncorrelated as k varies 

with mean 0 and variance Vkc defined earlier by (2.3). 
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Denoting by 13 C  the weighted least squares (WLS) estimate of P ,,  we obtain the 

regression-synthetic estimator of 0kc  under the assumed model as 

	

F 	 (2.8) 

The above estimator could be heavily biased unless the model (2.6) is satisfied 

reasonably well. 

2.4 Method 4 (EBLUP - empirical best linear unbiased predictor) 

Using the empirical Bayes approach of Fay and Herriot (1979) or the more 

general best linear unbiased predictor (BLUP) approach; see e.g. Battese, Harter, 

and Fuller (1988), and Pfeffermann and Barnard (1991), the bias of the synthetic 

estimator can be reduced considerably by using a composite estimator. This is 

obtained as a convex combination of g and a somewhat modified g . For this 

purpose, it is assumed that 

	

it 
	

(2.9) 

where a j 's are uncorrelated random small area effects with mean 0 and variance 

Wkr. Thus we have a somewhat modified model for 72 as 

	

92= Fr  Or + 	+ c e. (2.10) 

Here a t  is also assumed to be uncorrelated with €. Let g denote the modified 

synthetic estimator of Q, under (2.10). The BLUP of O under the model defined 

by (2.9) and (2.10) is 

= 	+ A r ( 2 r - 

At ¶2c + ( I-A r ) ¶;c 

where 
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= (V + W)' V = WCT;L, 

I—Ar a (V + 	 V Ui;, 	 (2.12) 
a 	 Plc , v a diag(v, 	Vkd 

W 	diag(w1 , . ., WJ) 

The expression (2.11) follows from the general results on linear models with 

random effects, see e.g., Rao (1973, P.  267) and Harville (1976). The BLUP or 

BLUE of F is g and BLUP of a ,  is Ac(9 - It may be of interest to note 

that the formula for BLUP does not change regardless of whether or not g, is 

known. However, its MSE does change as expected due to estimation of . It 

can be shown that, 

MSE( 4 - 	known) = 
(2.13) 

a V - V 	V c 	c c 

and 

MSE(4c - 	c unknown) 

a MSE( (Ac + we  UC-1  (I—A 	e, - T'c U t (IA) a c  ) 	 (2.14) 

where A. = Fc ( CJcT 1 Fc) -  F' u 1 , The MSE matrix of (2.14) can be easily obtained 

from MSEs of e
,  and a, 

When Tic  and W, are replaced by their estimates, the estimator g,, is termed 

EBLUP. Note that the model (2.9) is more realistic than (2.6), and therefore, 

the performance of q,, is expected to be quite favourable. The estimator 

approaches V,, when VkC'S  get small, i.e. when n's become large. However, it 

remains biased in general, conditional on O. 

2.5 Hethod 5 (Sample Size dependent estimator) 

An alternative composite estimator which can considerably attenuate bias of 

the synthetic estimator q3 , as compared to the EBLUP q,, is given by the sample 

size dependent estimator of Drew, Singh, and Choudhry (1982). It is defined as 
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- A C92C (I - i) 	 (2.15) 

where 	diag(ö i.... 

8ke 1Eh AkC11 h Nhk, 	otherwise 

	Nhkl 	 (2.16) 

R being flc(N).e/flhe) , and the parameter A is chosen in an ad hoc manner as a 

way of controlling the contribution of the synthetic component. In practice, A 

is generally chosen as 1, 1.5 or 2. The above estimator takes account of the 

realized sample size hkt' and if these are deemed to be sufficiently large 

according to the condition in (2.16), then it does not rely on the synthetic 

estimator. This property is somewhat similar to that of . However, the 

condition in (2.16) could be satisfied even if some or all hkt' are small, and 

then, unlike a,, , the above estimator fails to borrow strength from other small 

areas even though V,, is unreliable. 

3. METHODS BASED ON POOLED CROSS-SECTIONAL AND TIME SERIES DATA 

Suppose information is available for several time points, t=i... T, in the 

form of direct small area estimators q,, and also the small area population 

totals for the auxiliary variable. We will now introduce some estimators which 

generalize the Fay-Herriot estimator q,, in different ways by taking account of 

the serial dependence of the direct estimates {2c t=1... T} . Recall that for 

the Fay-Herriot estimator, the model for e
. 
 has two components, namely, the 

trend component F and the area component a . The estimator q,, borrows 

strengh over areas for each t and is given by the sum of two components, each 

being BLUP (BLUE) for the corresponding random (fixed) effect, i.e. 

4C F 	 (3.1) 

Methods based on time series data could, however, borrow strength over time 

as well. There are several ways one could build serial dependence in the series 

{} . Our main purpose, as mentioned in the introduction, is to illustrate that 

substantial gains in efficiency could be realized with time series EPLUPs. 

Moreover, it might be that an estimator with a simpler time-dependence structure 

could perform almost as well as one with a more complex structure. To this end, 



- 	. 	. 	 , 	. 	
:iII. 	P 	 T 	- 	-.. 	• 	. 	. 	- 	I 	- 	

,- 	 . 	 - 	 :: 	 ' 

Tr
- 	. . 	-. .- 	. 	,, 	, . 	 . 	. 	

, i 	.'. 	- 	 .. 	- 	
-: 	•.. 	. 

Tic 	r.'. 	
F 	 • 	, 	. 	

• 1 	 . 	II, 	•: 

I  

>- : 	- 	 . .. 	- 	II 	• • 	 . 	 . . 	. I-- 

: 	 - 

	

- 	 . 

tult 
1 	 • 	

!' 	I 	 . 	1 	 I 	•• 	• 

•4__ - I 	 • 	 ..- k 	 _j. •1 

i-.. 	
•'.I ' ; 	, 	 . 	_:.'-4 	. 

	

__.: 	I 	 . 	• 	. 	 . 	. 

! 	,$ 	2:' 	. 	• 	. 	 . 	I • 	 - 	.._ u_' . • 	+ 	• 	1JI__ •1 	' 
- .-:-, 	• 	- 	

_t 	
I 	 . : 

•1' 	

: 
il4:;fT:t1 l 	.4tr 441' 	 ,- 

iII 
 

I I 	&I' 	 •_ 	
I 	_ 	 r-1  

- 	 : - 	 ' . 	 ' 	 '-•• 	
- . 	 - 	 I 	 . -I  

- 	 ; 	

I 

i1rit 	I 	I  
t1 	' 

I 
 

lu  

fc 
Lk 

j14 	
- L 	 - 	 I  

k ,I I  
-  ejj 

fill 

Ill 	 I 

'4 ti t =  

14 4_ 	: 	
1 • 	 — 

III& 	 I 	 1 t I Li 	 I  
I 	- 	 Iâi, 11-i- ': 	- 	-• 	1 	L- 

--- 	- 
I 	fT 	 1' 	'14 	 11 

- 	 -- 	 I 	 -- 	 - 	- 	- 	- 	- 

A 	

I 	

I 	I 

VIP 

I I 	 II 	p. 	
I 	II. 



- 11 - 

we introduce three estimators 	, q7. and 7,, corresponding to three interesting 

scenarios which are motivated from specific structural models for serial 

dependence. More specifically, first we let evolve over time (e.g. according 

to a random walk), but assume that a is serially independent. This will give 

rise to a composite estimator 

6C 	F 	C 	C 	
(3.2) 

Note that j, in (3.2) would now be based on all the small area estimates up 

to time T and therefore would be different from of (3.1) which is based on 

only direct estimates at time t. The estimator a ,  , as a result, would also be 

different from the corresponding component à  of (3.1). - 

For the second estimator, we let a, be fixed (it may or may not be common for 

different time points) and let the area effects a  be serially dependent 

according to, for example, a random walk. This time series generalization could 

be viewed as an analogue of the model proposed by Choudhry and Rao (1989). The 

resulting composite estimator will have the same form as (3.1) i.e. 

F 15 r 	 . 	 ( 3.3) 

but the component estimates L and a would be different. 

Finally, for the third estimator, we let both 	and a  evolve over time. 

This will have more complex serial dependence than either (3.2) or (3.3). Its 

form will be similar to (3.1) and can be represented as 

(3.6) 
t 	- 

All the three types of generalizations of Fay-Herriot estimator yield 

estimators that are members of the general class proposed by Pfeffermann and 

Burck (1991) using structural time series models. They used maximum likelihood 

method under normality assumption to estimate model parameters. However, as will 

be seen later, for the serial dependence considered in this paper for 
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illustrative purposes, the method of moments can be used for estimating 

parameters. 

Each of the above three estimators is described below in more detail. 

3.1 Method 6 	(Time Series EBLUP-I) 

In this case, the structural time series model for the direct small area 

estimates {g.: t=1. . . T} is specified by the following state space model. Let a 

denote (b', a')' and He  denote (Fe , I) 

Observation Equation 

+ fr 
(3.5a) 

= F 13C  + a 

Transition Equation 

St = Ga 1 # 
	

(3. 5b) 

' o\ 
 

where 	 G 
G=(0 	

), TIC 	
(3.5c)  

along with the usual assumptions about random errors, i.e., e , 	are 

uncorrelated, 	( 	is 	uncorrelated 	with 	ct 	for 	s<t, 	and 	that 

- (0, Vs), Cc (0. F) where  r block diag (B e , Plc) . The covariance matrices 

V, B, and WC  are generally diagonal. If P ,  evolves according to a random walk, 

then G=I. The second diagonal submatrix of G. is zero because 's are 

assumed to be serially independent. 

The estimator a,, is BLUP of 0 ,  given all the direct estimates up to time T. 

To find ¶r'  first we will find BLUP ci, of e., from which BLUP of O. can be 

simply obtained as He  i T . Since 's are connected over time according to the 

transition equation, it is possible, albeit cumbersome, to get i. directly from 

the theory of linear models with random effects for the complete data . However, 

it could be convenient to compute it recursively using Kalmar Filter (KF). 

Traditionally KF is viewed as a Bayesian technique in which at each time t, the 

prior distribution of a ,  given data up to t-i is updated to get the posterior 

distribution of a ,  given data up to time C. Although it is instructive to view 
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KF in this manner, it is not necessary under mixed linear models. Suppose a Is 

denotes the BLUP of a based on s observations, s< C. It is known that the BLUP 

i c  of a based on t observations is the same as the BLUP of a
. 
 based on 

and the last t-s observations. In other words, information in the previous data 

can be condensed into an appropriate BLUP before augmenting more current data 

points. The recursion algorithim for obtaining 	, is given as follows. 

At time t-1, let ii e-i  and P 	denote respectively the BLUP of a and its MSE, 

i.e., 

- c-1 - ( g, 	 (3.6) 

Therefore, the BLUP 	of a
. 
 and its MSE 	based on t-i observations is 

given by (in view of the relation 3.5b), 

Ge 	 G P_1 G + 	 (3.7) 

Now, combining data at t, i.e., g 2e  with tIe-t' one can get BLUP i ,  and its 

MSE as 

+ P_ 1  H (He Pi_  H + T1) 1 	- He  &cIj) 	 (3. 8a) 

and 

MSE( - ) = p C m C1e1 - P_ 1  H (He  P_1  H + V) H P1_ 	(3.8b) 

In the usual KF terminology, (3.7) and (3.8) specify respectively the prior 

and posterior distributions of a
. 
 once the data at time t becomes available. 

Note that here distributions are specified only up to first two moments which is 

of course sufficient for linear Bayes estimation. The results (3.8a) and (3.8b) 

respectively give the posterior mean and variance of a ,  given data up to time 

C. 

The above recursive algorithm or KF can be started at the initial timet-1 

by noting that i and P are given by (2.11) and (2.14) respectively, i.e. the 

corresponding expressions for Ff1 estimator at time t=1. The recursion is 
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continued until tT to obtain &. and the MSE matrix P7 . This, in turn, yields 

the BLUP of O. at t - i and its MSE as H7 P7 H7 . 

We will now illustrate method of moments for estimating model parameters in 

the 	special 	case 	when there is only 	one auxiliary variable 	Xh t , i.e. 

F 	(Fjc, . . . Fkt)', 	Fk c  = 	(1, Xk C )', 3)', 2  and P , 	follows a random 

walk, 	i.e. 	G 	=r. 	Let B=diag(y, y) 	Now, the unknown parameters 	2,  ., 	. 

can be estimated by the method of moments as follows. The parameter z2 	is 

obtained as the solution of 

Ec.i Ek_' 	 = T(k-2) 	 (3.9) 

If there is no positive solution, we set r 2  as zero. Here & denotes the WLS 
estimate of Q, based on only the cross-sectional data at t. This is analogous 

to the method used in Fay and Herriot (1979) for cross-sectional data. An 

estimate ofcan be obtained by solving (for i=l,2) 

Lc.z (t31 	i)2/ (Y +dj1t ) - T-1 	(3.10) 

where df is the (i,i) th element of (F_1 U F 	' + (FU 1 FCY' I. 	-j' 

When the above estimators of model parameters are substituted in the 

expression for i4. i . we get the time series EBLUP-I estimator g6 , at time T. 

3.2 Method 7 (Time Series EBLUP-Il) 

The equations for the state space model for this case are similar to 3.5(a) 

and (b) except that the transition matrix G. and the covariance matrix 1' are 

different. We have two cases. 

3.2.1 Case 1 First suppose 13 c 'S fixed and time-invariant but c'  are serially 

dependent. Then the matrices G  and r are given by 

= ('°), r = 
block diag (0, Q) 	(3.11) 

For a given choice of Q,  the KF can be run as in method 6 with the initial 

values & 	and P1  at t=i obtained from the FF1 estimator at t=1. If a c  is 
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assumed to evolve according to a random walk, then G 2  I. tloreover, if Q  is 

taken as v 2 1, then the only unknown parameter v 2  can be estimated from an 
equation. similar to (3.9). We will denote by q,, the EBLUP obtained in this case 

when the parameter estimate is substituted. Also we will denote by the 

estimator in the special case when the common value of 13 is assumed known. 

3.2.2 Case 2 Here we assume that P .  's are fixed but different for different 

time points. The area effects a ,  evolve over time as before. The matrices 

G. and r are 

* 1 I 0 
(2) 1 ' rC  block diag(mI, Q) 

0G j'  
(3.12) 

where in is a large integer. The expression of i ,  and P, obtained from theKF 

in this case approximately give the correct formulas as m-.. If P, is not 

required (as is the case in our Monte Carlo study), then a simpler alternative 

is the following. In the measurement equation, replace 0 ,  by it - - the cross-

sectional WLS estimate and then treat & as known. In other words, 13  is no 

longer required to be a part of the state vector a , . This strategy will give 

rise to the correct & 7  . However, the corresponding P7  would not be correct. 

The time series EBLUP in this case will be denoted by 2/• 

3.3 Method 8 (Time Series EBLUP-Ill) 

As was the case with method 7, the equations for the state space model are 

similar to 3.5(a) and (b) except that the two matrices GCandrC  are different. 

We have 

(G 	o\ Ge 
(. 0 G2 	

r - block diag fB, Q) 
C   

(3.13) 

If 0, and a 's follow the random walk-process, then both G' and G 2  are identity 

matrices. Moreover, as before, if B = diag(y, y} and Q = 01, then the model 

parameters v 2 , y, 'y can be estimated in an analogous manner by the method of 

moments. The resulting EBLUP of 6. will be denoted by qa,. 
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4. MONTE CARLO STUDY 

The cross-sectional and time series methods were compared empirically by means 

of a Monte Carlo simulation from a real time series obtained from Statistics 

Canada's biannual farm surveys, namely, the National Farm Survey (in June) and 

the January Farm Survey. Due to the redesign after the census of Agriculture in 

1986, the survey data for the six time points starting with the summer of 1988 

were employed to create a population for simulation purposes. To this, data from 

the census year 1986 was also added. Thus information at one more time point was 

available although this resulted in a 3-point gap in the series. The missing 

data points, however, can be easily handled by time series methods. It may be 

noted that although the data series is short, it is nevertheless believed to be 

adequate for illustrative purposes. The parameter of interest was taken as the 

total number of cattle and calves for each crop district (defined as the small 

area) at each time point. For simplicity, independent stratified random samples 

were drawn for each occasion from the pseudo-population although the farni surveys 

use rotating panels over time. The dependence of direct small area estimates 

over time was modelled by assuming that the underlying small area population 

totals are connected according to some random process. The auxiliary variable 

used in the model was the ratio-adjusted census '86 value of the total cattle and 

calves for each small area. This showed high correlations with the corresponding 

variable over time at the farm level. Specific details of the empirical study 

are described below. 

4.1 	Design of the simulation experiment 

First we need to construct a pseudo-population from the survey data over six 

time points (June'88, Jan'89, . . ., Jan'91). The actual design involves two 

frames (list and area) with a one stage stratified sampling from the list frame 

and a two stage stratified sampling from the area frame, for details see Julien 

and Maranda (1990). We decided to use survey data from the list frame only 

because the list frame corresponds to farms existing at the time of Census'86 and 

the chosen auxiliary variable for model building was based on Census'86 

information. Moreover, we chose to use the data from the province of Quebec 

because its area sample is only a minor component of the total sample and the 

estimated coefficient variation for the twelve crop-districts (i.e. small areas 

of interest) of this province showed a wide range for the livestock variables. 
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It was decided to avoid variability due to changes in the underlying population 

over time by retaining only those farms which responded to all the six occasions. 

Also, farm units who belonged to a multiholding arrangement in any one of the 

seven time points (including the census) were excluded because of the problems 

in finding individual farm's data from the multiholding summary record and 

changes in their reporting arrangement over time. 

The various exclusions described above were motivated from considerations of 

yielding a sharper comparison between small area estimators. The total count of 

farm units after exclusions was found to be 1160 out of a total of over 40,000 

farms on the list frame. For the pseudo-population, we replicated the 1160 farm 

units proportional to their sampling weight so that the total size N of the 

pseudo-population was 10362 for micro-computer simulation. 

The pseudo-population was stratified into four take-some and one take-all 

strata using Census'86 count data on cattle and calves as the stratification 

variable. The sigma-gap rule (Julien and Maranda, 1990) was used for defining 

the take-all stratum and the algorithm of Sethi (1963) was used for determining 

stratification boundaries for take-some strata. Neyman's optimum allocation was 

used for sample sizes for strata in order to achieve a high precision of the 

provincial estimate of total count. This resulted in a total sample size of 1036 

(about 10% sampling rate) into allocations of 268, 325, 249 and 183 from takesome 

strata with 5001, 3188, 1850 and 312 farms, respectively, and the size of the 

take all stratum was 11. A total of 5000 simulations were performed. For each 

simulation, samples were drawn independently for each time point using stratified 

simple random sampling without replacement. The 5000 simulations were conducted 

in 2500 sets of 2 simulations where each set corresponds to a different vector 

of realized sample sizes in the twelve small areas within each stratum. This was 

required to compute certain conditional evaluation measures as described in the 

next subsection, see also Sãrndal and Hidiroglou (1989) 

4.2 Evaluation Measures 

Suppose m simulations are performed in which m1  sets of different vectors of 
realized sample sizes in domains (h,k) are replicated in2  times. The following 

measures can be used for comparing performance of different estimators at time 

T. Let i vary from 1 to m1  and j from 1 to m2. 
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Absolute Relative Bias for area k 

ARBk-I(mEE(est),k--(true)k)/ (tlue)kI 	(4.1) 

The average of ARB k  over areas k will be denoted by ARB. 

Root Mean Square Conditional Relative Bias for area k 

RMSCRBk 	E(m E(est) uk - ( truek ) ) 2  / ( truek) 2 - 	 ( 4. 2a) 

B m1(m2_1) LEF(est)jk_ (E(est) ujk ) 2 /m2}/(true) (4.2b) 

The correction term B adjusts for bias in the first term due to in2  being 
finite. PI4SCRB will denote the average of RMSCRB k  over areas k. 

Mean Absolute Relative Error for area k 

MARE k =ffl 	E I (est)k -  (true)k / (true)k. 	(4,3) 

and MARE denotes the average of MAREk  over areas. 

Root Mean :qure Error for area k 

RNSE. = m t EE ((est)k -  ( true) k ) 	 ( 4.4) 
ii 

and RMSE as jefore denotes the average over areas. 

Relative Roo: Mean Square Error for area k 

= RMSE 	(true. 	 (4.5) 

Again, we can e 5ne 	as before 

The precision (i.e. the Monte Carlo Standard Error) of each measure depends 

on m1 , m2 . It can be seen that for all measures except (ii) , the optimal choice 
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of m1 , m2  under the restriction that m2  > 1 is in1 = !, m2  = 2. For the second 

measure, the appropriate choice of in1 , in2  is less straightforward. In the 

simulation study, in was chosen as 5000 and the corresponding values of m1 , in2  

were set at 2500 and 2. 

4.3 Estimators used in the Comparative Study 

There were thirteen estimators included in the study, namely,M1-M8 

corresponding to 	to 	M3a - M5a, M7a corresponding 	to q,, and % when 

is assumed known, and finally M7b corresponding g,., - see section 3 for the 

definition of the estimators. We used a simple linear regression model for the 

synthetic component with the auxiliary variable defined as 

Xkr = ( 0c/01)°kl 	
(4.6) 

where 0kl'  O respectively denote the population totals for small area k and the 

province at t=l, i.e. at Census'86. The estimator 0 denotes the post-

stratified estimator of 6, from the farm survey at time t at the province level. 

Thus, Xkt  is simply a ratio-adjusted synthetic variable. The variances of error 

components in the regression model were assumed to be constant over areas. For 

time series models, it was assumed that the serial dependence was generated by 

a random walk. The above type of model assumptions have been successfully used 

in many applications and the main reason for our choice was simplicity. It was 

hoped, however, that the chosen models might be adequate for our purpose and 

might illustrate the differential gains with different types of models. 

Since the Census'86 data was included in the time series, the direct estimate 

corresponds to Census'86 and therefore the survey error El  would be 

identically 0. Moreover, from the definition of Xke,  it follows that a 

reasonable choice of (, 1321) would be (0,1) which implies that a 1  must be 0 

Thus the covariance matrices B. and W. at t-i are null and therefore, the 

distribution of a
. 
 at c=i would not require estimation as was suggested in 

section 3. The above modification in the initial distribution of a e  is natural 

in view of the extra information available from the census. Moreover, since the 

direct estimates 72e  were not available for t=2, 3,4; equations for estimating 

various model parameters were modified accordingly. For instance, for method 6, 

in equation (3.9) the index for the first summation would start from 5 (not 1) 
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and T on the right hand side would be replaced by (T-4) . The equation (3.10) 

was modified as , for I = 1, 2, 

(P..) 2 / (4y+c,) + 	 (4.7) 

E_6  ( 	- • 	)2 / ( y + dl!>) = T-4, 

where CJ >  is the (1, i) th element of (F U Fe)' 

For method 7 (case I), & would in general have a common fixed valued only fort k 2 

because at t-1, & - (0,1)'. The k diagonal element of Qk  would be(t-i) v 2  

and the equation for estimating v 2  can be expressed as 

= (T-4) (k-2) 	(4.8) 

For methods 7a and 7b, similar modifications apply. Modifications for estimating 

model parameters for method 8 are quite analogous and details are omitted here. 

For methods M3a - M5a and M7a, the value of for t2 was fixed at (0,1) i.e. the 

same value corresponding to t=1. For the sample size dependent estimators, 

MS and MSa, the parameter A was taken to be 2 since preliminary empirical results 

suggested that for this study chat was better than either 1 or 1.5. 

4.4 Empirical Results 

Figures 1 through 4 display some of the empirical results. 	Figure 1 shows 

plots of the five evaluation measures averaged over small areas relative to the 

Fay-Herriot (M4) value. There is a clear pattern in the behaviour of various 

measures across different estimators. The direct estimator M2 does very well 

with respect to and RMSCRB and does not do badly on the other measures. In 

fact, it appears that the cross-sectional smoothing methods M3, M3a (synthetic), 

and M5 and M5a (sample size dependent) do quite poorly in this study. The Fay-

Herriot methods M4 and M4a perform no better than post-stratified and are much 

worse in terms of bias. The time series methods M7 (also M7a; M7b) andM8 perform 

somewhat worse than M2 with regard to bias, but overall they perform very well. 

Note that the expansion estimator Ml has a very large conditional bias. We 

have not shown the Monte Carlo standard errors in the figures but they are all 

found to be quite negligible. Figures 2 to 4 show plots of RMSE k  for small areas 
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divided into three size groups, namely low, medium and high, based on the ranking 

of their true population totals at time T. They are divided up into these three 

groups because the errors of estimation would be expected to be larger for the 

larger totals. Area 6 stands out as being most difficult to estimate by the 

smoothing methods. The reason for this is that, while there was an overall 

decline of about 16% in the total number of cattle and calves in the pseudo-

population from June, 1986 to January, 1991, the decrease for area 6 was the most 

extreme at over 33% so that the ratio adjusted covariate would be least 

appropriate for area 6. Nevertheless the time series methods M7, M7a, M7b, and 

M8 do as well as the post-stratified estimator for area 6 and for most other 

areas they do much better. This is because the random walk model for the small 

area effects is able to track small areas which, like area 6, progressively 

deviate from the model. Note that the time series method M6, which assumes the 

small area effects to be independent over time, does not do as well. 

The main conclusions are listed in Section 1 and will not be repeated here. 

5. CONCLUDING REMARKS 

It was seen by means of a simulation study that small area estimation methods 

obtained by combining both cross-sectional and time series data could 

substantially improve performance of estimators based only on cross-sectional 

data. However, it was also seen that the Fay-Herriot smoothing does not 

necessarily lead to appreciable improvements in mean squared error, even when 

there is substantial cost in terms of bias. A question of obvious importance is 

whether it is possible in practical situations to judge if the gains from any 

type of smoothing would outweigh the costs, and how to make this judgement. 

The models for the simulation study were chosen on general considerations. 

However, in practice, suitable diagnostics similar to those employed in 

Pfeffermann and Barnard (1991) should be performed before any model-based method 

can be recommended. Although we did not consider alternative stratifications or 

sample sizes in our simulation study, there is no reason to think that our 

conclusions would alter significantly if we were to do so. It should also be 

noted that the small area estimators can be modified to make them robust to 

misspecification of the underlying model; see e.g. the constraints used in Fay 

and Herriot (1979) and an alternative approach suggested by Pfeffermann and Burck 
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(1990). Further extension of the methods presented in this paper to the more 

realistic case of correlated sampling errors is currently being investigated. 
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Figure 1: evaluation measures relative to Foy—Herriot 
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Figure 2: root mean squared errors, small small areas 
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Figure 4: root mean squared errors, large small areas 
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Figure 3: root mean squared errors, medium small areas 
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