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ROBUST JOINT MODELLING OF CANADIAN LABOUR FORCE SERIES OF SMALL AREAS 

D. Pfeffermann and S.R. Bleuer' 

ABSTRACT 

In this article we report the results of fitting a state-space model to Canadian unemployment rates. The 
model assumes an additive decomposition of the population values into a trend, seasonal and irregular 
component and separate autoregressive relationships for the six survey error series corresponding to the 
six monthly panel estimators. The model includes rotation group effects and permits the design variances 
of the survey errors to change over time. The model is fitted at the small area level but it accounts for 
correlations between the component series of different areas. The robustness of estimators obtained under 
the model is achieved by Imposing the constraint that the monthly aggregate model based estimators in a 
group of small areas for which the total sample size is sufficiently large coincide with the corresponding 
direct survey estimators. The performance of the model when fitted to the Atlantic provinces is assessed 
by a variety of dIagnostic statistics and residual plots and by comparisons with estimators in current use. 

KEY WORDS: Design variance; Kalman filter; Panel survey; Rotation bias; State-space model. 

RÉSUMÉ 

Dans cet article, nous présentons les résultats de i'ajustement de modèie despace d'états aux taux de 
chômage du Canada. Le modéle suppose une decomposition additive des valeurs de Ia population en une 
composante tendancielle, saisonnière et irrégullere et des relations autorégressives distinctes pour les six 
series d'erreurs d'enquête correspondant aux six estimateurs de panel mensuels. Le modèle inclut les effets 
des groupes de rotation et permet aux variances du plan de sondage des erreurs d'enquête de varier dans 
le temps. Le modèie est ajusté au niveau de Ia region, mais ii prend en compte les correlations entre les 
series composantes de différentes regions. On obtient des estimateurs robustes en posant Ia contrainte 
selon laquelle les estimateurs de modèle agregés mensuels dans un groupe de regions dont Ia tailie 
d'échantillon est suffisamment importante coincident avec les estimateurs d'enquête directs. Les résultats 
du modèle, ajusté pour les provinces de l'Atlantique, sont évalués grace a une série de statistiques de 
diagnostic et des traces résiduels ainsi que par des comparaisons avec des estimateurs couramment 
utli isés. 

MOTS-CLES: variance selon le plan, filtre de Kalman, enquête avec panel, bial dO a Ia rotation, modèie 
d'espace d'états, 

D. Pfeffermann, Department of Statistics, Hebrew University, Jerusalem 91905, S.R. Bleuer, Social 
Surveys Methods Division, Statistics Canada, Ottawa, Ontario, K1A 016. 
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1. INTRODUCTION 

A time series model for survey data is the combination of two distinct models. The census model 
describing the evolution of the finite population values over time and the survey errors model representing 

the time series relationships between the survey errors of the survey estimators. There are at least four main 

reasons for wishing to model the raw survey estimators: 

The model based estimators of the population values resulting from the modelling process have in 

general smaller variances than the survey estimators, particularly in small areas where the sample sizes 

are small. 

The model we employ yields estimators for the seasonal effects and for the variances of these 

estimators as a by-product of the estimation process. 

The model can be used to forecast the population values, the trend and the seasonal components for 

time periods beyond the sample time period for which the direct survey estimators are available. Such 

forecasts are important when assessing the performance of the model and for policy decision making. 

The model can be used to detect turning points in the level of the series and assess their significance.. 

(Work on this problem will be addressed in a separate article). 

The methodology described in this article integrates the methodologies presented in Pfeffermann and 

Burck (1990) and Pfeffermann (1991) with some new modifications and extensions. The main features of 

the model are as follows: 

F, 	1) The model decomposes the population values into the unobservable components of trend, 

seasonality and Irregular terms. Smoothed predictors of the three components (and hence of the 

population values) based on all the available data, and standard errors of the prediction errors are 

obtained straightforwardly by application of the Kalman filter. The standard errors are modified to 

account for the extra variation induced by the use of estimated parameter values. 

2) The model uses the distinct monthly panel estimators as input data. The use of the panel estimators 

has two Important advantages over the use of the mean estimators: i) It identifies better the time 

series model holding for the survey errors by analyzing contrasts between the panel estimators, ii) 

It yields more efficient estimators for the model parameters and hence better predictors for the 

unobservable model components. 
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The model accounts for changes in the variances of the survey errors over time and for possible 

rotation group effects. 

The model can be applied simultaneously to the panel estimators in separate small areas. The 

census model is extended in this case to account for the cross-correlations between the 
unobservable components of the population values operating In these areas. 

A modification to ensure the robustness of the small area estimators against possible model 

breakdowns Is Incorporated into the model equations. The modification consists of constraining the 

model based estimators of aggregates of the population values over a group of small areas for 

which the total sample size is sufficiently large to coincide with the corresponding aggregate survey 

estimators. As a result, sudden changes in the level of the series are reflected in the model based 

estimators with no time lag. 

The model and the robustness modifications are described In more detail In section 2. Empirical results 

obtained when fitting the model to the four Atlantic provinces of Canada are presented in section 3. 

Section 4 contains a short summary with suggestions for extension of the analysis. 

2. A STATE-SPACE MODEL FOR CANADA UNEMPLOYMENT SERIES 

2.1 The Canadian Labour Force Survey 

Data on unemployment are collected as part of the labour force survey (LFS) carried out by Statistics 

Canada. The Canadian LFS Is a rotating monthly panel survey by which every new sampled panel of 

households Is retained In the sample for six successive months before being replaced by another panel from 

the same PSU or stratum. The PSU's are defined by geographic locations (city blocks or urban centers in 

the urban regions and enumeration areas In the rural regions). The strata are homogeneous groups of 

clusters with respect to geographic location and social economic variables. Every PSU is represented in 

only one rotation group. The separate panel estimators are assumed to be independent for variance 

estimation purposes, a property validated in past studies. For a recent report describing the design of the 

LFS and the construction of the direct survey estimators, the reader is referred to Singh etal. (1990). 
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2.2 The Census Model 

In what follows we consider a single small area. In section 2.4 we consider joint modelling of the panel 

estimates In a group of small areas. The model postulated for the population values is the Basic Structural 
Model (BSM) which consists of the following sets of equations. 

11 
Yt  - L + S + €; L 	L, 1  + R_1 	A, = A,_1 + 1lRt; 	St,j = 	 (2.1) 

In (2.1) Y Is the population value ("true unemployment rate) at time t, L is the trend level, R, is the 

increment. St  the seasonal effect and E, the irregular term assumed to be white noise with zero mean and 

variance a. Thus, the equation in the left-hand side of (2.1) postulates the classical decomposition of a 

time series Into a trend, seasonal and irregular components. This decomposition is inherent in the 

commonly used procedures for seasonal adjustment, see e.g. Dagum (1980). Notice however that in the 
present case the series (YJ Is Itself unobservable. The series (ilL : ), {1R,} and (ii, } are independent 
white noise disturbances with mean zero and variances o, a and a respectively. Hence, the second 

and third equations of (2.1) define a local approximation to a linear trend whereas the equation in the right-

hand side models the evolution of the seasonal effect such that the sum of every 12 successive effects 

fluctuates around zero. 

The theoretical properties of the BSM in relation to other models are discussed in Harrison and Stevens 

(1976), Harvey (1984) and Maravall (1985). Empirical results illustrating the performance of the model are 

shown in Harvey and Todd (1983), Morris and Pfeffermann (1984) and Pfeffermann (1991). Although more 

restricted than the family of ARIMA modls, the BSM is now recognised as being flexible enough to 

approximate the behaviour of many diverse time series. 

2.3 The survey errors model 

The model holding for the survey errors was identified initially by analyzing separately the pseudo errors 

series e 	(y - j,). t-1...N, where yi is the estimator of V, based on the J-t panel, j = 1...6, (the 
panel surveyed for the j-th successive month) and 	E y/6 is the mean estimator. Notice that 

e 	 I., ' 
- 	= (e, - E a,I6), where e O  - 	- Y) are the true survey errors. Thus, the notable feature 

J.1 

of the contrasts (y - ) is that they are functions of only the survey errors irrespective of the model 

holding for the population values. 
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There are two major considerations in the choice of a model for the survey errors 

The model should account for possible rotation group biases or more generally, allow for different 
survey error means in different panels 

The model should account for changes in the variances of the survey errors over time. 

Rotation group biases may arise from providing different information on different rounds of interview, 

depending on the length of time that respondents are included in the sample, or on the method of data 

collection, say, whether by telephone or by home interview. (In the Canadian LFS, the first panel is 

interviewed by home visits, the other panels are interviewed by telephone). Another possible reason for 

differences between the panel survey error means is differences in the nonresponse patterns across the 

panels. See Pfeffermann (1991) for further discussion with references to earlier studies on this problem. 

Changes in the variances of the survey errors over time occur when the variances are function of the 

level of the series. Indeed, as revealed by figure 1 in section 3, the estimates of the standard deviations of 

the survey errors are subject to seasonal effects with a seasonal pattern that follows the seasonal pattern 

of the population values. Another possible explanation for changes in the variances of the survey errors is 

changes in the sampling design. For example, the overall sample size of the Canadian LFS was reduced 

in 1985-86 from 55.000 households to 48000 households. This reduction in the sample size was associated 

with other changes in the design. See Singh et al. (1990) for details. 

Application of simple model estimation and diagnostic procedures to the pseudo survey errors suggest 

a V order autoregressive (AR) model for the standardized survey errors 	- 	- () I SD(o,'), i.e. 

tJ-2) 
- 41 	

(J;1) 
+ 4 e2 + 4/3 	

;3) + 	1 - 1   ... 6 	 (2.2) 

where 	= 	are the rotation group biases, SD(e) are the design standard deviations and u are 

independent white noise series with mean zero and variances a. It is assumed that p 1  = 0 which 

implies that the mean survey estimator, Yt' is unbiased. See Pfeffermann (1991) for discussion on the need 

to constraint the bias coefficients. Subsequent analysis when fitting the combined model defined by (2.1) 

and (2.2) (see section 2.4) valIdates this model with the further observation that the coefficients (4. 4, ) 
can be assumed to be equal for I = 4,5,6. Furthermore, for the first panel an AR(1) model already gives 
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a good fit whereas for the second and third panel an AR(2) model is appropriate although with different 

coefficients. These relationships hold for each of the four Atlantic provinces. 

The model defined by (2.2) satisfies the two prior considerations discussed above. In particular, 

VAR(u) a VAR(e). The actual application of the model raises however two questions: 

For the first three panels there is not enough history to permit the fitting of an AR(3) model For 

example, the survey error e' corresponds to the panel which is in the sample for the first month. 

In order to overcome this problem, we replace the missing survey errors by the survey errors 

corresponding to the panels previously selected from the same cluster or stratum. For example. 

the AR(2) model fitted to 9,M is 

2) 
= 4 21 	t-.i + 	22 	

+ 
Lit 
	 (2.3) 

Notice that the panel surveyed for the second time at month t replaces at time (f-i) the panel 

observed for the sixth time at month (t-2) so that both panels represent the same cluster or 

stratum. The use of surrogate survey errors in the case of the first three panels may explain the 

different models Identified for these panels as compared to the model identified for the other three 

panels. 

The true standard deviations of the survey errors are unknown whereas the survey estimates of the 

standard deviations are themselves subject to sampling errors. To overcome this problem, we use 

smoothed values of the estimated standard deviations, obtained by fitting the relationship 

11 

(SD) = (SO). 1  + jot- E c,o,, 	 (2.4) 
1.1 

with the y -coefficients estimated by ordinary least squares. The notation (SD) defines the raw, 

unsmoothed design standard deviation of the aggregate survey estimator at month t and (D,J are 

dummy variables accounting for monthly seasonal effects so that D. = 1 when t=1 2k+1, k=O, 1, 

and Dk=O  otherwise. The smoothed standard deviations of the panel survey errors are obtained 

as SD(e") I(S.0),. The latter estimates are used as surrogates for the true, unknown, standard 

deviations. 
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2.4 State-space representation and estimation of the model holding for the survey estimators 

It follows from (2.1) that the panel estimators can be modeled as 

YP = L, + S + 	+ 	J-1 ... 6 	 (2.5) 

where 	 11 

Lt  + 41 + 	+ 	A, = 	+ 	S,,1 = tl st 	 (2.6) 
f-0 

with (€, (), rJ and (iJ defined as in (2.1). The separate models defined by (2.5), (2.6) and (2.2) can 

be cast into a compact state-space representation with ', = 
(yll ... y6)) as the input data, similarly to the 

representation in Pfeffermann (1991). Following that representation, the survey errors (and in the present 

study also the census irregular term) are included as part of the state vector so that there are no residual 

terms in the observation equation defined by (2.5). Unlike in Pfeffermann (1991), however, the transition 

matrix and the Varlance-Covariance (V-C) matrix of the state error terms are not fixed in time since they 

depend on the design variances of the survey errors which, as explained in section 2.3, change over time. 

The state-space representation of the model permits to update, smooth or predict the state vectors and 

hence the seasonal, trend and population values at any given time t by means of the Kalman filter. Denote 

by Z, the state vector corresponding to time t. The state vector comprises the trend level, increment and 

seasonal effects, the rotation group effects and the survey errors. See Pfeffermann (1991) for details. By 

"updating" we mean estimation of Z, at time t based on all the data until and including time t. 

"smoothing" refers to the estimation of M, based on all the available data for all the months before and after 

time t. Smoothing is required for improving past estimates as, for example, when estimating the seasonal 

effects or when estimating changes in the population values or the trend levels. "Prediction" of state vectors 

corresponding to postsample months is important for policy making. Predictions within the sample period 

allow to assess the performance of the model, e.g. by comparing the forecasted panel estimates as derived 

from the predicted state vectors with the actual estimates. See section 3 for details. The theory of state-

space models and the Kalman filter is developed in numerous publications, see Pfeffermann (1991) for the 

filtering and smoothing equations with references. Notice that the filtering and the smoothing equations not 

only yield the three sets of estimators at any given time t but also the V-C matrices of the corresponding 

estimation errors. 
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The actual application of the Kalman filter requires the estimation of the unknown model parameters and 

the initialization of the filter, that is, the estimation of the initial state vector a and the corresponding V-C 

matrix of the estimation errors. For a single small area, the unknown model parameters are the four 

variances of the error terms in the census model (2.1) and the eight autoregression coefficients and six 

residual variances in the panel survey errors models (2.2). (The rotation group means are included in the 

state vectors as fixed, time invariant coefficients). In order to reduce the number of free parameters in the 

combined state-space model, we assume 	- a2x f-i ...6, where {o} are the residual variances in (2.2) 

and 	are the estimates of the residual variances obtained by fitting the autoregression equations to the 

pseudo survey errors eiO,, defined in section 2.3. This assumption reduces the number of unknown 

parameters from 18 to 13. (The estimates &7 are very close for 1=4,5,6 and have been set equal). 

Assuming that the error terms in the census and survey error models have a normal distribution, the 

unknown model parameters can be estimated by maximization of the likelihood. See Pfeffermann and Burck 

(1991) for a brief description of the method of scoring maximization algorithm and for the initialization of the 

filter. This article includes references to more rigorous discussions. 

2.5 Adjustments to account for the use of estimated parameter values 

Once the unknown model parameters have been estimated, the Kalman filter equations can be applied 

with the true parameter values replaced by the parameter estimates. As noted in section 2.4, the Kalman 

filter not only produces estimates for the state vectors but also the V-C matrices of the corresponding 

estimation errors. A possible problem arising from the use of these V-C matrices, however, is that they 

ignore the extra variation Implied by parameter estimation, thus resulting in underestimation of the true 

variances. 

Formally, let j, () define the estimator of , at time t based on all the data available until some given 

time n, where 1 represents the estimators of the unknown model parameters. The estimation error can be 

decomposed as 



	

Eã(&) - %tI 	t, () - 	+ [ it 	) - 	) 1 	 (2.7) 

which is the sum of the error if I were known plus the error due to estimation of X. The two terms in the 

right-hand side of (2.7) are independent. A simple way to verify this property is by noting that 

L () = E(St j Y.) where V represents all the available data. 	By conditioning on V and x, 

	

- ,()] Is nonstochastic whereas 	 =Q . It follows therefore from (2.7) that 

Of = E(lit 	 [it 	- t] ' ) = 
=+ 	 = P+R 	

(2.8) 

The V-C matrix P1  is the matrix produced by the Kalman filter for a given vector parameter I and it can be 

estimated by replacing I by I . (This is the V-C matrix obtained by ignoring the variation resulting from 

parameter estimation). The V-C matrix R measures the variation due to parameter uncertainty. 

In order to estimate R, we follow the approach proposed by Hamilton (1986). By this approach, 

realizations 	k' 1 ... K are generated from the asymptotic normal posterior distribution of 1, that is, from 

a N(, A) distribution where A is the maximum likelihood estimator of 	and A is the asymptotic V-C 

matrix of 1. (Both & and A are obtained by the method of scoring). The Kalman filter is then applied with 

each of these realizations yielding estimates j, (). The matrix R, is estimated as 

K 
/. 3 E (j,(1) - 	E r(&]((A,) - 3 E ã()1' 	(2.9) 

k-i 	 k k-i k-i 

Ansley and Kohn (1986) propose an estimator for A, based on first order Taylor series approximation. 

The use of their estimator is computatlonally less intensive but the procedure proposed by Hamilton is 

somewhat more flexible in terms of the assumptions involved and it enables a better insight into the 

sensitivity of the Kalman filter output to errors In the parameter estimators. 

2.6 Joint modelling In several small areas 

The model considered so far refers to a single area. When the sample sizes in the various areas are 

small, more efficient estimators can often be derived by modelling in addition the cross-sectional 
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relationships between the area population values. Clearly, the Increase In efficiency resulting from such joint 

modelling depends on the sample sizes within the small areas and the closeness of the behaviours of the 

area population values over time. 

The survey errors are independent between the areas so that any joint modelling of the survey 

estimators applies only to the census model. For modelling the unemployment rates in the four Atlantic 

provinces, we follow Pfeffermann and Burck (1990) and allow for nonzero contemporary correlations 

between corresponding error terms of the census models operating in these provinces. Thus, if 

(4, ii, i) denotes the vector of error terms at time t associated with the census model 

operating in area a, it is assumed that C,,,  tb is diagonal but with possibly non zero covariances 

on the main diagonal. The actual implication of this assumption is that if, for example, there is a significant 

increase in the trend level in one province, similar increases can be expected to occur in other provinces. 

The resulting joint model holding for the four provinces (or more generally for a group of areas) can 

again be casted into a state-space form, see equations (2.7) and (2.8) in Pfeffermann and Burck (1990). A 

major problem with fitting this model, however, is the joint estimation of all the unknown parameters which 

is computationally too intensive in terms of computer time and storage space. (The computer program 

written for this study uses numerical derivatives so that each iteration of the method of scoring used for 

maximization of the likelihood requires a separate sweep through all the data. Each sweep involves the 

computation of the Kalman filter equations for each month included in the sample period.) 

To deal with this problem, we first fitted the models defined by (2.5), (2.6) and (2.2) separately for each 

of the provinces. We also postulated equal correlations across the provinces between the corresponding 

error terms of the separate census models so that 

-Vt = 	, C,,, C, = 4 	1 a.b4 	 (2.10) 

where C, ELy,, 	). The four correlations maximizing the likelihood of the joint model were determined 

by a grid search procedure with the other model parameters held fixed at their previously estimated values. 



The assumption of equal correlations reduces the number of unknown parameters considerably. It can 

be justified also by the small number of areas considered for this study implying that no other pre-imposed 

structure on these correlations can be safely detected. More substantively, a simple breakdown of the 

labour force by industry (table 1 of Section 3) shows very similar relative frequencies in the four provinces 

suggesting a high degree of homogeneity in their economies. 

2.7 Modifications to protect against model failures 

The use of a model for the production of official statistics raises the question of how to protect against 

possible model failures. Testing the model every time that new data become available is not practical, 

requiring instead the development of a built-in mechanism to ensure the robustness of the estimators when 

the model fails to hold. 

For modelling the labour force series in small areas we employed the modification proposed by 

Pfeffermann and Burck (1990). By this modification, the updated state vector estimates at any given time 

t, are constraint to satisfy the condition 

A 	 A 
E wtac',a 	 (2.11) 
a-i 	 a-I 

where 	is the model based estimator of the population value Ye., in area a, y,, = . E y  is the 

corresponding survey estimator and wia  = M I M, is the relative size of the labour force in that area so that 

4 	 4 	 A 	 A 	- 

M = E M,1, and E w, = 1. Notice that E wY and E W(aYt  are correspondingly the model based 
a-i 	 a-i 	 a-i 	 a-i 

and direct survey estimators of the aggregate population value in the group of areas considered. 
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The rationale behind the modification is simple. It assumes that the total sample size in all the areas 

is sufficiently large and hence that the aggregate survey estimators can be trusted. (This condition in fact 

dictates the level of aggregation required). By constraining the aggregate model based estimators to 

coincide with the aggregate survey estimators, the analyst ensures that any abrupt change in the population 

values reflected in the survey estimators will be likewise reflected in the model based estimators. Notice that 

without constraining the estimators, sudden changes in the level of the series, for example, will be reflected 

in the model based estimators only after several months because these estimators depend not only on 

current data but also on past data. On the other hand, if no substantial changes occur, the model based 

estimators can be expected to satisfy approximately the constraints even without imposing them explicitly. 

Thus, the constrainted estimators perform almost as well as the unconstrainted estimators In regular time 

periods. 

The use of constraints of the form (2.11) was previously considered by Battese, Harter and Fuller (1988) 

and by Pfeffermann and Barnard (1991) for analyzing cross-sectional surveys. Pfeffermann and Burck (1990) 

show how to Incorporate the constraints in the Kalman filter equations. Empirical results presented by the 

authors illustrate the good performance of the modified estimators in abnormal time periods. See also 

section 3. 

3. FITTiNG THE MODEL TO THE ATLANTIC PROVINCES, EMPIRICAL RESULTS 

The model defined by (2.2), (2.5) (2.6) and (2.10) was fitted to the monthly panel estimators in the four 

Atlantic provinces in two stages. In the first stage the model defined by (2.2), (2.5) and (2.6) was fitted to 

each of the provinces separately. In the second stage, the correlations defining the matrix 4) of (2.10) were 

estimated using a grid search procedure. (See section 2.6). The estimators obtained are. 

Dlag(4)) = (0.5. 0.25, 0.80,0.0). The data used for estimation of the model cover the years 1982-1988. Data 

for 1989 were used for model diagnostics by comparing the results within and outside the sample period. 

3.1 PrIor considerations 

Table 1 shows a breakdown of the labour force in the four provinces by industry. The figures in the 

table refer to March 1991. The (expected) sample sizes of the LFS are also shown. As can be seen, the 
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percentage breakdowns in the four provinces are very similar justifying the assumption of equal correlations 

across the provinces between the error terms of the census models. The similarity of the percentage 

breakdowns suggests also possible improvements in the efficiency of the model based estimators derived 

from the joint model over estimators which ignore the cross-sectional correlations between the province 

population values. 

Table 1: Labour Force by Industry In the Atlantic Provinces, March 1991 

Nov. Scod. Now B,wwwlck N.wfound.nd P,lnc.Edw.,d Isinod 

4400 3843 2870 1421 

Thous.nd, Pwc.rns.. Thouswds Pwc.nta.. Thous.nd. P.,c.ntsco Thoo..nd. P.,c.nt.., 

AgrIculture 7 1.7 7 2.3 .5 .2 6 9.8 

Other primary ind 18 4.4 13 4.2 18 7.7 4 6.6 

Manufacturing 44 10.7 37 11.9 23 9.9 6 9.8 

ConstructIon 24 5.9 21 6.8 18 7.7 4 16.6 

Transp. & commun. 35 8.6 30 9.6 20 8.6 5 4.3 

Trade & Commerce 31 19.8 61 19.6 41 17.6 10 16.4 

Finance 20 4.9 12 3.9 6 2.6 .5 .8 

Services 143 35.0 107 34.4 63 35.6 19 31.1 

Public Admln. 36 8.8 22 7.0 23 9.9 6 9.8 

UnclassifIed 1 .2 1 .3 .5 .2 .5 .5 

Total 409 100 311 100 233 100 61 100 

Two other prior considerations mentioned in section 2.3 are that the model should account for possible 

rotation group effects and for changes in the variances of the survey errors over time. In order to obtain 

initial estimates for the rotation group effects, we averaged the pseudo survey errors, 
= (.y(4 - 
	1=1 ..... . 6 over all the months in the sample period. We then divided the averages by 

the conventional estimates of the standard errors. (The errors 	are correlated over time but the 

correlations are small because except for lags 7, 13 etc. the estimators y  refer to different psu's or strata. 

See section 2.1). Notice that in the absence of rotation group effects, E(e) = 0 for all J and t irrespective 

of the model postulated for the population values. 
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This preliminary (model free) analysis yields similar results to the results obtained under the full model, 

presented In table 2 of section 3.3. 

Next consider the variances of the survey errors. 

Figure 1 plots the seasonal effects of the aggregate survey estimators in the four provinces along with 

the seasonal effects of the standard errors of these estimators (multiplied by 100). The seasonal effects were 

estimated by application of the additive mode of X-1 1. Denote as before by w the relative labour force 

size In province a at time t. The aggregate survey estimator is defined asy 1  w, Yra 

(Equation 2.11). The standard error of Yt is (SD ), 	w (S} 
½ 

FIgure 1 reveals that the standard errors are influenced by seasonal variations with a seasonal pattern 

that follows closely the seasonal pattern of the survey estimators and hence of the corresponding population 

values. 

As discussed In section 2.3, ratter than using the original estimates of the design standard errors in the 

models fitted to the panel survey errors we use smoothed values, thus reducing the effect of the sampling 

errors on the former estimators. Figure 2 plots the two sets of estimators for Prince Edward Island (PEI) 

province which Is the smallest province In the Atlantic region and hence has the smallest sample sizes. As 

can be seen, the effect of the smoothing Is to trim the extreme raw estimates but otherwise the smoothed 

values behave similarly to the raw estimates. The plots for the other provinces show a similar pattern but 

the differences between the raw and the smoothed estimates are smaller because of the larger sample sizes 

In these provinces. 

3.2 ModIfication to the original model 

After fitting the separate models and computing simple 12-terms moving averages of the estimated 

seasonal effects, It became evident that unlike the assumption in (2.1), the variance of the sums of the 

seasonal effects decreases with time. The models have been modified accordingly and re-fitted to the data. 
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3.3 Resufts 

3.3.1 RotatIon Group Biases 

Table 2 shows the rotation group Biases (RGB) and their estimated standard errors (SE) in the four 

provinces as obtained under the full model defined by (2.3), (2.5). (2.6) and (2.10). 

Table 2: RotatIon Grouo Effects and Standard Errors in the Four Provinepq (11Am 

Nova Scotia New Brunswick Newfoundland Prince Edward Island 

Panels RGB SE RGB SE AGE SE RGB SE 

1 -0.20 0.10 -0.02 0.11 -0.47 0.13 0.32 0.17 

2 1 	0.18 0.09 0.40 0.10 1 	0.42 0.12 0.18 0.15 

3 0.32 0.08 0.24 0.09 0.47 0.12 0.31 0.15 
4 0.06 0.07 0.01 0.09 0.18 0.12 0.03 0.15 

5 -0.03 0.08 -0.15 0.10 -0.10 0.13 -0.25 0.16 

6 -0.34 0.08 -0.50 0.11 	1 -0.50 0.14 -0.60 	1 0.16 

The RGB behave very consistently across the provinces. Thus, the biases for the 3 rd  and 6th  panel are 

all highly significant using the conventional t-statistic, having a positive sign for the 3 panel and a negative 

sign for the 60'  panel. The biases for the 41h  and 51h panels have again the same sign in all the provinces 

and they are all nonsignificant. 

For the 2' panel all the biases are positive but the bias in P.E.I. is not significant. (P.E.l. is the province 

with the smallest sample size). It Is also in P.E.I. that the sign of the bias for the 1 st  panel is dIfferent from 

the signs In the other provinces. 

As discussed in section 2.3, there is more than one possible reason for the existence of AGE but the 

results emerging from the table provide a strong indication that whatever the reason is, the biases found for 

some of the panels are real and not just the outcome of sampling errors. A drawback of the present 

analysis, however, Is that the RGB are assumed to be fixed over time. Section 4 proposes a more flexible 

model. 
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3.3.2 Goodness of Fit 

A. TESTING FOR NORMALITY 

Let I - (y - y,(f..l)) define the Innovation when predicting the J- th panel estimator one month 

ahead and denote i (i, ... i6)). The use of maximum likelihood estimation in this study assumes that 

the vectors I are normal devIates (see sectIon 2.4). To test this assumption, we computed the empirical 

distribution of the standardized innovations {(si) • [i I sb (Is))],  t = (k+1) ...N} and compared it to 

the standard normal distributIon using the Kolmogorov-Smirnov test statistic. This test statistic was 

computed for each of the six panels in the four provinces yielding p-values larger than 0.15 in 21 out of 

the 24 cases. 

Applying the same test procedure to the standardized innovations 

{(SI) • [I, I sb (,a)1' t (k+1) ...N} where i 	
[ 	

j.1)  I 61 yields p-values largerthan 0.15 in all four 

provinces. 

The estimators of the standard deviations of the Innovations used for the tests are those produced by 

the Kalman filter, without accounting for the variance component resulting from parameter estimation (see 

sectIon 2.5). The latter component Is negligible even In P.E.I. which has the smallest samples sizes among 

the four provinces. We come back to this finding in section 3.4. 

B 

COMPARISON OF ThEORETICAL AND EMPIRICAL VARIANCES 

The appropriateness of the model can be assessed also by comparing the empirical means of the 

squares of the innovations with their theoretical variances under the model. Figure 3 shows the square roots 

of the weighted sums (wI) = E w, [t (J, i) )2 
/61 along the square roots of the weighted variances 

Vt = f Wt, 
	Var (I (i))/ 6 ] where vi,, denotes as before the relative labour force size in province a 

and Var (I,) Is the estimated variance of (I) under the model. Notice that the last 12 pairs of values 

refer to the year 1989 which data were not used for model estimation. 
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The picture revealed from Figure 3 is that the discrepancy between the square roots of the model 

dependent variance estimators and the empirical root mean squared errors (RMSE) is in most cases less 

than 20 percent. Notice that the innovations defining the sum (wO, are correlated so that the effective 

number of innovations in each month is less than 24. This fact could explain the occasional large 

discrepancies. It Is seen also that the model dependent estimators of the variances of the innovations are 

unbiased. The average of over all the years considered is 0.0158, the corresponding average of 

is 0.0159. 

C. PREDICTION ERRORS WITH DIFFERENT PREDICTORS 

Table 3 contaIns summary statistics comparing the behaviour of the prediction errors (innovations) in 

the four provinces as obtained for three different sets of estimators of the state vector: 1) The estimators 

obtained under the separate models (SM) defined by (2.2), (2.5) and 2.6, 2) the estimators obtained under 

the joint model (JM) defined by (2.2), (2.5), (2.6) and (2.10) and 3) the estimators obtained by imposing the 

robustness constraints (2.11) onthe joint model (ROB). Below we define the summary statistics using as 

before the notation I(J) = fr - 2'?(.I)) for the prediction error when predicting the J-th panel estimator 

one month ahead. 

MB1 = E (E !/ 6 I (N—A) - mean bias in predicting the mean survey estimator 	= 	y I 6. 

	

t-k.I 	 fri 

	

0 	N 
MAB1 = 	I E ij)j (N—/c) /6 - mean absolute bias in predicting the panel estimators. 

	

/.1 	t.kel 

iSORE1  = 	[.(':1' , 

2 

 ] I I 

in predicting the mean survey estimator. 

- square root of mean square relative prediction error 

The above summary statistics are shown separately for the sample period of July 83 - December 88 and 

for the postsample period of January 89 - December 89. 
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TABLE 3: PREDICTION ERRORS IN THE FOUR PROVINCES, SUMMARY STATISTICS (X100) 

Nova Scotia New Brunswick NewFoundland Prince Ed. Island 

SM I 	JM I ROB SM I JM  I ROB SM JM j ROB SM j JM I ROB 

7.83- 12.88  

MB -.11 -.07 -.06 -.12 1 	-.09 -.06 -.25 -.18 -.08 .06 .14 .15 

MAB .12 .11 .10 .14 .12 .11 29 .24 .20 .20 .23 .23 

SQRE 5.76 5.62 5.70 5.48 5.47 5.47 7.03 6.91 6.96 9.34 9.13 9.17 

1.89- 12.89  

MB .14 .11 .04 .47 47 .46 1 	.36 .33 .17 .84 .85 .86 

MAB .32 .32 .30 .51 1 .50 .39 .37 .29 .84 .85 .86 

SORE 1 6.39 	1 6.27 682 6.25 6.25 6.32 5.92 5.90 5,61 9.45 9.26 1 	9.30 

The main conclusions from table 3 are as follows: 

The results obtained for the three sets of predictors are in general very similar, indicating that for the 

data analyzed the use of the Joint model improves only slightly over the use of the separate modes and 

that there are no abrupt changes in the level of the series in the years considered. 

The errors when predicting the survey estimators are small both within and outside the sample period, 

suggesting a good fit of the model. Notice that except in P.E.I., the relative prediction errors as 

measured by the statistics SORE1  are all less than 7%. 

The biases of the prediction errors in the postsample period are larger than in the sample period with 

relatively large differences in New Brunswick and P.E.I. This outcome by itself could suggest some 

model failure in the year 1989. Inspection of the individual panel prediction errors in the four provinces 

for this year, (not shown in the paper), indicates however that although the errors are in general mostly 

positive, the relatively large biases are mainly the result of one or two extreme errors which, with only 

12 data points, has a large effect on the average summary statistics. It should be noted also that the 

estimated unemployment rates in the four provinces in the year 1989 are between 0.11 and 0.18 so that 

a prediction bias of .005 or even .009 as obtained for P.E.I. is not high. Clearly, the model can be 
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modified to account for these biases if they persist with additional data. On the other hand, notice that 

the discussion above refers only to the bias of the prediction errors since the bias of the model based 

estimators of the concurrent population values is controlled by the robustness constraints (2.11). 

In view of the very similar results obtained for the three sets of predictors considered and in order to 

highlight the performance of the robustness constraints, we deliberately deflated the unemployment rates 

in the period March 85 to March 87 by 33%, deflated the rates in the period April 87 - November 88 by 25% 

and inflated the rates in the period December 88 - December 89 by 33%. The effect of these operations is 

to introduce sudden drifts in the data in the months t=39, t=64 and t=84. Figure 4 displays the aggregate, 

one step ahead prediction errors (APE), Ia = 6E w 	(y - YJ?(t-l) )i 6] as obtained for the joint 

model with and without the robustness constraints, and also for the separate models. 

The clear conclusion from Figure 4 Is that by imposing the constraints, the APE in the periods following 

the three months with sudden drifts are smaller than the APE obtained without the constraints. Thus, in 

March 85 for example, (t=39), the APE are very large in absolute value both with and without the constraints 

which is obvious since the predictors use only the data untIl February 85. The APE corresponding to the 

robust predictors however, return to their normal level much faster than the APE of the nonrobust predictors. 

A similar behaviour is seen to hold in the other two periods. Another notable result featured in the graph 

is that in the periods following the months with the sudden drifts, the joint model performs better than the 

separate models even without imposing the robustness constraints. Thus, by borrowing information from 

one province to the other, the joint model adapts itself more rapidly to the new level of the series. For more 

illustrations of the performance of the robustness constraints see Pfeffermann and Burck (1990). 

D. COMPARISONS WITH ESTIMATORS PRODUCED BY X-11 

As a final assessment of the appropriateness of the model, we compare the estimates of the seasonal 

effects and the trend levels as obtained under the model with the estimates produced by the X-1 1 procedure 

(Dagum, 1980). The latter is known to be more flexible and less dependent on specific model assumptions. 

This procedure is the commonly used method for seasonal adjustment throughout the world. Figure 5 

displays the average seasonal effects for the four provinces as obtained by X-1 1 and under the model. 

Figure 6 displays the corresponding trend level estimates. The averages are computed using the weights 
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(w) employed In previous analyses. The model based estimates shown in the two figures are the 

smoothed estimates which, like X-1 1, employ all the data in the sample period. 

As can be seen, the seasonal effects produced by the two approaches are very close. The trend level 

estimates are also close but the X-1 1 trend curve is smoother than the model curve. Similar close 

correspondence between X-1 1 and the model is obtained for each of the four provinces separately, 

including, In particular, P.E.I. with Its relatively small sample sizes. 

3.4 Comparison of Design Based and Model Dependent Estimators 

We mention In the Introduction that one of the major reasons for wishing to model the raw survey 

estimators is that the model produces estimates for the population values which, at least in small areas, are 

more accurate (when the model holds) than the survey estimators. Figure 7 displays the two sets of 

estimates of P.E.I. unemployment rates. The model dependent estimates are the smoothed values of the 

joint model which use all the data In all the months. As can be seen, the estimates produced by the two 

approaches behave very similar but the design based estimators have in general higher peaks and lower 

troughs. Figure 8 displays the corresponding standard errors (S.E.) as computed under the design, 

(smoothed values, see figure 2), and under the joint model. Also shown are the S.E. when fitting the 

separate model defined by (2.2), (2.5) and (2.6) and the corresponding S.E. after accounting for the use of 

parameter estimates instead of the unknown parameter values. See section 2.5 for details. (The latter have 

been computed only for the separate model to save in computing time). 

There are three notable features emerging from the graphs: 

The S.E. of the model dependent estimators under the joint model are only mildly smaller than the S.E. 

obtained for the separate model but considerably smaller than the S.E. of the survey estimators. 

The S.E. of the model dependent estimators behave similarly to the S.E. of the survey estimators, a 

direct consequence of accounting for the changes in the variances of the survey errors over time in the 

model. See section 2.3 for details. 
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3) Accounting for the use of estimated parameter values in the computation of the S.E. of the model 

dependent estimators has only a marginal effect on the computed S.E. Recall that P.E.I. is the province 

with the smallest sample sizes. The effect of accounting for the use of parameter estimates in the other 

provinces is even smaller. 

4. SUMMARY 

This article illustrates that even data collected by a complex sampling design, consisting of several 

stages of selection with rotating panels, can be successfully modelled by a relatively simple model. The 

model consists of two parts: the census model holding for the population values and the survey errors 

model describing the time series relationship between the survey errors. The use of the model yields more 

accurate estimators for the population values and their components like trend and seasonality and it permits 

estimating the S.E. of these estimators in a rather simple way. The model equations can be modified to 

secure the robustness of the model-dependent estimators against possible model failures. 

The model used in this article can be refined in various directions. Two refinements of particular 

relevance are to relax the assumption of constant variance for the error term € in the census model and 

to let the rotation group biases to change over time. 

The first refinement is suggested by the observation made in section 3.1 that the variances of the survey 

errors are subject to seasonal effects, with a seasonal pattern that is similar to the seasonal pattern of the 

raw estimates. Fitting the equations (2.4) in the four provinces indicates also the existence of a mild trend 

in the variances which again behaves similarly to the trend of the raw survey estimates. Thus, the variances 

of the survey errors seem to depend on the magnitude of the survey estimators which suggests that the 

variances a 
= t4€) change with the level of the population values. As a first approximation one could 

assume that a t  is proportional to the corresponding variance of the survey error. 

Letting the rotation group biases change over time is a natural extension of the model, considering that 

the population values means are time dependent. Modelling the evolution of the group biases can however 

be problematic because of possible identifiability problems with the models holding for the trend and the 

seasonal effects. See the discussion in Pfeffermann (1991). 
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The two refinements mentioned above are important and should be explored but based on our 

experience with the unemployment data, we expect that they will affect the model estimators very mildly. 
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Figure 1: Seasonal Fffects of Aggregate Survey Estimators and of Standard Errors of Aggregate Survey 
Estimators (xlOO) 
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Figure 2: 	OrIginal and smoothed standard errors of survey estimators (xlOO), P.E.I. Province 
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Figure 3: 	Empirical RMSE [(WI) ] ¼ and Square Roots of Estimators of Theoretical Variances [Vi] ½ 
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Figure 4: Aggregate One-Step Ahead Prediction Errors of Three Sets of Predictors (xlOO). Contaminated Data 
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Figure 5: 	Weighted Averages of Seasonal Effects as Obtained by X-11 and Under the Model (xlOO) 
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Figure 6: Weighted Averages of Trend Levels as Obtained by X-1 1 and Under the Model 
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Figure 7: 	Design Based and Model Dependent Estimates of P.E.I. Unemployment Rates (xlOO) 
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