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ABSTRACT 
This article describes the method used to produce estimates for the one in five sample of households 

selected In the 1991 Canadian Census. A primary objective of the estimation methodology Is to generate 
household weights such that differences between known population counts and the corresponding 
estimates are reduced for small areas (called enumeration areas (EAs)) while at the same time eliminating 
these population/estimate differences for larger areas (called weighting areas (WAs)). The characteristics 
for which these differences are to be reduced or eliminated will be called constraints on the weights. To 
achieve this objective two adjustments are made to the initial household weights which equal the inverse 
of the probability of selection. The first adjustment is calculated separately for each EA. The constraints 
are partitioned into two groups. Weighting adjustment factors are calculated for each group of constraints 
using generalized least squares (also called regression) estimation. The two resulting sets of weighting 
adjustment factors are then combined to form an average weighting adjustment factor. When applied to 
the initial weights, the resulting average adjusted weights reduce but do not eliminate population/estimate 
differences at the EA level. Generalized least squares (GLS) estimation is then applied a second time at 
the WA level using all the constraints. The weighting adjustment factors which result are applied to the 
average adjusted weights. The final adjusted weights eliminate the population/estimate differences at the 
WA level. Methods are described for discarding constraints which are linearly dependent, nearly linearly 
dependent or small. In addition, It Is shown how to discard constraints to ensure that all the adjusted 
weights are within the desired range [1,25]. A computationally efficient method of estimating the variance 
of the two step GLS estimator is described. A Monte Carlo study assesses the bias of both the two step 
GLS estimator and various estimators of the variance of the two step GLS estimator. The estimation 
method is then applied to 79 WAs from the 1986 Census. A brief discussion is given of the successful 
application of this estimation method to the 5,730 WAs in the 1991 Census. Finally, alternative estimators 
such as the raking ratio estimator and the logit estimator are discussed. 

KEY WORDS: Regression Estimation; Raking Ratio Estimation; Logit Estimation. 

RESUME 
Cet article décrit Ia méthode employee pour produire des estimations pour l'échantillon de "un ménage 

sur cinq" sélectionné au recensement du Canada de 1991. L'objectif principal de Ia méthodologie 
d'estimation consiste a générer des poids de ménage de manière a réduire les écarts entre les chiffres 
connus de population et les estimations correspondantes pour certains petits domaines (appelés secteurs 
de dénombrement (SD)), tout en éliminant les écarts population/estimation pour des zones plus grandes, 
appelées zones de pondération (ZP). Les caracteristiques pour lesquelles ces écarts doivent être réduits 
ou éliminés seront appelées contraintes sur les poids. Afin de réaliser cet objectif, on effectue dew 
ajustements aux poids de ménage initiaux, lesquels sont égaux a l'inverse de Ia probabilité de selection. 
Le premier ajustement est calculé pour chaque SD séparément. Les contraintes sont divisées en dew 
groupes. Pour chaque groupe de contraintes, les facteurs d'ajustement de poids sont calculés selon Ia 
méthode d'estimation des moindres carrés généralisée (aussi appelée estimation par Ia regression 
genéralisee). Les dew ensembles de facteurs d'ajustement resultants sont alors combines pour former un 
facteur d'ajustement de poids moyen. L'application des poids moyens ajustés resultants réduit, mals 
n'éllmine pas les écarts population/estimation au niveau des SD. On applique alors Ia méthode 
d'estimation par les moindres carrés généralisée (MCG) une seconde fois au niveau des ZP en employant 
toutes las contraintes. Les facteurs d'ajustement de poids qui en résultent sont appliqués aux poids 
moyens ajustes. Les poids ajustes finaux éliminent les écarts population/estimation au niveau des ZP. On 
décrit les méthodes en vue d'exclure les contraintes qui sont tlnéairement dépendantes, quasi tinéairement 
dépendantes ou peu importantes. De plus, on montre comment exciure les contraintes afin de s'assurer 
que tous les poids ajustés se situent dans l'étendue désirée [1,25]. Une méthode de calcul efficace pour 
estimer Ia variance de l'estimateur MCG a deux étapes est décrite. A l'aide d'une étude de Monte-Carlo, 
on évalue Ia blais de I'estimateur MCG a deux étapes ainsi que le biais de divers estimateurs de Ia 
variance de ce dernier. La méthode d'estimation est alors appliquée a 79 ZP provenant du recensement 
de 1986. Une discussion breve sur Ia performance de cette méthode appliquee a 5 730 ZP du 
recensement de 1991 est décrite. Enfin, d'autres estimateurs tels que l'estimateur itératif par le quotient 
et l'estimateur logit sont également discutés. 

MOTS CLES: Estimation par regression; estimation iterative par le quotient; estimation logit. 
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Two Step Generalized Least Squares Estimation in the 1991 Canadian Census 

Michael D. Bankier, Stephen Rathwell and Mark Majkowskl 

1. INTRODUCTION 

In the 1991 CanadIan Census, a 1 In 5 systematic sample of private households was 

selected from each of 40,072 enumeration areas (EAs) out of a total of 45,995 EAs. 

Sampled EAs contained on average 249 dwellings. The other 5,923 EAs (which were 

remote EAs, Indian reserves or EAs containing exclustvely collective dwellings) were 

sampled 100%. Besides the basic demographic questions asked of all households, 

sampled households were required to answer additional questions. 

In the 1986 Census, raking ratio (RR) estimation generated sample weights that ensured 

agreement between certain sample estimates and known population counts at the 

weighting area (WA) level. In both 1986 and 1991, WAs contained on average 7 EAs 

whose households were sampled 20%. Characteristics for which consistency is required 

between the sample estimates and the population counts are called constraints on the 

weights. Although RR estimators generally have smaller variances than estimators based 

on weights equal to the inverse of the probability of selection (see, for example, 

Brackstone and Rao 1979), certaIn problems have been documented with these weighting 

procedures. Residual differences remained between some sample estimates and 

population counts because the RR iterative solution (as proposed by Deming and Stephan 

1940) had not completely converged after 40 cycles. Also, while there was close or exact 

agreement between the sample estimates and population counts at the WA level, this was 

frequently not achieved at the EA level. In fact, usually the agreement with AR estimates 

was no better than for estimates calculated using the initial weights. Finally, because 

Michael D. Bankier and Stephen Rathwell are Senior Methodologists, and Mark 
Majkowskl Is Methodologist, Social Survey Methods Division, Statistics Canada, 15th Floor, 
Coats Building, Ottawa, Ontario K1A 0T6, Canada. The authors would like to thank Gordon 
Brackstone, Michael Hidiroglou, Carl Sarndai and Jocelyn Tourigny for their helpful 
comments. 
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different weights were used to produce household and persons estimates, this caused 

discrepancies between these estimates in certain cases. 

For the 1991 Canadian Census, two step generalized least squares (GLS) estimation 

was used. GLS estimation is a form of regression estimation. Two recent papers on this 

subject are Zieschang (1990) and Deville and Sârndal (1992). Earlier papers Include 

Stephan (1942), Frledlander (1961), Cassel, Särndal and Wretman (1976), Huang and 

Fuller (1978), Isakl and Fuller (1982), Wright (1983), and Sârndal and Hidiroglou (1989). 

Renewed Interest In GLS estimation was generated among practitioners by Luery (1986) 

and Bethlehem and Keller (1987). Examples of papers applying the GLS estimator are 

Alexander (1987), Copeland, Peitzmeier and Hoy (1987) and Lemaltre and Dufour (1987). 

The Census weights were adjusted In two steps because this made It possible to 

achieve reasonable consistency between sample estimates and population counts at the 

EA level. At the same time, the variance of the two step GLS estimator was significantly 

lower than that of the 1986 Census estimator at the EA level and somewhat lower at the 

WA level. This was important because EAs are the basic building blocks for tabulations 

of larger geographical areas. Rather than GLS estimation, a generalized form of RR 

estimation (Darroch and Ratcliff 1972) or logit estimation (Deviiie and Sarndal 1992) could 

have been used. Both the two step weighting adjustment and the calculation of a single 

household weight can be done with all three estimators. Also, the Newton-Raphson 

iterative solution as proposed by Deville and Sarndal (1992) generally converges much 

more quickly than the iterative solution of Deming and Stephan (1940). GLS estimation 

was used, rather than raking or logit estimation, because its methodology is well known 

and well accepted. In addition, GLS estimation had a non-iterative soiution so there are 

no problems with lack of convergence. Also, it is not certain that the variance of the logit 

and the generalized RR estimators can be estimated accurately in a computationally 

efficient fashion. More study of this is required. The raking and logit estimators are 

discussed further In Section 7. 

Besides Illustrating a major appiication of GLS estimation, this article describes an 
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effective method for eliminating GLS weights less than 1 by discarding constraints. This 

approach contrasts with that of Deville and Sarndal (1992) who attempt to restrict weights 

to a certain range by picking distance measures such that the optimum weighting 

adjustment factors fall within a certain range. If the set of solutions that satisfy the 

constraints does not include a solution where all the adjustment factors fall within the 

desired range, then some of the constraints must be dropped as described in this paper. 

A new method of identifying nearly collinear constraints so they can be discarded Is 

described. This article also outlines a computationally efficient method of estimating the 

GLS estimator variance. The results of a Monte Carlo study are reported which provide 

an assessment of the size of the bias of the two step GLS estimators as well as of the 

bias for different estimators of the variance. The performance of this method is then 

evaluated by applying it to 79 WAs from the 1986 Census. Finally, a brief discussion is 

given of the successful application of this estimation method to the 5,730 WAs in the 1991 

Census. 

2. A DESCRIPTION OF THE ONE STEP GLS ESTIMATION TECHNIQUE 

Sample weights are calculated separately for each WA. In a particular WA, assume that 

there are G sampled EAs. In order to simplify the variance formulae, it will be assumed 

that a simple random sample of households is selected without replacement from each 

EA. (Estimated variances under the assumption of systematic sampling are discussed 

later in the section on the Monte Carlo study.) Let n and N represent the number of 

households in the sample and population respectively for the gth  EA in the WA. The Initial 

household weight is W °  =Ng/flg  . Horvitz-Thompson estimators based on this weight 

• 	 are unbiased. 

The basic characteristics for which agreement between sample estimates and population 

counts is desired are called "constraints". Examples of characteristics for which 
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agreement is required at the WA level are number of persons, number of males, number 

of persons of age 25 to 29, number of census families, number of households and number 

of owned dwellings. In addition, agreement is required at the EA level for number of 

persons and number of households. Characteristics that are used as constraints appear 

in published Census tabulations. Inconsistencies between the sample estimates and 

population counts for these characteristics cause concern to users of Census data. 

The constraints can be represented by the n x I matrix x= [XUhII  where n equals 

the number of sampled households In the WA, I equals the total number of constraints 

and x represents the value of the ith  constraint for the hth  sampled household in the 

9th EA. For example, if the jth  constraint is number of males, then Xghj3  indicates 

that there are 3 males in the hth  sampled household of the g1h  EA. 	Also, 

let 	O)__djag(w(0))x=[w0)xgj) where diag(W ° ') is a n x n matrix 

with W °  running down the diagonal with zeros elsewhere. Here w °  Is a n x 1 

vector with W °  the vector entry for each sampled household of the gt  EA. 

The one step GLS estimator is derived by determining the adjusted 

weights Wgh=cghW°  such that the distance function 

D=(ci)I'V(ci) 	 (1) 

is minimized subject to the constraints 

(2) 

where c= [Cgh]  is a n x 1 vector of weighting adjustment factors, i n  Is a n x 1 vector 
G N 

of l's, X= [X ] is an I xl matrix and X . 	xghi  is the known population 
g-1 h-i 

value for the jth  constraint. V has to be positive definite to ensure that the distance 

4 
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measure D Is non-negative. 	In the Canadian Census, V=diag(2 ° i 1 ) 

where 11  Is an I x 1 vector of 1 's. This Is consistent with the recommendation of 

Särndal, Swensson and Wretman (1989) that V=diag(2(0)) where I is an i x 

1 vector which does not result In any of the elements of 2(0)  X becoming 2erO. The 

solution to this problem Is 

c+v'x (2°'v_'20) -1 (X_2(0)'i) 	 (3) 

C flg 

It can be seen that the GLS estimator Ŷ =E F Wqrhyqh  (where Wgh =cghW °  ) Is a 
g-1 h•1 

regression estimator by noting that 2=2°'i ) where Ygh  is the value 

of the sample characteristic of Interest for the hth  sampled household in the g 

EA,o)=[Wo)yg) lsanx 1 vectorand =(2( 0 )'V2(0) )i.2( 0 )'Vl9O) is 

an I x 1 vector. 

It can easily be shown, using a Taylor series approximation, that E ( 2) - Y where Y 

Is the true population value for the sample characteristic of interest. It can also be shown, 

using a Taylor series approximation, that MSE( 2) - V( 2) - V( 2°) where 
C 

ZYXP[Zgh] • '=[Ygii ] and 	=E(f3) . 	An 
g-lh-1 	 - 

estimator of MSE ( 2) can be determined by replacing the g with P when 

calculating z and then substituting the z Into the standard estimator for the variance 

of a stratified Horvltz-Thompson estimator. Hidiroglou, Fuller and Hickman (1978, p.37) 

and Särndal, Swensson and Wretman (1989) suggest that a more accurate estimate of the 

variance Is produced If 2 '  = [cz] is used instead of z 

5 



:

i.7 

! 	• - 	r 	à4fr4; p 	 I  

AV
...,. 

•+ 



3. A DESCRIPTION OF THE TWO STEP GLS ESTIMATION TECHNIQUE 

3.1 An Overview of the Technique 

One of the objectives of the Census weighting system is to have reasonably small 

differences between sample estimates and population Counts at the EA level for WA level 

constraints. Because of the relatively small size of the EAs, it is not practical to eliminate 

the differences entirely at the EA level. The final Census weights take the form 

Wgh = CghC W °  . The first step weighting adjustment c is done to reduce 

population/estimate differences at the EA level. The second step weighting adjustment cgh  

Is done to eliminate population/estimate differences for the constraints at the WA level as 

well as for the two constraints (number of households and number of persons) for each 

EA. The methods for calculating these weighting adjustment factors are described in 

Subsections 3.2 and 3.3. In Subsection 3.4, an efficient method of estimating the two step 

GLS MSE Is described. 

The weighting adjustment factors can be close to 0 or negative. Also, the matrix to 

be inverted to determine the adjustment factors can be singular or have a high condition 

number. Methods of dropping constraints to deal with these problems are described in 

Section 4. 

3.2 First Step Weighting Adjustment 

For each EA, the WA level constraints are listed In descending order based on size. 

The size of a constraint for an EA is defined to be the number of households In the 

population for which the constraint applies. For person and family constraints, a 

household is included in the size Count if it contains one or more persons or families to 

r. 
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which the constraint applies. For example, the size of the constraint number of males 

equals the number of households In the population that contain at least one male. Next, 

these constraints are partitioned Into two groups. The first group contains the first, third, 

fifth, etc. constraints from the list ordered by size. The second group contains the 

remaining constraints. Separate weighting adjustment factors are calculated for each 

group and then averaged together. This results in the population/estimate differences 

being generally reduced but not eliminated at the EA level for the WA level constraints. 

This approach Is taken because the sample size is not large enough at the EA level to 

have all the constraints applied at once. The partitioning was done on the basis of size 

so that similar partitlonings would result for all possible samples in that WA. This is 

discussed further in Section 4. 

More specifically, for each group (where r =1.2 represents the first and second group 

respectively), adjusted weights Wghr  = Cghr  (where Wghr  equals the adjusted weight 

for the h sampled household in the gth  EA for the rth  group of constraints) are determined 

where 

Cgz=1g+V 	(8(-8>) '(x 	°' gi .gr _ 	= [C•ghz] 	(4) 

lg isa nQ  x 1 vector of l's, V g1 =diag(.R1 1 ) 	isa n9  x n matrix, 	is 

an 1g.. x 1 vector of 1 's and I9  is the number of constraints in the rth  group of the 

gth EA. Also, 2 = [ W °1  Xghrl]  Is a n x 'gr  matrix, Xghrj  represents the value 

of the r constraint for the r' group and the hth  sampled household in the gth  EA, 

7 
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gr = [Xg . ri] is an 'gr  x 1 vector and Xg ri 	Xghri is the known population 

value for the jth  constraint in the rth  group in the gth  EA 

The weighting adjustment factors Cghr  based on these two groups of constraints are 

t h e n averaged together to produce Wg =Cg W 	where 

= [C 	I = [ ( Cghl + Cgh2) /2) Is a n9  x 1 vector. The averaged weighting 

adjustment factors c 	usually reduce but do not eliminate the population/estimate 

differences for the gth  EA. 

3.3 Second Step Weighting Adjustment 

The final Census weights Wgh=CghWgL  are determined by calculating 

cl+V' 	(2(A) 'vlc ( A) ) -1 (_(A)) 	
(5) 

where 2 =diag( W ) x , 	= [ Wh] is 	a n x 1 vector and 

V=diag(2i 1 ) 

It can be shown, using two successive Taylor series approximations, 
C ng  

that MSE(') iV(2) -V(2 10 ) where P= E E Wgt,ygh 
C ng 	 g-i h-i 

Wg ° Zgj  and Z g = [Zgh] 	 ( g1 13 '1 + g2 I3 2 ) isa n9 x 1 
g-i h-i 	 - 

vector. Also. u=y-x13 = [ Ugh] is a n x 1 vector, ug= [Ugh]  is a n x 1 vector 

containing the elements of u for t h e gth EA, 	=E() 

(2'v'2) 1g(A) 'v 1 2 cM  and (A) = [ Wg Ygh ] isa nx 1 vector. Finally '  

and O?=[W ° UUh] is 

a n9  x 1 vector. An estimator of MSE ( ) can be determined by replacing 

the g with 3 when calculating u and replacing the with when 

L] 
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calculating Z g  Then z'= [z'z..•z'] can be substituted into the standard estimator 

for the variance of a stratified Horvltz-Thompson estimator. Alternatively, following the 

approach of Särndal, Swensson and Wretman (1989), z= [CUhC Zgh] Instead 

of z can be used. 

3.4 An Efficient Method of Estimating the Two Step GLS MSE 

In the Census, estimates of the MSE are calculated for many characteristics. It Is 

worthwhile, therefore, to calculate z efficiently. 	This can be done by noting 

t h a t u=R2y, z=R 1uand 	hencez=Ry 	w h e r e 

R=Ix(2V_'2) is an x n matrix and I, isa 

n x n Identity matrix. Also, R Is a n x n block diagonal matrix with R, , g = 1 to 

G running d o w n t h e diagonal,R1g=Ig- 

E gr(S 'Y 8) 1)'y;) diag(w ° a g ) 	Ig isang xng ldentlty 

matrix and R=R1R2  . R Is not a function of y  and hence only has to be calculated 

once. The matrix R can thus be used repeatedly In the calculation of z for many 

characteristics. 

Frequently, estimated MSEs are required for a table of K cells where a sampled 

household or a person in a sampled household can fall in only one of the K cells 

(excluding totals). Assume that it Is a table of household characteristics. 

Let YK=  [Yghk] be a n x K matrix where yghk  equals the value for the characteristic 

of interest If the h 1h  sampled household from the gth  EA falls In the kth  cell and 

Ygjjr ° otherwise. Because a sampled household can fall in only one cell, this means 

that a row of the y. matrix can have only one non-zero entry. The matrix 





G flg 

gh® gh  contains the 2 values required to estimate the MSEs for the 
g-i h-i 

K cells of the table where Ygh  represents the ghth  row of K I gh represents the ghth  

column of the R matrix and (9 represents the Kronecker product. Because there is 

only one non-zero entry for Ygh • computer algorithms can be easily written such that 

only n2  multiplications and additions are required to determine ZK . This compares to 

Kn2  multiplications and additions that would be required to determine z, If the sparse 

nature of Y  was not accounted for. For a table of person characteristics, a maximum 

of mn multiplications and additions would be required to calculate ZK  where m equals 

the number of persons in sampled households for that WA. 

4. DISCARDING CONSTRAINTS 

4.1 An Overview of the Technique 

When calculating the weighting adjustment factors Cgr  and c 	the matrices 

2. r°  'v;2 0)  and 2 (A)  'v2 are inverted. Unearly dependent constraints will 

cause these matrices to be singular. Thus, the smallest constraint (with size defined as 

the number of households in the population to which it applies) in each set of linearly 

dependent constraints is dropped. 

Next, the condition number of the matrix 2 (0) 	(0) Is checked. The condition 

number is defined as the absolute value of the ratio of the largest elgenvalue to the 

smallest elgenvalue. Large condition numbers are of concern because small variations 

in the sample can cause large variations in the weighting adjustment factors. These large 

variations, in turn, tend to increase the variance of the estimators based on the adjusted 

weights. Large condition numbers are usually the result (see Pizer 1975, p.  92) of some 

columns of the matrices being inverted representing hyperplanes that are nearly parallel 

or, equivalently, the columns are neatly linearly dependent. One technique for identifying 

groups of nearly linearly dependent columns is described In Chapter 8 of Montgomery and 

10 
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Peck (1982). Another method, described In Subsection 4.2, was found to be more 

effective at reducing the condition number of the matrix to be Inverted without eliminating 

a large number of constraints. 

Having discarded constraints for being nearly linearly dependent, the weighting 

adjustment factors are calculated. If they result in the adjusted weights falling outside the 

range (1, 25] (these will be called outlier weights), additional constraints are discarded as 

described In Subsection 4.2. 

Before discarding constraints for being linearly dependent, nearly linearly dependent or 

causing outlier weights, some constraints are discarded because their size (as defined 

earlier) is less than 60. This Is done to save computational resources since these small 

constraints are frequently discarded later in processing for one of the other three reasons. 

In addition, discarding constraints on the basis of size ensures that the same constraints 

will be discarded for every sample. This is an advantage because the estimator of the 

variance of the GLS estimator does not take into account the variability introduced by 

somewhat different constraints being dropped for different samples. This can cause a 

downward bias in the estimator of the variance as shown in the Monte Carlo study of 

Section 5. For similar reasons, the two groups of constraints used in the first step 

weighting adjustment are defined based on size so that similar partitionings will result for 

all possible samples in that WA. 

Because constraints of size less than 60 are discarded, it was decided to combine any 

EAs with a population of less than 60 households with the smallest EA having a population 

of 60 or more and treat them as a single EA when calculating the first step weighting 

adjustment factors. 

4.2 Details of Methods Used to Discard Constraints 

First, all constraints of size less than 60 are immediately discarded. Next, the 

matrix (0) 'y1 
(0) 

 Is calculated (with the small constraints dropped). Then this 

matrix is assessed for linearly dependent constraints. (It can be shown that If a set of 

11 
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columns for the matrix .A (0) 	(0) 
are linearly dependent that the corresponding 

columns of the matrix A (0) 
 are linearly dependent.) In some cases, sets of constraints 

which are always linearly dependent can be identified before processing begins. In other 

cases, the SAS/IML HERMITE function can be used to identify sets of constraints which 

are linearly dependent. It does this by using elementary row operations to reduce the 

matrices being inverted to Hermite normal form (see GraybilI 1969, p.  120). The smallest 

constraint in a set is dropped. 

Next, constraints are discarded in order to lower the condition number of the 

matrix (0) 
. To do this, the matrix (0) 

is recalculated based on 

only the two largest constraints (number of households and number of persons at the WA 

level), resulting In a 2 x 2 matrix. If the condition number of the (0)'V-12  0) matrix 

exceeds 1,000, the constraint number of persons is discarded. Otherwise, both 

constraints are retained. Then the next largest constraint is added, the 

matrix 2° 'v'? (0) 
 is recalculated and its condition number is determined. If the 

condition number Increases by more than 1,000, the constraint Just added is discarded. 

Otherwise, it is retained. This process continues until all constraints have been checked 

In this fashion. The number 1,000 was selected because it was found to retain a large 

number of constraints while at the same time significantly reducing the size of the final 

condition number. If, after dropping these nearly linearly dependent constraints, the 

condition number of the matrix 2° 'v12 (0) 
 exceeds 10,000 (which rarely happens 

with Census data), additional constraints are dropped. Constraints are dropped in 

descending order of the amount by which they increased the condition number when they 

were initially included in the matrix. 	The condition number of the 

matrix 	 Is recalculated each time a constraint is dropped. When the 

condition number drops below 10000, no more constraints are dropped. Any constraints 

dropped up to this point are not used In the weighting calculations which follow. 

Before calculating the first step weighting adjustment factors c g,
for the gth  EA, the 

remaining constraints are dropped as necessary because they are small for the g" 
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The constraints which remain are partitioned into two groups, as described in Subsection 

• 	 3.2. Then 2 0)  'v2 	is calculated and linearly dependent constraints are identified 

and dropped (constraints which are linearly dependent at the EA level may not be linearly 

• 	 dependent at the WA level). Based on the remaining constraints, the first step weighting 

adjustment factors 	are calculated. If any of the first step adjusted weights Wghr  tall 

outside the range [1,25], addItional constraints are dropped. A method similar to that 

used to discard nearly linearly dependent constraints is applied here except that a 

constraint Is discarded If It causes outlier weights. In the Interests of computational 

efficiency, however, the bisection method (see Plzer 1975, p.187) is used to identify the 

constraints which should be dropped. 

Next, the second step weighting adjustment factors C are calculated based on those 

constraints that were not discarded for being small, linearly dependent or nearly linearly 

dependent based on the Initial analysis of the matrix 2° 'v 12 	. If any of the 

second step adjusted weights Wgh=Cgh  w 	fall outside the range [1,25], then additional 

constraints are dropped from the matrix 2 (A) 	(A) using the method outlined for 

the first step weighting adjustment. 

5. A MONTE CARLO STUDY 

A Monte Carlo study was done to assess the size of the bias of the two step GLS 

estimator as well as the bias of different estimators of the variance. In addition, It was 

used to finalize the criteria for discarding Constraints for being small or nearly linearly 

dependent. The majority of the constraints are discarded based on properties of the 

sample rather than the population. Consequently, different constraints can be discarded 

with different samples. This might cause an Increase in the variance of the two step GLS 

estimator which would not be accounted for in the estimates of variance (and hence 

downward bias them). Thus the criteria for discarding constraints were chosen to 

maximize the consistency of the constraints discarded from sample to sample while at the 

same time retaining as many constraints as possible. 

A WA with seven EAs was created for this study from five similar 1986 Census WAs. 

13 
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It contained only sampled households. The households in each EA were partitioned into 

five systematic samples. The 57 = 78,125 possible combinations of EA level systematic 

samples were then formed into 15625 clusters of five disjoint systematic samples each. 

Thus, each household In the WA fell in one and only one of the five systematic samples 

for each cluster. A random sample of 50 clusters (250 samples) for use In the Monte 

Carlo study was selected without replacement from the 15,625 clusters. Clusters of 

samples were selected rather than a simple random sample of samples because it was 

determined that the lntracluster correlation coefficient of the estimates of variance was 

negative for the majority of the characteristics being examined. Thus more precise 

estimators of the bias of the variance estimators resulted. 

For each selected sample, the two step GLS weights were calculated and applied to 

produce estimates for 31 EA level and 39 WA level person and household characteristics 

known only on a sample basis in the Census. All characteristics applied to 60 or more 

households in the population. For each characteristic, its estimated relative bias (the 
1.0 	 difference between the 

average estimate and the 
0.6 	 population 	count, 

expressed as a 

1 0.6 	 . 	 /. 	
percentage 	of the 

0.5
. 	 /........................

population 	count) 	was 

0.4 	 . . 	 . . 	 calculated. 	The results 

0.3 2 	are summarized in Figure 

02 	 1. The plot provides the 

0.1 	.. 	. 	. 	 empirical 	cumulative 

0.0 	distribution 	function 
.4 	4 	.4 	-2 	—1 	0 	1 	2 	3 	(ECDF) for the estimated 

((*verg. Citimot. - Po 

relative bias over all 
Figure L ECDF of Relative Bias of GIS Estimoles 	 characteristics. 	The 

absolute value of the 
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estimated relative bias for the characteristics ranges from almost zero to as high as 4.7%, 

although it Is less than 2% for most characteristics. It Is less than 1% for the majority of 

the characteristics with a population count greater than the median value for the 

characteristics considered. The bias Is similar for EA and WA level characteristics. The 

estimated standard errors for the estimates of the relative bias were all below 0.2. 

For each sample and each characteristic, the estimated variance of the two step GLS 

estimator was calculated in four ways. First, z and z were calculated as described 

in Subsection 3.3. They were then substituted into the standard estimator for the variance 

of a stratified Horvitz-Thompson estimator. The estimates of the variance which resulted 

will be labelled Vh (z) and vh  (z) respectively. These two estimators of the 

variance were calculated under the assumption that a simple random sample was selected 

from each EA while in reality, a systematic sample was selected from each EA. Wotter 

(1985, p.250) suggests regarding the systematic sample as a stratified random sample with 

two households selected from each successive stratum of ten households. z and 

can be substituted into the variance formula which results from making this 

assumption. The estimates of the variance generated in this way will be 

labelled v8  (z) and v5  (z1 ) respectively. The estimated relative bias of each of 

these four estimators of the variance was calculated as the difference between the average 

value of the estimated variance and an unbiased estimate of the mean square error of the 

two step GLS estimator, expressed as a percentage of the estimate of the mean square 

error. 

Figure 2 provIdes ECDFs of the estimated relative bias of the variance estimators for 

WA and EA level characteristics separately. It can be seen that the relative bias is 

negative for the majority of the WA level characteristics. This is particularly pronounced 

for v5  (z) and v9  (1) . The relative biases of Vh (z) and Vh (z) are both 

relatively small with the bias of vh  (z') being generally slightly less negative (or more 

positive) than vh  (z) . The biases for the characteristics at the EA level are evenly 

distributed between positive and negative for Vh  (z) and Vh (z*) , while they are 
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Figure 2. ECDFs of the Estimated Relative Bias of the Variance Estimators. 

(-) 	V (z) , (-) 	Vh (z) , (- - -) = v9  (z)  
v8 (z) 

mostly negative for v8  (z) and v9  (z') . v4  (z) will be used In the numerical 

example of Section 6 since it is so similar to vh  (z') , and is much less downward 

biased than v8  (z) and v5 (z*) . The estimated standard errors of the estimated 

relative bias of all four variance estimators ranged from 2.3 to 8.6 at the EA level, and 

from 3.1 to 11.0 at the WA level. 

Note that since the estimates of variance at the WA level are Just sums of EA level 

estimates, the pattern of the bias should be similar for both EA and WA level 

characteristics. The fact that downward bias was found for more WA level than EA level 

characteristics is due simply to the fact that different characteristics were studied at the 

two levels. This was done to maximize the diversity of the characteristics examined. 
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The negative biases are not unexpected because the variance estimates do not account 

for the variability Introduced by somewhat different constraints being dropped in each 

sample. Also, Rao (1968) has shown that the estimated variance for a regression 

estimator can be badly downward biased when the sample Is small. 

Estimates of the variance were also calculated regarding the systematic sample as a 

stratified random sample with 4 households selected from each successive stratum of 20 

households. This estimator was as badly downward biased as v5  (z) 

The above results were achieved by dropping constraints less than 60 in size for 

smallness and by dropping constraints for near linear dependence If they caused the 

condition number to Increase by 1,000 or more. The Monte Carlo study was repeated 

using other values for these two parameters. It was found, however, that the values 60 

and 1000 tended to minimize the bias of the variance estimators while retaining a 

reasonable number of constraints. 

A repeat of the Monte Carlo study on a different WA (but only for 25 samples) indicated 

that the variance estimator for a given characteristic can be downward biased for one WA 

and upward biased for another. Also, the variance estimator for a given characteristic was 

often downward biased for one or more EAs and upward biased for one or more other 

EAs. Consequently, the bias should be smaller than that shown in Figure 2 for estimates 

at geographic levels above WA, since some of the bias should cancel out. 

6. APPLYING THE TWO STEP GLS ESTIMATOR TO CENSUS DATA 

To assess Its performance, the two step GLS estimation method was applied to a 

sample of 79 WAs using 1986 Census data. The sampled WAs were selected from a rural 

Alberta Census Division (CD) and two urban CDs (Toronto and Montreal). All 24 WAs 

from the rural CD were selected. The WAs In the urban CDs were partitioned Into 27 

strata based on household and person characteristics, and 55 WAs were sampled. A total 

of 62 WA level constraints were applied plus the two EA level constraints for each EA. 

No EA level constraints were defined for the smallest EA In each WA, however, since they 

would have been discarded for being linearly dependent with the other EA level 
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constraints. Since there were 7.4 EAs on average for the sampled WAs, an average of 

74.8 WA and EA level constraints were initially applied to each WA. In the discussion 

which follows, all counts of constraints will be taken to be averages. The constraints and 

estimation algorithm applied to these 79 WAs were identical to those used to calculate the 

adjusted weights for the 5,730 WAs in the 1991 Census. 

FIrst, 7.7 constraints were discarded for being small. 	Then, when 

the 2( 0 ) 'T/2 (0) 
matrix was assessed, 6.6 constraints were discarded for being linearly 

dependent and 9.8 constraints were discarded for being nearly linearly dependent. As a 

result, 50.7 of the original 74.8 constraints were retained, of which 40.4 were WA level 

constraints. The initial average condition number of 2 (0)'v2 (0) after discarding 

small and linearly dependent constraints was 2,392,056. The average condition number 

of 2 0  'v 12 after discarding nearly linearly dependent constraints was 6,350. 

Then, at the EA level, before the first step weighting adjustments were calculated, 22.3 

of the 40.4 WA level constraints were discarded for being small. This left 18.1 WA level 

constraints to be partitioned into two groups of 9.0 each at the EA level. After discarding 

0.1 linearly dependent constraints per group as well as 1.0 constraints per group for 

causing outlier weights, the number of WA ieel constraints in each of the two groups was 

8.0. The average condition number of the 2 V2 r°  matrix was 379 after 

discarding the constraints which caused outlier weights. 

At the second step weighting adjustment, 7.4 of the 50.7 WA and EA level constraints 

were dropped for causing outlier weights. This left 43.3 constraints that were used to 

determine the second step weighting adjustments. The average condition number of the 

(A) 'v'2 (A)  matrix was 4,855 after discarding the constraints which caused outlier 

weights. 

The differences between known population counts and the corresponding sample 

estimates for 68 selected characteristics appearing in Census publications were calculated 

at both the EA and WA levels, for all 79 WAs. The absolute values of the relative 

population/estimate differences are summarized as ECDFs in Figure 3 for two step GLS 

estimates, one step GLS estimates using the approach outlined in Section 2, rakIng ratio 
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Figure 3. ECDFs of the Absolute Values of the Relative Differences Between the 

Sample Estimates and the Population Counts. 
(-) = Two Step GLS, (---) = One Step 

GLS, (- - -) = 1986 Raking Ratio, (- -) = Horvitz-Thompson. The relative 

differences for large characteristics (> median value) are plotted separately from the 

relative differences for small characteristics (<= median value). 
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estimates based on the 1986 Census weights (see Brackstone and Rao 1979, for a 

description of the raking ratio weighting methodology), and Horvltz-Thompson estimates 

using the initial weights W °  . Differences for each characteristic were only Included 

for EAs and WAs in which the characteristic applied to at least 60 households. All relative 

population/estimate differences are In percentage terms. Figure 3 shows that the two step 

GLS estimator in general produced much smaller population/estimate differences than the 

one step GLS estimator at the EA level, while producing differences of similar size at the 

WA level. Compared to the 1986 raking ratio and Horvitz-Thompson estimators, the two 

step GLS estimator In general produced much smaller differences at both the EA and WA 

levels. The constraints used with the two step GLS estimator more closely represent 

those characteristics which appear in Census publications than the constraints used with 

the 1986 raking ratio estimator. This contributed to the smaller differences at both the EA 

and WA levels while the first step of the weight calculations also contributed to the 

smaller EA level differences. It is worth noting that, in general, the differences are 

actually larger at the EA level for the 1986 raking ratio estimator than for the Horvltz-

Thompson estimator. 

For the 79 WAs, estimated coefficients of variation (CVs) were calculated for estimates 

of 507 EA level and 642 WA level characteristics (all of which applied to at least an 

estimated 60 households in the population) known only on a sample basis. Estimated 

CVs of two step GLS estimators are compared in Figure 4 to estimated CVs of 

corresponding 1986 raking ratio estimators and Horvitz-Thompson estimators. All CVs are 

In percentage terms. Figure 4 shows that the two step GLS estimator generally had 

smaller CVs than both the 1986 raking ratio and Horvitz-Thompson estimators, especially 

at the EA level. 

The two step GLS weIghting procedure and the associated methodology for discarding 

constraints also worked well for the 5,730 WAs in the 1991 Canadian Census. Compared 

to the 1986 Census, population/estimate differences In the 1991 Census were dramatically 

reduced at the EA level for most characteristics. At the Census Division level, 

population/estimate differences were reduced for two thirds of the characteristics 

examined. 
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(—) = Two Step GLS, 
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characteristics (> median value) are plotted separately from the CVs for small 

characteristics (<= median value). 
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7. ALTERNATIVE ESTIMATION METHODS 

Rather than dropping constraints to eliminate outlier weights, Deville and Sarndal (1992) 
G n. 

suggest using alternative distance measures of the form DT= 	2 DT  ( Cg ) (with 
g-i h-i 

T equalling R (raking ratio) or L (logit)) where DR (Cgh) = CghlOg ( Cgh )  Cghl]. 

DL(Cgh) = 	1  [(cghL)1n( 
CL)+(u_cg) 

 ln( 

(1-L)(U-1) and L < 1 < U. It can be demonstrated that c 9,, will fall in the range (LU) for 

the logit estimator while c, is always positive for the raking ratio estimator. With both 

distance measures, c, can be determined by solving a system of non-linear equations 

using the Newton-Raphson (N-R) iterative method (see Pizer, 1975, p. 230). 

A two step logit estimator was calculated for a sample of 12 of the 79 WAs studied In 

Section 6. In the Census, it is desired to bound the adjusted weights in the range [1.25]. 

Thus a lower bound (MINWT) and an upper bound (MAXWT) on the adjusted weights 

were defined. Then at the first step, L = MINWT/ w° while U = MAXW/ were 

calculated separately for each EA where MINWT =1.5 and MAXWT = 25. At the second 

step, L = MINWT/(Mlnlmum value of W 	in the WA) while U = MAXWT/(Maximum 

value of 	In the WA) where MINWT = 1 and MAXWT = 37.5. MINWT was set equal 

to 1.5 in the first step so that L in the second step would be smaller than 1/1.5 = 0.66. 

Similarly, the values of MAXWT were chosen such that U > 37.5/25 = 1.5 in the second 

step. Having values of L and U closer to 1 could have resulted in the logit iterative 

process not converging, or the distribution of the weighting adjustment factors at the 

second step could have been clustered around L and U. For the 12 WAs, the largest two 

step logit weight was less than 25 even though MAXWT = 37.5 at the second step. 

The two step logit estimation procedure used identical criteria to those used with the 
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two step GLS estimator for discarding constraints for smallness, linear dependence and 

near linear dependence. The two step logit estimator procedure discarded additional 

constraints if the matrix being inverted in the N-A iterative process was singular or had a 

condition number exceedIng 10,000. At the EA level, on average 0.1 constraInts were 

discarded from each of the two groups of constraints for this reason. At the WA level, 3.4 

constraints were discarded on average for this reason. With the two step GLS estimator 

for the same 12 WAs, the corresponding average number of constraints discarded for 

causing weights outside the range [1,25] were 1.2 and 9.0 respectIvely. The absolute 

value of the relative population/estimate differences for the two step logit estimator were 

compared to those for the two step GLS estimators. For WA level characteristics equal 

to or less Than the median value, it was found that approximately 50% of the two step 

logit estimators had zero relative population/estimate differences compared to 38% of the 

two step GLS estimators. In contrast, however, the ECDF for EA level characteristics 

above the median value for the two step logit estimator was somewhat to the right of the 

ECDF for tie Two step GLS estimator. Thus the population/estimate differences were not 

consistently reduced. 

Deville and Särndai (1992) recommend using the estimated variance of the one step 

GLS estimator as an estimate of the variance of the one step logit estimator since the 

asymptotic variances of the two estimators are equal. It is reasonable, therefore, to 

consider using the estimated variance of the two step GLS estimator as an estimate of the 

variance of the two step logit estimator. In both cases, the same constraints retained with 

the logit estimator would be used with the GLS estimator. This could, however, result in 

negative weights being generated at both the first and second steps for the GLS estimator. 
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The IA matrix at the second step would have to be defined as V=diag(x1) 

Otherwise, It would not be positive definite If some of the weights W 	were negative. 

A Monte Carlo study would be required to assess the accuracy of using the estimated 

variance of a two step GLS estimator with some negative weights as the estimated 

variance of a two step log it estimator with all weights greater than 1. 

8. CONCLUDING REMARKS 

The two step GLS estimator worked well, with no manual Intervention, on all 5,730 WAs 

In the 1991 Canadian Census. Adjusting the initial weights in two steps substantially 

reduced the population/estimate discrepancies and CVs for small areas compared to 

methods used In the 1986 Census. Discarding constraints to eliminate adjusted weights 

less than 1 and to lower the condition numbers of matrices being Inverted also proved 

effective. The computational costs of determining these adjusted weights and estimating 

the variances of the resulting estimators were very reasonable. 

There are a number of areas of possible research for the 1996 Canadian Census. The 

logit estimator should be examined further since It may allow more constraints to be 

retained. A Monte Carlo study could be done to determine If the estimated variance of 

the two step GLS estimator provides a good estimate of the variance of the two step loglt 

estimator. Alternative methods of partitioning the constraints In the first step and 

discarding constraints for near linear dependence or causIng weights less than 1 could 

be considered. Ways of reducing the bias of the estimators of the variance could also be 

studied. 
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