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Application de méthodes de 
reéchantillonnage A l'estimation de Ia 
variance du coefficient Gini 

Resampling Procedures Applied to 
Variance Estimation of the Gini 
Coefficient Estimator 

Abstract 
Resampling methods are often considered 
for variance estimation of complex 
statistics estimated from stratified 
multistage designs. Three techniques, the 
balanced repeated replication, the 
jackknife and the bootstrap are considered 
here for the Gini coefficient. Using 
income data from the Survey of Consumer 
Finances, the jackknife and bootstrap 
methods are implemented and compared. 

Key words: Gini coefficient, variance 
estimation, confidence intervals, balanced 
repeated replications, jackknife, bootstrap. 

Résumé 
Les méthodes de reechantillonnage sont 
souvent employees pour estimer Ia 
variance de statistiques complexes 
estimées a partir d'un plan de sondage 
stratifié et a plusieurs degrés. Nous 
étudions l'application des méthodes des 
repliques equilibrees répétées, de 
Quenouille-Tukey et d'auto-amorcage 
pour le coefficient Gini. Les deux 
dernières techniques sont mises en 
pratique en utilisant des données 
provenant de l'enquête sur les finances 
des consommateurs. 

Mots clefs: coefficient Gini, estimation de 
la variance, intervalles de confiance, 
répliques equilibrees repétées, Quenouille-
Tukey, auto-amorçage. 
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1 Introduction 
litcoine inequality measures are used to study the shape and evolution over time of the size 
distribution of income. These quantities can be estimated from sample surveys. However, 
since these estimates are complex statistics, conventional variance estimation techniques 
fail and one has to rely on methods such as resampling procedures to provide information 
about sampling variability. 

This paper presents three resampling methods for evaluating the variance of the Cmi 
coefficient estimate: balanced repeated replication, jackknife and bootstrap. Using 1988 
data from the Canadian Survey of Consumer Finance (SCF), the last two methods are 
implemented to obtain variance estimates and confidence intervals for the Gini coefficient. 

2 Lorenz Curve and the Gini Coefficient 
The distribution of income among the population can be depicted by observing the share 
of income received by the poorest p percent of the population. The Lorenz curve, which 
consists of plotting the cumulated percentage of the population (displayed from poorest to 
richest) against the percentage of total wealth held by that group, is a graphical represen-
tation of that quantity. 

Perfect income equality is attained when the poorest p percent of the population receives 
p percent of the total income. As a result, the doser the Lorenz curve is to the diagonal 
in the Loreuz diagram, the lesser is the inequality in the distribution. This distance is 
measured by the area between the diagonal and the Lorenz curve: it is called the Lorenz 
area (LA). The Gini coefficient is defined as the ratio between the LA and the largest 
possible LA: G = 2LA, and hence 0 < G < 1. 

Let F(y) denote the distribution function of a variable Y (e.g. household income) with 
finite mean p =  ffL ydF(y) 0. The share of the poorest p = F(y) percent of the 
population can then be expressed as L(p) = /f 1  f! tdF(i). If we define the inverse of the 
distribution function as 

F'(p) - 
 ' inf{yIF(y)>0} ifp=O 

- i inf{yIF(y) ~!p} if0<p<1 

the Lorenz curve ordinate with abscissa p can be written as L(p) = f0f F -1 (t)dt//2. The 

LA is then given by f(p - L(p))dp and the Gini coefficient by 2f(p- L(p))dp. The Gini 
coefficient can also be written as 

G 
- JJ[2F(y) - 1]ydF() 

/2 

(see Nygârd and Sandström, 1985b). 
Computation of the Gini coefficient in a finite population is done as follows. The finite 

population distribution function FN is defined as 
N 

FN(y) = N'>I{y S y} 
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where I{.} is the indicator function which takes the value 1 if {.} is true, and 0 otherwise. 
Suppose there are N 	N distinct values of y. We define the probability function at 
where Y(i) < Y(2) < 	< 	as 

fN(Y()) = FN(y(1)) - FN(y(,_l)). 

For unordered distinct values y,, the Gini coefficient becomes 

	

GN = 	
[2FN(y1 ) — 1 — fN(Y1)]YfN(Yi) 	 (2.1) 

1N 

where ItN = E yfN(ys) and the term — fN(y) appearing within the brackets is the 
Gini finite population correction (Gfpc). In the case where no tied values are present, 
fN(y1) = 11N, FN(y(1)) = i/N, AN = y1 1N and we can write 

GN = ,i 	- 1 - * 1 Y() = __________ - 1. 
I4NN 	 EI=1YI 

In the case of survey samples, we have a sample a of n observations Yl,. . ., y,, to which 
are attached the corresponding weights w1,.. . , w,. Define ti', = w,/11 where N tiE' wi 
An estimator of the finite population distribution function FN is 

WjIlyjPN(y) = 	 = 	ihI{y y}. 
jE. 	N jEs 

Also AN = EiE-WiYi and fN(y(1)) = PN(Y()) - FN(Y(-1)) = ti,, i.e., the Gfpc for the i-th 
observation is ti,. Hence, from (2.1), 

	

GN = ihN1 	[2EN(y1) - 1 - ti),]ti;,y1 
lEa 

- 2E1€.FN(yl)ti,yI —1— fvi'yi (2.2) 
- 	s E s WYi 	 iE.WtYt 

Note that if we omit the Gfpc, the last term of (2.2) vanishes. 

3 Variance Estimation 
The Gith coefficient is defined in terms of the finite population distribution function FN.  It is 
therefore a complex statistic whose variance cannot be expressed by a simple formula nor can 
it be easily estimated by conventional means. Its variance may be approximated by variance 
estimation techniques such as balanced repeated replication, jackknife and bootstrap. 

The main quality of these methods is that they use a single variance formula for all 
statistics. Hence, though the following description involves 0's, it applies to the Gini coef-
ficient GN = G(FN). Also, to reflect their application to the SCF, the three methods are 
described for stratified multistage designs with unequal number of clusters selected in each 



stratum. (An overview of the SCF design is given in the next section.) In order that the 
results for the balanced repeated replication and jackknife methods be valid, we assume that 
the clusters are selected with replacement and that independent subsamples are selected 
within dusters selected more than once. 

3.1 Balanced Repeated Replication 
Many surveys employ stratification to the extent that only a few primary units are selected 
from each stratum. For the case n h = 2 dusters per stratum, the balanced repeated 
replication (BRR) method is commonly used for variance estimation of the parameter of 
interest 0 (see Wolter, 1985, chapter 3). 

The BRR method can be extended to the case nh ~ 2 clusters per stratum. Furthermore, 

the case of unequal nh in each stratum must be considered for surveys such as the SCF. 
Wu (1991) proposed the following method. A set of R replicates are formed by selecting 
one sample unit from each stratum. This set is defined by a R x L design matrix (a), 
r = 1,. . . , R, h = 1,. . . , L with  br = 1,. . ., ni,, say, depending on whether the first, second, 

or nh-th  sample cluster is in the h-th stratum of the r-th replicate. Ideally, all columns of 
the matrix should be mutually orthogonal, i.e., each combination of selected dusters should 
appear equally often. This orthogona.lity condition results however in a large number of 
required replicates R, for general nh. Furthermore, orthogonal matrices do not exist for all 
combinations of nh'S.  One solution consists of using mixed orthogonal arrays of strength 2. 

A mixed orthogonal array of strength d, (R, n1x ... X n, d) is an R x L matrix whose h-th 

column has n h symbols (say 1, . . . , n,) arranged such that for any d columns, each possible 
combination of symbols appears equally often. Only tables of strength 2 are considered 
since no major gain in efficiency is obtained by considering d > 3, while the number of 

required replications, R, increases considerably. 
The variability between the R replicate estimates approximates the sampling variance 

of the estimator O (e.g. O jv  = G(PN)). Let ö) be the estimator of 0 obtained from the r-th 

replicate. The estimator g(r)  is calculated by using the weight adjustments obtained from 
formula (6) in Wu (1991). The weight of the i-th element of the c-th duster of stratum h, 

Whcj, is transformed at the r-th replication to where 

+ 	1 if the (hci)-th element is selected in replicate r 

) 1 - ,J___ 	otherwise. 

The computation of ö(')  is then performed by using the modified weights in the formula for 

0. A BRR variance estimator of 0 is given by 
R 

VBRR(0) = 	((r) - Ô) 2 	 (3.3) 
r 1 

If ö() 	Er O(r)/R is substituted for i in (3.3), another variant of the BRR variance esti- 
mator is obtained. 

The mixed orthogonal array approach may not be applicable to all cases. The mixed-
orthogonality condition leads to the same problems as above. In order to find an economical 
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mixed orthogonal array, the n i, clusters in stratum h can be grouped into two to four groups 
of clusters. The BRR method can then be applied to the groups by treating them as units. 
Given the large number of clusters in some strata of the SCF (e.g. flh = 16), the grouped 
BRR method seems suitable for this survey. 

3.2 Jackknife 

The jackknife method was first developed to approximate the variance of smooth functions 
O of independent, identically distributed (i.i.d.) observations. The method roughly consists 
of computing ö, the estimate obtained from omitting the i-th observation (i = l... ,n = 

nh) and then estimating the variance by the variability among these replicate statistics. 
Kovar, Rao and Wu (1988) showed the inconsistency of the jackknife variance estima-

tor for non-smooth statistics. A generalized version of this method, the delete-one cluster 
jackknife, has been shown to perform adequately (see Shao and Wu, 1989; Rao, Wu and 
Yue, 1992). In particular, Shao (1993) showed that under weak conditions, the asymp-
totic variance of the Gini coefficient can be consistently estimated by delete-one duster 
jackkniflng. - 

The Gini coefficient estimator can be expressed as 0 = G(FN) where PN is the estimated 
distribution function. Let F(93 ) be the estimator of the distribution function based on the 
subsample obtained by removing the j-th duster of the g-th stratum, (j = l . . . , n; g = 
1,.. 

th'hJ{Yhi !~ y} 
(hci) E $ 
(hc) (gj) 

where WFh* = Wlhci/ 	wj are the normalized weights modified for the jackknife proce- 
dure. To compensate for the removal, the weights are adjusted to 

I 
WFhc* = 	A(,j ) wh6  h = g, c j 

10 	h=g,c=j. 

Wishing to keep E5 w' = E .  W, Kovaevi and Pa.ndher (1993) define 

A( ) = 
- 	 - N9  - N9, 

where II9 = 	, Wgcj and Z1, =  E i  ivgii. The usual adjustment factor is 

 n. 
- - 1 

When the primary sampling units (clusters) are selected with probability proportional to 
cluster size, however, the two are equal. -  Normalization of the mo dified weights is att ained 
by dividing w'hcj  by N = E Whci or N + [N9  - n9 N91] depending on which of the 
adjustments (3.4) or (3.5) is applied. 

(3.4) 

(3.5) 
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In both cases, a delete-one cluster jackknife estimator of the variance of O is given by 
no  

vji(Ô) = 	
n — 1 	

(Ô(9) - 	 ( 3.6) 
g=1 flg j=1 

where Ô(g)  = G(P(93 )). A variation of(3.6) is obtained by changing 9 to O() = Eg Fj  8(g2) /fl 

T19 

VJ2(0) = 	
n9  - 1 	- 9)2 	(3.7) 

g=1 ngj=I 

3.3 Bootstrap 
The principle of the bootstrap method is to select with replacement a large number of sam-
ples from the original sample. The variability between the estimates 9*  of these bootstrap 
samples approximates the variance of the estimator 9. 

Efron (1982) gave a Monte Carlo algorithm for estimating the variance of the estimator 
O in the i.i.d. case. Rao and Wu (1988) extended this method to stratified multistage 
designs, covering smooth as well as non-smooth statistics. Their method is the following. 

Independently for each stratum h, a simple random sample of mh clusters is drawn with 
replacement from the n1, sample dusters. In order to ensure consistency of the bootstrap 
variance estimator, the survey weights, whj , are rescaled to the bootstrap weights = 
A,jWhj where 	 __ 

A, = 1 — /_ 	+ / _
mh
____ 

---m 	 (3.8) v 

	

Vflh -1 	nh — lmh 

and m counts the number of times the (hc)-th sample duster is selected 	m = mh). 
Note that if m' = 0, the last term of (3.8) disappears. The choice of m, :5 nh — 1 ensures 
that the bootstrap weights w 	are all positive if wh6 > 0 for all (hci) E s. Also, if 

Mh = n, - 1, the adjustment lactor reduces to 	The bootstrap estimate 9  is 

obtained by using the bootstrap weights w, in the formula for 0. hC 
This procedure is repeated independently a large number, B, of times and yields the 

bootstrap estimates 9,. . . , 9. The estimator 

VB1(9) = 	— 01 2 	 (3.9) 

approximates the bootstrap variance estimator E.(9 - E9*)2 , where E. denotes the ex-
pectation with respect to bootstrap sampling. Another variance estimator is obtained by 
substituting 9 by = Eb 6/B: 

VB2(9) 	>[9* - 0s 1 2 	(3.10) 

b= I 

This estimator yields a lower estimate value than vBl(0)  since 	- x ] 2  is minimized at 
x = 6. Finally, note that a Monte Carlo error affects the variance estimates since different 
estimate values are obtained for different bootstrap samples. 
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4 Canadian Survey of Consumer Finance (SCF) 

The Canadian Survey of Consumer Finance (SCF) is a special survey conducted by Statistics 
Canada every two years to collect information about the financial situation of households. 
The SCF uses the sample frame and sampling procedures of the Canadian Labour Force 
Survey (LFS), whose framework is based on a stratified, multistage design. A detailed 
description of the LFS design is given in Singh et al. (1990). 

Two characteristics of this design are particularly relevant to the application of repeated 
sampling methods to variance estimation of the Gini coefficient estimate. First, dusters in 
the LFS are selected with probability proportional to sizes without replacement. At the 
variance estimation stage however, clusters are treated as though they were selected with 
replacement, and subsampling done independently each time a cluster is selected, to simplify 
the calculations. Second, the final weight attached to each record is the result of complex 
operations. The basic weight (inverse of sampling ratio) is first corrected for factors such as 
xionresponse. A generalized regression estimator is then used to ensure consistency of the 
sample with known totals of some relevant post-stratification variables. 

5 Application of Jackknife and Bootstrap to SCF 

The application of jackknife and bootstrap resampling methods to obtain variance estimates 
for GN  is illustrated by using family income data collected in the SCF in 1988 (SCF-88). 
The file on the disposable income of economic families obtained for the province of Ontario 
was used. Disposable income is defined as the total income reduced by the tax reported in 
the survey. 

The SCF-88 Ontario sample comprised 7474 households grouped into 525 clusters allo-
cated in 91 strata. The number of dusters in each stratum varies from 2 to 16 as shown in 
this table: 

# clusters in stratum 	2 3 	4 5 6 	8 10 12 14 16 
Frequency 	36 2 12 1 5 18 10 	4 	4 	1 

5.1 Gini Coefficient Estimate 

Figure 1 shows the empirical distribution function of family income obtained from the SCF-
88 sample in Ontario. The corresponding Lorenz curve appears in Figure 2. 

Given the complexity of the survey weights in the SCF, the Gfpc is dropped and the 
Gini coefficient estimator (2.2) becomes 

GN = 2d18 
FN(Yhci)Whciyhc 

- 1. 
(hci)Ea tLJhcjYhc 

The new subscript notation indicates the multiple stages of the data. The index hci refers 
to the i-th unit in the c-th cluster of stratum h. The Gini coefficient estimate obtained from 
the SCF-88 Ontario data is Gv = 0.34836. 
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Method 	 Estimated Variance 
Vfj 	92 

Jackknife-i (f = J) .000024010 .000024009 

Jackknife-2 (t = J) .000022694 .000022694 

Bootstrap (t = B) 	.000029846 .000023816 
NOTE: vj, V.13,  VBI and 0B2 refer respectively to Equations (3.6), (3.7), (3.9) and (3.10). 

Table 1: Estimated variance for the Gini coefficient estimate obtained from the SCF-88 
sample for Ontario. 

5.2 Variance Estimates 

Three techniques were applied to the SCF-88 Ontario data to estimate the variance of 
the Gini coefficient estimator: two variants of the delete-one cluster jackknife and the 
bootstrap. The delete-one duster jackknife procedure was implemented for both weight 
adjustments (3.4) and (3.5). Call these variants jackknife-i and jackknife-2 respectively. 
in each case, the variance of the Gini coefficient was estimated with estimators (3.6) and 
(3.7). The validity of these estimators is based on the assumption that the clusters are 
selected independently, which is approximately true for the LFS design. In that case, the 
jackknife variance estimator tends to slightly overestimate the variance and, therefore, is 
conservative. 

The bootstrap method was implemented with B = 525 iterations so that the number of 
subsamples selected would be the same as in the delete-one duster jackknife applications 
(there are 525 dusters). The size of the subsamples was fixed to mh =nh - 1. This choice 
simplifies the weight adjustment factor (3.8). The bootstrap variance of the Gini coefficient 
estimate was approximated by (3.9) and (3.10). 

Table 1 displays the variance estimates for the estimated Gini coefficient. The jackknife-
1, jackknife-2 and bootstrap SAS programs created to obtain these values are given respec-
tively on pages Al to A3. 

We observe that the two variants v and Vt 2  are much closer in the case of the jackknife 
than for the bootstrap. The bootstrap yields a higher variance estimate when the first 
estimator is used. The second estimated variances (v 2)  are similar. Note that the jackknife-
1 and jackknife-2 procedures do not give the same variance estimates. Hence the condition 
for the equality of the two weight adjustment factors (3.4) and (3.5) does not hold. This 
may be explained by the complexity of the final weight. 

To pursue the comparison of the three procedures, we consider confidence intervals. 
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Figure 3: Frequency histogram of Gim coefficient bootstrap estimates G - SCF-88, Ontario. 

5.3 Confidence Intervals 

Figure 3 presents the frequency histogram of the Gini coefficient bootstrap estimates G, 
b = 1,.. . ,525, obtained from the SCF-88 Ontario sample. 

An approximate 100(1 - a)% confidence interval for GN may be derived from the boot-
strap histogram by using the percentile method which is described as follows. Let 

G,w(ci/2) = inf{GIF.(Gfl 2! a/2) 

and 	G,(a/2) = inf{G'IF.(G') 2! 1 - cx/2} 	(5.11) 

where F,(t) = #{G 	t;b = 1,.. .,B}/B. Then the interval [G w(a/2),G jp(a/2)], 
which consists of the central 1 -a proportion of the bootstrap distribution, is an approximate 
100(1 - a)% confidence interval for GN. 

Visual inspection of Figure 3 reveals that the bootstrap estimates tend to underestimate 

GN. In fact, Prob,{G !~ GN} = #{G 	.34836; b = 1,. . ., B}/B = 68.8%. Efron (1982, 
p.82) suggested a percentile method which corrects the bias when Prob.{Ü' < 	.50, for 
general estimator 0. Taking 0 = GN, define 

G(a12) = inf{GIF,(G) ~! +(zç  - 
and 	G,(o/2) = inf{GflF.(G) ~ 4'(zo-f z01 2 )} 	(5.12) 

where z0  = +'(F.(ON)), z01, 2  = +- '(l - o/2), + is the cumulative distribution function 
of a standard normal and F. is defined as above. The bias corrected percentile method 
consists of taking 

EGL(a/2), G,(a12)] 

as an approximate 100(1 -a)% confidence interval for GN.  Note that if Prob.{G <ON) = 
.50, then z0  = 0, I(z - z012 ) = a/2 and +(zO + z01 2 ) = 1 - a/2, i.e., (5.12) reduces to 
(5.11) and the two confidence intervals are the same. 
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Figure 4: Frequency histogram of jackknife-2 pseudovalues - SCF- 88, Ontario. 

The 95% percentile method and bias-corrected percentile method intervals obtained 
from the bootstrap histogram in Figure 3 are given in Table 2. 

Figure 4 presents the frequency histogram of the Gini coefficient jackknife-2 estimates. 
(The histogram of the jackknife-i estimates is similar and hence is not shown.) The estimate 
O,, called pseudovalue, is obtained from the delete-one duster estimate G(9,) and the 

original sample estimate ON  by the formula 

dgj  = fl9GN - (n9  

The pseudovalues are highly concentrated around the estimate GN = .34836 and, more-
over, symmetrically distributed about that value. This explains why normality is usually 
assumed to produce confidence intervals from jackknife variance estimates. A 100(1 - 
confidence interval based on the normal approximation is given by 

[ON  - z0/2V'iTi3ON + z0 J]. 

The 95% confidence intervals for jackknife-i and jackkn.ife-2 appear in Table 2. Since 
VJj = VJ2 in both cases, only one confidence interval is given for each method. 

The two percentile method bootstrap intervals are asymmetric about GN = .34836 but 
to a different extent. In fact, the bounds of the bias-corrected interval are similar to those 
of the jackknife symmetric intervals. The percentile method interval reflects the tendency 
of the bootstrap to underestimate GN. Interval lengths are similar for all methods. 

Note that an additional variance estimator can be derived from the boostrap intervals 
(5.11) and (5.12) by equating these intervals to the normal theory interval for GN: 

IL.(a)1 	 (5.13) 
2 

v0(ON)= [2z12j  

10 



M E T H 0 D 	 INTERVAL LENGTH 
BOOTSTRAP 
- percentile method [.33706, .35599] 	.01893 
- bias corrected 

	

percentile method [.33873, .35722] 	.01849 

JACKKNIFE-i 	[.33876, .35796] 	.01920 

JACKKNIFE-2 	[.33902, .35770] 	.01868 

Table 2: (Approximate) 95% confidence intervals for the Gini coefficient - SCF-88, Ontario. 

Bootstrap Intervals 	a = .01 	a = .05 	a = .10 	a = .50 
Percentile method 
interval (5.11) 	.000019950 .000023321 .000022516 .000024595 
Bias corrected percentile 
method (5.12) 	.000018805 .000022249 .000026049 .000023720 

Table 3: Variance estimator v0(ON) for different choices of a. 

where L.(cx) is the length of the bootstrap interval of size 1 - a. Values of (5.13) are given 
in Table 3 for different choices of a. 

Clearly, v(GN) depends on a and hence the optimal choice of a has to be found. Note, 
however, that except for values corresponding to a = .01, the variance estimates are similar 
to those in Table 1. 

6 Conclusion 
The variance estimates and confidence intervals obtained result from the application of 
the bootstrap and jackknife procedures to one sample. Thus no major conclusion may be 
drawn from this work. The values in Tables 1 and 2 seem to indicate nonetheless that the 
bootstrap and jackknife techniques lead to similar results. The "best" method should then 
be the one which is the simplest to apply. 

The bootstrap method requires that a new sample be drawn independently at each iter-
ation, and thus is much more computer-intensive than the jackknife, where each subsample 
is predetermined (delete one cluster). The latter method therefore seems preferable. Also. 
since there is no apparent reason to use the weight adjustment factor (3.4) in the delete-one 
jackknife, the usual adjustment factor (3.5) should be used, i.e., we recommend jackkn.ife-2. 
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1994/03/02 12:01 	Filename; JACK.PRG 	 Page 	1 

LIBMAME in 'f:\sasuser '; 
OPT IONS PAGESIZE=55; 
%I.ET nunclust525; 

To print the results. 
------------------------------------------

VJ4ACRO printout(f tie); 
proc print data=&flle; 

title '&file"; 
run; 

%MEND printout; 

--------------------------------------------------*AA. 
*** 	This macro estimates the Gini coefficient 

from the (stt)saep(e. 
--------------------------------------------------

%NACRO estimete(file 1 slzen); 
PROC SORT DATA=saeple; 

BY y; 
RUN; 

PROC SUMMARY DATAsa,,ple; 
VAR wgt wgtedy; 
OUTPUT OUT=est(DROP: freq_ _type_) 

SUM=rthat 
RUN; 	 population size and total Income estimates; 

DATA edf; 
SET san(e; 

> 	IF N zi THEN SET eat; 
— 	topicif + wgt; 

fhat = (topedf/nhat); 	e,pirlcsL distribution function; 
gc a 2 * fhat * wgtedy/yhat; 
RUN; 

PROC SUMMARY DATAedf; 
VAR gc; 
OUTPUT OUT=gindex 

SUMsungc; 
RUN; 

DATA gindex(KEEP=ginicoef ng); 
SET gindex; 
ginicoefsungc - 1; 	 *Gjni coefficient; 
ng:&sizen; 
RUN; 

PROC APPEND BASE = &file 
DATA = gindex; 

RUN; 
%MEND estimate; 

---------------- ...................... ---- 
..........***. 

JACKKNI FING 
At k-th iteration (k=1,...,525) we remove observa- ***; 
tions from the k-th cluster in the san,ie and 

*** adjust the weights of the remaining records in the ***; 
stratun by N-hatg/(N-hatg - N-hatgj) where A**; 
N-hatg = site of the weights in stratun g 
N-hatgj = sun of the weights in cluster k.  
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***. 

%MACRO jackit; 
O i=1 STO &nunctust; 

DATA NULL 
SETcLusers; 
IF N = Si THEN DO; 

CLE SYMPUT('strat,strata); 
CALL SYMPUT( $ repnow' ,rep); 
CALL SYNPUT('smatln',ng); 
CALL SYMPUT('weight',rwt); 
STOP; 

END; 
RUN; 	 *information about cluster to be deleted; 

%put &strat; %put &repnow; %put &sma(ln; %put &weight; 

DATA seiile(KEEPwgt y wgtedy rep); 
SET ontario; 
IF rep=&repnow THEN jackind = 0; 
ELSE IF strata 	&stret THEN jackinthnhatg/(nhatg-&weight); 
ELSE jeckind=1; 
wgt = wt*jackind; 
wgtedy = wgt*y; 
RUN; 	 *wejght adjustment; 

Xest imate( gini jack, &sma I. I 
ZEND; 
%MEND jackit; 

M A I N PROGRAM 

PROC SORT DATA=in.ont_rep 
OUT=clusters(KEEP=strata rep ng rUt); 

BY rep; 
RUN; 

PROC SORT DATA=in.ont_new 
OUT=ontario; 

BY rep; 
RUN; 

DATA saiopLe(KEEP=strata wgt y wgtedy); 
SET ontario; 
wgt = Ut; 
wgtedy = wgt 
RUN; 

PROC SUMMARY DATA5anV(e NWAY; 
BY strata; 
VAR wgt; 
OUTPUT OUTestN 

SUM=nhatg; 
RUN; 	*to determine the sun of the weights in cluster; 

*to be removed; 

DATA ontario(KEEP=strata rep Ut y rihatg); 
MERGE ontario estN; 
BY strata; 
RUN; 

Xestimate(giniest,O); *Glnj index estimate from original sante; 
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Xjackit; 

DATA giniest; 
SET giniest; 
RENAME ginicoef = gchat; 
DROP ng; 
RUN; 

PROC SUMMARY DATMgini jack; 
VAR ginicoef; 
OUTPUT OUT=meanjack(KEEP=gcmeafl) 

MEANgcmean; 
RUN; 

* We conute two variance estimators using: 
* 	1) gchet = Gini index estimate from original saNLe 
* 2) gcmean = mean of the Gini index estimates from 
* 	bootstrap sampLes 
DATA varest 

in. jackres; 
SET gini jack; 
IF N =1 THEN DO; 

ET giniest 
SET meanjac; 

END; 
vjack1(ng-1)/ng * ( (ginicoefgChat) **2); 
vjack2=(ng-1)Ing * ( (ginicoef-gcmean) **2); 
RUN: 

%pr I ntout(vareSt); 

PROC MEANS DATAvarest SUM; 
VAR vjackl vjack2; 
TITLE 'Jackknife Variance Estimators for the Gini Coefficient'; 
RUN; 

PROC DATASETS; 
DELETE ginlest gini Jack; 
RUN; 
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LIENAME in 'f:\Sasuier  
OPTIONS PAGESIZE5S; 
%LET numclust-525; 

To print the results. 

%KACRO printout(ffle); 
proc print data-&file; 

title &tile; 
run; 

%MEND printout: 

This macro estimates the *3ini coefficient 
from the (sub)saeple. 

%MACRO estiinate(file,.izen): 
PROC SORT DATA-sample; 

BY y; 
RUN; 

PROC SUE1ARY DATA-sample; 
VAR wgt wgtedy; 
OUTPUT OUT-eat (DROP- _freq_ _typ.j 

SUM-nhat yhat; 
RUN; 	 •population size and total income estimate.; 

DATA edt; 
SET .ample; 
IF j1_1 THEN SET eat; 
topedf • wgt; 
that - (topedf/nhat); 	•eepirical distribution function; 
gc - 2 • that • wgtedy/yhat; 
RUN; 

PROC SU54ARY DATA-edt; 
VAR gc; 
OUTPUT OUT.gindex 

SIIN-sumgc; 
RUN; 

DATA gindex(KBBP-ginicoet ng); 
SET gindex; 
ginicoef.sumgc - 1; 	 •Oini coefficient; 
ng.&sizen; 
RUN; 

PROC APPEND BASE - 6f tie 
DATA - gindex: 

RUN, 
%MEND estimate; 

JACEENIFINO 
•' At k-tb iteration (k-i .....525) we remove observa- •*; 

tions from the k-tb cluster in the sample and 
adjust the weights of the remaining records in the 	•; 
stratum by nq/(ng-1). 	 ••• 

: 	

;  

?IMACRO jackit; 
IDO i-i %TO nu.clust; 
DATA NULl; 

SET clusters; 
IF _N_ - i THEN DO; 

CALL. SYMPUT( strat ..trata); 
CALL SYMPUT(repnow'rep); 
CALL SYMPUT(smalln ng); 
STOP; 

END; 
RUN; 	 •infor.ation about cluster to be deleted: 

%put &strat; %put arepnow; %put asmalin; 

DATA sample(ItEEP-wgt y wgtedy rep); 
SET ontario; 
IF rep-&repnow THEN jackind 0; 
ELSE IF strata - &strat THEN jackind-&sInalln/(&5*alln-1); 
ELSE jackind.1; 
wgt - wt'jackind; 
wgtedy - wgty; 
RUN; 	 •weight adjustment; 

%estimate(ginijack.&smalln); 
% END; 
IMEND jackit; 

•.•......•e*••tfl***• .*........fl •e**••••*..... 
MAIN PROGRAM 

•..*....St.***....t**..S I •I*S••** 1* I•***I**•t .........*••••• 

PROC SORT DATA-mont rep 
OUT-clusters(KEEP-strata rep ng); 

BY rep; 
RUN, 

PROC SORT DATA-in.ont new 
OUT-ontario(ICEEP-strata rep wt y); 

BY rep; 
RUN; 

DATA sample(KEEP-strata wgt y wgtedy); 
SET ontario; 
Wgt - Wt; 
wgtedy - wgt • 
RUN; 

%estimate(giniest0); •Gini index est. froil, original sample; 

Ijackit; 

DATA giniest; 
SET ginieat; 
RENAME ginicoaf - gchat; 
DROP ng; 
RUN; 

PROC SUMMARY DATAginijeck; 
VAR ginicoef; 
OUTPUT OUT-meanjack (KEEPgcmean) 

MEAN-gcmeen; 
RUN; 
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• Na compute two variance estimator. using: 
* 	1) gchat - Gini index eatimata from original macpie 
• 	2) gcmean - mean of the Cmi index estimates from 
* 	bootstrap pample. 

DATA vareet 
in.jack2rei; 

SET gini Jack; 
IF _N_1 THEN DO; 

SET ginielt: 
SET meanjack, 

END: 
vjacki.(ng-1)/ng • ( (ginicoef-gchat) "2)1 
vjack2.(ng-i)/ng * ( (ginicoef-gcmean) "2); 
RUN, 

Iprintout (vare.t), 

PROC MEANS DATA-varest SUM, 
VAR vjacki vjack21 
TITLE 'Jackknife Variance Eatimators for the Cmi Coefficient': 
RUN; 

PROC DATASETS; 
DELETE ginie.t ginhjack, 
RUN; 

V 	 1. 
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LIBNAME in 'f:\sasuser '; 
OPTIONS PAGESIZE55; 
%LET nuntimes =525; 

---------------------------------------------------- 
To print the results. 

------------------------ 

ACR0 printout(file) 
proc print data:Lfite; 

title "&file"; 
rim; 
!EWO printout; 

This macro estimates the Gini coefficient 
from the (si.)sanL•. 

--------------------- 

%MACRO estimate(flle); 
PROC SORT DATA=sançle; 

BY y; 
RUN; 

PROC SII4ARY DATA=san,te; 
VAR wgt wgtedy; 
OUTPUT OUT=est(DROP _freg_ _type_) 

SUMnhatytiat; 
RUN; 	 population size and total Income estimates; 

DATA edf; 
SET satp(e; 
IF N =1 THEN SET est; 

> 	topecif + wgt; 
L. 	fhat z (topedf/nhat); 	*eqpfrlcel distribution function; 

gc 2 * fhat * wgtedy/yhet; 
RUN; 

PROC SUMMARY DATA=edf; 
VAR gc; 
OUTPUT OUTzgIndex 

SUM=stsngc; 
RUM; 

DATA glndex(KEEP9InICOf); 
SET gindex; 
ginicoeftstingc - 1; 	 *Gini coefficient; 
RUN; 

PROC APPEND BASE z Lfi(e 
DATA z gindex; 

RUN; 
%MEND estimate; 

*** BOOTSTRAP METHOD withth=nh-1 
In the following macro we: *** 	* draw a SRS with replacement of nh-i clusters ***; 

from each stratus h 
*** 	* calculate the bootstrap weights. ----- -- -------------------------------------------*e*.  
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DATA boots i(KEEP strata bsind); 
SET nfo; 
ARRAY cnt(&mexng); 
DO 1=1 TO ng; 

cnt( I )=O; 
END 
DO 1=1 TO (ng-1); 

ranun = ROLJND( (ng-1) * RANUNI(TIMEC)) ) + 1; 
cnt(ranui)+1; 

END; 
DO 1=1 TO ng; 

bsinthcnt(i); 
OUTPUT bootsp; 

END; 
RUN; 	determlnes how many times each cluster Is selected; 

DATA sample(KEEP= rep bsind ng); 
MERGE clusters bootsaep; 
BY strata; 
RUN; 

PROC SORT DATAsancle; 
BY rep; 
RUN; 

DATA sançle(KEEPw9t y wgtedy); 
MERGE ontario sairple; 
BY rep; 
wgt = ng * beind * wt f09-1); 	*bootstrep weights; 
wgtedy wgt*y; 
RUN; 

%estlmate(ginIbOOt); 
MEN0 bootit; 

This macro Is invoked to repeat the process of 
selecting a bootstrap sairple 

*** 	 from the original saeple. 

XMACRO Justdoit; 
%DOXTO &nuntimes; 

ot it; 
XEND 

YJ4END ustdott; 

M A I N PROGRAM 

DATA clusters 
info(KEEP = strata ng); 

SET in.ontrep; 
BY strata; 
OUTPUT clusters; 
IF F!RST.streta THEN OUTPUT Info; 
RUN; 	 * cluster information; 

VJ4ACRO bootit; 	 I PROC SUMMARY DATAinfo 
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VAR ng; 
OUTPUT OUTteffç 

	

NAX=ng 	*determines the maxinun sasple size among; 

	

RUN; 	*a(L 	strata (to fix array size in macro bootit); 

DATA _NULL,; 
SET tetip; 
CALL sytlput('maxng',nrg); 
RUN; 

PROC SORT DATAzin.ont_new 
OUT=ontario; 

BY rep; 
RUN; 

DATA sairpte(KEEP=wgt y wgtedy); 
SET ontario; 
wgt = wt; 
wgtedy = wgt 
RUN; 

*origtfla( data set; 

j,  , 
%estimete(glniest); *Gjni index estimate from originaL sanpte; 

%Justdoit; 

DATA giniest; 
SET ginlest; 
RENAME ginicoef = gchat; 
RUN; 

PROC SUMMARY DATA=giniboot; 
VAR ginicoef; 
OUTPUT OUT=lneanboot(KEEPzgcmeafl) 

MEANgcmean; 
RUN; 

• We corpute two variance estimators using: 
* 	1) gchat a Gini index estimate from original sarple 
• 	2) gcmean = mean of the Gini Index estimates from 
* 	 bootstrap sarples 
DATA varest 

in. boot res 
SET giniboot; 
IF N1 THEN DO; 

ET ginlest; 
SET meanboot; 

END; 
vbootl 	(glnlcoef-gchat)2/&ntrtlmes; 
vboot2 = (ginicoef.gcmean)**2/&nLlflttmeS; 
RUN; 

%printout(verest); 

PROC MEANS DATAvarest SUM; 
VAR vbootl vboot2; 
TITLE 'Bootstrap Variance Estimators for the Gini Coefficient'; 
RUN; 

PROC DATASETS; 
DELETE giniest giniboot; 
RUN; 






