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Resampling Procedures Applied to
Variance Estimation of the Gini
CoefTicient Estimator

Abstract

Resampling methods are often considered
for wvariance estimation of complex
statistics  estimated from stratified
multistage designs. Three techniques, the
balanced repeated replication, the
jackknife and the bootstrap are considered
here for the Gini coefficient. Using
income data from the Survey of Consumer
Finances, the jackknife and bootstrap
methods are implemented and compared.

Key words: Gini coefficient, variance
estimation, confidence intervals, balanced
repeated replications, jackknife, bootstrap.

Application de méthodes de
rééchantillonnage a DPestimation de la
variance du coefficient Gini

Résumé

Les méthodes de rééchantillonnage sont
souvent employées pour estimer la
variance de statistiques complexes
estimées a partir d'un plan de sondage
stratifié et a plusieurs degrés. Nous
étudions l'application des méthodes des
répliques équilibrées répétées, de
Quenouille-Tukey et d’auto-amorgage
pour le coefficient Gini. Les deux
dernieres techniques sont mises en
pratique en utilisant des données
provenant de I'enquéte sur les finances
des consommateurs.

Mots clefs: coefficient Gini, estimation de

la variance, intervalles de confiance,
répliques équilibrées répétées, Quenouille-
Tukey, auto-amorgage.






1 Introduction

Income inequality measures are used to study the shape and evolution over time of the size
distribution of income. These quantities can be estimated from sample surveys. However,
since these estimates are complex statistics, conventional variance estimation techniques
fail and one has to rely on methods such as resampling procedures to provide information
about sampling variability.

This paper presents three resampling methods for evaluating the variance of the Gini
coefficient estimate: balanced repeated replication, jackknife and bootstrap. Using 1988
data from the Canadian Survey of Consumer Finance (SCF), the last two methods are
implemented to obtain variance estimates and confidence intervals for the Gini coeflicient.

2 Lorenz Curve and the Gini Coefficient

The distribution of income among the population can be depicted by observing the share
of income received by the poorest p percent of the population. The Lorenz curve, which
consists of plotting the cumulated percentage of the population (displayed from poorest to
richest) against the percentage of total wealth held by that group, is a graphical represen-
tation of that quantity.

Perfect income equality is attained when the poorest p percent of the population receives
p percent of the total income. As a result, the closer the Lorenz curve is to the diagonal
in the Lorenz diagram, the lesser is the inequality in the distribution. This distance is
measured by the area between the diagonal and the Lorenz curve: it is called the Lorenz
area (LA). The Gini coefficient is defined as the ratio between the LA and the largest
possible LA: G = 2LA, and hence 0 < G < 1.

Let F(y) denote the distribution function of a variable Y (e.g. household income) with
finite mean u = [ ydF(y) # 0. The share of the poorest p = F(y) percent of the
population can then be expressed as L(p) = p~! [¥  tdF(t). If we define the inverse of the
distribution function as

F-1(p) = inf {y|F(y) >0} ifp=0
inf {y|F(y) 2p} f0<p<1

the Lorenz curve ordinate with abscissa p can be written as L(p) = J§ F~'(t)dt/u. The
LA is then given by f) (p — L(p))dp and the Gini coefficient by 2 fo(p — L(p))dp. The Gini
coefficient can also be written as

G - L2F() — 1lydF(y)
m

(see Nygard and Sandstrom, 1985b).
Computation of the Gini coefficient in a finite population is done as follows. The finite
population distribution function Fy is defined as

N
Fn(y)=N"'Y_ Hyi < 9}
=1



where I{-} is the indicator function which takes the value 1 if {-} is true, and 0 otherwise.
Suppose there are N* < N distinct values of y. We define the probability function at
Y(s)» where Y1) < ¥Y@2) < - < Y(Ne), 88
In(yiey) = Fn(yey) — FN(¥e-1))-
For unordered distinct values y,, the Gini coefficient becomes

= ):.'=.1 [2fN(yi) el fN(yi)] yifN(yi)
N=
KN

(2.1)

where uny = £ vifn(yi) and the term — fy(yi) appearing within the brackets is the
Gini finite population correction (Gfpc). In the case where no tied values are present,
In(yi) = 1/N, Fn(yey) = /N, un = TN v/N and we can write

N ] o
= 28 - 1= Fwo _ 2 %t

Gn = - 1.
NN T
In the case of survey samples, we have a sample s of n observations y;,...,yn to which
are attached the corresponding weights wy, ..., w,. Define w; = w;/N where N = } ,c, w;.

An estimator of the finite population distribution function Fy is

) T{y; < )
YOEDY E”—{—!;v’-‘—y} =) iy Tk
J€Es J€Es

Also iy = Yie, ©i% and fa(ye) = Fn(ye) - En(¥i-1)) = i, i-e., the Gipc for the i-th
observation is —w;. Hence, from (2.1),

Gy = B3 Y [2Fn(w) — 1 — wilbiyi

t€s
_ 2%, Fn(w)biys | Miea DEY:
- Yics Wil 3 Yico it =

Note that if we omit the Gfpc, the last term of (2.2} vanishes.

3 Variance Estimation

The Gini coefficient is defined in terms of the finite population distribution function Fiv. Itis
therefore a complex statistic whose variance cannot be expressed by a simple formula nor can
it be easily estimated by conventional means. Its variance may be approximated by variance
estimation techniques such as balanced repeated replication, jackknife and bootstrap.

The main quality of these methods is that they use a single variance formula for all
statistics. Hence, though the following description involves 8’s, it applies to the Gini coef-
ficient Gy = G(Fn). Also, to reflect their application to the SCF, the three methods are
described for stratified multistage designs with unequal number of clusters selected in each



stratum. (An overview of the SCF design is given in the next section.) In order that the
results for the balanced repeated replication and jackknife methods be valid, we assume that
the clusters are selected with replacement and that independent subsamples are selected
within clusters selected more than once.

3.1 Balanced Repeated Replication

Many surveys employ stratification to the extent that only a few primary units are selected
from each stratum. For the case ny = 2 clusters per stratum, the balanced repeated
replication (BRR) method is commonly used for variance estimation of the parameter of
interest 8 (see Wolter, 1985, chapter 3).

The BRR method can be extended to the case ny > 2 clusters per stratum. Furthermore,
the case of unequal ny, in each stratum must be considered for surveys such as the SCF.
Wau (1991) proposed the following method. A set of R replicates are formed by selecting
one sample unit from each stratum. This set is defined by a R x L design matrix (¢}),
r=1,...,R,h=1,...,L with §] = 1,...,np, say, depending on whether the first, second,
.., Of np-th sample cluster is in the h-th stratum of the r-th replicate. Ideally, all columns of
the matrix should be mutually orthogonal, i.e., each combination of selected clusters should
appear equally often. This orthogonality condition results however in a large number of
required replicates R, for general nj. Furthermore, orthogonal matrices do not exist for all
combinations of n’s. One solution consists of using mixed orthogonal arrays of strength 2.

A mixed orthogonal array of strength d, (R, ny X+ --xnp,d)isan Rx L matrix whose h-th
column has ny, symbols (say 1,...,7ns) arranged such that for any d columns, each possible
combination of symbols appears equally often. Ounly tables of strength 2 are considered
since no major gain in efficiency is obtained by considering d > 3, while the number of
required replications, R, increases considerably.

The variability between the R replicate estimates approximates the sampling variance
of the estimator 8 (e.g. Gx = G(En)). Let 6(r) be the estimator of 8 obtained from the r-th
replicate. The estimator (") is calculated by using the weight adjustments obtained from
formula (6) in Wu (1991). The weight of the i-th element of the c-th cluster of stratum h,

Whei, is transformed at the r-th replication to A;;.)-whd where

Am £ { 1+ /mn —1 if the (hci)-th element is selected in replicate r

I 7;1?1 otherwise.

The computation of 6(7) is then performed by using the modified weights in the formula for
6. A BRR variance estimator of 8 is given by

R
. 1 K 2

‘UBRR(G) = E Z(g(') = 0)2 (3.3)

r=1
1) =Y, 60 /R is substituted for 6 in (3.3), another variant of the BRR variance esti-

mator is obtained.

The mixed orthogonal array approach may not be applicable to all cases. The mixed-
orthogonality condition leads to the same problems as above. In order to find an economical



mixed orthogonal array, the ny clusters in stratum h can be grouped into two to four groups
of clusters. The BRR method can then be applied to the groups by treating them as units.
Given the large number of clusters in some strata of the SCF (e.g. ny = 16), the grouped
BRR method seems suitable for this survey.

3.2 Jackknife

The jackknife method was first developed to approximate the variance of smooth functions
6 of independent, identically distributed (i.i.d.) observations. The method roughly consists
of computing 0(,-), the estimate obtained from omitting the i-th observation (i = 1,...,n =
Y n,) and then estimating the variance by the variability among these replicate statistics.

Kovar, Rao and Wu (1988) showed the inconsistency of the jackknife variance estima-
tor for non-smooth statistics. A generalized version of this method, the delete-one cluster
jackknife, has been shown to perform adequately (see Shao and Wu, 1989; Rao, Wu and
Yue, 1992). In particular, Shao (1993) showed that under weak conditions, the asymp-
totic variance of the Gini coefficient can be consistently estimated by delete-one cluster
jackknifing.

The Gini coefficient estimator can be expressed as § = G(Fx) where Fy is the estimated
distribution function. Let 13’(95) be the estimator of the distribution function based on the
subsample obtained by removing the j-th cluster of the g-th stratum, (7 = 1,...,n5;9 =
UL IR

Figp(y) = Y whal{vma <y}
(hei) € s
(he) # (97)

where W/hei = Whhei/ Y., Whei ate the normalized weights modified for the jackknife proce-
dure. To compensate for the removal, the weights are adjusted to

Whei h#g
Whhei = A(g])whct h= g,¢ #J
0 A= gfei="1

Wishing to keep ¥, Whe = ¥, Whei, Kovacevi¢ and Pandher (1993) define

Afgs) = —’—N IjN : (3.4)
g 97

where Ng =Y .Y Wgei and Ng; = ¥; wgji- The usual adjustment factor is

' ng

A(Qi) e ng — 1' (35)
When the primary sampling units (clusters) are selected with probability proportional to
cluster size, however, t}le two are equa,l._Norma.liza}tion of Ehe modified weights is attained
by dividing wihe by N = ¥, whei of N + n"_l[Ng — ngNy;] depending on which of the
adjustments (3.4) or (3.5) is applied.




In both cases, a delete-one cluster jackknife estimator of the variance of 6 is given by

L Ry
2 N, — 1 = .

vin(8) =) -Ln— > (6y,;) - ) (3.6)

g=1 g2 ;=1
where é(aj) = G(f‘(ﬂ-)). A variation of (3.6) is obtained by changing 6 to GA(“) =3, é(gj)/n:

5 < ng—1 = 5 B 2
vsa(f) = Y =3 (Bg5) - 6.)"- 3.7)
g=1 9 =1l

3.3 Bootstrap

The principle of the bootstrap method is to select with replacement a large number of sam-
ples from the original sample. The variability between the estimates 6 of these bootstrap
samples approximates the variance of the estimator 6.

Efron (1982) gave a Monte Carlo algorithm for estimating the variance of the estimator
6 in the i.i.d. case. Rao and Wu (1988) extended this method to stratified multistage
designs, covering smooth as well as non-smooth statistics. Their method is the following,

Independently for each stratum h, a simple random sample of my, clusters is drawn with
replacement from the nj sample clusters. In order to ensure consistency of the bootstrap
variance estimator, the survey weights, whe, are rescaled to the bootstrap weights wp ; =
Apciwhe Where

mp mp Np .
it =1 . lm—hmhc (38)
and mj, counts the number of times the (hc)-th sample cluster is selected (3. mj, = mp).
Note that if mj,_ = 0, the last term of (3.8) disappears. The choice of mp < np — 1 ensures
that the bootstrap weights wj,; are all positive if waey > 0 for all (het) € s. Also, if

Apei =1 -

mp = np — 1, the adjustment factor reduces to (;:—'ﬂ—l) mj,.. The bootstrap estimate 8" is

obtained by using the bootstrap weights wj,; in the formula for 6.
This procedure is repeated independently a large number, B, of times and yields the
bootstrap estimates 67, ...,85. The estimator

! 1 &8 ]
vi(6) = 3 > 6 -6 (3.9)
b=1

approximates the bootstrap variance estimator E.(6* — E.68° )?, where E, denotes the ex-
pectation with respect to bootstrap sampling. Another variance estimator is obtained by
substituting 8 by 8" = Y, 6;/B:

B
- % 36 - 62 (3.10)
b=1

This estimator yields a lower estimate value than vp1(6) since °2_,[6; — z]? is minimized at
z = 6. Finally, note that a Monte Carlo error affects the variance estimates since different
estimate values are obtained for different bootstrap samples.



4 Canadian Survey of Consumer Finance (SCF)

The Canadian Survey of Consumer Finance (SCF) is a special survey conducted by Statistics
Canada every two years to collect information about the financial situation of households.
The SCF uses the sample frame and sampling procedures of the Canadian Labour Force
Survey (LFS), whose framework is based on a stratified, multistage design. A detailed
description of the LFS design is given in Singh et al. (1990).

Two characteristics of this design are particularly relevant to the application of repeated
sampling methods to variance estimation of the Gini coefficient estimate. First, clusters in
the LFS are selected with probability proportional to sizes without replacement. At the
variance estimation stage however, clusters are treated as though they were selected with
replacement, and subsampling done independently each time a cluster is selected, to simplify
the calculations. Second, the final weight attached to each record is the result of complex
operations. The basic weight (inverse of sampling ratio) is first corrected for factors such as
nonresponse. A generalized regression estimator is then used to ensure consistency of the
sample with known totals of some relevant post-stratification variables.

5 Application of Jackknife and Bootstrap to SCF

The application of jackknife and bootstrap resampling methods to obtain variance estimates
for Gy is illustrated by using family income data collected in the SCF in 1988 (SCF-88).
The file on the disposable income of economic families obtained for the province of Ontario
was used. Disposable income is defined as the total income reduced by the tax reported in
the survey.

The SCF-88 Ontario sample comprised 7474 households grouped into 525 clusters allo-
cated in 91 strata. The number of clusters in each stratum varies from 2 to 16 as shown in
this table:

# clustersinstratum | 2 3 4 5 6 8 10 12 14 16
Frequency (86 2 12, 0-8) 18 ¥ A 2l

5.1 Gini Coeflicient Estimate

Figure 1 shows the empirical distribution function of family income obtained from the SCF-
88 sample in Ontario. The corresponding Lorenz curve appears in Figure 2.

Given the complexity of the survey weights in the SCF, the Gfpc is dropped and the
Gini coefficient estimator (2.2) becomes

Gy = 2 2theies FN(hei ) Ohcihe
3 (hei)es WheiYhes

-1.

The new subscript notation indicates the multiple stages of the data. The index hci refers
to the i-th unit in the c-th clt{ster of stratum h. The Gini coefficient estimate obtained from
the SCF-88 Ontario data is Gx = 0.34836.
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Figure 1: Empirical distribution function of family income in Ontario - SCF-88.

Share of Income

ld(p) o8P

D R Yoaa M| MGl =wrarYy
Cumulated percentage of population (p)

Figure 2: Lorenz curve for income distribution in Ontario - SCF-88.



Method Estimated Variance

Ut Yt2
Jackknife-1 (t = J) .000024010 .000024009

Jackknife-2 (t=J) .000022694 .000022694

Bootstrap (1 = B) .000029846 .000023816
NOTE: v, vJ2, ve: and vp; refer respectively to Equations (3.6), (3.7), (3.9) and (3.10).

Table 1: Estimated variance for the Gini coefficient estimate obtained from the SCF-88
sample for Ontario.

5.2 Variance Estimates

Three techniques were applied to the SCF-88 Ontario data to estimate the variance of
the Gini coefficient estimator: two variants of the delete-one cluster jackknife and the
bootstrap. The delete-one cluster jackknife procedure was implemented for both weight
adjustments (3.4) and (3.5). Call these variants jackknife-1 and jackknife-2 respectively.
In each case, the variance of the Gini coefficient was estimated with estimators (3.6) and
(3.7). The validity of these estimators is based on the assumption that the clusters are
selected independently, which is approximately true for the LFS design. In that case, the
jackknife variance estimator tends to slightly overestimate the variance and, therefore, is
conservative.

The bootstrap method was implemented with B = 525 iterations so that the number of
subsamples selected would be the same as in the delete-one cluster jackknife applications
(there are 525 clusters). The size of the subsamples was fixed to my = np — 1. This choice
simplifies the weight adjustment factor (3.8). The bootstrap variance of the Gini coeflicient
estimate was approximated by (3.9) and (3.10).

Table 1 displays the variance estimates for the estimated Gini coefficient. The jackknife-
1, jackknife-2 and bootstrap SAS programs created to obtain these values are given respec-
tively on pages Al to A3.

We observe that the two variants vy, and vy, are much closer in the case of the jackknife
than for the bootstrap. The bootstrap yields a higher variance estimate when the first
estimator is used. The second estimated variances (vh) are similar. Note that the jackknife-
1 and jackknife-2 procedures do not give the same variance estimates. Hence the condition
for the equality of the two weight adjustment factors (3.4) and (3.5) does not hold. This
may be explained by the complexity of the final weight.

To pursue the comparison of the three procedures, we consider confidence intervals.
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Bootstrap estimates for Gini coefficient G,

Figure 3: Frequency histogram of Gini coefficient bootstrap estimates G§ -~ SCF-88, Ontario.

5.3 Confidence Intervals

Figure 3 presents the frequency histogram of the Gini coefficient bootstrap estimates G;,
b=1,...,525, obtained from the SCF-88 Ontario sample.

An approximate 100(1 — a)% confidence interval for Gn may be derived from the boot-
strap histogram by using the percentile method which is described as follows. Let

Giow(a/2) = inf(GiIF.(G}) = a/2)
and Gpp(a/f2) inf{G}|F.(G}) 2 1-a/2} (5.11)
where F.(t) = #{G; < t;b = 1,...,B}/B. Then the interval [Giow(a/2), G} pla/2)],

which consists of the central 1—a proportion of the bootstrap distribution, is an approximate
100(1 — a)% confidence interval for Gn.

Visual inspection of Figure 3 reveals that the bootstrap estimates tend to underestimate
Gn. In fact, Prob.{G; < Gn} = #{G} < .34836;b = 1,..., B}/B = 68.8%. Efron (1982,
p.82) suggested a percentile method which corrects the bias when Prob. {8 < 6} # .50, for
general estimator §. Taking 8§ = Gy, define

Gi(e/2) = inf{G}|F.(G}) 2 #(20 - Za/2)}
and v(a/2) = inf{Gj|F.(G}) 2 ®(20 + Zap2)} (5.12)

where 29 = ®~1(F.(GN)), zay2 = #7'(1 — @/2), & is the cumulative distribution function
of a standard normal and F, is defined as above. The bias corrected percentile method
consists of taking

[Gi(a/2),Gyla/2)]
as an approximate 100(1 — a)% confidence interval for G. Note that if Prob.{G} < Gy} =

.50, then 2o = 0, ®(20 — 2q/2) = @/2 and $(20 + 2472) = 1 — a/2, i.e., (5.12) reduces to
(5.11) and the two confidence intervals are the same.
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Jackknife-2 pseudovalues for Gini coefficient
Figure 4: Frequency histogram of jackknife-2 pseudovalues - SCF- 88, Ontario.

The 95% percentile method and bias-corrected percentile method intervals obtained
from the bootstrap histogram in Figure 3 are given in Table 2.

Figure 4 presents the frequency histogram of the Gini coefficient jackknife-2 estimates.
(The histogram of the jackknife-1 estimates is similar and hence is not shown.) The estimate

G,;, called pseudovalue, is obtained from the delete-one cluster estimate G(y;) and the
original sample estimate Gn by the formula

égj = n,é’N =] (ng c— l)é(‘j).

The pseudovalues are highly concentrated around the estimate Gn = .34836 and, more-
over, symmetrically distributed about that value. This explains why normality is usually
assumed to produce confidence intervals from jackknife variance estimates. A 100(1 — )%
confidence interval based on the normal approximation is given by

[GN — za/g\/v—j, CN + Zalg\/vjl.

The 95% confidence intervals for jackknife-1 and jackknife-2 appear in Table 2. Since
vJ1 = vJ3 in both cases, only one confidence interval is given for each method.

The two percentile method bootstrap intervals are asymmetric about Gn = .34836 but
to a different extent. In fact, the bounds of the bias-corrected interval are similar to those
of the jackknife symmetric intervals. The percentile method interval reflects the tendency
of the bootstrap to underestimate Gy . Interval lengths are similar for all methods.

Note that an additional variance estimator can be derived from the boostrap intervals
(5.11) and (5.12) by equating these intervals to the normal theory interval for Gy:

2
va(GN) = [52'2—(7;)] (5.13)

10



METHOD INTERVAL LENGTH

BOOTSTRAP
- percentile method [.33706, .35599) .01893
- bias corrected

percentile method [.33873, .35722] .01849
JACKKNIFE-1 [.33876, .35796] .01920
JACKKNIFE-2 [.33902, .35770] 01868

Table 2: (Approximate) 95% confidence intervals for the Gini coefficient - SCF-88, Ontario.

Bootstrap Intervals a=.01 a=.05 =10 a= .50
Percentile method

interval (5.11) .000019950 .000023321 .000022516 .000024595
Bias corrected percentile

method (5.12) .000018805 .000022249 .000026049 .000023720

Table 3: Variance estimator v(G ) for different choices of a.

where L.(a) is the length of the bootstrap interval of size 1 — a. Values of (5.13) are given
in Table 3 for different choices of a.

Clearly, va(G’ ~) depends on a and hence the optimal choice of a has to be found. Note,
however, that except for values corresponding to a = .01, the variance estimates are similar
to those in Table 1.

6 Conclusion

The variance estimates and confidence intervals obtained result from the application of
the bootstrap and jackknife procedures to one sample. Thus no major conclusion may be
drawn from this work. The values in Tables 1 and 2 seem to indicate nonetheless that the
bootstrap and jackknife techniques lead to similar results. The "best” method should then
be the one which is the simplest to apply.

The bootstrap method requires that a new sample be drawn independently at each iter-
ation, and thus is much more computer-intensive than the jackknife, where each subsample
is predetermined (delete one cluster). The latter method therefore seems preferable. Also.
since there is no apparent reason to use the weight adjustment factor (3.4) in the delete-one
jackknife, the usual adjustment factor (3.5) should be used, i.e., we recommend jackknife-2.

11
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1994703702 12:01 Filename: JACK.PRG

Page

1

1994403702 12:01 Filename: JACK.PRG

Page

LIBNAME in 'f:\sasuser';
OPTIONS PAGESIZE=55;
%LET numclust=525;

YMACRO printout(file);
proc print data=&file;

title “&file";

run;
XMEND printout;

This macro estimates the Gini coefficient
from the (sub)semple.

XMACRO estimate(file,sizen);
PROC SORY DATA=sample;

BY y;

RUN;

PROC SUMMARY DATA=sample;
VAR wgt wgtedy;
QUTPUT OUT=est(DROP= _freq_ _type)

RUN;

SUM=nhat yhat;

DATA edf;
SET sample;
IF _N_=1 THEN SET est;

+ Wgt;

L1 3 2
L1129
0
LA L2
’

L2 1
Wl .
itt:
tﬁti

’

poputation size and total income estimates;

fhat = (t f/nhat : *empirical distribution function;
gc =2 * = ugtedylvhat-
RUN;

PROC SUMMARY DATA=edf;
VAR gc;
QUTPUT OUT=gindex

SUM=sumgc;

RUN;

DATA gindex(KEEP=ginicoef ng);
SET gindex;

ginicoef=sumgc - 1; *Gini coefficient;

ng=&sizen;
RUN;

PROC APPEND BASE

= &file
DATA = gindex;

RUN;
XMEND estimate;
WRR e eeiccammsersssescassmcascessmcccassanmEEoan""
v JACKKNIFING
w*e At k-th iteration (k=1,...,525) we remove observa-
*4* ¢tions from the k-th cluster in the sample and
*** adjust the weights of the remaining records in the
::: stratum by N-hatg/(N-hatg - N-hatgj) where

L2 4]

N-hatg = sum of the weights in stratum g
N-hatgj = sum of the weights in cluster k.

L 2 1
L2 3 9
W,
hrdo
LLL
W .
i,

i mEmemememone W

XMACRO jackit;
%00 i=1 XT0 &numclust;
DATA NULL_;
SET clusters;
IF N = &i THEN DO;
CALL SYMPUT('strat’,strata);
CALL SVMPUT('repnou',rep),
CALL SYMPUT('smalin' ,ng);
CALL SYMPUT(' uelght',rut),
STOP;
END;
RUN; *information about cluster to be deleted;

Xput &strat; %put Lrepnow; %put &smalln; %put &weight;

DATA semple(KEEP=Wgt y wgtedy rep);
SEY ontario;
1F rep=Arepnow THEN jackind = 0;
ELSE IF strata = &strat THEN jackmdsnhatg/(nhatg &ueight);
ELSE jackind=1;
ugte;yut‘jaci:ind;
wgt = wgt*y;
RUN; *weight adjustment;

Xestimate(gini jack,&smalln);
XEND;
XMEND jackit;

AR RREANNAANARNAN AR AANAARASRRRNARR AR AN AR R NR AR AWk do .

e MAILN PROGRAM b
.i.iit...tittt.tﬁttttttt.ttttﬁ'.i.i.'tii'iiiiitttttt*ttiiittt.
PROC SORT DATA=in.ont_rep
OUT=clusters(KEEP=strata rep ng rwt);
BY rep;
RUN;

PROC SORY DATA=in.ont_new
OUT=ontario;
BY rep;
RUN;

DATA sample(KEEP=strata wgt y wgtedy);
SET ontario;

wgt = wt;
wgtedy = wgt * y;
RUN;

PROC SUMMARY DATA=sample NWAY;
BY strata;
VAR wgt;
QUTPUT QUT=estN
SUM=nhatg;
RUN; *to determine the sum of the weights in cluster;
*to be removed;

DATA ontario(KEEP=strata rep wt y nhatg);
MERGE ontario estN;
BY strata;
RUN;

Xestimate(giniest,0); *Gini index estimate from original sample;
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Xjackit;

DATA giniest;
SET giniest;
RENAME ginicoef = gchat;
DROP ng;
RUN;

PROC SUMMARY DATA=gini jack;
VAR ginicoef;

OUTPUT OUT=meanjack(KEEP=gcmean)

MEAN=gcmean;
RUN;

* \Je compute two variance estimators using:

Gini index estimate from original sample
mean of the Gini index estimates from

& bootstrap samples

* 1) gchat =
*  2) gcmean =
DATA varest
in. jackres;
SET gini jack;
1f N _=1 THEN DO;
BEY giniest;
SET meanjacﬁ;
END;

wewemamy

vjack1=(ng-1)/ng * ¢ (ginicoef-gchat) **2);
vjack2=(ng-1)/ng * ( (ginicoef-gcmean) **2);

RUN;
Xprintout(varest);

PROC MEANS DATAzvarest SUM;
VAR vjackl vjack2;
TITLE ‘Jackknife Variance
RUN;

PROC DATASETS;
DELETE giniest ginijack;
RUN;

Estimators for the Gini Coefficient®;
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LIBNAME in ‘f:\sasuser’;
OPTIONS PAGESIZEeSS;
SLET numclusts=525;

BBP cvcemmecmemar e A m A e e eSSt e e RS e T e E e f e amEE e... - LA
oo To print the results. LLL ]
28 o ncee- i S e e et ) - ..';
YMACRO printout{file);

proc print datasifile;

title "&file";

run;
YMEND printout;
8B o i cmceES T e e eracmsc e e mcAamemems e E T A e e e . aaa---. ""
sos This macro estimates the Gini coefficient ey,
O from the {(sub)sample. tee,
P88 e irreiscmrereeecers s e e AcaTv e A m e T T AT TR T A A anaa ...'-
SMACRO estimate(file,sizen);
PROC SORT DATA=sample;

BY y;

RUN;
PROC SUMMARY DATA=sample;

VAR wgt wgtedy:

OUTPUT OUT=est (DROP= _freq_ _type_ )}

SUM=nhat yhat:;
RUN; *population size and total income estimates;

DATA edf;
SET sample;
IF _N_=1 THEN SET est;
topedf + wgt;
fhat = (topedf/nhat);
gc = 2 * that * wgtedy/yhat;
RUN;

PROC SUMMARY DATA=-edf;
VAR gc;
OUTPUT OUT=gindex
SUMesumgc;
RUN;

DATA gindex (KEBP=ginicoef ng};
SET gindex;
ginicoefsgumgc - 1;
ng=&sizen;
RUN;

PROC APPEND BASE = &file
DATA = gindex;
RUN;
SMEND estimate;

see JACKKNIFING

eee Ar k-th iteration (kel,...,525} we remove observa-

see tions Erom the k-th cluster in the sample and

*++e adjust the wejghts of the remaining records in the

e*+ grratum by ng/ing-1}.

sempirjical distribution function:

*Gini coefficient;

o
v
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$MACRO jackit;
ADO i=1 ¥TO &numclust;
DATA _NULL_:
SET clusters;
IF _N_ = &i THEN DO,
CALL SYMPUT(’strat’, strata);
CALL SYMPUT('repnow’ , repl;
CALL SYMPUT(‘'smalln’,ng};
STOP;
END; ’
RUN; sinformation about cluster to be deleted;

tput &strat; Yput &repnow; tput &smalln;

DATA sample (KEEPswgt y wgtedy rep);
SET ontario;
IF reps&repnow THEN jackind = 0;
ELSE IF strata = &etrat THEN jackinds&emalln/{&smalln-1};
ELSE jackindel;
wgt = wt*jackind;
wgtedy = wgtty;
RUN; *weight adjustment;

testimate (ginijack, ksmalln) ;
SEND;
YMEND jackit;

€808 SR SRR SRRSO RO RPN RRRRORB ISP IRRRIOOEORIIRECEOIOEROOISISISIRITIEIRNS,

ves MAIN PROGRAM sev;
.'..'......'."."..'........'I"'C..'....'....'.'...'l"..'.;
PROC SORT DATA=in.ont_rep
OUTeclusters (KEEP=strata rep ng);
BY rep;
RUN;

PROC SORT DATAe«in.ont new
OUT=ontario (KEEP=strata rep wt y);
BY rep;
RUN;

DATA sample (KEEPsstrata wgt y wgtedy);
SET ontario;

w3gt = wt;
wytedy = wgt ¢ y;
RUN;

testimate (giniest,0); +*Gini index est. from original sample;

tjackit;

DATA giniest;
SET giniest;
RENAME ginicoef = gchat;
DROP ng;
RUN;

PROC SUMMARY DATA=ginijack;
VAR ginicoef;
OUTPUT OUT=meanjack (KEEP=gcmean)
MEANe=gCmean;
RUN;
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* We compute two variance estimators using:

. 1) gchat = Gini index estimate from original sample
. 2) gcmean = mean of the Gini index estimates from

. bootstrap samples

DATA varest
in.jack2res;
SBT ginijack;
IF _N_=1 THEN DO;
SET giniest;
SET meanjack;
BND;
vjackl=(ng-1)/ng * ( (ginicoef-gchat) ¢*2),
vjack2s(ng-1)/ng * ( (ginicoef-gcmean) **2);
RUN;

tprintout (varest);

PROC MEANS DATA=varest SUM;
VAR vjackl vjack2;

TITLR ‘Jackknife Variance Bstimators for the Gini Coefficient’;

RUN;

PROC DATASETS;
DELETE giniest ginijack;
RUN;

- e ma

-
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LIBNAME in 'f:\sasuser';
OPTIONS PAGES1Z2E=55;
%LET numtimes =525;

waw e e e R ot o Tl e T S wan.
Ll To print the results. b
e e e e S S et SR, . eTa) e = o S wenl

XMACRO printout(file):
proc print dota=l.fite;
title “Lfile¥;

XMEND'printout:

MAR cemcemecemmcscsmmecemsmcemmcamtEsTaccavSaesavasasana== RN .
wh This macro estimates the Gini coefficient LD
L from the (sub)sample. LY
AWW meecmmcccaccmemsccsscmaceasnanaaarRasaaaa e mmarasa tit:

XMACRO estimate(file);
PROC SORT DATA=sample;
BY y;
RUN;

PROC SUMMARY DATA=sample;
VAR wgt wgtedy;
OUTPUT OUT=est(DROP= _freq_ _type )

SUM=znhat !hlt;
RUN; population size and total income estimates;

DATA edf;
SET sample;
1F _N_=1 THEM SET est;

t + wgt;

fhat = (t f/nhat); *empirical distribution function;
gt:m= 2 * fhat * wgtedy/yhat;

RUN;

PROC SUMMARY DATA=edf;
VAR gc;
OUTPUT OUT=gindex
SUM=sumgc;
RUN;

DATA gindex(KEEP=ginicoef);
SET gindex;

gli‘r"\icoef:smgc =9 *Gini coefficient;
’

PROC APPEND BASE = &file
DATA = gindex;

RUN;
XMEND estimate;

HRAR m e cmeccceccmmcaceseEmeTeTe---mmsAsmesamtemsamsccococacen ttt'
#¢* BOOTSTRAP METHOD withmh =nh-1 -
*a% [n the following macro we: wael
et * draw a SRS with reﬁllcement of nh-1 clusters ***;
-4 from each stratum b
::: * calculate the bootstrap welghts. :",-

..................................................... -

XMACRO bootit;

at
L4
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DATA bootssmp(KEEP= strata bsind);
SET info;
ARRAY cnt(&maxng);
Do i=1 10 ng;
cnt(i)=0;

END
00 i=1 T0 (ng-1);
ranum = ROUND( (ng-1) * RANUNI(TIME()) ) + 1;
cnt{ramm)+1;
END;
00 i=1 10 ng;
bsind=cnt{i);
OUTPUT bootsamp;
END;
RUN; *determines how many times each cluster is selected;

DATA sample(KEEP= rep bsind ng);
MERGE clusters bootsamp;
BY strata;
RUN;

PROC SORT DATA=sample;
BY rep;
RUN;

DATA semple(KEEP=wgt y wgtedy);
MERGE ontario sample;
8Y rep;
Wwgt = ng * bsind * wt /(ng-1);
wgtedy = wgt*y;

*bootstrap weights;

RUN;

Xestimate(giniboot);

XMEND bootit;

AFN _eccccmemcssmscSc-mesesmam-cem-seamacsmmmcccwomcec==a t't:
A This macro is invoked to repeat the process of s
i selecting a bootstrap sample o6
o from the original sample. Lo
WAW® mmcveeecscc-mmcamcsmtmecmmAr-res-mEatSemasmmmmcccanace A

XMACRO justdoit;
%00 j=1 X170 &numtimes;
otit;

XEND;
YMEND justdoit;

Qttttttit't"'ﬁ.""".ii't...lt.*"ii'ﬁi.ttt.tttt.'ttt""tt-

e MAIN PROGRAM seel
t'Qt't"'ttt't'tt"""'t.ttt'.titt.ttﬁ..tt't.t"ﬂt'tt.Qtt"'-
DATA clusters '
info(KEEP = strata ng);

SET in.ont_rep;

B8Y strata;

OUTPUT clusters;

1f FIRST.strata THEN OUTPUT info;

RUN; * cluster information;

PROC SUMMARY DATA=info;
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VAR ng;
OUTPUT OUT=temp

MAX=mng: *determines the maximum sample size among;
RUN; *all strata (to fix srray size in macro bootit);
DATA _NULL_;
SET temp;
CALL symput(‘'maxng‘',mng);
RUN;
PROC SORT DATA=zin.ont_new
OUT=ontario;
8Y rep;
RUN; *original data set;

DATA sample(KEEP=wgt y wgtedy);
SET ontario;

Wgt = wt;
wgtedy = wgt * y;
RUN;
Yestimate(giniest); *Gini index estimate from original sample; L
%justdoit;
DATA giniest;
SET ginjest; =
RENAME ginicoef = gchat; =]
RUN; o<
Sae
PROC SUMMARY DATA=giniboot; 2 =02
VAR ginicoef; ===
OUTPUT OUT=meanboot(KEEP=gcmean) C=“o
MEAN=gcmean; -3 zZ
RUN; bk Z5
’ [=] 63’
; ; R=c—
* We compute two variance estimators using: g B =
L) 1) gchat = Gini index estimate from original sample g ==
= 2) gcmean = mean of the Gini index estimates from . — <
w bootstrap samples 5 b4
DATA varest
in.bootres;
SET giniboot;
IF N =1 THEN DO;
SEY giniest;
SET meanboot;
END;
vboot1 = (ginicoef-gchat)**2/&numtimes;
vboot2 = (ginicoef-gcmean)**2/&numtimes;
RUN; 1
Xprintout(varest);
PROC MEANS DATA=varest SUM;
VAR vboot1 vboot?2; (o)
;‘I”T‘LE ‘Bootstrap Variance Estimators for the Gini Coefficient'; o(;')

PROC DATASETS;
DELETE giniest giniboot;
RUN;










