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Abstract 

With advances in computing power, longitudinal microsimulation modelling (MSM) has 
become an important analytical and inferential device for quantitative policy analysis in 
a wide range of policy development and decision-making settings. It allows a form of 
controlled experimentation which is now widely applied in disciplines where experiments 
on real populations are infeasible or sometimes impossible. In this context, 
microsimulation output has analytical and inferential uses rather than merely providing 
data to construct simple point estimates for descriptive purposes. 

In this paper, first a general theory of the longitudinal microsimulation process is 
developed. This abstraction is used to identif' an optimal microsimulation design 
permitting the use of statistically efficient policy comparison methodologies. Next, a 
statistical model for MSM is obtained from the theoretical representation to estimate and 
test policy effects and to demonstrate the gains from using the new design on important 
aspects of the statistical testing methodology (eg. power, sample size, significance level). 
One important outcome of the proposed MSM design is that dramatic reductions in 
sample size are uniformly achievable over conventional approaches at any specified level 
of significance and power for the testing procedure. 

Results are presented from a simulation study in which the theory and concepts 
developed in the paper are applied to a small microsimulation model. Remarkable gains 
in efficiency for the estimator of policy effects were observed under the new 
microsimulation design. 

Keywords: Across-policy Monte-Carlo effects; Decision functions, states, sequences and 
spaces; Designed experiments; Sample size reduction; Variance reduction. 
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Résumé 

En tant qu'outil servant a élaborer des politiques, Ia modélisation par microsimulation 
longitudinale (MML) est un mécanisme d'analyse et d'inférence majeur pour étudier 
l'impact de diverses politiques. 

Dans cet article, on développe une théorie du procédé de microsimulation longitudinale 
et on l'utilise pour identifier certains aspects du plan qui altèrent le rendement 
d'estimateurs mesurant Ia difference entre des politiques. On propose une conception d'un 
modèle de microsimulation qui permet d'utiliser une méthodologie de comparaison très 
efficace et sensible. Cette méthodologie sert a évaluer l'impact d'interventions en matière 
de politique en contrôlant l'interaction entre Ia variabilité de type Monte-Carlo et Ia 
politique retenue. Ensuite on développe un modle statistique fondé sur Ia théorie de Ia 
microsimul ation longitudinale s'appl iquant aux caractéristiques des individus. Ce modèle 
sert a estimer et a tester I'effet de politiques. On démontre les bénéfices resultant de Ia 
reformulation d'aspects importants de la mëthodologie utilisée pour les tests statistiques. 

Enfin, on présente les résultats d'une étude de simulation dans laquelle les concepts 
présentés dans l'article sont appliqués a un modèle de microsimulation simple. L'étude 
soul igne que le nouveau plan de microsimulation a produit des gains remarquables quant 
a l'efficacitë de l'estimateur des effets de politique. 

Mots-clé: 
fonctions de decision, états et espaces; sequences de decisions fixes et permutables; 
Monte-Carlo; plan de génération de biographies; gains en efficacité; test t en paires 
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A THEORY OF LONGITUDINAL MICROSIMULATION 

APPLICATION TO OPTIMAL POLICY COMPARISONS 

G.S. Pandher and M.S. Kovacevic 

1. INTRODUCTION 

With recent advances in computing power, longitudinal microsimulation modelling (MSM) is 
becoming an increasingly popular, and in many cases indispensable, tool for quantitative policy analysis 
in a wide range of policy development and decision-making arenas. It allows a form of controlled 
experimentation which is now widely applied in disciplines where experiments on real populations are 
infeasible or sometimes impossible. In this context, microsimulation output has analytical and inferential 
uses rather than merely providing data to construct simple point estimates for descriptive purposes. 

MSM affords the researcher the ability to model the essential determinants of complex real world 
phenomena under various assumptions under his control. An abundant collection of papers with 
applications of longitudinal microsimulation to study various processes in the economics, finance, 
demography, public health, energy planning and distributing, etc. are given in Orcutt et al. (1986) and 
Pawlikowski (1990). 

Our work originally arose in the context of the Population Health Microsimulation (POHEM) system 
(Wolfson and Berthelot, 1992), a microsimulation modelling system developed at Statistics Canada which 
enables the analyst to simulate the Canadian population's health, cost, and medical resource utilization 
under various policy scenarios. However, we soon realized that a large gap existed in a formalized and 
unified treatment of longitudinal microsimulation; with most approaches usually treating the subject as 
an ad-hoc exercise in empirical data analysis. 

This paper attempts to fill this void by developing an abstraction for the MSM process and further 
uses it to identify an optimal microsimulation design permitting the use of statistically efficient policy 

Gurupdesh Pandher is Methodologist and Milorad Kovacevic is Senior Methodologist, Social Survey 
Methods Division, Methodology Branch, Statistics Canada, 16th Floor, Robert Coates Building, Ottawa, 
Ontario KIA 016, Canada. The authors would like to acknowledge the support of Social Economic Studies 
Division in funding this work. We also thank Geoff Rowe, Harold Mantel, and Jean-Marie Berthelot for their 
beneficial comments in the development of this paper. 



comparison methodologies. MSM output generated using the proposed microsimulation design allows 
a highly efficient and powerful statistical analysis to be performed in assessing the impact of different 
policy scenarios. One important result obtained is that, under the proposed design, dramatic reductions 
in sample size may be achieved over conventional approaches at any fixed level of significance and power 
for the testing procedure. 

MSM generates a sample of simulated individual biographies over time. An individual biography 
may be viewed as a series of simulated event outcomes mimicking the essential features of a complex 
stochastic process. The only source of randomness or variability induced in this process is due to the 
randomness of the pseudo-random numbers drawn to execute the various decisions/events in the 
biography's life-path. We refer to this as Monte-Carlo variability. Moreover, each MSM run is 
performed under a set of external (policy) conditions under the control of the researcher. Frequently, 
one is interested in studying the impact of certain changes in the policy environment on the simulated 
population. Hence, the issue of policy comparisons arises in a context where at least two simulation runs 
- each under a different policy setting - are performed 2 . 

The execution of more than one simulation run introduces additional across-policy Monte-Carlo 
variability in the estimators used to test policy differences. This leads to the confounding of policy effects 
with across-policy Monte-Carlo variability, diluting the efficiency of estimators and ability of statistical 
tests to discern the real impact of policy changes - whether observed differences in response are due 
to policy changes, or are they the result of uncontrolled differences in the random numbers used. 

In the next sections we develop a general theoretical representation for longitudinal microsimulation 
and use it to identify design issues which lower the efficiency of estimators of policy differences. We 
then propose a biography creation strategy which reduces across-policy Monte-Carlo contamination and 
allows sharper discernments of policy effects to be made. Based on the theory, a statistical model for 
MSM is developed to permit estimation and comparison of policy effects and to demonstrate the 
efficiency gains of the new design. Finally, results from a simulation study are presented in which the 
theory and concepts developed in the paper were applied to a small microsimulation model. 

2 For a formal investigation into the statistical properties (bias, efficiency, stability) of methods aimed 
at reducing Monte-Carlo variability in estimators based on outcomes from a single simulation run see 
Kovacevic and Pandher (1993); Schmeiser (1982) studies the effects of batch size on analysis of simulation 
output. 
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2. GENERAL REPRESENTATION OF LONGITUDINAL MSM 

A creation of a synthetic biography generated at time t may be depicted using the concepts of 'state' 
and 'laws of motion' found in physics as proposed by Wolfson (1992). The state in the MSM context 
describes for each individual certain variables of interest (such as age, risk factors, health, etc.) associated 
with the individual as well as relationships among individuals (such as spouse). The laws of motion 
specify rules of how the state of each individual may change over time. The velocity with which these 
laws operate may change over time as the attributes describing the individual's state change. For 
instance, probabilities of certain events such as death due to coronary heart disease (CHD) may change 
as risk factors linked to CHD vary over time. The MSM takes on the character of a computer algorithm 
which embodies these laws of motions in the form of structural connections between temporal states. 

In order to proceed further in specifying a more precise mathematical formulation of MSM, we need 
to further extend the "laws of motion" analogy and distinguish more clearly between two classes of states. 
State attributes which collectively describe an individual may be separated into two categories. The first 
category, symbolized by the vector cx, = (ar, ..., a") , constitutes a vector of descriptors and 

enters the MSM as an exogenous information set at time I. Values in a, are not modified by the MSM 
model. Examples of these variables are disease risk factors, socio-economic status, genetic pre-
disposition, and survival distributions. Note that this exogenous information is usually obtai ned/esti mated 
from observational and controlled studies. This information is available prior to microsimulation and 
enters the MS model as an external assumption. 

The second category of state variables are termed as endogenous state variables. They describe the 
state or condition of each individual i generated by MSM and are effected by the exogenous state vector 
a,. These endogenous state variables are symbolized by the vector 9 = (j3, ... , 1) and are 

observed only once the tth  time period has been simulated. Components of 3, may be variables 
describing the disease and health status of individual i, utilization of medical resources, medical costs, 
employment status, income earned, etc. at time t. 

Decomposing the total state vector for each biography I at time t in terms of exogenous and 
endogenous attributes allows the simulated outcome at time t to be portrayed by the macro-level 
representation given in Figure 1. 

3 



Figure 1: Inputs and Outputs of MSM for Biography i at time t. 

- MSM, - 

t 
r. 

I' 

Figure 1 depicts that at time t, the MSM algorithm takes as inputs the parameters consisting of the 
exogenous state vector a and the endogenous state vector observed at the previous time periodi3 1 ,, 
and, lastly, a vector of random uniform variates Lu (discussed below). It produces as output (using the 
laws of motion defined in the MSM) the endogenous outcome states 	at time t. In the microsimulation 
of biography i at time t, the outcome state 	, depends not only on the exogenous conditions prevailing 
at time t, but also on the outcome state 	

j11 occupied by the biography at the last simulated time 
point3 . 

When performing the microsimulation of a biography at time t, a sequence of uniform random 
variates L, (of size rn.,) is drawn to determine the transition 	to 3 

In order to complete the general description, the formulation of MSM output from the generated 
outcome states t=l, ..., 7, needs to be discussed. Time-aggregated output of interest for each 
biography i is denoted by the vector y = (y), ... y,) whose components may be the total survival 
time, number of visits to physicians, medical costs, etc. The time-aggregated output vector for each 
md ividual will be based on the endogenous states $ = (fl,,, ... , .) realized for the simulated 
biography till the time of termination 7. In fact, y i  is a deterministic function of 9 ,, t= 1, ... 

The transition to state # , may depend not only on the previous state fl,, but also on the states 
occupied at the previous times f-i, t-2, and so on. To spare notation, we take it to mean that does 
not just depend on its endogenous state at the previous time point fl,, but also on states observed further 
back in the simulated history of the individual. Similarly, a, may be interpreted as not merely representing 
the exogenous information set used as input to MS at time t, but includes the set of exogenous descriptors 
up to time t. 
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= t f(. 
	 (2.2) 

For example, ifis defned as the endogenous state indicator variable signifying whether or not it 

the biography entered the death at time t 
{i if employed in period (t-1 , t] 

= 0 otherwise 11  

then, y = 0i, gives the total number of simulation time units in which biography i l  was employed. 
0-1 

Therefore, once the outcome states # i = (,, ... 	are realized in the microsimulation of the 

1th biography, the corresponding output of interest y may be directly computed functionally in terms 
of the time-wise elements of # ,. Population parameters may then be estimated by appropriate 
aggregation over individual values given by y 1 . 

3. A MICRO-LEVEL ABSTRACTION OF LONGITUDINAL MICROSIM1JLATION 

In the previous section a macro (black box) representation of the longitudinal microsimulation process 
at time t was developed for the output vector fi,, = ([3), ..., i3 ) as a whole. In this section a micro- it 

level theory of how individual outcomes 	, k-i, ..., S, at each moment r are generated by MSM is 
developed. Aside from providing an abstraction of the longitudinal microsimulation process, this 
description is essential for the results obtained later in the paper. 

3.1 Decision Steps and Sequences in Longitudinal Microsimulation 

Microsimulation for a given biography at each time t (or over period (f-i ,t] ) involves executing 

a number of ordered decision steps (functions). Let (I, = {D,, D, ..... D, 5J represent the universe of 
all possible decision steps which may be encountered by a biography during its microsimulation at time 
t. Decision steps answer questions such as "does the biography smoke at time t", "quantity smoked at 

t", "income earned at time t", "does the biography survive the simulation period (t-1 ,t] U  etc. We 

further denote by U, = {DD,. ...,D(Q } the set of all possible orderings of decision steps in 

U, = {D, 1 , D 2 , ..., D15j. The decision sequences (paths) 2 1q  q=1,. . .,Q,, which may arise in the 
state space are dictated by the "laws of motions" of MSM specifying the interconnections between states 
at each time node. Each decision sequence D q  in the set U, is constructed as an ordered combination 

of decision steps from U, = {D,, Da , ..., 

Elements in the endogenous state vector $, = (0 ) ,  ), 	generated for individual I atit 
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simulation time t are Outcomes of a decision sequence D,q  chosen from the finite universe of all possible 
decision sequences U, = {2,11 D 12 , ..., Having established the general notion of decision steps 
and decision sequences, these concepts will now be formalized and developed in greater detail. 

Definition 3.1: Set of All Possible Decision Sequences Q 
A decision sequence D,q  is a possible ordering of the decision set U, = {D, 1 , ..., D, , } permitted 

by the "laws of motion" of the MSM at time r. Consequently, the set of all possible decision 
sequences at time t is denoted by U, = {D,1, 2 121  ..., D, Q }, where Q, is the number of orderings 
possible. 

Each decision step DIk  at time r maps a uniform random variate u, drawn to decide the outcome 
of D,,  onto a point in its decision space X, representing the set of all possible decision outcomes (either 
continuous or discrete). Each element of XM  is in the support of a corresponding probability distribution 

fD,k,f( ), j <k, (cdf FD ,D ( )) which quantifies the probabilities of transition from decision states 
in X,, which we call the source space, to states in the decision space X,k,  which we call the destination 
space. These thoughts describing the kth  decision step at time t are expressed more precisely by the 
definition below. 

Definition 3.2: Decision Function (Step) D, k  
Given a state in the source space X, and the transition cdf parameter F010 ( ), the process 

by which a decision outcome x € X, is generated from a uniform random variate u is defined by the 
following mapping: 

DIk  (u; FD,D):  u - 	 x, where u € U [0, 1], x € 

such that x = F'k,D (u) , if  Xk  continous 

x = inf {y E ',kI  F(y) ~: u}, if X;k  discrete. 

In the case of a discrete destination space, Definition 3.2 assumes an ordinality to exist among the 
states in X,. If a natural ranking of discrete states does not exist, a reasonable ordering may be 
artificially imposed as long as the transition cdf F,,

1* i,,.( ) over  X,k  is well defned and used 
I) 

consistently. 

3.2 Types of Decision Sequences 

We now address the structure of the decision sequences D gq  q= 1, ..., Q, in U,. Decision steps in 
the decision sequence D,q  may depend on each other in one of three possible ways discussed below. 



3.2.1 Fixed Decision Sequence (FDS) 

This is the most straightforward and convenient form of decision step dependency. This situation 
arises when connections among states in the state space are such that while advancing a biography through 
time t only one ordering of the decision steps in D = {D 1 , ..., D} is possible. FDS arises when states 
in each source space are connected to states in only one other destination space. In this case, since 

Q1 = 1 1 he universe of all possible decision sequence configurations contains only one sequence: 
U, = {D,J. Furthermore, the fixed decision sequence at time t may be written as 

21, = {D 1 , ..., D} if we assume without loss of generality that the decision set D  for time t is 
ordered sequentially by the order of decisions taken. 

In a MSM model exhibiting a FDS structure in the state space at time t , regardless of what outcome 
occurs upon taking the first decision step D1,  the next decision step will always be D2.  Similarly, 
regardless of the outcome from decision step D,, the next decision step will always be D, and so on 
for subsequent decision steps. Previous decision outcomes may, however, effect future decisions 
quantitatively as discussed later. 

Conditions which must be met for a FDS structure to hold among discrete decision spaces at time 
t are stated in the following theorem. 

Theorem 3.1: Sufficient and Necessary Condition for FDS at time t 

For each source decision space X,k,  k = I, ..., S,, there exists a connected destination decision space 
p ~!: 1, such that 

-f-- 	E 	E 	fD,k, 'Dik Xkq 
(Xk.p.m) = 

nA X*qX,k 	k,p,m ( Xs.k,p 

	

where Xk q  q = 1, ..., n,, and 	, m = 1, ... , 	 are the states in X,k  and 
respectively. In refering to the size of the source decision space n,k,  we exclude terminal states 
in X,k  while counting n,. 

For all source decision spaces X, , k=l, ..., S,- l, the equation above checks to see whether 
transitions from all states in Xk  (excepting terminal states) occur to the same, one and only, connected 
decision space X, 

, p > 0. 
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Proof 
Assume that there are a total of n,k  states denoted by xkm,  m = 1, 	

'1 in X,.  Take the non- 
terminal state xk E X. Since x is a non-terminal state and, moreover, the state-space allows 
transition from a source state Xkm  in 'ck  to states in only one decision space X,k+P,  p> 0, the sum 
of all transitions from x in X to possible destination states Xk+pm  m = 1, in kpkI 

must add to one: 

Xk*p , m X,k,p  fD,k,PID,k_sk, (X+pm) = 1 

Now a FDS structure among the decision spaces {), ..., X,5  } arises when only one possible 
ordering of decision steps in U, = {D,1, ..., D, } is possible given by U, = { (D, 1 , ... , D, 5 ) }. This 
implies that all non-terminal states in X, are connected to states in X, 21  all states in X, 2  are 
connected to states in X, 3  and so on. 

Repeating the same step given above for XkI  in X,k  for all non-terminal states X*q  q = I , ... , 	 in 
X, then yields 

Xk q tXt* X/c,Pm CXI !, 
fD,. k ,P IDtk _xqk (Xkp.m) =11,/c . 

Finally, for the FDS structure to hold across the complete state space at time t , the above expression 
must hold for all source decision spaces X /c , k = I, ..., S, - 

3.2.2 Permutable Decision Sequences (PDS) 

Random sequential dependencies may arise in the decision sequences D 1q  , q=l, 
..., Q, if the outcome 

of previous decision steps D,k  alters the types of future decisions D,(k,P),p ~  I which may be undertaken. 
This occassion arises if the state space structure is such that a decision space X, /c  is connected to more 
than one other decision space. When states in a decision space X, map onto states in more than one 
other connected decision space , p;2: 1, then it is possible for more than one decision path 
configuration D 1q  q= I, ..., Q,, (Q,> 1) to arise. The set of all possible decision sequences possible 
at time t denoted by D, ={D, ...,D,) will now contain more than one element. 

As an illustration, suppose that at time t the decision spaces X,,, X,29  X, 3  and X,4  are connected 
with each other as shown in Figure 2. 



Figure 2. Notational Example of Permutable Decision Space Structure at time 1. 

Xti 	 xt2 	 xt3 	 xt4 

:: 

 

 

This structure of the decision state space at time r allows the occurence of three decision sequence 
configurations, namely D,1 = (D 1 , D12), D, 2  = (D 1 , DI2,D 3 ) and D = (D11 , D2,  D14 ). The set of all 

possible decision sequences at time t may then be written as 

= 1211 ' 	213 I = { ( D11 , D12 ), 

(13119  D 2 7 D 3 ), 

(D 1 1 D 3 , D 4 )} 

The same illustration given above is re-expressed below in terms of a simple (but fictitious) example of 
a MSM decision space at time t 
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Figure 2. Example of Permutable Decision Space Structure at time t. 

Conditions which imply a PDS structure among discrete decision spaces at time t are stated in the 
following theorem. 

Theorem 3.2: Sufficient and Necessaty Condition for PDS at time t 
For at least one source decision space Xk,  k = 1, ••, S,.., there exists a connected destination 
decision space X, , p~—> 1, such that 

o < I 	
E 	E fDt.k,PIDtk_xkq (xk+p.m) < 1 

1k 'kqck .rk+p m (Xk*p  

where x, q= 1, ... , n,, and Xk+pm , m=1, ... , n, 	are the states in X and 
respectively. In refering to the size of the source decision space n1,  we exclude all terminal 
states in X when counting IZ,. 

The proof of Theorem 3.2 is analogous to that for Theorem 3.1 and may be easily modified for the 
PDS case. These two theorems may be used algorithmically to distinguish between fixed or permutable 
decision sequences. 

A complication introduced by Permutable Decision Sequences (PDS) which was not present in the 

FI•] 



FDS situation is that the life path of the simulated biography may change depending on the outcome of 
previous decisions. On the other hand, in a state space where decision steps are arranged in a fixed 
sequence, all biographies experience the same life paths (decision processes) although outcomes of 
previous events may quantitatively modulate later decisions. 

3.2.3 Mixed Case: FDS and PDS 

The decision dependencies discussed in Sections 3.2.1 and 3.2.2 above describe the basic types of 
decision processes which may arise in the state space of a longitudinal microsimulation model. Most 
MSM models will consist of mixed decision structures with the fixed FDS segment containing M, ( <S) 

decision steps preceding the random PDS segment. 

In order to represent the set of all possible decision paths U, in the mixed case, we first define its 

two components: u = f DF, } = {(D, 1 ,.. . denoting the possible paths (only one) in the FDS 

segment and UP, =  { D, ..., D, } denoting the possible paths on the PDS segment. Then, our set of 

possible decision paths at time t may be written as the cartesian product of UF,  and U': 

U, = (U,xU/'). 

3.3 Simulated Decision Outcomes 

In this section we examine in greater detail how the components of the endogenous outcome vector 
are created for a simulated biography i at time t. Recall that (3,, is one particular realization of a 

decision path D,., f U, using the random number stream L1 = (r ..., 	 drawn at time Ito advance 

the biography from the achieved state 	to the new state (3d. 

Each decision function (step) D in the decision set U, = {D1, ..., D1 } is a random variable. The 

decision function Dth  for decision k at time t takes as argument a random uniform variate r, IE U [0, 1], 

and given the outcome of earlier decision steps .itIt:k-II 
= ..., (3)), maps r, onto a point in the it 

decision space X. Probabilities of transition from a state in X, 	to states in the decision space X,  are 

obtained from the transition density function 
fk,Dkl()• 

All probability functions 

t = I, ..., n, k = 1, ..., S, used enter the decision process as components of the exogenous information sets 
In addition, transition densities fc'k/DkI()  at time t may be altered by endogenous outcomes 

s= I ,. . . , f - i , obtained while simulating earlier time points s= I ,. . . , r-1. 

The dependence of the conditional transition pdf and cdf on both the exogenous information set cx, 

and the realized endogenous states 0 j., and 0 j,tI•*..1I  is captured in the definition below. 



Definition 3.3. Conditional pdf and cdf of transition from the source decision space X(k..1)  to the 
destination decision space X, 

fDIk/D, kI 	= fDkID,.k_, ( - ; 2. 	(a1, 	i.l—I ' 	iI(I:k—I 

FolD 	( ) = 	C 	; ! k (_a, 	i.t—I ' 	ilU:k —II ))  

where 0 I,k(a,,3I(II),I4I.klJ)  are parameters which impact the shape and range of the transition 
pdf and cdf faced by biography i in executing decision steps DIk . 

We are now poised to formulate the concept of a simulated outcome for biography i at time t using 
the defintion of the decision function. The labelling of the random numbers used to make each decision 
is crucial in connecting the outcome of a decision function with the simulated outcome of a biography. 
In Definition 3.4 below the original Definition 3.2 of the decision function D introduced in Section 3.1 
is modified by replacing the Monte-Carlo draw u with r,, to explictly link the decision outcomefor it 

biography i at time t with the decision function D and its input r. 

Definition 3.4: Decision Step D,k  and Decision Outcome f3 if 
Given a source decision state 	 and the cdf parameter FD kID (Al) (') to the decision 
function DIk,  the decision outcome 	in the destination space X,k  obtained using the Monte- 
Carlo draw rak  is described by the following probability map: 

p(k) Dtk  (r,k ; F010 ) : r 1  € U [0, 1] 	—ø 	t'jt € Xlk 

such that 	= F 
0tk0ek-1 

(r,,k) , if X:k  continous 

J j 1
(k)  = inf {x E 

'k ''D,k/D,.k_I 
(x) 	rI,k} , if 	 k  discrete 

Moreover, the relationship between the labelled random variate r and the decision outcome 
for biography i at time t may be further stressed by expressing the definition above more compactly using 
the functional notation given in Definition 3.5 below. 

Definition 3.5: Outcome 	of Decision Step D1  for Biography i at time t 

	

= D,(r1i ; FD A ,D hl  ( 	2. 	itII:k—II) 	 (3.1) 

Having developed the concept of an individual outcome 0 for a particular decision step 1lk'  we 
now formulate an expression for the complete endogenous outcome state vector $,, for individual i at 
time t. Simulation of biography i at time t requires a number of decision steps to be taken in a 
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sequence. The ordering of this sequence may be fixed (FDS), yielding (J, = {D,, }, or the ordering may 
be subject to permutation (PDS) in which case the set of all possible decision sequence configurations at 
time t contains more than one element U 1  = { D 11 , .. . 9210 ,  Q1 > 1. 

When the ordering of decision steps is fixed, the number of random variates required to simulate any 
biography at time t is also fixed. In cases where the dependency of decision steps follows the FDS type 
of structure, each ordered element of L = (r111 , .. .,r) corresponds exactly in position with each element 
of the decision sequence D,, = (D11  , ... , Dt; ). A functional representation for the endogenous outcome 
state vector fl,, for biography i at time t, based on Definition 3.5, is given below which directly links 
the decision function sequence D,, = ( D11  ,..., D) with its random input stream r i , = (r, 1 	,,) and 
cdf parameter vector F,11 . ;1  = ( F,),1  . .. . 	 p....

)• For ease of notation, the cdf 
parameter will be written simply as 	= (FD1  ,.. . , F ,. .. , Fe ). 

Definition 3.6 Outcome Vector fl, in FDS Case 
When the ordering of the decision steps is non-permutable, there exists a one-to-one 

correspondence between the elements of the random variate stream r 1 , = (r, 11 , . . .,r,,) drawn to 
simulate biograhy i at time t and the decision steps in D,, = ( D 1  ,..., D 1 ), The complete 
endogenous outcome state vector f1 1 , simulated at time t for biograhy i may be expressed functionally 
(by Definition 3.5) as follows: 

= (D (r1;  F1, ()), ...,D,; (r,5 ;F())) 

= elliS,1 Li,11:s,j' 	Ddi:%j ( )) 

In the case where the ordering of decision steps is open to permutation (PDS), this one-to-one 
correspondence between r and decision sequences in U, = {D,,, eIQ) will no longer hold 
throughout the whole sequence because decision steps in the sequence may vary for different biographies. 
In this situation, different biographies may randomly follow different decision paths. 

In most MSM situations, however, both FDS and PDS type segments will hold in the decision space. 
Here, permutable decision sequences (PDS segment) arise after the fixed decision path (FDS segment) 
giving rise to the mixed decision path structures discussed in Section 3.2. For instance, in the example 
provided in Section 3.2.2, the set of all possible decision sequences was 

= 	e,2  D,3 } = j(D, 1 , D, 2 ),(13111  D2,  D13),(D,1,  D2,  D,4 )} 

In all three possible decision path occurrences, decisions D11  and Da  occur commonly in the first 
segment of all decision paths. The size of the random variate stream r 1 , = (r,, 1 , r112 , ...) used to advance 
biography i in the interval (t— I , t] will vary depending on which decision path D 1q  q = { 1,2,3 }, is 
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followed by the simulated biography. However, among all three realizable decision paths, the first two 
random variates drawn, r 1  and rk2,  will always correspond to the first two decision steps D11  and D. 

More generally, the decision paths which may arise in a mixed state space at time t were represented 
by U = (UFX UI) (see Section 3.2.3). For all biographies simulated, the first M < S, decision steps 
will remain constant. This enables us to represent the cdf of conditional supports for the decision spaces 

by 	Fr = FIlJ = (FD 1 ,...,FD,...,FD). 	Similarly, 	we 	allow 

Lit= = (r, ..., r) to be that sub-stream of r i , 
 used to determine the outcome of the decision 

steps in U,'. We represent the decision outcomes for biography i at time t obtained from the FDS 
segment of the decision path by = =  Definition 3.6 allows these outcomes 
to be written in terms of the Monte-Carlo stream L and cdf parameter Fr as follows: 

F 
if =  

= e:It:M,l ZitII:M1  I' 	Dt(1:MI ( 

=2(zr) 
Meanwhile, outcomes in the complement ofdenoted by 	= (fir, 	)) arise from decisions 

— if 

from the permutable PDS segment of the decision path taken by the biography. Decisions in the 
permutable segment of the decision sequence realized for biography i depend on outcomes of decision 
steps taken by the biography in earlier decisions and becomes completely specified only once the last 
decision in the path is taken. 

This implies that the length of 	is random and depends on the decision path realized in U,". 
Therefore, the length of the entire Monte-Carlo stream r i , =  (r,r,') needed to simulate a biography 
at time t is also random. The complete outcome vector may be expressed in terms of decision sequences 
and their arguments as 

= 

(eztI:Mt I (1I1:MtI)' 
D' (r)). 

4. POLICY COMPARISONS AND ACROSS-POLICY MONTE-CARLO EFFECTS 

An important use of longitudinal MSM is in the area of policy development and strategic planning. 
MSM affords the researcher the ability to model the essential determinants of random real world 
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phenomena under various assumptions. For example, in the context of POHEM microsimulation, the 
researcher is interested in the health outcome of a hypothetic Canadian population (constructed from 
observations of the actual population) under various health policy scenarios (Wolfson and Berthelot, 
1992). The researcher wishes to study how health measures and health costs are affected by public policy 
initiatives aimed at discouraging smoking or lowering the cholesterol level for instance. 

4.1 Concept and Representation of a Policy in MSM 

The micro-level theory for longitudinal microsimulation developed in Section 3 allows us to describe 
the simulation process for individual states fl in '3il = 	 ..., I3) at an elemental level as follows: 

IJ st = Dtk (,k ; F,,10 	fli ,4" ( 	!11k 	. 	 i,1-1 	 (4.1) 
for k=1, ..., S,. 

As discussed earlier, the decision function Dk  maps the uniform random variate r,, onto a point 
(k)  i 	 i fl1, n the dec ision space Xth.  Th is mapping s performed with the help of the transition cdf 

Fo,ii,, 1  (; 	 parameterized by the exogenous information set a , and the 
outcome states 0. 4A  and 	achieved earlier. 

A policy in the mathematical model for MSM proposed in equation (4.1) is represented by variables 
in the exogenous state vector a,. This vector describes all external assumptions to the MSM model such 
as the effect of risk factors (egs. smoking, cholesterol), socio-economic factors, genetic disposition and 
the like on the survival distribution of age-sex based biographies which eventually quantify the structural 
connections over the state space. Clearly, policy interventions directed at changing smoking and 
cholesterol levels through behavioral change (eg. exercise, diet) represent changes to the exogenous state 
vector , t~ l. 

Changes in outcome states fl, are the result of quantitative changes induced on the 'laws of motion' 
guiding the MSM and do not cause structural changes in the model. By this we mean that the state space 
in not structurally changed by policy alterations in the sense that new states are not added or old states 
deleted at any time in the state space. Nor are flow connections across time between states altered by 
policy changes; only the probabilities of transitions among states are eventually effected by policy 
changes. It is important to understand that structural changes to the state space in the form of 
addition/deletion of states and flow connections represent changes to the 'laws of motion' governing the 
system. Such changes alter the structure of the model and should not be confused with policy changes. 
Therefore, policy changes hold the structure of the model constant but alter the likelihoods of transitions 
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to connected states. 

4.2 Types of Policy Change 

When comparing two policies for each simulated biography, represented by 
and a' = (a, ..., a, ..., a'.), the researcher is interested in studying the 

impact differences in the two policy assumptions have on the corresponding simulated outcomes 
and 	= (fl, 	 The representation for a' above 

assumes that policy interventions are made at all times in the simulation horizon. 

Other types of policy change may be of possible interest to the researcher. For example, the case 
of policy intervention only at time t0  (a' = (a , ..., a,.., ,, ..., )) is a special case of the 
policy change mentioned above. Here, change to the exogenous conditions facing the biography occurs 
only at time t0; conditions at all other times before or after remain the same as before. Yet, another 
variety of policy intervention is when interventions affect exogenous conditions at time t and also 
thereafter for all times but not before t0; i.e. a =(a ,. . .a, 1 , a , a . . ,a '), This situation also 
leads to a similar pattern of outcomes as in the case of intervention at time r0 only. 

4.3 Confounding of Policy & Monte-Carlo Effects 

In order to investigate the impacts of policy change on the simulated outcome $, consider the 
consequences of a policy shift from a to a'. To maintain simplicity in the exposition, without 
sacrificing generality, we assume that the policy change a involves only a change in policy at time t so 
that if a=(a , ..., a,, ..., a ) represents the baseline policy, then after policy shift 
a' = (a 1 , ..., a, ..., aj represents the modified policy. 

Using the results established in Section 3.3, the different outcomes for decision k at time t under 
the two policies may be represented by the following models: 
Policy I (a,): 

1=1 	... 

= 	D 	(r; 	FDID 	fl11 ) ( 	! 	(, 	i:(1:k-J ))) ,  ......', (4.2) 

Policy II (a ' ): 

If the decision structure is fixed (FDS): 
/ (k) 

Oil = 	(s DIk  ,k ; Fp 	 (4.3) ,k ID, k_ l  
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If the decision structure is permutable (PDS): 

( Si ; FDID 	- '- ( 	 ' 	i.:-i ' 	t'))) 	
(4.4) 

It is important to note that both 'ik  and 511k  are uniform [0, 11 Monte-Carlo draws drawn to simulate 
policy outcomes for biographies i = 1 ,... , n under policy (1) and policy (2). Since policy runs are 
performed separately, r and 5;k  are drawn independently under both policy runs and furthermore r11  
will be usually different from s,,.  Here, i simply labels the order in which biographies are generated 
under the two policies. 

	

The effects of a shift in policy from a toon the outcome 	are altogether different depending 
on whether the state space gives rise to a fixed (FDS) or permutable (PDS) decision path structure. 

FDS Case 
Recall that in the FDS situation the set of all possible decision sequence configurations U 1  at each 

time t has only one element: D, = {D, 1 ,. .. ,D,, }, Q1 = 1. This implies that the length of the random 
stream r,  used to simulate biogaphy i at moment t is fixed and each element °L, = (r111 ,. . . 

has a one-to-one exact correspondence with fixed ordered decision steps in E = (D1 , ..., D) and the 
kth random variate in r,  namely rUk,  serves as input to the kth decision D Ik : 	= 

Although the order and length of the decision path remains fixed in the FDS case, decision steps 
occuring later in the path, say DIk  , k > 1, depend conditionally on outcomes of previous decisions 

P1-1 	j) through their effect of their outcomes on the parameters of the transition cdf 

FDID 	(; 2.itk(t'i.l-I'ilII:k-IJ)) supporting the decision space X, k  of  DIk . 

Comparing expressions (4.2) and (4.3) representing the outcome from the same decision step DIk  
under the two policies ot , and one observes that changes in the outcomes and 'I are the result 
of two influences: 

1) Policy effect represented by change in policy from a 1  to of and 
ii) Across-policy Monte-Carlo effect due to using different random variate draws r,,  ;d SI lk. 

From these observations, it is clear that the difference in outcomes 	-, 	 under the two policy 
scenarios is confounded by both a policy effect and an accompanying across-policy Monte-Carlo effect. 
Ideally, one would like to observe the impact of policy change on microsimulation output independently 
of such Monte-Carlo contamination. In Section 4.5, an optimal biography generation design is proposed 
which blocks out such Monte-Carlo contamination (confounding). 
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PDS and Mixed Case 
In the PDS situation, more than one ordering among decision steps can arise at each time t: 

Q,> I. The effect of policy change a on the outcome j9 is more complex. 
Here, results from earlier outcomes l[I:k'-1 do not just quantitatively modulate later decisions but may 
alter the subsequent decision path taken by the biography. Therefore, the decision steps taken at time 
t and later under the two policies may be different. The propensity of the decision step to change is 
reflected by the prime in D, , . Consequently, the parity between the outcome 	= D. (ck)  under policy , 
and the outcome 3'3 =D, k (rI,,C ) under policy a with respect to the Monte-Carlo draw 	is broken. 

Decision outcomes under the two policy scenarios are no longer comparable because the decision 
spaces X,k  and  X k ,  are no longer the same. The random variate stream r., now varies depending on the 
decision path Qq (i selected by the biography and the one-to-one exact correspondence between the 
random variates and decision steps no longer persists across policies. 

In mixed decision sequences, a fixed (FDS) sub-sequence is followed by a permutable (PDS) one (see 
Section 3.3) and the one-to-one correspondence between the positioning of Monte-Carlo draws r in the 
random number stream r.  and decision steps D holds only in the FDS segment of (.1, = (LITx (J,").tk  
Recall that outcomes arising from mixed decision sequences were represented as 

.i1 = ('':;) ~it 

= ( 241M,I (,II:MrI)' D (r) 

where fl = 	= (D11  (r. 11 ) , ..., 	(rI(M)) = 	(Li:II:MgJ ) = 
represents outcomes for the FDS segment of the decision sequence 	and /3' represents outcomes 
obtained upon executing decision steps in the random PDS component D. If the Monte-Carlo stream 

= (r ,r) is used to simulate fi .,, then the one-to-one correspondence between the decision functions D 1  k- it

and their inputs r11*  holds only among elements of D = 	= (D11  ,.. . , DIM ) and 

L' 	.i:I:M1J = 	. . r1lM, ). 

Therefore, the biography generation design directed at blocking out Monte-Carlo effects in policy 
comparisons may be applied to the fixed decision path segment D,[lMJ  of all decision paths in U 1 . 

4.4 Optimal Biography Generation Design 

From Section 4.4 it can be seen that unless control is exercised on biography generation policy 
effects become confounded with Monte-Carlo effects. Due to this confounding nature of policy effects 
and Monte-Carlo influences, it becomes difficult to evaluate the direct impact of policy change in 
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simulation outcomes - whether differences in response are due to policy changes (a vs. a ') or are they 
the result of uncontrolled differences in the random numbers (rI,k  vs used. From a design 
perspective this is undesirable because inadvertent changes in the random numbers used in performing 
different policy scenarios blur the real effects of policy change. 

Optimally, if control over biography generation was possible, one would wish to produce 
microsimulation output for the same set of biographies under the two policies a and a I which was free 
from confounding Monte-Carlo effects. Expressions (4.2) to (4.4) suggest that a design (call it D2 
design) which would block out Monte-Carlo influences across policy scenarios is one which used the same 
random numbers r,,, I = 1, ... , n; t = 1, ..., 7;; k = 1,..., S, to simulate the common decisions under 
both policy scenarios a and a'. This would ensure that r. lk = SI lk, Under the D2 design, the 
simulated outcome for decision k at time t would be represented by the following models: 

Policy I  
n; 

(k) = D, (rISk  ; FDkIDkI. 	(a, 	il 'I 	i:II:*-1I)))' t 
= 1 ... 7;; 	(4.5) 
- , 	

, 

Policy II (for FDS segment) (c): 

= D (rJ ,k ; FD, k ID,, I . 	 ( ; 2Jt (a,', 	,fll'l(I:k_II))), 	
= 	

(4.6) 

The use of the same Monte-Carlo draw r,,*  in both policy scenarios for the FDS segment removes 
influences on the generated outcome states due to differences in the random numbers used. This ensures 
that in a Monte-Carlo sense the same "genetic" biography is observed under different policies and allows 
the effect of policy change to be measured in the absence of confounding Monte-Carlo effects. 

It is important to note that based on the discussion in Section 4.4, blocking out Monte-Carlo effects 
across policies is meaningful only among outcomes generated from decision steps contained in FDS types 
of decision sequences or in the case of mixed sequences from decision steps located in the fixed segment 
of the sequence. However, the benefits of reducing across-policy Monte-Carlo variation in the fixed 
segment of the decision path will also carry over to the permutable component of the decision path 
because outcomes and obtained from the fixed decision sub-sequence parameterize the 
transition cdf FD A ID k  (; 	 of decision steps in the PDS component of the 
decision path. 

Controlling Monte-Carlo fluctuations across policies in the FDS segment of the decision path will 
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contribute a lower level of across-policy Monte-Carlo contamination to the stochastic profile of transition 
cdfs in the permutable section of the decision path. 

Some schemes for implementing the proposed D2 design are given in Appendix 1. 

5. STATISTICAL MODEL FOR MSM AND ITS USE IN POLICY COMPARISONS 

In this section, based on the theory and concepts developed in the previous two sections, we posit 
a statistical model representation for generated MSM outcomes and develop a methodology for estimating 
and testing the impact of policy from data generated under different policy scenarios. Once an 
appropriate statistical representation for MSM output has been specified, the gains from the proposed D2 
biography generation design of Section 3.3 may be clearly demonstrated. 

5.1 Statistical Model for MSM Output 

MSM output in its most disaggregate form is available for each biography i over its simulated life 
as a vector of endogenous outcomes 0i = (fl,, ..., (3,.). The simulated outcome vector for the 
biography at time t, $' = (fl, ..., fl), contains generated values for many characteristics whose k 
th element fl denotes the observed value for characteristic k (e.g. medical cost). The time-aggregated 
outcome for characteristic k, Y.k'  may be functionally represented in terms of biography i's time-wise 
simulated values = ..., In the simplest case, each time aggregated element y1 k will beii  
a simple aggregation of time-wise outcomes 	, t = 1 ,. . . , 7, for characteristic k. In this situation, 
keeping in mind that Yjik 	13? represents for instance the medical cost incurred by individual i at time 
1; we may write 	

Ti 

Yi.k  

Making use of the functional representation of 	in terms of input r and cdf parameter 

FD k,D (kI)  (-) given by Definition 3.4, the time-aggregate total medical cost (characteristic k) of 
individual i may be expressed as follows: 

	

yi.A= 
	 = 	D,(r11 ; F 

D I D (a:, ij-I 	i:[1:k-I))) 	 (5.2) 

Relationships among the arguments to DIk (ck; F
Dtk k1 	

13 	13 itflk1 j))) are very complex 
and the whole microsimulation model is expressible only as a computer program; an analytical 
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representation is too complicated to derive. In devising a comparison methodology we need to first 
abstract the essential features of microsimulation output (using the results of Section 3) and model them 
in the simplest way convenient to estimate and test statistically. 

Allow superscript p  to denote the policy in effect, (to represent the simulation period (t-1,tl, k to 
denote the characteristic simulated from decision step DIk,  and i to represent the biography simulated 
using the Monte-Carlo draw r. We posit the following additive statistical model for the outcome 

YUk (ç): 

y1  (r,k) - - ILIk +'Yitk+€ 	 (5.4) 

where the model components having the following interpretations: 

$ (F( ; 0 (cx 
Mean level of microsimulation output y, for characteristic k under 
policy p due to the effect of policy ar on FD :k  () 

— (0,a): 	Random Monte-Carlo effect induced by the selection of the random 
ylk 

Monte-Carlo draws r, (r — U [0, 1]) to execute decision DIk  for 
biography i. 

€(F( 	 irl1:k-I1 )) 	(0, a2 	)): 

Error term composed of the following combined effects: interaction 
between Monte-Carlo and policy effects 	* Y) and the effects of 
previous biography outcomes f3,., and 	on 

The statistical representation for y (r) developed above may be easily extended to obtain a time-
aggregate nean model for the /cth characteristic (e.g medical cost) of biography f. Defining 

-- 	 and 	.1 	yields the following linear model: 
i-i 

= 	
+ Ti.k + 
	 (5.5) 

where 
is the time-aggregate mean for characteristic k under policy p for the simulated 
population; 

— (0, a) is the time-aggregate mean Monte-Carlo effect mean induced by the selection of 
randomly drawn numbers (r, r, 20: , ..., 
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- (0, a) is the time-aggregate mean error component. 

5.2 The Dl (conventional) and the D2 (proposed) Biography Generation Designs 

The statistical representation for MSM developed in Section 5. 1 may be used to estimate policy effects 
under various microsimulation designs. The statistical model may also be used to demonstrate the 
statistical gains of the D2 biography generation design proposed in Section 4.5. First, however, it is 
necessary to specify the type of alternative design (Dl design) we will be comparing the proposed design 
with. 

In Section 4.5 the optimal D2 design was proposed to block Out across-policy Monte-Carlo effects 
induced by differences in the random numbers (r ;4  s,,) used to simulate the common decision steps 
for each biography across policy runs. The D2 design ensures that the same random numbers are used 
to simulate the common FDS segment of decision steps among all possible decision paths in 
(I, ={D, 1 , ..., D,Q } for all times t = 1, ..., T. Under this design r,, =s,,, for The D2 design 
may be convenienly implemented using the Minimum Life Cycle biography generation scheme described 
in the Appendix. 

We will refer to a biography generation design which does not consiously ensure that the same Monte-
Carlo draws are used to simulate each common decision step across policy runs for all biographies as the 
Dl design. In this design, r,, and ilk are drawn independently of each other so that 
Coy (rj,k, A,k) = 0, v. This further implies that the random variates rIlk  and Silk  used to execute each 
decision step D,  under policy and a, respectively, will be different in most cases: 
r., 34  S1117 ''i:k 

Frequently, when studying various policies the experimenter may attempt to intuitively reduce Monte-
Carlo variation among simulated outcomes y, obtained under different policy scenarios by storing the 
first initial seed r110  (1=1, t=1) used to start the simulation run under the first, say baseline, policy. 
Next, when performing simulations under other policy scenarios, the same initial seed is used to start the 
run in an attempt to reduce Monte-Carlo variation across policies. 

This design maintains random number consistency (with decision steps) across different policy 
scenarios for all simulated biographies only under very stringent and usually untenable conditions. Not 
only must the state space exhibit the FDS (Fixed Decision Sequence) structure (discussed in Section 3.2) 
with only one possible decision sequence U, = {( i 1 , ..., D)} arising at all times, but, additionally, the 
termination time must be the same for all biographies at all times: T = T, i = I ,.. ,n. 
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If the above conditions prevail then regardless of what policy scenario is in effect, the total number 
of Monte-Carlo draws (. S,) needed to simulate each biography will be constant. In most MSM models 

1-1 

even if the PDS condition holds for all simulation times t = 1 ,. . , ,, the condition T1  = T for i = 1 ,. . , n 
is too limiting because the termination time is usually itself a random variable of interest. 

Therefore, exempting the first simulated individual f=1, this design will fail to maintain random 
number consistency for all simulated biographies and is not sufficient to ensure that the same individual 
- in the Monte-Carlo "genetic" sense - is simulated under different policies. Hence, simply using the 
same starting seed fails to maintain decision step/random number consitency across policy scenarios and 
will not block out across-policy Monte-Carlo effects. 

In their paper on "simulation experiments", Schruben and Margolin (1978) pay attention only to 
control over the use of the random number stream at different design "points". The issue of consistency 
between the decision path and the Monte-Carlo stream drawn to simulate it is ignored. Based on the 
discussion above, this approach will block Out counfounding across-policy Monte-Carlo effects only in 
the most simple longitudinal microsimulation models. 

5.3 Policy Comparison Methodology under the Dl Biography Generation Design 

Without loss of generality, the Dl and D2 designs will be examined under the framework of two 
policy scenarios: o" and a. We further restrict our analysis to continuous (non-categorical) simulation 
outcomes and will assess the impact of policy differences by comparing simulation means using the t-test 
(ANOVA) approach. In cases where binary or categorical outcomes are generated, other statistical model 
(eg. logistic, multinominal) representations for MSM output may be specified and the basic concepts 
developed in the paper may be easily applied to these settings. 

Let yand y, denote respectively the simulated response for decision step D, under policy a" and ilk

policy c for biography i at time t. To perform the t-test analysis, the means and are formed 
and (under assumption of independence of the two samples and normality) are used to test the null 
hypothesis that the means for the two policies 4 and 4 are equal: H0 : j4 -4 = 0 where - 
is estimated by 2 l* = 	- Yik. 

Our posited statistical model for an observation from MSM under this design is the same as the general 
model of equation (5.8): 

p= 1,2 
- 	(p) 	 i = 1, 
- 	tk + 	+ €jfA 	t = 1, ..., 	 (5.8) 

k-1,...,S,. 
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with the individual terms assumed to exhibit the following standard behavioral assumptions: 

E(yI,k) = 0, E() = 0, Var ( itk)  = 	Var(4) = 	Coy (y,,, 	) = 0. 

In the Dl design the random variates r,, and s, used to respectively generate outcomes y, () 

	

under the two poi icy scenarios 	
, p = 1,2, are drawn independently and will be usually different 

(r,, ~ s.,k ). Since  Coy (rISk, tk) = 0, then Cov(y, (rISk ), y: (s)) = 0, Y.,k.  As a consequence, 
simulated outcomes y, 

, p = I , 2, for the same 'genetic" individual under policies a ?', p = 1 , 2, cannot 
be generated. Hence, we can treat the output from the two policy simulations as two independent 
samples. 

Under the Dl design the mean difference A k'  and its variance under policy p=i and p=2 may be 
expressed as 

- (DI) 
A - - (2) 

k = Ys*
(I) 
 Y - ,* 

(5.9) 

	

(1) 	(2) (2) 

	

= 	- 	 + - 	 - 	 11,k) + - ( 	- 

	

fl 	i-i 	 i-I 	fl 	i1 	i-I 

	

(Di) 	2 	2 

	

Var(,k) - 	 (2 a
•1i* 

+ 0 
1,tk 

 + 02 
2jk' 

I n = a In. 	 (5.10) 

The corresponding t-test statistic under H0  is 

(1) 	(2) 
Y:k - Ysk 

fVar(y° -(2)  
ik 	Yik ) 

where 

- (1) - (2) 
- Ysk Ytk 	- 
- 	 t2( _ 1)  

& If 

2 	, 	(Q) 	(p)2 

V'arDl (7(1) - (2) - 2 / 	I 	Yu,c - Yac  

	

Y ) - a n = - 	 ________ 
2(n-l) 

- (1) 	(2) = (2 02  + 02 + Cr 	) / n based  on the total  within policy is an  unbiased  estimator of Var (y, 	Ytk ) 	tk 	 2.1k 
sum of squares error. 

Additionally, when the impact of more than two policies needs to be compared, the ANOVA approach 
may be used. The relevant ANOVA table needed to carry out this analysis is given in Table I below 
(ignoring subscript tk): 
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Table 1: ANOVA TABLE under Dl Biography Generation Designs 

EFFECT 	 SS 

POLICY 	ss = 	( Q,) - 

Monte-Carlo 	SS = 	(v") _(P))2 

(Within) 	 " 

Total 	 E (y (P) _)2 

d.f. 	 E(MSS) P  2 	F 

	

P 	 E a, 	MSS 
(P - 1) 	n 	(jL 

)2  + a+ P 

P 	 2 	P MSSMC  
P(n - l) 	 o) 

P 

nP - 1 

From the expected mean sum of squares column it can be seen that the effect of policy may be tested 
MSSP(,L  

(H0 : Ô(') = 	= .. ô'°) by using the F-test based on the ratio  
MSSMC 

- F 1(1) . 

Can we do better? More precisely (going back to the two policy context), this is to ask if it is possible 
to obtain an unbiased estimator for the policy effect j4 - which is more efficient. It is shown in the 
next section that the answer to this question is yes - when the D2 biography generation design is used. 

5.4 Policy Comparison Methodology under the D2 Biography Generation Design 

Under the D2 design, the statistical model for MSM output 
p= 1,2 

(p) 	(p) 	(p) 
yIIk(r,,k) = P,k +'Vilk 

+ 

remains the same. However, contrary to what occurred under the DI design, simulated outputs 
p = 1,2, for the same "genetic' individual i are generated under policies cr, p = I ,2 by using 

the same random draws r lk , Vj J k for all common decision steps in the FDS segment. This has the 
important consequence that 

Cov(y, 	y, (r,)) = Cov(y11, 'y,,) = ak. 	 (5.12) 

The mean difference Ask  under policies p=1 and p=2 now becomes 

- (D2) (1) 	(2) AlA = 	Y:k - Y:k 

1 
	 (5.13) 

(1) 	-, (2) 
= (JL 	- !.L,* ) + - ( 	Ej - 2. 

(2 
iIk) 

fl 	i-i 	i-i 

with variance 

D2) 	2 	2 Var(,k) - 	( a, 	+ a )/n = 42 /n. 	 (5.14) 1.:k 	'2.1k 
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n 

	

1 	- An unbiased estimator of a,2  under this design is given by 2 
aD2  = - L (itk - 

	as it can be 

easily shown that E(&) = a2 + 2 
	2 	 n-I 

I.,k 	01.:k = aD2. 

Moreover, an unbiased estimator of Var(Ilk)  can now be constructed as 

'IarI, k ) = !.' =_L 	
( 	 Ak)• 	

(5.15) 
n 	n n-i .i 	uk 

In order to test for policy differences (H0 : - 	= 0) we use the fact that 

- 	— (1) 	(2) 
Y:k 	Yik 

tn _ i  

is distributed as a (-statistic with n-i degrees of freedom. 

Hence, the D2 design blocks out Monte-Carlo variability in the estimator for policy difference 

Ak 	-, leading to the use of a paired (-test methodology in comparing policy differences. 

5.5 Dl and D2 Designs: Efficiency and Stability 

It may be seen that the D2 design leading to the use of the paired t-test is a superior strategy over the 
combined Dl design and unpaired (-test (ANOVA) strategy in two important respects: 

1) 	 In the context of comparing simulation means to assess the impact of policy change the 
estimator of policy differences ,k = 	- 3 is more efficient under the D2 design: 

VarDI ( Ik ) - VarD2 (A k ) = 2a2  In >0. 

This occurs because the D2 biography generation design blocks out the component of 
Monte-Carlo variability due to 'y,, in the difference of individual outcomes 

i:k -y - ye, v,, by ensuring that in the Monte-Carlo sense the same "genetic" 
individual is observed under both policies. 

ii) 	The estimator X, = 	- 	of the policy difference under the D2 design is more stable 
in smaller samples. This is implied by i) but also by the terms in A as shown by 
expressions (5.9) and (5.13) respectively under the D2 design: 
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i n  / 

	

+ - ( E 	- 

fl 	g-i 	i-I 
(5.9) 

1" (2) 
+ _Q c- e)irk 

fl  

(2) 	1 	" 

tk 	
(/L(1) 

- 	 ) + - ( 	- 	

(2) 
i:k) 	 (5.13) 

	

fl i-i 	i-i 

Note that A,,  under both designs is consistent, however, in small samples the term 

( 
may not be exactly zero. However, this term is completely eliminated by the D2 design leading to more 
stable behavior in small samples. 

5.6 Statistical Gains from the D2 Design: Significance Level, Power, and Sample Size 

To conclude this discussion on the statistical gains of using the D2 biography generation design, we 
consider the implications of the fact that paired differences for data generated over policies a (P) , p = I .2, 

under the D2 design yields smaller variances than the Dl design: a 2  ~ 

Without loss of generality, we discuss the import of the above result within the context of the simple 
hypothesis H0: - 

= = 0 versus H1 : j4 - = = > 0 under the assumption of normality 

with 2  known. The corresponding equation for type I error is given by (droping the subscript rk) 

a = Pr I 	- 	 ~: Z } 

where 	 a/1 

Z. 
= (kr, 

- 	 (5.16) 
a 

and k, is the critical value for A consistent with a test of significance level a. 

Similarly, the power equation is 
iL 

where 	 aI%1T 

(k 	!L zI _p  = 	a - 	 (5.17) 
a 

Combining (5.16) and (5.17) together yields 

Fn 	 (5.18) 

	

= Z.. 
- ( 	- 

a 
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Expression (5.18) allows us to evaluate the impact of the D2 design against the Dl design when 

aD2 :5 o,, with respect to type I error, power, and sample size. Some interesting cases of spreading 
efficiency gains are considered below. 

i) Effect on Sample Size with Constant Significance Level and Power 

	

In this scenario as,, = D2 and (1 -,) = (1 	D2)  Applying equation (5.18) to the Dl and D2 
situations yields 

Z. = Z - (p1 - p) 	 (5.19) 

Z. = 	- (p 1  - p) V2 	 (5.20) 

These two equations reveal that n D2 = 0D2 
	

DI• 	 (5.21) 
£YDI 

Result (5.21) implies that the same significance level and power offered by the Dl design may be 
attained at a lower sample size n02  ( :5 n,1  ) with the D2 design. The extent of the reduction in sample 
design DJ D2 depends on the relative magnitudes of a and a,2 . More precisely, since a 1  and 4 
are related as (see equations 5.9 and 5.13) 

	

= 2 	+ 42 
the reduction in sample size (droping the subscripts for time t and decision k) is exactly 

L 

	

=
2 	

2 DI 
+ 

	

1 	
tJ + 

2 	2a, 

Recall that 2 a2 is the additional across-policy Monte-Carlo variability induced by using different Monte-
Carlo draws in executing decision D under policies cr"1 , p= 1,2, when generating outputs 
y(P) p = 1, 2.. Under the D2 design, however, the term 2 a is totally eliminated, reducing with it the 
sample size by the amount 2 £J while maintaining the same level of significance and 

2 	2 	2 DI 
a
ll 
 + O2  + 2(7 

power for the testing procedure. 

ii) Effect on Significance Level with Constant Sample Size and Power 

In this scenario nLJ = D2 and (1 - 1D,) = ( 1 - ID2)• Applying equation (5.18) to this situation 
yields 
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ZCtDI 
= Za  + ( ji 1 

 - fL) " - '2) Fn 	 (5.22) 
a,,, a02  

Since t 1  > 	and a0, > 0o2 this implies that Za  > Z 	 so that as,, > ceD2 . Therefore, one 
implication of the D2 design is that when the sample size and power achieved under the Dl design are 
held constant, a smaller type I error (higher significance level) results for the test. The magnitude of the 
gain in the significance level is quantified by equation (5. 18) where Z. is determined by the distibution 
of the generated data. 

If 4(-) is allowed to represent the cdf of the transformed random variable 	, then the 
reduction in type I error may be further quantified as 	 S.E. (k)  

= a01  a02 = 4 (Za) - 4'(Za ) > 0. 	 (5.23) 

iii) Effect on Power with Constant Sample Size and Significance Level 

In this case n0, = n0, and a0, = a02  and use of equation (5.18) leads to 

Z10  = 	- (JA, -  ç) (aDl - a02) 	
(5,24) 

aO, a,,2  

Since j > 	and a01  > a02 , Z1 
D2 

< Z1 , so that (1 - $,) < ( I - ! D2) Hence, when the type 
I error and the sample size are held fixed, all gains from the D2 design are tranferred to 
achieving a higher level of power:1 -fl,,) < ( 1 	02)' Similarly, with 4(') defined as the cdf of 

1L the transformed random variable 	ik 	I 
S.E. 

( ) , the increase in power may be quantified as 

0 -13) = 0 - 1302) - 0 - 13D!) = 4' (Z1 ) -  4' (Z1 
D2 > 

0. 	 (5.25) 
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6. SIMULATION STUDY 

A simulation study was performed to empirically verify the theoretical results regarding the D2 
biography generation design obtained in earlier sections within the context of a simple microsimulatiori 
model. The microsimulation model used consists of a FDS sequence of two decision steps D 1  and D 2  
with only one time point (T= 1). Decision step D 1  simulates the smoking status of the biography while 
D2  simulates the future lifetime of the biography. In terms of the notation and concepts developed in the 
paper, the complete microsimulation model is given in Table 2 below. 

Table 2. Microsimulation Model Used in Simulation Study 

D i 	 D2  

Decision Sequence 

	

D = (D1 , D) 	 (smoking status) 	(time to death) 

Decision Space 

x 1 ={NS,LS,MS,HS} 	x,=[O,o) 
Transition pdf 

	

fDkjDk_I (flu  ;2. 	j.k-1 ) 

I) Policy 	= (( I) a 1)) 	
(I) 

fD2 ID1 $i2' 12 (.2 

- Weibul (O, C=3) 

.3if j311= 	

"6oif 	=Ns  

	

(1) 	1.2 if 	=LS 	 1/58 if 1  =LS 
INS 	

{ 

fD 1 WII ;2i(1 )) = 1 .3 if 	=MS 	
J) (a' 	1/56 if 	= MS 

1 .2 if j3. =HS 	 1/54 if 	=HS 

ii) Policy a 	 (2) 

	

2 = 	
(2) 
1 	.2 	

f02 ID1  ($12' 	
2 (a (2) 

 2 1 .6 if Oil  =NS 	 —Weibul(O?,C=3) 

	

(1) 	(2) .2 if $. IS 	
Since 	2 

(2) 
fD($,1;..l1 (i2))) 

= 1. 1  iffl11  =frfS 
A 	fl(2) 1.1 if$. 1  =HS 	 i2 

Note that the policy intervention (a 0) ) changes only the distribution of smokers, with a larger segment 
of the population shifting towards lower smoking. The policy change does not effect the parameter 6 
to fD }D () as 	= a . Moreover, the pdf supporting the decision space X2  for decision step D2  
may be written analytically as follows: 

42 1 D1  ($12; 01 21 C=3) = 	1[exp ($2'12)]I'c 
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where the shape parameter C is fixed at the value C = 3. The value of 02  faced by the individual 

biography under policy a represented by O (a r. depends on the smoking status (fl 1 ) generated 

for the biography in performing the first decision step D 1 . 

To be consistent with the notation used in the paper in Sections 5 we define y ( i3k) to be the 

simulation output of analytical interest for biography i for decision step D. under policy 	The 

expected theoretical difference for the future life-time random variable 	under policy scenarios a (1)  

and a 2  is E(y,) - E(y,) = -1.2502 years. This means that if the "smoking distribution" of the 
population is perturbed by health/education programs to effectuate the expected future life-time 
should increase by 1.2502 years over the "smoking distribution" reflected by current policy a 

A program was written in GAUSS to simulate the microsimulation model described above. One 

hundred (K = 100) simulations were performed under varying sample sizes in the range from 5 to 3,000 

biographies under both the D 1  and D. biography generation designs. For each simulation the means 1  

and 2)  for the observed future life-times were computed under the two policy scenarios along with the 
difference in means A= - and an estimate of its variance \(ar(i) under the D 1  and D2  designs 

using the expressions obtained in Sections 5.3 and 5.4. 

Table 3. Variance of i and its Estimators 

D2 Design Dl Design 

Var(s) 

2 aDI =(2a+a2+a2) 

\tar() 	 & fl /n 

2 	ii 
a2 	 = 	

(y(P)_o))2 
2(n-i) p-il•' 

af,2 

42 

&D2 / fl 

a02 	E (_)2 

where Ai =Yi2 
(1) 	(2) Y,2 

Estimates of the policy effect 	= 	- 	and its standard error a obtained under the Dl and D2A. 
biography generation designs under varying sample sizes averaged over the k = 100 simulations are 

reported in Table 4 below. 

31 



Table 4. Results from Simulation Study: Averages of A and r Under Dl and D2 Designs 
over 100 Simulations 

Dl Design 	 D2 Design 

D1 	 &Dj 	 42 	 UD2 	 aD' / CFD2 

(-1.250) 	 (-1.250) 

5 .895 19.413 -1.326 1.258 238 

10 -1.015 19.218 -1.243 1.271 229 

15 -.343 18.903 -1.270 1.275 231 

20 -2.355 19.120 -1.235 1.258 220 

50 -1.7192 18.747 -1.258 1.272 218 

100 -1.490 18.843 -1.254 1.298 212 

200 -1.282 18.818 -1.253 1.294 211 

500 -1.203 18.970 -1.250 1.304 212 

1000 -1.221 18.926 -1.253 1.300 212 

2000 -1.298 18.836 -1.251 1.298 213 

3000 -1.255 18.884 -1.252 1.299 211 

Comparing the columns for a under the Dl and D2 designs along with the column for à /&)2 

reveals the extraordinary efficiency of the D2 design over the Dl design (approximately of the order 211 
times). In Section 5.6, the relationship between the sample sizes n,, 2  and n D2  under the two designs 
required maintaining the same type I error (aD! = aD2) and level of power 
( 1-flDI )(1- $D2 ) was given by 	 2 

0D1 
DI = -r 

aD2 

Using this result with our observed estimate of 	/ ôr, 2 	211 in this particular simulation 
experiment, one interpretation of the extremely high efficiency of the D2 design is that a sample size 
approximately 211 times larger is required for the Dl design to maintain the same significance level and 
power for the testing procedure as fixed for the D2 design. 

It should be kept in mind that the ratio a / a, 2  = (2 a 2  / a + 	+ 1 is large because 
2 a 2  > >01 M + a,. 	In the simple microsimulation model used in this example 

+ a, = V&() + Var(])  (the sum of the two error variances in our MSM model 
= 	

+ i2 + 	p = 1,2) is small. Recall that 	- (0, as,) representing the error component of 
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the model, is influenced by i) the interaction of policy and Monte-Carlo effects (a r * 'Y.:k) and by ii) 

perturbations to O (a 	13 	13 	the parameter to the transition density FDk  (; O), due to its  ilk 

dependence on previous outcomes /3 	and 	In our simple model (T = I and S1  = 2), 

O (a", 0 ) is affected only by one previous outcome, namely 0, so that sources of perturbations to 
as a result of variability in previous outcomes are smaller making a + 	small in comparison to the 

Monte-Carlo variance Var ('y) = a 2 . 

In more complex2microsinwlation models we expect the term a 2  = 	+ 	to be larger relative to2 
01)1 	2o 

so that the ratio - = ________ + I will be smaller, although we expect it to be still much larger than 
a, 2  a2 + one. 

In Section 5.5 it was shown that the second advantage of the D2 design arose from the complete 
blocking out of the Monte-Carlo effect (YI,k)  in the estimator of policy differences 

	

(,4) - () +.! — ) 	 leading to its higher stability especially in small-scale 

	

fl 	r•i 	s-i 	 — 
simulations. This facet is also borne out by the simulation results by noting the closeness of 2iD2  to the 
theoretical expected difference of-i .250 years even in small sample ages of n =5, 10, 15. The estimator DI 

under the Dl design behaves very poorly in these small samples and begins to display better consistency 
after exceeding n = 100. 

7. CONCLUSION 

In this paper, a theoretical description for the longitudinal microsimulation process was abstracted and 
used to identify an efficient biography generation design (D2 design). It was shown that policy changes 
inadvertently incur with them across-policy Monte-Carlo effects. To compensate, larger simulation 
experiments with greater number of simulated biographies are usually performed in the hope that i) 
across-policy Monte-Carlo perturbations are averaged out so that estimators of policy effects are stable 
and well behaved and ii) standard errors of policy effects decrease to yield the desired significance level 
and power for the testing procedure. 

Using the mathematical representation, a statistical model for longitudinal microsimulation output was 
developed and used to demonstrate the high efficiency and stability of the estimator of policy effects 
under the D2 design. One implication of these gains in efficiency on the policy comparison methodology 
is that much smaller sample sizes are required to achieve a specified level of significance and power for 
the testing procedure. 
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In the simulation study performed using a small microsimulation model, it was found that the 
efficiency of the D2 design over the Dl design was approximately 211 times greater. This implies that 
under the D2 design, 211 times fewer biographies need to be generated over other designs which exercise 
no control over across-policy biography generation. This constitutes a significant saving in computing 
resources for very large scale simulations and also in statistical resources as less data needs to be 
tabulated and analyzed. 

Finally, the advantage of the proposed D2 biography generation design is amplified when there is 
interest in the effect of policy change on rare events. Rare events may constitute an atypical condition 
observed in the population with very low frequency (eg. 30 cases per 100,000). In the study of rare-
events, a certain minimum desired number of rare-event biographies need to be generated under different 
policy scenarios to allow statistically valid comparisons. The proposed biography generation design 
would reduce by a large factor the total number of biographies needed to measure and test the effects of 
policy change on the occurrence of rare events. 
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APPENDIX: METHOI)S FOR IMPLEMENTING THE D2 BIOGRAPHY GENERATION 
DESIGN 

The objective of the D2 biography generation design is to ensure that under all policy scenarios, each 
generated outcome I = I, , n; k = I ,. . . ,S,; T= 1,. . ,7;, simulated from decision steps in the 
common FDS segment of decision paths uses the same Monte-Carlo draws r,fk V,k (see Section 4.4). 

Random Number Generation in MSM 

The Monte-Carlo draws in r, = (rg , 1 , ... ,r,,..) , M,, ~ S, used to simulate biography i at time tare 
generated iteratively from their preceding values. For instance, the first number in the random number 
stream of r 1 , is generated from the seed r,,,, and subsequent numbers are generated recursively using 
a relation of the form rI,k = f(c) k ~?! I. Due to the algorithmic dependence of the random variates 
used to simulate each biography on preceding values, the choice of the initial seed r,  (t=1) effectively 
determines the sequence of random number streams R, = (r 11 , . . . ,r 7.) used in simulating biography I 
till its time of death 7;. Upon completion of the 1th  simulation, the last Monte-Carlo draw serves as the 
initial seed 	, for the next biography to be simulated. More precisely, r1,110 = 	where 
is the last random number to be used in Lr, = (r,, ..., r,) once the biography terminates at time 
t = T. Since the time to death T. is random, the length of the Monte-Carlo stream R, used to simulate 
biography i is also random. 

Methods for Maintaining Monte-Carlo Consistency Across Policies 

Two methods for implementing the D2 design which ensure initial seeding consistency between policy 
runs are now described. 

i) Maximum Life Cycle Method 

Let M represent the maximum size of the random stream that may be required to simulate a biography 
through the longest path inthe state space to reach the death state in the longest conceivable time T. We 
may further define M as the product of two components: M=Tm, where T represents the maximal life 
span of any biography and m is the upper limit on the maximal number of decision steps to appear in 
the longest decision path of U, = 1211 , D,,, 

..., 
D,Q } (the set of all possible decision paths at time t) over 

all times a' = 1 ,.. . , T. The D2 design may be implemented by simulating any biography i at time a' 
by drawing the random vector L1 =(r1,  ....r) of fixed length m to generate 0, from The 
complete Monte-Carlo stream drawn to generate biography i under this scheme may be expressed as 



= (r 11 	r11,,,, r421  ... ,r12 	r 	r1rm). 
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We know from the definition of m that all transitions between states over all times will require at mostm 
random variates. The surplus variates, those not required further during the transition, will not be used. 
Since M is known or determined beforehand, each biography will require a maximum of Tm = M 
random numbers to complete its microsimulation. If the biography terminates before time T (7 <7),, 
then the remaining random number stream in r, following r,..,,, will again remain un-used. 

Under the Maximum Life Cycle scheme, upon completion of simulating biography i, the random 
number generator will advance to the last element of R,', namely r, and this value will serve as the 
initial seed for the next (1 + 1) simulation; i.e. r= r, 7.. This strategy of selecting initial seeds 
r1 , 0 i=1, ..., N, t= I, ...,D , will ensure that the corresponding random streams r i , 

 used to generate 
events in the FDS segment of decision paths will remain constant for all biographies under different 
policy scenarios (as long as the first seed is the same). 

This method of drawing the random variates R 1  =R =(r d , ..., r,), i=1,...,n, will maintain 
Monte-Carlo/Decision Step consistency across policies so that common simulated outcomes under 
different policy settings are generated without the confounding effects of across policy Monte-Carlo 
variation. This effectively means that, in the Monte-Carlo sense, one will observe the same "genetict' 
individuals under different policies. 

ii) Storing Initial Seeds 

In this approach, the initial random variates i, i=1,...,n, t=l ,...,1, used for each biography at 
each time under the first (baseline) policy are stored to be re-used in the microsimulation of 
biographies under other policy scenarios a ,p> 1. Although this methods will also implement the D2 
biography generation design of Section 4.4., its main drawback is that the memory required for storing 
initial Monte-Carlo draws is directly proportional to the size of the simulated population. 
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