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Skewed Survey Populations: Optimal Construction of "Take-all" and "Sampled" 
Groups 

with Application to the Local Government Finance Survey Re-design 

Gurupdesh S. Pandher 
Methods Development and Analysis Section 

Social Survey Methods Division, Methodology Branch 
Statistics Canada, Ottawa, K1A 0T6 

Abstract 

In a survey re-engineering context, the most optimal sample design and estimation 
strategy holds the promise of offering the largest reduction in the sample size (and survey 
costs). In this paper, a scheme called the "Transfer Algorithm" is proposed to address 
the problem of finding an optimal demarcation between the "take-all" and "sampled" 
groups in surveys of skewed populations (eg. business, agricultural populations). The 
criterion for constructing these groups is based directly on minimizing the design variance 
of the regression estimator under a flexible range of sample designs (eg. SRS, pps, 
stratified). The proposed method also explicitly captures the size-induced 
heteroscedasticity evident in skewed populations in the determination of the optimal 
demarcation. 

Desirable mathematical properties of this algorithm such as existence and 
optimality of solution are established. An equivalence result is also obtained allowing 
the solution to be determined in terms of simple quantities computable directly from the 
population auxiliary data. These theoretical results are reported in Theorems 1 to 3. The 
methodology is illustrated using provincial data from the Local Government Finance 
Survey. 

Additionally, an alternative conceptualization of the survey framework for skewed 
populations is advanced at the onset which places all intermediate and final parameters 
of interest in a design-based framework. Classical optimal design theory results from the 
model-assisted framework are then re-cast in terms of finite population quantities in the 
alternative framework. Although this is not essential to the main results of the paper, this 
formulation renders a desirable design-based interpretation to all parameters involved and 
allows the design variance to be used as the criterion for constructing the population 
partitioning. 



Population asymétrique construction optimale de groupes I tirage complet et 
échantillons", avec application an remaniement de I'enquête sur les finances des 

administrations locales 

Gurupdesh S. Pandher 
Section du ddveloppement des enquêtes et des méthodes d'analyse 

Division des méthodes d'enquetes sociales, Direction de Ia 
méthodologie 

Statistique Canada, Ottawa K1A 0T6 

Résumé 

Lorsqu'on procede au remaniement d'une enquéte, Ic plan de sondage et la stratégie 
d'estimation lea plus optimaux pourraient se traduire par Ia reduction de Ia taille de 
l'échantillon (et, donc, des coüts de l'enqu&e) Ia plus importante On propose dans cet 
article tin schema, appelé .algorithme de transfert, pour regler le problème qui eat de 
trouver iine ligne de demarcation optimale entre lea groupes à tirage completi Ct 
Kéchantilons* dans lea enquëtes portant sur des populations asymetriques (entreprises, 
agriculture, etc.). Le critère pour la construction de ces groupes eat base dire ....nt sur 
Ia minimisation de Ia variance du plan de sondage de l'estiinateur de regression dana un 
ensemble souple de plans (SRS, ppt, stratiflé, etc.). La méthode proposée saisit également 
de façon explicite l'heteroscedasticite observée dans lea populations asymétriques lors de 
La d&ermination de La demarcation optimale. 

On établit lea propriétés mathématiques souhaitables de cet algorithme, telles que 
l'existence et l'optimalité de La solution. On obtient égaiement un résultat d'ëquivalence, 
qui permet de determiner la solution en termes de quantités simples, calculables 
directement a partir des données auxiliaires de [a population. Ces résultats théoriques sont 
mentionnés dans lea théormes 1 a 3. La méthodologie eat ilustrée par des données 
provinciales tirées de l'enqu&e sur lea finances des administrations locales. 

De plus, on présente des le debut une autre conceptualisation du cadre de 
l'enquëte pour lea populations asymétriques, dans laquelle tous lea parainetres visés, tant 
ceux de Ia population que du plan de sondage, sont places dans un cadre utilisant la base 
de sondage. Lea résultats de Ia théorie ciassique du plan de sondage optimal du cadre 
avec modèle sont ensuite exprimés de nouveau en tennes des quantités de Ia population 
finie dans Ic cadre alternatif. Bien que cette formulation ne soit pas essentielle pour lea 
principaux résultats de l'article, cite offre une interpretation souhaitable utilisant le plan 
de sondage pour tous lea parametres en cause et permet d'employer la variance du plan 
de sondage comme critère pour la construction des partitions de Ia population. 



Skewed Survey Populations: Optimal Construction of "Take-all" and 
"Sampled" Groups 

with Application to the Local Government Finance Survey Re-design 

Gurupdesh S. Pandher 

1. INTRODUCTION 

In many survey situations additional information is available on all population units before 
the survey is undertaken. This auxiliary information is frequently useful in devising a more efficient 
sample design and estimation strategy. In a survey re-design context, the most optimal strategy holds 
the promise of offering the largest reduction in survey costs by requiring the lowest sample size 
necessary to meet certain quality constraints on the estimates (eg. minimum desired coefficient of 
variation). 

i repeat surveys of skewed populations, maximal reductions in existing sample sizes may 
be realized by i) taking advantage of the structural relationships present between certain available 
auxiliary information (eg. population of municipality, employees in company, farm acreage) and the 
survey variables (eg. expenditures in municipality, value of shipments, farm yield) in estimating the 
population parameters (eg. totals, ratios, regression coefficients) of interest, and by ii) using this 
information with design optimality results to identify and implement an efficient sample design. 

Furthermore, in many such populations, the characteristics of interest tend to increase in 
variability as the size of the unit increases. The definite inclusion of these large units then increases 
the precision of the estimators as the take-all group contributes no sampling variance to the estimates. 
Therefore, in surveys of skewed populations, it is common to choose the largest units with 
probability equal to one (take-a11 group) and to employ an efficient sample design (eg. pps, 
stratified) in the remaining sampled group. 

In this paper, a new methodology is proposed to address the important issue of finding an 

• Gurupdesh Pandher is Methodologist with Methods Development and Analysis Section, Social Survey 
Methods Division, Methodology Branch, Statistics Canada, 16th Floor, Coats Building, Ottawa, Ontario 
K1A 0T6, Canada. The research reported in the paper was sponsored by Public Institutions Division. 
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optimal demarcation in the skewed population between the sampled and take-all groups as part of 
implementing an efficient sampling strategy. This work is motivated by the re-design of the Local 
Government Finance Survey (LGFS) conducted by Statistics Canada's Public Institutions Division. 
Financial information (eg. revenues, expenditures, debt, etc.) obtained from local government units 
is used in the estimation and publication of financial statistics on a provincial and national basis. An 
important objective of the re-design is to achieve survey cost reductions while maintaining a 
minimum desired level of precision in the estimates produced. 

An overall sample re-design methodology attempting to obtain a maximal reduction in the 
current sample size needs to address and integrate the solution to three problems: 

identifying an efficient sample selection scheme, 
constructing an efficient demarcation between the take-all and sampled population groups at 
a given sample size, and 
determining the minimal sample size required to meet the precision constraint(s). 

The overall methodology devised allows a new optimal sample size and opimal  population 
partitioning to be determined through an iterative scheme while maintaining the uesired level of 
precision in the estimates. The methodology is flexible enough to operate under a variety of sample 
selection strategies (eg. SRS, pps, generalized pps). Due to space considerations, the main emphasis 
of this paper is on the first two components of the overall methodology mentioned above. 

An iterative scheme - called the "Transfer algorithm" - is developed which fmds an optimal 
allocation of population units between the take-all and sampled population groups in the sense of 
minimizing the design variance of the generalized regression estimator. Desirable mathematical 
properties of this algorithm such as existence and optimality of solution are established. An 
equivalence result is also obtained allowing the solution to be determined in terms of simple 
quantities computable directly from the population auxiliary data. The methodology is illustrated 
using provincial data from the Local Government Finance Survey. 

Additionally, an alternative conceptualization of the survey framework for skewed finite 
populations is advanced at the onset which places all parameters involved in a design-based 
framework. Classical optimal design theory results from the model-assisted framework are then re-
cast in terms of fmite population quantities in the alternative framework. Although this is not 
essential to the main results of the paper, the formulation renders a desirable design-based 
interpretation to all parameters involved and allows the design variance to be used as the criterion 
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for constructing the population partitioning. 

Lavallee and Hidiroglou (1988), Hidiroglou and Srinath (1993) (subsequently denoted as 
L&H and H&S, respectively), and Glaser (1962) have proposed alternative sample re-design 
methodologies for skewed populations in the context of stratified simple random sampling (SRS) 
designs. With regard to the construction of the take-all and sampled groups (part ii) above), the 
proposed approach differs in three respects. Firstly, an optimal population demarcation is obtained 
for a flexible range of sample designs (eg. SRS, probability proportional to size (pps), stratified) 
planned for implementation. L&H consider a stratified SRS design on the auxiliary information (x) 
while H&S consider a stratified SRS design. Secondly, the criterion used by the Transfer Algorithm 
to find the optimal population allocation is based directly on minimizing the design variance of the 
regression estimator for the total (for a target survey variable y) under the desired sample design. 
H&S base their allocation on the total regression sum-of-squares for a survey variable under a 
regression model with a compulsory intercept assuming SRS while L&H find a stratification 
minimizing the within-stratum sum-of-squares for an auxiliary variable under SRS. Thirdly, the 
propor methodology explicitIr captures the size-induced heteroscedasticity evident in skewed 
survey populations. Other frameworks ignore the heteroscedasticity present in the population and 
use OLS estimates to determine the partitioning. 

2. FINITE POPULATION FRAMEWORK FOR SKEWED POPULATIONS 

In this section, after introducing the relevant notation and defining the problem, an alternative 
survey framework for the skewed population is described which allows all population quantities and 
important related parameters to be viewed in an entirely design-based perspective. This set-up allows 
the design variance of the generalized regression estimator to be later used as the criterion for 
constructing the optimal population partitioning; a superpopulation model is not required. Although 
this formulation is not critical to the main results of the paper (one could instead base the criterion 
on the anticipated variance), the design-based connotation may be more appealing to the design-based 
purist. 

2.1 Notation and Problem Definition 

Let C, = ((x ,y1),. .. ,(xN,yN)} represent the characteristics of interest for units in the finite 

population U = (1,.. . ,N). Both ; and y constitute the auxiliary (known before the survey) and 



the survey variables (unknown before the survey) of interest for the population unit k. They can 
be vectors but to keep the exposition simple we assume them to be scalars without loss of generality. 

Further, assume that x is a continuous auxiliary variable and let X(k)  represent the kth ordered 

(ascending) value of the auxiliary set Xu = {x 1 ,... ,x,j; ties can be placed in any arbitrary but fixed 

order. XJ =(X(1) ,. . . , X()) represents the ordered vector of auxiliary population values. 

Our purpose is to decompose the fmite population U into two disjoint sub-population 
consisting of the take-all group U = { 1 , . . . , N4 ) and the sampled group 11b = { ,.. • , N,}: 

U = U IJ Ub  and N = N4  + Nb . A sample of size n = + nb  is then to be taken from U = U U 'b 

using the sample design p(s ; X) = (p4(s4) Pb(sb  X)) such that all units in U4  are selected (n4  = N4 ) and 

a subsample of n. (<Nb)  units is selected from Ub . The sample design parameter X determines 

the type of sample selection implemented in the sampled sub-population Ub.  The sample inclusion 

probabilities due to Pb(Sb;  X) are expressible as rk(X) = b (x12 / E kE Ub.  Note that the 

sample design parameter X defmes a broad class of sample designs with SRS (X =0) aria pps (X=2) 
being just two particular cases. 

Once the sample has been selected, our ultimate objective is to estimate the population total I = I4  + tb  

for the survey variable y where t4  and ç represent the sub-totals for the take-all and sampled 

groups, respectively. Since a census is taken in U. (.k = 1, k€ (J), the estimator of r4  is r4  itself 

with design variance zero: 1= t= To estimate :,, the class of estimators defined by the 

generalized regression estimator will be considered. These estimators take account of the correlation 
existing between the survey variable Yk and available auxiliary covariates ; (note that ; can in 
general be a vector) to efficiently estimate the population total. For example, a combined ratio-based 
regression estimator for the total is given by 

(yb -  ;E) 
tRb = )., xk E + 	 (2.1) 

where , 	U )Y k is the sample-based probability weighted estimate of the regression parameter B. 
u X/ Tk 

In terms of the notation introduced above, this paper addresses the problem of optimally 



constructing the population demarcation U= 114 U U. under the mixed regression-based estimator 

i jt  = + I for any desired sample design p(s; X) * The optimality criterion under which the 
population demarcation is obtained depends on whether a model-assisted approach or an extended 
design-based formulation for the skewed population (developed below) is adopted. Since there is 

particular interest in identifying an optimal sample design p (s; ') in order to minimize the sample 
size, an analogue of the design optimality result from the model-assisted framework is also obtained 
for the alternative finite population framework. 

2.1 Design Optimality in the Model-Assisted Survey Sampling Framework 

In the model-assisted approach, underlying the class of generalized regression estimators for 
the population total are regression models (Sarndal, p.255) assumed to link the survey variables y 

with their auxiliary covariates x. For example, a ratio-form linear heteroscedastic model for the 
estimator (2.1) in which variability in the survey response increases with the size of the unit is 
represer by  the model 

Yk = $ 'k + 
	 (2.2) 

where c - (0, a) is the random error component. 

Under model (2.2), optimal design theory (Godambe and Joshi, 1965) suggests that choosing 

the probabilities of inclusion k k' k € U, would minimize the anticipated variance of the estimator 11b 

taken with respect to both the sample design p(s) and the model Z given by 

E 	- E U  (! - 1)Cj  (b 
(2.3) 

Furthermore, if o~k depends on the auxiliary measure ; according to the formulationa = cx '  

as proposed by Sarndal et. al. (1992, p. 462), then the design optimaliry condition leads to the result 

that irt  cxx,k€Ub . 

The approach described above falls within the realm of model assisted survey sampling and 

estimation. The estimator 1Rb  uses the relationship between the survey data y and the auxiliary data; 
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(based on a linear model) to improve its efficiency. If the model fit is good, then the efficiency is 
high and confidence intervals for point estimates are narrow; if the model is bad, then the efficiency 
declines and confidence intervals for the point estimators are large. In either event, the probability 

weights 'r ensure that the estimator 1R  is (asymptotically) unbiased and consistent with respect to 

the sample design. 

With regard to the optimal sample design, model assisted sampling requires that first order 

probabilities be chosen so that r. cc x. Putting the model at the forefront leads to the conclusion 

that the heteroscedasticity parameter y is a superpopulation parameter. 

2.2 Design Optimality in the Extended Framework for Skewed Finite Populations 

The survey framework for skewed populations described below allows all the intermediate 

parameters such as B and 'y to be viewed entirely as design-based constructs. The heteroscedasticity 

parameter y is introduced into a purely design-based view of the population data witho uiring 

an explicit specification of a model for the survey variable Yk  in terms of a deterministic 

superpopulation component xk o and a stochastic error component EL.  The essential concepts are laid 

out below. 

The skewed survey population is seen as composed of a three tuple: 
N {(xk  'y*; E)}L.I 

where EL  = Yk - B; is a residual parameter to the data combination xk  and y defmed through the 

finite population regression coefficient B. 

It is helpful to visualize the population data given by (2.4) as a scatterplot of N points. 

Conceptually, the finite population parameter B is the slope of a population line (Bx) running 
through the middle of the population scatter. Mathematically, it is defined as a value which 
minimizes the sum of squared population residuals EL  = Yk - B XL  around the population line B I: 

B0  = 	Z
N 

(Y - B XL) = SSN  (B) 
B 

{ B: mm 
k-I  

(2.5) 

(2.4) 

One also observes in skewed survey populations that variability in the survey responsey 



tends to increase with the size of the 
population unit x. In the 
population scatter (see Figure 1) this 
behaviour shows up as a "fanning 

out" pattern of points (Xk, 	along 

the population line Bx as the value 

of x increases. 	Hence, the 
population 	residuals are an 

increasing function of Xk. This 
relationship may be specified as 

Ek2  oc h(x).  A parameterized form 

of h(x) which is general, yet 
simple enough to be practically 

useful is h(xk)  a x, where y 0 is 

t h e 	fi.1tte 	population 
heteroscedasticity 	parameter. 
Furthermore, the relationship 

between E and h(x) is not 

perfect, meaning that all E do not 

lie on the curve h(x).  Keeping this 
in view, the relationship between 
the magnitude of the residual 

squared E and the size x of unitk 

can be posited as 

Eo:x?1 	(2.6) 

where ik  is the multiplicative 

deviation explaining the fact that all E 

do not lie on the curve cx. The 

deviations 	, 	are not 
assumed to be realizations from 
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some probability distribution, but instead are unknown and unobservable constants in the population. 
In the case where y is unknown (most plausible situation), they are also inestimable. 

The relationship between the squared population residual E, the transformed size value x / 2 ,  

and the deviation t spelled out in (2.6) is also. a finite population model. We can think of it as a 

"second order" model on the population residuals. It is directly analogous to the (1st order) finite 
population regression model in which the errors are additive; here the disturbances are multiplicative. 
Also note that the second order model defined by (2.6) is weaker than the probability model on the 

residuals E - (0, a) assumed in the model-assisted set-up. 

Using this additional knowledge about the behaviour of population residuals, we define our 
finite population regression parameter B in the size-proportional variance setting as follows 

N 	
- B x 2   

B (Y)= B:min 	 = SSN  (B;  ) } 
	

(2.5a) 1 {  

Bt.i 

Given y, SSN (B ; y) can be seen as a weighted sum of the population squared residualsEk = Yk - B; 

around the population line Bx. 

In the alternative framework described above, the parameter -y is a population parameter 

quantifying the spread of the residuals Et  around the finite population line Bx. Of course, y is 

unknown but in repeat surveys may be estimated using sample data available from a previous survey. 

The finite population heteroscedasticity parameter 7 is now defmed. 

Taking the natural logarithm on both sides of (2.6) yields the linearized equation 

In (Ek) = In; + ln(ii c) (2.7) 

where c is the constant of proportionality. Further, defining t = In ('7k  c) as the new additive error 

term, suggests the following finite population least squares definition of y: 

* (B) = J' -y: mm 	(in (Ek)2 - y lnx) = SSN  (y ; B) 
} 	

(2.8a) 

or, alternatively, using Ek = Yk - B;, as 
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y '(B) = {: mm 	(in (y - BXk 2  - y lnxk) = SSN  ( ; B) I. 	(2.8) 

Next, let B' ( B  '(y'))  and  y' ( 'y'(B  )) represent the finite population parameter values 

which jointly minimize SSN(B;)  and SSN (;B) in (2.5a) and (2.8), respectively. In this 

formulation, the survey problem is to first estimate B • and y • from the sample data and then 

employ the regression estimator for the total I,,, given in (2.1). Moreover, in a repeat survey 

setting, knowledge of 'y • derived from a previous sample may be used to identify a new efficient 

sample design p (s;X=) (generalized pps) defining the first order inclusion probabilities 

k(X) 	 ( 	/ 

	

= fl 	E' 	 kc. 

In contrast, under the model-assisted set-up, the parameter 'y entered through the 

superpopulation model y, = B Xk + k with Var(ek) = = cx. Design optimality (k 	a), then 

implied that ...uosing a sample with T 	x would minimize the anticipated design variance of 

the regression estimator of the total. 

The alternative formulation enables design optirnality to be defmed through the design 

variance of 1R  as shown below. First note that the variance of regression estimator !Rb  under the 

sampling distribution p(s) (with replacement sampling) is given by 

VP(tRb) E(! -1)E 	 (2.9) 

where E. = (Yk - Bx1) is the population residual. Minimizing (2.9) subject to the constraint 

= n. leads to the optimal specification of inclusion probabilities given by 

	

IEk kUb . 	 (2.10) 

Using the relationship described between E k and XL  given by (2.6) in (2.10) yields 
S 

	

1* oe x,, IkI1b 	 (2.1la) 

The problem with (2.1 la) is that although y  can be estimated from past sample data, the population 

deviations 	, ... , ij., are unknown and inestimable. If, however, the relationship between the 

squared residual E and the size value XL  defmed in E x ik  (2.6) holds well, then the influence 

Ii, 



of the disturbance 77, on x will be small and selecting population units according to the inclusion 

probabilities 

Jr: xx'2 ,kcUb , 	 (2.11) 

will be close to optimal. The loss in efficiency due to this approximation is given by 

VP(IRb;r1',...,)-VP(IRb;*1',...,*) =, 	 - 	UXj 	 (2.12) 
flXt 

The conditions under which this loss is minimum are apparent from (2.12). Firstly, the smaller the 
variation among the deviations 	the smaller will be the departure from the optimal 

variance. In the extreme case when all the deviations are of constant size (,i 	, k=1,...,N,) the 
efficiency loss is zero. Secondly, a good population fit of the relation (2.6) implies that the impact 

of the disturbances 	••• 1,,, on the corresponding x will be small so that the differences 

E ti 	- 2U. xJ•'2  ,k=l,...,N,, will also small, leading to a smaller loss in efficienc". 

The design optimality condition given by (2. ha) - and estimated by (2.11) - is close to the 
result obtained under the model-assisted framework where instead of minimizing the design variance 

the "anticipated design variance" s VP(IRb)  (defined as the superpopulation expectation of 

the design variance) is minimized. Therefore, when (2.6) holds, essentially the same design 
optimality criteria is obtained as under the model-assisted approach without requiring the 
superpopulation model and, furthermore, y is a finite population quantity parameterizing the 

relationship between the residual Ek2  and the size variable Xk  observed in the population scatterplot. 

The advantage of the proposed formulation is that the design-optimality result (k x) can 

be derived under an augmented design-based set-up in which all parameters such as B and y are 
finite population parameters. Moreover, this survey framework for skewed populations enables the 

design-based variance of the estimator 11b  to be used as the criterion for optimally constructing the 

take-all and sampled groups; the superpopulation assumptions are not required. 

Three methods for estimating the finite population heteroscedasticity parameter y from past 
survey data called the "Least Squares Approach", the Maximum Likelihood Approach", and the 
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"Graphical Approach are described in Appendix A. Results from applying these methods to Local 
Government Finance Survey data are also reported. 

3. OPTIMAL DETERMINATION OF TAKE-ALL AND SAMPLED SUB-POPULATIONS 

In surveys of skewed populations, units with the largest sizes are included in the sample with 
certainty and are not subject to randomized selection. Taken together, these few large-sized units 
may constitute a considerable segment of the total quantity being estimated and their defmite 
inclusion in the sample lowers the overall sample size needed to accurately measure the population 
parameters of interest. Moreover, in these populations, the population characteristics of interest tend 
to increase in variability as the size (eg. number of employees, farm acreage) of the unit increases. 
The definite inclusion of these large units then increases the precision of the estimators as the take-all 
group contributes no sampling variance to the estimates. 

In this rtion, a methodology is proposed to determine the optimal demarcation between the 
take-all and sampled sub-populations. Recall that the skewed population U is partitioned into two 

groups U = 	U U,, where U. contains the take-all units, all sampled with probability I 

(I I, i c U ), and U. forms the sampled group of units to be selected with a probability 

mechanism (0 < ir, < 1, i e U,,). The total population and sample sizes are represented by 

N=Na  +N,, and n = n4  +n,,, respectively. 

3.1 The Transfer Algorithm 

The proposed methodology used to define the population allocation iteratively between the 
take-all and sampled sub-populations, U. and U,, respectively, is based on the following idea. 

Initially, place all population units in the sampled group, labelling it u° (the superscript represents 

the iteration cycle). Hence, the take-all group is an empty set U ° ={ 0 }. The resulting population 

and sample sizes at 1=0 are given by N ° =0, n ,, ° =0, N ° =N, and n ° =n where n is the current 

sample size of the survey to be re-designed. Furthermore, the design variance of I= t4 + I,,, (using 

the fact that V(IR) = V(I,)) is given by 

11 
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V °(IRb ; X ,N, nbt1)=U. 	- I j E 	 (3.1) 

where 

(°I 1.J2 	? 	1 

	

I 	 (3.2) kO 1Z1, ') 	X 	
k-i 	J 

is the probability with which unit k is chosen. Note that X is used here to parameterize the sample 

design to allow greater generality when Xy. The component t of the estimator 1R= ç+ tRb is a 

census total of the take-all sub-population in (Jg  and, therefore, has design variance zero. 

If the relationship between the squared residual Ek  and the size value 'k  defined in 

E k = c Xk 17k  (2.6) holds well in the population, then the impact of the disturbance 17k  on Xk will be 

small. The values E in (3.1) can then be empirically modelled as Ek2  = cx (2.6a) where 'y and c 

are estimated from current sample data by employing the methods of Appendix A. Usinb Lne 

estimated version of (2.6a) in (3.1) yields the following estimator for V(°(IRb ; ): 

11 
)=E 	T(X) 

- i} 	 (3.3) 

In the iterative algorithm, we start initially with all population units placed in 	Using 

this population configuration, V ° (IRb ; . ) is computed. At the first iteration (1=1), the largest x- 

valued unit in 	is transferred to (J0)=(Ø)  As a result, 	now has one population unit and 

one sampled unit since all units in the take-all group are placed in the sample: N=N °1 + 1 and 

n=n °  I. On the other hand, U °1  has lost both a population and sample unit, yielding population 

and sample sizes N"=N °1 - 1 and 	1, respectively. In general, for any iteration 

1, 1 :5 I <n, the relationship between population and sample sizes is described by the following 

relations: N=N- 1, n °=n- I, and N ° = n ° = I. These relations hold because the overall population 

and sample sizes must remain constant (N = Nr + N 0  and n = + n ° ) for all iterations 1 :5 I <n. 
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At iteration I , the gain (loss) in efficiency due to the transfer of the Irh largest x-valued unit, 

denoted by X(N..O,  is given by the difference 

= V''(Ipb ; X, N-i-i ,n-i-i) - V°(I Rb' X,N-i,n-f). 	(3.4) 

Negative values of (I) mean that the transfer of the unit corresponding to the ordered valuex (N  

from U' ." to UI '"  lead to a decrease in the design variance. Moreover, such transfers will 

continue to result in a reduction in the variance of 1Rb  as long as t.(l) <0, 1 :51 <n. An estimator 

of A (I) may be readily obtained by using the estimator c'<'(IRb ;) for V°(IRb;)  as defined by (3.3) 

in (3.4) to yield A (l). 

Let I 0  (X), 0 :5 I • < n , represent the solution to the Transfer Algorithm under the sample 

design p(s ; X). The optimal population allocation to the take-all group U (I ) is then given by the 

population units coinciding with the 1 • ordered units transfered to the auxiliary vector 

x: = (Xj.), '(N- 
... , 

x). Correspondingly, the optimal population allocation to the sampled 

group Ub (1 ) coinciding with the units in X1, = (x() , . . , .). The solution 

I (X), 0 !!-. i <n, is also constrained by the condition i(X) <1 , k€ Ub  (1 ). Note that if 

T. ) < 1, then T(N&)<  I ,1 ~k~ n, since X() ~ X( . )  ,i ~k~n. These observations suggest 

that the solution for the optimal construction of the take-all and sampled sub-population, represented 

by Ua' (1 ) and Ub  (1 ), respectively, under the Transfer algorithm is given by 

I (X) mm 	' 	[Tc,v_oQ't) < 1] and A(I) = [ (s+l) (ikb ; X, N-i-i ,n-I-i) - ' ° (1Rb ; X, N-I, n-I)] ;':0, 
0:r.1<n 

(3.5) 

It is also clear from (3.5) that the solution to the Transfer Algorithm 1 (X) also depends on the 

sample design p(s ; X) - indexed by X - in effect. 

Mathematical properties of the solution (3.5) of the Transfer algorithm such as existence and 
optimality are studied in detail in Section 4.2, however, the following general observations can be 

made here. Transferring a unit from U 11  to causes two opposite effects on the variance 
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(1Rb;-)• The reduction in the population 

size (N ° N''- 1) has the impact of 
decreasing the 	variance, while the 
equivalent reduction in the sample size 

(n °=nt' -  1) has the reverse effect of 

increasing V(I;). Somewhere in this Rb 

process, a critical valuel ,O:!51 <a, 
exists which gives the optimal breakdown 

{U0 (1), Ub(l)}. 

The behaviour of this system is also 

affected by the initial sample sizen°=n 
and the distribution of the values 

x', k e U, in the population. It is also 
possible that for certain configurations, 

(1) >0 holds for all 1 :51 <a. This 
means that no efficiency gains can be 
realized from transferring units as described 
in the proposed methodology; the optimal 
construction of take-all and sampled groups 

is then given by (L' = {ø} and (4 = U, 

with 1=0. 

0 

FIg 3 Variance of Regreacion Eatimator at I (A -I) 

N-Population Size, n-Current Sample Size, I-Unit. Trariiferr.d 

Flg.4 Change, in Variance of Regre,aion E,timator (A-i) 

tO 	20 	30 	40 	50 	60 	10 	60 	60 	tOO 

An example of the application of the 
Transfer Algorithm to the LGF survey 
population of local municipalities in Ontario 
(with No793, n=108, y=2, and X=1) is 

given in Figures 3 and 4. The curves are plotted for 1 >8 because in the interval 0 < 1 :58, the 

first condition of (3.5), namely [(No(X) < 1], is not satisfied. Note that in Figure 3, the minimum 

value of '(1ftb) is achieved at 1 = 57 and in Figure 4 this point coincides with 
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(1 ) = ''— i'' 	0. In Table 3.0, the solution I (X) to the Transfer Algorithm as defined in 

(3.5) and (3.18) are reported for 0:5X :52 y (y=2). 

Table 3.0 Solution to Transfer Algorithm 1 '(X) for 0!-cX e,2 y ( y=2) 

x 1(X) 
Definition (3.5) 

I(X) 
Definition (3.18) 

0 64 64 

.5 60 60 

1.0 57 57 

1.5 50 50 

2.0 39 39 

2.5 50 50 

3.0 57 57 

3.5 60 60 

4.0 64 64 

3.2 Analysis of the Transfer Algorithm 

In this Section, the Transfer algorithm described in the previous section is analyzed. This 
is done with two questions in mind: i) does the algorithm converge to a solution? and ii) is the 
solution optimal? Furthermore, the analysis below reveals that the solution defined by (3.5) can be 
expressed equivalently in terms of quantities which are much simpler to compute. This equivalence 
result is established first before investigating the properties of the solution. 

3.2.1 Equivalence Result 

From the expression for the variance of V°(iftb;)  given in (3.1), we have after substituting 

for i(X) 
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NTh12 	1 
NO 

I

EX(,) 	I 
V'(IRb ; X 	n (I)) = 	

j.i 	
- I I E, 

k-I 	n(0x(2 	J 
(3.6a) 

or, equivalently, 

V(IRb ; X,N-1, n - i) = 

N-i-i )J2 
	).12 	1 

N-i-I I E 	+ Xy 	I 
2 

k-i 	(n-I) X(k)
Al2 	J 

I N-i 	 1 
W2 I I 	 I 

	

i) J
-  iJ 	(3.6) 

(n- x 

The subscript b in N °  and n 0  may be dropped since by definition N 0  = N °  = N- 1 is the population 

size of U °  and n=n ° =n- I is the resulting sample size. Moreover, at iteration 1+1, the variance 

expression V'"(IRb;)  may be written as 

N-I-I 

Rb'  
k-I 

N-i-I 	
Wi1 

- (n-i-i) 	i 	2 
f-I 	 E 

J X 
(3.7 

After matching common terms and some further reductions, the difference of the variances 

(I) = V('" - V 0  may be written as 

N-I-i 

v- y(fl= 

N-i-i 
Wi 

'U, 
- (n_ 1 _ 1)xi, )1 

I 	fl (n-I) (n-i-i) 	j X 

N-i 
I 	)2 
i E J

- (n -i)  
J_i 	 E( 

- [ 

(n-i) 

n 

(3.8) 

An estimator of the above expression based on (3.3) is given by 

IN-i-I 	 IN-I 	 ) 
X0 - (n - i-i) 	1 	I E x - (n-I) x 0  I Iv Wi 

I f-I 	 I 	,-wi 	 I f-I 	 I 

k-i [ 	(n-I) (n-i-i) 	 (n-f) 	j 'h'-' 	(3.9a) J X 	 - C 

where c >0 and 'y ~t 0 are estimated from modelling the relation E c x (2.6a) using the methods 

of in Appendix A. 

Expression (3.9a) further reduces to 

	

A(l) B(t) 	 (3.9) 
(n -i) (n-i-i) 
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I 

where A (1) = V' 	- (n -I) x 	and B(I) 
= 	

1J2 
- (n-I) xJ 2 . For notational convenience, in 

the remainder of the paper V° will be re-defined to represent the estimator of the design variance 

defined in (3.3) and (3.9). 

Next, note that V'' V <0 in the cases i) [Aw >OandB(l) <o] and ii) 

[Aw <0 and B(l) > o] and V'-V(O >— 0 when iii) 	[A(I) ;?~ 0 and B(I) ~tO] and iv) 

[A(1) !~ Oand B(l) :5;0]. In case i), the condition on nt°=nI under which B(l) <0 is determined to 

be 

	

[

1) 	k-i 	 (3.10) 
X(N 

1tuc'r r. 

II 	
)J2 

k X( 
k-i 	 (3.11) 

X(N0 

	

Li: 'T1L 	H 

: 	 > R(I;y-X/2). 	 (3.12) 

i.i.il.u1y, lflL: L1iLjLUI ur j  fl___j required for A(l) >0 is obtained by solving 

I 	 - (n -I)x 	>0. This yields 

N-I 
, )J2 

2 X( 
k-i 	 (3.13) 

)J2 

.cLTh :}i j 	 2) may be rexpressed as 

<R(I; X/2). 	 (3.14) 

Similar conditions br n= n - I can be derived for the remaining cases ii), iii), and iv) 

mentioned above. The results are summarized in Table 3.1. 
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Table 3.1 Outcomes for V" - V° < 0 and V'-V >--0 in Terms of n= n-I. 

V''-V° < 0 V'-V° ~>0 

Behaviour of A Condition on n= n-i Behaviour of A Condition on n°= n-i 

andB. andB. 

A(I) >0 R(l ; y -X/2) <n-I <R (1; X/2) A(I) >0 n-I !-= mm {R(1 ;X12), R(1 ; y -X/2) 
B(1)<0 (T.1) B(1) 	0 (T,2) 

R(1;X/2) <n-i <R(I;y-X/2) A(i) 	0 ,jj ;2t max{R(l;X/2), R(l;'y-XI2 
(T.3) B(1) 	0 (T.4) 

The first and second columns of Table 3.1 describes the behaviour of A (1) and B (1) leading 

to  the outcomes < 0 and V'-V 0  >-0. The second and fourth columns describe the 

equivalent condition in terms of n= n-i which yield V°-V' <0 and V°-V' >-0. Since all 

ranges for n = n-I depend on R(l; X/2) and R(1 ; -y -X/2), the solution to the Transfer algorithm 

P (X) given in (3.5), along with the mathematical properties of the solution, will depend on the 

distribution of the size measure x and the values of -y and X. 

The behaviour of the system described in Table 3.1 depends on the sample designp(s ; X) 

(indexed by the heteroscedasticity parameter X) employed. Three cases are distinguished and 

discussed below: a) X <-y [R (I; -y-X/2) <R(l; X/2)], b) X =y [R (1; y -X/2) = R (I; X/2)], and 

c) 'y <X :!~ 2-y = {R(1;-y-X/2) >R(l;X/2)}. Although X >2-y is also possibleand mathematically 

defined, this situation is arbitrarily ruled out because it leads to y  -X12 <0 (this term appears as the 

exponent in R(1;7-X12)). Using the implications of each case for X on the relative ordering of 

R(I;-X/2) and R(1;X/2) in Table 3.1, leads to the systems described in Tables 3.2 to 3.4. 
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Table 3.2 Case a) X <y: Outcomes for V'-V 0  <0 and V""-V° >-0 in Terms of n=n-I. 

V'-V° < 0 V'-V° >0 

Behaviour of A Condition on n= n-I Behaviour of A Condition on n= n-I 
andB. andB. 

A(i) >0 R(I;-X/2) <n-i <R(i;X/2) A(i) >0 n-i :!!g R(I;y-X/2) 
B(1)<0 (T.1) B(I) ~tO (T.2) 

A(I) <0 NOT POSSiBLE A (1) --50 n-I ~t R(i;X/2) 
B(I)>0 (T.3) B(O:5O (T.4) 

Table 3.3 Case b) X =y: Outcomes for V""-V <0 and V°-V° >-0 in Terms of n°= n-I. 

V(1 V(0 < 0 1 	V''-V' >0 

Behaviour of A Condition on n°= n-i Behaviour of A Condition on n°= n-i 
andB. andB. 

A(I) >0 NOT POSSIBLE A(i) >0 n-i ts R(l;7/2) 
B(1)<0 (T.1) B(l);~:0 (T.2) 

A(l) <0 NOT POSSIBLE A (1) :5 0 n-i 2-- R (1 ;'y/2) 
B(1)>0 (T.3) B(1):50 (T.4) 
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Table 3.4 Case c) 'y <X :!~;2 y: Outcomes for V'*V° < 0 and V0" )  - W Z?t0 in Terms of 

n-I. 

V''-V 	< 0 V-V° >0 

Behaviour of A Condition on n°= n-I Behaviour of A Condition on n 0 = n-i 

andB. andB. 

A(1) >0 NOT POSSIBLE A (1) >0 n-i < R (1; X/2) 

B(l)<0 (T.1) B(1) ~:0 (T.2) 

A(t) <0 R(l;X/2) <n-I <R(l;'y-X/2) A(l) 	0 n-I ~t R(l;7-X/2) 

B(t) >0 (T.3) B(l) 	o (T.4) 

An important condition required for the solution to the Transfer Algorithm 

im{': [(X)< 

1] andA(O = [ ' (iRb; X,N-I-1,n-l-1) - 	 (IRb ; X,N-1,n-OJ ~--0, 
I 	 O:5i <nJ 

(3.5) 

is that <1. It is easily to show that r(X) < 1 A(1) > 0. In terms of the descriptions 

given for the Transfer Algorithm in Tables 3.1 to 3.4, this condition means that the solution can 

occur only when both A(i)> 0 and B(l) ~t 0 or, equivalently, when n-i satisfies condition (T.2) 
in each table. The important results from the above analysis are summarized in the following 
equivalence theorem. 

Theorem 1. Equivalence Theorem 

Let p(s; X) represent the sample design in effect, defming the inclusion probabilities 

	

N-i 	 N-i 
, 

	

4) (A) = (n -O X( / E 	, k Ub. 	Further, with  R(i; X/2) = 	J2 i 
X 

}J2
N.0 and 

	

k-i 	 k-i 

R(I; y  -X/2) 
= 

X( 	/ 	defining the critical values for n-I, the following 

equivalences hold for the Transfer Algorithm. 
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X <y: 

	

[r(No(X) < 1] and [v"(IRb ; X, N-I-I ,n-i-l) - V ° (IRb ; X, N-i, a-I)]  ~:O] 	(3.15a) 

4* [n - I :5 R(I;y-X12)] 

X, N-I-i , n-i-I) - V ° (IRb ; X, N-I, n-I) <0] 	 (3.16a) 

4* [R(l;y-x/2) < n - I < R(I;X12)] 

it 1] and 1V
(I-I ) (i tb ; ,N-I-I ,n -I - I) - V°(IRb ' 

X, N-i, n-I)] ~ O] 	(3.17a) 
"  

* [n-I ;-- R(i;X/2)] 

X =y: 

<1] and [ ftb ; 'y, N-I-i ,n-I-i) - V ° (IRb ; 'y, N-I, n_I)] ~!to] 	(3.15b) 

[n - I :5. R(i;'y/2)] 

	

[,y) ~!: 1] anu [V( l)  (I• Aj,  N-I- I , n-i-i) - V (1 lb y, N-I, n-I)] ~ 0 1 	(3.1 6b) 
' 	 ' 

s. 	[n - I ;2t R(i;'y12)] 

'' <X --,;2y: 

<1J and 
 [V(I- ' ) (Iltb ;  X, N-I-i ,n-I-i) 

- '°(1Rb; X, N-I, n-I)]  ~tO] 	(3.15c) 

[n - I ;-> R(I;X/2)] 

X, N-i- i ,n-i-I) - V ° (IRb ; X, N-I, n-I)  <0] 	 (3.16c) 

[R(i;xi2) < n - I < R(1;y-X/2)] 

a 1] and 	X,N-i-1 ,n-I-i) - V°(IRb' X,N-1, n-I)] ~-- 0] 	(3.17c) 

[n - I zt R(i;7-X/2)] 
3.2.2 Simpler Method of Solution 

The methodology of finding the optimal allocation of the population to the take-all and 
sampled groups was originally developed in terms of the behaviour of the difference 

(l) = V"(iRb ; 'y, N-i-i ,n-I-1) - V(IRb ; y, N-i, n -I). 	(3.4) 
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The analysis performed above of the Transfer Algorithm, and particularly the equivalence established 

between the behaviour of V°-Vt'' and 4(X) and the terms n°= n-I, R(1;XJ2), and 

R (I; 'y -X/2) in Theorem 1, allows the solution I (X) to be stated in a greatly simpli lied - yet 
equivalent - form. This result is stated in Theorem 2. It is directly obtained from the three 

components of Theorem 1 keeping in view that the solution I (X) must satisfy the two conditions: 
I i) V' 	Vu ;-,- 0 and ii) [T(N_z.) < 1] 	[A(I') >o]. 

Theorem 2. Alternative Solution to Transfer Algorithm 

The solution I '(X) to the Transfer Algorithm stated in (3.5) in terms of V- Vu-I)  and 

may also be equivalently expressed as 

min{I: n-I :5 R(1;'y4/2) .0 :5I<n} , x 
1'A) 	mn (1: n-i :5 R(1;-y/2) , 0 :5i<n} , 	

. 	 (3.18) 

miii {i: n-i f.-  R(l;X12) , 0--.~ 1<n} , y<X<2'y 

An example of how (3.18) can be used to find the optimal population allocation is illustrated 
in Figure 5 (the same Ontario data for the population of local municipalities is used as in Figures 3 
and 4) with y=2 and X= 1. In this case X <y, and the solution is determined by the behaviour of 

functions R(l;'y-X/2) and n-i (see Theorem 2). The same solution 1' =57 is obtained as before. 

Moreover, near 1=8, the functions R(I; X/2) and n-I cross. From Table 3.2 it is clear that 

	

1] c [A (I) :!~ 0] for I :5 8 and 	< 1] 	[A (1) > oj for 1 >8. 
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3.2.3 Existence and Optimality 

The issue of existence and 
optimality is concerned with the 
question of whether 1) the Transfer 
Algorithm always converge to a 
solution and 2) is the solution 
reached globally optimal ? Note 
that by construction, the solution 

I '(X) guarantees local optimality in 

the region [0, 1 '(X)J. The second 

question is concerned with the 
conditions required for globally 

optimality. The solution I (X) will 
be optimal if the conditions leading 

to 1 (X) remain unchange... able) 
in the system defined over the 

1 
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9 -80  
cc 

C 

N 0 

0 
- C 

0 

0'- 
0 
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remaining region (I (X), n -1]. Stability (of conditions) in this region ensures the (global) optimality 

of 1 (X). In terms of the original formulation, these concepts may be defmed as follows: 

Existence: 3 V , 0 ~ I • <n, such that V' +1) 
- V' >— 0 and 	< 1. 

Stability: If V'"- V''' ;>-O, then V'- 	ZPO and r 	< 1 for 0 15.I <1 < it 3. 

In Section 3.2.1, V'- V° was expressed as 

1.1)_ v= 	A(t) B(t) 
(n-I) (n-I-i) 

(3.9) 

where A(I) 	x=E -  (n-t)x(  and B(I)= 	- (n-I) xj. Additionally, denote 14  to be 

the smallest value of 0<I <n satisfying A(l)>O; similarly, let 1 be the smallest value of 

0 15 I <it satisfying B(1)>0. At the solution I (X), the following two conditions are required: 

1) V' 	-V' > 0 and ii) < i] 	[A(l ) 
>o]. Keeping (3.9) in view, this implies that at 

the solution, the condition B(l )>0 must also hold. Therefore, the solution to the Transfer 
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Algorithm can also be stated as 

1'= max {1,1} , 0:!51'<n. 	 (3.19) 

Further, note that because 'A'  and 1 are solutions to two independent systems defined over 

O!!~ l <n, we can re-define existence and stability as follows: 

Existence: 3 i' , 0 :r.1 .  < n , such that A(1')>0, and 

14 ' , 0 -5 i; <n, such that B(i1 )> 0. 

Stability: 	If A(1A') >0, then A(l) >0 for 0 :!~;1' <1< n, and 

If B(18') >0, then B(1) >0 for 0!<-1,' <1< n. 

These properties and the conditions under which they hold are now established for the three 

cases a) X <y 	[R(l ; y-X/2) <R(l; X/2)J, b) X ='y 	[R(1 ; y-X/2) =R(1; X12)], and c)y <X :52 y 

[R(i;'y-x12) >R(i;X/2)] 

.A Existence and Optimality of 1' (X <y) 

Existence of 1' (X<y) 

It follows from (3.19) above that P exists if both l' and 	exist. Recall thatX <y 

ml {R(1;7-x12) <R(i;X/2)]. The fact that n-i is a decreasing function over 0t-.1 <n means that 

theeventA(iA') >0 [n-1; <R(1A' ;X/2)]willoccurbeforeB(i,') >0 * [n-1; <R(l,' ;7_X/2)]: 

14  <lB . 

Existenceofi4  (X<y) 

Initially (1=0), two outcomes are possible: i) either [A(!) :s0]c*[n-i  ;?tR(1;X12)] or 

ii) [A(1) >0]s*{n-1  <R(l;X/2)]. The outcome for 1' will depend on which of these cases 
occurs. 

i) [A(o) :50]s.[n 2,tR(0;X/2)] 

Note that n' =n-i is a strictly decreasing linear function of 1 with urn n=0. On 
i-sn 

the other hand, jim R (i; X/2) ~-- Jim R (1; X12) = 0. 	Therefore, given the fact that 
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R (0; X/2) :s n, there exists a i,' , 0 :!-. 1 < n , such that R (!4 ; 'y/2) > n - 1 	(with 

A(IA )>0). 

ii) [A (0) >0] 4 [n <R(0 ; X12)] 

Here, initially the function value R(0;X12) is above n-0 so that A(0) >0. 

Therefore, existence is satisfied at i,' = 0. 

Existence of i' (X <7) 

The proof for the existence of I, is analogous to that for 1 with A (1) and R (1; X12) 

replaced by 8(1) and R(i;7-X/2), respectively. 

Optimality of 1' (X <y) 

For optimality, the cor 	's which lead to the solution 1 must hold stable in the region 

(i'(X),n1]. By i'= max {1A  ,i} , 0:51 <n, (3.19), stability prevails if the conditions leading 

to 14  and i' in the two independent sub-systems of the Transform Algorithm (defined by A (1) and 

B (I), respectively) continue to hold in (14', n - i] and (1, , n-i], respectively. 

Stability in (i4'(A),n-l] (X <y) 

Again consider the two possible cases initially (1=0) possible. 

i) [A(0) ~ 0]44[n  ~ R(0;X/2)] 
We are assured of at least one solution by existence, however, the system may be 

unstable if the function R(1;X12) crosses n=n - i more than once in the range [0,n). 

The behaviour of the function R(l; X/2) depends on the value of X and the 

distribution of the auxiliary characteristic x in the population. For example, if X =0, then 

R (1; X12) = N-i always lies above n-i so that A(1) >0, 0 :5 l <n with 14  = 0. Similarly, 

the distribution of the x-values has an effect on the shape of R(1; X/2). For example, if all 

x= c,j € U, are constant, then again R(l; X/2) =N-1 and 1,? = 0. In these situations, no 
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crossings of R (1; >12) and n -1 are realized over (0, n). The more interesting non-trivial 

cases occur for X >0 and non-homogeneous values of x. 

The step change in the function R(l;X/2) over consecutive values of I roughly 
parallels the idea of a slope for continuous functions. This jump may be expressed as 

R(1+ 1; >12) - R(1; >12) = 	X 	1 	
- 	 - 1. 	 (3.20) 

k-i 	 41V_1_1) X(N_ 

An Although the term in ( ) of (3.20) is non-negative since (x(D -x(N))  0, the jump can be 

either positive or negative. However, if all negative jumps of R(1; >12) are greater than or 

equal to all jumps of n = n -1 given by n - n = -1, 0<1 <n, then stability is 

guaranteed: R (I; X/2) crosses n = n -1 in only one period [14 , 1' + 1]. Formally, this 

condition may be expressed as 

	

R(1+1;X/2)-R(I;X/2) !,: -1, O~ I<n. 	 (3.21) 
.,oiving (3.21) yields 

'I2 V2 

	

-X(,_I .4)) z-_ 0, 0 :r.1 <fl, 	 (3.22a) 

or, with X >0, 

(i 	X(N11)) 2-- 0, 0 :!~ 1 <P1. 	 (3.22) 

Barring the trivial cases (X =0 or x= c,j c U, are constant), the strict inequality of (3.22) 

holds; thereby, ensuring stability for A(I) in (lA ' (X), n - I]. Note that condition (3.22) allows 

for ties among consecutive auxiliary values. 

ii) [A (0) >0] [n <R(0 ; >12)] 

This is the second outcome initially possible when 1=0. It was shown earlier that in 

this case l' = 0. Stability in this case requires that R(l;X/2) remain above =n-1 for all 

0 :5 / :5n, with the two curves never crossing. Again conformity of non-trivial cases with 
condition (3.22) assures that this does not happen. 

The strict inequality of condition (3.22) is not met in the cases when X=0 or 

X(,)  = c 
, j U, are constant. These cases lead to R (1; >12) = N-I > n 0  = n -1 , 0 :!!-. I <n, and 
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alljumps R(1+1;X/2)-R(1;X12) =-1 , 0:51<n, of the function R(1;X/2) are negative and 

equal to the jumps of n=n-1. The two curves never cross (with A(1) >0 , 0 :51 <n), 

yielding stability in (IA'(X), n-I]. Hence, stability exists even in the special cases under 

which condition (3.22) is not met. 

Stability in (1;(x), n-li (X <y) 

The proof for stability in (l,(X), n-i] is analogous to that for l', with A(1) and 

R(1; X/2) replaced by B(1) and R(l;-j-X/2), respectively. The condition required for 
stability turns out to be the same as (3.22). 

3.2.3.B Existence and Optimality of 1 (X =y and 'y <X :!-.2y) 

The proof for the existence and opthnality of 1• (X) in the remaining two cases b) 

X =y andc) y <X :52 analogous to that for case a) X <y given above and lead to the 
same results. These results follow easily from using the relevant choice of the functions 

R(1; X/2) and R(l;-y-X/2) and are not repeated again in the interest of brevity. 

The results regarding the existence and opiimality of the solution delivered by the Transfer 
Algorithm proved above are summarized in the theorem below. 
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Theorem 3 Existence and Optimality of Solution to Transfer Algorithm 

The Transfer Algorithm always converges to a solution 0 :5 I (A) <n defined in 
Theorem 2 as 

min{I: n - I < R(I;'y-X/2) .0 :5I<n} , X <-y 

	

I '(>) 	mm 
{ 	
I: n -1 :5 R(I; 'y/2) , 0 :!5. 1 <n} , x 	• 	 (3.17) 

min (I: n-I t5 R(l;X/2) , 0 :5I<n) , y 

where X indexes the sample design p(s ; X) defining the inclusion probabilities 

	

N-i 	 N-i .- 

	

(A) = (n-I) X(  / E 	, k Ub  and R (I; X/2) = L X(k)
X/2 1 

 X
).12 

1)  and 

	

k-i 	 k-i 

R(I;7-X/2)= 	/ 	define the critical values for n-I. 
k.1 

 

For 0 :9 A :5 2 y , y ~!t 0, the solution I (A) reached is optimal under the conditions 
stated below: 

X = 0 and/or y-O and/or x=c,j E U, are constant: the solution l(X)=0 is optimal. 

'y >0 and 0 <A ~-. 2y : the solution 0 :5 I (A) <n is optimal if 

;->0, 0:5I<n. 

Note that due to the ordering imposed on the population auxiliary values x11x21 ... ,x,,}, 

condition (x(, -X 1 .. 1)) ;-> 0 holds for all 0 20 <n. Graphically, this ensures that i) theR(l;X/2) 

and R (1; y -X/2) curves do not cross n = is - I from above and ii) the R (1; X/2) andR (1; y -X/2) 

curves cross n (0 = n - I from below only once. 

4. CONCLUSIONS 

In on-going surveys of skewed populations, the most optimal sample design and estimation 
strategy holds the promise of offering the largest reduction in the sample size (and hence survey 
resources) while maintaining a given minimum desired level of precision in the estimates produces. 
It was mentioned earlier that an overall sample re-design methodology aimed at this purpose needs 
to address and integrate the solution to three problems: 
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identifying an efficient sample selection scheme, 
constructing an efficient demarcation between the take-all and sampled population groups at 
a given sample size, and 
determining the minimal sample size required to meet the precision constraint(s). 

This paper dealt with problem of constructing the take-all and sampled groups in surveys of skewed 
populations through the NTrfer  Algorithm as well as identifying an optimal sample selection 
scheme. The Transfer Algorithm allows the survey designer to find an optimal allocation of 
population units between the take-all and sampled population groups in the sense of minimizing 
directly the design variance of the regression estimator under the desired sample design. Desirable 
mathematical properties of this algorithm such as existence and optimality of solution were 
established and an equivalence result was obtained allowing the solution to be determined in terms 
of simple quantities computable directly from the population auxiliary data. 

Due to space, the integration of the ii) and iii) components of the overall sample design 
methodology was not discussed. This involves a) application of the Transfer Algorithm at the 
current overall sample size to creaz. the take-all and sampled sub-populations, b) using the precision 
constraint (in terms of the coefficient of correlation) to fmd the required sample size in the resulting 
sampled group, and c) repeating the above two steps as long as further reductions are observed in 
the overall sample size. Iteration is critical to arrive at the globally minimal sample size and 

allocation (n '= 	+ 	= V + n) because the solution to the Transfer Algorithm I '(A, n) 

(N = I • and Nb  = N- i') also depends on the current total prevailing sample size. 

At the final stage, the desired sample design p(s;X) (indexed by A) may be implemented 

in the sampled group U. Note that the solution 1 '(A) given by the proposed Transfer Algorithm 

applies generally to any sample design defmed in the range 0 !-. A :5 2 'y; it is not merely defined at 

the optimal value of the design parameter A = 'y. The presence of A in the specification of first 
order inclusion probabilities gives rise to a wide class of generalized pps designs which yield the SRS 

(X=O) and the standard pps design (A=2) as special cases. One good approximation to the optimal 

design (A = y) is a stratified design based on the transformed size values x'2 , k€ u;. 

The proposed approach differs from existing methods for constructing the take-all and 
sampled groups in the literawre in three respects. Firstly, an optimal population demarcation can 
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be obtained for a flexible range of sample designs (eg. SRS, pps, generalized pps, stratified) instead 
of simply stratified SRS designs. SecondLy, the criterion used to find the optimal population 
allocation is based directly on minimizing the design-based variance of the regression estimator under 
the desired sample design. Thirdly, the proposed methodology explicitly captures the size-induced 
heteroscedasticity evident in skewed survey populations. 
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APPENDIX A. ESTIMATION OF FINITE POPULATION IIETEROSCEDASTICITY 
PARAMETER 

This Appendix is concerned with the estimation of the heteroscedasticity parameter y (a finite 

population definition of y is given in expression (2.8)). In Section 2, the relationship between the 

magnitude of the residual squared Ek2  and the size Xk  of unit k was posited as 

	

E I: lk 
	 (2.6) 

where i is the multiplicative error explaining the fact that all E do not lie on the curve cx 1. The 

finite population heteroscedasticity parameter 7 captures the relationship existing between the 

magnitude of the disturbance E and the size measure x t  for the population unit k. The problem 

is that is not known for the population to be sampled. In repeat surveys like the LGF survey, 

however, data from previous sampling permits estimation of y. 

Three methods are discuss 	.ow for estimating 7. No one method was used uniformly 

to determine the value of in each province. Estimates from the different methods were compared 

and a value of was identified from these comparisons. In order to ascertain the stability of over 
the observation set, these methods were applied to variants of the same data set created by excluding 
a different number of the largest observations - those with the largest x -values. The approach gave 
a profile of the behaviour of y over different size ranges. The values of the heteroscedasticity 

parameter finally chosen in each province also took this analysis into account. Estimates of values 

obtained after excluded the largest observations - these went into the take-all group, sampled with ; = 1 

- were favoured across the different 7 estimation methodologies. The estimation methods are now 
described separately below. 

A.1 Least Squares (LS) Approach 

This LS approach involves linearizing the relationship between residuals E. and xk  given in 

equation (2.6) and using the sample estimates of E. to then fit the linearized equation. First, 

estimates of residuals E. = - xkB are obtained by fitting the regression 

Y* - Xk B+Ek 	 (A.!) 

	

where the estimated residuals are given by tk = y - 'k 	Secondly, the linearized version of (2.6) 
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is fitted using Ek , k€s. 

Upon taking the natural logarithm of both sides of (2.6) we have 

ln(Ek2) = In; + 	 (A.3) 

where 	= In('Jkc) is the additive error component in the linearized form of (2.6). Using E for E 

in (A.3) gives the least squares estimate of the heteroscedasticity parameter y. 

A.2 Maximum Likelihood Approach 

This method uses a totally model-based approach to the estimation of y. Empirical 
investigations into the relationship between the survey variables y based on past sample data reveal 
that the model given below captures quiet well the scauer-plot phenomena - an increasing linear trend 

and increasing heteroscedasticity with ; - between expenditures (and revenues) y and the population 

size x: 

Yk = l5 Xk + Ck 	k = 1, ..., n (A. 4) 
where 

ç - N(O, o2x) 
	

(A.S) 

and a2  x is the variance function completely specified upon determining 7. The MLE. for y based 
on the assumption of normal errors is formed upon solving 

g (, 	= 	(Y -; 
k-I 

I 	
Ni 

IlflXk  - E 
h.1 nJ 

(A.6) 

where 
N 

- i-I 	 (A.7) 

i-I 

Expression (A.6) is obtained by first solving the score functions for c 2  and substituting it into the 

log-likelthood. Finally, the equation for g(y, ) above is then obtained by differentiating the 

resulting concentrated-log likelihood function, with respect to and setting it to zero. The estimator 
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for i  given in (A.7) follows from solving the score fUnction for 	and using this expression in 

conjunction with the score g(-y, ) enables both parameters -y and 	to be solved iteratively. A 

Newton-Raphson algorithm was programmed in GAUSS to obtain estimates for y and 

The assumption of normality implicit in the maximum likelihood approach is a drawback 
since the distribution of local government fmancial information (e.g., revenues and expenditures) 
strongly departs from normality. However, the method does yield an alternative estimation 
methodology which may be used to check and compare the results obtained under other approaches. 

A.3 Graphical Approach 

In some provinces, due to small sample sizes, the estimation methods discussed above yielded 
suspicious and unstable estimates for y when the larger observations are sequentially dropped. This 
problem was addressed by obtaining 
some graphical insights into the 

value for y. Plots of [n(Ek5 and 
Fig 3 Graphical I4sthod to Frrd Comma 

0 

a 

Li 
C 

0 

In 'k  (see Figure 3) were examined 
to ascertain visually the slope of a 
line through the sample cluster. 
This rough estimate of the slope 
should be close to the least squares 
estimate of y if a sufficiently large 
number of points had been 
available. 

Plot of ln(E2) vs. ln(X) (Ontario) 
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values of -y using this approach was 
used in addition to the numerical 
methods discussed above in 
provinces with small sample sizes 
and in cases where estimates of y showed a large degree of instability over reduced observations. 

33 



A.4 Application to Local Government Finance Survey Data 

The estimates of the heteroscedasticity parameter 'y under the least squares (LS) and MLE 

methods (denoted j, and '$', respectively), after excluding the m largest x-valued observations 

(effective sample size n-rn), are reported in Table 2.1. The dependent (survey) variable y was 
defined as the revenues reported by local government units in the 1989 actual estimates; the 
independent variable x is the 1991 census count for the municipality. The actual estimates are 
prepared 30 months after the end of the survey year from municipal financial statements submitted 
by the local government units. 

Table A.! Least Squares and Maximum Likelihood Estimates of y 

Largest Units 
Removed (m) 

Effective Sample 
Size (n-rn) 

0 108 1.97 2.05 

1 106 1.72 2.07 

8 100 1.90 2.14 

18 90 1.94 2.10 

28 80 2.15 2.14 

38 70 2.18 2.07 

The graph of ln(E) vs. ln(x)  is exhibited in Figure 3. The slope of this cluster of points 

is a rough estimate of the value of y. Based on the insights given by the three methods for possible 

estimates of y, the value of the heteroscedasticity parameter was set to ly =2. A similar 

methodology - which synthesized and checked the information about 'y obtained under the three 
estimation approaches - is used to determine the most plausible estimate for the heteroscedasticity 
parameter in the other provinces. 
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A.5 Estimation of Proportionality Constant c 

For the purpose of estimating the design variance of the regression estimator given in (2.8), 

modelling of the squared residuals E , k€ U, is required. The difficulty posed by E x' , (2.6) 

is that although 'y can be estimated from past sample data, the unknown population deviations 

ti v  are unknown. If, however, the relationship between the squared residual Ek  and the size 

value Xk  defined in (2.6) holds well in the population, then the disturbance 17k  will have a small 

influence on and modelling the relation 

gives a justifiable empirical approximation to (2.6). 

(2. 6a) 

After an estimate for y has been identified, the proportionality constant appearing in (2.6a) 

is estimated. This value is needed to facilitate the estimation of the design variance VP (IR) given 

in (3.3). Expression (2.6a) can also b4. ritten as c= E/x', thereby suggesting the following 

estimator for C: 

=! fE:/: 	 (A.8) 
fl k-I 

where Ek  = y - Exk  is the estimated residual and 1 is the value estimated earlier. 

Estimates of c using the estimator (A.8) over different subsets of the Ontario data (y = 
revenues for 1989, x = 1991 census population counts) excluding them largest x-valued observations 
are given in Table 2.2. These estimates over the reduced datasets give some indication as to the 
sensitivity and stability of the estimation procedure and the behaviour of the data. 
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Table A.2 Estimates of the Proportionality Constant c. 

Largest Units 
Removed (m) 

Effective Sample 
Size (n-rn) 

e 

0 108 .0825 

2 106 .0803 

8 100 .0853 

18 90 .0817 

28 80 .0857 

38 70 .0737 

The estimates e for m = 1, •.., 38 are relatively stable. The value of e at m = 0 was chosen for later 
work. 
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